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17
TRANSPORTATION STATISTICS

Data reported in this chapter were extracted from institutional documents of
ANFIA, ACEA, ISTAT and Eurostat.

ANFIA (Associazione Nazionale Fra le Industrie Automobilistiche), the
Italian national association of automotive manufacturers1, was established in
1912 and is spokesman for its associates, on all issues (from technical, eco-
nomic, fiscal and legislative to qualitative and statistical) regarding the mobility
of people and goods.

Among several objectives, ANFIA has the task of gathering data and infor-
mation, providing official statistical data for this segment of industry.

ANFIA publishes every year a report called Autoincifre (Figures of the
Automobile), which is one of the fundamental references for statistical data on
motoring in Italy and Europe. Much of the data collected in this report comes
also from PRA (Pubblico Registro Automobilistico), the public vehicle register
managed by ACI, the Association of Italian Motorists.

ISTAT (Istituto nazionale di STATistica) the Italian government institution
for statistics 2is well known. Established in Italy in 1926, ISTAT is the main
producer of official statistics for citizens and public decision takers. It works in
full autonomy while maintaining continuous interactions with the academic and
scientific world.

This institution is fully involved in gathering European statistics (according
to regulation R 322) and gathers data according to the fundamental rules of
impartiality, reliability, efficiency, privacy and transparency.

1Web address: www.anfia.it.
2Web address: www.istat.it.

G. Genta, L. Morello, The Automotive Chassis, Volume 2: System Design, 7

Mechanical Engineering Series,
c© Springer Science+Business Media B.V. 2009



8 17. TRANSPORTATION STATISTICS

The role of ACEA (Association des Constucteurs Européen d’Automobile3)
in the European Union is similar to that of ANFIA in Italy; the 13 major vehicle
manufacturers with headquarters in Europe are associated with ACEA.

This association represents European manufacturers in the European Union
under a wide spectrum of activities, setting up research groups, supporting man-
ufacturers with objective data and creating new legislative proposals in the fields
of mobility, safety and environmental protection.

Eurostat 4 is the statistical office of the European Union. Its job is to supply
the Union with statistics from corresponding national services. The European
Statistic Service (ESS) adopts similar methods, allowing it to obtain comparable
data. This service was established in 1953.

These data, accessible to the public, concern:

• key indicators of Union policies;

• general and national statistics;

• economy and finance;

• population and social conditions;

• industry, commerce and services;

• agriculture and fisheries;

• commerce with foreign nations;

• transportation;

• environment and energy;

• science and technology.

A further source of information within the European Union derives from
the public documents of the different General Directions5; among these the En-
vironment General Direction has set up a working group, including associations
from the automotive and oil industries, that published the interesting report
Auto-Oil II, on the impact of oil product combustion.

Since all data become obsolete quickly, we invite readers interested in up-
dated details to consult the mentioned public sites, which allow access to the
original archives.

In the interests of consistency, we will usually refer to the European Union as
the original 15 countries, including Austria, Belgium, Denmark, Finland, France,
Germany, Greece, Holland, Ireland, Italy, Luxemburg, Portugal, Spain, Sweden
and United Kingdom.

3Web address: www.acea.be.
4Web address: epp.eurostat.cec.eu.int.
5General Directions are, for the European Union, the equivalent term for Department or

Ministry.
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17.1 TRAFFIC VOLUME

Traffic volumes are conventionally measured by the product of transported units
times the distance covered by such transportation; therefore:

• passenger traffic is measured in passengers per kilometer [pass×km];

• the transportation of goods is measured in metric tons per kilometer
[t×km].

It should be pointed out that the metric ton equivalent to 1,000 kg is a unit
of mass; in any case what is relevant is the quantity of transported material,
therefore mass and not weight. Nevertheless, the habit of considering the kilo-
gram as a unit of weight and not of mass persists and therefore we sometimes
see statements that traffic volume has the same dimensions as energy, which is
only correct if the kilogram is assumed to be a unit of weight.

It is also true that if we assume a value for the acceleration of gravity and
we know the vehicle coefficient of resistance, which will be explained later on,
traffic volume is proportional to the energy spent to overcome motion resistance
relative to the payload.

What was said could also apply to passenger traffic, if we substitute the
number of passengers with the corresponding mass (conventionally 70 kg per
passenger).

These considerations do not take into account the altitude difference be-
tween origin and destination or speed variations along the route, which are, in-
stead, relevant for determining motion resistance and prime energy consumption.

17.1.1 Passenger transportation

Figure 17.1 reports passenger traffic volume in the European Union from 1970 to
2001, broken down according to the primary passenger transportation vehicles,
such as cars, buses, urban railways with subways, trains and airplanes.

Cars definitely predominate over other means of transportation; car traffic
represents in 2001 more than 78% of the total, and traffic on tires (cars and
buses) is about 87%; this breakdown varies little during these years.

The total volume increased about 4% yearly during the first twenty years
considered in this diagram; afterwards the growth slowed down to approximately
zero in the last years for which data is available. Air transportation with its
continuity of development is an exception.

A similar table is reported for Italy in Fig. 17.2.
The situation for Italy is not so different from that of Europe as a whole; in

this case, car traffic represents about 82% of the total and traffic on tires (car
and busses) is about 94%. This percentage has slightly increased during most
recent years, mainly due to the reduction of railroad traffic.
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Passenger traffic volume [Gpass x km]
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FIGURE 17.1. Passenger traffic volume in the European Union, from 1970 to 2001 (in
billions of pass×km), broken down by main vehicle types: airplanes, railroads, urban
railroads, including subways, buses and cars (Source: ANFIA).

The total traffic volume increased more than the average of the European
Union, during the last years considered. Air transportation also increased during
this period more than the average.

In Italy (source ISTAT) traffic volume is well correlated with the Gross
Domestic Product. The total ground transportation system made use of a net-
work of about 6,500 km of toll motorways, more than 46,000 km of national
roads, about 120,000 km of country roads and about 20,000 km of railroads,
interconnecting 8,100 communities, 146 harbors, 101 airports and many railroad
stations.

On this network about 43 million vehicles were driven. Trains, ships and
airplanes served about 57 million residents, whose total yearly distance travelled
was about 15,000 km.

17.1.2 Transportation of goods

Figure 17.3 shows the volume of transportation of goods in the European Union
from 1970 to 2001, broken down according to the main travel modes; in this case,
road, rail, inland and sea navigation, and pipeline transportation are considered.
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Passenger traffic volume [Gpass x km]
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FIGURE 17.2. Passenger traffic volume in Italy, from 1970 to 2001 (in billions of
pass×km), broken down by main vehicle types: airplanes, railroads, urban railroads,
including subways, buses and cars (Source: ANFIA).

Here again road transportation is predominant: it accounted for 45% of
the total in the last year of this period, starting from a percentage of 35% in
1970. The role of railroads has been reduced from 20%, at the beginning, to 8%
in 2001. The contribution of sea navigation is relevant, considering the higher
average distance travelled.

Figure 17.4 reports a similar table for Italy.
Road transportation plays a more important role in Italy than in the

European Union: it carries 89% of the total in the last year considered, starting
from 70% in 1970. In a similar way, railroad share has been reduced from an
initial 16% to 6% in 2001. The contribution of sea navigation is not relevant,
because the data include domestic transportation only.

In the most recent years, all developed countries have recorded continuous
growth in transportation demand. Factors stimulating this growth have been
many (economical and fiscal integration, market globalization, etc.) and seem
likely to last in the medium term.

The most stimulating factor for Italy was the European economic integra-
tion process, implying free transfer of goods in the Union. Introduction of the
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Goods traffic volume [Gt x km]
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FIGURE 17.3. Transportation of goods volumes in the European Union from 1970 to
2001 (in billions of t×km, broken down according to the different kinds of carrier; road,
railroad, inland navigation, oil pipes and sea navigation are considered (ANFIA).

Union currency and the prospect of a further enlargement of the European Union
portend a continuation of this trend in the future.

17.1.3 Energy consumption

Energy consumption is usually measured in tons of equivalent petroleum [tep],
corresponding conventionally to 41.87 GJ or 11.63 MWh; these values define the
equivalent quantity of heat that is delivered by burning a ton of oil of average
quality.

This unit is also used to measure energy from sources other than oil, evalu-
ated at the energy cost for their production.

For instance, railroad transportation uses a combination of electric energy
and oil refinery products; electric energy itself is produced partly in thermal
power stations using oil products or natural gas and partly in hydroelectric
power stations. Other contributions can come from geothermal energy or nuclear
energy.
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FIGURE 17.4. Goods transportation volumes in Italy from 1970 to 2001 (in billions of
t×km, broken down to the different carrier kinds; road, railroad, inland navigation, oil
pipelines and sea navigation are considered (Source: ANFIA).

Every contribution is converted to an oil value, considering production losses
and thermal equivalence.

Figure 17.5 displays a time series of energy consumption in Europe for most
important means of transportation and other final applications.

The energy consumption of the transportation system is about 32% of the
total; this share can be broken into:

• 2.4% for railroad transportation;

• 82.4% for road transportation;

• 13.6% for air transportation;

• 1.6% for inland navigation.

This last figure includes not only river, lake and channel navigation, but
any maritime navigation in the European Union. The figure therefore includes
sea navigation; this correction is particularly important for Italy because of its
extensive coastline.
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FIGURE 17.5. Energy consumption in the European Union for most important trans-
portation systems and final applications; consumption is measured in millions of tep;
percentages (for 2001 only) are multiplied by 10 to use the same scale (Source:
Eurostat).

The energy used for sea navigation, the so-called bunkered quantity at the
sailing harbour, is partially used for transportation to countries outside the
European Union; it is conventionally treated as an oil export. In 2001 this
quantity was estimated as 43.5 Mtep, about 14% of total transportation
consumption.

The transportation system relies mainly on oil products; railroad trans-
portation uses diesel fuel for 30% of its total energy consumption and a notable
part of electric energy comes from oil combustion as well.

Road transportation uses primarily oil refinery products; Italy and Holland
are an exception, consuming respectively 9% and 7% liquefied petroleum gas for
traction (1999); the contribution of coal and natural gas is at this time negli-
gible. Probably this situation will remain unchanged for the near future. Total
consumption shows a leveling in recent years.

In Italy, road transportation seems to follow a different trend, as shown
in Fig. 17.6, which concerns the consumption of oil products for ground
transportation.

The following Fig. 17.7 shows the share between diesel fuel and gasoline.
The growth of diesel fuel over gasoline is evident; this trend is partly justi-

fied by the different retail prices of the two fuels and partly by the more efficient
combustion of diesel engines. We should also remember that quantities are mea-
sured by mass units, but customers are paying by volume; at the same volume,
diesel fuel contains 12% more energy than gasoline.

We have tried, using the available data, to compare the energy consumption
of different means of transportation; we have defined as energy efficiency the
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FIGURE 17.6. Total oil product consumption for ground transportation in Italy; the
quantity in Ktep includes gasoline, diesel fuel and lubricants, these last accounting for
about 1% of the total (Source: ANFIA).

FIGURE 17.7. Gasoline and diesel fuel used in Italy by ground transportation, mea-
sured in Ktep (source ANFIA).

amount of energy necessary to perform a unit of traffic volume. We assume,
as a common indicator, the goods traffic unit [t×km], which allows us to
summarize with a single measurement goods and passengers transportation. We
assumed an average mass of 70 kg for each passenger, including the transported
baggage.

Accepting this questionable equivalence, we obtain the diagram of Fig. 17.8.
The values shown here display an increase over time of about 12% for road

transportation and 16% for air transportation, covering a period of about ten
years.



16 17. TRANSPORTATION STATISTICS

FIGURE 17.8. Comparison of energy efficiency of different transportation means; data
are elaborated from time series of the European Union.

Another relevant parameter for evaluating the energy efficiency of a means
of transportation is the specific traction force, the non-dimensional ratio:

Pmax

mgVmax
=

Ft

mg
=

Pmaxt

mgd
,

obtained by dividing the installed maximum power of the propulsion system by
the total vehicle weight and by its maximum speed.

The specific traction force may be interpreted, assuming that the vehicle
is using its maximum power at its maximum speed with its maximum payload,
as the ratio between traction force Ft, which in a steady condition equals the
motion resistance, and vehicle weight; this is like an overall friction coefficient.
Another interpretation could be the energy supplied by the engine to move a
unit of mass for a unit of distance.

Figure 17.9 reports the specific traction force for different kinds of vehicles
at different maximum speeds. Each curve has been obtained by considering many
vehicles of the same family and charting them on the diagram. Curves on this
diagram represent the lower envelope of the points represented.

This methodology may be questioned because only the top speed is taken
into account and this may not reflect the most efficient condition for the traction
engine; in addition, only the total weight is considered, instead of the payload
alone.

All curves are superimposed on an ideal line that on logarithmic scales is
straight, defined as the limit for isolated vehicles. This line can be interpreted
as the optimum use condition for each vehicle, independent of its propulsion
system.

The right side of Fig. 17.9 shows an enlargement of the part of this diagram
regarding ground vehicles. It will be noticed that all vehicles including trailers
are more efficient than isolated vehicles and are set below the limit line.
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Although these are approximations, this parameter gives an immediate idea
of the energy efficiency of different vehicles, and the distance to the limit lines
suggests the amount of room for improvement.

17.2 OPERATING FLEET

17.2.1 Quantity

Vehicles owned by naturalized or legal residents of Europe totalled about 215
millions in 2002; they comprise the so-called vehicle operating fleet.

Figure 17.10 shows a time series for private vehicles, mainly cars; while
Fig. 17.11 shows public service vehicles, including commercial vehicles, light,
medium and heavy duty trucks and busses.

The year 2000 figures on total traffic volume are also available (source
Eurostat):

• the railway fleet, included 40,000 engines and rail cars, about 76,000 cars
for passenger transportation and about 500,000 freight cars;

• the navigation fleet, included about 15,000 vessels;

• the air fleet, included about 4,900 airplanes.

The private car fleet is predominant; about 469 cars for every 1,000 citizens
were available in 2000. The fleet growth in thirty years was about 184%, with a
yearly growth rate of about 3.5%; this growth has slowed but not stopped.
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FIGURE 17.10. Time series of private cars in the European Union, in thousands; the
lower pie chart shows the breakdown of the 2002 figures into the 15 considered countries,
identified according to the international licence plate (Source: ACEA).

In the United States, car density has reached 750 cars per 1,000 citizens and
is now steady; statistics show, in fact, that new car sales largely keep pace with
written off units.
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FIGURE 17.11. Time series of public service vehicles in the European Union, in thou-
sands; the lower pie chart shows the breakdown of the 2002 figures into the 15 considered
countries, identified according to the international licence plate (Source: ACEA).

Although this density is not inevitable for the European Union, the fleet
there is still growing, and countries whose economies are growing fast are showing
higher rates, such as Greece, with 9.2%, Portugal, with 7.3%, Spain, with 6.9%,
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FIGURE 17.12. Citizens per car in Italy; this index has been decreasing continuously
over time, with the exception of two discontinuities (not shown) at the time of the two
world wars, in 1915-18 and 1939-45 (Source: ANFIA).

while countries with a more mature economy show lower rates, such as Denmark,
with 1.8%, and Sweden, with 1.9%.

The highest car density in the year 2000 was reached in Luxemburg with
616 cars/1000 persons (corresponding to 1.62 cars per citizen), Italy with 563
cars/person and Germany with 522 cars/person.

Figure 17.12 shows a time series of the ratio of citizens per car in Italy; this
diagram, if compiled from the beginning of the motoring era, would have shown
a figure of 300,000 citizens per car in 1899; from that time on the index decrease
was continuous, except during the two world wars in 1915 – 18 and 1939 – 45,
when the total fleet decreased.

In 2003 this index has decreased to 1.5 citizen/vehicle.
At the same time the transportation infrastructures of the European Union

can be described as follows:

• about 160,000 km of railroad network;

• about 3,250,000 km of road network, including 50,000 km of motorways;

• about 28,000 km of inland navigation routes;

• 204 airports with more than 100,000 passengers/year, with 30 of them
treating 75% of the total air traffic.

17.2.2 Characteristics

If we want to better understand the contents of the car fleet, we can consider
the histogram of Fig. 17.13, showing the breakdown of cars registered from 1995
to 2004 according to different market segments and body types.
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FIGURE 17.13. Car types registred in Europe from 1995 to 2004, classified according
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than 3.5 m (Source: ACEA).
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TABLE 17.1. Road vehicles of the Italian operating fleet by age (Source: ISTAT).

Age Cars Busses Trucks
0 2.033.296 3.819 222.443
1 2.541.933 6.056 260.116
2 2.518.499 5.381 243.297
3 2.391.709 5.485 197.700
4 2.399.014 4.569 173.021
5 2.381.400 3.936 136.940
6 1.667.344 3.409 142.841
7 1.619.341 2.610 136.149
8 1.533.972 1.898 108.402
9 1.497.088 1.866 102.005

10 1.993.566 2.852 134.100
>10 11.068.915 49.519 1.563.077

unknown 60.376 316 9.761
Total 33.706.153 91.716 3.429.852

Large, medium, medium small and small cars are considered, defined ac-
cording to an overall length of more than 4.5 m, more than 4 m, more than
3.5 m and less than or equal to 3.5 m.

These segments show no substantial variation; in terms of type, a constant
decline of sedans can be noticed, with a simultaneous growth of what were once
considered niche segments, in particular minivans.

Diesel engines, introduced into mass production after the Second World
War, have suffered from fiscal and regulatory intervention; at this time their
fleet share is about 24%, while their market share is 44% (Source: ANFIA).

By analyzing and elaborating fleet characteristics, some information on ex-
pected life can be gathered; the task is particularly difficult because many data
referring to the past are missing or are not comparable with present information.

As an example we can look at Table 17.1, where the Italian fleet is classified
according to vehicle categories and their registration age.

In Italy, the average age of the running fleet is rather high: 32.8% of cars
were more than 10 years old in 2002. The percentage for trucks reaches 46.1%.

We observe also that the weight of cars and trucks more than 10 years old
has increased as compared with previous years, because they have benefitted
from incentives favoring newer, less polluting vehicles.

Newer cars (less than one year of age) have moved from 7.2% in the year
2000 to 6.0% in 2002. A different trend appears in trucks, where newer vehicles
went from 5.1% in 2000 to 6.5% in 2002.

ANFIA data, which reports on more age classes, estimate an average age
of 8.85 years for cars in the year 2002. Analyzing these data, cars with gasoline
engines appear to be the older category (9.35 years), but this must be weighed
against the relatively recent success of diesel engines.
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In the European Union the average age for cars is about 8 years; 70% of the
fleet is younger than 10 years (source ACEA).

For industrial vehicles in Italy, the average age is about 10.5 years.
The estimate of vehicle expected life is hard to predict; but barring major

changes, an expected life of 15 years for cars and 20 years for industrial vehicles
would be a reasonable forecast.

The expected evolution of emission and passive safety regulations could
promote a shorter life, increasing fleet obsolescence. Macroeconomics should not
be forgotten.

The yearly distance covered by a vehicle can be estimated by dividing traffic
volume by the number of operating vehicles and available places; in reality, not
many vehicles operate at maximum capacity.

For example, in the European Union, cars deliver a traffic volume of 3.779
Gpass×km (see Fig. 17.1) with a working fleet of 187,400,000 units (see Fig.
17.10); by crediting each car with five places, we would obtain about 4,000
km/year.

The so-called occupation factor should be taken into account; it is defined
as the ratio between occupied and available places; statistical surveys measured
a mere 26.5% for this value, reducing total occupation to only 1.33 passengers
per car.

The average yearly distance covered is therefore about 15,000 km/year
(source ACEA).

A reasonable estimate for a car’s life expectancy, therefore, should be close
to 200,000 km.

Following the same process for other vehicle categories, we obtain:

• more than 400,000 km for busses;

• more than 800,000 km for long haul trucks.

17.3 SOCIAL IMPACT

As we have seen, transportation has a strong bearing on daily life. Every morning
European Union services have to move more than 150 millions people to their
working places and to return them to their homes in the evening, as well as serv-
ing longer routes; in addition, about 50,000,000 tons of freight are transported
every day.

Considering passenger traffic only, each citizen travels approximately 12,700
km per year, using all available means of transportation; as a consequence, trans-
portation is highly relevant to how people live.

We will consider in the following sections:

• accidents attributable to the use of transportation means;

• emissions of primary pollutant products;
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• jobs offered by this economic sector;

• tax revenue generated by the transportation system.

As far as energy consumption is concerned, we refer to the previous section
on this topic.

We will take into account mainly motor vehicles, our main field of interest,
reporting also some reference data for other means of transportation.

17.3.1 Accidents

Like all human activities, road transportation involves risks and the number of
accidents caused by the use of motor vehicles is remarkable in all countries of
the world.

Their economic and human cost is high enough that the objective of increas-
ing vehicle safety is generally considered a social and technical priority.

To evaluate the extent of these damages it may be useful to report a statistic
on causes of death in the United States; these data could be similar to those in
any other developed country.

These figures for 2002 are shown on Table 17.2. The number of fatalities con-
nected to road transportation is higher than those caused by all remaining means
of transportation and represents 44% of all fatalities from accidental causes6.

In the European Union, transportation accidents caused 41,500 fatalities in
the year 2000; 98% of these were due to road accidents. For people younger than
45, road accidents are the leading cause of death.

Figure 17.14 shows a summary of this worrying situation.
Total fatalities are decreasing, notwithstanding the traffic volume increase;

this result is attributable to better driving education, infrastructure improvement
and vehicle passive safety owing to the increasing severity of regulations.

TABLE 17.2. Death risk for different causes, referring to the USA population in 2002.

Cause Total number of fatalities Percentage
All causes 2.403.351 100
Heart troubles 936.923 39,0
Cancer 553.091 23,0
Total accidents 97.900 4,1
Motor vehicles 43.354 1,8
Generic accidents 17.437 0,73
Falls 13.322 0,55
Poisoning 12.757 0,53
Drowning 3.842 0,16
Burns 3.377 0,14

6Source: http:\\www.the-eggman.com/writings/death stats.html.
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FIGURE 17.14. Time series of fatalities caused by road accidents in the European
Union; the pie chart shows the contributions of the different States (Source: Eurostat).

The average mortality rate is about 109 deaths for each million residents
(1,09·10−4); Italy and Ireland are close to the average; the lowest value is found
in the United Kingdom (0,60·10−4), while the highest is in Greece (1,98·10−4).

55% of accident fatalities are represented by car occupants, 23% by bicycle
occupants, 6% by bus occupants and the remainder by pedestrians.

Referring fatalities to different passenger traffic volumes, we obtain the fol-
lowing mortality rates:
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FIGURE 17.15. Time series of the ratio between deaths and non-fatal injuries due to
road accidents in the European Union (Source: Eurostat).

• 10·10−9 deaths/pass×km, for road transportation;

• 3·10−9 deaths/pass×km, for railway transportation;

• 0.27·10−9 deaths/pass×km, for air transportation.

Air transportation poses a challenge; one might consider accidents occurring
inside the borders of the European Union, or accidents occurring to European
airlines, whether inside the Union or abroad. Only European citizens might be
considered or any person involved.

If we consider that most accidents occur near airports, the different counting
policies give different conclusions. Moreover, these accidents, fortunately few,
fluctuate over time and are difficult to average meaningfully.

The reported figure refers to all accidents occurring in 1999 within the bor-
ders of the European Union.

Returning to road transportation, accident severity has also decreased, as
we can conclude by examining Fig. 17.15 showing the time series of the ratios
between deaths and non-fatal injuries.

17.3.2 Emissions

The main pollutants emitted by the combustion of oil refinery products, in gen-
eral, and by road traffic, in particular — all demonstrated to be harmful for
public health — are the following:

• carbon monoxide (CO);

• nitrogen oxides (NOx);
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• non-methane organic compounds (NMOC);

• particulate matter (PM).

In recent times other gases have been added to the list; these are not directly
harmful, but contribute to creating the so-called greenhouse effect. They are
known, therefore, as greenhouse gases (GHG).

Carbon monoxide is a flavorless, colorless and poisonous gas; if exchanged
with blood hemoglobin, in the lungs, it impairs the quantity of oxygen delivered
to body organs and tissues.

A significant quantity of CO emission is produced by gasoline engine com-
bustion and, therefore, by cars; all combustion processes of organic fuels that
are incomplete for lack of oxygen contribute to the production of CO. Such con-
tributions are many, including other gasoline engines (motorcycles, etc.), diesel
engines, incinerators and homes.

Figure 17.16 shows a CO breakdown by source as estimated for the European
Union in the year 2000.

These values are constantly decreasing because of the conversion to natural
gas of many wood-burning furnaces, and because of the regulation on vehicle
emissions that reduced the allowed limits, for example, for gasoline engine cars
from 4.05 g/km, in 1992, to 1 g/km in 2005; the introduction of catalysts in 1992
had already reduced CO emission by ten times.

Nitrogen oxides (NOx) are made by mixing NO and NO2 and are the re-
sult of the combination of atmospheric nitrogen and oxygen due to combustion
processes at high temperature and pressure; we can, therefore, say that the more
efficient the combustion process, the higher the rate of nitrogen oxide formation.

Waste incinerators 6%

Agriculture 2%

Electric energy 1%

Homes 15%

Industrial incinerators 7%

Industrial production 7%

Cars 44%

Trucks and busses 8%
Other vehicles 10%

FIGURE 17.16. CO breakdown by source for the European Union for the year 2000
(source ACEA).
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FIGURE 17.17. NOx breakdown by source for the European Union in the year 2000
(Source: ACEA).

For this reason fuel consumption and CO2 emission reductions conflict with re-
duced emissions of NOx.

A second major source of NOx is nitrate salts used in agriculture, which
produce acids emitting nitrogen in the presence of water.

Nitrogen dioxide (NO2) irritates the lungs and can reduce their resistance
to infection, with increased risk for bronchitis and pneumonia.

Contributions to this pollutant are many, as shown in Fig. 17.17, again based
on the year 2000.

We should remark that NOx, together with NMOC are also precursors of
complex chemical reaction leading to the formation of ozone (O3) into the low
altitude atmosphere, proven to be noxious to human health.

Anthropogenic sources of this pollutant are many; also in this case there is
a clear trend to decrease. The evolution of vehicle regulation has reduced NOx

limits from 0.78 g/km in 1992, to 0.25 g/km in 2005.
Fig. 17.18 shows a similar diagram for NMOC; the evaporation of fuels and

solvents is a major contributor.
NMOC also follows a decreasing trend; vehicle regulations have reduced

levels from 0.66 g/km to 0.10 g/km for gasoline engines, and from 0.2 g/km to
0.05 g/km for diesel engines in the period 1992 to 2005.

Particulate matter is a mix of particles of different size that is harmful to
health; it is also damaging to exposed materials and can reduce visibility. It is
usually classified according to the average diameter of particles involved; these
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FIGURE 17.18. NMHC breakdown by source, in the European Union in the year 2000
(Source: ACEA).

are suspended in the atmosphere and precipitate very slowly. The most noxious
particulates are those suspended in the atmosphere.

PM-10 indicates particles smaller than 10 μm, while PM-2,5 refers to sizes
smaller than 2,5 μm.

The smaller the particle the greater the risk for human health. Extended
exposure to these particles affects breathing, can worsen existing pulmonary
diseases and increases cancer risk.

Beyond combustion products, particles also contain dust, ash, smoke and
airborne droplets. If not washed away by rain or artificial means, powders on the
ground can again become airborne due to natural wind or passing vehicles.

Fig. 17.19 shows a breakdown of the main sources of PM-10.
Gasses contributing to the greenhouse effect (GHG) include a basket of six

chemical compounds that were identified in the final document of the Kyoto pro-
tocol; these are: carbon dioxide (CO2), methane (CH4), nitrogen dioxide (NO2),
chlorofluorocarbons (HFC), perfluorocarbons (PFC) and SF6.

All these gasses, if diffused into the atmosphere, limit infrared radiation,
contributing to an increase in the atmosphere’s average temperature.

They are measured according to their heating potential, which is reported
as CO2 equivalent; their quantity is multiplied by weights pi, which express the
carbon dioxide equivalent.

The weights are the following: pCO2 = 1, pCH4 = 21, pNO2 = 310, pSF6 =
23, 900. HFC and PFC include two large families of different gasses, each with
its own weight.
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FIGURE 17.19. PM-10 particulate breakdown by source in the European Union in the
year 2000 (Source: Auto-Oil II).

The pie chart showing the GHG breakdown by source is shown in Fig. 17.20.7

GHG emissions are strongly correlated to the population: France, Germany,
Italy and the United Kingdom account for more than 50% of the total for Europe.

These emissions can be reduced only by reducing the burning of fossil fuels.
Air pollution is a phenomenon preceding development of the automobile,

especially in urban environments and it has been declining for many years.
If public perception has increased, this is due more to the evolution of laws,

than the problem per se.
Figure 17.21 shows an interesting diagram reporting SO2 and smoke evolu-

tion recorded in London during the last four centuries; the period up to 1920 is
an estimate based on coal consumption, while figures after that date are certain.

Urban pollution decreased considerably in the second half of the past century
and is now lower than at any time in the last 400 years.

Similar diagrams are available for all major towns; on the other hand, towns
of recent development show curves that are still increasing.

7These data are unfortunately not consistent with the others, because they refer to the
European Union as extended to 25 countries.
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Transportation combustion 19%

Industrial combustion 14%

Evaporation 2%

Other
energies 10%

Industrial
process 5%

Agriculture 10%
Losses 3%

Electric energy 30%

FIGURE 17.20. Greenhouse gasses broken down by source, measured as CO2 equiva-
lents (Source: Eurostat).

FIGURE 17.21. Diagram of SO2 concentration and smoke, as functions of time, in
London.

17.3.3 Economic figures

Limiting the figures to road transportation only, ACEA manufacturers produced
in 2004 about 16,900,000 vehicles, 16,400,000 of them registered in the European
Union with the remainder exported.

This production activity accounts for 1,200,000 jobs at vehicle manufactur-
ers and 800,000 jobs at parts manufacturers; related activity, including distribu-
tion, service, parts and fuels distribution, car rentals, insurance, waste disposal,
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driving schools, dedicated press and infrastructure management, creates jobs for
12 millions people.

The yearly sales of vehicles alone have reached 452 billion euro in 2001;
investments were about 8% of sales and research and development expenditures
about 5%. The positive contribution to the trade balance was 33.4 billion euro.

Taxation on sales and property transfers, on vehicle ownership, on tolls and
petroleum products was 346 billion euro in 2003, about 3.8% of the European
Union GNP.
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VEHICLE FUNCTIONS

18.1 SYSTEM DESIGN

The goal of a system approach to vehicle design is to define the technical specifi-
cations of each component, in such a way that the vehicle, as a whole, performs
its functions according to assigned procedures and objectives.

By technical specifications, we mean a set of physical measurements that
define each part, completely without the use of detailed drawings.

The system approach to design allows project, even the most elaborate one,
to be carried out by assigning activities to teams working in parallel, each with
comprehensible objectives that can be checked autonomously, and finalized to
the overall performance of the vehicle. The system approach also allows a project
to be developed, using standard components produced by suppliers, these com-
ponents being developed for the purpose or chosen from a catalogue.

Finally, the system design is the initial phase of each project, when the
feasibility of reaching the assigned targets is verified; this phase is usually called
a feasibility study . The technical specifications of the main components are part
of the concept documentation.

In the continuation of this section we will try to explain how to assign and
measure overall vehicle performance and functions.

Unfortunately, performance and functions cannot be defined absolutely, be-
cause they are conditioned by the customer’s expectations of the product he will
buy, and these expectations depend on both objective and subjective parame-
ters. Nor would we forget that these expectations are conditioned by product
alternatives existing on the market when the product will be sold, alternatives
which are usually unknown when the project is launched.

G. Genta, L. Morello, The Automotive Chassis, Volume 2: System Design, 33
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Let us consider the climate system as an example.
Some functions of primary importance are easily identified.
We can assume that the objective of the climate system is to allow the pas-

senger compartment to reach the assigned comfort temperature in a given time,
notwithstanding the existing outside temperature. In reality, this time (cool-
down or warm-up time) is only an approximate parameter; we would not want
ideal comfort temperatures to be reached too quickly, causing passenger discom-
fort due to too strong a flow of air on the skin or high temperature gradients in
the air.

Heat flux on passengers appears to be a matter of judgement, further com-
plicating our understanding of the phenomenon.

In a luxury car, it might be mandatory to obtain comfort conditions au-
tomatically, requiring the passenger to adjust temperature control only. A few
years ago it would have been a wild guess to design a multi-zone climate system
for medium or small cars. Nevertheless this feature is beginning to appear in
these cars and could became standard in the near future; when such system were
designed, they may have seemed waste of time and money.

On next generation medium cars, automatic outside odor abatement could
become indispensable. The abatement efficiency of various odorous reference
substances should therefore be defined and measured.

In this connection, it should be remembered that too ambitious a specifica-
tion could increase the product cost in ways that could prove to be unrecoverable
in the final price.

Likewise, there are other functions that, although of secondary importance,
cannot be neglected and, sometimes, impact other systems. They could be de-
signed, for example, with goals like these:

• to reduce fuel consumption due to the climate system to a minimum;

• to reduce to a minimum the power required to the engine, especially during
sudden acceleration;

• to minimize the noise of air flux into the passenger compartment;

• to control humidity, so as not to fog the windshield or side windows, etc.

Thus we see that in an apparently simple case, it can be very difficult to
identify functions and specifications and that this identification should be done
only after a careful study of customer expectations, which are in part a priori
and in part depend on the competitor’s products.

It is also difficult to define the boundaries of the climate system, or to
identify which components influence the climate system by their behavior.

As a matter of fact, in a traditional approach, the climate system would be
limited to:

• the heat exchange group, including the heater and the evaporator, the
air channels and nozzles that direct the conditioned air to the passenger
compartment, a part of the body system;
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• the compressor, a part of the engine system;

• the electronic control box, a part of the electric system.

But, if we try to improve our control over climate system functions, this list
should be expanded to include, for example, windows and windshield, responsible
for an important part of the radiated heat; door panels, responsible for part of
the transmitted heat; seats, as they influence human body heat exchange; and
gearbox transmission ratios for their influence on engine warm-up.

The boundaries of the technical specification influencing certain function are
wide and exceed the boundaries of the components dedicated to this function.

We suggest that a correct approach to system design should include, at least,
the following steps.

1. To define the functions performed by the system.

2. To define the parameters that best measure those functions and the target
values they should reach to obtain customer satisfaction.

3. To define which components are part of the system, because they influence
the achievement of the target values.

4. To identify other system functions, if any, in competition with those of
point 1.

5. For each component, to establish a set of technical specifications coherent
with the system function target values.

Therefore system engineering implies the study of components that are nor-
mally classified under different automotive engineering disciplines; in the exam-
ple of the climate system, we find components that are part of the body, the
powertrain and of the electric system; these components are usually located in
different sub-assemblies of the car.

The chassis system design we will study in this book is similar. We will study,
for example, dynamic performance; a major factor here is the car’s top speed.
For a correct system approach, we will study not only the transmission as a
component of the chassis, but also engine specifications (part of the powertrain),
and aerodynamic resistance (part of the body system).

If engineering subjects are, by their nature, interdisciplinary, system engi-
neering must likewise exceed the boundaries of its individual subjects.

A traditional, topological approach, on the other hand, classifies and studies
vehicles according to three main subsystems.

• The chassis, as the cluster of components dedicated to vehicle path control,
such as transmission, suspension, brakes, wheels and steering mechanism,
with their dedicated supporting structures.

• The powertrain, as the cluster of components dedicated to traction power
generation, such as engine, fuel supply, intake and exhaust plants.
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• The body, as the structure supporting all other components including the
passenger and payload compartment.

This book, dedicated to chassis system design, will consider all those func-
tions that are primary to the chassis; nevertheless, while studying a function
such as dynamic performance, we will also consider some aspects of the engine
and the body or, in terms of automatic system controls, we will consider some
issues interfacing with the electric and electronic system.

System design is necessarily rough, because it only studies the baseline spec-
ifications of the components included in the system; design details of the same
components are left to specialists in each.

This approach will be useful not only to engineers, but to anyone involved
in new vehicle development process.

18.1.1 Functions perceived by customers

Let us consider all functions performed by the vehicle, with particular reference
to automobiles.

Vehicle functions can be defined as the categories by which the customer
rates vehicle performance.

A complete list of functions, probably to be expanded in the future, can
include the following:

• Appearance.

• Available space.

• Ergonomics.

• Climate comfort.

• Dynamic comfort.

• Dynamic performance.

• Handling.

• Safety.

• Resistance to age.

Each function can be explained through a certain set of requirements, which
are qualitative and quantitative attributes that the vehicle must possess to per-
form each function correctly; we will describe these requirements shortly.

The first listed function (this list is not ranked by priority) is appearance,
the ability to appeal to the customer; even if we these are beyond our scope, we
will say the pertinent requirements involve the body, in terms of shape, volume,
materials and details.



18.1 System design 37

The contribution of the chassis to this function is marginal but not negligible
and includes tire and wheel size, a part of car appearance; the engine also gives
contributes through its proper lay-out at open hood, or through hood shapes
and ventilation openings.

Roominess, or, from a designer point of view, the use of space, is important,
because it embodies the primary objective of carrying people and goods.

Customers don’t expect unlimited room, depending the class of the car,
they are interested in; what is important is how much limited space can be
rationally used. The room expended on car components is unavailable for this
use; component lay-out should be designed to limit as much as possible any
intrusion into the passenger compartment. This explains why we spent so much
time on transmission and suspension bulk in the first volume.

Other important requirements also hinge on body design, such as roominess
and availability of space to organize small objects; another important require-
ment is adaptability (tilting or removable seats), in order to enable the customer
to change the car interior to suit different transportation needs.

Car ergonomics can be defined as the ability to minimize the physical ac-
tivity required by a given operation while using the car. Within this function,
we usually include the pleasure of driving the car, including the many sensations
the customer feels while driving.

The requirements of this function again involve the car body and include:

• the ease of entering and exiting the car for driver and passengers, of opening
and closing doors, the glove compartment, hood, trunk, etc.;

• the ease of identifying and reaching the most important controls with min-
imal reach;

• the comfort of the driver’s posture;

• the ease of loading and unloading the transported goods.

Chassis design is primarily affected by the requirements established for car
controls such as the steering wheel, gear shift stick, clutch and brake pedals;
these have to do with their operating force, the placement of the controls and
the feeling perceived by their operation. Any control, in fact, not only receives
an input that should be minimally tiring, but returns a feed-back that should
inform the driver about the correct accomplishment of the maneuvers.

We commented about climate comfort in our example. In this case, as well
the related requirements affect body design and, partially, the engine.

The dynamic comfort function is evaluated by the ability to suppress all
acoustic and vibration nuisances from outside (road pavement and other vehicles)
and from inside (engine operation and component vibration).

The related requirements involve almost all vehicle components, as they
participate as sources and potential transmitters of such disturbances.

Noise and vibration contain information useful for both driver and passen-
gers. A totally silent vehicle, without vibrations, could prove to be dangerous, as
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has been demonstrated by experience with active noise suppression. In addition,
some noise is peculiar to particular types of car, as, for example, sports cars.

The target is not total suppression but an acoustic environment compliant
with customer expectations.

Filtering of components vibration is a task usually assigned to the body
system, while filtering noise and vibrations from the road is usually assigned to
the wheels and suspension.

Filtering powertrain noise (engine operation) involves powertrain suspension
and the intake and exhaust system.

Unbalance specifications are assigned to any potential source of vibration.
The dynamic performance function includes requirements that are easy to

measure, such as top speed, gradeability, acceleration and pick-up. Requirements
that are more difficult to evaluate meaningfully are drivability and fuel economy.

Requirements involve all chassis components from the engine to the body
and, in general, the entire vehicle.

Handling functions are usually defined as the vehicle’s ability to follow driver
inputs on the controls, when modifying car speed or trajectory; these controls
include separate or combined operations on the steering wheel, brakes and ac-
celerator.

Handling function requirements involve not only suspension, tires, steering
mechanism and brakes, but also engine and transmission. Overall properties of
inertia (mass and momentum) have vital importance for this function.

The safety function is usually classified in three ways:

1. preventive safety, such as the ability of the vehicle to keep the driver con-
stantly updated on corrective maneuvers to be undertaken; a typical ex-
ample of this category includes not only outside visibility, visibility of the
main instruments (i.e. speedometer, outside thermometer, etc.) but also
car trim variations;

2. active safety, such as the ability of the vehicle to react to driver inputs
with a response that should be immediate, stable and proportional to the
action, while avoiding obstacles or dangerous situations;

3. passive safety, such as the ability to limit, when a collision is unavoidable,
the severity of injuries to car occupants, to pedestrians or to passengers of
other cars, involved in the collision.

Safety cannot be, by definition, total, but requirements should be estab-
lished for the most statistically relevant situations; homologation requirements
are an important part of this approach, together with manufacturer’s technical
policies. In the passive safety category, repair cost limitations following low speed
collisions have been added recently.

Safety involves all main vehicle components; the body is particularly in-
volved in preventive (inside and outside visibility, lights) and passive safety
(structures, passive and active restraint systems, component lay-out, surface ma-
terials and finishing).
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The chassis must comply with all active safety requirements for suspension,
brakes and tires, and with passive safety requirements, such as intrusion into the
passenger compartment following a collisions.

The engine system is involved in passive safety as far as fuel spills after
crashes and consequent fire hazards are concerned.

The aging resistance function is the ability of vehicle system and compo-
nents to maintain their functions unchanged or to limit their degradation with
aging within acceptable limits; reliability is a requirement of this function. Aging
resistance involves all vehicle components and, obviously, all chassis components.

18.1.2 Technical specifications

Each vehicle function can be described through a coherent set of measurable
requirements; compliance with them guarantees customer satisfaction with the
vehicle.

These requirements determine the technical specifications of all components.
Each part or subassembly could be fully defined by an engineering draw-

ing, containing all relevant geometric dimensions and materials. In reality, the
detailed knowledge of complex components is irrelevant to the car manufacturer,
who is more interested in performance than specifications. A very detailed cannot
always guarantee complete fulfillment of the desired performance. In many cases,
car manufacturers lack the technical competencies to understand complex details.

Technical specifications solve this problem by providing global and synthetic
information only; it is therefore necessary to establish, for a certain component,
what is relevant for system function. A technical specification should list:

• what physical properties describe the requirements requested for the com-
ponent;

• in which conditions those properties must be measured;

• what values (with allowed tolerance) they must assume to obtain the de-
sired system performance.

These technical specifications, together with simple outline drawings, rep-
resent the only technical documentation useful for managing the relationship
between car and component manufacturer.

The component manufacturer’s point of view is necessarily different, since
he must create technical documents to produce the needed part consistently.
After all it isn’t rare that some second tier supplier is producing other parts
that will be integrated into the final subassembly. The first tier supplier must
therefore use his technical specifications to advantage.

Consider the example of a tire.
The vehicle system utilizes the tire to express forces on the wheel along the

three directions (vertical, longitudinal and transverse); tire technical specifica-
tions will examine these three parameters first.
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A reasonable approach to tire specification might be to determine maximum
allowed values for these directions and magic formulae coefficients; their values
can be calculated by mathematical models directly or interpreted by these models
as applied to satisfactory results of experiments performed on the car.

Other specifications could describe the tire’s age resistance, with acceptable
values of tread wear using certain mission as reference.

The figures of vertical elasticity and damping close this specification list.
The common characteristics of these parameters are:

• they must be correlated with the function we wish to obtain on the vehicle;

• they must be overseen by the supplier, since he is the manufacturer, without
implying a detailed knowledge of the application.

Other characteristics, such as, for example, the chemical composition of cord
fibers applied to the tread, are not generally involved in vehicle operation and,
if they are, the link between chemical composition and system behavior is part
of the proprietary know-how of the supplier.

Technical specifications, therefore, define the performance that we want to
obtain, but not the details that allow us to obtain this performance.

On the other hand, specifications should not be too superficial; for example,
we should not make the mistake of providing a supplier specifications on road
durability without referring to the driving conditions and the typical trip in
question; a good specification should enable the supplier to evaluate for himself
the results of his effort.

Continuing with the tire example, it is clear that the technical documents
available to the supplier will be much more detailed than those used by the car
manufacturer as technical specifications; the supplier will have available a com-
plete set of drawings of the tread, including detailed dimensions, cord texture,
materials, fixtures and production set up, etc. The design tools of the supplier
will be able to correlate these parameters with tire performance on the vehicle
system which are almost coincident with the technical specifications.

Some details, such as wires included in the body - whose performance is not
only dependent on reference dimensions (diameter) but also on the manufactur-
ing process in the steel mill - should be described by specifications including only
diameter, yield and the physical properties of their surface.

Technical specifications represent a universal simplified language, allowing
such different industrial organizations as final manufacturer and supplier to co-
operate in reaching the same objective, the final customer satisfaction.

The same logic can be usefully applied within a company, particularly a
vehicle manufacturer, to integrate the activities of different departments.

Although there is no conceptual obstacle to developing each component from
scratch, it is always useful, before taking this decision, to clarify which function
the component performs on the vehicle, how it can be quantified, and from which
values the objective of satisfying the customer is obtained.
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In this way it is possible to manage, with relative simplicity, complex
activities involving a number of people, braking down each objective into sub-
objectives that are measurable and understandable by the different parties in-
volved.

18.1.3 Chassis system design

We have seen that the automotive chassis contributes to the following vehicle
functions:

• dynamic performance;

• handling;

• ride and acoustic comfort;

• ergonomics;

• safety.

The engine and transmission relate to dynamic performance, in terms of
available power; the body (aerodynamic resistance), tires (rolling resistance),
transmission (mechanical efficiency) and mass properties of the vehicle involve
dynamic performance in terms of absorbed power.

Handling and active safety are influenced by suspension and steering system
geometry, by brake design and by the elastic properties of tires; the transmission
determines the interaction between cornering and traction forces. Chassis control
systems play a fundamental role.

Ride comfort is influenced by disturbances, essentially vibrations, coming
from tire-ground contact and is affected by suspension geometry, by the elastic
and damping properties of springs, bushings and shock absorbers, and by the
vertical properties of tires.

Acoustic comfort, on the other hand, requires a notable development of our
knowledge of body structure and trim. For this reason, this function is usually
studied in body design.

As far as controls are concerned, ergonomics involves chassis design: the
steering system, brake and transmission (clutch and shift stick); control systems
contribute to this function through power assistance and automatic transmis-
sions.

Passive safety involves chassis design and component intrusion into the pas-
senger compartment and structure; since most cars have a body that includes in
a single shell both chassis and body structures, we generally study this function
as part of body design.

The objective of the design methods explained in this book dedicated to
chassis design is therefore to design chassis components that satisfy the above
functions at the vehicle system level.
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The adequacy of these methods might appear at least partially unsatisfying,
because we will explain how to verify which function an assigned vehicle is able
to perform; we will also identify which components condition those functions but
not how these components must be specified in order to perform the functions
at the desired level. We are able to tackle this problem only a posteriori, while
an a priori approach would be desirable.

This qualification could apply to all design courses, because if designing
means to define a product that does not yet exist, what is really taught is to
verify whether an already defined product is able to perform an assigned function.

The designer’s job is, therefore, to assume an hypothesis and to verify the
results that can be achieved; a deviation from the objective will guide to define a
different hypothesis that will again be verified. The designer will be more efficient,
if the first approximation hypothesis is close to correct, but, in any case, design
will remain a trial and error process.

A technical specification definition is further complicated by the fact that
the final judgement on the product will be issued by the customer and not by the
designer, and customer judgments are sometimes difficult to express concretely,
because they are influenced by unmeasurable parameters and alternative offers
on the market that may be unknown at the beginning of the development process.

Technical specifications are developed and determined through different
strategies, according to a process that can be divided into two parts, called
target setting and target deployment. The target setting phase consists in setting
objectives for each of the functions perceived by the customer; this job will be
more fruitful if subjective judgements are avoided and only objective measure-
ments are used. If this requirement appears easy to be meet for functions like
top speed, acceleration, and gradeability, it will be difficult for functions like
handling, where subjective feelings come into play.

We will see in the following paragraphs how subjective feelings can be trans-
formed into objective measurements.

In the next phase of target deployment, as a first step, vehicle subsystems
according to function are identified and their specifications tentatively set; the
specifications adequacy to the targets will be verified, correcting any errors in
the specification.

These verifications may be performed using mathematical models of the
vehicle and in some cases also by building and testing simplified prototypes
(mule cars) that will allow complex subsystems to be verified.

18.2 OBJECTIVE REQUIREMENTS

If we want to define vehicle functions and, particularly, measure the main re-
quirements that determine those functions, we must refer to the test procedures
used for this purpose; vehicle objectives are, in fact, set with reference to those
procedures.
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We commonly identify objective and subjective requirements. The first ones
are directly measurable with the instruments of classic physics; the second are
determined only by the satisfaction of the final vehicle user, but they can be con-
verted into objective measurements through statistical investigations of customer
groups.

A classic example of an objective target might be the time to accelerate the
vehicle in top gear from one speed to a higher one. This is easily measurable, when
reference conditions (road grade, wind speed, atmospheric pressure, etc.) and
load conditions are set. This test can be performed by a professional driver who
is able to achieve repeatable results; each test, even a simple one, is influenced
by driving behavior.

If we want to define the customer satisfaction level, we should ask ourselves
how it can be measured and if it depends on this requirement only; if that is the
case, satisfaction will be influenced by the customer’s expectations, depending
on the class of the car, driving habits, etc.

The required objective follows from a statistical study of the reaction of a
group of customers driving this car; the study of customer satisfaction on dif-
ferent questionnaires leads to significant data derived from subjective measure-
ments. The customer sample must include only people likely to be final customers
of the car under development.

We will refer in this paragraph only to objective measurements of vehicle
performance involving the chassis, which are, as we have seen:

• dynamic performance;

• handling and active safety;

• ride comfort;

• ergonomics;

• passive safety.

For each of these we will comment on test procedures and measurable data;
we will consider passive safety only when speaking about regulations.

18.2.1 Dynamic performance

For this kind of test it is necessary, for safety reasons, to use test tracks closed
to public traffic.

Speed and acceleration tests should be performed on a flat straight road
that is long enough to accomplish all tests reliably; a launch ramp should also
be available that allows the vehicle to reach top speed before its measurement.

Sufficiently long constant slope roads, at different inclination angles, should
be available for gradeability tests.

Loop tracks can be used to imitate of road trips that are particularly sig-
nificant for vehicle use; according to the know how of each manufacturer, these
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tracks allow, while driving following certain rules, the measurement of average
speeds and fuel consumption comparable to real values.

Because engine performance is influenced by air density and humidity, cli-
mate conditions during such tests are significant; a suitable condition is an out-
side temperature in the range between 10÷30◦C, with no wind and rain.

As an alternative to the test track, subject to variable climate conditions
and, therefore, not always available, roller benches can be used, allowing electric
brakes with electronic control to simulate vehicle driving resistance on the road;
in this case, the car is driven according to an assigned speed time history. This
practice is particularly useful for measuring fuel consumption.

A roller bench, when contained in pressure and temperature controlled
chamber, allows dynamic performance at temperature and altitude conditions
different from those available outside to be measured.

Test vehicles must be driven for a certain distance (about 5,000 km) after
assembly to stabilize mechanical frictions and tire rolling resistance, since these
parameters are subject to a certain settling depending on surface wear.

Since performance also depends on transported weight, it is necessary to
control this value within a statistically meaningful tolerance; usually 2 passengers
(including driver) and 20 kg of baggage are used for testing. For industrial and
commercial vehicles the full load condition is considered.

The instruments used in these tests are quite simple, as far as speeds are
concerned: they include optical devices to actuate stop watches that measure
driving times, while space driven is determined by the position of these devices
along the track.

Fuel consumption is measured by volumetric flow meters on the engine feed
pipeline; in this case the recycled flow to the fuel reservoir must also be taken
into account; sometimes an auxiliary tank is applied that is weighted before and
after the test.

The best known dynamic performance is top speed , which is the maximum
vehicle speed on a flat road, after a reasonably long launch ramp.

Acceleration is usually defined as the time necessary to reach a predeter-
mined speed (usually 100 km/h or 60 mph), starting from a still condition, using
the gearbox, at full throttle; sometimes it is also measured as the time necessary
to cover a fixed distance (usually 1 km or 1

4 mile), starting from a still position,
using the gearbox, at full throttle. This kind of test must be repeated on a man-
ual gearbox a number of times, to allow the driver to identify the best strategy to
working the controls, because start-up and shift times influence the final result.

By contrast, pick-up time is instead the time needed to increase the vehicle
speed, starting from an initial fixed value, without using the shift stick but at
full throttle. The initial speed can be 50, 60, 70, or 80 km/h, while the final one
is usually 100 km/h; the gear is usually the top one or, if different, the top speed
gear. The distance driven could also be used to measure this performance.

Gradeability is the maximum road slope at which the vehicle is able to start
up and be driven at constant speed, without slippage of the clutch; this value is
approximated according to the available slopes on the test track. The grade is
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measured by the difference in elevation at the two end of the test track, divided
by the horizontal projection of the track; this is the tangent of the longitudinal
road inclination α.

Among the practices of manufacturers are reference loop drives on closed
tracks or open roads which allow one to evaluate road performance under con-
trolled conditions; in this case average speed or driving time are measured.

Increasingly congested traffic conditions have distracted customer attention
from the performance obtained by intensive gearbox use, putting emphasis in-
stead on pick-up time at low speed; the most recent statistical surveys correlating
subjective judgements of performance, favor this measure on short test distances.

This trend increases the importance of low speed (1,500÷2,500 rpm) en-
gine torque, with reference to maximum power. It is therefore not inaccurate to
include drivability in the category of vehicle dynamic performance.

Drivability can be defined as the vehicle’s ability to increase or decrease its
traction force quickly, without fluctuation around the final desired value.

At the beginning of the test, the throttle pedal is depressed or released start-
ing from a condition corresponding to the initial steady state reference speed.

Drivability is evaluated by examining the resulting car speed diagram as a
function of time after the input time on the accelerator pedal, or by measuring
the longitudinal vehicle acceleration. An objective evaluation parameter can be
the number of peaks of this diagram before the asymptotic value.

Vehicle drivability is not only influenced by engine torque oscillations, in-
duced by flow transients into the intake and exhaust ducts, but also by the elastic
torsional stiffness of the driveline, from clutch to tires, and by the elasticity of
powertrain and car suspensions mounts.

Fuel consumption at constant speed is usually measured between 50 km/h
and top speed; the test is performed in top gear or, if different, on the top speed
gear; this test is quite simple, but has a very low correlation with practical vehicle
use, where speed variations and engine idling periods are very frequent.

For this reason, tests are always completed with a measurement of a driving
cycle; this test is usually performed on a roller bench, able to simulate driving
trips of different kinds; an important cycle will be described in the chapter on
regulations.

It is a good practice to measure consumption at ambient temperatures dif-
ferent from the reference condition (usually 20◦C) if the car is to be sold in
countries where this condition is not significant; in this case, the effect of a cold
start must also be investigated. On the road consumption measurements can also
be performed, if there is sufficient control over ambient conditions.

18.2.2 Handling and active safety

Handling tests do not differ significantly from active safety tests and are therefore
described together. This kind of test introduces a specific difficulty because on-
road maneuvers can be many and their number is increased if different road
pavement and conditions are to be considered.
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Many manufacturers have adopted similar elementary maneuvers and most
of these have been standardized by the ISO. Standardization applies to the ex-
ecution of the maneuver only and sets no reference values for the output values
to be measured.

The test track, usually a flat square that can be flooded under controlled
conditions, provides marked courses that cars must follow; in this way the con-
sequences of mistakes are not burdensome.

Cars are often equipped with roll over protection provided by additional
wheels that contact the ground at high roll angles.

Vehicle instruments must be sophisticated because they have to measure
dynamic values for the vehicle; the essential ones include:

• lateral acceleration;

• yaw velocity;

• vehicle side slip angle;

• roll angle;

• vehicle speed.

For the definition of each see the fourth part of this volume.
A fixed reference system is necessary to establish these values through in-

struments installed on the vehicle; an inertial platform is therefore used that
measures the six components of rotation and displacement of the vehicle sprung
mass with reference to the ground.

In many tests a particular steering wheel able to measure steering angle and
torque is used.

Tests are classified as open loop and closed loop , with reference to the role
of the driver during the maneuvers. In the first case, the driver manipulates
vehicle controls (steering wheel, brake and accelerator pedals) according to a
preset procedure, regardless of the result; in the second case the driver uses the
controls as needed and tries to obtain specified objective, as, for example, driving
along a course at the highest possible speed.

The simplest open loop maneuver is the steering pad (ISO 4138), where the
vehicle is driven around a circle at constant speed.

This is an open loop maneuver because the controls are blocked during the
test period, to guarantee a steady state motion.

Three different methods are considered depending on the skill of the driver,
that are substantially equivalent in result; these are:

• constant curvature radius,

• constant steering wheel angle,

• constant speed.
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Since these are the three independent variables that define motion, their
test results can determine the remaining variables.

A typical value for the curvature radius could be 40 or 100 m; it is im-
portant that tests are performed in such a way as to obtain different values of
lateral acceleration, starting from a very low one, which is useful to measure the
Ackermann steering wheel angle.

This test allows the evaluation of the steering index of the vehicle and the
determination of roll angle as a function of lateral acceleration; a maximum
allowed lateral acceleration can be identified by a series of attempts.

We refer again to the fourth part of this volume for a definition of the
parameters involved in this test.

To evaluate vehicle stability while entering a curve and the steering wheel re-
alignment when exiting it, the lateral transient test (ISO 7401) is usually applied.

The car is stabilized on a straight road at 100 km/h or, if desired, at different
speeds; in the step input version, the steering wheel is suddenly turned to a preset
value; to simplify the maneuver, a steering wheel stop is set at the desired angle.

Without changing the accelerator pedal position, the steering wheel is kept
turned for a specified time.

Important evaluation parameters are the gradient of lateral acceleration
and yaw speed as a function of the steering wheel angle, the delay time between
steering wheel angle peak, and yaw speed peak and the presence of overshoots
on the yaw speed diagram (yaw speed peak higher than asymptotic value).

A variant of this maneuver is the application of a sinusoidal steering wheel
input applying, as input:

• random function,

• triangular function,

• sinusoidal function,

at different frequencies.
The complexity of this test is evident despite the schematic simplicity of

this transient between straight and curved steady state motions.
The accelerator pedal release maneuver (ISO 9816) is studies vehicle behav-

ior when the accelerator pedal is released, while driving on a curve; this maneuver
simulates what could happen if a driver attempts to drive at too high a speed.

It is possible to test vehicle stability and measure deviation from the original
path. This test can be performed at the end of the steering pad test.

Two different methods are available.

• At a constant course by stabilizing the vehicle on the assigned curvature
radius before releasing the accelerator pedal; the steady state speed can be
increased as needed to investigate the influence of lateral acceleration.

• At constant speed, stabilizing at a certain speed on decreasing curvature
radii.
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The test output displays the interaction between the steering index, a func-
tion of lateral acceleration, and the varying cornering stiffness of tires due to the
instantaneous change of traction caused by braking. The engine shows a brak-
ing effect increasing with initial rotation speed: the transient is affected by the
selected gear ratio.

During this open loop test the steering wheel must be locked.
The evaluation parameters are the same as in the previous test, where lon-

gitudinal acceleration has to be added; because the steering wheel is blocked,
there will be a deviation from the initial course after accelerator release; cars
are usually designed so as to close the path after the transient slightly, without
sensible discontinuity from the initial trajectory.

Still in the area of stability, the braking in a curve test (ISO 7975) has been
designed, to add the application of brakes to the above procedure. Also in this
case steering wheel is again locked.

To the parameters of the previous test, braking fluid pressure is added and
the deviation from the initial course could be significant; the test is performed
at increasing longitudinal accelerations until one of the wheels is blocked or the
ABS system has started to work.

An important open loop maneuver is the steering wheel release (ISO 17288);
the purpose of this test is to establish the vehicle’s ability to return to a straight
path after a curve.

The vehicle is stabilized on a steering pad at 100 km/h; path curvature is
chosen so as to maintain a lateral acceleration of about 1 ms−2 and the test
is repeated for growing acceleration values. At the beginning of the maneuver
the steering wheel is left free to turn under the action of the existing forces
on the contact points of the tires. The accelerator pedal is kept where it was at
the beginning of the test.

The usual path parameters and the actual steering angle are acquired. Since
steering wheel and lateral acceleration must show damped oscillations from an
initial value to zero, damping factors measured on time histories are assumed as
evaluating factors of these transients.

Side wind sensitivity tests for cars (ISO 12021) and for industrial vehicles
(ISO 14793) are also available; for these vehicles specific tests can be used to
examine the effect of trailers.

All the elementary maneuvers we have considered, although very compli-
cated, do not correspond to real driver behavior; they are, nevertheless, very
useful for understanding the natural vehicle response before any correction by
the driver has been applied.

The opinion of the people that have designed these tests is that the first part
of any real maneuver is always of the open loop type; in fact, drivers apply an
action on controls (steering wheel , accelerator and pedal brake) whose amplitude
is suggested by the desired response; the amplitude has been learned on previous
similar maneuvers.
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FIGURE 18.1. Course of a lane change maneuver, according to ISO 3888 standard.

After a short while corrections are applied, as soon as some deviation from
expectation has been perceived. The simpler correction, the lower the deviation
from the desired response.

A simple closed loop maneuver introduces difficulties in evaluation, as it
depends on the different behavior or ability of different drivers.

The lane change maneuver (ISO 3888) studies vehicle stability by overtaking
another vehicle or avoiding an obstacle; the relative course is shown in Fig. 18.1
and is driven from the left to the right.

The course is defined by rubber posts; the first stretch S1 is the normal
driving lane, the stretch S3 represents the overtaking lane and S5 again the
normal driving lane.

The three stretches are joined by the zones S2 and S3; the right border of
the overtaking lane is shifted by the deviation d to the left, with reference to
the left border of the normal driving lane. The scheme of the course should be
designed as follows (dimensions are in [m]).

Stretch S1 length 12 m, width l = 1, 1 w + 0, 25.
Stretch S2 length 13,5 m.
Stretch S3 length 11 m, width l = w + 1.
Stretch S4 length 12,5 m.
Stretch S5 length 12 m, width l = 1, 3 w + 0, 25.
Deviation d 1 m.

Dimension w is the vehicle width, measured in [m] without taking into
account side mirrors; the width of stretch S3 cannot be less than 3 m.

This elementary maneuver is of the closed loop type, because driver course
corrections are essential to avoid hitting any rubber post.

The car must be driven at 90 km/h in IVth gear and car speed should
remain unchanged along the course; varying parameters may be used to compare
different vehicles.

The maneuver is complicated and heavily influenced by driver skills; with
professional drivers, interesting results can be gathered more by subjective im-
pressions than objective measurements.

In order to assess vehicle stability while avoiding a sudden obstacle, the
vehicle is tested many times on this course at increasing speeds; the vehicle
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enters stretch S1 at the initial steady state speed, at which point the accelerator
pedal is fully released to simulate obstacle detection. After repeated tests, the
maximum obtained speed achieved without hitting any post may be taken as an
objective evaluation of vehicle stability.

As far as the braking performance is concerned, the easiest repeatable test
is to measure the stopping distance of the vehicle at maximum possible acceler-
ation; if the ABS device is missing this test can identify the maximum possible
deceleration without blocking any rear wheel.

It is useful to repeat this test on tracks with different levels of friction and
with different vehicle load conditions; on low friction roads (for instance on icy
roads) it is also a good practice to measure the vehicle path with different friction
on the two sides of the vehicle (μ split). This maneuver, useful in evaluating ABS
systems, simulates braking on a road with a wet or icy border.

The catalogue of maneuvers is not complete; many other tests are used to
focus on specific problems.

18.2.3 Dynamic comfort

Comfort is correlated to passenger unease caused by vibrations between 1 and
100 Hz in frequency; higher frequency vibrations correlate solely with purely
acoustic discomfort.

Vibrations in this range are caused by obstacles and hollows on the road
surface, which are filtered by the elastic and damping properties of tires, sus-
pensions and seats; these condition the influence of powertrain mass vibrations
(caused by the road) and vibrations of the body, which enhance or reduce the
effect of the road, according to their vibration modes.

Comfort tests are performed on closed tracks that reproduce the road sur-
faces the vehicle is most likely to encounter; the road must be maintained ac-
cording to specific standards to allow repeatable results on these tests.

Ambient temperature must also be controlled and recorded because of its
influence on the elastic and damping properties of elastomers, which are largely
employed in the mechanical components connecting the ground profile with pas-
sengers; temperature also has a remarkable influence on oil viscosity of shock
absorbers.

Measurements to be evaluated include the acceleration of the different parts
in contact with the human body, such as floor, seat, steering wheel, etc.; other
accelerometers could be set at different position in the mechanical chain, to
monitor test accuracy and for diagnostic purposes.

It should be noticed that accelerations should be measured along the three
main axes of the vehicle reference system, especially if the more important com-
ponents are along the z and x axis. Vehicle speed measurement is also important,
because it and the road profile validate the test.

Four profiles exist for elementary tests that replicate the most common road
defects.
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FIGURE 18.2. Typical defects of suburban and urban roads, relevant to vehicle comfort;
at left a patched tarmac; at right a stone block pavement.

A motorway profile with perfect tarmac is characterized by a virtually flat
surface, with peaks and hollows much further apart than the vehicle wheelbase; at
speeds of 100÷120 km/h, this spacing may excite the natural vertical frequency
of the powertrain and of the vehicle suspension. This kind of course is also used
to identify and analyze vibrations coming from the shape of the tires and any
defects in them.

A suburban road with a poor maintenance is characterized by hollows that
are spaced closer than vehicle wheelbase, with different size pits, patches and
ruptures of the wear layer; Fig 18.2, at the left supplies an example of these
defects.

These kinds of defects involve a range of frequencies larger than the previous
and excite the natural vibration modes of sprung and unsprung masses: comfort
in this test is critical for customer satisfaction since these defects are widespread.

The stone block pavement (Fig. 18.2, at right) is still common in city centers
because of its attractive appearance and relative immunity to ice damage; it is
therefore a reference test for the urban environment and is associated with lower
speeds than the previous tests.

Because of the nature of this surface the wave length spectrum is very wide,
from a few centimeters to several meters. The consequent excitation encompasses
the entire range of comfort frequencies, involving all suspension components and
car structures.

The catalogue of comfort tests includes, usually, a single step obstacle, rep-
resenting what happens when crossing a curb or a railway; this obstacle is repre-
sented by a steel bar of rectangular section across a flat tarmac road. This kind
of obstacle generates a force pulse on the wheels and involves a wide range of
frequencies, with vibrations along the z and x axis.

18.2.4 Ergonomics

Ergonomic functions involving the chassis are influenced by the position of con-
trols and by the force required for their operation; the main controls include the
steering wheel, brake and clutch pedals, gear shift stick and parking brake.
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The current trend of widening the passenger compartment as much as pos-
sible makes the pedal board the starting point of preliminary studies of car
habitability.

Installed into the passenger compartment, the pedal board is constrained
by the following elements:

• front wheel well: its dimensions are determined by the front wheel steering
envelope and by the suspension stroke; this volume should also take snow
chains into account;

• the floor tunnel, for the transmission shaft on rear wheel driven cars and
for the exhaust pipe in front wheel driven cars;

• the minimum clearance from the ground;

• the firewall, separating the passenger compartment from the engine, which
is also used to attach the pedal board.

The most forward position possible for the pedal board is desired to increase
the available space for driver and passengers. The limit to the front position is
represented by the powertrain and by the steering box. The floor tunnel, from one
side, and the wheel well, from the other side, limit lateral space for positioning
the pedal board. These limits are especially critical on narrow cars.

The accelerator pedal is always in contact with the right foot of the driver,
except when braking. It must be operated with minimal force and high precision:
the foot requires a side rest to avoid interference from vertical vibrations.

The accelerator pedal stroke should be about 50÷60 mm.
The reference point for positioning the accelerator pedal is the most rear-

ward position of the driver’s foot when resting on the floor, according to the
projected comfort angles. It is called the heel point.

To avoid excess contact between shoe and pedal, the relative motions of
these two parts should be minimized.

Because of pedal motion, the shoe sole changes direction. Since the hinge
point of the pedal is fixed, this condition of no slip between pedal and shoe
can be obtained only in one position; it is preferred that this position be the one
most frequently used, usually at mid stroke. The slip can be reduced in the other
positions by curving the pedal.

The brake pedal can be operated by relevant forces and stroke precision is
not very important.

According to regulatory standards, the control force must not be higher than
500 N, but it is suggested that this control be designed to limit the maximum
pedal force below 200÷250 N, using the power assistance system.

To exert control forces easily, it is assumed that the driver’s foot is angled
on the floor to reduce the torque on the heel.

This kind of operation is allowed for emergency braking only, while for
ordinary braking, the pedal is depressed in the same way as the accelerator.
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The clutch pedal can also be operated in two ways, according to design
choices and driver’s habits:

• with the heel on the floor;

• with the foot at a higher position for the first part of the pedal stroke, and
resting on the floor at the end of the stroke (clutch fully disengaged).

The first mode is used for precision modulation, as for starting up on a
grade. In this phase the pedal stroke is limited.

Because the force on the pedal should stay below 100 N, the foot position
could be advanced without negative consequences on heel torque.

On the most common pedal boards, the hinge axis of the accelerator and
brake pedal are different, while they are the same for clutch and brake pedals.
To allow different strokes for the last two pedals the clutch pedal in rest position
can be placed higher.

To avoid interference with other pedals when depressing a pedal quickly, the
distance between pedal centers should be as high as the sole width, not less than
100 mm.

Steering wheel positioning is more complex and must take into account:

• a minimum relative distance from the pedal board to allow correct oper-
ation of the pedals; this implies a minimum distance of about 650 mm
between the highest pedal, in rest position, and the lower surface of the
steering wheel;

• a comfortable inclination for the steering wheel of about 30◦ ÷ 35◦;

• a rotation axis placed at least 300 mm from the middle of the vehicle, to
avoid interference with the front passenger during steering;

• interference with the driver’s leg while entering and exiting the car.

All decisions on controls position should be taken at the same time the body
is outlined. Because of this, such decisions are rarely made by chassis designers.

A relevant indicator of steering wheel ergonomics is the force needed to turn
the steering wheel at low speed.

This evaluation should be made by executing steering cycles, at low car
speed (about 5÷7 km/h), from stop to stop; steering wheel rotation speed should
be between 100 and 150◦/s.

The output of this test reveals the hysteresis cycle of the steering wheel, as
explained in the first volume, in the section on power steering.

When electric by-wire transmissions have totally replaced mechanical con-
trols, there will be much more freedom to position these controls than was pos-
sible earlier.

Major future developments include the possibilities of:

• using joy-sticks or other devices, instead of the traditional steering wheel;
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• integrating other functions such as shift, brake and clutch control in the
steering control;

• mounting the steering control on moving boards, to enhance vehicle acces-
sibility and to allow driving from either side;

• personalizing controls depending on user needs, to allow disabled people,
for example, to drive more easily.

Other information about controls is reported in the first volume.

18.3 SUBJECTIVE REQUIREMENTS

Vehicle testing by car manufacturers is not only the final verification of product
competitiveness before the launch, but also a valuable instrument for establishing
measurable system objectives.

Classic testing implies objective experiments that are defined by straight-
forward procedures that are not affected by the skill or the personality of the
driver, and that lead to precise and repeatable results, allowing the immediate
comparison of achieved with target values. This testing is by nature objective.

The limitation of this approach is that the correlation between these mea-
surements and customer expectation is small.

Customer opinions are subjective, based upon an evaluation of the difference
between what they actually obtain in a given car and what they think is a
reasonable expectation; an acceptable result is conditioned by their experience
with previous cars and what they learn from specialized magazines, discussions
with others and advertisements.

Tests to evaluate these judgements are called subjective tests and do not
require particular instruments or dedicated test facilities, because they simply
reflect the customers’ day by day experience.

Some function, to be interpreted, are simple such as dynamic performance;
others, such as handling performance, are more complex.

The evaluation of dynamic performance consists of measuring variables (top
speed, acceleration, pick-up, etc.), which, according to their type, satisfy the
customer as their value is low or high. Nevertheless, it is very difficult to identify
the correct value for each variable or to establish if a lower value in a particular
variable (for instance, acceleration) can be tolerated, if it produces a better result
in some other variable (for instance, fuel consumption).

The difficulty will be even greater if the optimum value for the understeering
index of a new car has to be balanced against performance in the accelerator
pedal release maneuver.

A simple way to overcome this difficulty is to perform jury tests, using
potential costumers of the car under development; a jury test is a typically
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subjective test where subjective customer judgements on a homogenous cluster
of cars are acquired and elaborated through the use of statistical methods. In this
cluster of homogenous cars a prototype, representing the car under development,
may also be included.

The proper execution of a jury test execution requires that cars to be eval-
uated are already built and have reached a satisfactory level of refinement. They
would not be of use in the early stages of development as technical specifications
are defined.

More often, jury tests and the analysis of their results are part of initia-
tives that are independent of the development of a specific product; they can
be performed occasionally, to evaluate the development of competitors’ products
and consequent customer expectations. A test campaign like this can establish
customer evaluation criteria and target values.

To develop technical specifications for a new car, a vehicle mathematical
model will be applied that has been previously validated with experimental
results.

Mathematical models will be used to assign to the components of the new
vehicle technical specifications that match the results to be achieved in a virtual
jury test, one that will be performed as soon as significant prototypes are avail-
able. Instead of potential customers, professional drivers from the company will
be used, who will use the same evaluation methods as the customers in previous
jury tests.

We will consider three examples, applied respectively to handling, to dy-
namic comfort and to fuel consumption; other requirements can be studied in a
similar way.

18.3.1 Handling and active safety

In this section we will describe the approach that has been developed in many
articles quoted in the references.

Manufacturers usually evaluate handling and active safety by using profes-
sional drivers, who are able to make comparisons, correct errors, and address
chassis designers; the point is to correlate these judgements with subjective tests
performed by potential costumers. These are eventually replicated with mathe-
matical models to produce useful design tools.

In our references, dynamic behavior requirements are classified according to
the scheme in Fig. 18.3.

The scheme suggests a classification that takes into account driving con-
ditions involving lateral dynamics (driving in a curve), longitudinal dynamics
(accelerating and braking) and the interaction between the two situations (brak-
ing and accelerating in a curve).

Driving conditions are classified as to driving ease or safety, as in emergency
maneuvers; non professional drivers are able to evaluate maneuvers of the first
kind, while only professional drivers are asked to judge the second kind.
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FIGURE 18.3. Fundamental requirements of longitudinal and lateral vehicle dynamics,
which define handling and active safety.

For each driving condition it is important to be able to distinguish between
vehicle response and control quality; for instance, power assistance is relevant to
steering control quality, but not relevant for vehicle dynamic response.

In terms of lateral dynamics, steering activity is considered the quantity of
work to be applied to this control (steering wheel) to obtain a certain result;
response speed and response progressiveness1 as proportional to the effects to
the action on the command are also relevant. Roll angle and roll speed are also
relevant for comfort and stability.

Viewing lateral dynamics in terms of control quality, again for lateral dy-
namics, self-alignement represents the ability of the vehicle to drive sponta-
neously on a straight line, while center play is relevant in evaluating the command
insensitivity to small steering angles on a straight course.

Response and reaction graduality2 are relevant to completing the judgement
of steering wheel quality.

For the sake of brevity, we do not comment on requirements related to the
interaction of longitudinal and lateral dynamics.

The sample of cars to be examined is finalized according to the result we
want to obtain from this study; in the case we are summarizing, the sample is
ample, in terms of car types (they were selected in different market segments), be-
cause this study is focused on the correlation between the subjective judgements
of drivers and objective measures to be acquired during selected elementary
standard maneuvers.

1We can define progressiveness of a control the derivative of its output (i.e. braking force),
with reference to its input (i.e. brake pedal force).

2We can define graduality of a control the derivative of the force or torque applied with
reference to its stroke.
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As the correlation is demonstrated, the sample can be limited to existing
cars that are more similar to the new product under development.

The test jury must include professional and non-professional drivers, in order
to evaluate both emergency and normal driving conditions and also to find out
if there is any systematic bias between the two categories; the size of the sample
(at least 20 people) must be chosen to allow a sufficient confidence level.

All cars are evaluated in free driving conditions, on a test track offering the
necessary safety and a course suitable for highlighting all requirements under
evaluation.

A questionnaire must be set up, to gather test results; its questions address
the requirements under consideration and must include numeric scores; an overall
verdict is also required.

All scores are subjected to statistical techniques to:

• eliminate scoring bias; many jurors use only a part of the scoring scale,
assigning scores that deviate constantly from the average;

• eliminate those scores that are too removed from the average of the jury.

After this treatment, the correlation between single values and overall judg-
ment is investigated, using a multiple regression analysis.

Figure 18.4 shows the result of this analysis; all scores are normalized on a
decimal scale. Histogram f refers to the overall judgement.

The same cars were evaluated on open loop elementary maneuvers that were
felt to be more finalized to the requirements under evaluation.

The following elementary maneuvers were applied.

• Steering pad, according to the ISO 4138 standard, on a curvature 40 m in
radius, starting from a low speed up to the maximum safe speed.

• Lateral transient test, according to the ISO 7401 standard, followed by
the steering wheel release maneuver (ISO 17288). Cars were driven at 100
km/h on a straight path and received a steering input to the desired value
at steering angular speed of at least 200 ◦s−1; this value was maintained for
3 s and the steering wheel released for other 3 s. The accelerator pedal was
kept in place during the maneuvers. The test was repeated for incremental
steering wheel values, until a value was identified at which the vehicle does
not stabilize.

• Overtaking test according to ISO 3888 standards, at 90 km/h; although
this maneuver is a closed loop and was not created for objective evalua-
tion, an objective measurement has been obtained by dividing the square
average of vehicle lateral acceleration by the steering work. Delays between
acceleration and steering wheel peaks have also been measured.

There is no direct correlation between a single subjective judgement and
a single elementary objective maneuver; nevertheless, the multiple regression
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FIGURE 18.4. Average of subjective judgements on lateral dynamics of 7 cars; a: steer-
ing wheel activity; b: response speed; c: response progressiveness; d: roll speed; e: roll
angle; f: overall judgement.

analysis relating each subjective judgement to all objective measurements under
consideration returns an overall correlation factor of more than 0.85.

The correlation linear equations allow us to define partial driving quality
indices, which correlate objective measurements, measured or calculated on el-
ementary maneuvers, with subjective evaluations and, therefore, with customer
satisfaction.

The global driving quality index in Fig. 18.4f is correlated to other indices
with the same method and allows us to evaluate a priori the possible trade-off
between these indices.

A similar process can be repeated for other groups of variables in Fig. 18.4,
defining a global index that allows us to apply measurements to elementary
maneuvers to forecast the customer’s judgement on a car in terms of handling
and active safety.

18.3.2 Dynamic comfort

This logical process has been also applied to the case of dynamic comfort, ac-
cording to another article quoted in the references; although this work considers
acoustic and vibration comfort as a whole, we will limit our analysis to vibrations
only.
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In this study drivers have driven their cars on open roads as they wish; the
chosen road has been classified according to recorded acceleration on selected
car positions.

The questionnaire was divided into three different parts.
The first one was addressed to vibrations perceived on different contact

points with test cars:

• body floor;

• seat cushion;

• seat back rest;

• steering wheel.

The second part of this questionnaire solicited reactions to different per-
ceived disturbances in the main movement of the vehicle; a follow-up variance
analysis has suggested these results to not considered because of their excessive
spread.

The third part was designed to gather an overall judgement; the scoring
scale was again decimal, with scores of 10 assigned as the absolute optimum (no
disturbances perceived).

Data on subjective measurements have not benefitted of standard elemen-
tary maneuvers, as in the case of handling; in their absence the following ma-
neuvers have been used:

• random inputs on the motorway at 80, 100, 120, 140 km/h; on urban stone
pavement, at 20, 40, 60 km/h; and on a low maintenance suburban road,
at 20, 40, 60 km/h.

• shocks from a rectangular profile single obstacle across the road, at 30 and
50 km/h; on a rail level crossing at 20 and 40 km/h; and crossing a bump at
30 and 50 km/h; each obstacle has been reproduced on a track, by profiles
elaborated statistically on open roads.

Acceleration measurements from random tests have been elaborated by cal-
culating RMS in the domain of time and frequency. The same procedure has
been applied to the shock test, including calculated magnitudes as, for instance,
wasted energy, as well.

In this case, partial indices and a global index can be obtained that are
well correlated to overall customer judgement and to the single measurements
derived by elementary maneuvers.

18.3.3 Fuel consumption

Contrary to the previously described requirements, where customers have
difficulty in formulating objective judgments about their satisfaction, fuel
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consumption is measured and recorded objectively by many customers. Even
if this measurement is, sometimes, acquired without scientific methods, there is
no doubt that these judgements about the car are more reliable than others.

The most difficult information to be obtained about fuel consumption is the
effective driving conditions used by customers in evaluating it.

It is standard practice to include questions about fuel consumption on all
questionnaires that car manufacturers send to their customer sample, to have
feedback on their products after a short period of use.

According to a European Union law we will discuss in the next chapter, fuel
consumption is measured on a roller bench on a simulated course reproducing
urban, suburban and motorway traffic. Since this measure is the only allowed
channel for customer information about fuel consumption, this procedure has
been chosen instead of others to evaluate fuel consumption objectively.

This procedure is characteristically independent of vehicle performance and
driving habits and imposes to all cars the same gear shifting speeds; if this first
characteristic is justified by the high traffic density on our roads, the second and
third have, as their justification, the need to make the test procedure objective
and repeatable.

It is often the case that the results of this test, when compared with tests
in actual traffic conditions, can suggest wrong judgements, when comparing dif-
ferent cars.

The interesting fact is that this result is not due to specific customer driving
habits, but represents a phenomenon that can be detected with statistical pro-
cedures on a sample of homogeneous customers.

Similar criteria to those of previous examples have been applied to fuel
consumption. We describe a recent research on medium size non-sporty cars.

Identifying potential customers is essential to defining the market for these
cars. The customer’s economic bracket influence the negative value assigned to
high fuel consumption; relevant parameters may be car price (a high-income
customer is less sensitive to fuel consumption than to comfort and consequent
weight), yearly distance travelled and type of car. On a sporty car, for instance,
driving habits are less mindful of consumption, while diesel cars are frequently
driven by customers sensitive to this parameter.

This test campaign included 20 non-professional drivers using a homoge-
neous sample of recent cars. A driving mission was defined, including an urban, a
suburban and a motorway section, representing real-world use of the car recorded
over a significant period of time by each driver.

Departing from the standard driving cycle (correlation coefficient 0.77), a
high correlation (correlation coefficient 0.97) was detected on this driving course
with claimed fuel consumption, as previously determined by questionnaires yo
potential costumers.

New driving schedules have been developed, to be performed on roller dy-
namometers, that are representative of each mission and driving habit.
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The following approach has been adopted:

• for each car and driver, the statistical distributions of average speed, engine
idling times, average positive and negative accelerations and average gear
change speeds have been recorded and investigated;

• by comparing time histograms of the different gear speeds with car speed
and acceleration, a map of gear shift speed has been obtained, as a function
of longitudinal acceleration and speed;

• speed time histories on each mission have been analyzed from start to stop,
identifying any cluster where similar sequences have been grouped.

A new urban and suburban cycle has been identified; the important char-
acteristic of these new cycles is not relevant to car speeds which are slightly
higher than standard speeds, but is remarkable that the speed shift criterion de-
pends upon car pick-up time; the higher the available torque exceeding driving
resistance, the lower the vehicle speed where the gear is upshifted.

It should be remembered that this first conclusion is not applicable to all
cars, but is limited to the kind of car, customers and driving environment to be
considered.

Figure 18.5 demonstrates our conclusion. On the two diagrams on the right,
showing the upshift speeds, measured in [km/h], as a function of the longitudinal
requested acceleration, measured in [g] a car with a peak torque at high engine
speed is shown; on the left diagrams the same car with peak torque at lower

FIGURE 18.5. Comparison between upshift speeds for two cars of almost equal mass
and displacement in urban traffic (above) and suburban traffic (below), as a function
of the requested longitudinal acceleration ax, measured in [g]. The engine of the car
shown in the diagram on the right is designed to have its peak torque at higher engine
revolutions.
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engine speed is shown. The upper diagrams refer to urban driving, the lower to
suburban driving.

The engine with higher elasticity induces drivers to lower upshift speeds for
low accelerations; since accelerations between 0.12÷0.20 g are frequent in urban
traffic and between 0.02÷0.07 g are frequent in suburban traffic, the more elastic
engine is used, in the average, at lower rotational speeds, with higher gears.

Vehicle fuel consumption is strongly influenced by gear ratios; in general,
we may say that in the prevalent conditions of use, fuel consumption is almost
proportional to engine speed.

If in theory the availability of higher transmission ratios favours reduced
fuel consumption in standard cycle, the conclusion of this work suggests that
these reductions will not be achieved if the reduced pick-up capacity of the car
stimulates drivers to use lower ratios more frequently.

Motorway consumption in this test campaign was sufficiently correlated with
the traditional test procedure; under these conditions, the highest ratios were
used.

Measured driving distances were equally divided over the three driving en-
vironments.

18.4 AGING RESISTANCE

A car’s endurance, or resistance to age, is a function that can be evaluated
objectively by driving it for a specified distance without damage.

We must clarify what we mean by damage; during the life of a car, customers
ask not only for few failures, but little deterioration of those parameters found
in a new car.

In the case of the automotive chassis, we mean also that requirements about:

• dynamic performance,

• handling and active safety,

• dynamic comfort,

• ergonomics,

can deteriorate only within an acceptable range of tolerance; in addition, nothing
that can affect vehicle availability (to perform its function), can occur except
through the fulfillment of scheduled maintenance.

Failure include, therefore, not only breakdowns of mechanical or electric
parts, but also noise not detectable on a new vehicle, lubricant leakages, aesthetic
corrosion, changes in dynamic behavior, fuel consumption, freedom of movement
on controls, etc.

It is hard to forecast how the vehicle will be used, because use is conditioned
by the life and driving style of the customer; in addition, applied loads can be
determined by unforeseeable events.
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Therefore, endurance specifications are assigned statistically often using the
parameter B10, which defines the endurance achieved without any failure by 10%
of the population of vehicles produced.

As a reference for the value of this parameter, we can assume as adequate
for today production, about:

• B10 � 200,000 km, for cars and commercial vehicles;

• B10 � 400,000 km, for buses;

• B10 � 800,000 km, for heavy duty trucks.

As technology and the market are evolving continuously, it is possible that
these values will increase in the future.

These travelling distances make it almost impossible to perform, in the
standard delay time of 3÷4 years on the average devoted to a new vehicle devel-
opment, the tests needed to assess endurance experimentally, after design and
prototype manufacturing, with a sufficient confidence level; nor can this job be
reasonably assigned to mathematical models.

In the case of cars, a life of about 200,000 km implies, on average, 4,000 h
of driving time, assuming standard driving tasks; if we allocate six months for
this task, as usually occurs, then to perform two complete sets of tests on two
different prototypes generations (where the second carries corrections for the
first), the test time must be shortened by at least 3÷4 times.

Phenomena that can influence the endurance of a vehicle can be classified
according to the following categories:

• fatigue;

• wear;

• corrosion;

• shocks and collisions.

External fatigue loads that can stress chassis components arise from two
different sources: tires and engine.

Tires apply to the chassis longitudinal, lateral and vertical forces, changing
over time; the first and second act with the frequency (on average low) of accel-
eration, braking and cornering events along the path of the vehicle; the last act
with the higher frequencies given by the shape and spatial density of obstacles
overcome.

The engine stresses the chassis at usually low frequencies, determined by the
schedule of maneuvers (acceleration, releases, shifts) and at higher frequencies
determined by its reciprocating parts.

Other periodic forces may be added when some of the above is working near
the natural frequencies of the structures it is applied; this is particularly relevant
for chassis structures and transmission.
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Subject to fatigue are suspension and steering arms, wheels, bearings,
springs, some braking parts (calipers, controls), transmission shafts, gears and
chassis structures.

Most of these parts are made out of metals whose resistance can be described
according to Wöhler’s model; there is a threshold of load amplitude (fatigue
limit) for these materials which can be applied indefinitely without any damage.

For this category of parts, test times can be reduced by applying techniques
that remove the periods of load history below the fatigue limit. This can be done
precisely by analyzing load time histories that will be applied to bench tests or
by driving cars in more strenuous tests that apply loads that damage structures
more severely.

Using this last approach the driving distance of a car’s life can be condensed
into about 50,000 km of heavy use.

Wear is determined by the friction of parts in relative motion; on the chassis,
wear applies mainly to transmissions (bushings, rotary and sliding seals, synchro
mesh and gears) and partly to suspensions.

Wear, the removal of material on sliding parts, depends on wasted friction,
according to the hypothesis proposed by Theodor Reye about 140 year ago. Wear
can therefore be accelerated by increasing loads, with attention to temperatures,
that can affect the mechanical properties of materials.

A wear test for components can be reliably performed on test benches, where
contact conditions are made more severe according to empirical procedures.

Corrosion is caused by the chemical action of many agents (humidity, salts,
other chemical compounds and aerosols) on parts exposed to the atmosphere or
splashed by the wheels; since this action is not constant throughout the life of
the car, the test can be accelerated by exposing entire cars or components to
corrosive humidostatic rooms for a certain period.

Another method, as effective as the first, is to drive through acid water pools
during a certain portion of the fatigue course.

As we have seen, wear and corrosion test acceleration is totally empirical
and is defined according to the manufacturer’s experience.

Vehicle resistance to shocks and collisions must be examined through arti-
ficially reproduced events.

This applies to crash tests against barriers, requested by regulations, where
chassis components must not interfere with occupants as a consequence of the
collision.

There are also non-regulated shocks, where it is good practice to verify that
there are no critical situations for occupants; one example of this category is the
accidental collision of wheel against sidewalk, as a consequence of a mistaken
maneuver; it is obvious that in these cases chassis structural integrity is not
requested.

The designer must guarantee that there are no partial or hidden ruptures
undetectable by the driver. Linkages and suspension arms must feature a rup-
ture load at least 50% higher than the collapse load, where deformations become
permanent; deformations, prior to rupture, must alter suspension geometry in
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such a way as to be easily noticeable by drivers, in order to suggest trip inter-
ruption.

Vehicle life is simulated by separate tests reproducing specific situations;
fatigue tests are more difficult because they are determined not only by their
duration but also by conditions of vehicle use.

Each manufacturer has decided to design vehicles for the most demanding
conditions, accepting high safety margins for ordinary use; loop courses have been
developed that are characterized by many bends, bumpy and uneven stretches
(artificially damaged tarmac, stone pavement, dirty road, etc.) and rail crossings;
a part of these courses is dedicated to water-crossing.

Such loops, if driven at high speed, can concentrate 200,000 km of real life
into about 50,000 km, driven in about 1,000 h; this time corresponds to about
two months, assuming three driving shifts on the same car, and including test
interruptions to maintain and inspect the test prototype.

Load conditions to be considered in mathematical models or applied to test
benches are also derived from this kind of loop.

A common test loop includes straight stretches long enough to allow the car
to reach the highest acceleration and deceleration conditions; curves are driven
at the slip limit.

Loop length is not relevant, because it will be repeated in both driving
directions so as not to stress the vehicle in a selective way, until the total driving
distance is reached; loop length is conditioned by the need to apply all tests
suitable for simulating the most demanding driving situations. Usually these
loops are between 20 and 30 km in length.

Pavement must offer a high friction coefficient to stress suspensions and
chassis as much as possible. Sometimes, on long straight stretches, signals can
be used to request additional maneuvers (decelerations, accelerations, slaloms).

Figure 18.6 shows a record of the main force components acting on a medium
size car on a loop of this kind.

Instead of vertical forces suspension strokes have been measured; vertical
forces may be calculated from suspension characteristics. Brake torque has also
been added to separate transmission effects from those of the brakes in longitu-
dinal forces.

These records originate from test bench load conditions, after mathematical
elaboration; the same conditions can be applied to finite elements analyses, which
are usually integrated into multibody models to simulate the entire vehicle.

Reorganization of the test cycles can be performed according to the rain flow
method; the result is a set of load histograms, shown in Figs. 18.7, 18.8, 18.9,
representing suspension stroke as well as longitudinal and lateral accelerations.
Accelerations are derived by forces with reference to the sprung mass and can
be applied to different cars as well, as a first approximation.

These histograms define the so called load blocks which correspond to driving
the entire loop, about 30 km long, once clockwise and once counterclockwise; the
load block is applied about 2,000 times to simulate the entire vehicle life.
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FIGURE 18.6. Records of suspension strokes, showing longitudinal and lateral loads
on rear suspensions of a medium size car, driven on a fatigue loop clockwise (CW) and
counterclockwise (CCW).
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FIGURE 18.7. Histogram showing the cycle count of different suspension stroke classes
Δz of right and left rear suspensions, on a fatigue loop.

It should be noted that accelerations refer to sprung mass; acceleration val-
ues apparently inconsistent with practical friction coefficients are not surprising,
because vertical loads are increased by transfers due to lateral accelerations.

Figure 18.10 shows a bench for fatigue tests of a car body, complete in
its main chassis components; actuators for applying loads and torques are also
shown. The front wheel can be stressed similarly.
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FIGURE 18.8. Histogram showing the cycle count of different longitudinal acceleration
classes ax of right and left rear suspensions, on a fatigue loop.
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FIGURE 18.9. Histogram showing the cycle count of different suspension longitudinal
acceleration ay of right and left rear suspensions, on a fatigue loop.

Dynamic analysis of these forces assumes a particular importance if we want
to determine fatigue load for particular components under specified driving con-
ditions.

Usually the entire vehicle simulation applies multibody modeling techniques
that are useful when displacement is relevant; these models allow not only dis-
placement but also forces exchanged in any part of the system to be calculated.

In multibody modeling, system elements are considered as rigid bodies con-
nected by elastic or viscoelastic couplings. In some cases, it is necessary, for a
more precise determination of acting loads, to also take into account the flexi-
bility of some part, such as the car body or the twist beam of a rear suspension.

Craig-Bampton’s theory allows the flexibility of specific vehicle structures
by their modal synthesis to be taken into account; this can be obtained by a
finite element calculation of the modal deformations.



68 18. VEHICLE FUNCTIONS

FIGURE 18.10. Fatigue test bench for a car body, complete with the most important
chassis components; actuators supply rear suspension forces and torques.

In practice, for a specific structure:

• the displacements of the structure, compatible with its degrees of freedom,
are evaluated as the result of a unitary force applied;

• the vibration modes are calculated, in a range up to about 100 Hz.

These data are applied to the multibody model, to determine the internal
forces exchanged between the different components.

A multibody model of the vehicle system should include at least:

• the car body, as rigid body or as flexible body, according to the scenario
under study;

• the powertrain mass and its suspension;

• the complete front and rear suspensions;

• tires, when loads are calculated from an open loop maneuver of interest.

The different parts are connected by joints, showing a suitable elastic and
viscoelastic characteristic; mass and inertia properties are calculated for each of
them.
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If we refer to the previously described scenario, the same input for the test
bench of Fig. 18.10 can be adopted as input of the multibody model.

The output of this analysis should be the forces that are exchanged at the
articulation point of the suspension to the car body.

These forces may be applied to finite element models addressed to calculate
the stress histories of the component under study, to determine the fatigue life
of this element.

This calculation can be performed in two different ways, due to the fact that
there is some overlap between force frequencies and natural frequencies of the
component under investigation.

If there is no overlap, forces can be applied quasi-statically. A stress time
history can be easily obtained by linear combination of the different effects.

If there is some overlap, dynamic modal techniques must be applied.
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REGULATIONS

A vehicle cannot be sold and obtain the necessary registration for driving
on public roads, unless it is built according to legal specifications. In Europe
the agreement of these specifications with existing laws is demonstrated, by
two official documents: the certificate of homologation and the certificate of
conformity.

The first document proves that the vehicle is designed according to legal
requirements. It is issued by a public authority in charge of this function; in Italy,
for instance, that authority is the Department of Transportation. The homolo-
gation certificate is issued on the basis of a technical report of the manufacturer
and the completion of given tests, performed on prototypes of that vehicle.

The second document proves that any produced vehicle is identical, in terms
of homologation requirements, to the tested and approved prototype; this docu-
ment is issued by an appointed representative of the manufacturer, for instance
the general manager of the final assembly plant. Vehicle conformity can, at any
time, be verified by the public authority in charge, by inspection of samples of
produced vehicles and tests for requirements of the homologation certificate.

Homologation requirements are set by government laws, which impose min-
imum and maximum accepted values and the related test methods to be used
for their verification; the manufacturer is free to identify the most suitable tech-
nologies to be employed for their fulfillment.

These requirements are relevant to part of the vehicle functions we have
already introduced in previous chapters, particularly for:

• outside visibility;

• minimum dynamic performance necessary to grant a safe drive;
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• occupant protection in case of collision;

• reduction of the environmental load caused by vehicle traffic, with partic-
ular reference to polluting gases, carbon dioxide, outside noise and waste
produced by disposal of older vehicles.

The above laws are issued by each national government; in the past, some
laws have also been developed by international institutions to enhance the free
movement and sale of vehicles in countries other than that of their origin.

The European Community has already faced, in the 1960s, the problem of
harmonization of national laws, to remove any impediment to the free circulation
of goods within the Community and to grant the citizens of member states the
availability to buy state of the art vehicles; this job has recently been carried
over and completed by the European Union.

The European Union behaves like a supranational body, requiring all mem-
ber states to develop laws complying with a common standard; these suprana-
tional laws are called Directives and will be cited with the letter D, followed by
a figure showing the year of enactment and a following number. For instance the
D70/156 directive was the hundred and fifty sixth law approved in 1970 regard-
ing vehicle homologation; at the end of the last century and in the present one,
the complete year figure is cited.

In parallel with Directives, Regulations have been also issued, summarizing
in a single document all approved test procedures relevant to given homologation
functions; these documents are quoted with the letter R, followed by a progressive
number, unique for each title, independent of any addition or modification.

Since Directives must be established before national laws, they must be
available in advance of their enforcement time; in their formulation, they provide
an enforcement year for new homologations and one for new registrations.

No member state is allowed to prohibit sale, registration or circulation of
any vehicle complying with the Directives in force.

In this chapter we will consider Directives and Regulations impacting chassis
component design and vehicle system functions.

The following paragraphs will summarize laws regarding:

• vehicle system;

• wheels;

• steering system;

• braking system;

• chassis structures;

• gearbox.

The information discussed here is an updated summary at the time of writ-
ing this book and should be considered as a reference only; we suggest that
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anyone requiring sure guidelines look through the primary documents and check
for new updates. This can be easily done by visiting the Internet sites of the
European Union dedicated to this purpose; anyone can download excerpts of the
Official Gazette.

The site:

http://europa.eu.int/eur-lex/lex/it/index.htm

contains a suitable research engine for looking into Directives using keywords or
their identification numbers.

The site:

http://www.unece.org/trans/main/wp29/wp29regs.htm

contains all vehicle regulations and their updates.
An index of current documents is reported in Table 19.1; the content of

these documents is summarized in the following sections.
The European Union situation should be considered a typical example of

the government approach to vehicle homologation; different States could have
slightly different legislation, which must be carefully considered in the case the
vehicle is sold and registered in different countries.

19.1 VEHICLE SYSTEM

19.1.1 Homologation and general characteristics

The D 70/156 Directive defines the homologation procedure reported in summary
in the previous section; according to this Directive, the manufacturer is obliged
to submit an information form, reporting all vehicle characteristics that cannot
be altered without a new homologation.

The information form reports the following information regarding the issues
we are concerned with.

General data

These consist of the manufacturer’s data, the position of the Vehicle Identifica-
tion Number (VIN) identifying body, chassis and engine, and the vehicle category.
The following vehicle categories are identified:

• M1: vehicles for transporting people with fewer than eight seats, in addition
to the driver’s seat;

• M2: vehicles for transporting people with more than eight seats, in addition
to the driver’s seat and with a maximum overall weight of 5 t;1

1Rules were issued before the compulsory introduction of the SI measuring system. Newer
updates report masses, instead of weights.
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TABLE 19.1. European Unions Directives and Regulations with impact on chassis
design.

Theme Reference Contents
Vehicle D70/156 General information necessary for the homologation
system of vehicles and trailers.

D83/403 Completion of the above with off road vehicles.
D92/21 Modification of the above for mass and dimensions.
D92/53 Modification and new text for D70/156
D95/48 Modification of the above for conformity control.
D98/14 Modification of the above for procedures.
D70/220 Gaseous emissions measurement.
D80/1268 Fuel consumption measurement.
D1999/100 Modification of the above for new consumption cycles.
R101 Fuel consumption measurement.
D2000/53 Disposal of waste deriving from vehicle disposal.

Wheels D78/549 Shape of fenders and wheel wells.
D92/23 Homologations of tires.
D94/78 Update of D92723 for procedures.
D2001/43 Prescriptions on tire noise.
R30 Tire homologation for M1 vehicles.
R54 Tire homologation for M2 and M3 vehicles.
R64 T type spare wheel tire homologation.

Steering D70/311 Admitted steering devices and operating forces.
D74/297 Driver protection in case of collision.
D91/662 Modification of the above.
D1999/7 Update of the D70/311 for powersteering.
R12 Steering system homologation for driver protection.
R79 Further update of D70/311 for powersteering.

Brakes D71/320 Braking systems for M, N, O vehicles.
D91/422 Modification of the above for dates of enforcement.
D98/12 Modification of the above for ABS introduction.
R13 Braking system homologation for M, N, O vehicles.
R90 Spare lining homologation.

Struct. D96/79 Occupant protection for M1 vehicles.
Gearbox D75/443 Prescriptions for speedometer and reverse gear.

D97/39 Update of the above.
R39 Speedometer and reverse gear homologation.

• M3: as above, but with an overall weight exceeding 5 t;

• N1: vehicles for transportation of goods with maximum weight exceeding
1 t, but lower than 3.5 t;

• N2: vehicles for transportation of goods with maximum weight exceeding
3.5 t, but lower than 12 t;
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• N3: vehicles for transportation of goods with a maximum weight exceeding
12 t;

• O1: trailers with a maximum weight not exceeding 0.75 t;

• O2: trailers with a maximum weight exceeding 0.75 t, but lower than 3.5
t;

• O3: trailers with a maximum weight exceeding 3.5 t, but lower than 10 t;

• O4: trailers with a maximum weight exceeding 10 t.

Vehicle characteristics

These consist of three pictures and a vehicle scheme showing the main dimen-
sions; the number of axles and wheels is reported, showing permanent or part-
time driving wheels. An outline scheme of the chassis frame, if any, should be
included, showing the material used for side beams.

Weights and dimensions

Among the main dimensions, the wheelbase and interaxis (for vehicles of more
than two axles) must be reported under full weight conditions; for trailers, the
distance between the hook and first axle pivot must be declared; for road tractors,
the saddle pivot longitudinal and elevation position must be referenced to the
vehicle. All dimensions are defined by the ISO 586 standard. All tracks must also
be declared.

The weight of the bare chassis frame (if any) must be declared, not including
cabin, fluids, spare wheel, tools and driver; the weight breakdown on the axles
must be also declared.

Also the weight of the vehicle completed with body or cabin (depending on
the product sold by the manufacturer) and other items must be declared and its
breakdown on the axles; if the vehicle is a semi-trailer, the weight on the hook
must also be claimed.

Finally, maximum allowed weight has to be declared and its breakdown on
axles and hook (if any).

Transmission

The transmission is described by a draft scheme, including data on its weight,
architecture (single stage, double stage, etc.), type of control (manual or auto-
matic), transmission ratios (gearbox and final drives) and the vehicle speed that
can be obtained on the existing gears at an engine speed of 1,000 rpm.

Suspensions

Suspension schemes must be attached, including the damping and elastic char-
acteristics of shock absorbers and springs; allowed tire sizes must be declared.
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Steering system

A scheme of the steering mechanism and column must also be included; max-
imum design forces on the steering wheel and maximum steering angles at the
wheel and the steering wheel must be declared. For these angles, the vehicle
turning radii for right and left turns must be declared.

Brakes

As we will describe later, service, emergency and parking brakes must be fully
described.

The engine, body and other vehicle systems not included in the chassis must
also be described.

A homologation form certifies the released homologation and reports for
each of the characteristics of the information form:

• the conformity of the presented prototypes to the described items;

• the conformity of those characteristics to legal requirements;

• the positive execution of tests;

• the existence of required drawings.

The D 70/156 Directive also reports all forms to be used for information
and for the certificate of conformity.

The D 87/403 Directive completes the previous documents with the defin-
ition of off-road vehicles; these are vehicles of M1 and N1 categories, featuring
these characteristics:

• at least one front and one rear driving axle, one of which can be disengaged
by the driver;

• at least one self-locking or locking differential;

• the gradeability of at least 30%, with no trailer;

• at least one of the following requirements:

1. angle of attack αa of, at least, 25◦;

2. angle of exit αu of, at least, 20◦;

3. ramp angle αr of, at least, 20◦;

4. ground clearance h2, under the front axle of, at least, 180 mm;

5. ground clearance h2, under the rear axle of, at least, 180 mm;

6. ground clearance between the axles h1 of, at least, 200 mm.
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FIGURE 19.1. Front and rear attack angles αa and αp; αr ramp angle; ground clearance
h1 and h2.

Figure 19.1 defines with the help of sketches the reported dimensions.
Front and rear attack angles measure the capacity of a vehicle to face sudden

slope changes in normal and reverse driving without any interference between
chassis and ground; the ramp angle, on the other hand, refers to a sudden slope
change in both directions.

The ground clearance between axles is the maximum height of an ideal
parallelepiped that can be inserted between the axles and under the chassis;
ground clearance under the axle refers to the lower point between the two contact
points of the wheels on the same axle.

Other geometrical prescriptions are assigned to other kinds of vehicles.
The D 91/21 Directive updates the previous ones by specifying that an M1

motor vehicle should feature a maximum speed of at least 25 km/h; in addition,
it introduces mass as a measurement instead of weight.

The same Directive establishes maximum vehicle dimensions:

• 12,000 mm of overall length;

• 2,500 mm of overall width;

• 4,000 mm of overall height.

The maximum allowed vehicle mass must be, at least, the total of vehicle
curb mass plus the product of offered passenger seats multiplied by 75 kg, which
is assumed as the average weight of a passenger, including his hand baggage.
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Mass breakdown on the axles may be calculated by positioning the passenger
reference weight at the R point of each seat; sliding seats must be set at their
rearmost position. Allowed baggage must be uniformly distributed on the trunk
floor.

Measured vehicle mass, at prototype homologation or control of conformity,
is admitted within a tolerance field of ± 5% around the declared values.

The D 92/53 Directive presents many updates of D 70/156 for the forms
and homologation procedure. In this revision, specific rules are introduced re-
garding small volume productions and end of series productions, along with rules
concerning waivers; the concept of equivalence between homologations granted
by different member States is also introduced.

It is also established that each member State issuing homologation cer-
tificates must arrange statistical control plans on operating vehicles, suitable
to detect possible non-compliance with the homologated prototypes; in case of
non-conformity, the issuing State must inform other States of the event and must
organize the compulsory recovery plan for the existing vehicles.

All applicable Directives and Regulations are reported in Attachment IV of
this document.

19.1.2 Consumption and emissions

Directive D 70/220 and its following updates report the applicable rules of the
European Union member states on the emission of polluting gases from motor
vehicles; this Directive also subsumes the following ones about fuel consumption
measurement.

The outstanding point of this Directive, in force for vehicles of the M1 and N1

types, consists in the definition of a transient driving cycle, which is defined to
simulate vehicle usage in an urban environment. This cycle, also reported by the
fuel consumption measurement Directive, consists of a speed-time history to be
assigned to every vehicle to be homologated; it is related to high density urban
traffic, where overtaking or slowing down is almost impossible.

The vehicle is tested on a dynamometer roller bench; a brake acting on the
rollers is able to replicate vehicle driving resistance faithfully. The same rollers
drive, in addition, a flywheel battery; each flywheel can be engaged or disengaged
on the brake: a suitable flywheel combination can simulate vehicle inertia.

For this test, a reference mass is defined as the curb vehicle weight, with fuel
supply, increased by 180 kg, corresponding to the average transported payload.

Table 19.2 reports the different reference mass classes and the corresponding
rounded value for the equivalent inertia2; available flywheels must be able to
replicate all reported equivalent inertia classes.

2Note the incongruity of measuring weight and inertia with the same units.
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TABLE 19.2. Table for calculating the equivalent inertia of a vehicle, as a function of
reference mass.

Reference mass Pr [kg] Equivalent inertia [kg]
Pr < 750 680

750 < Pr � 850 800
850 < Pr � 1,020 910

1,020 < Pr � 1,250 1,130
1,250 < Pr � 1,470 1,360
1,470 < Pr � 1,700 1,590
1,700 < Pr � 1,930 1,810
1,930 < Pr � 2,150 2,040

2,150 < Pr 2,270

Brake torque absorption must be able to reproduce vehicle driving resis-
tance at a constant speed of 50 km/h. For different speeds, only the parabolic
relationship of torque with speed is requested.

To adjust the brake during a constant speed drive of the vehicle on a level
road, in third gear or in D position for automatic transmissions, the intake man-
ifold pressure is measured. Vehicles must be loaded with their reference weight
and tires must be correctly inflated. To compensate for wind effect, the results
of two measurements in opposite directions are averaged.

The same vehicle is set on the dynamometer and the brake is adjusted to
reproduce the same manifold pressure.

The test bench is provided by a CRT monitor showing the actual vehicle
speed on the bench, in combination with a band representing the driving cycle,
with a tolerance of ± 2 km/h. The driver must follow this indicator, avoiding
transient corrections that could affect the consumption measurement.

Figure 19.2 shows the speed-time diagram of the urban cycle for emission
and consumption measurement; this cycle must be followed four more times.

All gases emitted by the exhaust pipe during the test are collected in bags,
whose content is measured and analyzed after the test to determine HC, CO,
NOx and CO2 levels; weighted gases are divided by the ideally travelled distance
on the bench.

The D 80/1268 Directive prescribes the same cycle for fuel consumption
measurement in an urban environment. This value was combined also with 90
and 120 Km/h constant speed fuel consumption, to supply the potential customer
with more complete information.

This Directive was afterwards modified by introducing a second driving cycle
of the suburban type, to be applied after the urban cycle. This cycle is reported
in Fig. 19.3.

Table 19.3 shows a summary of the most important features of the two
driving cycles.

Directive D 1999/100 imposes these cycles also for fuel consumption mea-
surement; the consumption is calculated by standard formulas, depending on
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FIGURE 19.2. Speed-time diagram of the urban cycle for emissions and consumption
measurement.

FIGURE 19.3. Speed-time diagram of the suburban driving cycle for emissions and fuel
consumption measurement.

TABLE 19.3. Characteristics of the urban and suburban driving cycles.

Characteristic Urban cycle Suburban cycle
Travelled distance [km] 4×1.013 = 4.052 6.955

Duration [s] 4×195 = 780 400
Average speed [km/h] 18.7 62.6

Maximum speed [km/h] 50.0 120
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the chemical composition of the fuel (gasoline, diesel, LPG, natural gas), start-
ing with the emission value of CO2 measured in g/km.

This value is the only allowed statement from manufacturers to customers
on matters of fuel consumption; fuel consumption is also subject to conformity
control from the issuer of the homologation certificate.

The same cycles must be used for electric energy consumption and range
measurement in electric vehicles.

Regulation R 101 summarizes all topics on fuel consumption measurement.

19.1.3 Recyclability

Each year about 12 million vehicles are scrapped in the European Union; they
correspond to about 0.5 % of the total production.

Directive D 2000/53 establishes rules to control waste products from these
vehicles by component and materials recycling.

These rules also address improvements to the environmental operations of
companies involved in this activity.

To prevent noxious waste formation, a set of laws has been introduced to
limit the use of some substances for vehicle and component manufacturers, mak-
ing recycling easier and avoiding dangerous waste treatment.

Member states must adopt laws suitable for reaching the following overall
targets.

• The recovery percentage (materials not sent to a landfill) of scrapped ve-
hicles must be at least 85% of the average vehicle weight, while at least
80% of the weight must be reemployed. For vehicles produced before 1980,
lower targets can be set, but not lower than 75% for recovery and 70% for
recycling.

• The recovery percentage must reach 95% by 2015 and the recycling per-
centage 85% of the average vehicle weight.

For this purpose, components and materials must be code labelled, to en-
hance identification and classification for selective recovery.

Scrapped vehicle treatment must include:

• batteries and LPG bottles removal;

• removal of explosive materials, such as air bags;

• removal and separated collection of fluids, like fuels, lubricants, cooling
fluids, brake oil, air conditioning fluids and others, unless they are necessary
to parts reemployment;

• removal of all components including mercury.
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Other scheduled operations include:

• catalyst removal;

• selective removal of parts containing copper, aluminum and magnesium;

• tires and big plastic elements removal (bumper, dashboard, reservoirs);

• glass removal.

The economic accomplishment of these operations implies a number of ad-
ditional design rules:

• banning certain materials, such as asbestos, lead, cadmium, esavalent
chromium, etc.

• indelible material labelling of any component;

• designing components with a reduced number of materials;

• designing an easy disassembly;

• identification of components suitable for a second life.

In the near future, it is likely that manufacturers will be obliged to accept
the burden of disassembly.

19.2 WHEELS

Directive D 78/549 is conceived as an implementation of D 70/156 for M1 vehi-
cles; it concerns fenders, sometimes part of the body, sometimes of the chassis
(wheel wells).

The following rules refer to a running vehicle with wheel parallel to the
longitudinal axis; Fig. 19.4 illustrates what we will report in this paragraph.

Within the sector defined by the radial planes through the wheel axis, which
build up an angle of 30◦ before and 50◦ after the wheel with reference to the
vehicle motion direction, the total width of the fender q must be sufficient to
cover the width b of the tire, taking into account all possible combinations of
tires and rims admitted by the manufacturer in the homologation information
form.

In case of twin tires the total width of the two tires, as they are assembled
on the wheel hub, must be taken into account.

The rear rim of the fender must be, at least, 150 mm higher than the wheel
axis; in addition, the tangency point of the fender rim with a plane at 150 mm
over the wheel axis (point A on Fig. 19.4) must be outside the equator plane of
the tire, or, in case of twin tires, outside the equator plane of the outer wheel.

Profiles and location of fenders must be as close as possible to the tire;
particularly with reference to the sector previously defined, the following pre-
scriptions must be applied.
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FIGURE 19.4. Dimensions for the fender and the wheel well, the object of homologation
rules; the curved solid line represents the outer fender rim.

• The projection, on the tire equator plane, of distance p between the outer
rim of the fender and its topmost point, must be at least 30 mm. This
dimension can be progressively reduced to zero on the radial planes previ-
ously defined.

• The distance c between fender rims and wheel axis cannot be higher than
twice the static radius R of the tire. In vehicles with adjustable trim, the
above conditions must be satisfied when the vehicle is in the normal drive
position requested by the manufacturer.

• Fenders can be built with more than one element; in this case gaps are not
admitted between the different elements.

• Fender profile and tire position must be such that at least one type of snow
chain can be mounted on the driving wheels, for one of the tire dimensions
admitted by the manufacturer.

According to Directive D 92/23 and its updates on the D 94/78, member
States are also required to homologate tires also as a component, independent
of the vehicle where they should be installed.

This directive reports the standard identification system that was explained
in the first volume. This system allows us to identify geometrical dimensions,
inflation pressure and admitted load at reference conditions.
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The homologation certificate of a tire must report the following information:

• application category;

• type of structure;

• maximum allowed speed;

• maximum admitted load with simple and twin assembly;

• the necessity of any tube;

• the type, as between the following: for cars; reinforced; for commercial and
industrial vehicles; for temporary use on spare wheels (T type);

• description and dimensions of carcass structure;

• admitted rim dimensions for its application.

The Directive D 2001/43 limits the rolling noise produced by the tire, in
order to contribute to the vehicle overall noise reduction; although we do not
comment about Directives on outside noise, because this topic is part of the
engine and its intake and exhaust systems design, we will describe briefly what
pertains to the tire.

This Directive presents a reproducible test method to evaluate the noise
produced by tires rolling on a paved road.

Tires are classified in the following categories:

• C1: tires for M1 vehicles; class C1 is divided in subclasses, according to the
dimension W ;

• C2: tires for M2 and M3 vehicles with a load capacity index ≤ 121 and
speed category � N; class C2 is divided in subclasses, according to the tire
application;

• C3: tires for M2 and M3 vehicles with a load capacity index � 121 and speed
category � M and with a load capacity index � 122 for twin assemblies;
class C3 is divided in subclasses, according to the tire application.

The proposed test method consists of driving a vehicle with the test tire on
a measurement course, as represented in Fig. 19.5; the vehicle must be launched
and cross the course with idle gear and engine off.

This directive prescribes also the remaining test conditions, the specifica-
tions of the pavement and how to process signals from the microphones M.

The test speed is:

• 80 km/h for tires of C1 and C2 classes;

• 70 km/h for tires of C3 class.
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FIGURE 19.5. Test course for measuring tire rolling noise; on the course AB the vehicle
is running at semi-constant speed, with idle gear and engine off. Points M represent
the measuring microphones.

TABLE 19.4. Noise limits in [dB(A)] for the different tire classes; W is measured in
[mm].

Class Subclass Limit [dB(A)]
C1 W � 145 72
C1 145 < W � 165 73
C1 165 < W � 185 74
C1 185 < W � 215 75
C1 W > 215 76
C2 normal 75
C2 snow 77
C2 special 78
C3 normal 76
C3 snow 78
C3 special 79

Noise limits are reported in Table 19.4. More severe limits are expected after
2007.

Regulations R30, R54, R64 summarize all matters respectively for
M1vehicles, for M2 and M3 vehicles and for T type wheels.

A T type wheel is a spare wheel, complete with tire and disc, with differences
only in design details, that limits its application to certain conditions only.

The development of these wheels is justified by the need for bulk contain-
ment in the trunk, when more than one tire size applies to a vehicle, or when
the ordinary wheels are judged to be too expensive.



86 19. REGULATIONS

Four different categories are identified:

• category 1: consists of a wheel where the disc has a design different from
that of the homologated tires; the wheel is inflated at a pressure prescribed
for temporary use;

• category 2: consists of a wheel where both disc and tire have a different
design from that of the homologated tires; the wheel is inflated at a pressure
prescribed for temporary use;

• category 3: consists of a wheel of the same design as that of the homologated
tires, but transported flat; the tire is inflated when necessary;

• category 4: consists of a wheel where both disc and tire have a design dif-
ferent from the homologated tires; the tire is inflated only when necessary.

These wheels must observe the rules of R30 regulation, implying that the
tire is designed for the load of the heavily loaded wheel and for a maximum
speed of at least 120 km/h; T wheels must show an indelible label prescribing a
use limited to a short distance and 80 km/h maximum speed.

The same indications must be reported in the user manual, which also pro-
hibits the simultaneous use of more than one T wheel on the same vehicle.

In addition, a full load braking test must be performed with the T wheel in
all possible positions; the braking test is the same as prescribed by R13 regula-
tion: with a pedal load lower than 500 N, the vehicle must stop from 80 km/h
within the distance:

s � 0, 1V +
V 2

150
, (19.1)

where V is the speed in [km/h].
The required performance must be obtained without wheel lock, deviation

from the initial path or excessive corrections on the steering wheel.

19.3 STEERING SYSTEM

Directive D 70/311 is one of the oldest and requires that any motor vehicle,
with more than 25 km/h as maximum speed and with at least four wheels, be
equipped with a steering system; this rule applies also to trailers, but not to rail
vehicles, agricultural and earth-moving machines.

For the steering system, the Directive means any device having the function
of changing the driving path of a vehicle. It includes:

• the control (the steering wheel),

• the transmission from the control to the steering wheels,

• steering wheels,
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• any device suitable for producing auxiliary energy for assistance; this aux-
iliary energy can be mechanic, hydraulic, pneumatic or any combination of
the above, including energy storage.

Three categories of vehicles are identified with:

• manual steering, where steering energy is supplied by the driver’s muscle
power only;

• power steering, where this energy is partly supplied by the driver, partly
by an assistance device;

• self-steering, where this energy is only supplied by sources different from
the driver.

The control device must grant an easy and safe control of the vehicle; if
necessary the steering system may be implemented by power assistance.

The control device must be manageable and ergonomic and must be con-
ceived so as to allow an adjustable steering. The motion direction of the control
device must be clearly correlated to the expected change of path of the vehicle.

The control force to be applied in order to obtain a turning radius of 12 m,
starting from a straight direction, must in no case exceed 25 kg.

If a power assistance device is applied in order to observe this rule, the
control force, when the assistance energy is missing, cannot exceed 60 kg. Vehicle
steering must be guaranteed in the event of total or partial failure of the auxiliary
system.

Self-steering devices are not admitted for vehicles as they are defined by this
Directive.

It should be noticed that this condition applies only if all steering wheels
are self-steering; for this purpose, hydrostatic steering (steering wheel moving a
hydrostatic power distributor with wheels steered by hydrostatic actuators) is,
for instance, not admitted, but an additional axis on a truck, steering only under
the action of the cornering forces, is admitted.

Directive D 74/297 specifies the behavior of the steering wheel after a colli-
sion test against a barrier at 48.3 km/h; the test is done with no load or dummies.
According to this directive the upper part of the steering column must not move
back horizontally more than 12.7 cm with reference to any point of the body not
involved in the collision.

In addition, the energy that the steering column must absorb during the
secondary impact of the dummy against the steering wheel is specified; when the
steering wheel is impacted by a test block of about 35 kg of mass, launched at a
speed of 24.1 km/h, the reaction exerted by the test block cannot exceed 1,111
daN.

The steering wheel should be designed so as not to present any unevenness
or sharp edges, which threaten to increase the danger or the severity of injuries
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to the driver after the impact. In addition, it should be designed, built and as-
sembled so as not to present any accessory element able to snag driver’s clothing
during normal driving operation.

Directive D 1999/7 specifies minimum values for braking efficiency on those
vehicles that use the same energy source for both power steering and power
braking.

Regulation R 12 reports all matters regarding driver protection in case of
collision and describes test conditions in detail.

Regulation R 79 summarizes all matters regarding homologation and in-
troduces important updates, opening the possibility of applying full power sys-
tems, where the motion transmission between steering wheel and wheel is not
mechanical.

In this document, the technical progress needed to make the following items
possible is examined:

• the elimination of the steering column for safety,

• the easy transfer of controls to both sides of the vehicle,

• the automatic intervention of steering control, to avoid collisions or roll-
overs.

According to the above targets this document allows steering wheel and
wheel to be connected by other than mechanical positive means.

Systems in which the driver has the primary vehicle control, but in which
automatic control systems can also intervene, are defined as Advanced Driver
Assistance Steering Systems (ADASS).

Steering systems assisted by means that are in part outside the vehicle
are defined as Lane Guidance, Lane Keeping or Heading Control if they have
the job of maintaining a preset trajectory; they are classified as Automatically
Commanded Steering Function.

Systems like ADASS can also include devices able to monitor path deviation
or correction in such a way as to improve the vehicle’s dynamic behavior.

This Regulation allows the application of such systems if their presence
does not degrade the operation of the conventional control system. They must
be designed in such a way as to enable the driver to inhibit their operation
deliberately; in case of emergency, a mechanical positive link between steering
wheel and wheels must be reestablished.

If the same source of energy used for steering the car is used for different
devices, steering must be guaranteed. If this source is shared with the braking
system, steering must be given priority; in case of failure the braking efficiency
must not decay below certain limits.

The system must also be designed so as not to allow speeds over 10 km/h
in case of failure; if the energy source is not available or has failed, at least 24
double steering pad loops of 40 m must be driven at a limited speed of 10 km/h
with the same performance as an undamaged system.
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TABLE 19.5. Maximum forces S on the steering wheel, for a curve of radius R, starting
from a straight path for a duration T, in case of damaged and undamaged system.

Category Undamaged system Damaged system
S [daN] T [s] R [m] S [daN] T [s] R [m]

M1 15 4 12 30 4 20
M2 15 4 12 30 4 20
M3 20 4 12 45 6 20
N1 20 4 12 30 4 20
N2 25 4 12 40 4 20
N3 20 4 12 45 6 20

In case of failure of the control transmission, no sudden steering angle change
is allowed.

The vehicle must be driven starting from a straight path to a constant
radius curve, as prescribed in Table 19.5, at 10 km/h. The steering wheel force
necessary to perform the maneuver in the prescribed time should be recorded
for the undamaged system. The same test should be repeated with a damaged
system by measuring same values.

19.4 BRAKING SYSTEM

The D 71/320 Directive, together with the updates introduced by D 91/422 and
by D 98/12, specifies braking systems for vehicles of the M, N and O categories.

This directive considers as a braking device any mechanical system having
the function of decreasing the speed or stopping a vehicle gradually, or preventing
further motion when stopped.

This device is composed of a control, a brake and a transmission connecting
the above elements together.

The brake is the device developing forces opposed to vehicle motion.
Brake types taken into consideration are:

• friction brakes;

• electric brakes (where braking forces are developed by any electro-magnetic
action between parts with relative motion, but not in contact);

• fluid brakes (where braking forces are developed by a fluid interposed be-
tween parts with relative motion);

• engine brake (where braking forces are produced by an artificial increase
of the engine braking effect);

• inertia brakes (where the braking forces on a trailer are produced by the
reaction between the trailer and the tractor).
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The Directive defines transmission as any device connecting control with
brakes; this transmission can be mechanical, hydraulic, pneumatic, electric or
mixed. When braking is performed or assisted by an energy source independent
of the driver, but under his control, the energy storage applied to the system is
also considered to be part of the transmission.

The following braking modes are defined:

• adjustable braking, when the driver can, at any time, increase or decrease
the force on the control;

• continuous braking, when a train of vehicles is braked by a unique control
that can be moderated by the driver, at his driver’s seat, and when the
braking energy comes from the same source (as well as the muscle power
of the driver);

• semi-continuous braking similar to above, but with energy coming from
more than one source (one source can be the muscle power of the driver);

• automatic braking is the braking of a trailer that occurs automatically when
it is uncoupled from its tractor or when towing devices are broken; in this
case, the braking efficiency of the rest of the train must remain unaffected;

• retarder braking, when a supplementary device is able to exert and main-
tain a braking force on the vehicle, for a long time, without reduction in
efficiency; the term retarder includes the entire system and its control; at
this time regenerative braking systems (used on electric and hybrid vehi-
cles) are not considered to be part of the braking system.

A generic braking system, as described at the beginning of this paragraph,
must perform one of the following functions.

• Service brake: must allow vehicle speed control, stopping it quickly and
safely at any speed or road slope; it must be adjustable; it must be operated
by the driver at the driver’s seat, with both hands on the steering control.

• Emergency brake: must allow the vehicle to be stopped in a reasonable
space, when the service brake is malfunctioning; it must be adjustable; it
must be operated by the driver at the driver’s seat, with one hand on the
steering control.

• Parking brake: must allow the vehicle to remain unmoving on a climbing
or descending slope, even when the driver is absent.

Devices providing service, emergency and parking braking can have common
parts or devices, provided they fulfill the following specifications:

• two independent controls must be available; for all vehicle categories but
M2 and M3, each control (except the retarder control) must return to rest
position when released; this rule does not apply to the parking brake when
locked in the braked position;
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• service brake control must be independent of the emergency or parking
brake control.

Braking system specifications are different for road pavement with high and
low friction coefficients.

High friction coefficient

For service brakes, a stop test of 0 type, with cold brakes (when the brake
temperature, measured on the disc or on the outside of the drum, is lower than
100◦C) is specified to be performed with unloaded and fully loaded vehicle and
engine disengaged.

In addition, a stop test of 1 type should be performed, including repeated
braking, as for the following scheme, and of 2 and 2 A type, after long descents.

The type 1 test is performed on a loaded vehicle, after having warmed up
the brakes, according to the rules shown in Table 19.6.

The type 2 test provides that brakes are used when the vehicle is driving
a course on a slope of 6%, 6 km long, at 30 km/h with the most suitable gear
ratio and the retarder, when applicable.

Test type 2 A is similar to the previous one, but with a slope of 7%.
During this test, service, emergency and parking brakes cannot be used.

The gear ratio must be chosen in order to run the engine at a speed not over the
maximum value specified by the manufacturer. An integrated retarder (which
can be operated by service brakes) can be used in such a way as not to operate
the service brakes.

Test 2 A substitutes test 2 for tourism or long distance buses of category
M3, and for vehicles of category N3 allowed to tow trailers of category O4.

All above tests must be run on a high friction coefficient paved road.
The braking system efficiency is evaluated by measuring the stopping dis-

tance, the average deceleration and the response time.
The stopping distance is the distance travelled by the vehicle from the time

the brake control is actuated to the time the vehicle is completely stopped; the
initial speed of the test is defined as the speed at the time the driver starts to
actuate the brake control.

TABLE 19.6. Rules for performing a type 1 test: V1 and V2 are the initial and final
speed for the test, Vmax is the vehicle maximum speed and Δt is the time between
following brakings. The required number of repeated brakings is n.

Category V1 [km/h] V2 [km/h] Δt [s] n

M1 0.8·Vmax,� 120 0.5·V1 45 15
M2 0.8·Vmax,� 100 0.5·V1 55 15
M3 0.8·Vmax,� 60 0.5·V1 60 20
N1 0.8·Vmax,� 120 0.5·V1 55 15
N2 0.8·Vmax,� 60 0.5·V1 60 20
N3 0.8·Vmax,� 60 0.5·V1 60 20
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TABLE 19.7. Minimum performance of the service brake system for 0 type tests, with
disengaged engine.

Category V [km/h] s [m] ax [ms−2] F [N]
M1 80 � 0.1V + V 2

150 � 5.8 500
M2 60 � 0.15V + V 2

130 � 5 700
M3 60 � 0.15V + V 2

130 � 5 700
N1 80 � 0.15V + V 2

130 � 5 700
N2 60 � 0.15V + V 2

130 � 5 700
N3 60 � 0.15V + V 2

130 � 5 700

TABLE 19.8. Minimum performance of the service brake system for 0 type tests, with
engaged engine.

Category V [km/h] s [m] ax [ms−2] F [N]
M1 160 � 0.1V + V 2

130 � 5 500
M2 100 � 0.15V + V 2

103,5 � 4 700

M3 90 � 0.15V + V 2

103,5 � 4 700

N1 120 � 0.15V + V 2

103,5 � 4 700

N2 100 � 0.15V + V 2

103,5 � 4 700

N3 90 � 0.15V + V 2

103,5 � 4 700

In the formulae below, suitable for measuring the braking efficiency, V is
the initial speed, s the stopping distance, F the force on the brake pedal, ax the
average obtained deceleration.

The minimum result in Table 19.7 must be measured when the engine is
disengaged, and in Table 19.8 when the engine is engaged. On the same tables,
the maximum allowed value for F is reported.

Emergency brakes must be able to obtain:

s � 0.1V +
2V 2

150
, (19.2)

for vehicles of category M1,

s � 0.15V +
2V 2

130
, (19.3)

for vehicles of categories M2 and M3 and:

s � 0.1V +
2V 2

115
, (19.4)

for vehicles of categories N.
If the emergency brake is operated by a hand lever, the performance must

be obtained with a force on the lever below 400 N for vehicles M1, and below
600 N for the remaining categories.
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TABLE 19.9. Minimum performance for service brakes, in case of transmission failure,
in a 0 type test with engaged engine.

Category V [km/h] s [m], loaded vehicle s [m], unloaded vehicle
M1 80 � 0.1V + 100

30
V 2

150 � 0.1V + 100
25

V 2

150

M2 60 � 0.15V + 100
30

V 2

130 � 0.15V + 100
25

V 2

130

M3 60 � 0.15V + 100
30

V 2

130 � 0.15V + 100
30

V 2

130

N1 70 � 0.15V + 100
30

V 2

115 � 0.15V + 100
25

V 2

115

N2 50 � 0.15V + 100
30

V 2

115 � 0.15V + 100
25

V 2

115

N3 40 � 0.15V + 100
30

V 2

115 � 0.15V + 100
30

V 2

115

In case of failure of any part of the transmission, residual system efficiency
must allow the minimum values in Table 19.9, when a force not higher than 700
N is applied to the control, on a 0 type test with disengaged engine.

After a 1 type test, results on a stop test must be better than the limits
shown in Table 19.7, reduced to 80%, or to the limits of 0 type test, reduced to
60%.

After a 2 type or 2 A type test, stopping distance must be better than:

s � 0.15V +
1, 33V 2

130
, (19.5)

for category M3,

s � 0.15V +
1, 33V 2

115
, (19.6)

for category N3.
Vehicles of categories M3 and N3 must pass the three tests; vehicles in the

remaining categories must pass only type 0 and type 1 tests.
The parking system device must be able to hold a vehicle in place on a slope

(both uphill and downhill slopes must be tested) of at least 18%; for vehicles
allowed to tow trailers, the parking system device must hold vehicle and trailer
in place on a slope of 12%.

If the parking brake is a hand brake, the force on the lever must not exceed
400 N for vehicles of M category and 600 N for the remaining categories. If it is
a pedal brake, the limits are upgraded to 500 N and 700 N respectively. A device
that must be actuated more than one time to achieve full performance is allowed.

Other limits are prescribed for vehicles of category O and for the response
time of pneumatic brake systems.

The last Directive above also considers ABS or antilock systems; by antilock
system, this Directive refers to all components regulating the slip of one or more
wheels during braking.

Many prescriptions apply to this system; we will quote the main ones only.
Any failure of the electric system or to sensors, including the electric supply,

wiring harness, control systems, or pressure modulator must be signaled to the
driver by a warning light.
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This light must be on when the ABS system is on and the vehicle is stopped;
the light goes off, after a short period, to demonstrate that the system is working.

In case of any failure, the residual braking efficiency is defined by Table 19.9.
Only off-road vehicles of categories N2 or N3 can have devices able to switch

off the ABS system or to modify its operational mode.
ABS systems must also maintain their efficiency when brakes are operated

for a long period of time.

Low friction coefficient

For all categories of vehicles, when friction coefficient μx is between 0.2 and 0.8,
the following relationship is applied:

z =
ax

g
� 0.1 + 0, 85(μx − 0, 2) , (19.7)

where ax is the obtained longitudinal deceleration and g is the gravity accelera-
tion; z is called the braking level.

If we call:
fi the friction used by the axle i,
Fxi the braking force of the axle i,
Fzi the vertical force on axle i during braking,
Pi the static vertical force on axle i,
P the vehicle weight,
hG the center of gravity height,
l the vehicle wheelbase,

we obtain:

f1 =
Fx1

Fz1
=

Fx1

P1 + z
hg

l Pg
, (19.8)

f2 =
Fx2

Fz2
=

Fx2

P2 − z hG

l Pg
,

for a two-axle vehicle.
These formulae consider the pitch rotation equilibrium of a symmetric vehi-

cle during braking; a complete justification of these formulae is given in Part IV.
For every load condition, the friction applied to the front axle must be higher

than applied to the rear one:

• for any braking level between 0.15 and 0.18, for vehicles of M1 category;
however in the range between 0.3 and 0.45 the opposite is admitted if
the friction used by the rear axle does not exceed by 0.05 the value given
by μx = z (equal friction relationship) on a diagram representing fi as
function of z;

• for any braking level between 0.15 and 0.18, for vehicles of N1 category;
this condition is considered fulfilled if, for braking levels between 0.15 and



19.4 Braking system 95

0.30, the used friction curves of each axle lie between the two parallel lines
given by the following equations:

μx = z + 0.08 and μx = z − 0.08, (19.9)

and if the curve of the friction used by the rear axle (which can cross the
line μx = z − 0.08), for braking levels between 0.3 and 0.5, respects the
relationship:

z � μx − 0.08, (19.10)

and, between 0.5 and 0.61, respects the relationship:

z � 0.5μx + 0.21; (19.11)

• for any braking level between 0.15 and 0.30, for other vehicle categories;
this condition is considered fulfilled if, for braking levels between 0.15 and
0.30, the used friction curves of each axle lie between the two parallel lines
given by the following equations:

μx = z + 0.08 and μx = z − 0.08, (19.12)

and if the curve of friction used by the rear axle, for braking levels z � 0.3,
follows the relationship:

z � 0.3 + 0.74(μx − 0.38). (19.13)

This set of conditions is used to design the braking distributor, when the
braking system is without ABS or has an electronic brake distributor (EBD).

For vehicles with ABS, the value of obtainable z must be at least 75% of
that with an ideal brake distributor.

Brake lining

Directive D 98/12 also includes a test procedure that can be applied when a
vehicle is modified by installing a new type of brake lining, when such vehicle is
already homologated, according to the said Directive.

The new brake lining must be verified by comparison of its efficiency with
that obtained with the original lining at the vehicle homologation test, and it
must comply with the specifications on the information form.

In this case, a roller dynamometer is also allowed, where roller inertia meets
vehicle values at the homologation test.

As for the entire vehicle, liners must be tested on test types 0, 1, 2 and 2
A; results are acceptable if the average deceleration, at the same force on the
pedal, are included in a tolerance band as wide as the 15% value obtained by
the vehicle homologation tests.

Lining friction tests are also specified to prove conformity of production;
they are performed on a simplified bench, simulating a single brake.



96 19. REGULATIONS

The Regulation R13 summarizes all aspects of the above directives and in-
troduces criteria about regenerative braking, by distinguishing between A type
systems, which are not integrated with the braking system, and B type systems,
which are integrated. The braking effect on A type systems is obtained by re-
leasing the accelerator pedal only, on M1 vehicles and with a separate control on
N1 vehicles.

To these systems all prescriptions must be applied; the 0 type test must be
performed without regenerative braking.

Regulation R90 applies to braking linings used as spare parts.

19.5 STRUCTURES

The structural behavior of a vehicle is the subject of many Directives about what
must and must not occur in a collision test, as regards front, rear and lateral
impacts, for M1 vehicles.

Chassis structures work together with the vehicle body in determining the
behavior in front and rear impact, but the body plays a major role also if these
structures are not limited to an underbody only, but there is a true separated
chassis frame; the energy absorbed by the body deformation is fundamental. For
side impact, the underbody plays a marginal role.

Nevertheless we will outline, for the sake of completeness, the D 96/79 Di-
rective, which defines test procedures to guarantee occupant safety in case of
front impact.

The vehicle impacts a deformable barrier, according to the scheme in
Fig. 19.6; the vehicle under test must be at the reference weight condition.

On each of the front seats, a dummy Hybrid III type must be accommodated
and wear the provided passive restraint systems. The accommodation geometry
and seat adjustment is specified by this Directive.

0.342 MPa

1.711 MPa

Honeycomb
Al

90450

540mm

1000mm

33
0

65
0

20
0

FIGURE 19.6. Scheme of the impact test against a deformable offset barrier, to demon-
strate occupant protection capacity. At left is the side view of the barrier; at right, the
upper view of the impact position.
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The vehicle can be driven on its own or by an external device; at the impact
time the steering system must be free and the propulsion system idle.

The impact speed must be 56 km/h, with a tolerance band of ±1 km/h.
However, if the impact speed is higher and the test results comply with prescrip-
tions, the test is considered as passed.

The vehicle path must be offset by 40% of the vehicle width (with a tolerance
of ±20 mm), with reference to the vertical symmetry plane of the barrier. This
offset was introduced, differently from the previous Directive, to take into account
for the fact that most collisions between vehicles are not symmetric, but offset
to their normal driving direction; cars homologated for countries with left-hand
drive must have right-hand steering wheels and must be tested in symmetric
position, as in the above scheme.

The barrier is positioned so as to have the first contact point with the vehicle
on the driver’s side.

The deformable barrier is designed to simulate a reference vehicle that is hit
in the collision; for this purpose, it is made up of more elements:

• a main honeycomb aluminum structure;

• an element with the shape and position of a bumper, made of aluminum
honeycomb;

• a reaction plate, bolted to a foundation;

• a cover plate for the bumper, made again of aluminum.

The front side of the barrier must be perpendicular to the vehicle impact
direction with a tolerance of ±1◦. The foundation mass must be at least 70,000
kg and its displacement must be limited by a concrete block. Barrier dimensions
are shown on the left in Fig. 19.6.

During this test, many measurements are made to verify the performance
criteria; different accelerometers are set on the dummy and on the car and the
impact scene is shot by a high speed video camera.

The performance criteria involve the following limits:

• dummy head acceleration, processed according to a particular method tak-
ing into account the impact duration time;

• shear and traction forces on the dummy neck;

• thorax compression and compression speed;

• femur compression, as a function of time;

• tibia compression;

• rotula shear.
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The values of these limits are derived by biomechanics studies on the human
body and are continuously refined.

Beside the homologation test, rating tests by specialized independent labo-
ratories and of specialized magazines become more and more relevant; the most
famous of these is Euro NCAP (European New Car Assessment Programme).

Euro NCAP is a consortium between the main German Motoring Club
(ADAC), the German, English and Dutch Transportation Ministries, the
European Union and other partners, whose objective is to inform consumers
about the passive safety of cars available on the market; information on Euro
NCAP and available test results can be read on the internet site:

www.euroncap.com.

These tests results are scored and usually balanced in a final overall figure
on vehicle safety, ranging from excellence to adequacy, measured by the number
of stars.

There are tests similar to those reported by regulations but with additional
severity in test procedures (for instance, by increasing impact speed) and in their
evaluation scale, as well as new tests analyzing issues not already regulated (for
instance, pedestrian impact was already rated before the issuance of the related
law).

The peculiarity of rating tests is that they have reached a high level of rep-
utation and have become important markers of product competitiveness. As a
matter of fact, rating results have become an additional standard for car manu-
facturers.

Finally, the quest for higher rating evaluations contributes to raising the
safety level of the operating fleet and promoting the improvement of the existing
regulations.

19.6 GEARBOX

Regulations about the gearbox are few because this system has a low impact on
functions covered by laws.

We also include in this section the prescription for the speedometer, because
the pulse generator for the speed signal is usually within the gearbox. The final
gear rotation speed is a simple indicator of wheel and car speed.

The Directive D 75/443 provides that all vehicles must have a reverse gear
and a speedometer (with odometer).

A precision control is specified, according to the following procedure. The
vehicle must have a set of homologated tires and the test must be repeated for
any kind of speedometer included in the vehicle production.

The load on the axle having the speedometer installed (usually the driving
axle) is defined by the D 70/156 Directive.
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The vehicle must be tested at 40 km/h, 80 km/h and 120 km/h; the last value
is substituted by 80% of the maximum speed, specified by the manufacturer, if
this last is lower than 150 km/h.

The speed measured by the odometer cannot be lower than the actual speed.
At the specified speeds, the following relationship between indicated speed

V1 and actual speed V2 must be verified:

0 � V1 − V2 � V2

10
+ 4 . (19.14)

The D 97/39 Directive updates the above for issues about the information
form. The Regulation R39 is a summary of this topic.
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GENERAL CHARACTERISTICS

20.1 SYMMETRY CONSIDERATIONS

Motor vehicles, like most machines, have a general bilateral symmetry. Only
hypotheses can be advanced to explain why this occurs. Certainly to have a
symmetry plane simplifies the study of the dynamic behavior of the system, for
it can be modelled, within certain limits, using uncoupled equations. However,
the reason is likely to be above all an aesthetic one: symmetry is considered an
essential feature in most definitions of beauty.

All complex animals that evolved on our planet, including humans, have a
symmetry plane defined by a vertical axis and an axis running in the longitudinal
direction; symmetry is, however, not complete since some internal organs are
positioned in an unsymmetrical way and some small deviations from symmetry
are always present even in exterior appearance. When such lack of symmetry is
too evident, it is felt to be incompatible with the aesthetic canons developed by
all human civilizations.

A similar situation is encountered in all objects built by humans and, as
in our interest here, in motor vehicles: a general outer symmetry and a certain
lack of symmetry in the location of the internal components. Among the most
common road vehicles, the only case where such a symmetry is not present is
that of motorbikes with sidecar; these are, however, perceived to be made by a
main unit, the motor bike, that has bilateral symmetry, plus a second unit, the
sidecar, attached on a side, as its name suggests.

G. Genta, L. Morello, The Automotive Chassis, Volume 2: System Design, 105
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The sidecar often has its own symmetry plane, even if such characteristics
are neither needed nor useful. This consideration may confirm the idea that
symmetry has, in vehicles, purely an aesthetic justification.

A few other vehicles, built for very specialized use, like mobile cranes and
building yard vehicles, have a non-symmetrical shape when strong functional
reasons dictate it, but these are vehicles in which aesthetic considerations are
utterly unimportant.

Many industrial vehicles may perhaps draw advantages from an asymmetri-
cal architecture, for instance with the cab on one side and the loading surface on
the other to use all the available length. Such a configuration seems, however, to
be so unnatural as to be considered only if strictly needed. Imagination could at
this point be set free to devise architectures that are not only without bilateral
symmetry, but are even fully non-symmetrical, but this would likely be useless,
since these configurations would seem to be unacceptable.

If the vehicle were completely symmetrical, the center of mass would lie
in the symmetry plane. Actually, as already said, the mechanical systems and
the load distribution are often not exactly symmetrical, so that the mass center
can be displaced from it. In practice, the distance of the mass center from the
symmetry plane is small.

20.2 REFERENCE FRAMES

The study of the motion of motor vehicles is usually performed with reference to
some reference frames that are more or less standardized. They are (Fig. 20.1):

• Earth-fixed axis system XY Z. This is a right-hand reference frame fixed
on the road. In the following sections, it will always be regarded as an
inertial frame, even if strictly speaking it is not such as it moves along with
the Earth: The inertial effects due to its motion (rotation about its axis,
orbiting about the Sun, the galactic center, ...) are so small that they can
be neglected in all phenomena studied in motor vehicle dynamics. Axes X
and Y lie in a horizontal plane while axis Z is vertical, pointing upwards1.

• Vehicle axis system xyz. This is a right-hand reference frame fixed to the
vehicle’s center of mass and moving with it. As already stated, if the vehicle
has a symmetry plane, the center of mass is assumed to lie on it. The
x-axis lies in the symmetry plane of the vehicle in an almost horizontal
direction2. The z -axis lies in the symmetry plane, is perpendicular to the

1Recommendation SAE J670 and ISO/TC 22/SC9 standard state that the Z-axis is vertical
and points downwards. Note that in the present text the direction of the Y and Z axes is
opposite to that suggested in the mentioned standard.

2The mentioned standard states that the x-axis is contained in the plane of symmetry of
the vehicle, is “substantially” horizontal and points forward.
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FIGURE 20.1. Reference frames, forces and moments used for the dynamic study of
motor vehicles.

FIGURE 20.2. Projection of the axes of the vehiocle fixed frame in XY plane of the
inertial frame.

x-axis, and points upwards. The y-axis is perpendicular to the other two3.
The y -axis,then, points to the left of the driver. In the case of vehicles
without a symmetry plane, the xz plane is identified by the direction of
motion when the wheels are not steered and by a direction perpendicular
to the road in the reference position of the vehicle.

The projections of the vehicle-fixed axes xyz and of the velocity on the
plane XY of the inertial frame are shown in Fig. 20.2. The angle between the
projection of the x-axis and the X-axis is the yaw angle ψ. The projection of
the velocity of the center of mass on the XY -plane is here conflated with the

3Here again there is a deviation from the mentioned standard.
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absolute velocity, since the component of the latter in a direction perpendicular
to the road is usually very small.

The velocity of the air with respect to the ground, or ambient wind
velocity va, is defined as the horizontal component of the air velocity relative
to the earth-fixed axis system in the vicinity of the vehicle in the inertial frame
XY Z.

The resultant air velocity (i.e. the velocity of the air with respect to the
vehicle) Vr is the difference between the ambient wind velocity and the projection
of the absolute velocity V of the vehicle. The velocity of the vehicle with respect
to air is −Vr and coincides with the absolute velocity V when the air is still, i.e.
when the ambient wind velocity va is zero.

The angle between the projection on the XY plane of the x-axis and that
of the velocity vector V is the sideslip angle β of the whole vehicle; sometimes
referred to as the attitude angle. As it was the case for the sideslip angle of the
tire α, it is positive when vector V points to the left of the driver (in forward
motion). In a similar way it is possible to define an aerodynamic angle of sideslip
βa as the angle between the projections on the XY plane of the x-axis and the
relative velocity −Vr.

Angles β and βa usually refer to the velocity of the centre of mass, but can
be referred to the velocity of any specific point of the vehicle.

20.3 POSITION OF THE CENTER OF MASS

The position of the center of mass is very important in determining the behavior
of the vehicle and must be computed, or at least assessed, at the design stage and
then experimentally determined. If the various components of the vehicle are
designed using CAD techniques, it is generally possible to have their mass and
the positions of their centers of mass among the outputs of the code. The position
of the center of mass of the vehicle can then be assessed from the results obtained
for the components, but this evaluation is generally approximate and at any rate
is a long computation. Then what is of interest is not the position of the center
of mass of the empty vehicle, but that of the vehicle in the various operating
conditions (vehicle with all liquids, the driver, a variable number of passengers
and possibly luggage).

The longitudinal position of the center of mass can be obtained by simply
weighing the vehicle on a level road at the front and rear axles (Fig. 20.3a). If
Fz1 and Fz2 are the vertical forces measured at the two axles, the equilibrium
equations for translations in the z direction and for rotations about the y-axis
can be written as:

{
Fz1 + Fz2 = mg
lFz1 = bmg , (20.1)
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FIGURE 20.3. Sketch of the experimental determination of the longitudinal and vertical
position of the center of mass.

and then: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = l
Fz2

Fz1 + Fz2

b = l
Fz1

Fz1 + Fz2

.

(20.2)

If the center of mass does not lie in the symmetry plane, it is possible to
compute the transversal position of the center of mass by measuring the forces
under the right and left wheels.

It is more difficult to determine the height of the center of mass. Once the
longitudinal position is known (once a and b have been determined) it is possible
to measure again the forces on the ground after the front (or the rear) axle has
been raised from the ground (Fig. 20.3b).

Let the front axle be set on a platform with height h with respect to the
platform on which the rear axle is located. If the height of the center of mass
hG is greater than the radius under load of the wheels, the force F ′

z1
measured

at the front axle will be smaller than that measured on level road. It is then
possible to write:

F ′
z1

= Fz1 − ΔFz. (20.3)

If the force at the rear axle is measured, it would be:

F ′
z2

= Fz2 + ΔFz. (20.4)

The equilibrium equation for rotations about the center of the front axle is:

mg [a cos (α) + (hG − Rl1) sin (α)] = (20.5)

= (Fz2 + ΔFz) [l cos (α) + (Rl2 − Rl1) sin (α)] .

The height of the center of mass is then:

hG =
Fz2 + ΔFz

mg

[
l

tan (α)
+ Rl2 − Rl1

]
− a

tan (α)
+ Rl1 . (20.6)
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Remembering that:
Fz2

mg
=

a

l
,

it follows that

hG =
a

l
[Rl2 − Rl1 ] + Rl1 +

ΔFz

mg

[
l

tan (α)
+ Rl2 − Rl1

]
. (20.7)

If the loaded radius of all wheels is the same, as it is usually the case (at
least approximately), Eq. (20.7) can be simplified as:

hG = Rl +
ΔFz

mg

l

tan (α)
, (20.8)

that is:

hG = Rl +
ΔFz

mg

l
√

l2 − h2

h
. (20.9)

To measure accurately the height of the center of mass, the wheels must be
completely free (brakes released and gear in neutral), and the vehicle must be
restrained from rolling by chocks at one of the axles. Moreover, the suspensions
must be locked at a height corresponding to the load distribution on level road,
and the tires must be equally compressed.

This last condition can be obtained in an approximate way by increasing
the inflation pressure. It is then possible to take several measurements of ΔFz

at different values of tan (α) and to plot ΔFz versus tan (α). If the radii of the
wheels are all equal, such a curve is a straight line, whose slope

ΔFz

tan (α)
=

mg

l
(hG − Rl) (20.10)

allows one to compute the height of the center of mass.

20.4 MASS DISTRIBUTION AMONG
THE VARIOUS BODIES

In terms of dynamic behavior, vehicles are often modeled as a number of rigid
bodies with different inertial properties. The simplest way to model a vehicle
is to consider the body as a rigid body (sprung mass), to which a further rigid
body is added to model each rigid axle, and two rigid bodies for each axle with
independent suspension. This approach is approximate, since many vehicle el-
ements (suspension linkages, springs, shock absorbers) do not belong to any of
these bodies. Half of the mass of the elements located between two rigid bodies
may be attributed to each one of them, but this is an approximation, although
usually an acceptable one.
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There is no alternative either to computing or experimentally determining
the mass of the various components separately to evaluate the mass of the various
subsystems. For a first approximation evaluation, the center of mass of a rigid
axle can be assumed to lie on the line connecting the centers of the wheels in
the symmetry planes. The center of mass of each independent suspension can
be located at a distance from the symmetry plane equal to half of the track of
the relevant axle. Better estimations can come from a detailed analysis of the
drawings of the suspension.

Once the positions of the centers of mass of the whole vehicle and of the
suspensions (unsprung masses) are known, it is straightforward to locate the
center of mass of the sprung mass.

More detailed models can be obtained from computer codes based on multi-
body modelling. Not only do they allow us to take into account the various parts
constituting the vehicle in much greater detail (each element of the suspension
can be introduced separately, with its mass, moments of inertia and exact kine-
matics), but their compliance can also be introduced using the finite element
method (FEM).

20.5 MOMENTS OF INERTIA

The inertia tensor of a rigid body is:

J =

⎡
⎣ Jx −Jxy −Jxz

−Jxy Jy −Jyz

−Jxz −Jyz Jz

⎤
⎦ (20.11)

where the moments of inertia are:

Jx =
∫

V

(
y2 + z2

)
dm Jy =

∫
V

(
x2 + z2

)
dm Jz =

∫
V

(
x2 + y2

)
dm

(20.12)
and the products of inertia4 are:

Jxy =
∫

V

xydm Jxz =
∫

V

xzdm Jyz =
∫

V

yzdm. (20.13)

If the vehicle has a plane of symmetry that coincides with the xz-plane,
the products of inertia Jxy and Jyz vanish and the inertia tensor of the vehicle
reduces to:

J =

⎡
⎣ Jx 0 −Jxz

0 Jy 0
−Jxz 0 Jz

⎤
⎦ . (20.14)

4Often products of inertia are defined as Jxy = −
∫
V xydm, etc. and signs (−) are not

included in Eq. (20.11).
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The computation of the moments of inertia of the vehicle and of its parts
is a complex operation, but if the design of the various components has been
performed using CAD, the approximate values of the moments of inertia are
among the outputs of the code.

Usually, the moments of inertia of interest are:

• the baricentric roll moment of inertia (about the x-axis) of the sprung mass
JSx

,

• the baricentric pitch moment of inertia (about the y-axis) of the sprung
mass JSy

and

• the baricentric yaw moment of inertia (about the z-axis) of the whole
vehicle Jz.

The first two are obviously referred to the center of mass of the sprung mass,
while the latter is referred to the center of mass of the whole vehicle.

Some empirical formulae for their computation from the mass of the vehi-
cle are often used. These usually yield the radius of gyration ρ instead of the
corresponding moment of inertia:

Ji = mρ2
i , i = x, y, z. (20.15)

A first rough approximation for the yaw radius of gyration is:

ρz =
√

ab. (20.16)

First approximation values of the radii of gyration (in meters) that may be
used for a medium size car are:5

Load condition ρSx
ρSy

ρz

Empty 0,65 1,21 1,20
2 passengers 0,64 1,13 1,15
4 passengers 0,60 1,10 1,14
4 passengers + luggage 0,56 1,13 1,18

Note also that the values for the sprung mass are referred to the total mass
of the vehicle. As a first approximation, inertia products may be neglected.

Remark 20.1 The moments and products of inertia must be known with preci-
sion, since they are important in assessing the performance of the vehicle, both
for its handling and its comfort. It is then important to measure them accurately
once prototypes are built.

The simplest way to measure the moments of inertia of any object is to
suspend it in such a way that it can rotate as a pendulum about an axis that

5J. Reimpell, H. Stoll, The Automotive Chassis, SAE, Warrendale, 1996.
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FIGURE 20.4. Measurement of the moments of inertia. (a): Oscillation on a knife
located on an axis parallel to the baricentric axis. (b): Quadrifilar pendulum to measure
the inertia tensor of a motor vehicle.

is parallel to the baricentric axis about which the moment of inertia must be
measured (Fig. 20.4a). If d is the distance between the center of mass and the
suspension axis, the moment of inertia about the latter is:

J = JG + md2 . (20.17)

The period of oscillation of the pendulum made of the body suspended on
the knife is

T = 2π

√
JG + md2

mgd
. (20.18)

By measuring the period of the small oscillations it is then possible to obtain
the baricentric moment of inertia

JG = m

[
gd

4π2
T 2 − d2

]
. (20.19)

By repeating the measurement three times with the object suspended about
three axes parallel to the x-, y- and z-axes, the three moments of inertia can be
measured.

To measure the products of inertia, the measurements can be repeated mea-
suring the moments of inertia about three axes different from the previous ones.
Since the inertia tensor about the latter is

J′ = RT JR, (20.20)

where R is a known rotation matrix, it is possible to compute the values of the
elements of the unknown inertia tensor J from the three values of J′ computed
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in the new test. The measurements of the moments of inertia are theoretically
simple, but it is not easy to actually perform them, particularly if precision is
required6.

It is possible to use test rigs based, for instance, on the multifilar pendulum
layout (Fig. 20.4b7). The vehicle is suspended from it and the three moments of
inertia can be computed in a single test. The pendulum has three degrees of free-
dom and, once it starts oscillating, the three moments of inertia can be obtained
by analyzing the time history of the oscillations.

6G. Genta, C. Delprete, Some Considerations on the Experimental Determination of the
Moments of Inertia, Meccanica, 29, pp.125-141, 1994.

7G. Mastinu, M. Gobbi, C.M. Miano, The Influence of the Body Inertia Tensor on the
Active Safety and Ride Comfort of Road Vehicles, SAE Paper 2002-01-2058, SAE, Warrendale,
2002.
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AN OVERVIEW ON MOTOR
VEHICLE AERODYNAMICS

The forces and moments the vehicle receives from the surrounding air depend
more on the shape of the body than on the characteristics of the chassis. A
detailed study of motor vehicle aerodynamics is thus beyond the scope of a book
dealing with the automotive chassis.

However, aerodynamic forces and moments have a large influence on the
longitudinal performance of the vehicle, its handling and even its comfort, so it
is not possible to neglect them altogether.

Even if the goal of motor vehicle aerodynamics is often considered to be
essentially the reduction of aerodynamic drag, the scope and the applications of
aerodynamics in motor vehicle technology are much wider.

The following aspects are worth mentioning

• reduction of aerodynamic drag,

• reduction of the side force and the yaw moment, which have an important
influence on stability and handling,

• reduction of aerodynamic noise, an important issue for acoustic comfort,
and

• reduction of dirt deposited on the vehicle and above all on the windows
and lights when driving on wet road, and in particular in mud or snow
conditions. This aspect, important for safety, can be extended to the cre-
ation of spray wakes that can reduce visibility for other vehicles following
or passing the vehicle under study.
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The provisions taken to obtain these goals are often different and sometimes
contradictory. A typical example is the trend toward more streamlined shapes
that allow us to reduce aerodynamic drag, but at the same time have a negative
effect on stability.

Another example is the mistaken assumption that a shape that reduces
aerodynamic drag also has the effect of reducing aerodynamic noise. The former
is mainly influenced by the shape of the rear part of the vehicle, while the latter
is much influenced by the shape of the front and central part, primarily of the
windshield strut (A-pillar). It is then possible that a change in shape aimed at
reducing one of these effects may have no influence, or sometimes even a negative
influence, on the other one.

At any rate, all aerodynamic effects increase sharply with speed, usually with
the square of the speed, and are almost negligible in slow vehicles. Moreover, they
are irrelevant in city driving.

Aerodynamic effects, on the contrary, become important at speeds higher
than 60÷70 km/h and dominate the scene above 120÷140 km/h. Actually these
figures must be considered only as indications, since the relative importance of
aerodynamic effects and those linked with the mass of the vehicle depends on
the ratio between the cross section area and the mass of the vehicle. At about
90÷ 100 km/h, for instance, the aerodynamic forces acting on a large industrial
vehicle are negligible when it travels at full load, while they become important
if it is empty.

Modern motor vehicle aerodynamics is quite different from aeronautic aero-
dynamics, from which it derives, not only for its application fields but above all
for its numerical and experimental instruments and methods. The shapes of the
objects dealt with in aeronautics are dictated mostly by aerodynamics, and the
aerodynamic fields contains few or no zones in which the flow separates from
the body. On the contrary, the shape of motor vehicles is determined mostly by
considerations like the possibility of locating the passengers and the luggage (or
the payload in industrial vehicles), aesthetic considerations imposed by style, or
the need of cooling the engine and other devices like brakes. The blunt shapes
that result from these considerations cause large zones where the flow separates
and a large wake and vortices result.

The presence of the ground and of rotating wheels has a large influence
on the aerodynamic field and makes its study much more difficult than in the
case of aeronautics, where the only interaction is that between the body and the
surrounding air.

One of the few problems that are similar in aeronautical and motor vehicle
aerodynamics is the study of devices like the wings of racing cars, but this is in
any case a specialized field that has little to do with vehicle chassis design, and
it will not be dealt with here in detail.

Traditionally, the study of aerodynamic actions on motor vehicles is primar-
ily performed experimentally, and the wind tunnel is its main tool. The typical
wind tunnel scenario is a sort of paradigm for interpreting aerodynamic phe-
nomena, to the point that usually the body is thought to be stationary and
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the air moving around it, instead of assuming that the body moves through
stationary air.

However, while in aeronautics the two wiewpoints are coincident, in motor
vehicle aerodynamics they would be so only if, in the wind tunnel, the ground
moved together with the air instead of being stationary with respect to the
vehicle. Strong practical complications are encountered when attempting to allow
the ground to move with respect to the vehicle, and allowing the wheels to rotate.
Usually, in wind tunnel testing, the ground does not move, but its motion is
simulated in an approximate way.

Along with wind tunnel tests, it is possible to perform tests in actual condi-
tions, with vehicles suitably instrumented to take measurements of aerodynamic
forces while travelling on the road. Measurements of the pressure and the velocity
of the air at different points are usually taken.

Recently powerful computers able to simulate the aerodynamic field numer-
ically have became available. Numerical aerodynamic simulation is extremely
demanding in terms of computational power and time, but it allows us to pre-
dict, with increasing accuracy, the aerodynamic characteristics of a vehicle before
building a prototype or a full scale model (note that reduced scale models, often
used in aeronautics, are seldom used in vehicular technology).

There is, however, a large difference between aeronautical and vehicular
aerodynamics from this viewpoint as well. Nowadays, numerical aerodynamics is
able to predict very accurately the aerodynamic properties of streamlined bodies,
even if wind tunnel tests are needed to obtain an experimental confirmation.
The possibility of performing extensive virtual experimentation on mathematical
models greatly reduces the number of experimental tests to be performed.

Around blunt bodies, on the other hand, it is very difficult to simulate the
aerodynamic field accurately, given their large detached zones and wake. Above
all, it is difficult to compute where the streamlines separate from the body. The
impact of numerical aerodynamics is much smaller in motor vehicle design than
has been in aeronautics.

As said, the aim of this chapter is not to delve into details on vehicular
aerodynamics, but only to introduce those aspects that influence the design
of the chassis. While the study of the mechanisms that generate aerodynamic
forces and moments influencing the longitudinal and handling performance of
the vehicle will be dealt with in detail, those causing aerodynamic noise or the
deposition of dirt on windows and lights will be overlooked. In particular, those
unstationary phenomena, like the generation of vortices that are very important
in aerodynamic noise, will not be studied.

21.1 AERODYNAMIC FORCES AND MOMENTS

In aeronautics, the aerodynamic force acting on the aircraft is usually decom-
posed in the direction of the axes of a reference frame Gx′′y′′z′′, usually referred
to as the wind axes system, centered in the mass center G, with the x′′-axis
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directed as the velocity of the vehicle with respect to air −Vr and the z′′-axis
contained in the symmetry plane.

The components of the aerodynamic forces in the Gx′′y′′z′′ frame are re-
ferred to as drag D, side force S and lift L. The aerodynamic moment is usually
decomposed along the vehicle-fixed axes Gxyz.

In the case of motor vehicles, both the aerodynamic force and moment are
usually decomposed with reference to the frame xyz: The components of the
aerodynamic force are referred to as longitudinal Fxa

, lateral Fya
and normal

Fza
forces while those of the moment are the rolling Mxa

, pitching Mya
and

yawing Mza
moments.

In the present text, aerodynamic forces will always be referred to frame xyz,
which is centred in the centre of mass of the vehicle. However, in wind tunnel
testing the exact position of the centre of mass is usually unknown and the forces
are referred to a frame which is immediately identified.

Moreover, the position of the centre of mass of the vehicle depends also on
the loading, while aerodynamic forces are often assumed to be independent of it,
although a change of the load of the vehicle can affect its attitude on the road
and hence the value of aerodynamic forces and moments.

The frame often used to express forces and moments for wind tunnel tests
is a frame centred in a point on the symmetry plane and on the ground, located
at mid-wheelbase, with the x′-axis lying on the ground in the plane of symmetry
of the vehicle and the y′-axis lying also on the ground (Fig. 21.1). Since the
resultant air velocity Vr lies in a horizontal plane, angle α is the aerodynamic
angle of attack. From the definition of the x axis, it is a small angle and is often
assumed to be equal to zero.

Remark 21.1 From the definitions here used for the reference frames it follows
that α is positive when the x-axis points downwards.

The forces and moments expressed in the xyz frame can be computed from
those expressed in the x′y′z′ frame (indicated with the symbols F ′

x, F ′
y, F ′

z, M ′
x,

M ′
y and M ′

z) through the relationships

⎧⎨
⎩

Fx = F ′
x cos(α) − F ′

z sin(α)
Fy = F ′

y

Fz = F ′
x sin(α) + F ′

z cos(α)
(21.1)

⎧⎨
⎩

Mx = M ′
x + FyhG

My = M ′
y − FxhG + Fzx

′
G

Mz = M ′
z − Fyx′

G .
(21.2)

Distance x′
G is the coordinate of the centre of mass with reference to the

x′y′z′ frame and is positive if the centre of mass is forward of mid-wheelbase
(a < b).
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FIGURE 21.1. Reference frame often used to express aerodynamic forces in wind tunnel
tests.

The air surrounding a road vehicle exerts on any point P of its surface a
force per unit area

�t = lim
ΔS→0

Δ�F

ΔS
, (21.3)

where ΔS and Δ�F are respectively the area of a small surface surrounding point
P and the force acting on it.

The force per unit area �t can be decomposed into a pressure force acting in
a direction perpendicular to the surface

�tn = p�n , (21.4)

where �n is a unit vector perpendicular to the surface and p is a scalar expressing
the value of the pressure, and a tangential force �tt lying on the plane tangent to
the surface. The latter is due to fluid viscosity.

These force distributions, once integrated on the entire surface, result in an
aerodynamic force, which is usually applied to the centre of mass of the vehicle,
and an aerodynamic moment. By decomposing the force and the moment in
Gxyz frame, it follows:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fxa
=

∫
S

�tt ×�idS +
∫

S

�tn ×�idS

Fya
=

∫
S

�tt ×�jdS +
∫

S

�tn ×�jdS

Fza
=

∫
S

�tt × �kdS +
∫

S

�tn × �kdS

(21.5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Mxa
= −

∫
S

z�tt ×�jdS +
∫

S

y�tt × �kdS −
∫

S

z�tn ×�jdS +
∫

S

y�tn × �kdS

Mya
= −

∫
S

x�tt × �kdS +
∫

S

z�tt ×�idS −
∫

S

x�tn × �kdS +
∫

S

z�tn ×�idS

Mza
= −

∫
S

y�tt ×�idS +
∫

S

x�tt ×�jdS −
∫

S

y�tn ×�idS +
∫

S

x�tn ×�jdS .

(21.6)

At standstill, the only force exerted by air is the aerostatic force, acting in
the vertical direction. It is equal to the weight of the displaced fluid. It reaches
non-negligible values only for very light and large bodies and it is completely
neglected in aerodynamics.

If air were an inviscid fluid, i.e. if its viscosity were nil, no tangential forces
could act on the surface of the body; it can be demonstrated that in this case no
force could be exchanged between the body and the fluid, apart from aerostatic
forces, at any relative speed since the resultant of the pressure distribution always
vanishes. This result, the work of D’Alembert, was formulated in 17441 and again
in 17682. It is since known as the D’Alembert Paradox.

In the case of a fluid with no viscosity, the pressure p and the velocity V
can be linked to each other by the Bernoulli equation

p +
1
2
ρV 2 = constant = p0 +

1
2
ρV 2

0 , (21.7)

where p0 and V0 are the values of the ambient pressure and of the velocity far
enough upstream from the body3. The term

pd =
1
2
ρV 2

0 (21.8)

is the so-called dynamic pressure. The sum

ptot = p0 + pd (21.9)

is the total pressure.

1D’Alembert, Traité de l’équilibre et du moment des fluides pour servir de suite un traité
de dynamique, 1774.

2D’Alembert, Paradoxe proposé aux geometres sur la résistance des fluides, 1768.
3Considering the actual case of the vehicle moving in still air, instead of the wind tunnel

situation with air moving around a stationary object, V0 is the velocity of the body relative to
air −Vr.
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TABLE 21.1. Pressure, temperature, density and kinematic viscosity of air at various
altitudes, from the ICAO standard atmosphere. Only the part of the table related to
altitudes of interest for road vehicles is reported.

z [m] p [kPa] T [K] ρ [kg/m3] ν [m2/s]
-500 107.486 291.25 1.2857 13.97 × 10−6

0 101.325 288.16 1.2257 14.53 × 10−6

500 95.458 284.75 1.1680 15.10 × 10−6

1000 89.875 281.50 1.1123 15.71 × 10−6

1500 84.546 278.25 1.0586 16.36 × 10−6

2000 79.489 275.00 1.0070 17.05 × 10−6

2500 74.656 271.75 0.9573 17.77 × 10−6

3000 70.097 268.50 0.9095 18.53 × 10−6

The values of the ambient pressure, together with those of the density, tem-
perature, and kinematic viscosity at altitudes of interest in road vehicle technol-
ogy, are reported in Table 21.1 from the ICAO standard atmosphere.

The density at temperatures and pressures different from pa and Ta in stan-
dard conditions can be computed as

ρ = ρa

p

pa

Ta

T
, (21.10)

where temperatures are absolute.
The dynamic pressure is extremely low, when compared to the ambient

pressure: consider, for instance, a vehicle moving air at the temperature and
pressure equal to those indicated in Table 21.1 at sea level, at a speed of 30 m/s
(108 km/h). The pressure is about 101 kPa, while the dynamic pressure is 0,55
kPa, corresponding to 0,5% of pressure.

The variations of pressure due to velocity variations are thus quite small with
respect to atmospheric pressure; however, such small pressure changes, acting
on surfaces of some square meters, yield non-negligible, and sometimes large,
aerodynamic forces.

Note that the Bernoulli equation, which holds along any streamline, was
written without the gravitational term, the one linked with aerostatic forces. It
states simply that the total energy is conserved along any streamline.

An example of the D’Alembert Paradox is shown in Fig. 21.2, where the
cross section of a cylinder of infinite length, whose axis is perpendicular to the
direction of the velocity Vr of the fluid, is represented. The streamlines open
around the body and the local velocity of the fluid increases on its sides, leading
to a decrease of pressure as described by the Bernoulli Equation. On the front
of the body there is a point (actually in the case of the cylinder it is a line)
which divides the part of the flow which goes “above” the body from that going
“below” it. At this point, known as the stagnation point, the velocity of the
fluid reduces to zero and the pressure reaches its maximum, equal to the total
pressure.
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FIGURE 21.2. Streamlines and pressure distribution on a circular cylinder whose axis
is perpendicular to the flow. This is a case of a fluid with no viscosity.

Since there is no viscosity, no energy is dissipated, and when the fluid slows
down again, after reaching the maximum velocity at the point where the width of
the body is maximum, the pressure is fully recovered: The pressure distribution
is symmetrical and no net force is exchanged between the fluid and the body.
This holds for any possible shape, provided that the viscosity is exactly nil.

No fluid actually has zero viscosity and the Paradox is not applicable to
any real fluid. Viscosity has a twofold effect: It causes tangential forces creating
so-called friction drag, and it modifies the pressure distribution, whose resultant
is no longer equal to zero. The latter effect, which for fluids with low viscosity is
generally more important than the former, generates the lift, the side force and
the pressure drag. The direct effects of viscosity (i.e. the tangential forces) can
usually be neglected, while the modifications of the aerodynamic field must be
accounted for.

Owing to viscosity, the layer of fluid in immediate contact with the surface
tends to adhere to it, i.e. its relative velocity vanishes, and the body is surrounded
by a zone where there are strong velocity gradients. This zone is usually referred
to as the “boundary layer” (Fig. 21.3) and all viscous effects are concentrated in
it. The viscosity of the fluid outside the boundary layer is usually neglected and
the Bernoulli equation can be used in this region.

Remark 21.2 The thickness of the boundary layer increases as the fluid in it
loses energy owing to viscosity and slows down. If the fluid outside the boundary
layer increases its velocity, a negative pressure gradient along the separation line
between the external flow and the boundary layer is created, and this decrease of
pressure in a way boosts the flow within the boundary layer fighting its tendency
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FIGURE 21.3. Boundary layer: Velocity distribution in direction perpendicular to the
surface. The separation point is also represented.

to slow down. On the contrary, if the outer flow slows down, the pressure gradient
is positive and the airflow in the boundary layer is hampered.

At any rate, at a certain point the flow in the boundary layer can stop and a
zone of stagnant air can form in the vicinity of the body: The flow then separates
from the surface, possibly starting the formation of a wake.

If the velocity distribution outside the boundary layer were known, the pres-
sure distribution at the interface between the boundary layer and the external
fluid could be computed. Provided that the boundary layer is very thin, and
this is the case except where the flow is detached from the surface, the pressure
on the surface of the body can be assumed to be equal to that occurring at
the outer surface of the boundary layer, and then the aerodynamic forces and
moments can be computed by integrating the pressure distribution. While this
can be applied to computing the lift of streamlined objects, for blunt bodies, like
the ones studied by road vehicle aerodynamics, and for drag, few results can be
obtained along these lines.

To generalize the results obtained by experimental testing, performed mainly
in wind tunnels, the aerodynamic force F and moment M are expressed as

F =
1
2
ρVr

2SCf , M =
1
2
ρVr

2SlCm , (21.11)

where forces and moments are assumed to be proportional to the dynamic pres-
sure of the free current

1
2
ρVr

2 ,

to a reference surface S (in the expression of the moment a reference length l is
also present) and to nondimensional coefficients Cf and Cm to be experimentally
determined.

Such coefficients depend on the geometry and position of the body, and on
two non-dimensional parameters, the Reynolds number

Re =
V l

ν
,
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and the Mach number
Ma =

V

Vs
,

where ν is the kinematic viscosity of the fluid (see Table 21.1) and Vs is the
velocity of sound in the fluid.

The former is a parameter indicating the relative importance of the inertial
and viscous effects in determining aerodynamic forces. If its value is low, the
latter are of great importance, while if it is high aerodynamic forces are primarily
due to the inertia of the fluid. In this case (for vehicles, if Re > 3,000,000), the
dependence of the aerodynamic coefficients on the Reynolds number is very low
and can be neglected. This is usually the case for road vehicles, at least for speeds
in excess of 30 ÷ 40 km/h.

If, on the contrary, the Reynolds number is low, aerodynamic forces and
moments are essentially due to viscosity. In this case, their dependence on the
velocity V should be linear rather than quadratic or, to use equations (21.11),
the aerodynamic coefficients should be considered as dependent on the speed,
increasing with decreasing speed.

The Mach number is the ratio between the airspeed and the speed of sound4.
When its value is low, the fluid can be considered as incompressible; aerody-
namic coefficients are then independent of speed. Approaching the speed of
sound (Ma ∼ 1), the compressibility of the fluid can no longer be neglected
and aerodynamic drag increases sharply. It is commonly thought that the Mach
number is irrelevant in automotive aerodynamics, since the speeds road vehicles
may reach, with the exception of some vehicles built to set speed records, lead
to Mach numbers low enough to have practically no influence on aerodynamic
coefficients. Actually this is true for streamlined bodies, for which the influence
of Mach number is negligible for values up to 0, 5÷ 0, 6 (speeds up to 600÷ 700
km/h), while for blunt bodies fluid compressibility starts to play a role at a lower
speed, even for Mach numbers slightly larger than 0,2 (V = 70 m/s = 250 km/h).
As a consequence, the effects of the Mach number start to be felt at speeds that
can be reached by racing cars. It is important to note that, owing to this effect
of the Mach number, it is not possible to perform tests on reduced scale models
by increasing the speed to increase the Reynolds number.

The reference surface S and length l are arbitrary, to the point that in some
cases a surface not existing physically, like a power 2/3 of the displacement for
airships, is used. These references simply express the dependence of aerodynamic
forces on the square of the dimensions of the body and that of the moments on
their cube. It is, however, clear that the numerical values of the coefficients
depend on the choice of S and l, which must be clearly defined. In the case
of road vehicles, the surface is that of the cross section, with some uncertainty
about whether the frontal projected area or that of the maximum cross section
has been used (Fig. 21.4).

4For air at sea level in standard conditions Vs = 330 m/s = 1.225 km/h.
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FIGURE 21.4. Area of the frontal projection of the vehicle as a function of its mass.
a) Defnition of the frontal area; b) definition of the maximum cross-sectional area.

The mentioned SAE recommendation states that the frontal projected area,
which should include the tires and the underbody parts, must be used. The
reference surface is usually determined by using optical methods, by projecting
a light beam on a screen, moving it to follow the outer shape of the vehicle. A
simple but sometimes imprecise way of obtaining its value is

S = ψbh , (21.12)

where the value of coefficient ψ is about 0.81 and b and h are the width and the
height of the vehicle. The area of the frontal area of various cars is reported as
a function of their mass in Fig. 21.4. The points are well aligned on the straight
line

S = 1.18 + 0.00056m , (21.13)

where the surface is measured in m2 and the mass in kg. The surface depends
little on the mass, and its sensitivity can be measured by the derivative

dS

dm
= 0.00056 . (21.14)

The reference length l is usually the wheelbase, but in the expression of
moment Mx the track t is often used.

The aerodynamic coefficients used in motor vehicle aerodynamics are those
of the forces and moments decomposed along the vehicle axis system xyz: The
longitudinal force coefficient Cx, the side force coefficient Cy, the normal force co-
efficient Cz, the rolling moment coefficient CMx

, the pitching moment coefficient
CMy

, the yawing moment coefficient CMz
.
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21.2 AERODYNAMIC FIELD AROUND
A VEHICLE

Consider a saloon car like the one sketched in Fig. 21.5. As usual in aerodynamics,
assume a “wind tunnel” situation, i.e. consider the vehicle as stationary while
the air flows around it.

The stream has a stagnation point at A, where the flow divides below and
above the vehicle; in the vicinity of A the pressure takes the value ptot. In
the vicinity of B, the pressure takes values lower than the total pressure and
even lower than the ambient pressure p0, as the velocity increases, as shown
in Fig. 21.6b, where the pressure distribution is reported in terms of pressure
coefficient

cp =
p − p0
1
2ρV 2

r

= 1 − V 2

V 2
r

. (21.15)

Note that the pressure coefficient is negative if the pressure is lower than
the ambient pressure.

Remark 21.3 As already stated, pressure variations p− p0 are extremely small
when compared to atmospheric pressure; however, their small value must not
lead to the conclusion that aerodynamic forces are small: An overpressure equal
to 0.5% of atmospheric pressure, like the one present at the stagnation point at
100 km/h acting on a surface of 1 m2, yields a force of 500 N.

After point C, located between B and the lower edge of the windshield, the
flow detaches from the surface, to attach again at point D on the windshield.

FIGURE 21.5. Streamlines about a passenger vehicle in the symmetry plane.
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FIGURE 21.6. (a) Separation bubble on the windscreen of a car. (b) Pressure distrib-
ution on the symmetry plane of a saloon car and in the wake.

A separation bubble is formed between points C and D. The pressure in such a
turbulent zone is fairly high, and it is reasonable to locate the intakes for ven-
tilation of the passenger compartment there (Fig. 21.6). The separation bubble
can be reduced by reducing the inclination of the windshield, which can be done
only up to a limit since it may reduce visibility, or by increasing the transversal
curvature of the windshield and of the hood. A curved windshield is effective in
reducing drag but costs and also weighs more than a simple, flat one.

On the roof the pressure is again low, with a distribution that depends on
its shape and curvature. At the end of the roof, the flow must slow down and
the pressure should rise. In these conditions, the flow easily detaches and any
surface irregularity can trigger the formation of the wake.

In Fig. 21.5a, the separation point has been located at the rear edge of the
roof. There are cases in which the flow attaches again to the back of the trunk,
giving way to a second separation bubble (Fig. 21.5b).

In the case of fastback cars with a sufficiently sloping back, the flow can
remain attached up to the end of the body, giving way to a very small wake
(Fig. 21.5c). The two situations are shown in the pictures of Fig. 21.7, obtained
by visualizing the streamlines using smoke in a wind tunnel test.

The streamlines shown in Fig. 21.5 describe the situation occurring in the
plane of symmetry. Outside this plane, the flow is no longer two-dimensional and
tends to surround the vehicle at the sides as well.

This effect is generally beneficial and must be encouraged, as it tends to
reduce all aerodynamic forces, giving a suitable curvature in the transverse di-
rection to all surfaces. As already stated, point C can be moved further back by
allowing the air to flow to the sides of the hood by lowering the fenders and giv-
ing them a curved shape; point D can be lowered by using a curved windshield.
This results in a reduced separation bubble (Fig. 21.6).

The tridimensional flow on the back of the vehicle can cause vortices, as
shown by tests on slanted blocks (Fig. 21.8). If angle α in the figure is lower than a
critical value (about 62◦), the flow separates abruptly, while for higher values the
flow becomes strongly tri-dimensional and the streamlines which flow along the
sides wind up in two large vortices while those flowing on the roof are deflected
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FIGURE 21.7. Streamlines in the symmetry plane about two fastback cars. In (a) the
flow detaches at the end of the roof while in (b) it remains attached up to the end of
the trunk.

α

α < 62�
α < 62�

a) b)

FIGURE 21.8. Flow on the back of slanted blocks.
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FIGURE 21.9. Qualitative pattern of the vortices behind a vehicle.

FIGURE 21.10. Flow below the vehicle. Boundary layer formation.

downwards and follow the tail of the vehicle. The flow in the symmetry plane,
which is of the type shown in Fig. 21.9, is similar to that shown in Fig. 21.5c.

The wake is smaller, but this does not mean that the drag is lower: The
pressure in the vortices is low, as is that on the centre of the tail since the flow is
very fast in that zone: The overall pressure behind the vehicle can be even lower
than that characterizing a large wake due to a small angle α.

The flow under the vehicle can be quite complicated and depends on many
factors like the distance between vehicle and ground and the presence of a fairing
under the body. Wind tunnel simulations can be misleading since in actual use
the ground is stationary with respect to the air, at least if there is no wind, and
not with respect to the vehicle, as occurs in wind tunnels.

In actual use, starting from the stagnation point A the boundary layer
gradually thickens (Fig. 21.10). Outside the boundary layer, the velocity of the
flow is different from that of the free stream, i.e., the flow is no longer at rest
with respect to the ground, and from point G a second boundary layer appears
on the ground as well.
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FIGURE 21.11. Effect of the shape of the bottom of the vehicle on the wake. (a) Bottom
close to the ground and rough; (b) Streamlined bottom, at a greater distance from the
ground.

Depending on the distance between the vehicle and the ground, the two
boundary layers can meet in H or can remain separated. In the first case the
flow is blocked and the air under the vehicle tends to move with it, giving way
to another boundary layer starting from L. Between H and L a vortex may
result. In the second case, the flow between the vehicle and the ground decreases
aerodynamic lift, because of both the decreased size of the wake (Fig. 21.11) and
the lower energy dissipation; if it is fast enough it causes a negative lift. The
flow below the vehicle reduces the drag also, because the pressure in the wake is
increased.

All improvements which facilitate the flow under the vehicle have these
effects: Either the distance between vehicle and ground is increased or the bottom
is given a curved shape, in the longitudinal or transverse direction, or the bottom
is supplied with a smooth fairing covering the mechanical elements that are
usually in the airflow. The last device may reduce the drag up to about 10÷15%,
as shown in Fig. 21.12, but is seldom used in passenger cars as it is more difficult
to reach the mechanical elements, making maintenance more costly.

These considerations cannot be generalized since any change of shape aimed
at modifying the aerodynamic field at one point has an influence on the whole
aerodynamic field, with effects that are difficult to predict.

Two effects can modify the airflow around the vehicle and make it more
complicated: Wheel rotation and the presence of internal flows.

Consider a cylinder rotating and moving in directions consistent with those
of a rolling wheel (Fig. 21.13a). It generates a drag and a lift (the Magnus effect)5

5A cylinder rotating with its axis perpendicular to the stream entrains, owing to viscosity,
a certain quantity of air in rotation. On one side, the rotation velocity adds to the velocity
of the stream; on the opposite side it subtracts. Where the velocity is higher the pressure is
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FIGURE 21.12. Effect of streamlining the bottom of the vehicle on the drag coefficient
for two vehicles, I and II.

FIGURE 21.13. Streamlines, pressures and aerodynamic force acting on a wheel, mod-
elled as a rotating cylinder, far from the ground (a) and in contact with it (b).

lower, with the effect on the other side. This pressure difference produces a force perpendicular
to the axis of the cylinder and to the direction of motion. This effect is usually referred to as
the Magnus effect.
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FIGURE 21.14. Drag coefficient of a rolling wheel. α is the sideslip angle.

which is directed downwards. If the wheel is in contact with the ground, however,
the streamlines are completely changed by the presence of the latter and the lift
becomes positive. The wake is larger and the drag coefficient increases; both the
size of the first and the value of the second depend on the speed (Fig. 21.13b).

There is also an increase in drag owing to the larger wake, whose size depends
also on the speed. The value of coefficient Cx of a rolling wheel, referred to the
area of the cross section of the wheels, is plotted against the speed in Fig. 21.14.

As shown in the figure, the aerodynamic drag of a wheel increases if the
wheel rolls with a sideslip angle measured with reference to the relative velocity
of the air. In the case of the isolated wheel, this means that the drag depends on
the sideslip angle of the wheel, while in normal conditions the flow is not parallel
to the symmetry plane of the wheel even if the sideslip of the latter is zero, since
the flow under the vehicle is deflected sideways. This effect is, in general, larger
for front wheels and causes an increase in their aerodynamic drag. Streamlining
the wheels in such a way to reduce drag has the limitation that the shape of the
hubs must be studied so as to guarantee an appropriate cooling of the brakes.

Since the drag coefficient of a rolling wheel exposed to the airflow is about
0.45, it would seem that there is an advantage in inserting the wheels within the
body only if the drag coefficient of the vehicle is lower than that value. However,
all vehicles except formula racing cars have covered wheels for reasons different
from drag reduction. Uncovered wheels are present in racing cars only when rules
explicitly dictate. In Formula 1 racers, up to 45% of the aerodynamic drag can
be ascribed to the wheels.

A sketch of the streamlines around a partially covered wheel is shown in
Fig. 21.15, together with a plot of coefficients Cx and Cz versus the ratio h/D
between the amount of wheel covered and its diameter. The curves are experi-
mental and, particularly as related to Cz not very reliable owing to the method
used to simulate the presence of the ground, but the results are at least qualita-
tively significant.
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FIGURE 21.15. (a) Flow in the cavity around a covered wheel. (b) Aerodynamic coef-
ficients of the wheel as functions of ratio h/D.

The advantage of covering the wheel, without exceeding a value h/D = 0.5÷
0.7, is clear. The values of Cx are generally very high, particularly if compared
with those of an isolated wheel, and the increase in drag when the wheel is largely
covered can be explained by viscous effects within the fender.

Another reason for the deviation of the aerodynamic field from that shown
in Fig. 21.5 is the presence of internal flows. There are usually two separate
flows inside the vehicle: A cooling flow in the engine compartment, and a flow in
the passenger compartment; other internal flows of lesser importance are those
aimed at cooling mechanical devices such as brakes or the oil radiator, if it is
located separately from the main radiator, etc.

The second flow is of lesser importance: If the intake is set at the base of
the windshield and the outlet is in a zone in the wake, the result can be that
of reducing the drag slightly, as this configuration reduces the pressure in the
separation bubble and increases that in the wake.

A larger amount of air is needed for engine cooling. A good solution would
be to use a radiator of the type common in water-cooled aircraft piston engines,
in which a diffuser slows down the flow that is driven through the heat exchanger
before being accelerated again in a converging duct (Fig. 21.16a). In motor ve-
hicles, a fan allowing cooling with the vehicle stationary must also be provided.
The diffuser should be long enough to allow the flow to be slowed down without
separation (a slope of about 7◦ has been found to be a practical maximum) and
the fan should operate only at speeds lower than those for which the system has
been designed.

In practice, this solution cannot be used, at least on normal vehicles: A
system of this type would be too long to be accommodated in the hood; instead
there is a short diffuser whose opening is too large to allow a good attached flow,
followed by a radiator. The flow then goes directly into the engine compartment
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FIGURE 21.16. (a) Ideal radiator. (b) Actual layout of the cooling system in the
engine compartment. 1) upper air intake; 2) lower air intake; 3) auxiliary fan; 4) air
conditioning radiator; 5) radiator; 6) fan; 7) oil radiator; 8) engine; 9) air outlet.

without further guidance. The internal flow then mixes with the flow passing un-
der the vehicle in a very disordered way. This situation is sketched in Fig. 21.16b.
The complexities needed for obtaining a well guided flow, separated from the
external flow, are considered not worth the added cost and weight and the diffi-
culties they would add to maintenance operations in the engine compartment.

The presence of the internal flow in the engine compartment has a non-
negligible influence on drag, lift, pitching moment and, although to a lesser ex-
tent, yawing moment. It can account for about 13% to 20% of the total drag;
the increase in lift (generally positive, i.e. upwards) is even larger. The effect on
moments is to move forward both lift (pitching moment) and side force (yaw-
ing moment). As will be seen later, both effects are detrimental to the overall
behavior of the vehicle.

Aerodynamic testing should always be performed on models which repro-
duce the inside of the engine compartment as well or, better, on the actual vehi-
cle, with open air intakes. Since the engine temperature affects the internal flow,
aerodynamic testing should be done with the engine at running temperature.

21.3 AERODYNAMIC DRAG

As already stated, aerodynamic drag is the component of the aerodynamic force
acting in the direction of the relative velocity, and thus the force that opposes
the motion of the body in the fluid. If the relative velocity is confined to the
symmetry plane (motion with no sideslip, and no lateral wind) the difference
between drag and force Fx is quite small; this is due to the fact that the angle
between the x-axis and the plane of the road is small, and that the aerodynamic
efficiency, that is, the ratio between lift and drag, of motor vehicles is very low,
if not equal to zero. In the case of road vehicles, the two are sometimes confused
and force Fx is referred to as drag.

Remark 21.4 In many cases, drag is considered positive when directed back-
wards, which is inconsistent with the general conventions on forces.
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Aerodynamic drag can be considered as the sum of three terms: Friction
drag, shape drag and induced drag. Coefficient Cx can be similarly considered
as the sum of the three corresponding terms

Cx = Cxa
+ Cxf

+ Cxi
. (21.16)

While in aeronautics this subdivision is practically important, since the three
terms can be computed separately in the various flight conditions, in the case of
motor vehicles they cannot actually be separated. To consider them one by one is
important only insofar it allows one to understand how the various components
of the drag originate.

21.3.1 Friction drag

Friction drag is the resultant of the tangential forces acting on the surface∫
S

�tt ×�idS .

Since it is practically impossible to measure the friction drag on a body with
complex geometry, reference is usually made to flat plates, where the only drag
present is friction drag. Friction drag coefficient Cf , referring to the “wet” sur-
face, i.e. to the surface exposed to the fluid, is plotted versus the Reynolds num-
ber, computed with reference to the length of the plate, as shown in Fig. 21.17.

The two straight lines (in the logarithmic plot) refer to a laminar and a
turbulent flow in the boundary layer. They are approximated by the empirical
relationships

Cf =
1.328√
Re

, or Cf =
0.074
5
√
Re

, (21.17)

respectively.

FIGURE 21.17. The friction coefficient referred to the wet surface versus the Reynolds
number.
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The flow is laminar if it is free from vorticity and there is no mixing between
adjacent streamlines. The vortices which are present in a turbulent boundary
layer are very small, but cause a mixing and a strong energy transfer within the
layer. If the fluid is free from vorticity when it enters into contact with the plate,
a laminar flow is maintained up to values of the Reynolds number of about
500,000, provided that surface irregularities do not trigger turbulence. If the
Reynolds number is higher, at least a part of the plate experiences a turbulent
flow; the transition is shown in Fig. 21.17, occurring where the local Reynolds
number, computed with the distance from the leading edge, reaches a value of
500,000.

In the case of streamlined bodies, it is expedient to maintain a laminar
boundary layer as long as possible to reduce friction drag. However, in the case
of blunt bodies, it often happens that a laminar boundary layer results in higher
drag than a turbulent one. This is due to the fact that in a laminar layer the fluid
which is in immediate contact with the surface receives less energy from adjacent
layers and tends to slow down more quickly. Particularly in cases where the flow
outside the boundary layer slows down and the pressure subsequently increases,
a thickening of the boundary layer which eventually results in the detachment of
the flow and the formation of a wake takes place. This eventually occurs in the
case of the turbulent layer as well, but the energy exchanges due to fluid mixing
within the boundary layer help to maintain the flow attached to the surface for
a longer distance.

The drag coefficient of a sphere is plotted as a function of the Reynolds
number in Fig. 21.18, together with a sketch of the streamlines for the cases of
laminar and turbulent flow.

The flow around motor vehicles is always turbulent, owing to the presence
of vortices in the air near the ground due to other vehicles and, above all, if
there is wind, to the ground and fixed obstacles. Vehicles actually move in what
can be defined as the boundary layer of the Earth’s surface. Even if it were

FIGURE 21.18. (a) Qualitative sketch of the streamlines around a sphere. (b) Drag
coefficient of a sphere as a function of the Reynolds number.
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expedient to keep the boundary layer laminar, it would be very difficult to do
so. The percentage of the drag due to friction is usually low, on the order of 10%
of the total aerodynamic drag.

21.3.2 Induced drag

Induced drag is that portion of aerodynamic drag that is linked with the gener-
ation of lift. In aeronautics, it plays the same role that rolling resistance plays
in motor vehicle dynamics: It is responsible for the energy that is dissipated to
support the vehicle during motion.

In the case of road vehicles, aerodynamic lift is not needed, and is actually
a nuisance. The induced drag should be reduced to a minimum by reducing
lift. An exception is the negative lift produced by aerodynamic devices aimed
at increasing the normal force holding the vehicle to the ground: In this case,
induced aerodynamic drag adds to increased rolling resistance.

To understand the origin of induced drag, reference can be made to the
theory of high aspect ratio (the ratio between the span and the chord) wings
attributed to Prandtl. This theory can be applied in many cases to the wings
which produce negative lift in racing cars. The lift of a wing is directly linked
with a difference of fluid velocity between the upper and the lower surface of
the wing, which causes a difference of pressure and ultimately a lift force. The
difference of velocity can be thought as a vortex superimposed on the uniform
airflow (Figure 21.19a).

If the wing had an infinite span, all sections would experience a two-
dimensional flow: No induced drag is produced. In the case of an actual finite-
span wing, the vortex cannot vanish at the tips of the wing and its core is simply
deflected backwards, creating a wake of vortices. To understand intuitively why
this vorticity is generated, it must be considered that air under the wing, whose
pressure has increased, tend to move toward the tip, where it goes around the
end of the wing toward the upper surface, where pressure is lower. The vortex
then winds around the tip edge of the wing, a motion that remains even after
the wing has passed (or the stream flows beyond the wing, in the wing tunnel
model, where the wing is stationary and the air flows around it), producing a
trailing vortex.

FIGURE 21.19. Vorticity in a lifting wing. (a) Bound vortex; (b) trailing vortices.
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A bound vortex plus the two trailing vortices at its end constitute a horse-
shoe vortex, like those shown in Fig. 21.19b. Since the vorticity is not constant
along the wing, a set of such vortices is produced and the trailing vortices depart
at different points along the wing. Actually, rather than of a set of vortices, we
should speak of a distribution of vortices.

The energy dissipation needed for the creation of the trailing vortices ex-
plains the presence of the induced drag. Any device which reduces trailing vor-
tices, such as tip plates or modified wing tips, is effective in reducing induced
drag. Trailing vortices are sometimes easily visible at the tips of the wings of
racing cars.

From the theory of high aspect ratio wings it can be deduced that induced
drag is proportional to the square of the lift or, which is equivalent, that the
induced drag coefficient is proportional to the square of the lift coefficient. How-
ever, in the case of low aspect ratio wings and, above all, blunt bodies, this
proportionality no longer holds. The presence of the ground can also modify
the pattern of vortices. It has been suggested in the case of road vehicles that
it is not possible to define an induced drag and that the term vortex drag is
preferable6. Whatever the case, the vortices which are created behind a vehicle
(Fig. 21.9) are linked with the generation of lift, and a reduction of lift always
causes a reduction of the overall aerodynamic drag.

21.3.3 Shape drag

Shape drag is what remains of the drag if the contributions due to friction and
induced drag are removed and, in the case of road vehicles, it is mainly due to
the wake. The pressure in the wake is low and fairly constant and hence shape
drag can be approximately evaluated as the product of the wake pressure by
the projection on yz plane of the area exposed to it: The shape of the part
of the vehicle in the wake has little importance. This statement must not be
misunderstood: The shape of the tail of the vehicle is important to assess where
the wake starts, but once this issue is solved, only the extension of the wake
matters.

Remark 21.5 Any geometrical irregularity can precipitate the detachment of
the flow and the wake formation, particularly if it is located in a zone in which
the flow slows down.

21.3.4 Aerodynamic drag reduction: passenger vehicles

Since the beginning of motor vehicle technology, several attempts aimed at re-
ducing aerodynamic drag have been made. Shapes developed for aircraft and for

6R.T. Jones, Discussion on T. Morel, The effect of base slant on the flow pattern and drag
of three-dimensional bodies with blunt ends, in Aerodynamic drag mechanism of bluff bodies
and vehicles, Plenum Press, New York, 1978.
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FIGURE 21.20. (a) Streamlines around a straight slender body and values of Cx versus
the distance from the ground. (b) Values of Cx versus the distance from the ground for
cambered slender bodies with different values of camber.

airships have been adopted, often in a naive way, as the attempt to streamline
the body was often offset by mechanical parts completely exposed to the wind.

The shape which proved to produce the lowest ratio between aerodynamic
drag and volume was the straight, circular, slender body with a diameter to
length ratio equal to about 0.3. For a Reynolds number of about 107, its drag
coefficient is of 0.05. However, it is difficult to produce a suitable car body from
this specification and it is, moreover, optimal only if the vehicle’s motion takes
place far from the ground. The presence of the latter causes the flow to change
substantially (Fig. 21.20a) and the value of Cx to be far higher, up to values of
about 0.15 at distances from the ground typical of motor vehicles.

If the vehicle’s distance from the ground were zero, the best shape would
be half of a slender body, a consideration which seems to have inspired several
designs of the past. However, the distance of the vehicle from the ground cannot
be zero, and this solution leads to quite high values of the drag.

If the axis of the slender body is curved, a lower resistance to motion near
the ground results (Fig. 21.20b), with an optimum value of the camber ratio a/l
existing for each value of the distance from the ground. The optimum value of
the camber ratio for a nondimensional ground clearance h/D = 0.1 is about 10%.
However, the difficulties in adapting a slender body to a vehicle and housing the
mechanical components and the wheels in it remain.

The results obtained by Lay in 1933 through a series of wind tunnel tests
performed on modular models are still interesting. His basic shapes were a flat
plate perpendicular to the current (he found a value of Cx larger than 1.2), a
slender body (whose Cx was measured at 0.08), a rectangular box (Cx = 0.86),
and a vehicle from his era (Cx = 0.6).

He then discovered that a slight rounding of the corners of the box resulted
in a decrease of Cx to 0.46. By fitting different front and rear parts to the vehicle
model, he saw not only that by shaping both parts suitably could aerodynamic
drag be reduced, but also that the shaping of the rear part is more important
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FIGURE 21.21. Streamlined car bodies following J and K shapes. (a) J-shape; (b)
problems linked to the length of J-shapes and cutting of the tail; (c) K-shape: One of
the drawings from the original patent by Koënig.

than that of the front part. Also, using the shapes tested by Lay, it is necessary
to accept a very long vehicle to obtain low drag.

Ten years earlier, in 1923, Jaray obtained a patent in Germany for a car body
made by a rectangular cambered stub wing with a slender body superimposed
on it (Fig. 21.21a). This approach, named the J-shape, allowed the wheels and
other mechanical components to be housed easily, but the problems related to
the length of the vehicle, if a sufficient height for the passengers in the rear seats
was required, were not solved. The centre line of the body was also quite curved,
resulting in non-negligible lift and induced drag. However, the J-shape can be
easily identified in many vehicles beginning in the 1950s, like the Lancia Stratos,
Citroen DS and many coupé built by Porsche.

In 1937, a new approach was patented almost simultaneously by Kamm
and by Koënig and Fachsenfeld Reinhard. From the observation that to obtain
optimum height in the back of the J-shape without a very long vehicle, a shape
which is prone to produce a large wake is obtained, and that the shape of the
part of the vehicle in the wake has little significance, they suggested that the
long streamlined tail of the J-shape could be truncated, following line KK of
Fig. 21.21b. The result is shown in Fig. 21.21c, from the original patent7.

Truncation does not affect shape drag, if the part cut off was already in
the wake, and likely reduces lift and induced drag. This statement is a rough
approximation, since any change in a part of the vehicle changes the entire aero-
dynamic field, but the use of the K-shape allowed designers to reduce the drag of
many passenger vehicles. Many cars of the 1970s had essentially a K-shape, like

7Brevetto industriale n. 352583 - Carrozzeria per automobili.
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FIGURE 21.22. Experimental values of Cx for passenger vehicles versus the year of
construction.

the Citroen GS and CX, Lancia Beta and Gamma, Alfa Romeo Alfasud, Rover
3 liters and many others.

The aerodynamic evolution of passenger vehicles, in terms of the Cx co-
efficient, is summarized in Fig. 21.22: The three hatched zones refer to plots
obtained by different Authors: Gilhaus and Hoffmann8 refer to cars of different
types, Morelli et al.9 report on the drag of cars with a sound aerodynamic shape,
many of which were built following the J- or K-shape, while the data reported by
Scibor Ryilski10 are related to a larger sample containing cars of all types. There
is no contradiction between them: While the best vehicles showed a constant
progress towards low drag, the availability of more powerful engines and the low
cost of energy caused a decrease in the movement towards better aerodynamics
in the fifties, with an average increase in the drag of cars.

Remark 21.6 Actually, what really matters is not the value of coefficient Cx,
but the value of product SCx: to reduce drag it is possible to search for a low
value of the x-force coefficient or for a shape with low cross sectional area.

Any device aimed at reducing the value of Cx that causes an increase of
the frontal area, like a plate at the rear edge of the roof, is effective only if the
decrease of the former is larger than the increase of the latter.

Some values of both coefficient Cx and of the product SCx, allowing a
more direct comparison, for more modern cars are reported in Table 21.211. By
comparing the values in the table with those reported in Fig. 21.22, the progress
which occurred in the 1980s, mainly linked with the increase of the cost of energy

8A. Gilhaus and R. Hoffmannm, Directional stability, in W.H. Hucho (Ed.), Aerodynamics
of Road Vehicles, SAE, Warrendale, 1998.

9A. Morelli, L. Fioravanti, A. Cogotti, Sulla forma della carrozzeria di minima resistenza
aerodinamica, ATA, Nov. 1976.

10A.J. Scibor Ryilski, Road Vehicle Aerodynamics, Pentech Press, London, 1975.
11H.P. Leicht, Kanal voll , Auto-motor sport, 18/1986.
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TABLE 21.2. Values of Cx. S and product SCx for some European cars.
CXS CX S CXS CX S
[m2] [m2] [m2] [m2]

Lancia Y10 0.57 0.33 1.76 Opel Corsa SR 0.61 0.35 1.73
Fiat Uno 0.62 0.34 1.83 VW Polo 0.65 0.38 1.70
Renault 5 0.67 0.37 1.80 Austin Metro 0.67 0.39 1.73
Peugeot 205 0.68 0.39 1.74 Fiat Panda 0.70 0.41 1.70
Citroen Visa 0.70 0.40 1.75 Ford Fiesta 0.73 0.41 1.76
Renault 4 0.90 0.49 1.83
Opel Kadett GSi 0.60 0.32 1.88 Peugeot 309 0.64 0.34 1.86
VW Golf GL 0.65 0.34 1.89 Mercedes 190 E 0.65 0.34 1.89
Renault 21 0.66 0.34 1.94 Ford Sierra XR 4i 0.67 0.34 1.98
VW Golf GTI 16V 0.67 0.35 1.91 Citroen BX 0.68 0.36 1.91
VW Jetta CL 0.68 0.36 1.89 VW Passat GL 0.70 0.37 1.90
Fiat Ritmo 0.70 0.37 1.88
Opel Omega 0.58 0.28 2.06 Mercedes 200 0.60 0.29 2.07
Audi 100 0.62 0.30 2.05 Renault 25 0.62 0.31 2.03
Ford Scorpio 0.70 0.35 2.02 Fiat Croma 0.70 0.34 2.04
Lancia Thema 0.73 0.36 2.06 Honda Prelude 16V 0.76 0.41 1.84
Alfa 90 0.77 0.40 1.92 Citroen CX 0.78 0.40 1.96
Mitsubishi Galant 0.79 0.40 1.98
Ferrari Testarossa 0.61 0.33 1.85 Mercedes 190 E2.3 0.64 0.33 1.94
Porsche 944 turbo 0.65 0.35 1.89 VW Scirocco 16V 0.68 0.38 1.78
Porsche 911 Carrera 0.68 0.38 1.77 Mitsubishi Starion T 0.69 0.37 1.84
Alfa Romeo GTV 0.71 0.40 1.77 Jaguar XJ-S 0.73 0.40 1.83
Porsche 928 S 0.77 0.39 1.96 Audi Quattro 0.80 0.43 1.86
BMW M 635 CSi 0.80 0.40 2.00

which took place a decade earlier, is clear. It must be noted, at any rate, that
with a few exceptions, the values of Cx are rarely lower than 0.35, with many
cars having a value between 0.35 and 0.45.

The search for a shape of minimum drag for any particular vehicle can be
approached by identifying a number of critical details and optimizing them one by
one. The principle of effects superimposition cannot be applied in aerodynamics;
the drag of a body is not the sum of the drag of all its parts, and any change to
one of them causes a change in the drag of all others. However, it is a common
practice to obtain the drag of a body as the sum of the drag of its parts plus
a further component, referred to as interference drag. This approach has been
successfully used first in aeronautics and then in road vehicle technology.

A method, known as detail optimization is now widely used. It is based on
subsequent detail modifications to achieve drag reductions which can be quite
substantial. The drag coefficient of the base shape is measured and a number
of specific details of the car body are chosen. One of them is modified and the
wind tunnel test is repeated, with modifications continuing until a minimum of
the drag is obtained. The work is then repeated for all the chosen details. This
procedure can be thought as the search for the minimum of a function (drag) of
many variables (the geometrical characteristics of the details), by modifying the
value of each one of the variables one at a time, looking for a local minimum in
a two-dimensional space and then proceeding to search for a local minimum in
a multi-dimensional space. We are not saying that an absolute minimum can be
reached in this way, nor even that a relative minimum can be obtained unless an
iterative procedure is used, but it is certain that a decrease in drag is eventually
obtained.
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FIGURE 21.23. Detail optimization method. Definition of the five details used to op-
timize the shape and to reduce the Cx coefficient. (a) Optimized shape, (b) modified
shape.

FIGURE 21.24. Coefficient Cx as a function of the angle between the rear window of
a given car and the horizontal.

An example is shown in Fig. 21.23, where the base shape and five details are
shown. The thin line gives the initial configuration while the thick one describes
the optimized shape. By operating in the way above, the drag was reduced
by about 21%, while a more substantial reduction of 33% could be achieved
only by introducing modifications which changed to a larger extent the overall
appearance of the car.

The results obtained by changing the inclination of the rear part of a hatch-
back car are shown in Fig. 21.24: If the angle between the rear window and the
horizontal is larger than 35◦ the value of Cx is 0.4. With a low value of the angle
it is possible to reduce the drag, with a coefficient of about 0.34, but there is a
region, at about 28◦ where large vortices produce a substantial increase in drag,
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FIGURE 21.25. Ideal and actual shape for a very low-drag research vehicle, shown in
the wind tunnel.

up to Cx = 0.44. This result confirms the already mentioned results obtained
from slanted rectangular blocks.

The advantage of this procedure is in leaving stylists free to design the
vehicle without inhibiting their creativity, while obtaining a shape with low drag
without drastically changing the aesthetic impact of the car.

Alternatively, it is possible to develop from theoretical considerations ideal
shapes aimed at reducing drag to a minimum, modifying these ideal shapes when
adapting them to motor vehicle use. An example of this procedure is shown in
Fig. 21.25, where both the ideal shape and the car derived from it are rep-
resented12. The ideal shape has been obtained by specifying that the lift and
pitching moment must be zero, the positive pressure gradients must be as low as
possible, the cross section of the body must vary slowly in shape and area, and
its contour must be rounded as much as possible.

The value of Cx of the ideal body in the vicinity of the ground proved to be
as low as 0.049, the same as that of a slender body located at an infinite distance
from the ground. The vehicle obtained from it had a value for Cx of only 0.23,
while maintaining a satisfactory internal space for the occupants, the luggage
and the mechanical components, not unlike a regular saloon car.

As a result of research performed in the eighties in many countries, it is
possible to state that values of coefficient Cx as low as 0.25 can be achieved
without excessive sacrifice to the internal space and general characteristics of
the vehicle. The success of detail optimization procedures allowed designers to
overcome fears, expressed several times in the 1970s, that aerodynamic studies
would cause all cars to look alike, and that the image of individual manufacturers
would be sacrificed to the need for good aerodynamic performance.

It is also clear, however, that the lower the drag coefficient is, the fewer
are the advantages of further reductions in fuel consumption, particularly since

12CNR, Progetto Finalizzzato Energetica, Atti del primo seminario informativo, Torino,
Aprile 1978 and A. Morelli, L. Fioravanti, A. Cogotti, Sulle forme della carrozzeria di minima
resistenza aerodinamica, ATA, Nov. 1976.
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the average use of road vehicles occurs at speeds lower than those at which
aerodynamic drag is the most important form of resistance to motion.

As the actual average speed of driving depends mostly on issues unrelated
to the design of vehicles themselves (road conditions, laws and their enforcement
etc.), at present the search for very low drag is not pushed to extremes, at the
expense of other characteristics, mainly aesthetic, in the design of passenger
vehicles.

21.3.5 Aerodynamic drag reduction: industrial vehicles

Even in the recent past, industrial vehicles have usually been designed with little
concern for their aerodynamic characteristics. The low speed and the high value
of the ratio between the mass and the frontal area renders the power needed to
overcome aerodynamic drag a small fraction of the total power needed for motion.
However, the higher speeds industrial vehicles reach on highways and increased
concern about energy saving have led to many studies aimed at reducing the
drag in this field as well.

In the case of single-body vehicles, such as buses, vans and trucks without
a trailer, the basic shape is essentially a square box. If the edges are blunt, the
value of Cx is in the range 0.82–0.86, mostly owing to the fact that the flow is
widely separated and the wake is very large (Fig. 21.26).

From this figure it is clear that any change of shape allowing flow separation
to be reduced is very beneficial: Simply by rounding the edges slightly, the drag
coefficient can be reduced almost by half, to about 0.45.

With an improved frontal profile, values in the range 0.4÷0.43 may be ob-
tained for buses and vans. It is difficult to lower this value further. Fairings on
the underside may make it possible to lower it by about 0.05, but many other
devices aimed at increasing the pressure in the wake have been tried without
success.

Tests on models have shown even greater reductions of drag: by simple
rounding of the corners with a 150 mm radius, a value as low as Cx = 0, 36 has
been obtained.

FIGURE 21.26. Streamlines around a square box with blunt edges, at a distance from
the ground equal to 0.06 D, where D is the diameter of a circle having the same
cross-sectional area of the body.
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FIGURE 21.27. Values of the coefficient Cx versus ratio d/D for articulated vehicles
with different cab shapes. d is the distance between the cabin and the semitrailer and
D has the same meaning as in the previous figure.

Two flow stagnation points can be present in articulated vehicles, one on
the cab and one on the trailer, with a flow occurring in the space between the
two bodies. The drag depends largely on their distance d, as shown in Fig. 21.27,
referring to articulated trucks. The dashed zone contains experimental points
obtained with differently shaped cabs.

The value of Cx increases from about 0.72 to about 0.93 when the distance
grows from d = 0 to d = 0.6. To reduce drag, the flow between cab and trailer
must be blocked to create a single stagnation point; the simplest way is to put
a vertical flat plate on the roof of the former (the thin line in Fig. 21.27).

The flow is similar to that characterizing the situation with d = 0; there is a
single stagnation point on the tractor and a separation bubble between the two
bodies. A second separation bubble is formed on the roof of the trailer, owing
to the front edge of the latter. Further decrease of drag may be obtained using
shaped deflectors on the roof of the cab.

Vertical flat plates can be put on the roof of the cab (e.g. made by the front
side of the air conditioner box) or the plates may be true, shaped deflectors. At
any rate, their size must be such that the flow reattaches at the front edge of
the trailer (Fig. 21.28c). The planform of the cab must also be designed so that
there is no separation on the sides of the trailer. By using such deflectors it is
possible to reduce Cx below 0.6.

Rounding the edges of the trailer is effective, in that it makes the partitioning
of the deflector on the tractor less critical, avoiding the detaching of the flow if
the deflector is too low. At any rate it is more important designing correctly the
tractor and rounding the edges of the trailer than streamlining the two parts
independently.
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FIGURE 21.28. (a-d) Flow on the front part of an articulated truck with and without
a flat plate (air deflector) on the cab. (e) Reduction of the drag of articulated vehicles;
values obtained on half-size models.

Some results obtained on half scale models are shown in Fig. 21.28e; they
show that with just few modifications, including a deflector, a large reduction is
readily obtained, while further improvements are difficult to achieve and require
a global streamlining of the vehicle. A value of Cx of about 0.5 can thus be
obtained; lower values, down to 0.24 as obtained on a 1/10 scale model, could
be achieved by using a complete fairing of the underside.

The above mentioned values of Cx all referred to vehicles driven with no
aerodynamic sideslip angle. If βa is not zero, the aerodynamic field and its as-
sociated aerodynamic forces and moments are quite different. This is true for
all vehicles, but holds in particular for industrial vehicles, since the lower speed
they usually travel increases the significance of side winds, even those of mod-
erate strength. As an example, a wind perpendicular to the road blowing at
Va = 10 km/h causes an aerodynamic sideslip angle βa = 8◦ in the case of a
vehicle travelling at V = 70 km/h.

A qualitative plot of Cx as a function of βa for a generic industrial vehicle is
shown in Fig. 21.29a. It must be stressed, however, that if sidewind is present, the
sideslip angle β is not zero. The aerodynamic force Fx is then not exactly aligned
with the velocity V , and the power needed for overcoming aerodynamic drag is
FxV cos(β) plus the component of the side force Fy in the direction of velocity
V . Moreover, the rolling resistance of the tires increases due to the sideslip angle
of the wheels.

The aerodynamic drag of articulated vehicles increases strongly with the
aerodynamic sideslip angle βa for angles between 0 and 20◦. This increase is
particularly noticeable for articulated trucks with aerodynamic devices aimed at
preventing airflow between tractor and trailer. When lateral wind is present a
flow of air in transverse direction between the cab and the trailer can be created
and the advantages obtained by using deflectors end up disappearing for values
of βa of about 20◦. Curved deflectors work better from this viewpoint than flat
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FIGURE 21.29. (a) Coefficient Cx versus sideslip angle βa for an articulated truck.
(b) Effects of drag reducing devices on the curve Cx(βa): I no deflector; II flat plate
deflector; III deflector and round front edges of the trailer.

plates, which usually cause an increase of drag at even low values of βa. Curves
Cx(βa) for articulated trucks with different aerodynamic devices are shown in
Fig. 21.29b. As shown, the use of deflectors must be accompanied by the rounding
of the edges of the trailer.

21.4 LIFT AND PITCHING MOMENT

Apart from the drag increase due to induced drag, aerodynamic lift must be
avoided since it reduces the load on the tires and consequently the forces the
vehicle can exert on the ground; moreover, this reduction is strongly dependent
on the speed. In the case of vehicles with high power/weight ratio, it is possible to
use negative aerodynamic lift to enhance power transfer through the road-wheel
contact. The same holds for increasing the cornering forces.

In addition, aerodynamic pitching moment My must be as small as possible,
since it causes strong variations in the forces exerted by the wheels on the road,
that depend on speed. With reference to Fig. 21.30, the pitching moment is
positive when it acts to increase the load on the front wheels. As the aerodynamic
drag is applied to the centre of mass, at a distance hG from the ground, the
longitudinal load transfer on a vehicle with two axles is
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(21.18)

Instead of speaking of lift and pitching moment, the lift is often subdivided
on the two axles and a front axle Fz1 and rear axle Fz2 lift are defined. Similarly,
the lift coefficient Cz is split into two coefficients Cz1 and Cz2 with reference to
the axles. The evolution in time of Cz in passenger cars, split into its components
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FIGURE 21.30. Longitudinal load transfer due to aerodynamic pitching moment and
lift. Forces Fz and ΔFzi are the forces the vehicle receives from the ground; a positive
ΔFz indicates an increase of load.

FIGURE 21.31. Evolution in time of coefficient Cz, split in its components on the front
and rear axles.

on the axles, is summarized in Fig. 21.3113. Lift has remained small and positive
(directed upwards), with a good reduction in recent years, while the average
pitching moment was negative (tending to lower the load on the front axle) up
to the 1940s, to decrease in later years.

Aerodynamic lift and pitching moment depend on the position of the vehi-
cle on the ground, primarily on the aerodynamic angle of attack α, that in the

13A. Gilhaus and R. Hoffmannm, Directional stability, in W.H. Hucho (Ed.), Aerodynamics
of Road Vehicles, SAE, Warrendale, 1998.
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FIGURE 21.32. Pitching moment coefficient CMy as a function of angle θ for three
different vehicles.

following pages is assumed to coincide with the pitch angle θ. Lift can be consid-
ered as varying linearly for small changes of α (or θ), and both Cz and ∂Cz/∂θ
must be measured in the wind tunnel. The same holds for the pitching moment.
A plot of the moment coefficient CMy

versus angle θ for 3 different vehicles is re-
ported in Fig. 21.32; the values of the derivative ∂CMy

/∂θ (indicated as (CMy
),θ)

for small movements about the reference position are also reported. Note that
the moment and its derivative are mostly negative; this is a general rule.

To reduce the lift, and in some cases to make it negative, many current
passenger vehicles are provided with spoilers on the rear part of the body or
on the front bumper. Apart from the obvious consideration that their position
and size must be accurately studied in the wind tunnel since they are useless if
located in the wake or in other zones in which the flow is detached, they must
be placed in such a way as to avoid giving way to pitching moments.

A spoiler usually creates some shape drag, as it increases the size of the
wake, but it can be effective in reducing the total aerodynamic force Fx owing
to reduction of the induced drag (Fig. 21.33).

Since spoilers cause an increase of pressure on the tail of the vehicle, they
usually create a positive pitching moment. This moment must be compensated
by another surface positioned near the stagnation point, usually referred to
as a bumper spoiler, air dam or apron. Its presence is also usually beneficial
on drag.

Strong negative lift forces are obtained in racing cars both by the use of
wings and by a suitable aerodynamic design of the whole body. Usually there
is a rear wing, which may have a multiplane configuration, and a front wing,
integrated with the nose of the vehicle. The airflow in the zone where these
wings are located is strongly influenced by the rotation of the wheels and their
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FIGURE 21.33. Lift reducing devices. Effect of a deck-lid spoiler on the streamlines (a)
and on the values of the lift coefficient (b).

FIGURE 21.34. Forces and moments acting on the wings of a racing car. Interference
between wings and rotating wheels.

actual angle of attack, i.e. the angle between the surface and the direction of the
impinging current may be quite different from the geometrical angle of attack
(Fig. 21.34). Each of the wings produces a negative lift, a drag, usually quite
strong, and a pitching moment. These must combine in such a way that the
total pitching moment acting on the car is as small as possible.

The entire body of a racing car can be designed to produce negative lift; in
fact if the pressure under the vehicle is lower than atmospheric pressure, strong
downwards forces may be exerted on the underside. Many racers were based on
this concept, with the whole vehicle body designed as a sort of upside-down wing.
Suitable side walls, almost reaching the ground, channelled air below the vehicle,
producing an area of low pressure and then negative lift. Since aerodynamic
devices have a strong impact on safety, racing regulations deal with them in
detail. Since 1983, exploiting ground effect it is no longer allowed and the bottom
of the car must be flat. Since regulations change often, it is impossible to give
general rules on the devices used on racers to produce negative lift.
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21.5 SIDE FORCE AND ROLL AND YAW
MOMENTS

If the vehicle has a symmetry plane and is in a symmetrical position with respect
to the airflow, i.e. if the roll and the aerodynamic sideslip angles are equal to zero,
the side force Fy, the rolling moment Mx and the yawing moment Mz vanish. In
general, what matters is their rate of change with angle βa and, sometimes, roll
angle φ. In the case of racing cars with uncovered wheels, these forces can also
be produced by offset steering wheels and it is important to study their variation
with the steering angle δ.

For small variations of the mentioned parameters about zero, coefficients
Cy, CMx

and CMz
can be approximated by linear functions and their derivatives

(Cy),βa
, (CMx

),βa
, etc. can be considered constant.

Some typical curves Cy(βa) are reported in Fig. 21.35a. The slope of the
curve in the origin is –2.2 rad−1 for a typical American saloon car and –2.85
rad−1 for a sport car. For a first approximation evaluation of the slope (Cy),βa

(in rad−1), the following formula has been suggested

(Cy),βa
=

lateral area
front area

(
0.005 + 0.0019nf

)
, (21.19)

where nf is a numerical factor which must be obtained from experimental results
on vehicles similar to the one under study. As already stated, (Cy),δa

is usually
small, except for racing cars. On some Formula 1 racers a value of 1.37 rad−1

has been recorded14.
Even more important than the side force, the aerodynamic yawing moment

Mz plays a key role in the dynamics of high speed driving. The evolution of
coefficient CMz in passenger cars is summarized in Fig. 21.3615.

FIGURE 21.35. Coefficient Cy versus angle βa. (a) Typical values for vehicles of dif-
ferent types; (b) dependence on the ratio width/height of the vehicle.

14A.J. Scibor Rylski, Road Vehicle Aerodynamics, Pentech Press, London, 1975.
15A. Gilhaus and R. Hoffmannm, Directional stability, in W.H. Hucho (Ed.), Aerodynamics

of Road Vehicles, SAE, Warrendale, 1998.
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FIGURE 21.36. Evolution in time of coefficient CMz. Values for an aerodynamic sideslip
angle βa = 20◦.

FIGURE 21.37. (a) Typical laws CMz (βa) for a well streamlined car (A) and a car with
a less careful aerodynamic design (B). (b): Rolling moment coefficient CMx versus βa

for a typical saloon car.

Remark 21.7 A reduction of aerodynamic drag, in particular if low drag is
obtained even at high values of the sideslip angle, is usually detrimental for the
lateral force and above all the yawing moment.

Some typical laws CMz
(βa) are reported in Fig. 21.37a: Usually the moment

is negative for a positive sideslip angle, which amounts to saying that the side
force is applied in a forward position with respect to the centre of mass. This
arrangement, which occurs very often, is destabilizing at high speed; the value of
CMz

may be large enough to cause force Fy to be applied in front of the vehicle.
A nonlinear expression for coefficient CMz

is

CMz
= −

[
K − sin2(βa)

]
tan(βa) , (21.20)
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TABLE 21.3. Changes of the aerodynamic coefficients due to objects carried on the
roof of a saloon car. Coefficients referred to the front surface of the base car.

Cx Cz1 Cz2 Cy CMz CMy CMx

β = 0 β = 20◦

Car 0.34 0.09 0.19 0.66 0.17 0.13 0.12
Roof rack 0.38 0.10 0.12 0.74 0.16 0.16 0.13
Ski 0.46 0.08 0.13 0.76 0.15 0.15 0.15
Surf board 0.47 0.10 0.13 0.77 0.16 0.16 0.17
Box 0.46 0.10 0.15 0.92 0.15 0.23 0.23
Boat 0.55 0.24 −0.03 1.12 0.17 0.37 0.30
Bycycle 0.55 0.19 0.03 1.00 0.12 0.32 0.38

where constant K, whose obvious meaning is the value of (CMz
),βa

in the linear
part of the plot, must be obtained from vehicles similar to the one under study.
MIRA16 suggests for (CMz

),βa
the expression

(CMz
),βa

= − 1
100

[
lateral area
front area

(0.208 + 0.0655nf − 0.00508n2
f )
]

, (21.21)

where nf must again be obtained from experimental data.
For (CMz

),δ the same considerations seen for (Cy),δ hold; an order of mag-
nitude for Formula 1 racers is a value of 0.46 rad−1.

A plot of the aerodynamic rolling moment coefficient versus the sideslip
angle for a typical saloon car is shown in Fig. 21.37b. From the graph a value of
the derivative (CMx

),βa
for the linear part of 1.05 rad−1 can be obtained.

The presence of external loads on the roof of a car deeply changes aerody-
namic performance. Obviously it increases drag, but it also decreases lift, above
all at the rear axle; in addition, it increases pitching moments and increases sen-
sitivity to side wind. The aerodynamic coefficients of a saloon car with different
roof loads are reported as an example in Table 21.3.

21.6 EXPERIMENTAL STUDY
OF AERODYNAMIC FORCES

The traditional tool for the study of aerodynamic forces and moments is the wind
tunnel. Modern wind tunnels used for road vehicle aerodynamics are specialized
devices, quite different from those used in aeronautics. Wind tunnel tests of cars
are almost always performed on full-size vehicles, since it is very difficult to
simulate with the required precision internal flows on reduced scale models.

Wind tunnels for vehicular use are divided into aerodynamic and climatic
tunnels.

16R.G.S. White, A rating method for assessing vehicle aerodynamics side force and yawing
moment coefficients, MIRA Rep. n. 1, 1970.
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The first of these are designed to simulate the aerodynamic field for the
measurement of aerodynamic forces and moments, of pressure distribution, etc.
and their main requirement is an accurate simulation of the aerodynamic field
surrounding the moving vehicle.

Climatic tunnels are used to simulate motion in various climatic conditions,
by controlling the temperature of the air and often its humidity. Provisions for
producing rain, snow, various sun conditions, etc. are often included. Usually it
is possible to run the engine and brake the driving wheels to study, in a realistic
way, the temperature conditions in the engine compartment and the working
of the cooling and air conditioning systems. The simulation of the aerodynamic
field may be less accurate.

Sometimes the two functions are be combined in a single aerodynamic and
climatic tunnel, but the convenience of building a single plant for the two tasks
instead of two different tunnels must be assessed in each case, keeping in mind
above all the compatibility of the balance that measures aerodynamic forces and
moments with the rollers that brake the driving wheels.

Climatic tunnels allow the vehicle to be tested in extreme conditions without
the need for moving instrumentation and personnel to distant, uncomfortable
places, or waiting for extreme climatic conditions to occur in a given place.

The main tests that can be performed in aerodynamic tunnels are:

• Measurement of aerodynamic forces and moments. The three components
of both force and moment are measured using a six-component balance.

• Visualization of the airflow around and inside the vehicle and measure-
ment of the pressure at given points of the surface or in other points of
the aerodynamic field. Other measurements aimed at understanding the
aerodynamic field.

• Measurement of aerodynamic noise, possibly when other sources of noise
(engine, transmission, etc.) are present.

Climatic tunnels allow tests to be performed on the behavior of the body
(waterproofing, accumulation of dirt, ice formation, weathering, etc.) and of me-
chanical parts (cooling of engine, starting, air conditioning, operation of the
electric devices, etc.) in various climates. Climatic tunnels must be large enough
to allow full scale vehicles to be tested, and they must have rollers to brake
the wheels and simulate inertias to properly simulate road loads on the driving
wheels. The latter device makes it difficult to build tunnels that include a balance
for the measurement of forces and moments.

Aerodynamic tunnels for motor vehicles also have a similar size, for as we
have seen, the use of models in motor vehicle aerodynamics leads to much less
accurate results.

Wind tunnels may be of the open or closed circuit type. While in the former
the fan must supply all the kinetic energy of the stream, in closed circuit tunnels
some of the kinetic energy of the air that flows around the vehicle is recovered,
and the motor needs to supply to the flow only an energy equal to the losses.
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The efficiency, defined as the ratio between the power of the airstream and
the motor power

η =
1
2ρV 3A

P
, (21.22)

of closed circuit tunnels is higher than that of open circuit ones, and is often
higher than one.

Open circuit tunnels are simpler, smaller and cheaper but are energetically
less efficient. A cost trade-off for the two types of plant must be performed in
each case.

While in the aeronautical field most wind tunnels are of the closed circuit
type, modern plants for vehicular use are mostly open, perhaps with air recir-
culation within the building to avoid the need of filtering large quantities of air
and to reduce noise pollution to the environment. Recirculation can also increase
energy efficiency.

To perform aerodynamic tests on vehicles, high airspeeds are not needed,
since a speed of about 10 m/s is high enough to reach values of the Reynolds
number of about 2 or 3 million. Tests are generally performed at a speed of 20
or 30 m/s, creating strong enough aerodynamic forces to allow easy and precise
measurements.

Climatic tunnels must reach higher speeds, close to the maximum speed of
the vehicle. Since the test chamber of wind tunnels for road vehicles has a sec-
tional area of about 10÷30 m2, the motor must have a power of several hundred
or thousand kW. In climatic closed circuit (or open circuit with recirculation
of air) tunnels, the power of the refrigerators must be higher than that of the
motors, at least if low temperature tests at top speed must be performed.

The type, shape and size of the test chamber is of primary importance in
aerodynamic wind tunnels. The aerodynamic field around the test object must
simulate as accurately as possible that occurring in free air, and this is easier if
the test chamber is large, or rather if the value of the ratio between the area of
the air jet and the area of the cross section of the test object is high.

On the other hand, it is clear that the smaller the size of the jet, the lower
the power required, as well as the size and cost of the whole plant. The shape
of the cross section of the test chamber must be accurately chosen to obtain the
required precision with as small a jet as possible. This consideration is, however,
mitigated by the fact that a test chamber with rounded walls is much more costly
than a rectangular one, so that a rectangular jet is often used, even if by doing
so a larger wind tunnel, with greater power requirements, is needed.

The designer of a wind tunnel must choose between an open or closed test
chamber. Closed test chambers, like the ones used in most aeronautical wind
tunnels, have lower losses but usually require larger jet areas to obtain the same
precision in the simulation of the aerodynamic field. Taking both factors into
account, closed test chambers require greater power, at least in automotive wind
tunnels. An alternative is the use of closed test chambers with porous walls, that
is walls allowing a certain quantity of air to be extracted from the flow, with
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FIGURE 21.38. Plans of six wind tunnels for full-scale testing of road vehicles.
(a)Volkwagen, Wolfsburg, Germany; (b) Ford, Detroit, USA; (c) F.K.F.S., Stuttgard,
Germany; (d) Pininfarina, Torino, Italy; (e) M.I.R.A., Lindley Nuneaton, G.B., (f)
Nissan, Oppama Yokosuka, Japan.

consequent reduction in the thickness of the boundary layer. Another possibility
is the use of adaptive test chambers, in which a number of actuators allow the
shape of the test chamber to be changed so that the streamlines at a certain
distance from the vehicle are similar to those occurring in a free flow.

Sketches of six of the most important vehicular wind tunnels are plotted
in Fig. 21.38. Three of them have a closed circuit and three are open, two with
air recirculation. The cross section of the Pininfarina wind tunnel is shown in
Fig. 21.39, as an example of a modern climatic aerodynamic tunnel with open
circuit and air recirculation and open test chamber.

Peculiar difficulties encountered in wind tunnel testing of vehicles are linked
with the presence of the ground. To simulate the motion of the ground with
respect to the vehicle, a sort of carpet moving at the speed of the air should be
used, with the wheels rolling on it. This approach has many drawbacks, particu-
larly in terms of wheel rotation. If the vehicle is kept at a small distance from the
ground and the wheels are moved by motors inside the vehicle or model, a flow
of air between the wheels and the ground would result and the resulting negative
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FIGURE 21.39. Schematic cross-section of the Pininfarina wind tunnel. 1) test chamber;
2) intake cone; 3) turbulence generators; 4) outlet cone; 5) power conditioning units;
6) motor; 7) propeller shaft; 8) propeller; 9) nets; 10) six-component force transducer;
11) vehicle under test; 12) building.

lift would affect the measurement of aerodynamic actions. If, on the contrary,
the wheels are actually in contact with the ground, they would exchange forces
with the carpet, affecting again the measurement of forces and moments, unless
the whole system, carpet included, is on the balance measuring the forces. In
that case, the forces between wheels and carpet are internal forces and are not
measured.

Alternatively, it is possible to use a narrow, moving carpet located inside
the wheels, which are supported on the fixed floor (hence rotation of the wheels
is not simulated) or on rollers. In whatever way the motion of the ground is
simulated, the problem of the boundary layer on the ground remains. As shown
in Fig. 21.40a, if the ground does not move with respect to the vehicle, the latter
is partially in the boundary layer of the ground.

The simplest way to simulate the presence of the ground is to use a second
vehicle located in a mirror position with respect to the ground that physically
does not exist (Fig. 21.40b). This approach is difficult to apply in full size testing,
since the two vehicles must be suspended in a way that does not disturb the
aerodynamic field, and the cross section of the jet is doubled. It is much easier
to apply it in tests on models.

The approaches shown in Fig. 21.40c, d, g, h, i are based on aspiration, or
blowing the boundary layer so that the velocity profile of the air close to the
ground is similar to that occurring when the vehicle moves with respect to it. In
Fig. 21.40e, f the vehicle is at a distance from the floor, on a surface (that does
not move) simulating the ground, or on nothing. In the latter case, the wheels
are in a different situation from the actual one. In Fig. 21.40l a small deflector
deviates the air stream to the sides, to reduce the boundary layer of the ground.

In Fig. 21.40m, n, o, three ways to allow the rotation of the wheels are shown.
One large roller, two small rollers or a belt supported by three rollers allow the
wheels to rotate. They must be located on the balance, so that the forces they
exchange with the vehicle are not measured along with the aerodynamic forces.
An alternative is to substitute soft elements, similar to brushes, for the ground
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FIGURE 21.40. Simulation of the moving ground (a-l) and rotating wheels (m-o) in
wind tunnel testing.

under the wheels, allowing them to rotate but blocking the air flow beneath them
and producing no large forces that may affect measurements.

Another problem is that of air turbulence. Aeronautic wind tunnels are
usually designed to have the lowest possible turbulence, while the air vehicles
meet as they move, particularly on windy days, is more or less turbulent. Nets
or other devices to increase air turbulence are therefore used in automotive wind
tunnels.

Automotive aerodynamics is based on full scale tests, as we have seen; how-
ever, tests on reduced scale models are also used, especially for industrial vehicles
or in the early development stages of cars. The main advantage of tests on mod-
els is their reduced cost, both in the construction and modifying of models and
the use of small size tunnels. Nor is the cost reduction due to the reduced time
needed to prepare and perform tests negligible. The disadvantages of models are
linked to their limited geometric similitude and to the difficulty of obtaining a
good dynamic similitude. Both these problems increase when model sizes are
reduced.

In 1/2 or 1/3 scale models it is possible to reproduce tiny details (to study in-
ternal flows, internal details of the engine compartment must also be reproduced),
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even if this causes an increase in the cost of the models. It is difficult to maintain
detailed geometrical similarity if the scale is smaller.

To achieve dynamic similarity, the Reynolds number must be the same as
in the actual vehicle, and the simplest method is to operate at a correspondingly
increased speed. Again, this is possible in tests at 1/2 or 1/3 scale, while for
models in smaller scale the required speed may be too high, with a correspond-
ingly high Mach number, that may lead to erroneous values for the aerodynamic
coefficients.

While in aeronautic closed circuit tunnels it is possible to operate at a pres-
sure higher than atmospheric pressure (by increasing the pressure the kinematic
viscosity decreases and the Reynolds number increases), open circuit tunnels
must operate at atmospheric pressure and thus cannot compensate for the small
scale of the model.

In spite of all the above problems, wind tunnel tests, particularly if per-
formed on full scale vehicles with simulation of internal flows, remain the best
way to measure aerodynamic forces and moments acting on road vehicles.

For the measurement of drag alone, it is possible to perform road tests in
which the vehicle is allowed to coast down from various speeds on level road:
From the deceleration law the total drag acting on the vehicle is computed. The
main drawback of these tests is that it is impossible to separate the contribution
of drag due to aerodynamics from that due to rolling resistance and all other
forms of drag caused by the mechanical elements operating during the test.
If rolling resistance were independent from the speed and Cx were constant,
function dV/dt would be of the type:

dV

dt
=

(
−f0mg − 1

2
ρSCxV 2

)
1

mat
, (21.23)

and hence it would be enough to approximate the measured law dV/dt with a
parabola and to compute Cx from the coefficient of the quadratic term.

The actual rolling resistance is of the type

Fr = −mg(f0 + KV 2) ,

and both forms of drag are included in the quadratic term. Only using experi-
mental data on rolling resistance in operating conditions is it possible to interpret
coast-down tests correctly. It is possible to obtain realistic values of the aerody-
namic drag, and hence of Cx, if tests of the type of those shown in Fig. 2.75 are
performed on the whole vehicle.

Even if the aerodynamic field cannot achieve the correct configuration char-
acterizing the steady state conditions at any speed during a cost down test, these
tests are usually performed to compare the values of Cx obtained in the wind
tunnel with those obtained in close to actual operating conditions, although the
latter may be approximated,.
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21.7 NUMERICAL AERODYNAMICS

In the last thirty years, numerical methods based on various discretization tech-
niques applied to the Navier-Stokes equations were developed. The diffusion of
such methods, usually referred to as numerical or computational aerodynamics,
has been made possible by the availability of computers with increasing power
and by the introduction of new computational techniques.

While in aeronautics computational aerodynamics has reached a point where
it is possible to compute in a precise and reliable way the aerodynamic field and
forces acting on aircraft (even if the validation of the results with experimental
tests in the wind tunnel are still needed), in road vehicle aerodynamics the
possibility of using computational aerodynamics to substitute at least partially
for wind tunnel testing remains controversial, and we seem to be still far from
achieving this goal.

This difference is linked with the difficulty of predicting numerically where
the flow detaches from the body: computational aerodynamics yields very good
results in case of attached flows, but when large wakes or separation bubbles are
present the computation becomes more difficult and the results less reliable. Nu-
merical methods may, on the contrary, be used without problems in automotive
aerodynamics if the location where the flow detaches is known.

Numerical aerodynamics is based mainly on the discretization of the aerody-
namic field, and on the use of a simplified form of the Navier-Stokes equations.
The simplest approach is the use of the boundary elements method, which in
aerodynamics is often referred to as the panels method. Only the surface of the
body needs to be discretized (Fig. 21.41a). This is a linearized method, and can
be used on an attached inviscid flow, although it may be applied also to zones
where the separation zone is known and described geometrically with high pre-
cision. It is a technique widely used in aeronautics, but in the automotive case
it requires the use of experimental techniques to define the zones where the flow
separates.

The methods based on the discretization of the whole aerodynamic field
up to a certain distance from the vehicle (finite differences method, finite ele-
ments method (FEM, Fig. 21.41b)) allow nonlinear forms of the Navier-Stokes
equations to be discretized as well, and the zone where the flow detaches to be
computed through iterative techniques. Combined approaches are also possible,
to combine the advantages of the various methods.

An example of the computation of the pressure distribution, accurately ob-
tained using the finite volumes methods, is shown in Fig. 21.4217. To obtain such
a good result, the aerodynamic field was subdivided into more than 5 million
cells.

17H. Wustenberg, B. Huppertz, reported in S.R. Ahmed, Computational Fluid Dynamics,
in W.H. Hucho (Ed.), Aerodynamics of Road Vehicles, SAE, Warrendale, 1998.
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FIGURE 21.41. Discretization of the surface of a car to compute the aerodynamic field
using the panels method (a) and of the whole aerodynamic field using the finite element
approach (b).

FIGURE 21.42. Pressure distribution in the symmetry plane computed using the finite
volumes method.
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The hopes that numerical aerodynamics raised must be at least partly down-
sized, even if it is becoming (or better, may become in the future) a powerful
tool. It allows the aerodynamic behavior of the vehicle to be studied with a
reduced number of wind tunnel tests, simultaneously increasing the number of
configurations studied and helping in the interpretation of the experimental re-
sults. However, it is not certain that it my become, in the foreseeable future, an
alternative to experimental testing.



22
PRIME MOVERS FOR MOTOR
VEHICLES

The motion of all vehicles requires the expenditure of a certain quantity of me-
chanical energy, and in motor vehicles the system that supplies such energy (in
most cases an internal combustion engine) is on board. The lack of an adequate
prime mover is the main reason that mechanical vehicles could be built only
at the end of the industrial revolution, and enter mass production only in the
Twentieth Century, in spite of attempts dating back to ancient times.

For a mechanical vehicle to be built, a prime mover able to move not only
itself, but the vehicle structure and payload as well, was needed. Remembering
that the power needed to move the mass m at the speed V on a level surface
with coefficient of friction (sliding or rolling) f is equal to P = mgfV , it is easy
to conclude that the minimum value of the power/mass ratio of a prime mover
able to move itself is

P

m
=

gfV

ηα
, (22.1)

where α is the ratio between the mass of the engine and the total mass of the
vehicle and η is the total efficiency of the mechanism which transfers the power
and propels the vehicle.

Prime movers with an adequate power/mass ratio and transmission devices
with a power rating and an efficiency high enough to allow the motion of the
vehicle were not practical until the Nineteenth Century.

The engine must obtain the energy required for motion from an energy
source that is usually on board the vehicle. Rail vehicles often receive such energy
from outside, but the only road vehicles in which this occurs are trolleybusses.

In most cases, the energy is stored as the chemical energy of a fuel, but
it can be stored in the form of electrochemical energy (electrical batteries) or,

G. Genta, L. Morello, The Automotive Chassis, Volume 2: System Design, 165

Mechanical Engineering Series,
c© Springer Science+Business Media B.V. 2009



166 22. PRIME MOVERS FOR MOTOR VEHICLES

TABLE 22.1. Onboard energy storage. Energy density e/m, power density P/m and
general characteristics (data for electrochemical energy refer to lead-acid batteries).

Energy stored Chemical Electrochemical Elastic Kinetic

e/m [Wh/kg] 10,000 – 12,000 10 – 40 2 – 10 6 – 20
P/m [W/kg] Engine dependent 10 – 100 High Very high

Efficiency 0.2 – 0.3 0.6 – 0.85 0.7 – 0.9 0.7 – 0.95

Reversibility None Possible
Pollution In the site of In the site of generation

utilization

Dependence on Almost complete The primary source can be different

liquid hydrocarbons

even if few attempts in this direction have been made, and even fewer vehicles
of this type have a practical use, as kinetic energy (flywheels) or elastic energy
(springs).

These forms of energy storage are compared in Table 22.1.
When two or more different types of energy are stored or supplied to a vehicle

that can work either with energy supplied from the outside or with energy stored
on board, and if the two modes of operation are used independently, the vehicle
is said to be bimodal. A trolleybus with batteries that allow it to go on a part of
its route where there is no power distribution is an example of a bimodal vehicle.

Vehicles with two or more methods of energy storage, in which one is used
not only to supply energy but also to store energy coming from one of the other
sources, are said to be hybrid . An example is a bus with an internal combustion
engine and batteries, in which the electric energy is also used to transform the
energy from the engine with greater efficiency and to recover braking energy.

It is also possible to have a bimodal hybrid vehicle if, in the previous exam-
ple, the energy to charge the batteries is supplied not only by the thermal engine
but also by the mains.

In vehicles there are huge quantities of energy that may be recovered. The-
oretically, all energy not dissipated (by aerodynamic drag and rolling resistance,
losses in the transmission and energy conversion) can be recovered.

If the kinetic energy or the gravitational potential energy of the vehicle is
recovered when slowing down or travelling downhill, regenerative braking occurs.

When the only form of energy storage on board is chemical energy, regen-
erative braking is not possible, while it may be implemented in the other cases
of Table 22.1. Energy recovery can, however, be only partial, not only due to
the intrinsic losses of all energy transformations, but also because of the peculiar
characteristics of braking.

The power involved in braking is hardly manageable by the device that has
to convert the energy taken from the vehicle into usable energy, except in the
case of slowing down with limited deceleration. Usually, to allow regenerative
braking, there must be two braking systems, with the traction motors (in the
case of electric vehicles) providing regenerative braking when slowing down or
travelling downhill, while a conventional braking system performs, in a non-
regenerative way, emergency or sudden decelerations



22.1 Vehicular engines 167

22.1 VEHICULAR ENGINES

The storage of energy in a liquid, less frequently gaseous, form of fuel has so
many advantages that this form of energy storage has supplanted all others
since the beginning of the Twentieth Century. The advantages of easy resupply
(recharging) and above all the very high energy density are overwhelming.

The chemical energy of the fuel (gasoline, diesel fuel, but also liquefied pe-
troleum gas (LPG), methane, alcohol, methylic or ethylic, etc.) is converted into
mechanical energy by a thermal engine. In spite of the low conversion efficiency
that characterizes all thermal engines, the actually available energy density is
about 30 ÷ 50 times greater than that of other energy storage devices. The
power density is also very high.

The first self-propelled road vehicles were built at the end of the Eighteenth
and above all at the beginning of the Nineteenth Century owing to the develop-
ment of thermal engines, in this case reciprocating steam engines. However, while
steam engines were adequate for ships and railway engines, their power/weight
ratio was too low for road vehicles. This issue, together with other technical and
non-technical factors, made steam coaches a commercial failure.

Only at the end of the Nineteenth Century did the development of recipro-
cating internal combustion engines allow the diffusion of motor vehicles.

As road vehicles began to spread, three competing types of engine were
available: steam engines, that in the interim had undergone drastic improve-
ments to become adapted to lightweight vehicles, the new internal combustion
engines, and DC electric motors combined with recently developed lead acid ac-
cumulators. For a time it looked as though the electric motor would become the
most common alternative, owing to its reliability, cleanliness, quietness and ease
of control. The various types of engine were balanced in performance, as shown
by the fact that the first car able to overcome the 100 km/h barrier in 1898 was
an electric vehicle.

However, then as today, the main drawback of the electric vehicle, its un-
satisfactory range, prevented its diffusion.

The reciprocating internal combustion engine become the main source of
power for all road vehicles, and has remained so since the first decades of the
Twentiethth Century.

In the 1960s, after the great success of turbojet and turboprop engines in
aeronautics, which would quickly almost completely replace reciprocating engines
in aircraft and helicopters, several attempts to introduce gas turbines in motor
vehicles were made. They were unsuccessful, primarily because of the strong fuel
consumption at idle.

At the same time, attempts to reintroduce the steam engine were also made,
primarily for reducing pollution and for the scarcity, then more supposed than ac-
tual, of fuels suitable for reciprocating engines. Even if steam engines were much
different from those of the previous century, the results were not satisfactory.

A further attempt to innovate, although less radical, was the introduction
of rotary internal combustion engines. Some vehicles with this innovative engine
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were mass produced and had a limited commercial success, but this attempt was
likewise another failure.

It is likely that the greatest advantage of the reciprocating automotive engine
is a century of uninterrupted development, leading to performance, low cost and
reliability that could not be imagined one century ago.

Practically, every attempt to substitute a different propulsion device to solve
one of its many problems was answered with industry innovations that solved,
in an equally (or more) satisfactory way, the same problems.

The issues that fuel today’s drive to replace the internal combustion en-
gine with a prime mover of a different kind remain its dependence on liquid
hydrocarbons as fuel and the emission of pollutants and greenhouse gases.

The dependence on fuels derived from oil is characteristic of the whole eco-
nomic system, particularly in Europe and even more in Italy. Even if electric
vehicles became widespread or hydrogen took over as fuel, this problem would
remain essentially unchanged if the primary energy used to produce electric en-
ergy or hydrogen came from the combustion of oil derivatives. More precisely,
the problem would become worse, owing to lower overall energy efficiency (from
well to wheel, as is usually said).

Only a massive use of nuclear energy, possibly with some contribution from
renewable sources including hydrocarbons derived from biomasses, can radically
solve this problem.

Environmental problems due to pollutants like carbon monoxide, nitrogen
oxides, particulates, etc., all substances not necessarily produced by combustion,
have already been tackled with success and modern internal combustion engines
are much cleaner than older ones. This trend is bound to continue in the future.

Carbon dioxide, on the contrary, is the result of the type of fuel used and
can be reduced only by using fuels with lower carbon content, like methane,
and only completely eliminated by using hydrogen. However, the production of
hydrogen must use a primary source that does not produce carbon dioxide, like
nuclear energy.

Hydrogen can be used both in internal combustion engines and in fuel cells.
Fuel cells are electrochemical devices able to directly convert the energy of a

fuel-oxidizer pair into electric energy, without a combustion process taking place.
Since in this transformation there is no intermediate stage of thermal energy, the
efficiency can be, theoretically, higher than that of any thermal engine, even if
it is limited by losses of various kinds.

The reactions occurring in fuel cells are electrochemical reactions of the
kind typical of batteries. The choice of fuel is severely limited, since the use
of molecules that may be easily ionized is mandatory. Hydrogen is the most
common choice, even if methane is an interesting alternative, while the oxidizer
must be, in vehicular applications, atmospheric oxygen. The energy density of
fuel cells using liquid fuels like methanol or formic acid is too low for vehicular
applications.

The problems linked with the use of hydrogen as a fuel primarily relate to
its low volume energy density (its mass energy density is, on the contrary, quite
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high) and to the subsequent need to use pressurized tanks, cryogenic storage
at 20 K, or to resort to technologies like those based on metal hydrides. There
are also problems involved in its supply network. The technological problems are
being solved, since hydrogen is used in experimental vehicles as a fuel for internal
combustion engines, and in many countries there are already a number of supply
points. Safety does not seem to be a problem, since hydrogen is not much more
dangerous than a highly flammable and volatile liquid such as gasoline.

Hydrogen may also be stored on board as methanol or methane, from which
hydrogen is then obtained by chemical dissociation. This solution has the draw-
back of causing poisoning of the fuel cell catalyst if impurities due to this process
remain in the hydrogen.

At present there are many types of fuel cells, based on different types of
membranes and catalysts. They operate at different temperatures (from less
than 100◦C to more than 900◦C, the latter being unsuitable for vehicular use),
and each has its advantages and drawbacks. The technology developed in the
aerospace field (fuel cells were developed in the 1960s for the Apollo programme
and are now used on the Space Shuttle) cannot be used in road vehicles. Many
problems are still to be solved, from cost to reliability, with added problems linked
to their use under the conditions of much variable load and reduced maintenance
that are typical of motor vehicles.

Until fuel cells suitable for vehicular use are available, the only way to
use electric motors is by employing accumulators. Their worst drawback is the
impossibility of obtaining high energy density and power density at the same
time. This is particularly true for lead-acid accumulators, whose energy density
decreases fast with increasing power density, that is, with increasing current.

Also, the duration and the efficiency of batteries decrease with increasing
power density. The field of batteries for vehicular propulsion has seen much re-
search activity, and the possibility of building electric vehicles with performance
not much different from that of vehicles with internal combustion engines, espe-
cially in terms of range, may yet emerge.

The possibility of using different forms of energy accumulators in a sin-
gle vehicle in a hybrid configuration is particularly interesting. There are many
experimental vehicles of this kind and some of them have been mass produced.

22.2 INTERNAL COMBUSTION ENGINES

As stated in the previous section, most road vehicles are powered by reciprocating
internal combustion engines. The performance of an internal combustion engine
is usually summarized in a single map plotted in a plane whose axes are the
rotational speed Ωe and either the power Pe or the engine torque Me(Fig. 22.2).
Often the former is reported in rpm, the power in kW and the torque in Nm.

If a plot of the power as a function of speed is used, the plot is limited
by the curve Pe(Ωe) expressing the maximum power the engine can supply as
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a function of the speed. Such a curve is typical of any particular engine and
must be obtained experimentally. However, when building a simple model of the
vehicle, it is possible to approximate it with a polynomial, usually with terms
up to the third power,

Pe =
3∑

i=0

PiΩi
e . (22.2)

The values of coefficients Pi can easily be obtained from experimental test-
ing. In the literature it is possible to find some values of the coefficients which
can be used as a first rough approximation. M.D. Artamonov et al.1 suggest the
values

P0 = 0 , P3 = −Pmax

Ω3
max

for all types of internal combustion engines and

P1 =
Pmax

Ωmax
, P2 =

Pmax

Ω2
max

,

for spark ignition engines,

P1 = 0.6
Pmax

Ωmax
, P2 = 1.4

Pmax

Ω2
max

for indirect injection diesel engines and

P1 = 0.87
Pmax

Ωmax
, P2 = 1.13

Pmax

Ω2
max

for direct injection diesel engines.
In these formulae Ωmax is the speed at which the power reaches its maximum

value Pmax.
The driving torque of the engine is simply

Me =
Pe

Ωe
, (22.3)

or, if the cubic polynomial is used and coefficient P0 vanishes,

Me =
3∑

i=1

PiΩi−1
e . (22.4)

At present, internal combustion engines for vehicular use are controlled by
systems of increasing complexity and their performance is increasingly dependent
on the control logic used. The power and torque maps are, then, not unique for
a certain engine but may be changed simply by modifying the programming of

1M.D. Artamonov et al. Motor vehicles, fundamentals and design, Mir, Moscow, 1976.
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the electronic control unit (ECU). If the above mentioned equations have always
been just a rough approximation, today the situation is even more complex from
this point of view, and in some cases the equations may supply results much
different from those actually observed.

If experimental results on a similar engine are available, it is possible to
obtain the maximum power curve from the power curve of that engine.

Remark 22.1 The practice of correcting engine performance in a way propor-
tional to the displacement is not correct, even if it is acceptable and often used
for small changes of capacity. A scaling parameter that may be more correct is
the area of the piston multiplied by the number of cylinders, that is, the ratio
between capacity and stroke.

The mean effective pressure pme, i.e., the ratio between the work performed
in a complete cycle and the capacity of the engine, is often used instead of the
torque. In four-stroke engines it is defined as

pme =
4πMe

V
, (22.5)

where V is the total capacity of the engine.
All points below the maximum power curve are possible working points for

the engine, when it operates with the throttle partially open.

Remark 22.2 Since the engine is seldom used at full throttle, usually only when
maximum acceleration is required, the conditions of greatest statistical signifi-
cance are those at much reduced throttle.

A diagram of the specific fuel consumption of a direct injection diesel engine
with a capacity of about 2 liters is shown in Fig. 22.1; on the same plot, the circles
show the points at which the engine operates on the driving cycle used in Europe
for computing fuel consumption for a car with a reference mass of 1600 kg.

The percentages shown close to the circles refer to the time the engine is
used in the conditions related to their centers, with reference to the total time
the engine is producing power (the time at idle is then not accounted for); the
center of the circles represents the average of all utilization points in a rectangle
with sides of 500 rpm on the speed axis and one bar on the pme axis.

The curves below the one related to the maximum mean effective pressure
in the plot of Fig. 22.1 are those characterized by various values of the specific
fuel consumption q. The correct S.I. units for the specific fuel consumption, the
ratio between the mass fuel consumption (i.e., the mass of fuel consumed in
the unit time) and the power supplied, is kg/J, i.e. s2/m2, while the common
practical units are still g/HPh or g/kWh. If the thermal value of the fuel is equal
to 4.4 × 107 J/kg, it follows that
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FIGURE 22.1. Map of a direct injection diesel internal combustion engine of about 2
liters capacity, with constant specific fuel consumption curves. The circles show the
points where the engine operates on the driving cycle used in Europe for computing
fuel consumption with a car with a reference mass of 1600 kg. The consumption of this
engine at idle is about 0.62 l/h.

q =
2.272 × 10−8

ηe

kg/J =
60.16
ηe

g/HPh =
81.79
ηe

g/kWh ,

where ηe is the efficiency of the engine.
This map allows the fuel consumption of the engine to be stated in various

working conditions: at far left is the minimum speed at which the engine works
regularly; at far right is the maximum speed. The speed axis shows conditions at
idle, where the mean effective pressure (pme) vanishes together with the efficiency
and the specific fuel consumption is infinite.

The map can be represented in a different way, plotting power on the ordi-
nates and using the efficiency ηe of total energy conversion, from chemical energy
of the fuel to mechanical energy at the shaft, as a parameter.

A plot of this type is shown in Fig. 22.2.
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FIGURE 22.2. Map of a spark ignition internal combustion engine, with constant effi-
ciency curves.

Remark 22.3 The efficiency of a spark ignition engine reaches its maximum in
conditions close to full throttle and at a speed close to the one where the torque
is at its maximum. The efficiency decreases quickly as power is reduced at a fixed
speed. This decrease is less severe in diesel engines.

Efficiency and specific fuel consumption are linked by the relationship

q =
1

Hηe

(22.6)

where H is the thermal value of the fuel.

Example 22.1 Compute the coefficients of a cubic polynomial approximating
the power versus speed curve of the engine of the vehicle in Appendix E.1. Com-
pare the curve so obtained with the experimental one and that obtained from the
coefficients suggested by Artamonov. Plot on the same chart the engine torque
and the specific fuel consumption. By taking from the plot points spaced by 250
rpm and using a standard least squares procedure, it follows that

P = −10, 628 + 0, 1506Ω − 9, 5436 × 10−5Ω2 − 5, 0521 × 10−8Ω3 ,

where Ω is expressed in rad/s and P in kW. Using Artamonov’s coefficients for
a spark ignition engine, the equation becomes

P = 0, 7024Ω + 1, 290 × 10−4Ω2 − 2, 369 × 10−7Ω3 .

The two curves are plotted in Fig. 22.3. Both expressions approximate the ex-
perimental curve well, even if the coefficients are quite different.
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FIGURE 22.3. Engine power curve for the car of Appendix E.1. (1) Experimental
curve, (2) third-power least square fit, (3) cubic polynomial with coefficients computed
as suggested by Artamonov et al. The torque and the specific fuel consumption are also
reported as functions of speed.

Two more examples of engine maps for two spark ignition engines of about
2 l capacity are reported in Figures 22.4 and 22.5. The first refers to an indirect
injection engine (in the intake manifold), while the second one is for a direct
injection (in the combustion chamber) engine. The latter is similar to the diesel
engine shown earlier.

Remark 22.4 When the fuel consumption is needed in points different from
those shown in the plot, it is advisable not to interpolate in the map of specific fuel
consumption, but on that of efficiency. The consumption changes in a strongly
nonlinear way with both speed and mean effective pressure, and tends to infinity
when the pme tends to zero. The efficiency, on the contrary, tends to zero, when
the pme tends to zero.

22.3 ELECTRIC VEHICLES

Batteries and electric motors are the most common alternative to internal com-
bustion engines. As already stated, the performance obtainable is lower than that
typical of vehicles with internal combustion engines, especially in terms of range,
but also in terms of operating costs and vehicle availability. Studies on batteries
for vehicular use are very active, and it is a common opinion that only through
electric vehicles will some of the problems caused by the use of motor vehicles in
urban areas be solved. The performance of some of the batteries suggested in-
stead of the more common lead-acid batteries are reported in Table 22.2. Future
progress seems to be linked more to the possibility of mass producing accumula-
tors with sufficient performance at costs compatible with vehicular use than to
an increase of performance.
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FIGURE 22.4. Map of the specific fuel consumption of an indirect injection spark
ignition engine of about 2 liters capacity. The consumption of this engine at idle is
about 0.92 l/h.

The advantages of electric vehicles are linked primarily to the possibility
of moving the pollution from where the vehicle is used to where the power is
generated, taking advantage of the better pollution control of power stations
versus small engines. Another advantage is the possibility of regenerative braking.
The performance of electric drives is, however, decreased by losses in both the
engine and the batteries, and above all by the difficulties that batteries have
in accepting the high power bursts occurring in braking. The disadvantages are
also well known: The reduced range and duration of batteries and their high
mass. However, even today, the performance of electric vehicles is sufficient for
urban use.

From the point of view of energy the advantages of battery powered electric
vehicles (BEV) are still in doubt: When the primary source is a fossil fuel, in
spite of the greater efficiency of the primary conversion and regenerative braking,
the overall consumption is comparable to that of internal combustion engines.
The very fact that the thermo-mechanical conversion occurs far from the vehicle
makes it impossible to use waste heat for heating, and this makes the energy
balance worse.
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FIGURE 22.5. Map of the specific fuel consumption of a direct injection spark ignition
engine of about 2 liters capacity. The consumption of this engine at idle is about 0.90
l/h.

TABLE 22.2. Main characteristics of some battery types for automotive use (M.J.
Riezenman, The great battery barrier, IEEE Spectrum, Nov. 1992). a): Constant current
3 hours discharge. b): Cycles with 80% discharge depth. c): 100% discharge depth in
urban cycle. d): 80% discharge..

Type E/m a P/m b Efficiency Lifec

[Wh/kg] [W/kg] [cycles]

Sodium-sulphur 81 152 91 % 592
Sodium-sulphur 79 90 88 % 795
Lithium-sulphides 66 64 81 % 163d

Zinc-bromine 79 40 75 % 334

Nickel-zinc 67 105 77 % 114

Nickel-metal hydrides 54 186 80 % 333

Nickel-metal hydrides 57 209 74 % 108
Nickel-metal hydrides 55 152 80 % 380

Nickel-iron 51 99 58 % 918
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FIGURE 22.6. Map of the efficiency of an induction AC motor with a nominal power
of 35 kW.

The traditional configuration is based on direct current (DC) or alternating
current (AC) motors connected to the wheels through a transmission of more or
less conventional type. Since the electric motor can start under load, there is no
need for a clutch and usually no need for a gearbox with various transmission
ratios; only a reduction gear and a differential are necessary. The motor is con-
trolled with power electronic devices (choppers) whose efficiency is at present
extremely high.

Instead of a DC motor (with brushes) it is possible to use an AC motor,
controlled by an inverter.

The map of the efficiency of an induction AC motor with a nominal power
of 35 kW is shown in Fig. 22.6.

Recently permanent magnet synchronous brushless motors with related con-
trol electronics have also been used in vehicular applications. The efficiency and
control are generally better, and the cost is transferred from the motor to the
power electronics.

As an alternative to the traditional architecture, with the motor operating
the wheels through a mechanical transmission, it is possible to put two or more
motors directly in the wheels. This is a configuration suggested and tried sev-
eral times in the past with limited success except for special vehicles, and it is
one that seems to be ready for large scale application today. Traditional CC or
AC motors require a mechanical transmission in any case, since they supply an
insufficient torque and operate at a speed that is higher than that of the wheels.
At present, high torque motors (torque motors, both with internal and external
rotor) are available; these can be connected directly to the wheels without in-
terposing a reduction gear. Apart from the advantage, which may be important
in some applications, of allowing an arbitrarily large steering angle, even up to
360◦, putting the motor in the wheels without using a reduction gear leads to
high efficiency, low noise and a large degree of freedom in placing the various
subsystems of the vehicle.
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The motor control system can perform the electronic differential function,
distributing the torque to the wheels of an axle, and may do so by simulating all
the functions of limited slip (or in general of controlled) differentials. However,
to put the motors in the wheels increases the unsprung mass, even if in recent
applications such mass increase is not large, and may not be detrimental to
comfort. The motors may also be located close to the wheels but fixed to the
body, and connected to the wheels using transmission shafts. The reduction of the
unsprung mass is compensated by reintroducing transmission shafts and above
all joints, which work with a relative displacement of the two parts.

22.4 HYBRID VEHICLES

While the only accumulators able to store all the energy required for motion
are electrochemical, the quantity of energy to be accumulated in the secondary
accumulators of hybrid systems is lower, and this may allow devices of other
types to be used. The drawbacks of electrochemical batteries become also less
severe.

Elastic energy can be stored in a solid or in a gas. In the first case, the
energy density e/m of the device is

e

m
= α1K

σ2

ρE
, (22.7)

where α1 and K are coefficients linked to the ratio of the mass of the energy
storage elements and that of the whole device, and to the shape of the storage
element and the stress distribution, with σ the maximum stress in the energy
storing element and E the Young’s modulus of the material.

Material with very high strength (spring steel) or low stiffness (elastomers)
must be used. The latter are particularly well suited, since some of them may be
stretched up to 500% with a good fatigue life and limited energy losses.

The use of a compressed gas, while considered for fixed installations, has
several disadvantages for vehicular uses, due to its lower efficiency, the high mass
of the container of pressurized fluid, and burst danger. Hydraulic accumulators,
in which the energy is stored in the walls of an elastomeric vessel full of fluid, have
been suggested and tested in connection with hydraulic motors and pumps. The
pressure of the oil, however, is controlled by the characteristics of the elastomeric
material independent of driving or braking (in case of regenerative braking)
torque. Reversible variable displacement motors, which are quite complex and
costly, are then required.

Energy can be stored in the form of kinetic energy in a flywheel. The energy
density of a kinetic energy accumulator can be expressed as

e

m
= α1α2K

σ

ρ
, (22.8)
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where α1, α2 and K are coefficients linked with the ratio of the mass of the fly-
wheel and that of the whole system, to the depth of discharge actually performed
and to the shape and the stress distribution in the flywheel. σ is the maximum
stress in the energy storing element and ρ is the density of the material.

Apart from some applications, like the city busses built by Oerlikon in the
1950s and actually used in public service, flywheels are now considered for use
only in hybrid systems. Their potentially high power density makes them very
suitable for supplying short bursts of power for acceleration or for storing braking
energy.

Nor is the problem of designing an adequate transmission trivial: the veloc-
ity of the vehicle must be variable at the will of the driver down to a full stop,
while the angular velocity of the flywheel is proportional to the square root of
the energy it contains. The flywheel reaches its maximum speed after recover-
ing all the energy of the vehicle, when the latter stops. This demands complex
continuous transmissions that may offset the advantages of this solution

Some possible schemes for hybrid vehicles are the following (Fig. 22.7):
a) internal combustion engine − electric accumulator,
b) internal combustion engine − elastic accumulator,
c) internal combustion engine − flywheel,
d) electric accumulator − flywheel,
e) internal combustion engine − electric accumulator − flywheel.

The first three systems are similar, at least in principle. The thermal engine
supplies the average power, working in conditions that may be optimized in terms
of efficiency or pollution. A trade-off between these requirements can be made.

FIGURE 22.7. Some possible schemes of hybrid vehicles B, batteries; C, control unit;
EG, electric generator; F, flywheel; HA, hydraulic accumulator; HM, hydraulic mo-
tor; ICE, internal combustion engine; MG electric motor/generator; MT, mechanical
transmission; P, pump; W wheels.
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When the duty cycle includes frequent accelerations and braking, the advan-
tages of disconnecting the instantaneous power requirements from the working
conditions of the thermal engine, and of making regenerative braking possible,
are large. The possibility of using a far smaller engine allows one to keep mass
and cost within the limits of conventional systems or even to obtain mass and
cost savings.

The solutions (a) above in Fig. 22.7 are based on an internal combustion
engine and electric batteries. The Prius built by Toyota is an example of a hybrid
vehicle of this type (see below).

Remark 22.5 Hybrid vehicles with internal combustion engine and batteries
appear the worst alternative in theory, since electric accumulators work exactly
in the way which should be avoided, being called to supply high power for short
periods; nevertheless this is the only system used in practice today.

Solution (a1) is the most interesting, since the presence of an axle controlled
by a thermal engine and one controlled by electric motors allows side advantages,
like fully controlled 4WD and an active differential on the electric axle, as effec-
tive as a VDC system, to be obtained.

Solution (b) may be used in hydrostatic transmissions; owing to the cost of
the latter, it is mainly considered for large city buses.

Solution (c) allows the use of a mechanical transmission, although the re-
quirement of an efficient CVT with a wide range of transmission ratios is not
easy to meet. The very high efficiency and power density of flywheels can be
exploited.

Solution (d) is very interesting, since the flywheel manages the power peaks
occurring during acceleration and regenerative braking, allowing the use of bat-
teries with low power density, thus increasing the efficiency, and hence the range,
of the vehicle, and the life cycle of the batteries.

Solution (e) combines the advantages of (a) and (d): The batteries work in
optimal conditions, and hence a smaller mass of batteries than in (a) is required.
The presence of the batteries allows a far larger engine-off range than in (c), to
cope with conditions in which the use of an internal combustion engine is not
allowed (here it behaves like a zero-emission vehicle), while the latter allows a
practically unlimited range outside these conditions.

In actual use, as already stated, the configurations considered for applica-
tions are those based on an internal combustion engine plus electrical batteries
only, labelled as (a) in the figure.

The other solutions are more suitable for particular types of vehicles, like
city busses, heavy industrial vehicles, working machines and military vehicles.

Vehicles with electric transmission (electric generator connected to the en-
gine and electric motor driving the wheels) without any energy storage system
are sometimes defined as hybrid. This configuration has been used for decades
in diesel electric systems, and much used in rail transportation. The lack of
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a storage device makes it impossible to perform regenerative braking. Often a
solution of this type is called a Fake Hybrid (FH).

True hybrid vehicles are subdivided into parallel hybrids (PH, Fig. 22.7a1)
and series hybrids (SH, Fig. 22.7a2).

In series hybrids, at least a part of the energy generated by the thermal
engine is transformed into electric energy and used to recharge the batteries, or
stored in the designated way.

In parallel hybrids, the electric energy (or the accumulated energy) does
not interact with the internal combustion engine, but comes only from recovered
energy.

Remark 22.6 The difference between the two types of hybrids does not depend
so much on the configuration shown in Fig. 22.7, but mostly on the strategy of
the controller.

The advantage of parallel architecture is its simple layout and the possibility
of being offered as an option on a conventional vehicle. A traditional rear wheel
drive vehicle may be transformed into a parallel hybrid just by adding an electric
motor operating the front wheels and a battery, along with the necessary control
system.

Another possible advantage of parallel hybrid systems is the higher efficiency
with which the power flowing through mechanical transmission is transferred to
the wheels.

Another distinction is between weak hybrids (WH) and strong hybrids (SH).
In weak hybrids the vehicle usually works with the thermal engine, while

the electric motor is used to increase performance, when needed, and above all
to restart the engine, also working as a generator for regenerative braking. The
internal combustion engine is thus switched off when the vehicle stops even for
a short time, or supplies only a very small amount of power (restart systems).

The layout of Fig. 22.7a3 is that of a conventional vehicle with starter motor
and generator integrated in a single unit and an oversized battery.

In the case of strong hybrids, the capacity of the battery is such as to
allow both a non-negligible power increase and a certain engine off range. The
instant needs of the vehicle can therefore be completely uncoupled from the
power supplied by the engine, to the point that it is even possible to avoid a
gearbox.

Finally, there are Plug-capable Hybrid Electric Vehicles (PHEV) that use a
battery that can be recharged from an external source, so that the vehicle can
operate like a true Battery Electric Vehicle (BEV) as well. It is possible to speak
of a weak version, where the engine-off operation is limited to low speed and
short range, and a strong version that may operate in engine-off mode at higher
speed with a larger range.

The possibilities offered by the various hybrid layouts are summarized in
Table 22.3
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TABLE 22.3. From conventional to hybrid and electric vehicles.

Type Regenerative Battery Rechargeable Primary el. Indep. of

braking operation traction fossil fuels

Normal - FH – – – – –

PH(W) X – – – –

PH(S) X X – – –
PHEV(W) X X X – –

PHEV(S) X X X X –
BEV X X X X X

FIGURE 22.8. Layout of the hybrid power system of the Toyota Prius; ICE: thermal
engine, C: automatic clutch, G: generator, EM: driving electric motor, PG: planetary
gear, Ch: chain driving the final gear at the differential D.

One of the few hybrid vehicles that went beyond the research phase and
entered the market at a reasonable price is the Toyota Prius. Its hybrid system
is sketched in Fig. 22.8.

In the figure, ICE is the thermal engine, C is an automatic clutch, G a
generator, EM a traction electric motor, PG a planetary gear, Ch a chain con-
trolling the gear ratio of the final drive of the differential D. Note that there is
no gearbox between the thermal engine and the transmission to the wheels2.

2M. Duoba et al., In-situ mapping and Analysis of the Toyota Prius HEV Engine, SAE
Paper 2000-01-3096
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If τo is the gear ratio on the planetary gear when the carrier is fixed (here
the carrier is connected to the thermal engine), it follows that

τo = −na

ns
, (22.9)

where na and ns are the number of teeth of the crown and the sun ; the sign is
minus since, when the carrier is fixed, the crown and the sun rotate in opposite
directions.

The simple equation

− 1
τo

ΩG + ΩEM = (1 − 1
τo

)ΩICE , (22.10)

where the angular velocities of the various elements are ΩG, ΩEM and ΩICE ,
can be written.

In the same way, by indicating with MG, MEM and MICE the torques acting
on the same elements, it is possible to write

MT − MEM = MICE − MG ,
(MT − MEM )ΩEM = MICEΩICE − MGΩG . (22.11)

These equations have been obtained by stating the equilibrium for rotation
of the gears and the conservation of the power that goes through it. MT is the
available torque on the gear wheel driving the chain Ch. By eliminating one of
the three equations, it follows that

MG = MICE
1

τo − 1
, (22.12)

MT = MEM − τoMG . (22.13)

This system works both as a parallel and a series hybrid.
The angular velocity of the thermal engine adapts to that of the vehicle by

changing the speed of the generator, following Eq. (22.10), something that can
occur only by subtracting a torque, through the generator, following Eq. (22.12).
By doing this, some power from the thermal engine charges the battery, as in
the series layout.

At low speed, a part of the power needed for motion is supplied by the
electric motor, which takes it from the battery. Finally, at a very low speed only
the electric motor operates, as in parallel layouts. This also occurs when the
speed of the thermal engine can adapt itself to that of the vehicle, without the
generator subtracting any power.

When the vehicle slows down, the available kinetic energy is recovered.
This method allows the working range of the thermal engine to be restricted

to that where minimum fuel consumption is obtained, for a given power require-
ment. It is also possible to stop the engine when the vehicle stops and to restart it
easily at a speed greater than those at which conventional starter motors operate,
owing to the generator that is now used as a motor.
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The batteries are never recharged from outside the vehicle.
The fuel consumption, obtained using a gasoline engine (Atkinson cycle),

is similar to that of a diesel vehicle with similar performance; CO2 emissions
are lower, due to the lower quantity of carbon contained in the same volume
of gasoline; other emissions are much lower, due to the reduced working of the
engine in variable conditions owing to the more constant use of the thermal
engine made possible by the hybrid layout.
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DRIVING DYNAMIC PERFORMANCE

When computing the performance of a vehicle in longitudinal motion (maximum
speed, gradeability, fuel consumption, braking, etc.), the vehicle is modelled as
a rigid body, or in an even simpler way, as a point mass.

The presence of suspensions and the compliance of tires are then neglected
and motion is described by a single equation, the equilibrium equation in the
longitudinal direction. If the x-axis is assumed to be parallel to the ground, the
longitudinal equilibrium equation reduces to

mẍ =
∑
∀i

Fxi
, (23.1)

where Fxi
are the various forces acting on the vehicle in the longitudinal direction

(aerodynamic drag, rolling resistance, traction, braking forces, etc.).
As will be seen later, Eq. (23.1) is quite a rough model for various reasons.

For one thing, when the vehicle is accelerated, a number of rotating masses must
be accelerated as well; this, however, can be accounted for easily. Other approx-
imations come from the fact that the vehicle does not travel under symmetrical
conditions, particularly when the trajectory is not straight and the direction of
the x-axis does not coincide with the direction of the velocity or, in other words,
the sideslip angle β is in general different from zero.

23.1 LOAD DISTRIBUTION ON THE GROUND

Longitudinal dynamics is influenced by the distribution of normal forces at the
wheels-ground contact. A vehicle with more than three wheels is statically in-
determinate, and the load distribution is determined by characteristics of the

G. Genta, L. Morello, The Automotive Chassis, Volume 2: System Design, 185
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suspensions which, as seen in Part I, also have the task of distributing the load
on the ground in proper way. However, if the system is symmetrical with respect
to the xz plane, all loads are equally symmetrical, and the velocity is contained
in the symmetry plane, then the two wheels of any axle are equally loaded. In
this case, it is possible to think in terms of axles rather than wheels, and a
two-axle vehicle may be considered as a beam on two supports which is, then,
a statically determined system. In this case, the forces on the ground do not
depend on the characteristics of the suspensions and the vehicle can be modelled
as a rigid body.

23.1.1 Vehicles with two axles

Consider the vehicle as a rigid body and neglect the compliance of the suspensions
and of the body. As previously stated, if the vehicle is symmetrical with respect
to the xy-plane1, it can be modelled as a beam on two supports, and normal
forces Fz1 and Fz2 acting on the axles can be computed easily.

With the vehicle at a standstill on level road the normal forces are
{

Fz1 = mgε01

Fz2 = mgε02

where
{

ε01 = b/l
ε02 = a/l .

(23.2)

The forces acting on a two-axle vehicle moving on straight road with longi-
tudinal grade angle α (positive when moving uphill) are sketched in Fig. 23.1.
Note that the x-axis is assumed to be parallel to the road surface.

Taking into account the inertia force −mV̇ acting in x direction on the
centre of mass, the dynamic equilibrium equations for translations in the x and
z direction and rotations about point O are
⎧⎨
⎩

Fx1 + Fx2 + Fxaer − mg sin(α) = mV̇
Fz1 + Fz2 + Fzaer − mg cos(α) = 0

Fz1(a + Δx1) − Fz2(b − Δx2) + mghG sin(α) − Maer + |Fxaer |hG = −mhGV̇ .

(23.3)
If the rolling resistance is ascribed completely to the forward displacement of

the resultant Fzi
of contact pressures σz, distances Δxi can be easily computed

as
Δxi = Rlif = Rli(f0 + KV 2) . (23.4)

Except in the case of vehicles with different wheels on the various axles,
such as F-1 racers, the values of Δxi are all equal.

1In the present section on longitudinal dynamics, a complete symmetry with respect to the
xz plane is assumed: The loads on each wheel are respectively Fz1/2 and Fz2/2 for the front
and the rear wheels. To simplify the equations, the x-axis is assumed to be parallel to the
road surface.
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FIGURE 23.1. Forces acting on a vehicle moving on an inclined road.

The second and third equation (23.3) can be solved in the normal forces
acting on the axles, yielding

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fz1 = mg
(b − Δx2) cos(α) − hG sin(α) − K1V

2 − hG

g
V̇

l + Δx1 − Δx2

Fz2 = mg
(a + Δx1) cos(α) + hG sin(α) − K2V

2 +
hG

g
V̇

l + Δx1 − Δx2
,

(23.5)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K1 =
ρS

2mg

[
CxhG − lCMy

+ (b − Δx2)Cz

]

K2 =
ρS

2mg

[
− CxhG + lCMy

+ (a + Δx1)Cz

]
.

The values of Δxi are usually quite small (in particular, their difference
is usually equal to zero) and can be neglected. If considered, they introduce a
further weak dependence of the vertical loads on the square of the speed, owing
to the term KV 2 in the rolling resistance.

Example 23.1 Compute the force distribution on the ground of the small car
of Appendix E.1 at sea level, with standard pressure and temperature, in the
following conditions:
a) at standstill on level road;
b) driving at 100 km/h on level road;
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c) driving at 70 km/h on a 10% grade;
d) braking with a deceleration of 0.4 g on level road at a speed of 100 km/h.

The air density in the mentioned conditions is 1.2258 kg/m3.
a) Using Eq. (23.2), the static load distribution between the axles is

ε01 = 0.597, ε02 = 0.403.

The forces acting on the axles are then

Fz1 = 4863 N, Fz2 = 3280 N.

b) From Eq. (23.4), at 100 km/h = 27.78 m/s the value of Δx is 4.6 mm for
all tires. This value is so small that it could be neglected; it will, however, be
considered in the following computations.

Constants K1 and K2 are easily computed

K1 = 8.505 × 10−6 s2/m, K2 = −5.869 × 10−5 s2/m.

The forces acting on the axles are then

Fz1 = 4820 N, Fz2 = 3491 N.

c) A 10% grade corresponds to a grade angle α = 5.7◦. Operating in the same
way, at 70 km/h = 19.44 m/s the value of Δx is 4.0 mm for all tires. The other
results are

K1 = 8.490 × 10−6 s2/m, K2 = −5.867 × 10−5 s2/m,

Fz1 = 4643 N, Fz2 = 3542 N.

d) The acceleration is V̇ = −3.924 m/s2. As the speed is the same as in case b),
the same values for Δx, K1 and K2 hold. The forces are

Fz1 = 5498 N, Fz2 = 2813 N.

23.1.2 Vehicles with more than two axles

If more than two axles are present, even in symmetrical conditions the system
remains statically indeterminate and it is necessary to take into account the
compliance of the suspensions (Fig. 23.2a). The equilibrium equations (23.3)
still hold, provided that the terms

Fx1 + Fx2 , Fz1 + Fz2 , Fz1(a + Δx1) − Fz2(b − Δx2)
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FIGURE 23.2. Forces acting on an articulated vehicle moving on an inclined road. (a)
Tractor or vehicle with more than two axles; (b) trailer.

are substituted by

∑
∀i

Fxi
,

∑
∀i

Fzi
,

∑
∀i

Fz1(xi + Δxi) ,

where distances xi are positive for axles located forward of the centre of mass
and negative otherwise.

For computation of normal loads on the ground a number (n − 2) of
equations, where n is the total number of axles, must be added. Each one of
them simply expresses the condition that the vertical displacement of the point
where each intermediate suspension is attached to the body is compatible with
the displacement of the first and the last.

To account for possible nonlinearities of the force-displacement curves of
the suspension, it is advisable to compute a reference position in which each
suspension exerts a force (Fzi

)0. The linearized stiffness of the ith suspension,
possibly taking into account the compliance of the tires as well, is Ki. The vertical
displacement of the point where the ith suspension is attached is

Δzi = − 1
Ki

[Fzi
− (Fzi

)0] . (23.6)

With reference to Fig. 23.3, the vertical displacement of the vehicle body in
the point where the ith suspension is attached can be expressed as a function of
the displacement of the first and nth suspension by the equation

1
l

(Δzn − Δz1) =
1

a − xi
(Δzi − Δz1) . (23.7)
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FIGURE 23.3. Compatibility condition for vertical displacements of the points where
the suspensions are attached. In the figure, the ith axle is behind the center of mass
and its coordinate xi is negative.

By eliminating displacements Δzi between equations (23.6) and (23.7), the
required equation is obtained,

b + xi

K1
[Fz1 − (Fz1)0] +

a − xi

Kn
[Fzn

− (Fzn
)0] −

l

Ki
[Fzi

− (Fzi
)0] = 0 , (23.8)

for i = 2, . . . , n − 1 .

The mentioned reference condition can be referred to any value of the load
or any position of the centre of gravity, provided that the values of the linearized
stiffnesses are the same as those in the actual condition. Forces (Fzi

)0 can all be
set to zero if the springs are linear and the suspensions are such that a position
(i.e. a vertical and a pitch displacement) exists in which all wheels just touch
the ground, exerting on it vanishing forces (neglecting the weight of the axles).

Equations (23.8), together with the second and third equation (23.3), form
a set of n equations that can be solved to yield the n normal forces acting on
the axles.

Remark 23.1 Forces Fzi
can never become negative: If a negative value is ob-

tained, it means that the relevant axle loses contact with the ground and the
computation must be repeated after setting the force to zero due to the relevant
axle. The procedure is repeated until no negative force is present.
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23.1.3 Articulated vehicles

In the case of articulated vehicles with a tractor with two axles and one or more
trailers with no more than a single axle each (Fig. 23.2), the computation is
straightforward. In this case, the equilibrium equations of the tractor are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

Fxi
− Fxt

+ Fxaer
− mg sin(α) = mV̇

n∑
i=1

Fzi
− Fzt

+ Fzaer
− mg cos(α) = 0

n∑
i=1

Fzi
(xi + Δxi) + Fzt

c + Fxt
ht + mghG sin(α) − Maer+

+|Fxaer
|hG = −mhGV̇ ,

(23.9)

where forces Fxt
and Fzt

are those the tractor exerts on the trailer, as in the
figure, the number of axles of the tractor is assumed to be n (in the present
case n = 2), the moments are computed with reference to point O, and the
aerodynamic forces and moments are those exerted on the tractor only.

Similarly, the equilibrium equation of the trailer are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

Fxi
+ Fxt

+ FxRaer
− mRg sin(α) = mRV̇

m∑
i=1

Fzi
+ Fzt

+ FzRaer
− mRg cos(α) = 0

m∑
i=1

Fzi
(xi + Δxi) − Fxt

ht + mRghGR
sin(α) + mRgaR cos(α) − MRaer

+

+|FxRaer
|hGR

= −mRhGR
V̇ ,

(23.10)

where the number of axles of the trailer is assumed to be m (in the present case
m = 1), the moments are computed with reference to point O′, the aerodynamic
forces and moments are those exerted on the trailer only and xi are the coordi-
nates of the axle in the reference frame centred in O′. Note that all xi are usually
negative.

The last two equations (23.9), together with the last two equations (23.10)
are sufficient only on level road at a standstill, when force Fxt

vanishes. If it is
other than zero the first equation (23.9) must also be used. However, the forces
Fxi

it contains are not known since they depend on the normal forces Fzi
. A

simple iterative scheme can be used, to compute the normal forces with Fxt
= 0,

repeating the computation until a stable solution is found. If the wheels of the
trailer exert driving or braking forces, these forces must also be introduced into
the computation.

If the tractor has more than two axles or the trailer has more than one,
additional equations must be introduced. The additional (n − 2) equations of
the tractor (n is the number of axles of the tractor), are equations (23.8) while
the additional (m − 1) equations for the trailer, where m is the number of its
axles, are
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(a + c)(xm − xi)
lK1

[Fz1 − (Fz1)0] +
(b − c)(xm − xi)

lKn
[Fzn

− (Fzn
)0] +

+
xi

KRm

[
FzRm

− (FzRm
)0
]
− xm

KRi

[
FzRi

− (FzRi
)0
]

= 0 ,
(23.11)

for i = 1, . . . ,m − 1 ,

where Kti
and Fzti

are the linearized stiffness of the ith suspension of the trailer
and the force acting on it and (Fzti

)0 is the normal force in the same axle in any
reference condition.

The first two terms of Eq. (23.11) are linked to the vertical displacement
of the hitch, and the equation expresses the displacements of the hitch, the last
axle and the relevant axle.

The number of unknowns and equations is then equal to the total number
of axles plus one, since the normal force the two parts of the vehicle exchange is
also unknown. When force Fxt

does not vanish, it must be computed iteratively,
as seen above.

Example 23.2 Compute the force distribution on the ground of the five-axle
articulated truck of Appendix E.9 at sea level, with standard pressure and tem-
perature, in the following conditions:
a) at standstill on level road;
b) at standstill on a 10% grade;
c) driving at 70 km/h on a 10% grade;

The air density in the mentioned conditions is 1.2258 kg/m3.
a) The static load distribution on level road can be computed directly, as the
horizontal force exchanged between the two parts of the vehicle vanishes. The un-
knowns are six, the loads of the five axles and the vertical force exchanged between
tractor and trailer. These can be computed from the set of linear equations

⎡
⎢⎢⎢⎢⎢⎢⎣

1.000 1.000 0 0 0 −1.000
1.175 −2.310 0 0 0 1.860

0 0 1.000 1.000 1.000 1.000
0 0 −6135 −7.395 −8.715 0

−1, 070 −0, 1109 4, 054 0 −4, 446 0
−0, 5474 −0, 06087 0 4, 054 −5, 359 0

⎤
⎥⎥⎥⎥⎥⎥⎦
×10−3

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fz1

Fz2

FzR1

FzR2

FzR3

Fzt

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

70.100
0

313.900
−1.597.900

0
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

The forces acting on the axles are then 58.660 kN, 105.700 kN, 80.060
kN, 83.600 kN and 56.050 kN. The force at the tractor-trailer connection is
94.210 kN.
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b) A 10% grade corresponds to a grade angle α = 5.7◦. In this case the load
distribution can also be computed directly, since the horizontal force exchanged
between the two parts of the vehicle does not depend on the normal forces. Op-
erating as in the previous case, the forces acting on the axles are 45.050 kN,
115.720 kN, 78.900 kN, 84.490 kN and 58.000 kN. The forces at the tractor-
trailer connection are 90.980 kN in the vertical direction and 31.236 kN in the
horizontal direction.
c) At 70 km/h = 19.44 m/s the value of Δx is 3.7 mm for all tires. In this case,
owing to rolling resistance, an iterative solution must be obtained. However, the
convergence is very fast, as only five iterations are needed to reach a difference
between the results at the i -th and at the (i− 1 )-th iteration smaller than 10−6

in relative terms. The other results are not dissimilar to those obtained in the
previous case: The forces on the axles are 43.980 kN, 116.970 kN, 78.710 kN,
84.440 kN and 58.060 kN; those at the tractor-trailer connection are 91.150 kN
in the vertical direction and 33.440 kN in the horizontal direction.

Note that the matrix of the coefficients of the relevant set of equations is the
same in all cases.

23.2 TOTAL RESISTANCE TO MOTION

Consider a vehicle moving at constant speed on a straight and level road. The
forces that must be overcome to maintain a constant speed are aerodynamic drag
and rolling resistance.

By using the simplified formula seen in Part I to express the dependence of
rolling resistance on speed, the modulus of the first is

Rr =
∑
∀i

Fzi

(
f0 + KV 2

)
, (23.12)

where Fzi
is the force acting in a direction perpendicular to the ground on the

ith wheel.
Assuming that the rolling coefficient f is the same for all wheels2, the sum

of all normal forces can be brought out from the sum and, taking into account
aerodynamic lift as well, it follows that

Rr =
(
f0 + KV 2

)∑
∀i

Fzi
=

[
mg cos(α) − 1

2
ρV 2

r SCz

]
(f0 + KV 2) . (23.13)

Aerodynamic drag (or, better, the aerodynamic force in the x direction,
Eq.(21.11)) has a value (always as an absolute value) of

Ra =
1
2
ρVr

2SCx . (23.14)

2This assumption holds only as a first approximation, since it does not take into account
the dependence of f on the driving or braking conditions or other variables.
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With increasing speed, the importance of the former grows; at a given value
of the speed aerodynamic drag becomes more important than rolling resistance.
This speed is lower for small cars while for larger vehicles, particularly for trucks
at full load, rolling resistance is the primary form of drag. Another factor is that
usually the mass of the vehicle grows with its size more rapidly than the area of
its cross section.

If the road is not level, the component of weight acting in a direction parallel
to the velocity V , i.e. the grade force

Rp = mg sin(α) (23.15)

must be added to the resistance to motion.
The grade force becomes far more important than all other forms of drag

even for moderate values of grade (Fig. 23.1). Since the force acting in a direction
perpendicular to the ground on a sloping road is only the component of weight
perpendicular to the road, the total resistance to motion, or road load, as it is
commonly referred to, can be written in the form

R =
[
mg cos(α) − 1

2
ρV 2SCz

]
(f0 + KV 2) +

1
2
ρV 2SCx + mg sin(α) , (23.16)

where, assuming that the air is still, the velocity with respect to air Vr becomes
conflated with velocity V.

To highlight its dependence on speed, the road load can be written as

R = A + BV 2 + CV 4 , (23.17)

where
A = mg [f0 cos(α) + sin(α)] ,

B = mgK cos(α) +
1
2
ρS[Cx − Czf0] ,

C = −1
2
ρSKCz .

The last term in Eq. (23.17) becomes important only at very high speed in
the case of vehicles with strong negative lift: It is usually neglected except in
racing cars.

Since the grade angle of roads open to vehicular traffic is usually not very
large, it is possible to assume that

cos(α) ≈ 1 , sin(α) ≈ tan(α) ≈ i ,

where i is the grade of the road. In this case coefficient B is independent of the
grade of the road and

A ≈ mg(f0 + i)

depends linearly on it. C never depends on grade.
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23.3 POWER NEEDED FOR MOTION

The power needed to move at constant speed V is obtained simply by multiplying
the road load given by Eq. (23.17) by the value of the velocity

Pn = V R = AV + BV 3 + CV 5 . (23.18)

Example 23.3 Plot the curves of the road load of the car of Appendix E.1 on
level road and on a 10% grade. Plot the curve of the power needed for constant
speed driving on level road.

The results obtained through Eq. (23.16) are shown in Fig. 23.4.

Example 23.4 Plot the curves of the road load of the articulated truck of
Appendix E.9 on level road and on a 10% grade.

The results obtained through Eq. (23.16) are shown in Fig. 23.5. Note that
in this case aerodynamic drag amounts to a relatively small part of the road load
and that on a 10% grade the grade force is very high.

Motion at constant speed is possible only if the power available at the wheels
at least equals the required power given by Eq. (23.18). This means that the

FIGURE 23.4. Resistance (a), and power (b) needed for motion at constant speed for
the small car of Appendix E.1. Road load on the same car driving on a 10% slope (c).



196 23. DRIVING DYNAMIC PERFORMANCE

FIGURE 23.5. Aerodynamic drag (curve 1), rolling resistance (2), grade force (3) and
total road load (4) for the articulated truck of Appendix E.9 on level road (a) and on
a 10% grade (b).

engine must supply sufficient power, taking into account losses in the trans-
mission as well, and that the road-wheel contact must be able to transmit this
power.

When assessing the longitudinal performance of motor vehicles, it is of-
ten expedient to plot the power required for motion as a function of speed on
a logarithmic plot. If the term CV 5 is neglected, the two remaining terms of
Eq. (23.18) are represented by straight lines with slopes respectively equal to
1 and 3. The two straight lines cross in a point whose x-coordinate is the so
called characteristic speed, easily obtained from Eq. (23.18)

Vcar =

√
A

B
. (23.19)

Its y-coordinate is the logarithm of half the corresponding characteristic
power (Fig. 23.6), whose value is:

Pcar = AVcar + BV 3
car = 2A

√
A

B
. (23.20)

The plot of the power required for motion cannot be obtained directly by
adding the ordinates of the two straight lines of Fig. 23.6: the power must be
computed from its logarithm, the values of the powers given by the straight lines
added to each other, and the logarithm computed once again.

How to plot the curve Pn(V ) on a logarithmic plot is described in detail by
M. Bencini3. Once the curve for α = 0 has been obtained, all other curves for
any value of α can be obtained by moving the curve on the P (V ) plane. The

3M. Bencini, Dinamica del veicolo considerato come punto, Tamburini, Milano, 1956.
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FIGURE 23.6. Power needed for motion. Logarithmic plot.

curve must be moved by

Δ1 =
1
2

log
[
f0 + tan(α)

f0

]
+

1
2

log
[
cos(α)

2gK + λ

2gK cos(α) + λ

]
, (23.21)

where
λ = ρSCx/m ,

in the horizontal direction, and by

Δ2 =
3
2

log
[
f0 + tan(α)

f0

]
+

1
2

log
[
cos3(α)

2gK + λ

2gK cos(α) + λ

]
, (23.22)

in the vertical direction. For values of the road slope small enough to accept the
approximation cos(α) ≈ 1, equations (23.21) and (23.22) simplify as

Δ1 =
1
2

log
(

f0 + i

f0

)
, Δ2 =

3
2

log
(

f0 + i

f0

)
, (23.23)

where i = tan(α). The curves move along a straight line with slope 3 and the
displacement depends only on the value of f0, and obviously on the slope i of
the road.

It is then possible to obtain a single logarithmic plot containing a set of
curves Pn(V ) for different values of α that can be used for any vehicle in the
range where cos(α) ≈ 1. Such a plot must be adapted to any particular vehicle
by computing the values of characteristic speed and power (Vcar, Pcar) on level
road. If the value of the rolling coefficient f0 coincides with the reference value
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f0r
used to plot the diagram, the reference value of the slope ir shown on the

plot is the actual one, otherwise

i = irf0/f0r
. (23.24)

The plot Pn(V ) obtained for the values reported in the caption is shown
in Fig. 23.7. Such a plot holds for any vehicle in the zone characterized by low
values of α. The error made using Fig. 23.7 for other vehicles increases with
increasing α, but remains negligible for values of i up to 0.3 ÷ 0.4.

23.4 AVAILABLE POWER AT THE WHEELS

The engine drives the wheels through a mechanical transmission whose task is
essentially that of reducing the angular velocity of the engine to that required at
the wheels. If a reciprocating internal combustion engine is used, the transmission
also has the task of uncoupling the engine from the wheels at a stop or at low
speed, for which reason the driveline includes a clutch or a torque converter as
well.

It is possible, at least as a first approximation, to state a value of the effi-
ciency ηt for any type of driveline. The power available at the wheels is then

Pa = Peηt . (23.25)

Depending on the type of transmission, the efficiency can be considered as
a constant (obviously only as a first approximation), or may be computed, but
only after assessing the working conditions of the driveline and above all of the
torque converter, if present.

To compute the efficiency of the driveline, or the power it dissipates, see the
relevant section of Part II.

The equation linking the speed of the engine to that of the wheels is simply

V = ΩeReτ t , (23.26)

where τ t is the overall gear ratio, defined as the ratio between the speed of the
wheels and that of the engine shaft, and is usually smaller than 1. Once the gear
ratios of all parts of the transmission are known, the power available at the
wheels can be plotted as a function of the speed of the vehicle on the same plot
where the power needed for motion at constant speed is reported.

If the curves of the required and available power are plotted on a logarithmic
plot, any change of the gear ratio causes a translation of the curve related to
the available power along the V -axis, while a change in the efficiency of the
driveline causes a translation of the same curve along the P -axis (Fig. 23.8). If a
continuous transmission (CVT) is present, the position of the curve is a function
of the gear ratio, and then it is possible to define a zone on the V P -plane where
all possible working conditions are included.

See Part II for situations where a torque converter is present.
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FIGURE 23.7. Logarithmic plot of the power needed for motion. The characteristic
speed and power refer to a level road with f0 = 0.013. For high values of the slope the
plot holds only if m = 1000 kg; S = 1.7 m2; Cx = 0.42; K = 6.5×10−6 s2/m2; g = 9.81
m/s2; ρ = 1.22 kg/m3.

23.5 MAXIMUM POWER THAT CAN BE
TRANSFERRED TO THE ROAD

The power needed to overcome the road load must be transferred through the
road-wheel contact. As it increases with both increasing speed and the grade of
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FIGURE 23.8. Curves of maximum engine power and power available at the wheels
plotted with logarithmic scales. Changing the efficiency of the transmission and the
overall transmission ratio.

the road, there is a limit on the maximum speed that can be reached and the
maximum grade that can be managed because of this limit on the driving force
the vehicle can exert, even if no limit to the power supplied by the engine exists.

The maximum power that can be transferred by the vehicle is

Pmax = V
∑
∀i

Fzi
μip

, (23.27)

where the sum is extended to all the driving wheels.

Remark 23.2 If the maximum longitudinal force coefficient μip
and the load

acting on the driving wheels were independent of speed, the maximum power
would increase linearly with V . The optimum engine characteristic Pe(Ωe) for a
vehicle with a transmission with fixed ratio would be a linear characteristic. This
is not the case, however, as the situation is far more complicated.

To begin with, consider the case of a vehicle with two axles, all of which
are driving and assume that all wheels work with the same longitudinal slip, i.e.
that the values of μi are equal. This situation will be referred here to as “ideal
driving force”.

The maximum power that can be transferred to the road is then

Pmax = V μip

(
mg cos(α) − 1

2
ρV 2SCz

)
. (23.28)
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23.5.1 Vehicles with all wheels driving

When all wheels are driving wheels, it is possible to assume that the rolling
resistance of the wheels is due only to the forward displacement of force Fz at
the road-wheel contact, and hence is overcome directly by the driving torque
exerted by the engine.

To compute the maximum grade that can be managed at low speed, it is
possible to assume that the only road load that must be overcome at the wheel-
road contact at such speeds is the grade load. By equating the power required for
motion (Eq. 23.18) to the maximum power that can be transferred (Eq. 23.28),
the maximum grade is readily obtained,

tan(αmax) = imax = μxp
. (23.29)

To compute the maximum speed that can be reached, the decrease of trac-
tion at the road-wheel contact occurring with increasing speed must be modelled.
A very simple way is to assume a linear law

μip
= c1 − c2V . (23.30)

By equating the power required for motion at constant speed (except that
related to rolling resistance) to Eq. (23.28) and using Eq. (23.30) for expressing
the decrease of the available driving force with the speed, the maximum speed
can be obtained from the cubic equation

Czc2V
3 +

(
Czc1 + Cx

)
V 2 − 2mg

ρS

[
(c1 − c2V ) cos(α) − sin(α)

]
= 0 . (23.31)

The values of the maximum grade and of the maximum speed can only be
achieved in ideal conditions, since the longitudinal slip of all wheels has been
assumed to be the same. The forces acting on the driving axles can be computed
by using the procedure already seen: They generally depend not only on the
static load distribution but also on the speed and the acceleration.

In the case of a vehicle with two axles, both driving, the ratio

KT =
Fx1

Fx2

between the driving force at the front wheels and that at the rear wheels is
usually a constant. If the wheels all have the same diameter, it coincides with
the ratio between the driving torques supplied to the two axles. Assume that the
two axles have tires of the same type and operate on patches of road with the
same characteristics. If

KT
Fz2

Fz1

> 1 ,

the limit conditions occur at the front wheels. At the onset of slipping, the power
that can be transferred to the road is then

Pmax = V μxp
Fz1

1 + KT

KT
. (23.32)
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By plotting the maximum power obtained by Eq. (23.32) versus the speed
together with the power required given by Eq. (23.17) multiplied by V , the
maximum speed at which the vehicle is able to transfer enough power to maintain
its speed is readily obtained. It must be remembered that rolling resistance must
be neglected in the computation of the required power.

If, on the contrary,

KT
Fz2

Fz1

< 1 ,

the limit conditions occur at the rear wheels and the maximum power that can
be transferred to the road is

Pmax = V μxp
Fz2(1 + KT ) . (23.33)

The maximum grade that can be managed is also easily obtained. Since
in this case the speed can be set to zero, it follows that, for an all-wheel drive
vehicle,

tan(αmax) = imax =
bc1μxp

(
1 + 1

KT

)

l + zGμxp

(
1 + 1

KT

) ,

tan(αmax) = imax =
aμxp

(1 + KT )
l + zGμxp

(1 + KT )
,

(23.34)

respectively if the rear wheels slip first, i.e. if

KT <
b − hG tan(αmax)
a + hG tan(αmax)

,

or if this condition does not hold. It is, however, unlikely that the rear wheels
are in a critical condition on a very steep grade, since this would require an
abnormally low value of KT . The value of μxp

is that for a vanishingly small
speed.

23.5.2 Vehicles with a single driving axle

If not all axles are driving, the power that can be transferred to the ground is
smaller. Aerodynamic drag increases the load on the rear wheels, as does a posi-
tive grade of the road: The power that can be transferred by a rear-wheels drive
vehicle thus increases with speed, due to drag, and with the slope. Aerodynamic
moment and lift have different effects depending on the sign of the moments and
the position of the centre of mass. The maximum power is then

Pmax = V μxp
Fz1 , Pmax = V μxp

Fz2 , (23.35)

respectively for the cases of front and rear wheel drive. Only the rolling resis-
tance of the free wheels must be accounted for in the computation of the power
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needed for constant speed driving ; this is easily done by introducing Fz2 or Fz1 ,
respectively for front- and rear-wheels drive, in the expression of the road load
instead of the total load on the ground.

Equations (23.34) could still be used for the computation of the maxi-
mum grade that can be managed. The first equation holds for front-wheel drive
(1/KT = 0) and the second for rear-wheel drive, (KT = 0) but they do not
include the rolling resistance of the free wheels.

If this effect is accounted for, the equations are modified as

tan(αmax) = imax =
bμxp

− af0

l + zG

(
μxp

+ f0

) ,

tan(αmax) = imax =
aμxp

− bf0

l − zG

(
μxp

+ f0

) .

(23.36)

Example 23.5 Plot the curves of maximum transmissible and required power
for the vehicle of Appendix E.2 on dry and wet road. Compute the maximum
speed and the maximum grade that can be managed.

Repeat the computations assuming that the same vehicle has rear-wheel
drive, without changing the static load distribution on the ground.

Assume that c1 = 1.1 and c2 = 6 × 10−3 s/m on dry road and c1 = 0.8 and
c2 = 8 × 10−3 s/m on wet road.

The curves of the maximum transmissible power are shown in Fig. 23.9,
together with those of the required power. The vehicle of the example can thus
reach a maximum speed of 225 km/h (wet road) or 308 km/h (dry road) for
reasons linked only to the wheel driving force.

The computations were repeated assuming that the driving wheels are the
rear ones. In this case, the maximum power that can be transferred to the ground

FIGURE 23.9. Maximum transmissible power and required power on level road in the
case of Example 23.5.
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at low speed is lower than in the previous case, since the static load distribution
was specified in order to obtain good performance with front-wheel drive.

The load on the rear wheels increases with increasing speed and eventually
gets larger than that on the front wheels. On dry road, the maximum speed is then
higher for the vehicle with rear-wheel drive, despite the fact that at standstill the
front wheels are loaded by about 60% of the weight.

The values of the maximum speed for the rear-wheel drive vehicle are of 218
km/h on wet road or 328 km/h on dry road.

Note that the required power curve includes only the rolling resistance of the
non-driving wheels, and is slightly different in the two cases.

Also note that the curves do not take into consideration the load shift due
to acceleration, so for speeds lower than the maximum speed, where the vehicle
would accelerate if the maximum power is applied, they are not realistic.

The maximum grade angle that can be managed when only the wheel driving
force is considered may be computed using Eq. (23.36), obtaining 28.0◦ on dry
road and 22.1◦ on wet road, corresponding to grades of 53.1% and 40.6% respec-
tively. If the driving wheels were the rear ones the values would have been 29.4◦

(56.3%) and 20.6◦ (37.6%).

In the case of rigid axles in which the final gear is directly mounted on the
axle and the propeller shaft is in the longitudinal direction, the drive torque Md

applied to the axle causes a transversal load shift between the driving wheels of
the same axle.

With reference to Fig. 23.10 the load shift ΔFz could be determined easily as

ΔFz =
Md

ti
where Md = FxRlτf , (23.37)

FIGURE 23.10. Transversal load shift due to the driving torque Td.
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Fx is the longitudinal force exerted by the axle on the ground and τf is the gear
ratio of the final drive, defined as the ratio between the speed of the wheels and
that of the propeller shaft (it is usually smaller than unity).

Equation (23.37) is not, however, usually correct as under the action of
the driving torque the vehicle body is subject to a roll rotation, which in turn
produces an added torque on the axle through the suspension system. If the roll
stiffness of the ith suspension is Kti

, the roll angle is

φ = − Md∑
∀i Kti

.

The torque exerted on the axle is then equal to

φKt = − MdKt∑
∀i Kti

,

where Kt is the roll stiffness of the relevant suspension.
The load shift is thus

ΔFz =
FxRlτf

ti

(
1 − Kt∑

∀i Kti

)
. (23.38)

If the vehicle has a standard differential gear, the maximum driving force
which can be exerted by the driving axle is equal to twice that which can be
exerted by the less loaded wheel, i.e.

Fxmax
= μp(Fz − 2ΔFz) . (23.39)

If, on the contrary, a locking differential is used, within the limits of the
assumption that the force coefficient μp is independent of the load, the transversal
load shift does not affect the maximum driving force.

Example 23.6 Consider the articulated truck of Appendix E9. Compute
a) the maximum driving force at a constant speed of 70 km/h on level road;
b) the same as in a), but on a 10% grade;
c) the maximum grade that can be managed at 10 km/h.

All the above computations must be performed taking into account the
transversal load shift and repeated for the case of a locking differential. Assume
that the maximum longitudinal force coefficient is μp = 1.
a) At 70 km/h = 19.44 m/s the load on the driving axle is 106.940 kN while the
required driving force is 3.187 kN. Taking into account the gear ratio of the final
drive, the driving torque on the axle is 344 Nm, yielding a roll angle of 2.67◦.
The transversal load shift is ΔFz = 96.4N , and the maximum longitudinal force
is 106.75 kN. This value compares with the 106.94 kN that could be exerted if a
locking differential were used, showing that the latter would improve the ability
to exert longitudinal forces only marginally in this case.
b) At 70 km/h on a 10% grade the load on the driving axle is 116.97 kN and
the required driving force is 91.15 kN, corresponding to a driving torque on the
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axle of 4453 Nm. A very large roll angle, namely 34.6◦, results from the values
of the stiffness of the axles, but this is an unrealistic result as for large torques
the nonlinear nature of the suspensions would limit rotations. Assuming that the
stiffness distribution between the suspensions in the nonlinear range is the same
as in the linear range, the transversal load shift is ΔFz = 1249N , yielding a
maximum longitudinal force of 114.47 kN; if a locking differential were used, a
force of 116.97 kN would have been exerted.
c) By computing the force required for motion and the maximum force that can
be exerted by the driving wheels at 10 km/h = 2.78 m/s for different values of
the grade, it is possible to find the value of the latter at which the two are equal.
This procedure allows one to find the maximum value of the grade as 34.9%, i.e.
a grade angle of 19.2◦.

Note that the driving torque is very large on that grade and the suspensions
operate clearly outside their linear range: The load shift can thus be far smaller
than that computed. If no load shift was accounted for, a value of the grade of
37.8%, i.e. a grade angle of 20.7◦, would have been found.

23.6 MAXIMUM SPEED

The maximum speed that can be reached on level road with a given transmission
ratio can be found by intersecting the curve of the available power at the wheels
with that of the required power on level road. The transmission ratio causing
this intersection to occur at the maximum available power allows the highest
speed that can be attained by a given vehicle-engine combination (curve 1 in
Fig. 23.11) to be reached.

The computation of the maximum speed and of the overall gear ratio τ t

necessary to reach it is straightforward. By intersecting the required power curve
with the horizontal straight line

P = Pamax
= Pemax

ηt ,

a fifth degree equation is obtained

AV + BV 3 + CV 5 = Pemax
ηt , (23.40)

whose solution directly yields the maximum value of the speed.
If aerodynamic lift is neglected (actually it is sufficient to neglect the contri-

bution to rolling resistance proportional to the square of the speed due to lift),
C vanishes and the equation is cubic. Its solution can be obtained in closed form

Vmax = A∗
(

3
√

B∗ + 1 − 3
√

B∗ − 1
)

, (23.41)

where

A∗ = 3

√
Pemax

ηt

2mgK + ρSCX
= 3

√
Pemax

ηt

2B
,
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B∗ =

√
1 +

8m3g3f3
0

27P 2
mmax

η2
t (2mgK + ρSCX)

=

√
1 +

4A3

27P 2
mmax

η2
t B

.

Once the maximum speed has been obtained, the gear ratio allowing the
vehicle to reach it is

τ t =
Vmax

Re(Ωe)Pmax

, (23.42)

where (Ωe)Pmax
is the engine speed at which the peak power is obtained.

If the transmission is of the mechanical type, the overall gear ratio is
the product of the gear ratio at the gearbox (in the relevant gear) and that
of the final drive

τ t = τgτf .

The transmission ratio of the gearbox, which in top gear is usually close
to 1, can be stated and consequently the gear ratio τf at the final drive can be
computed.

Note that this procedure is based on the assumption that the intersection
in Fig. 23.11 occurs at the peak of the engine power curve. This can, however,
occur in only one given condition, since not only the load, but also the rolling
resistance coefficient and even the air density, affect the road load curve. Air
density also affects the engine power curve. If the intersection occurs in the
descending branch of the curve (situation 2 in Fig. 23.11) the vehicle is said to
be “undergeared”, i.e., the overall transmission ratio is “too short”. Conversely,
if the intersection occurs in the ascending branch of the curve (situation 3 in
Fig. 23.11), the vehicle is “overgeared” and the overall transmission ratio is “too
long”.

log(P)

Pdmax

Vmax

log(V)

a)

Pa

2
1

3
Pn

FIGURE 23.11. Maximum speed for a vehicle with internal combustion engine.
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The first situation can be purposely obtained to improve the acceleration
and grade performance of the vehicle, while the second allows fuel consumption
to be reduced. The degree of undergearing λu can be defined as

λu =
(Ω)Vmax

(Ω)Pmax

. (23.43)

It is greater than unity if the vehicle is undergeared and smaller than 1 in case
of overgearing.

There are thus two ways of choosing the top gear ratio: One has already
been stated, namely a “fast” gear ratio, with a degree of undergearing equal
to about unity, i.e., chosen in order to reach the maximum speed. A different
approach is to use a longer overgeared ratio, with the goal of reducing fuel
consumption (see below). In practical terms, this trade-off is typical of five or six
speed transmissions: Either the maximum speed is reached in fifth (sixth) gear
or in fourth (fifth) gear, the longest one being an overdrive gear.

Remark 23.3 This strategy works only in the case of vehicles with high power/
weight ratio: In low powered vehicles, this “economy” gear would be very diffi-
cult to use since any increase of the required power, e.g., due to a slight grade,
headwind, etc., would compel a shift to a shorter gear. Undergearing may be a
necessity in this case.

23.7 GRADEABILITY AND INITIAL CHOICE
OF THE TRANSMISSION RATIOS

The maximum grade that can be managed with a given gear ratio may be ob-
tained by plotting the curves of the required power at various values of the slope
and looking for the curve that is tangent to the curve of the available power
(Fig. 23.12). The slope so obtained is, however, only a theoretical result, since
it can be managed only at a single value of the speed: If the vehicle travels
at a higher speed, it slows down because the power is not sufficient, but if its
speed is reduced the power is insufficient and the vehicle slows down further:
The condition is therefore unstable and the vehicle stops.

To be able to manage a specified slope safely, the curve of the available power
must be above that of the required power in a whole range of speeds, starting
from a value low enough to assure that starting on that slope is possible. To
choose a value of the gear ratio of the bottom gear allowing the vehicle to start
on a given grade, it is possible to state a reference speed and to compute the
gear ratio in such a way that at that speed the Pa and Pn curves intersect.

As the vehicle is moving at low speed, only the first term of the required
power curve needs to be accounted for. As the power developed by the engine
can be written in the form

Pe = MeΩe = Me
V

Reτgτf
, (23.44)
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FIGURE 23.12. Maximum slope for a vehicle with internal combustion engine.

where Me is the engine torque, the equilibrium condition allows the overall gear
ratio to be computed as

τ t =
Meηt

Remg[f0 cos(α) + sin(α)]
. (23.45)

The value of the engine torque to be introduced into Eq. (23.45) can be the
maximum torque available at the minimum engine speed, possibly multiplied by
a number smaller than 1 for safety. The mass of the vehicle must be that at full
load, including the maximum trailer mass the vehicle is allowed to tow. For the
grade, values of 25% or even 33% for road vehicles can be considered, but it must
be kept in mind that in some cases, as in ferry ramps or private garage ramps,
very steep grades may be encountered. For off-road vehicles values up to 100%
can be considered.

Another consideration in the choice of the gear ratio for the bottom gear
is to assure a regular working of the engine at a speed chosen so as to avoid a
prolonged use of the clutch in very low speed driving. A reference value may be
6 or 8 km/h. Both criteria must be satisfied.

Once the ratios of the bottom and top gears have been chosen, the inter-
mediate ones can be stated using different criteria. The simplest is to set them
in geometric sequence, i.e., stating that the ratios between two subsequent gear
ratios are all equal. Operating in this way, the available power curves on the
P (V ) logarithmic plot are all equispaced.

There may be some advantages in having the curves a bit closer to each
other in the high speed range, so that the third gear (in a four speed gearbox)
is closer to the fourth. If this is required, it is possible to set in a geometric
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sequence not the gear ratios τ i but the ratios between them τ i/τ i+1. This can
give a feeling of sport driving, since the gear ratios are more crowded in the zone
of most common use.

The choice of the transmission ratios is much influenced by considerations
that are beyond the scope of the present section, being mostly linked to the
acceleration performance of the vehicle. This aspect was introduced in Part III
and will be dealt with in Section 23.10.

Remark 23.4 Since the values of the gear ratios have a large influence on the
performance of the vehicle and above all on the driver’s perception of them, the
trade-off dominating their choice is also a matter of subjective impressions and
the traditions of various manufacturers. The market sector a manufacturer aims
at may have more influence in deciding the matter than technical considerations
alone

Example 23.7 Choose the overall top gear ratio for the car of Appendix E.2
to reach the maximum speed in the load condition indicated. Choose the bottom
gear ratio to start on a 33% grade with a safety margin of 1.1 with respect to
the maximum engine torque. Compare the ratio obtained with those listed in the
Appendix.

Equation (23.40), solved numerically, yields a maximum speed of 42.6 m/s
= 153.4 km/h.

The overall transmission ratio τgτf allowing the intersection between
the two curves on the P (V ) plane to occur at the peak power is 0.3044. If a
value of 22/21 = 1.048 is accepted for the top gear ratio, the transmission ratio
of the final drive is 0.2906, which can be approximated as 18/62 with an error
of about 0.08%.

The actual ratio of the final drive is 0.284. By computing the maximum speed
with this value of the transmission ratio, a value of 41.2 m/s = 148.36 km/h is
found. The top speed is reached at 5147 rpm, yielding a degree of undergearing
λu = 0.99.

The overall transmission ratio of the bottom gear can be found using
Eq. (23.45). By dividing the maximum engine torque by a factor of 1.1, a value
of 0.1056 is obtained, corresponding to a value for the gearbox ratio of 0.3639.
This value is far longer than the actual one (0.2154), since the computation was
performed with the vehicle unloaded.

23.8 FUEL CONSUMPTION AT CONSTANT
SPEED

The energy needed to travel at constant speed can be immediately computed by
multiplying the power required for constant speed driving by the time

e = Pnt =
Pnd

V
, (23.46)
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where d is the distance travelled. Note that Eq. (23.46) gives the energy required
at the wheels: To obtain the energy actually required, it must be divided by the
various efficiencies (transmission, engine, etc.).

If the efficiency of the engine ηe and the thermal value H of the fuel are
known, the fuel consumption can be computed. Introducing the expression de-
rived from Eq. (23.16) for the total road load into the expression for the power,
the fuel consumption per unit distance Q is

Q =
A + BV 2 + CV 4

ηtηeHρf

, (23.47)

where ρf is the density of the fuel, introduced to obtain the consumption in
terms of volume of fuel per unit of distance. In S.I. units it is measured in m3/m,
while liters per 100 km is a more practical, although not consistent, unit. Often
the reciprocal of Q, expressed in km per liter or miles per gallon, is used.

From Eq. (23.47), if the aerodynamic lift is neglected, the fuel consumption
would be a quadratic function of the speed if the efficiency of the engine could
be considered as a constant. The plot Q(V ) for a car with a mass of 1,000 kg,
with H = 4.4 × 107 J/kg, ρ = 730 kg/m3 and ηe = 0.25 is shown in Fig. 23.13.

This is not the case, however, as the efficiency of the engine is strongly in-
fluenced by its rotational speed and above all by the power the engine is required
to supply.

To compute the consumption Q, the simplest procedure is to obtain the
power required at the wheels as a function of the speed and hence to compute
the power the engine must supply to travel at constant speed

FIGURE 23.13. Fuel consumption at constant speed as a function of the speed,
assuming that the efficiency of the engine is constant.
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Pe =
Pn

ηt

.

Once the transmission ratio has been stated, the rotational speed of the
engine is known and thus the working point on the map of the engine is located.
From it the efficiency ηe or, which is the same, the specific fuel consumption

q =
H

ηe

is obtained and the fuel consumption can be computed as

Q =
qPn

ηtV ρf

. (23.48)

The curves Q(V ) are of the type shown in Fig. 23.14. They usually have a
minimum at low speed, obtained in conditions in which the engine works at low
power with low efficiency.

Since the conditions in which the engine works depend on the overall trans-
mission ratio, the fuel consumption is also largely influenced by the value of the
gear ratio. Usually the longer the ratio, the lower the consumption, as a “long”
ratio allows the engine to be used at low speed in conditions which are close to
the maximum power, where the specific fuel consumption is low.

As already stated, a transmission ratio longer than that needed to reach the
maximum speed can be used. It is possible to choose it in such a way that the

FIGURE 23.14. Fuel consumption with different gear ratios at constant speed on level
road. Passenger vehicle with five-speed gearbox.
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curve of the required power crosses that of the maximum efficiency at a given
cruise speed, e.g. at a speed equal to 3/4 of the top speed. The fuel consump-
tion at that speed is consequently the minimum possible value, with the added
advantages of a reduction in noise and engine wear due to the reduced engine
speed. Obviously, the performance in terms of maximum speed, acceleration and
gradeability is reduced with respect to that available with a shorter gear ratio.

If a CVT is used, it is possible to control it in such a way that the engine
works at conditions of maximum efficiency at all speeds, i.e. at all speeds the
working point on the map lies on the curve of the maximum efficiency. This is
really expedient, however, only if the increase in efficiency so obtained is greater
than the loss of efficiency, with respect to that of a simpler transmission, due to
the use of the CVT. Moreover, the control law for the transmission ratio of the
CVT is a trade-off among different requirements, which also take into account
acceleration and gradeability.

Example 23.8 Plot the fuel consumption curve in top gear for the car of
Appendix E.2.

The map of the engine is shown in Fig. 23.15a. The curves of the power
required at the engine, i.e. of the power required at the wheels divided by the
transmission efficiency, are plotted for the different gear ratio in the same figure.

The curves identify the working conditions of the engine.
The points at which the curve of the power required in top gear intersects the

curves at constant specific fuel consumption are reported in the first two columns
of the following table

Ω [rpm] P [kW] q [g/HPh] V [km/h] Q [l/100km] 1/Q [km/l]
2083 3.819 400 60.05 4.65 21.52
3157 9.711 300 91.02 5.85 17.10
4135 19.610 250 119.20 7.51 13.31
4664 27.152 240 134.46 8.85 11.30
5320 37.876 250 153.36 11.28 8.87

The other columns list the specific fuel consumption, the speed and the fuel
consumption (in l/100 km) and its reciprocal (in km/l). A value of 730 kg/m3

has been used for the density of the fuel. The fuel consumption is also reported
in Fig. 23.15b.

The experimental data do not allow the fuel consumption to be computed
directly in the other gears, since the required power curves do not cross the curves
of the map. Although there is no difficulty in repeating the tests and plotting
the specific fuel consumption in the relevant zone of the map, not having other
experimental data available it is still possible to interpolate linearily the values
of the efficiency between the lowest curve and the Ω-axis where the efficiency
is zero.
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FIGURE 23.15. Fuel consumption for the car of Appendix E.2. (a) Map of the engine
with superimposed curves of power required at the engine in various gears (1: bottom
gear; 2, 3: intermediate gears; 4: top gear). The specific fuel consumption is reported
in g/CVh. (b) Fuel consumption in l/100 km as a function of the speed (top gear). (c)
Zone of the engine map for low-power operation, with curves of power required at the
engine in various gears. (d) Fuel consumption in l/100 km as a function of the speed
in the various gears.

To interpolate the efficiency means to interpolate the reciprocal of the specific
fuel consumption4; consequently, the curve midway between the curve at 400
gCV/h and the Ω-axis is that related to a doubling of the fuel consumption, 800
gCV/h, and so on. The lower part of the plot of Fig. 23.15a, obtained in this
way, is shown in Fig. 23.15c.

The fuel consumption curves (Fig. 23.15d) were then obtained in the same
way seen above for the top gear. The results are only a rough approximation, but
at any rate their pattern is realistic.

4 To interpolate directly on the specific fuel consumption has little meaning, since the latter
tends to infinity on the Ω-axis.
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23.9 VEHICLE TAKE-OFF FROM REST

Since internal combustion engines cannot operate below a minimum speed Ωmin,
the vehicle cannot slow down below the speed

Vmin = ΩminReτfτg

with the engine connected to the driving wheels. Either a torque converter
or a friction clutch must be used, both for starting and stopping the vehicle and
to facilitate the shifting of gears.

The starting manoeuvre may be easily simulated in an approximate way by
accepting the following assumptions:

1. The manoeuvre is started with the engine running at a speed Ωe0 and the
clutch control is released gradually from time t = 0 to time t = ti in such
a way that the torque Mc it transmits increases linearly in time from 0
to the maximum value it can handle in slipping conditions M∗

c , and then
remains constant until time ts when no more slipping occurs;

2. the engine torque is maintained constant at the value Me;

3. if the vehicle starts on a sloping road, it is kept stationary by some external
means until the clutch torque is sufficient to produce motion;

4. the longitudinal slip of the wheels is small;

5. the terms in V 2 and V 4 of the road load are neglected owing to the low
speed at which the manoeuvre is performed.

The vehicle can be modelled in terms of two moments of inertia, one to model
the engine Je and one to model the vehicle Jv (Fig. 23.16a). The first includes

FIGURE 23.16. (a) Model of the vehicle for the starting manoeuvre. (b) Time history
of the torques acting on the vehicle.
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the moment of inertia of the engine, up to the flywheel, while the moments of
inertia of the clutch disks, of the shaft entering the gearbox, of all the rotating
parts (reduced to the engine shaft), and the mass of the vehicle as “seen” from
the engine are included in the second. For the computational details, see Section
23.10.

Torque Me, which has been assumed to be constant, acts on the moment of
inertia Je. On Jv a drag torque Mv is acting, whose value is simply

M∗
v = mg

[
f0 cos(α) + sin(α)

]
Re

τfτg

ηt

, (23.49)

when the vehicle is moving. When the vehicle is stationary, at the beginning of
the starting manoeuvre, the drag torque is simply equal to the torque the clutch
is supplying, if it is smaller than M∗

v ,

Mv = min(M∗
v , Mc) . (23.50)

The maximum torque the clutch can transfer to the vehicle M∗
c is usually

slightly larger, by 10% to 20%, than the maximum engine torque.
The torques acting on the system are plotted versus time in Fig. 23.16b.

The manoeuvre can thus be subdivided into three phases:

1. From t = 0 to

t = t0 = ti
M∗

v

M∗
c

,

in which the vehicle is at a standstill, since the torque transferred by the
clutch is not yet sufficient to overcome the drag. The engine speeds up.

2. From t = t0 to t = ti, the clutch slips, the vehicle accelerates and the
engine initially continues to speed up, but when M∗

c becomes greater than
Me, it starts to slow down.

3. From t = ti to t = ts, the clutch continues to slip until time ts, when
the transmission starts to behave as a rigid system and the acceleration
continues, as will be seen in Section 23.10.

The equation of motion of the system is simply

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ω̇e =
Me − Mc

Je

Ω̇v =
Mc − Mv

Jv

. (23.51)
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23.9.1 First phase

In the first phase the moments are⎧⎪⎨
⎪⎩

Me = M∗
e

Mc = Mv = M∗
c

t

ti
,

(23.52)

and then the equations of motion are⎧⎪⎪⎨
⎪⎪⎩

Ω̇e =
M∗

e

Je
− M∗

c

Je

t

ti

Ω̇v = 0 ,

(23.53)

with the initial conditions⎧⎨
⎩

Ωe = Ωe0

Ωv = 0
for t = 0. (23.54)

23.9.2 Second phase

In the second phase the moments are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Me = M∗
e

Mv = M∗
v

Mc = M∗
c

t

ti
.

(23.55)

The equations of motion are then⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ω̇e =
M∗

e

Je
− M∗

i

Je

t

ti

Ω̇v =
M∗

c

Jv

t

ti
− M∗

v

Jv
,

(23.56)

with the initial conditions that can be obtained at the end of the first phase.

23.9.3 Third phase

In the third phase the moments are all constant and their values are M∗
e , M∗

c

and M∗
v . The equations of motion are⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ω̇e =
M∗

e − M∗
c

Je

Ω̇v =
M∗

c − M∗
v

Jv
,

(23.57)
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while the initial conditions can be obtained from those at the end of the second
phase.

The manoeuvre ends when the condition Ωe = Ωv holds, i.e., when the
clutch does not slip any more.

By integrating Eq. (23.51) separately for the three phases, the following
time histories for the engine and for the vehicle are obtained:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ωe = Ωe0 +
1
Je

(
Met −

M∗
c

2ti
t2
)

for 0 < t < ti

Ωe = Ωe0 +
1
Je

[
t (Me − M∗

c ) − M∗
c

2
ti

]
for ti < t < ts ,

(23.58)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V = 0 for 0 < t < t0

V =
Re

Jv

(
M∗

c

2ti
t2 − M∗

v t +
M∗2

v ti
2M∗

c

)
for t0 < t < ti

V =
Re

Jv

[
t (M∗

c − M∗
v ) +

M∗2
v ti

2M∗
c

(
M∗2

v − M∗2
c

)]
for ti < t < ts .

(23.59)
The starting time ts can be defined as the time at which the clutch stops

slipping: Ωv = Ωe. By equating the two angular velocities it follows that

ts =
2JeJvM∗

c Ωe0 + M∗2

c ti(Jv − Je) − tiM
∗2

v Je

2M∗
c [Je(M∗

c − M∗
v ) + Jv(M∗

c − Me)]
. (23.60)

To make the subsequent acceleration of the vehicle possible, the angular
velocity of the engine at time ts must be in excess of the minimum velocity at
which it can work regularly; otherwise, it stops. This can occur if the values of
Ωe0 or of Me are too low or if the clutch engages too quickly (ti too low).

If ts < ti the vehicle completes the starting manoeuvre before the clutch
is fully engaged: This poses no problem, but Eq. (23.60) fails to yield a correct
value of ts.

During the manoeuvre, the engine delivers an energy equal to the difference
between its kinetic energy at times 0 and ts added to the energy it produces in
the time interval

ee =
∫ ts

0

MeΩedt +
1
2
Je

(
Ω2

e0
− Ω2

es

)
. (23.61)

Similarly, the vehicle receives the energy

ev =
∫ ts

0

MvΩvdt +
1
2
JvΩ2

vs
. (23.62)

The difference
ec = ee − ev
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yields the energy which is dissipated by the clutch during the starting manoeuvre.
It is strictly linked to the quantity of friction material removed from the disc of
the clutch, i.e. with the wear of that element.

The overall efficiency of the clutch is

ηc =
ev

ee
. (23.63)

The space travelled during the take-off manoeuvre may be computed by
integrating the speed in time. As the vehicle speed follows a pattern that is
roughly quadratic, it may be approximated as

Vsts
3

.

Example 23.9 Simulate a starting manoeuvre for the car of Appendix E.2. As-
sume that the manoeuvre is started at 2000 rpm with the engine supplying a
torque equal to 60% of the maximum torque while the clutch can transfer a torque
equal to 120% of the maximum torque. Assume that ti = 0.5 s, but repeat the
computations for ti = 0.2 s and ti = 0.8 s.

With simple computations it follows that the moment of inertia simulating
the vehicle is Jv = 0.2113 kg m2 and that M∗

v = 1.829 Nm, Me = 52.2 Nm, M∗
c

= 104.4 Nm and Ωe0 = 209.4 rad/s. The results are shown in Fig. 23.17.
The angular velocity of the flywheel simulating the vehicle at the end of the

manoeuvre is 160.4 rad/s, corresponding to a vehicle speed V = 2.561 m/s =
9.22 km/h.

The engine speed, 1532 rpm, is low but sufficient for accelerating the vehicle.
The results obtained for the three cases are

FIGURE 23.17. Angular velocities of the engine and flywheel, simulating the vehicle
during a starting manoeuvre. Results for ti = 0.5 s, 0.2 s and 0.8 s.
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ti ts Ωes Ωvs Vs Vs ee ev ec η ss

[s] [s] [rpm] [rad/s] [m/s] [km/h] [kJ] [kJ] [kJ] [m]

0.2 0.36 1147 120.1 1.918 6.90 5.08 1.63 3.45 36% 0.257

0.5 0.59 1532 160.4 2.561 9.22 8.52 2.78 5.74 33% 0.494

0.8 0.83 1910 200.0 3.193 11.5 12.8 4.45 8.37 35% 0.863

Remark 23.5 The efficiency of the clutch is lower than the value 0.5 which is
often assumed. Actually, it would be 0.5 if the engine rotates at constant speed
with no drag acting on the inertia that has to be accelerated.

The assumptions made are quite rough, particularly those on the laws Me(t)
and Mc(t). However, the results do allow one to obtain reference values that are
independent of the actual behavior of the driver.

In cases where the transmission has a torque converter instead of a clutch,
the torque entering the gearbox may be computed using the equations discussed
in Part II. It is then possible to integrate the equations of motion numerically
and to obtain the time history of the speed.

In the case of a servo-controlled clutch, a procedure similar to the one shown
can be followed by introducing the relevant control laws.

23.10 ACCELERATION

If the curve of the required power lies, at a certain speed, below that of the
power available at the wheels, the difference Pa − Pn between the two is the
power available to accelerate the vehicle.

Remark 23.6 Note that the engine power Pe is usually measured in steady-
state running, in which case using it for acceleration is arbitrary; however,
the time scales of the acceleration of the crankshaft and of the thermodynamic
cycle are different by orders of magnitude, and thus the error introduced by using
the values obtained from the steady-state map is negligible. The driving torque is
then almost the same in steady-state conditions and in acceleration, but in the
latter case part of the engine torque is used to accelerate the engine itself.

Consider a vehicle with a mechanical transmission with a number of dif-
ferent gear ratios. During acceleration a number of rotating elements (wheels,
transmission, the engine itself) must increase their angular velocity, and it is
expedient to write an equation linking the engine power with the kinetic energy
T of the vehicle

ηtPe − Pn =
dT
dt

. (23.64)

The transmission efficiency should not be included for the part or the engine
power needed to accelerate the engine, but the error created as a result is usually
negligible.



23.10 Acceleration 221

Once the transmission ratio has been chosen, Eq. (23.26) gives the relation-
ship between the speed of the vehicle and the rotational speed of the engine.
Similar relationships may be used for the other rotating elements that must be
accelerated when the vehicle speeds up.

The kinetic energy of the vehicle can then be expressed as

T =
1
2
mV 2 +

1
2

∑
∀i

JiΩ2
i =

1
2
meV

2 , (23.65)

where the sum extends to all rotating elements which must be accelerated when
the vehicle speeds up. The term me is the equivalent or apparent mass of the
vehicle, i.e., the mass of an object that, when moving at the same speed as the
vehicle, has the same total kinetic energy. Usually it is written in the form

me = m +
Jw

R2
e

+
Jt

R2
eτ

2
f

+
Je

R2
eτ

2
fτ2

g

, (23.66)

where Jw is the total moment of inertia of the wheels, which are assumed to
have the same radius and hence to rotate at the same speed, and of all elements
rotating at their speed, Jt is the moment of inertia of the propeller shaft and of
all elements of the transmission, and Je is the moment of inertia of the engine,
the clutch and all the elements rotating at speed Ωe.

To account for the fact that the engine is accelerated directly, at least in an
approximate way, the last term is sometimes multiplied by ηt. The modifications
to Eq. (23.66) to take the presence of different wheels on different axles into
account are obvious.

Of the three last terms the first is usually small, the second negligible, while
the third may become very important, particularly in low gear. As only the last
term depends on the transmission ratio at the gearbox, the equivalent mass can
be written in the form

me = F +
G

τ2
g

, (23.67)

where

F = m +
Jw

R2
e

+
Jt

R2
eτ

2
f

, G =
Je

R2
eτ

2
f

or, possibly

G =
Jeηt

R2
eτ

2
f

.

As the equivalent mass is a constant, once the gear ratio has been chosen,
Eq. (23.64) yields

ηtPe − Pn = meV
dV

dt
. (23.68)



222 23. DRIVING DYNAMIC PERFORMANCE

Equation (23.68) holds only in the case of constant equivalent mass. If a
CVT or a torque converter is used, the overall transmission ratio, and hence the
equivalent mass, changes in time and the equation should be modified as

ηtPe − Pn = meV
dV

dt
+

1
2
V 2 dme

dt
, (23.69)

and then

ηtPe − Pn =
(

me +
1
2
V

dme

dV

)
V

dV

dt
. (23.70)

The correction present in Eq. (23.69) is, however, usually very small, since
the equivalent mass does not change very quickly.

From Eq. (23.68), the maximum acceleration the vehicle is capable of at
various speeds is immediately obtained(

dV

dt

)
max

=
ηtPe − Pn

meV
, (23.71)

where the engine power Pe is the maximum power the engine can deliver at the
speed Ωe, corresponding to speed V .

The plot of maximum acceleration versus speed for a passenger vehicle with
a four speed gearbox is shown in Fig. 23.18.

The minimum time needed to accelerate from speed V1 to speed V2 can be
computed by separating the variables in Eq. (23.71)

dt =
meV dV

ηtPe − Pn
(23.72)

FIGURE 23.18. Maximum acceleration as a function of speed. Vehicle with a 4-speed
gearbox.
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and integrating

TV1→V2 =
∫ V2

V1

me

ηtPe − Pn
V dV . (23.73)

The integral must be performed separately for each velocity range in which
the equivalent mass is constant, i.e. the gearbox works with a fixed transmission
ratio. Although it is possible to integrate Eq. (23.73) analytically if the maximum
power curve is a polynomial, numerical integration is usually performed.

A graphical interpretation of the integration is shown in Fig. 23.19: The
area under the curve

V me

ηtPe − Pn
=

1
a

versus V is the time required for the acceleration.
The speeds at which gear shifting must occur to minimize acceleration time

are readily identified on the plot 1/a(V ). Since the area under the curve is the
acceleration time or the time to speed, the area must be minimized and gears
must be shifted at the intersection of the various curves. If they do not intersect,
the shorter gear must be used up to the maximum engine speed.

A criterion for choosing the gear ratios can also be evolved. The lower enve-
lope of the curves (dashed line in the figure) does not depend on the transmission
ratios and may be thought of as the curve that can be followed using a CVT

FIGURE 23.19. Function 1/a(V ) showing the optimum speeds for gear shifting. The
hatched area is the time to speed.
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having the same efficiency as the gearbox and optimized to obtain the maximum
acceleration. The area under the dashed curve is the minimum time to speed
under ideal conditions.

The areas between the dashed and the continuous lines account for the time
which must be added due to the presence of a finite number of speeds: The
transmission ratios can be chosen in such a way as to minimize this area.

By increasing the number of speeds the acceleration time is reduced, since
the actual curve gets closer to the ideal dashed line. However, at each gear shifting
there is a time in which the clutch is disengaged and, consequently, the vehicle
does not accelerate: Increasing the number of speeds leads to an increase in the
number of gear shifts and thus of the time wasted without acceleration. This
restricts the use of a high number of gear ratios.

The speed-time curve at maximum power can be easily obtained by integrat-
ing Eq. (23.73). An example is shown in Fig. 23.20. The actual curve, obtained by
adding the time needed for gear shifting, is also reported. The speed is assumed
to be constant during gear shift.

By further integration it is possible to obtain the distance needed to accel-
erate to any value of the speed

sV1→V2 =
∫ t2

t1

V dt . (23.74)

It is, however, possible to obtain the acceleration space directly, by writing
the acceleration as

a =
dV

dt
=

dV

dx

dx

dt
= V

dV

dx
. (23.75)

By separating the variables and integrating it follows that

sV1→V2 =
∫ V2

V1

V

a
dV =

∫ V2

V1

me

ηtPe − Pn
V 2dV . (23.76)

FIGURE 23.20. Speed versus time curve for the vehicle studied in the previous figures.
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Instead of modelling the vehicle as an equivalent mass accelerated along the
road, it is sometimes modelled as an equivalent moment of inertia attached to
the flywheel of the engine, as seen in the previous section. Its value is

Je = F ′τ2
g + G′ , (23.77)

where
F ′ = FR2

eτ
2
f , G′ = Je .

The acceleration curves can thus be obtained in terms of acceleration of the
engine instead of acceleration of the vehicle.

It is possible to choose the gear ratio of the bottom gear to optimize the
acceleration at low speed. When the transmission ratio is shortened, the torque
available at the wheels increases; however, the equivalent mass also increases
and it is not convenient, from the viewpoint of acceleration, to use transmission
ratios that are too short.

Assuming that the engine torque Me is constant and discarding the terms
in V 3 and V 5 in the required power since at low speed their contribution is
negligible, Eq. (23.71), written for the case of level road, yields

(
dV

dt

)
max

=
ηtMeΩe − AV

meV
=

ηtMe − AReτfτg

Reτfτg

[
F + G

τ2
g

] . (23.78)

By differentiating Eq. (23.78) with respect to τg and equating the derivative
to zero, a quadratic equation in τg, yielding the value of the gear ratio which
maximizes the acceleration, is obtained. If the road load is neglected, which is
reasonable on level road when dealing with strong accelerations, the value of the
optimum gear ratio is

(τg)opt =

√
G

F
≈

√
Je

mR2
e

. (23.79)

The last value has been obtained by neglecting the terms representing the
inertia of the wheels and transmission in the expression of the equivalent mass.
Note that the value so obtained leads to equal contributions for the mass of the
vehicle and the inertia of the engine in the equivalent mass.

The value of the transmission ratio obtained with this criterion is, however,
too short: It usually yields driving torques exceeding the maximum torque that
may be transmitted by the driving wheels without slipping.

Example 23.10 Plot the acceleration curve for the vehicle in Appendix E.2 and
compute the time needed to reach 100 km/h. Compute also the time needed to
travel for 1 km from standstill.

Assume that the time needed for gear shifting is 0.5 s and that the takeoff
manoeuvre follows the results obtained in the previous example.

Constants F and G are F = 855.2 kg and G = 15.96 kg, leading to the
following values of the equivalent mass and moment of inertia:
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FIGURE 23.21. Speed and distance travelled as functions of time during a full power
acceleration. The initial take-off manoeuvre has also been considered.

me = 1199 kg = 1.45 m Je = 0.296 kg m2 in first gear,
me = 975 kg = 1.18 m Je = 0.692 kg m2 in second gear ,
me = 897 kg = 1.08 m Je = 1.823 kg m2 in third gear,
me = 870 kg = 1.05 m Je = 5.085 kg m2 in fourth gear.

The results of the numerical integration yielding the speed and the distance
travelled as functions of time during an acceleration are shown in Fig. 23.21.
They were computed based on the results obtained in the previous example with
a time ti = 0.5 s, namely a time of 0.59 s, a speed of 9.22 km/h and a distance
of 0.494 m.

The engine power was introduced in the computation through the best-fit
third degree polynomial found in Example 4.5, and the speeds at which gear shift-
ing occurs were determined as the minimum value between that corresponding to
the maximum speed of the engine (6000 rpm) and the speed at which the acceler-
ation obtainable in the following gear equals that obtainable with the gear under
consideration. They are

5784 rpm (V=34.3 km/h) for the first gear,
6000 rpm (V=60.6 km/h) for the second gear,
6000 rpm (V=102.3 km/h) for the third gear.

The time to reach a speed of 100 km/h is 16.3 s and that needed to reach
the 1 km mark is 38.1 s.

23.11 FUEL CONSUMPTION IN ACTUAL
DRIVING CONDITIONS

Fuel consumption at variable speed gives the customer a more reliable estimate
of the actual fuel consumption, but its determination is much more difficult. For
this reason, several simplifications are usually accepted.
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The first describes the actual use of the vehicle through a cycle, i.e. a time
history of the speed of the vehicle, that takes into account neither the behavior
of an actual driver nor the actual road and traffic conditions. This time history
is used for all vehicles.

This simplification is implicitly accepted by European standards, which es-
tablish an urban and a suburban cycle to evaluate fuel consumption. These cycles
were described in Part I. Fuel consumption measured in these cycles is the only
value that may be supplied to the customer, and must be expressly stated on
the data sheet of the vehicle.

Different cycles, obtained directly by manufacturers on similar vehicles in
actual operating conditions may give more realistic values, but they are useful
only to designers; this subject has also been covered in Part I.

A second simplification is that of computing the fuel consumption in a cy-
cle as the sum of the partial consumption obtained in the various parts that
approximate the chosen cycle assuming quasi-steady-state operation.

It is clear that the error so introduced decreases with decreased duration of
the parts of the cycle that are assumed to be steady state; the error, however,
is also due to the fact that fuel consumption in variable conditions is different
from the fuel consumption obtained by approximating them with a sequence of
steady state operations. This is due to the following reasons:

• In non-stationary operation, the thermal conditions of the engine are vari-
able, so that the thermal energy losses are different from those occurring
when the temperature has reached its steady-state value;

• in non-stationary conditions, part of the fuel burns with a lower efficiency
due to condensation of the vapor on the intake manifold in indirect injection
engines, or to a different evaporation rate of the fuel droplets in direct
injection engines.

The difference is never very large, particularly if the instant power required
by the cycle is much lower than the maximum engine power; this occurs often in
statistically relevant cycles, since traffic conditions are always such as to prevent
the engine from obtaining maximum performance. The comparison between mea-
sured and computed data always shows differences between 2 and 5%, with the
computed consumption always lower than the actual one, due to the mentioned
causes.

Following the above mentioned simplifications, the reference cycle is subdi-
vided into a series of short time intervals; experience shows that a duration of
about 1 s is acceptable for the intervals.

If Vi is the speed at instant ti of the cycle, the fuel consumption in the time
interval from ti to ti+1 will be

Δei =
1
ηt

(
A + BVmi + CV 4

mi + meVmi
Vi+1 − Vi

ti+1 − ti
)
)

(ti+1 − ti)
1

ηeHρf

,

(23.80)
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where:
Vmi =

Vi+1 + Vi

2
. (23.81)

This equation holds if the value of the first term in brackets is positive or
vanishes, that is if the vehicle accelerates or decelerates with a rate low enough
to compensate for the road load with inertia forces. If its value is negative, the
contribution must be set to zero, since controllers on all modern engines cut off
the fuel supply as the vehicle slows.

The contribution to fuel consumption when Vi = 0 is

Δei = Qi(ti+1 − ti) , (23.82)

where Qi is the fuel consumption at idle in liters/s.
The total fuel consumption in the cycle is

Q =
n∑

i=1

Δei . (23.83)

An idea of the relative importance of the various forms of resistance to
motion on fuel consumption in actual conditions is given by Fig. 23.22, where
two different driving conditions are considered. Although the figure was obtained
for a particular car (a medium sized saloon car), the results are typical. While in
motorway driving aerodynamic drag is important, most of the energy in urban
driving is expended to accelerate the vehicle.

The average was computed by using statistical data on average European
conditions. From the average it is clear that reducing the mass of the vehicle,
which affects both rolling resistance and the power needed to accelerate, is more
important than reducing aerodynamic drag, and that the possibility of recovering

FIGURE 23.22. Energy required for motion in two different driving conditions.
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FIGURE 23.23. Effect of the engine speed at which gear shifting occurs (a) and of the
average speed (b) on the fuel consumption in city driving.

braking energy, which allows a part of the energy used to accelerate the vehicle
to be recovered, allows important energy savings to be obtained.

Numerical simulations can be used to study the effects of driving style on
fuel consumption. In city driving, it is expedient to use the engine at the lowest
speed consistent with its regular operation and particularly to maintain it near
the speed of maximum torque and maximum efficiency. Prolonged use of low
gears increases consumption without increasing the average speed appreciably
(Fig. 23.23).



24
BRAKING DYNAMIC
PERFORMANCE

The study of braking on straight road is performed using mathematical models
similar to those seen in Chapter 23 for longitudinal dynamics. But in this case,
the presence of suspensions and the compliance of tires are neglected and the
motion is described by the longitudinal equilibrium equation (23.1) alone

mẍ =
∑
∀i

Fxi
.

Apart from cases in which the vehicle is slowed by the braking effect of the
engine, which can dissipate a non-negligible power (lower part of the graph of
Fig. 22.2), and by regenerative braking in electric and hybrid vehicles, braking
is performed in all modern vehicles on all wheels. Subscript i thus extends to all
wheels or, when thinking in terms of axles, as is usual for motion in symmetrical
conditions, on all axles.

24.1 BRAKING IN IDEAL CONDITIONS

Ideal braking can be defined as the condition in which all wheels brake with the
same longitudinal force coefficient μx.

The study of braking forces the vehicle can exert will follow the same scheme
seen in Section 23.5, the only obvious difference being that braking forces, like
the corresponding longitudinal force coefficients and the longitudinal slip, are
negative. Normal forces between road and tires can be computed using the equa-
tions seen in Chapter 23.1, remembering here as well that the acceleration is
negative.
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Mechanical Engineering Series,
c© Springer Science+Business Media B.V. 2009



232 24. BRAKING DYNAMIC PERFORMANCE

The total braking force Fx is thus

Fx =
∑
∀i

μxi
Fzi

, (24.1)

where the sum extends to all the wheels. The longitudinal equation of motion of
the vehicle is then

dV

dt
=

∑
∀i μxi

Fzi
− 1

2ρV 2SCX − f
∑

∀i Fzi
− mg sin(α)

m
, (24.2)

where m is the actual mass of the vehicle and not the equivalent mass, and α is
positive for uphill grades. The rotating parts of the vehicle are slowed directly by
the brakes, and hence do not enter into the evaluation of the forces exchanged
between vehicle and road. These parts must be accounted for when assessing the
required braking power of the brakes and the energy that must be dissipated.

Aerodynamic drag and rolling resistance can be neglected in a simplified
study of braking, since they are usually far smaller than braking forces. Also,
rolling resistance can be considered as causing a braking moment on the wheel
more than a direct braking force on the ground.

Since in ideal braking all force coefficients μxi
are assumed to be equal, the

acceleration is

dV

dt
= μx

[
g cos(α) − 1

2m
ρV 2SCZ

]
− g sin(α) . (24.3)

On level road, for a vehicle with no aerodynamic lift, Eq. (24.3) reduces to

dV

dt
= μxg . (24.4)

The maximum deceleration in ideal conditions can be obtained by introduc-
ing the maximum negative value of μx into Eq. (24.3) or (24.4).

The assumption of ideal braking implies that the braking torques applied
on the various wheels are proportional to the forces Fz, if the radii of the wheels
are all equal.

As will be seen later, this may occur in only one condition, unless some
sophisticated control device is implemented to allow braking in ideal conditions.
If μx can be assumed to remain constant during braking, the deceleration of
the vehicle is constant, and the usual formulae hold for computing the time and
space needed to slow from speed V1 to speed V2:

tV1→V2 =
V1 − V2

|μx|g
, sV1→V2 =

V 2
1 − V 2

2

2|μx|g
. (24.5)

The time and the space to stop the vehicle from speed V are then

tarr =
V

|μx|g
, sarr =

V 2

2|μx|g
. (24.6)
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The time needed to stop the vehicle increases linearly with the speed while
the space increases quadratically.

To compute the forces Fx the wheels must exert to perform an ideal braking
manoeuvre, forces Fz on the wheels must be computed first. This can be done
using the formulae in Section 23.1. However, for vehicles with low aerodynamic
vertical loading, such as all commercial and passenger vehicles with the excep-
tion of racers and some sports cars, aerodynamic loads can be neglected. Drag
forces can also be neglected and, in the case of a two-axle vehicle, the equations
reduce to

Fz1 =
m

l

[
gb cos(α) − ghG sin(α) − hG

dV

dt

]
, (24.7)

Fz2 =
m

l

[
ga cos(α) + ghG sin(α) + hG

dV

dt

]
. (24.8)

Since the values of μx are all equal in ideal braking, the values of longitudinal
forces Fx can be immediately computed by introducing Eq. (24.3)

dV

dt
= μxg cos(α) − g sin(α)

into equations (24.7) and (24.8)

Fx1 = μxFz1 = μx

mg

l
cos(α) (b − hGμx) , (24.9)

Fx2 = μxFz2 = μx

mg

l
cos(α) (a + hGμx) . (24.10)

By adding Eq. (24.9) to Eq. (24.10), it follows that:

Fx1 + Fx2 = μxmg cos(α) , (24.11)

and then:
μx =

Fx1 + Fx2

mg cos(α)
. (24.12)

By introducing the value of μx into equations (24.9) and (24.10) and sub-
tracting the second equation from the first, it follows that

Fx1 − Fx2 =
b − a

l
(Fx1 + Fx2) −

2hG

lmg cos(α)
(Fx1 + Fx2)

2 . (24.13)

A relationship between Fx1 and Fx2 is readily obtained. It is an equation
expressing the relationship between the forces at the front and rear axles that
must hold to make ideal braking possible,

(Fx1 + Fx2)
2 + mg cos(α)

(
Fx1

a

hG
− Fx2

b

hG

)
= 0 . (24.14)

The plot of Eq. (24.14) in the Fx1 ,Fx2 plane is a parabola whose axis is
parallel to the bisector of the second and fourth quadrants if a = b (Fig. 24.1).
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FIGURE 24.1. Braking in ideal conditions. Relationship between Fx1 and Fx2 for ve-
hicles with the centre of mass at mid-wheelbase (a = b), forward (a < b) and backward
(a > b) of that point. Plots obtained with m = 1000 kg; l = 2.4 m, hG = 0.5 m, level
road.

The parabola is thus the locus of all pairs of values of Fx1 and Fx2 leading to
ideal braking.

Only a part of this plot is actually of interest: That with negative values of
the forces (braking in forward motion) and with braking forces actually achiev-
able, i.e. with reasonable values of μx (Fig. 24.2).

On the same plot it is possible to draw the lines with constant μx1
, μx2

and
acceleration. On level road, the first two are straight lines passing, respectively,
through points B and A, while the lines with constant acceleration are straight
lines parallel to the bisector of the second quadrant.

Remark 24.1 All forces here relate to the axles and not to the wheels: In the
case of axles with two wheels their values are then twice the values referred to
the wheel.

The moment to be applied to each wheel is approximately equal to the
braking force multiplied by the loaded radius of the wheel: If the wheels have
equal radii, the same plot holds for the braking torques as well. If this condition
does not apply, the scales are simply multiplied by two different factors and the
plot, though distorted, remains essentially unchanged.
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FIGURE 24.2. Enlargement of the useful zone of the plot of Fig. 24.1. The lines with
constant μx1

, μx2
and acceleration are also reported.

FIGURE 24.3. Plots Mb2(Mb1) for ideal braking. (a) typical plot for a rear drive car
with low ratio hG/l; (b) typical plot for a front drive saloon car with higher ratio hG/l;
(c) plot for a small front drive car, sensitive to the load conditions and with high value
of ratio hG/l.
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Remark 24.2 To perform a more precise computation, the rolling resistance,
which is a small correction, should be accounted for and the torque needed for
decelerating the rotating inertias should be added. This correction is important
only for driving wheels and braking in low gear, but in this case the braking effect
of the engine, which is even more important and has the opposite sign, should be
considered.

As stated before, the law linking Fx1 to Fx2 , i.e. Mb1 to Mb2 to allow braking
in ideal conditions, depends on the mass and the position of the centre of mass.
For passenger vehicles, it is possible to plot the lines for the minimum and
maximum load and to assume that all conditions are included between them; for
industrial vehicles, the position of the centre of mass can vary to a larger extent,
and a larger set of load conditions should be considered.

The curves for three different types of passenger vehicles are shown in
Fig. 24.3 as an example. The curve Mb2(Mb1) defined by CEE standards and
the lines at constant acceleration are reported on the same plot.

24.2 BRAKING IN ACTUAL CONDITIONS

The relationship between the braking moments at the rear and front wheels is in
practice different from that stated in order to comply with the conditions needed
to obtain ideal braking, and is imposed by the parameters of the actual braking
system of the vehicle.

A ratio
Kb =

Mb1

Mb2

between the braking moments at the front and rear wheels can be defined. If
all wheels have the same radius, its value coincides with the ratio between the
braking forces.

Remark 24.3 This statement neglects the braking moment needed to decelerate
rotating parts. This can be adjusted by considering Mb as the part of the braking
moment that causes braking forces on the ground; the fraction of the braking
moment needed to decelerate the wheels and the transmission must be added to it.

For each value of the deceleration a value of Kb allowing braking to take
place in ideal conditions can be easily found from the plot of Fig. 24.2. Kb

depends on the actual layout of the braking system, and in some simple cases is
almost constant.

In hydraulic braking systems, the braking torque is linked to the pressure
in the hydraulic system by a relationship of the type

Mb = εb(Ap − Qs) , (24.15)

where εb, sometimes referred to as the efficiency of the brake, is the ratio between
the braking torque and the force exerted on the braking elements and hence has
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the dimensions of a length. A is the area of the pistons, p is the pressure and Qs

is the restoring force due to the springs, when they are present.
The value of Kb is thus

Kb =
εb1(A1p1 − Qs1)
εb2(A2p2 − Qs2)

, (24.16)

or, if no spring is present as in the case of disc brakes,

Kb =
εb1A1p1

εb2A2p2
. (24.17)

In disc brakes, εb is almost constant and is, as a first approximation, the
product of the average radius of the brake, the friction coefficient and the number
of braking elements acting on the axle, since braking torques again refer to the
whole axle. If the pressure acting on the front and rear wheels is the same, the
value of Kb is constant and depends only on geometrical parameters.

The behavior of drum brakes is more complicated, as restoring springs are
present and the dependence of εb on the friction coefficient is more complex. As
stated in Part I, shoes can be of the leading or of the trailing type. If leading,
the braking torque increases more than linearly with the friction coefficient and
there is even a value of the friction coefficient for which the brake sticks and the
wheel locks altogether.

The opposite occurs with trailing shoes and εb increases less than linearly
with the friction coefficient.

The efficiency of the brakes is a complex function of both temperature and
velocity and, during braking, it can change due to the combined effect of these
factors. When the brake heats up there is usually a decrease of the braking torque,
at least initially. Later an increase due to the reduction of speed can restore the
initial values. This “sagging” in the intermediate part of the deceleration is more
pronounced in drum than in disc brakes. With repeated braking, the overall
increase of temperature can lead to a general “fading” of the braking effect.

If Kb is constant, the characteristic line on the plane Mb1 , Mb2 is a straight
line through the origin (Fig. 24.4).

The intersection of the characteristics of the braking system with the curve
yielding ideal braking defines the conditions in which the system performs in
ideal conditions. On the left of point A, i.e. for low values of deceleration, the
rear wheels brake less than required and the value of μx2

is smaller than that of
μx1

. If the limit conditions occur in this zone, i.e. for roads with poor traction,
the front wheels lock first.

On the contrary, all working conditions beyond point A are characterized by

μx2
> μx1

and the rear wheels brake more than required, i.e., the braking capacity of the
front wheels is underexploited. In this case, when the limit conditions are reached,
the rear wheels lock first, as in the case of Fig. 24.4.
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FIGURE 24.4. Conditions for ideal braking, characteristic line for a system with con-
stant Kb and zones in which the front or the rear wheels lock. In the case shown the
value of μp is high enough to cause sliding beyond point A.

From the viewpoint of handling, it is advisable that

μx2
< μx1

,

since this increases the stability of the vehicle; the characteristics of the braking
system should lie completely below the line for ideal braking. Locking of the rear
wheels is a condition that must be avoided since it triggers directional instability.

In A the ideal conditions are obtained: If the limit value of the longitudinal
force coefficient occurs at that point, simultaneous locking of all wheels occurs.

The values of ratio Kb for which the ideal conditions occur at a given value
of the longitudinal force coefficient μ∗

x are immediately computed,

K∗
b =

b + hG|μ∗
x|

a − hG|μ∗
x|

. (24.18)

It is possible to define an efficiency of braking as the ratio between the
acceleration obtained in actual conditions and that occurring in ideal conditions,
obviously at equal value of the coefficient μx of the wheels whose longitudinal
force coefficient is higher,

ηb =
(dV/dt)actual

(dV/dt)ideal
=

(dV/dt)actual

μxg
, (24.19)

where the last expression holds only on level road for a vehicle with negligible
aerodynamic loading.

The total braking force acting on the vehicle when the rear wheels lock is

Fx1 + Fx2 = Fx2 (1 + Kb) , (24.20)

and thus the deceleration on level road is

dV

dt
=

Fx2 (1 + Kb)
m

. (24.21)
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Eq. (24.8) yields

Fx2 =
μx2

g

l
[am + hGFx2 (1 + Kb)] , (24.22)

and then
Fx2 =

μx2
gam

l − μx2
hG (1 + Kb)

, (24.23)

dV

dt
= g

μx2
a (1 + Kb)

l − μx2
hG (1 + Kb)

. (24.24)

If on the contrary the front wheels lock, the total braking force acting on
the vehicle is

Fx1 + Fx2 = Fx1

(
1 +

1
Kb

)
. (24.25)

Operating as already seen with rear wheels lock, the value of the acceleration
can be found,

dV

dt
= g

μx1
b (1 + Kb)

lKb − μx1
hG (1 + Kb)

. (24.26)

The braking efficiency is then

ηb = min
{

a(Kb + 1)
l − μphG(Kb + 1)

,
b(Kb + 1)

lKb + μphG(Kb + 1)

}
. (24.27)

The first value holds when the rear wheels lock first (above point A in Fig.
24.4), the second when the limit conditions are reached at the front wheels first.

A typical plot of the braking efficiency versus the peak braking force coeffi-
cient is plotted in Fig. 24.5.

FIGURE 24.5. Braking efficiency ηb as a function of the limit value of μx for a vehicle
without (a) and (b) and with (c) pressure proportioning valve.
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The value of the maximum longitudinal force coefficient μp at which the
condition ηb = 1 must hold can be stated and the value of ratio Kb can be easily
computed. For values of |μp| lower than the chosen one, the rear wheels lock first
while for higher values locking occur at the front wheels.

Once Kb is known, the braking system can easily be designed. The curve
ηb(μx) can be plotted by assigning increasing values to the pressure in the hy-
draulic system, computing Kb and then the values of μx and ηb referred to the
front and rear wheels. The result is of the type shown in Fig. 24.5, curve (a) or (b).

Operating in this way, the rear wheels lock when the road is in good condi-
tion. To postpone the locking of the rear wheels, curves of the type of line (b)
can be used, but this reduces efficiency when the road conditions are poor.

To avoid locking of the rear wheels without lowering efficiency at low values
of μx, a pressure proportioning valve, i.e. a device that reduces the pressure in
the rear brake cylinders when the overall pressure in the system increases above
a given value, may be used. A linear reduction of the pressure on the rear brakes
with increasing pressure in the front ones above a certain pressure pi,{

p2 = p1 for p1 ≤ pi,
p2 = p1 + ρc (p1 − pi) for p1 > pi,

(24.28)

where ρc is a characteristic constant of the valve, can be assumed.
Pressure pi and constant ρc must be chosen in such a way that the device

starts acting when the efficiency ηb gets close to unity. The reduction of the
rear pressure must be such that it does not cause locking of the rear wheels;
nor should it be so high as to substantially lower the efficiency (see Fig. 24.5,
curve (c)).

To comply with these conditions in all load conditions of the vehicle, pi and,
possibly, ρc must vary following the load. A possible way to achieve this is to
monitor the load on the rear axle, e.g. by monitoring the vertical displacement
of the rear suspension.

The characteristic line in the Mb1 , Mb2 plane of a device operating along
this line is reported in Fig. 24.6.

To prevent wheels from locking, antilock systems (ABS) act directly to re-
duce the pressure in the hydraulic cylinders of the relevant brakes when the need
to reduce the braking force arises. Modern devices are based on wheel speed sen-
sors allowing the actual speed of the wheels and the speed corresponding to the
velocity of the vehicle to be compared. If a slip that exceeds the allowable limits
is detected, the device acts to reduce the braking torque, restoring appropriate
working conditions.

As will be shown in detail in Chapter 27, ABS systems may work in differ-
ent ways, both in the physical characteristics of the system and in the control
algorithms.

The above braking efficiency holds only in the case of rigid vehicles. If the
presence of suspensions is accounted for, the load transfer from the rear to the
front wheels does not occur immediately, and at the beginning of the braking
manoeuvre the vertical loads on the wheels are the same as those at constant
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FIGURE 24.6. Characteristic of a braking system in which a pressure proportioning
valve operating following Eq. (24.28) is present. To take into account the variability of
the parameters of the system, specifically the friction coefficient, a band of character-
istics has been considered instead of a single line. The ideal braking lines at the two
different load conditions have also been plotted.

speed. The body of the vehicle then starts to dive and the load on front wheels
increases, until steady state conditions are reached and the loads take the values
given by Equations (24.7) and (24.8). This effect actually depends largely on the
characteristics of the suspensions: the rotation of the body can be very small
and load shift is almost immediate when antidive arrangements are used.

The load on the rear wheels is higher and the locking of the rear wheels is
more difficult at the beginning of the manoeuvre: This consideration explains
the practice of giving short brake pulses, effective when modern braking systems
designed to avoid rear wheel locking were not available.

Example 24.1 Plot the braking efficiency of the car of Appendix E.2, assuming that

the braking system is designed to reach the ideal conditions for a longitudinal force

coefficient μx = −0.4. Use a pressure proportioning valve in such a way that the front

wheels lock before the rear ones up to a value of μx equal to unity. Neglect aerodynamic

forces and rolling resistance.

The curve characterizing the conditions for ideal braking in plane Fx1 , Fx2 is plot-

ted (Fig. 24.7a). In order to obtain the ideal conditions at a value of the longitudi-

nal force coefficient μ∗
x = −0.4, ratio Kb is immediately computed from Eq. (24.18):

Kb = 2.283. The braking forces corresponding to the ideal conditions are Fx1 = 2.265

kN and Fx2 = 0.992 kN.

The pressure proportioning valve is assumed to start acting when values of the

forces, equal to 90% of those for ideal conditions, are reached: Fx1 = 2.038 kN and

Fx2 = 0.893 kN. As the point at which the ideal conditions with μx = 1 are reached is
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FIGURE 24.7. Braking characteristics of the vehicle of Appendix E.2. (a) Ideal braking
conditions and characteristics of the braking system. (b) Braking efficiency with and
without pressure proportioning valve. The dashed lines show the minimum conditions
stated by CEE standards.

easily computed (Fx1 = 6.861 kN and Fx2 = 1.282 kN), the equation expressing force

Fx2 as a function of Fx1 when the valve is operating is immediately found. From its

slope, the value of constant ρc = 0.184 is obtained. The characteristic of the braking

system is plotted in Fig. 24.7a.

At each point a pair of values Fx1 and Fx2 are obtained. From them the deceleration

and the maximum value of the longitudinal force coefficient may be computed, ultimately

obtaining the braking efficiency. The results are plotted in Fig. 24.7b.

In the same figures the curves related to the CEE standards are also plotted (dashed

lines). Note that the position of the centre of mass results in the very low position of

the dashed line in Fig. 24.7a.

24.3 BRAKING POWER

The instantaneous power the brakes must dissipate is

|P | = |Fx|V = V

∣∣∣∣dV

dt
me + mg sin(α)

∣∣∣∣ , (24.29)

where all forms of drag have been neglected.
The brakes cannot dissipate this power directly; they usually work as a heat

sink, storing some of the energy in the form of thermal energy and dissipating
it in due time. Care must obviously be exerted to design the brakes in such a
way that they can store the required energy without reaching excessively high
temperatures and so that adequate ventilation for cooling is ensured. The average
value of the braking power must, at any rate, be lower than the thermal power
the brakes can dissipate.

Two reference conditions are usually considered: Driving in continuous
acceleration-braking cycles, and downhill running in which the speed is kept
constant with the use of brakes.
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In the first case, neglecting all resistance to motion, the energy to be dis-
sipated during braking from speed V to zero is equal to the kinetic energy of
the vehicle. The worst case is a number of accelerations from standstill to speed
V , performed in the lowest possible time, followed by braking to standstill. The
average power on an acceleration-deceleration cycle is

|P | =
meV

2

2(ta + tb)
. (24.30)

The acceleration time ta increases with V and can be computed with the
method used in the previous chapter. Braking time tb is, at least,

tb =
V

gηb|μxmax
| .

The average braking power first increases with the speed V , and then de-
creases again since the acceleration time increases far more than the braking
energy. When the vehicle is approaching its maximum speed ta tends to infinity
and the average power tends to zero.

In the case of downhill driving, the speed is assumed to be held constant
by the use of brakes. The average power is then coincident with the power to
be dissipated in each instant, since it is not possible that in the long run large
quantities of heat are stored in the brakes. It then follows:

|P | = |V mg sin(α)| . (24.31)

The power that must be dissipated increases linearly with V . The speed
must then be limited, and the braking effect of the engine must be exploited on
long downhill slopes.

Industrial vehicles are sometimes supplied with devices to maintain constant
the speed when driving downhill to prevent the brakes from over-heating. By
limiting the speed as a function of α, that is by stating a function V = V (α),
the average power can be expressed as a function of the speed of the type shown
in Fig. 24.8.

Acceleration-deceleration cycles are usually the critical condition for pas-
senger vehicles and, above all, for sports cars, while for industrial vehicles the
worst condition is downhill driving. Plots of the type seen in Fig. 24.8 give an
indication of the maximum value of the average power the brakes must dissipate,
making them useful for designing their cooling system.

If the road conditions or the driving style require significant use of the
brakes, they may be required to store much heat and become very hot, with con-
sequent thermo-mechanical problems. To give an idea of the magnitude of the
temperatures reached by some components of the braking system, some experi-
mental temperature readings obtained on mountain and hill roads are reported
in Fig. 24.9.

In vehicles with regenerative braking capabilities, the average power com-
puted above gives an idea of how much energy can be stored, and thus determines
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FIGURE 24.8. Power to be dissipated by brakes.

FIGURE 24.9. Time history of the temperature of the brakes and of the braking fluid
during testing of a car on different roads.

the capacity of the accumulator. An accumulator able to store braking energy is
large enough to provide true hybrid capabilities, i.e. to uncouple the requirements
of the vehicle from the instantaneous power of the engine.

At any rate, vehicles with regenerative braking must have a conventional
braking system as well. Regenerative braking is usually performed on only one
axle, usually the driving axle, with the exception of schemes such as that shown in
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Fig. 22.7a1. Braking power is limited by both the transmission and the ability of
the accumulator to accept high power levels. The conventional braking system
works in less demanding conditions, since it provides emergency braking only
rather than frequent slowing in normal use.
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25.1 LOW SPEED OR KINEMATIC STEERING

25.1.1 Two-axle vehicles without trailer

Low speed or kinematic steering is, as already stated, defined as the motion of
a wheeled vehicle determined by pure rolling1 of the wheels. The velocities of
the centres of all the wheels lie in their midplane, that is the sideslip angles αi

are vanishingly small. In these conditions, the wheels cannot exert any cornering
force to balance the centrifugal force due to the curvature of the path. Kinematic
steering is possible only if the velocity is vanishingly small.

Kinematic steering of two-axle vehicles without trailer was dealt with in
detail in Chapter 4 (Section 4.2). Here only the value of the path curvature gain
needs be recalled

1
Rδ

=
1
l

. (25.1)

Remark 25.1 The path curvature gain is a linearized value, holding only if
the radius of curvature of the path R is much larger than the wheelbase. It is
independent of the steering angle and of the curvature of the path.

1The term ‘pure rolling’ is often used to indicate rolling without slip. ‘Free rolling’, as
opposed to ‘tractive rolling’, is used to indicate rolling without exerting tangential forces (K.L.
Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985). Here the two
terms are considered as equivalent, because a tire must operate in slip (longitudinal or side
slip) conditions to produce a tangential force.

G. Genta, L. Morello, The Automotive Chassis, Volume 2: System Design, 247

Mechanical Engineering Series,
c© Springer Science+Business Media B.V. 2009
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Another important transfer function of the vehicle is ratio β/δ, usually
referred to as sideslip angle gain. The sideslip angle of the vehicle, referred to
the centre of mass, may be expressed as a function of the radius of the path R as

β = arctan
(

b√
R2 + b2

)
. (25.2)

By linearizing Eq. (25.2) and introducing the expression (25.1) linking R to
δ, it follows:

β

δ
=

b

l
. (25.3)

As seen in Chapter 6, the optimal condition for kinematic steering of a 4
wheel steering vehicle (4WS) is equal and opposite steering angles of the two
axles: the radius of the path is thus halved with respect to the same vehicle with
a single steering axle.

Particularly in the case of long vehicles, the off-tracking distance, i.e. the
difference of the radii of the trajectories of the front and the rear wheels, is an
important parameter. If Ra is the radius of the path of the front wheels, the
off-tracking distance is

Ra − R1 = Ra

{
1 − cos

[
arctan

(
l

R1

)]}
. (25.4)

If the radius of the path is large when compared to the wheelbase, Eq. (25.4)
reduces to

Ra − R1 ≈ R

[
1 − cos

(
l

R

)]
≈ l2

2R
. (25.5)

In the same way, it is possible to define a minimum steering radius between
walls, that is the diameter of the largest circle described by any point of the
vehicle at maximum steering. If the point following the curve with the largest
radius is point A in Fig. 25.1 (note that the figure refers to a vehicle with 3
axles), the minimum steering radius is

Dv = 2
√

(R1 + yA)2 + x2
A. (25.6)

25.1.2 Vehicles with more than two axles without trailer

True kinematic steering of vehicles with more than two axles is possible only if
the wheels of several axles (all except one) can steer, and if the steering angles
comply with conditions similar to those seen in Chapter 6 for the steering axle
of a two-axle vehicle. In order to avoid serious wear to the tires, it is possible to
lift one axle from the ground in certain conditions: In some countries it is legal
to design the suspensions in such a way that not all axles are on the ground
when the vehicle is unloaded, while in others this is not allowed. Some axles can
be lifted for low-speed manoeuvring while being in contact with the ground in
normal driving.
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FIGURE 25.1. Low speed steering of industrial vehicles; approximate kinematic
condition for a truck with three axles.

Some axles may also be self-steering, i.e. the wheels are allowed to orient
themselves to minimize sideslip. An axle of this type clearly cannot exert side
forces and reduce the overall cornering ability of the vehicle. Different laws hold
in different countries, sometimes allowing the use of self-steering axles in normal
driving and sometimes specifying that self-steering axles be blocked except in
low speed manoeuvres. In the case of a three-axle vehicle with non-steering axles
close to each other, an approximation such as the one shown in Fig. 25.1 can be
used to study low speed steering.

25.1.3 Vehicles with trailer

If the vehicle has a trailer with one or two axles, with the front axle on a dolly
attached to the draw bar, kinematic steering is always possible if the tractor
allows it.

Generally speaking, if the wheels of the trailer are fixed, the trailer follows
a path which is internal to that of the tractor. In the case of the vehicle of
Fig. 25.2a radius RR is

RR =
√

R2
1 + l2A − l2R . (25.7)

If these equations can be linearized, the value of ratio θ/δ, i.e. the trailer
angle gain, is

θ

δ
=

lA + lR
l

, (25.8)

where lA is positive if point A is outside the wheelbase. Distance lA + lR is the
distance between the axle of the trailer and the rear axle of the tractor.
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FIGURE 25.2. Low speed steering of vehicles with trailer. (a) steering of a vehicle with
a trailer with one axle or an articulated vehicle; (b) steering of a vehicle with a trailer
with two axles.

In the case of Fig. 25.2b, the radius of the path of the trailer can be
obtained by considering the latter as two subsequent trailers of the type already
considered.

The radii of the trajectories of the centers of the axles of the two trailers are

RR1 =
√

R2
1 + l2A − l2R1

,

RR2 =
√

R2
R1

− l2R2
=

√
R2

1 + l2A − l2R1
− l2R2

.
(25.9)

The only way to prevent the trailer from following a path internal to that of
the tractor is to provide its wheels with a steering mechanism (Fig. 25.3). The
steering angle of the last axle must be opposite to the one of the tractor.
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FIGURE 25.3. Kinematic steering of a vehicle with a trailer with a steering angle.

If the average steering angle of the wheels of the trailer is δR, the relationship
linking the radii of the trajectories of points A and R is

RA =
√

R2
R + l2R − 2lRRR sin (δR) . (25.10)

The radius of the path of the trailer is then

RR =
√

R2
1 + l2A − l2R + 2lRRR sin (δR) . (25.11)

The difference between the radii of the trajectories of the trailer and the
tractor can thus be reduced, allowing the space needed by the vehicle in a bend
to be reduced. However, this method is not free from drawbacks, since the driver
cannot visually control the rear part of the trailer that, at the beginning of the
bend, seems to moves outwards.

This last problem is sometimes solved by placing a second driver in the rear
of the trailer to control the relevant steering mechanism, or better, by using an
actuator controlled by a suitable control law from the steering control, to steer
the trailer. The dynamic problems linked with the steering of trailers will be
dealt with later.

The trailer angle gain is

θ

δ
=

lA + lR
l

− δR

δ
. (25.12)
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The value of the steering angle of the trailer allowing its axle to follow the
same path as the rear axle of the tractor is

sin (δR) =
1

RR

l2R − l2A
2lR

. (25.13)

If the radius of the path is much larger than the wheelbase, the radius of
the path of the rear axle R1 and of the center of mass R of the tractor are
practically coincident and the linearized relationship linking the steering angles
of the tractor and of the trailer is

δR = δ
l2R − l2A

2llR
. (25.14)

This relationship is actually between the moduli of the angles, since they
must have opposite signs.

The trailer angle gain is then

θ

δ
=

(lA + lR)2

2llR
. (25.15)

The mechanism controlling the steering of the trailer is usually not driven
by the steering wheel but by the drawbar, because of which angle δR does not
depend on δ but on θ. Assuming a linear relationship between the two angles

δR = KRθ , (25.16)

the trajectories of the trailer and of the tractor are the same if

KR =
l2R − l2A

(lA + lR)2
. (25.17)

Remark 25.2 The path of the trailer is circular only after a certain time: When
the tractor starts to follow a circular path there is an initial transient in which
the path of the trailer starts to bend, followed by the period of time needed to
reach the steady state conditions.

The path of the trailer, or better of point R in Fig. 25.2a, can be computed
as follows. In Fig. 25.4a the vehicle is sketched in its initial configuration with
the trailer and tractor aligned; the generic configuration at time t is shown in
Fig. 25.4b. In the second figure, the tractor is rotated by an angle α and the
trailer is rotated by an angle β. Note that angle φ is positive if A lies between B
and C.

The positions of the centre of rotation of the tractor O and of the trailer O1

at time t and t+dt are shown in Fig. 25.5. Distances RR′, AA′ and RR′′ are very
small if compared with AR and A′R′. Neglecting vanishingly small quantities, it
follows that

AA′ = RAdα

A′A′′ = lRdβ = AA′ sin(α + φ − β) .
(25.18)



25.1 Low speed or kinematic steering 253

FIGURE 25.4. Vehicle with two axles pulling a trailer with one axle. (a) Situation at
time t = 0 with the vehicle in straight position; (b) Situation at time t.

FIGURE 25.5. Position of the vehicle of Fig. 25.4 at time t and t + dt.

Equations (25.18) yield

dβ

dα
=

RA

lR
sin(α + φ − β) . (25.19)
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Since α = β = 0 at time t = 0, Eq. (25.19) can be easily integrated numeri-
cally. The radius of the path of the trailer RR is

RR =
lR

tan(α + φ − β)
. (25.20)

A long trailer on a narrow bend requires a change of direction of more
than 90◦ before steady state conditions are reached and its path becomes almost
circular.

The low-speed steering of a vehicle with a trailer with two axles like the
one shown in Fig. 25.1b can be dealt with using the same equations seen above,
applied to both the simple trailers modelling the actual two-axle trailer. The
path of the first trailer (the dolly) is initially not circular, and this must be
taken into account while integrating numerically Eq. (25.19).

Example 25.1 Study the conditions for kinematic steering of the articulated vehicle

of Appendix E.9. Assume a value of the radius of the centre mass of the tractor of 10 m

and compute the path of the trailer. Assume that the trailer has a single axle, coinciding

with the third axle of the actual trailer.

The radius of the trajectories of the front and rear axles of the tractor is easily

computed as 9.730 and 10.335 m; the off-tracking of the tractor is thus 605 mm. The

approximated expression (25.5) for the off-tracking yields 607 mm, very close to the

correct value even if the radius of the path is not actually very large compared to the

wheelbase (10 m versus 3.485 m).

The steering angles of the front wheels are 17.99 ◦ and 21.77 ◦, with an average

value of 19.71 ◦. This value is also very close to the correct value of 19.88 ◦, obtained

without any linearization, and to the linearized value of 19.77 ◦.

The steady state radius of the path of the trailer is 5.446 m, yielding a value of

4.889 m for the total off-tracking distance.

The path of the trailer has been computed by numerically integrating Eq. (25.19)

for α included between 0 and 450◦, with a step of 0.5◦. The values of φ and RA are,

respectively, of 2.648◦ and 9.740 m. The path and the locus of points O′ are shown in

Fig. 25.6. Note that after a rotation of 90◦ the radius of the path is still larger than

that in steady state conditions.

Example 25.2 Repeat the previous example, assuming that the trailer axle is steering

with a mechanism realizing law (25.17).

The value of K is 1, 118. The equation allowing the path of the trailer to be

computed is the same as in the previous example, the only difference being that reference

is made to point H in Fig. 25.3 instead of point R in Fig. 25.4.

The radius of the steady-state path of the trailer is 9.942 m , very close to that of the

trailer. The steering angle of the trailer is δR= 20.02◦ and the angle between the trailer

and the tractor is θ = 19.76◦. The path of the trailer was computed by numerically

integrating the relevant equation for values of α from 0 and 450◦, withincrements of
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FIGURE 25.6. Path and locus of the centres of curvature of the path of the trailer for
an articulated vehicle. The positions of the vehicle before starting on the curved path
and after a rotation of the tractor of 90◦ are reported.

0.5 ◦, as in the previous example. The path and the locus of points O′ are plotted in

Fig. 25.7. Note that steady-state conditions are quickly reached and that at the beginning

the trailer moves outwards.

25.2 IDEAL STEERING

If the speed is not vanishingly small, the wheels must move with suitable sideslip
angles to generate cornering forces. A simple evaluation of the steady state steer-
ing of a vehicle in high-speed or dynamic2 steering conditions may be performed

2The term dynamic steering is used here to denote a condition in which the path is deter-
mined by the balance of forces acting on the vehicle, as opposed to kinematic steering in which
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FIGURE 25.7. Path and locus of the centers O’ of the path of the trailer with steering
axle. The positions at the beginning of the maneouvre and after a 90◦ rotation are also
reported.

as follows. Consider a rigid vehicle moving on level road with transversal slope
angle αt and neglect the aerodynamic side force. Define a η-axis parallel to the
road surface, passing through the centre of mass of the vehicle and intersecting
the vertical for the centre of the path, which in steady-state condition is circular
(Fig. 25.8). Axis η does not coincide with the y axis, except at one particular
speed.

25.2.1 Level road

Assume that the road is flat and neglect aerodynamic forces. The equilibrium
equation in η direction can be written by equating the centrifugal force mV 2/R
to forces Pη due to the tires

the path is determined by the direction of the midplane of the wheels. Note that dynamic
steering applies to both steady state and unstationary turning.
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FIGURE 25.8. Simplified model for dynamic steering.

mV 2

R
=

∑
∀i

Pηi
. (25.21)

For a first approximation study, forces Pη may be conflated with the cor-
nering forces Fy of the tires and all wheels may be assumed to work with the
same side force coefficient μy. As the last assumption is similar to that seen for
braking in ideal conditions, this approach will be referred to as ideal steering .
These two assumptions lead to substituting the expression

∑
∀i Pηi

with μyFz.
Force

Fz =
∑

Fzi

exerted by the vehicle on the road is

Fz = mg . (25.22)
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By introducing Eq. (25.22) into Eq. (25.21) the ratio between the lateral
acceleration and the gravitational acceleration g is

V 2

Rg
= μy (25.23)

By introducing the maximum value of the side force coefficient μyp
into Eq.

(25.23), it is possible to obtain the maximum value of the lateral acceleration
(

V 2

R

)
max

= gμyp
. (25.24)

The maximum speed at which a bend with radius R can be negotiated is

Vmax =
√

Rg
√

μyp
, (25.25)

The limitation to the maximum lateral acceleration due to the cornering
force the tires can exert is, however, not the only limitation, at least theoretically.
Another can come from the danger of rollover occurring if the resultant of forces
in the yz plane crosses the road surface outside point A (Fig. 25.8).

The moment of the forces applied to the vehicle in the ηz-plane about point
A is

MA = − t

2
mg + hG

mV 2

R
. (25.26)

The limit condition for rollover can then be computed by equating moment
MA to zero (

V 2

R

)
max

= g
t

2hG
. (25.27)

The rollover condition is identical to the sliding conditions, once ratio

t

2hG

has been substituted for μyp
.

The maximum lateral acceleration is then
(

V 2

R

)
max

= g min
{

μyp
,

t

2hG

}
. (25.28)

Whether the limit condition first reached is that related to sliding, with
subsequent spin out of the vehicle, or related to rolling over depends on the
relative magnitude of μyp

and t
2hG

. If the former is smaller than the latter, as
often occurs, the vehicle spins out. This condition can be written in the form

μyp
<

t

2hG
.
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25.2.2 Effect of aerodynamic lift

If aerodynamic lift is accounted for, Eq. (25.22) becomes:

Fz = mg − 1
2
ρV 2SCZ . (25.29)

By introducing ratio

M =
ρSCz

2mg
,

expressing the ratio between aerodynamic lift at unit speed and weight, it follows
that

Fz = mg
(
1 − MV 2

)
. (25.30)

Note that M is negative if the lift is directed downwards. To take aerody-
namic lift into account it is sufficient to multiply the expressions seen in the
previous section by 1 − MV 2.

The maximum lateral acceleration is now(
V 2

R

)
max

= g
(
1 − MV 2

)
min

{
μyp

,
t

2hG

}
. (25.31)

Term MV 2 is usually very small and often negligible, with the exception
of racing cars. For instance, let ρ = 1.22 kg/m3 (value at sea level in standard
atmosphere), S = 1.7 m2, Cz = −0.5 (an already high value) and m = 1000 kg.
It follows that M = −5.3 × 10−5 s2/m2 and thus, at 100 km/h, the value of the
additional term is 0.05. To change things radically high speeds must be reached:
at 300 km/h the additional term becomes −MV 2 = 0.37, i.e. the maximum
lateral acceleration increases by 37%.

The negative value of Cz is very high in racing cars, and at high speed strong
lateral accelerations are possible.

25.2.3 Transversal slope of the road

The equilibrium equation in η direction may be written by equating the compo-
nents of weight mg and of the centrifugal force mV 2/R acting in that direction
with forces Pη due to the tires

mV 2

R
cos(αt) − mg sin(αt) =

∑
∀i

Pηi
. (25.32)

By introducing the previously discussed assumptions characterizing ideal
steering, substituting expression

∑
∀i Pηi

with μyFz, force Fz =
∑

Fzi
exerted

by the vehicle on the road becomes

Fz = mg cos(αt) +
mV 2

R
sin(αt) −

1
2
ρV 2SCZ . (25.33)
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By introducing Eq. (25.33) into Eq. (25.32), the latter yields the following
value for the ratio between the lateral acceleration and the gravitational accel-
eration g

V 2

Rg
=

tan(αt) + μy(1 − MV 2)
1 − μy tan(αt)

. (25.34)

Ratio M can be redefined as

M =
ρSCz

2mg cos(αt)

so that MV 2 is the ratio between the aerodynamic lift and the component of
weight in a direction perpendicular to the road.

By introducing the maximum value of the side force coefficient μyp
into

Eq.(25.34), the maximum value of the lateral acceleration is obtained
(

V 2

R

)
max

= gfs , (25.35)

where the so-called sliding factor fs can be defined as3

fs =
tan(αt) + μyp

(1 − MV 2)
1 − μyp

tan(αt)
; (25.36)

and is in general a function of the speed, if the aerodynamic lift is accounted for.
Note that on level road and with no aerodynamic lift the sliding factor

reduces to μyp
.

The sliding factor is reported as a function of μyp
for different values of the

transversal slope of the road in Fig. 25.9a and for different values of ratio MV 2

in Fig. 25.9b. Note that if the road is flat and the aerodynamic lift is neglected
it reduces to the maximum value of the side force coefficient μyp

.
The maximum speed at which a bend with radius R can be negotiated is

Vmax =
√

Rg

√
tan(αt) + μyp

1 − μyp
[tan(αt) − RgM ]

, (25.37)

i.e.
Vmax =

√
Rg

√
fs . (25.38)

The rollover condition can also be modified to take into account the transver-
sal slope of the road and aerodynamic lift. The moment of all forces applied to
the vehicle in ηz plane about point A (Fig. 25.8) is

3The sliding factor is more commonly defined as the square root of the same quantity con-
sidered here. The present definition, which refers directly to the lateral acceleration instead of
the speed at which a given turn may be negotiated, is here preferred as in particular conditions
it reduces to the side force coefficient.
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FIGURE 25.9. Sliding and rollover factors as functions of μyp
and of t/2hG respectively

for roads with different transversal slope (a) and for vehicles with different values of
ratio MV 2 (b).

MA = − t

2

[
mg cos(αt) +

mV 2

R
sin(αt) −

1
2
ρV 2SCZ

]
+

+hG

[
mV 2

R
cos(αt) − mg sin(αt)

]
. (25.39)

The limit condition for rollover can be obtained by equating moment MA

to zero, obtaining (
V 2

R

)
max

= gfr , (25.40)

where the rollover factor can be defined as

fr =
tan(αt) + t

2hG
(1 − MV 2)

1 − t
2hG

tan(αt)
. (25.41)

The expression of the rollover factor is identical to that of the sliding factor,
once ratio t/2hG has been substituted for μyp

(Fig. 25.9). It depends on speed
because of the effects of aerodynamic lift.

The maximum lateral acceleration is then(
V 2

R

)
max

= g min{fs, fr} . (25.42)

Whether the limit condition first reached is that related to sliding, with
subsequent spin out of the vehicle, or rolling over depends on whether fs is
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larger or smaller than fr. If fs < fr, as often occurs, the vehicle spins out. This
condition can be written in the form

μyp
<

t

2hG
,

and coincides with that seen on level road. Neither aerodynamic lift nor a
transversal road slope have any influence on the possibility of rollover.

25.2.4 Considerations in ideal steering

The value of μyp
at which rollover may occur is as high as 1.2 ÷ 1.7 for sports

cars, 1.1÷1.6 for saloon cars, 0.8÷1.1 for pickup and passenger vans and 0.4÷0.8
for heavy and medium trucks. Only in the latter case does rollover seem to be a
possibility, at least if the lateral forces acting on the vehicle are restricted to the
cornering forces of the tires.

The present model is only a rough approximation of the actual situation,
as it is based on the assumption that the side force coefficients μy of all wheels
are equal, implying that all wheels work with the same sideslip angle α. It also
ignores the effect of the different directions of the cornering forces of the various
wheels, which should be considered as perpendicular to the midplanes of the
wheels and not directed along the η axis. The load transfer between the wheels
of the same axle and the presence of the suspensions have also been neglected,
two other assumptions contributing to the lack of precision of this model.

If the maximum speed at which a circular path can be negotiated is measured
in a steering pad test and the value of the lateral force coefficient is computed
through Eq. (25.25), a value of μyp

, well below that obtained from tests on the
tires, is obtained.

Remark 25.3 The cornering force coefficient obtained in this way is that of
the vehicle as a whole, and the difference between its value and that related to
the tires gives a measure of how well the vehicle is able to exploit the cornering
characteristics of its wheels.

The side force coefficient measured on the whole vehicle also depends on
the radius of the path, with a notable decrease on narrow bends. The majority
of industrial and passenger vehicles are able to use only a fraction, from 50% to
80%, of the potential cornering force of the tires, with higher values found only
in sports cars. This reduction of the lateral forces makes the danger of rollover
more remote.

Actually rolling over in a quasi-static condition is impossible for most
vehicles, notwithstanding the fact that rollover actually occurs in many road
accidents. Rollover can usually be ascribed to dynamic phenomena in nonsta-
tionary conditions or to lateral forces caused by side contacts, e.g. of the wheels
with the curb of the road, that rule out the possibility of side slipping while
causing far stronger lateral forces to be exerted on the wheels. The presence of
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FIGURE 25.10. Evolution in time of the maximum lateral acceleration for saloon cars,
sports cars and racers. Note that for the latter the change of racing rules caused sharp
changes in the maximum lateral acceleration

the suspensions also contributes to this picture, making rollover a likely outcome
of many accidents.

From the equations it is also clear that only the use of aerodynamic devices
able to exert a strong negative lift allows high values of lateral acceleration, well
above 1 g in the case of racers, to be reached (Fig. 25.10).

25.2.5 Vehicles with two wheels

The cornering dynamics of a vehicle with two wheels are radically different from
those of four wheeled vehicles (Fig. 25.11). If the gyroscopic moments of the
wheels are neglected, the equation expressing rolling equilibrium can be used to
compute the roll angle the vehicle must maintain in order not to capsize, since
a two-wheeled vehicle is a system underconstrained in roll.

The limitation on lateral acceleration and speed on a curved path is solely
the result of lateral sliding, with a further geometric limitation on the maximum
roll angle that can be reached before the vehicle or the driver touches the road on
one side. Equation (25.24) yielding the maximum lateral acceleration still holds,
the difference being that the global side force coefficient is usually higher.
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FIGURE 25.11. High speed steering of a two wheeled vehicle. Point G is the centre of
mass of the vehicle-driver system and can be displaced from the plane of symmetry of
the former if the latter is displaced to one side, as usually occurs in bends.

The roll angle is easily computed

φ = arctan
(

V 2

Rg

)
, (25.43)

and the geometrical limitation

φ ≤ π/2 + αt − γ

(Fig. 25.11) usually does not induce further limitations.

Remark 25.4 Since motor cycles roll into the curve, the lateral forces due to
camber add to those due to sideslip, instead of subtracting as in the case of motor
vehicles that roll towards the outside of the curve.

Further terms must be introduced into the relevant equations if gyroscopic
moments of the wheels are considered . When the vehicle runs on a circular path
with radius R, the gyroscopic moment, due to the ith wheel with radius Ri and
moment of inertia Jpi

about its spin axis, is equal to

Jpi
V 2 cos(φ)
RRi

.

The equation expressing the equilibrium for rolling motions is then

mghG sin(φ) − V 2

R
cos(φ)

[
mhG +

∑
∀i

(
Jpi

Ri

)]
= 0 . (25.44)



25.3 High speed cornering: simplified approach 265

The roll angle is

φ = arctan

{
V 2

Rg

[
1 +

1
mhG

∑
∀i

(
Jpi

Ri

)]}
. (25.45)

The added term in Eq. 25.45 is positive and thus the roll angle needed to
manage a certain bend at a certain speed is increased by gyroscopic moments.

Remark 25.5 Generally speaking, the effect of the gyroscopic moment of the
wheels on the dynamic behavior of the whole vehicle is small even in the case of
vehicles with two wheels. Gyroscopic moments are usually important only in the
dynamics of the steering device.

25.3 HIGH SPEED CORNERING: SIMPLIFIED
APPROACH

To go beyond the extremely simplified model of ideal steering, the distribution of
cornering forces between the axles, the sideslip angle of the vehicle on the path
and the sideslip angles of the wheels must be taken into account.

Assume that the vehicle is moving at constant speed on a circular path and
that the road is level. Moreover, assume that the radius of the path R is much
larger than the wheelbase l and, as a consequence, all sideslip angles are small.
The small size of all angles allows the “monotrack” or “bicycle” model to be
used.

Neglecting aerodynamic forces and aligning torques, the forces acting in the
xy plane at the tire-road interface in a monotrack vehicle are shown in Fig. 25.12.

The equilibrium equation in the direction of the y axis is similar to
Eq.( 25.21), except for the presence of the sideslip and steering angles

mV 2

R
cos (β) =

∑
∀i

Fxi
sin(δi) +

∑
∀i

Fyi
cos(δi) . (25.46)

The equilibrium to rotations about point G can be expressed as
∑
∀i

Fxi
sin(δi)xi +

∑
∀i

Fyi
cos(δi)xi = 0 . (25.47)

Since angles β and δi are assumed to be small, the terms containing the
longitudinal forces of the tires can be neglected and the equilibrium equations
reduce to ⎧⎨

⎩
∑

∀i Fyi
= mV 2

R

∑
∀i Fyi

xi = 0 .

(25.48)
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FIGURE 25.12. Simplified model (monotrack vehicle) for studying the handling of a
two axle vehicle.

For a two axle vehicle, they can be immediately solved, yielding

Fy1 =
mV 2

R

b

l
, Fy2 =

mV 2

R

a

l
. (25.49)

Assuming that the cornering forces of the axles are proportional to the
sideslip angles through their cornering stiffness, it follows that

α1 = −mV 2

R

b

lC1
, α2 = −mV 2

R

a

lC2
, (25.50)

where Ci is the cornering stiffness of the ith axle, and is equal to the cornering
stiffness of the wheels multiplied by the number of wheels of the axle.

A relationship between the sideslip and steering angles can be found with
simple geometrical considerations from Fig. 25.12

δ − α1 + α2 =
l

R
. (25.51)

Introducing the expressions of the sideslip angles into Eq. (25.51), it follows that

δ =
l

R
+

mV 2

Rl

(
b

C1
− a

C2

)
, (25.52)
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or, in terms of path curvature gain,

1
Rδ

=
1
l

1
1 + Kus

V 2

gl

, (25.53)

where

Kus =
mg

l2

(
b

C1
− a

C2

)
(25.54)

is the so-called understeer coefficient or understeer gradient of the vehicle. The
understeer coefficient is a non-dimensional quantity, and is often expressed in
radians.

As already stated, in kinematic conditions(
1

Rδ

)
kin

=
1
l

. (25.55)

The expression 1 + KusV
2/gl can be considered as a correction factor giv-

ing the response of the vehicle in dynamic conditions as opposed to kinematic
conditions.

From Eq.(25.52) it follows that

δ − δkin =
V 2

Rg
Kus , (25.56)

i.e.
Kus =

g

ay
(δ − δkin) . (25.57)

The understeer coefficient can thus be interpreted as the difference between
the steering angles in kinematic and dynamic conditions divided by the centrifu-
gal acceleration expressed as a multiple of the gravitational acceleration.

Sometimes, instead of the understeer coefficient, a stability factor

K =
m

l2

(
b

C1
− a

C2

)
. (25.58)

is defined.
As a first approximation, K and K∗ may be considered as constant for a

given vehicle and load condition. As will be seen below, however, in many cases
their dependence on speed cannot be neglected for more precise assessments.

It is possible to define a lateral acceleration gain as the ratio between the
lateral acceleration and the steering input:

V 2

Rδ
=

V 2

l

1
1 + Kus

V 2

gl

. (25.59)

The sideslip angle can be obtained through simple geometrical considerations,
yielding

β =
b

R
− α2. (25.60)
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A sideslip angle gain, expressing the ratio between the sideslip angle and
the steering angle can be defined as well. Its value is

β

δ
=

b

l

(
1 − maV 2

blC2

)
1

1 + Kus
V 2

gl

, (25.61)

25.4 DEFINITION OF UNDERSTEER
AND OVERSTEER

If Kus = 0 the value of 1/Rδ is constant and equal to the value characterizing
kinematic steering; i.e. the response of the vehicle to a steering input is, at any
speed, equal to that in kinematic conditions. This does not mean, however, that
the vehicle is in kinematic conditions, since the value of the sideslip angle β is
not equal to its kinematic value and the values of the sideslip angles of the wheels
are not equal to zero.

A vehicle behaving in this way is said to be neutral-steer (Fig. 25.13a).
If Kus > 0 the value of 1/Rδ decreases with increasing speed. The response

of the vehicle is then smaller than in kinematic conditions and, to maintain
a constant radius of the path, the steering angle must be increased as speed
increases.

A vehicle behaving in this way is said to be understeer .
A quantitative measure of the understeering of a vehicle is given by the

characteristic speed , defined as the speed at which the steering angle needed to

FIGURE 25.13. Steady state response to a steering input. Plot of the path curvature
gain as a function of speed (a) and handling diagram (b) for an oversteer, an understeer
and a neutral steer vehicle. The understeer factor is assumed to be independent of speed.
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negotiate a turn is equal to twice the Ackerman angle, i.e. the path curvature
gain is equal to 1/2l.

Using the simplified approach outlined above, the characteristic speed is

Vcar =
√

gl

Kus
=

√
1
K

. (25.62)

If Kus < 0 the value of 1/Rδ increases with increasing speed until, for a
speed

Vcrit =
√

− gl

Kus
=

√
− 1

K
(25.63)

the response tends to infinity, i.e., the system develops an unstable behavior.
A vehicle behaving in this way is said to be oversteer , and the speed given

by Eq. (25.63) is called the critical speed . The critical speed of any oversteer
vehicle must be well above the maximum speed it can reach, at least in normal
road conditions.

Instead of plotting the path curvature gain as a function of the speed, it is
possible to plot the handling diagram, i.e. the plot of the lateral acceleration ay

as a function of δkin − δ (Fig. 25.13b). If the vehicle is neutral steer, the plot is
a vertical straight line, if it is oversteer it is a straight line sloping to the right,
while in case of an understeer vehicle it slopes to the left.

The value of β, or better, of β/δ, decreases with the speed from the kinematic
value up to the speed

(V )β=0 =

√
blC2

am
. (25.64)

at which it vanishes. At higher speed it becomes negative, tending to infinity
when approaching the critical speed for oversteer vehicles and tending to

aC1

aC1 − bC2

when the speed tends to infinity in the case of understeering vehicles.
The sideslip angles of the front and rear wheels are equal in neutral-steer

vehicles. In oversteer vehicles, the rear wheels have a larger sideslip angle (in
absolute value, since the sideslip angles are negative when the radius of the
path is positive), while the opposite holds in understeer vehicles. It follows that
oversteer vehicles can be expected to reach limit conditions at the rear wheels
and understeer vehicles at the front wheels, even if the present model cannot be
applied when the sideslip angles increase, approaching limit conditions.

A graphical interpretation of this result, for a vehicle with a single steering
axle, is shown in Fig. 25.14. The vehicle is modelled as a steering front axle and a
fixed rear axle. Kinematic steering applies if the speed tends to zero: the sideslip



270 25. HANDLING PERFORMANCE

FIGURE 25.14. Geometrical definition of the behavior of a vehicle with a single steering
axle.

angles vanish and the center of path is point O. It follows immediately that
l

R
= tan(δ) ≈ δ .

With increasing speed the wheels work with increasing sideslip angles α1

and α2. If α1 = α2 angle BO’A is still equal to δ (its value is |α2|+ δ− |α1|) and
thus O’ lies on a circle through points A, B and O.

Since l � R′, O’ is in a position almost opposite to A and B and then
R′ ≈ R. The radius of the path is still equal to that characterizing kinematic
steering, and the vehicle is neutral steer.

If |α1| > |α2| the center of the path moves to O” and radius R′′ is larger thus
R. The vehicle is then understeer. If, on the other hand, |α1| < |α2|, the center
of the path is O′′′, radius R′′′ is smaller than R′ and the vehicle is oversteer.
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25.5 HIGH SPEED CORNERING

25.5.1 Equations of motion

The study of the handling of the vehicle seen in the previous sections was based
on the assumption of steady-state operation. Moreover, only the cornering forces
acting on the tires were considered.

A simple mathematical model for the handling of a rigid vehicle that
overcomes the above limitations can, however, be built.

To keep the model as simple as possible, the following assumptions may be
made

1. The sideslip angle of the vehicle β and of the wheels α are small. The yaw
angular velocity ψ̇ can also be considered a small quantity.

2. The vehicle can be assumed to be a rigid body moving on a flat surface,
i.e. roll and pitch angles are neglected as well as the vertical displacements
due to suspensions.

If a motor vehicle is considered as a rigid body moving on a surface, a model
with three degrees of freedom is needed for the study of its motion. If the road is
considered as a flat surface, the motion is planar. By using the inertial reference
frame4 XY shown in Fig. 25.15, it is possible to use the coordinates X and Y of
the centre of mass G of the vehicle and the yaw angle ψ between the x and X
axes as generalized coordinates.

The equations of motion of the vehicle are
⎧⎨
⎩

mẌ = FX

mŸ = FY

Jzψ̈ = Mz ,

(25.65)

where FX , FY and Mz are the total forces acting in the X and Y directions and
the total yawing moment. For the latter, subscript z has been used instead of Z
since the directions of the two axes coincide.

Equations (25.65) are very simple but include the forces acting on the vehicle
in the direction of the axes of the inertial frame. They are clearly linked with
the forces acting in the directions of axes x and y of the vehicle by the obvious
relationship {

FX

FY

}
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]{
Fx

Fy

}
. (25.66)

If the model is used to perform a numerical integration in time, they can be
used directly without any difficulty.

4As already stated, such a reference frame is not, strictly speaking, inertial, since it is fixed
to the road surface and hence follows the motion of Earth. It is, however, inertial “enough” for
the problems here studied, and this issue will not be dealt with any further.
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FIGURE 25.15. Reference frame for the study of the motion of a rigid vehicle. The
vehicle has three degrees of freedom, and the coordinates X and Y of the centre of
mass G and the yaw angle ψ can be used as generalized coordinates.

However, if the model has to be used to obtain linearized equations in order
to gain a general insight into the behavior of the vehicle, it is better to write
the equations of motion with reference to the non-inertial xy frame, to avoid
dealing with the trigonometric functions of angle ψ, which in general is not a
small angle, and would make linearizations impossible.

To write the equations of motion with reference to the body-fixed frame
xyz, it is expedient to use the components u and v of the speed in the directions
of the x and y axes and the yaw angular velocity

r = ψ̇ .

There are many ways to obtain the mathematical model, but perhaps the
simplest is to remember that the derivative with respect to time of a generic
vector �A, expressed in the body-fixed frame, but performed in the inertial frame

d �A

dt

∣∣∣∣∣
i

can be expressed starting from the derivative performed in the body fixed frame

d �A

dt

∣∣∣∣∣
m

,

as
d �A

dt

∣∣∣∣∣
i

=
d �A

dt

∣∣∣∣∣
m

+ �Ω ∧ �A , (25.67)
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where �Ω is the absolute angular velocity of the body fixed frame.
In the present case, the velocity and the angular velocity vectors, in the

body-fixed frame, are

�V =

⎧⎨
⎩

u
v
0

⎫⎬
⎭ , �Ω =

⎧⎨
⎩

0
0
r

⎫⎬
⎭ . (25.68)

The derivative of the velocity of the vehicle is then

d�V

dt

∣∣∣∣∣
i

=
d�V

dt

∣∣∣∣∣
m

+ �Ω ∧ �V =

⎧⎨
⎩

u̇ − rv
v̇ + ru

0

⎫⎬
⎭ . (25.69)

The equations of motion of the vehicle, expressed with reference to the xyz
frame, are ⎧⎨

⎩
m(u̇ − rv) = Fx

m(v̇ + ru) = Fy

Jz ṙ = Mz .
(25.70)

As an alternative, a procedure based on Lagrange equations can be followed.
Although apparently more complicated, it will be shown here, since it is consis-
tent with what will be done later for more complex models. In the present case
other approaches are more straightforward.

The kinetic energy of the vehicle is

T =
1
2
m

(
u2 + v2

)
+

1
2
Jzr

2 . (25.71)

The rotational kinetic energy of the wheels has been neglected: No
gyroscopic effect of the wheels will be obtained in this way.

Velocities u, v and r are linked to the derivatives of the generalized coordi-
nates Ẋ, Ẏ and ψ̇ by the relationship:

⎧⎨
⎩

u
v
r

⎫⎬
⎭ =

⎡
⎣ cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦
⎧⎨
⎩

Ẋ

Ẏ

ψ̇

⎫⎬
⎭ , (25.72)

i.e.
w = AT q̇ , (25.73)

where
w =

[
u v r

]T

is the vector containing the generalized velocities, and

q̇ =
[

Ẋ Ẏ ψ̇
]T

is the vector containing the derivatives of the generalized coordinates.
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Since matrix A is a rotation matrix,

AT = A−1 (25.74)

and the inverse transformation is

q̇ = Aw . (25.75)

The equations of motion are

d

dt

(
∂T
∂q̇i

)
− ∂T

∂qi
= Qi , (25.76)

where coordinates qi are X, Y and ψ and forces Qi are the corresponding gen-
eralized forces FX , FY and Mz.

The derivatives needed to write the equations of motion are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T
∂Ẋ

=
∂T
∂u

∂u

∂Ẋ
+

∂T
∂v

∂v

∂Ẋ
+

∂T
∂r

∂r

∂Ẋ

∂T
∂Ẏ

=
∂T
∂u

∂u

∂Ẏ
+

∂T
∂v

∂v

∂Ẏ
+

∂T
∂r

∂r

∂Ẏ

∂T
∂ψ̇

=
∂T
∂u

∂u

∂ψ̇
+

∂T
∂v

∂v

∂ψ̇
+

∂T
∂r

∂r

∂ψ̇
.

(25.77)

i.e. {
∂T
∂q̇

}
= A

{
∂T
∂w

}
, (25.78)

where {
∂T
∂q̇

}
=
[

∂T
∂Ẋ

∂T
∂Ẏ

∂T
∂ψ̇

]T

is the vector containing the derivatives with respect to the derivatives of the
generalized coordinates, while

{
∂T
∂w

}
=
[

∂T
∂u

∂T
∂v

∂T
∂w

]T

is the vector containing the derivatives with respect to the generalized velocities.
By differentiating with respect to time, it follows that

∂

∂t

({
∂T
∂q̇

})
= A

∂

∂t

({
∂T
∂w

})
+ Ȧ

{
∂T
∂w

}
, (25.79)

where

Ȧ = ψ̇

⎡
⎣ − sin(ψ) − cos(ψ) 0

cos(ψ) − sin(ψ) 0
0 0 0

⎤
⎦ . (25.80)
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The computation of the derivatives with respect to the generalized coordi-
nates

{
∂T
∂q

}
5 is more complex. The generic derivative ∂T

∂qk
is

∂T ∗

∂qk
=

∂T
∂qk

+
n∑

i=1

∂T
∂wi

∂wi

∂qk
=

∂T
∂qk

+
n∑

i=1

∂T
∂wi

n∑
j=1

∂Aij

∂qk
q̇j , (25.81)

where T ∗ is the kinetic energy expressed as a function of the generalized co-
ordinates and their derivatives (the expression to be introduced into Lagrange
equations in their original form), while T is expressed as a function of the gen-
eralized coordinates and the velocities in the body fixed frame. It is possible to
show that

∂T ∗

∂qk
=

∂T
∂qk

+ wT AT ∂A
∂qk

{
∂T
∂w

}
. (25.82)

Note that product

wT AT ∂A
∂qk

is a row matrix of order n (3 in the present case) that, multiplied by the column{
∂T
∂w

}
, yields the required number.

To use a more synthetic notation, those row matrices can be superimposed,
yielding a square matrix [

wT AT ∂A
∂qk

]
.

and thus {
∂T ∗

∂qk

}
=

{
∂T
∂qk

}
+

[
wT AT ∂A

∂qk

]{
∂T
∂w

}
. (25.83)

The equation of motion is thus

A
∂

∂t

({
∂T
∂w

})
+ Ȧ

{
∂T
∂w

}
−

{
∂T
∂qk

}
−

[
wT AT ∂A

∂qk

]{
∂T
∂w

}
=

⎧⎨
⎩

FX

FY

Mz

⎫⎬
⎭ .

(25.84)

By premultiplying all terms of matrix AT = A−1, it follows that

∂

∂t

({
∂T
∂w

})
+ AT

(
Ȧ−

[
wT AT ∂A

∂qk

]){
∂T
∂w

}
+ (25.85)

−AT

{
∂T
∂qk

}
= AT

⎧⎨
⎩

FX

FY

Mz

⎫⎬
⎭ .

5For details on this part of the analysis, see L. Meirovitch, Methods of Analytical Dynamics,
Mc Graw-Hill, New York, 1970.
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By performing the derivatives of the kinetic energy and all products, the
equation becomes⎧⎨

⎩
mu̇
mv̇
Jzr

⎫⎬
⎭ +

⎡
⎣ 0 −r 0

r 0 0
0 0 0

⎤
⎦
⎧⎨
⎩

mu
mv
Jzψ

⎫⎬
⎭ =

⎧⎨
⎩

Fx

Fy

Mz

⎫⎬
⎭ , (25.86)

where forces Fx and Fy refer to the body fixed frame. The final expression of the
equations of motion is then ⎧⎨

⎩
m(u̇ − rv) = Fx

m(v̇ + ru) = Fy

Jz ṙ = Mz ,
(25.87)

which obviously coincides with that obtained previously.
Velocities u and v are not derivatives of true coordinates, but nevertheless

they can be used to write the equations of motion. They are actually derivatives
of pseudo-coordinates, and the procedure here followed can also be used in cases
where the kinematic equation (25.72) is more complicated, and where, in partic-
ular, the equation contains a matrix AT that does not satisfy the relationship

AT = A−1 .

Equations (25.87) are nonlinear in the velocities u, v and r but, since the
sideslip angle β is small and its trigonometric functions can be linearized, the
linearization of the equations is possible. The components of velocity V can
be written as {

u = V cos(β) ≈ V
v = V sin(β) ≈ V β .

(25.88)

Product ψ̇v can be considered the product of two small quantities and it is
thus of the same order as the first term ignored in the series for the cosine. It is
therefore cancelled.

The speed V can be considered a known function of time, which amounts to
studying the motion with a given law V (t) (in many cases at constant speed) and
assuming as an unknown the driving or the braking force needed to follow such
a law. The unknown for the degree of freedom related to translation along the
x-axis in this case is the force Fxd

exerted by the driving wheels. When braking,
force Fxd

is the total braking force exerted by all wheels.
Equation (25.87) reduces to the linear form in Fx, v and r:⎧⎨

⎩
mV̇ = Fx

m (v̇ + rV ) = Fy

Jz ṙ = Mz .
(25.89)

If the interaction between longitudinal and transversal forces due to the tires
is neglected or accounted for in an approximate way, the first equation of mo-
tion, which has already been studied in the section dealing with the longitudinal
performance of the vehicle, uncouples from the other two.
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This amounts to saying that the lateral behavior is uncoupled from the
longitudinal behavior and can be studied using just two variables, either velocities
v and r: {

m (v̇ + rV ) = Fy

Jz ṙ = Mz ,
(25.90)

or β and r if the equations are written in the equivalent form
{

mV
(
β̇ + r

)
+ mβV̇ = Fy

Jz ṙ = Mz .
(25.91)

25.5.2 Sideslip angles of the wheels

The sideslip angles of the wheels may be expressed easily in terms of the gen-
eralized velocities. With reference to Fig. 25.16, the velocity of the centre Pi of
the contact area of the ith wheel, located in a point whose coordinates are xi

and yi in the reference frame of the vehicle, is

�VPi
= �VG + ψ̇Λ(Pi − G) =

{
u − ψ̇yi

v + ψ̇xi

}
. (25.92)

Angle βi between the direction of the velocity of point Pi and x-axis is

βi = arctan
(

vi

ui

)
= arctan

(
v + ψ̇xi

u − ψ̇yi

)
. (25.93)

FIGURE 25.16. Position and velocity of the centre Pi of the contact area of the i-th
wheel.



278 25. HANDLING PERFORMANCE

If the ith wheel has a steering angle δi, its sideslip angle is

αi = βi − δi = arctan

(
v + ψ̇xi

u − ψ̇yi

)
− δi . (25.94)

Equation (25.94) can be easily linearized. By noting that yiψ̇ is far smaller
than the speed V , it follows that

αi = βi − δi ≈
v + rxi

V
− δi = β +

xi

V
r − δi . (25.95)

Coordinate yi of the centre of the contact area of the wheel does not appear
in the expression for the sideslip angle αi. If the differences between the steering
angles δi of the wheels of the same axle are neglected, the values of their sideslip
angles are then equal. This allows one to work in terms of axles instead of single
wheels and to substitute a model of the type of Fig. 4.1b to that of Fig. 4.1a.
This approach is very common and is often referred to as the monotrack vehicle
or bicycle model.

The explicit expressions of the sideslip angles of the front and rear axles of
a vehicle with two axles are then⎧⎪⎨

⎪⎩
α1 = β +

a

V
r − δ1

α2 = β − b

V
r − δ2 .

(25.96)

In the majority of cases only the front axle can steer and δ2 = 0.

Remark 25.6 The assumption of a rigid vehicle prevents one from considering
roll steering.

25.5.3 Forces acting on the vehicle

Normal forces acting on the vehicle in symmetrical conditions were obtained in
Chapter 23. When lateral accelerations are present, the vehicle is not in symmet-
rical conditions and the forces on the ground are not equally subdivided between
the two wheels of each axle. However, the assumption of a small sideslip angle
β and the subsequent linearization and uncoupling between lateral and longi-
tudinal behavior allow one to use the same values of the forces on the ground
previously seen. Moreover, to investigate how forces are subdivided between the
wheels of the same axle has little meaning in a monotrack vehicle.

The forces acting in the xy plane at the tire-road interface in a monotrack
vehicle are shown in Fig. 25.12

Since the lateral behavior is uncoupled from the longitudinal one, only the
resultants of the side force Fy and of the yaw moment Mz need to be computed:

Fy =
∑
∀i

Fxi
sin(δi) +

∑
∀i

Fyi
cos(δi) +

1
2
ρV 2

r SCy + Fye
, (25.97)
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where the external force Fye
may be mg sin(αt) in the case of a road with

transversal slope αt, and

Mz =
∑
∀i

Fxi
sin(δi)xi+

∑
∀i

Fyi
cos(δi)xi+

∑
∀i

Mzi
+

1
2
ρV 2

r SCMz
+Mze

, (25.98)

where xi and yi are the coordinates of the center of the contact zone, Mzi
repre-

sents the aligning moments of the wheels and Mze
is a yawing moment applied

to the vehicle. Subscript i indicates the axle, and thus if the vehicle has two axles
i = 1, 2. If the rear axle does not steer, δ2 = 0.

Cornering forces

Owing to linearization, equation (25.97) reduces to

Fy =
∑
∀i

Fxi
δi +

∑
∀i

Fyi
+

1
2
ρV 2

r SCy + Fye
, (25.99)

where products Fxit
δi can usually be neglected, since they are far smaller than

the other forces included in the equation.
Since the model has been linearized, cornering forces can be expressed as

the product of the cornering stiffness by the sideslip angle

Fyi
= −Ciαi = −Ci

(
β +

xi

V
r − δi

)
. (25.100)

Equation (25.100) is written in terms of axles. The cornering stiffness is
then that of the axle and not of the single wheel. In this way no allowance is
taken for the camber force as, owing to the assumption of a rigid vehicle, no roll
is considered and the wheels of a given axle have opposite camber. The camber
forces then cancel each other.

Nor is allowance made for toe in and transversal load transfer. If the de-
pendence of the cornering stiffness were linear with the load Fz, this would be
correct since the increase of cornering stiffness of the more loaded wheel would
exactly compensate for the decrease of the other wheel. As this is not exactly the
case, the load transfer causes a decrease of the cornering stiffness of each axle,
but this effect is usually considered negligible, at least for lateral accelerations
lower than 0.5 g6. Toe in causes an increase of the cornering stiffness of the axle
if it is positive, a decrease if it is negative.

By linearizing also the value of the aerodynamic coefficient Cy

Cy = (Cy),ββ

and assuming that the steering angles of the various axles can be expressed as

δi = K ′
iδ, (25.101)

6L. Segel, Theoretical Prediction and Experimental Substantiation of the Response of the
Automobile to Steering Control, Cornell Aer. Lab., Buffalo, N.Y.
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the expression of the total lateral force (25.99) can be reduced to the linear
equation

Fy = Yββ + Yrr + Yδδ + Fye
, (25.102)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Yβ = −
∑
∀i

Ci +
1
2
ρV 2

r S(Cy),β

Yr = − 1
V

∑
∀i

xiCi

Yδ =
∑
∀i

K ′
i (Ci + Fxi

) .

(25.103)

Equation (25.102) can be considered as a Taylor series for the force
Fy (β, r, δ) about the condition β = r = δ = 0, truncated after the linear terms.
Coefficients Yβ , Yr and Yδ are the derivatives of the force with respect to the
three variables β, r and δ and may be obtained in any way, even experimentally,
if possible.

In the case of vehicles with only one steering axle, all K ′
i vanish except

K ′
1 = 1, while in other cases they can be functions of many parameters. If the

variables of motion β or r enter such equations the model is no longer linear.
The first Eq. (25.98) has been obtained conflating the sideslip angle of the

vehicle β with the aerodynamic sideslip angle βa, as occurs when no side wind
is present, and in the third equation the terms in Fxit

are usually neglected.

Yawing moments

Equation (25.98) can be linearized yielding

Mz =
∑
∀i

Fxi
δixi +

∑
∀i

Fyi
xi +

∑
∀i

Mzi
+

1
2
ρV 2

r SCMz
+ Mze

. (25.104)

The aligning torque can be expressed as a linear function of the sideslip
angle,

Mz = (Mz),αα , (25.105)

holding only in a range of α smaller than that for which the side force can be
linearized.

The same considerations seen for the cornering force hold here; moreover,
the aligning torque is far less important and the errors in its evaluation affect the
global behavior of the vehicle far less than errors in the cornering force. In the
following equations the values of (Mz),α are referred to the whole axle.

Acting similarly to what seen for the cornering forces, the linearized expres-
sion for the yawing moments is

Mz = Nββ + Nrr + Nδδ + Mze
, (25.106)
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where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nβ =
∑
∀i

[−xiCi + (Mzi
),α] +

1
2
ρV 2

r S(CMz
),β

Nr =
1
V

∑
∀i

[
−x2

i Ci + (Mzi
),αxi

]

Nδ =
∑
∀i

K ′
i [Cixi − (Mzi

),α + Fxi
xi] .

(25.107)

In this case the terms in Fxit
are usually neglected.

25.5.4 Derivatives of stability

As already stated, the terms Yβ , Yr, Yδ, Nβ , Nr and Nδ are nothing but the
derivatives ∂Fy/∂β, ∂Fy/∂r, etc. They are usually referred to as derivatives of
stability. Nr is sometimes referred to as yaw damping, as it is a factor that,
multiplied by an angular velocity, yields a moment, like a damping coefficient.

In a simplified study of the handling of road vehicles, aerodynamic forces are
usually neglected, as is the interaction between the longitudinal and transversal
forces of the tires. In these conditions, Yβ , Yδ, Nβ and Nδ are constant while Yr

and Nr are proportional to 1/V . Note that they are strongly influenced by the
load and road conditions through the cornering stiffness of the tires.

If aerodynamic forces are considered, the airspeed Vr is often substituted by
the groundspeed V . These forces introduce a strong dependence with V 2 in Yβ

and Nβ and with V in Nr.

Example 25.3 Compute the derivatives of stability at 100 km/h of the vehicle of

Appendix E.2, using the simplified and the complete formulations. Plot the derivatives

of stability as functions of the speed for the same vehicle. In the whole computation

neglect the longitudinal forces on the tires.

The normal forces on the ground are first computed. At 100 km/h, at constant

velocity on level road, they are 4.804 and 3.536 kN for the front and rear axles respec-

tively.

From these values the cornering and aligning stiffness can be computed as C1 =

67, 369 N/rad, C2 = 63, 411 N/rad, (Mz1),α = 2, 010 Nm/rad and (Mz2),α = 1, 366

Nm/rad.

These values refer to the axles; the normal load on each wheel must be first com-

puted and introduced into the “magic formula”; the results are then multiplied by the

number of wheels on the axles.

By taking into account only the cornering forces of the tires, the following values

of the derivatives of stability at 100 km/h are obtained:



282 25. HANDLING PERFORMANCE

Yβ Yr Yδ Nβ Yr Yδ

N/rad Ns/rad N/rad Nm/rad Nms/rad Nm/rad

−130, 570 824.62 67, 374 22, 906 −5, 622 58, 615

If the complete expressions, including aligning torques, aerodynamic forces and

load shift between the wheels of the same axle are used, the values of the derivatives of

stability at 100 km/h are:

Yβ Yr Yδ Nβ Yr Yδ

N/rad Ns/rad N/rad Nm/rad Nms/rad Nm/rad

−132, 340 824.62 67, 374 26, 488 −5, 630 55, 962

The derivatives of stability are plotted as functions of the speed in Fig. 25.17.

The values obtained from the complete expressions are reported as full lines while the

dashed lines are the constant values (proportional to 1/V for Yr and Nr) obtained when

considering the cornering forces only, computed at 100 km/h.

Note that Nβ is the only derivative of stability strongly affected by load shift, align-

ing torques and the other effects. Here an apparently strange result is obtained: From

the formula a decrease in Nβ seems to occur with increasing speed, as the aerodynamic

term is negative, while the plot shows an increase.

The latter is due to the longitudinal load shift which, while causing an increase of

the load on the rear axle, produces an increase of Nβ that is larger than the decrease

due to the aerodynamic moment Mz.

FIGURE 25.17. Derivatives of stability as functions of the speed. Full lines: Values
obtained from the complete expressions; dashed lines: Constant values (proportional to
1/V for Yr and Nr) obtained considering the cornering forces only, computed at 100
km/h.
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25.5.5 Final expression of the equations of motion

The final expression of the linearized equations of motion for the handling model
is thus {

mV
(
β̇ + r

)
+ mV̇ β = Yββ + Yrr + Yδδ + Fye

Jz ṙ = Nββ + Nrr + Nδδ + Mze
.

(25.108)

These are two first order differential equations for the two unknown β and r.
These equations are apparently first order equations: the variables β and

r are actually an angular velocity (r) or a quantity linked with a velocity (β
was introduced instead of velocity v); their derivatives are thus accelerations.
The missing term is therefore not the second derivative (acceleration), but the
displacement.

Alternatively, a set of two first order differential equations in v and r could
be written.

The steering angle δ can be considered as an input to the system, together
with the external force and moment Fye

and Mze
. This approach is usually

referred to as the “locked controls” behavior.
Alternatively, it is possible to study the “free controls” behavior, in which

the steering angle δ is one of the variables of the motion and a further equation
expressing the dynamics of the steering system is added.

In the first case, β and r can be considered as state variables and Eq. (25.108)
can be written directly as a state equation

ż = Az + Bcuc + Beue , (25.109)

where the state and input vectors z, uc and ue are

z =
{

β
r

}
, uc = δ , ue =

{
Fye

Mze

}
,

the dynamic matrix is

A =

⎡
⎢⎢⎢⎣

Yβ

mV
− V̇

V

Yr

mV
− 1

Nβ

Jz

Nr

Jz

⎤
⎥⎥⎥⎦

and the input gain matrices are

Bc =

⎡
⎢⎢⎢⎣

Yδ

mV

Nδ

Jz

⎤
⎥⎥⎥⎦ , Be =

⎡
⎢⎢⎢⎣

1
mV

0

0
1
Jz

⎤
⎥⎥⎥⎦ .

The block diagram corresponding to the state equation is shown in
Fig. 25.18.
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FIGURE 25.18. Block diagram for the rigid vehicle handling model.

The study of the system is straightforward: The eigenvalues of the dynamic
matrix allow one to see immediately whether the behavior is stable or not, and
the study of the solution to given constant inputs yields the steady state response
to a steering input or to external forces and moments.

There is, however, an interesting analogy. If the speed is kept constant in
such a way that the derivatives of stability are constant in time, there is no
difficulty in obtaining r from the first Eq. (25.108) and substituting it into the
second, which becomes a second order differential equation in β. Similarly, solving
the second in β and substituting it in the first one, an equation in r is obtained.
The result is

P β̈ + Qβ̇ + Uβ = S′δ + T ′δ̇ − NrFye
+ JzḞye

− (mV − Yr)Mze
(25.110)

or

P r̈ + Qṙ + Ur = S′′δ + T ′′δ̇ + NβFye
− YβMze

+ mV Ṁze
, (25.111)

where

⎧⎨
⎩

P = JzmV
Q = −JzYb − mV Nr

U = Nβ (mV − Yr) + NrYβ

⎧⎪⎪⎨
⎪⎪⎩

S′ = −Nδ (mV − Yr) − NrYδ

S′′ = YδNβ − NδYβ

T ′ = JzYδ

T ′′ = mV Nδ .

If the simplified expressions of the derivatives of stability are used, the ex-
pressions for P , Q, etc., for a vehicle with two axles reduce to

⎧⎪⎨
⎪⎩

P = JzmV
Q = Jz(C1 + C2) + m(a2C1 + b2C2)

U = mV (−aC1 + bC2) + C1C2
l2

V

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′ = C1

(
−amV + C2

bl

V

)

S′′ = lC1C2

T ′ = JzC1

T ′′ = mV aC1 .

Each of equations (25.110) and (25.111) is sufficient for the study of the
dynamic behavior of the vehicle.
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FIGURE 25.19. Formal analogy of the motor vehicle with a mass-spring-damper system
(mass P, stiffness U , damper Q). Force F includes the different forcing functions.

The equations are formally identical to the equation of motion of a spring-
mass-damper system (Fig. 25.19).

The linearized behavior of a rigid motor vehicle at constant speed is thus
identical to that of a mass P suspended from a spring with stiffness U and a
damper with damping coefficient Q, excited by the different forcing functions
stated above (the command δ and the external disturbances).

Remark 25.7 The analogy here suggested is only a formal one: as already
stated, the state variables β and r are dimensionally an angular velocity (r)
or are related to velocities (β has been introduced to express the lateral velocity
v) and not displacements, and thus P , Q and U are dimensionally far from being
a mass, a damping coefficient and a stiffness.

25.6 STEADY-STATE LATERAL BEHAVIOR

In steady state driving the radius of the path is constant, i.e. the path is circular.
The relationship linking the angular velocity r to the radius R of the path is thus

r =
V

R
. (25.112)

Computing the steady state response to a steering angle δ is the same as
computing the equilibrium position of the equivalent mass-spring-damper system
under the effect of a constant force S′δ or S′′δ since in steady state motion δ̇ = 0

⎧⎪⎪⎨
⎪⎪⎩

β =
S′

U
δ =

−Nδ (mV − Yr) − NrYδ

Nβ (mV − Yr) + NrYβ
δ

r =
S′′

U
δ =

YδNβ − NδYβ

Nβ (mV − Yr) + NrYβ
δ .

(25.113)

The transfer functions of the vehicle are thus the
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• path curvature gain

1
Rδ

=
YδNβ − NδYβ

V [Nβ (mV − Yr) + NrYβ ]
, (25.114)

expressing the ratio between the curvature of the path and the steering
input; the

• lateral acceleration gain

V 2

Rδ
=

V [YδNβ − NδYβ ]
Nβ (mV − Yr) + NrYβ

, (25.115)

expressing the ratio between the lateral acceleration and the steering input:
the

• sideslip angle gain

β

δ
=

−Nδ (mV − Yr) − NrYδ

Nβ (mV − Yr) + NrYβ
, (25.116)

expressing the ratio between the sideslip angle and the steering angle; and
the

• yaw velocity gain
r

δ
=

YδNβ − NδYβ

Nβ (mV − Yr) + NrYβ
, (25.117)

expressing the ratio between the yaw velocity and the steering angle.

If a simplified expression of the derivatives of stability, including only the
cornering forces of the tires, is introduced in the above expressions, the same
values of the gains reported in equations from (25.53) to (25.61) are obtained.

When the dependence of the derivatives of stability on the speed is accounted
for, the law 1/Rδ as a function of V is no more monotonic as those shown
in Fig. 25.13a and the behavior may change from understeer to oversteer (or
viceversa)

The aerodynamic yawing moment produces a strong effect. If ∂CMz
/∂β

is negative (the side force Fy acts forward of the centre of mass), the effect
is increasing oversteer or decreasing understeer, at increasing speed. If a critical
speed exists, such an aerodynamic effect lowers it and has an overall destabilizing
effect, increasing with the absolute value of (CMz

),β . The opposite occurs if
(CMz

),β is positive.
The longitudinal load shift produces another important effect. If the load

on the rear axle increases more, or decreases less, than that on the front axle,
the understeer increases with increasing speed.

The case of a vehicle that is oversteer at low speed and understeer at high
speed, as it can be caused by a positive value of (CMz

),β , is shown in Fig. 25.20.



25.6 Steady-state lateral behavior 287

FIGURE 25.20. Steady state response to a steering input. Plot of the path curvature
gain as a function of speed (a) and handling diagram (b) for a vehicle that at low speed
is oversteer and then becomes understeer at high speed.

Following the definition seen above, the speed at which neutral-steer is obtained
is identified by point B.

If the simplified expressions for the derivatives of stability are not used, a
new definition of a neutral-steer, and hence under- and oversteer, vehicle may
be introduced. Instead of referring to the condition

1
Rδ

=
1
l

,

neutral-steering can be defined by the relationship

d

dV

(
1

Rδ

)
= 0 . (25.118)

On the plot of Fig. 25.20 the speed at which neutral-steering is obtained is
point A, where the curve reaches its maximum.

Remark 25.8 In case the derivatives of stability are constant (Yr and Nr are
proportional to 1/V ) the first definition, which can be said to be absolute and
the second, which can be said to be incremental, coincide.

Remark 25.9 The incremental definition corresponds to the sensations of the
driver, who perceives the vehicle as oversteering if an increase of speed is accom-
panied by a decrease in radius of the path and vice versa. The driver clearly has
no way of sensing the kinematic value of the radius of the path and hence the ab-
solute definition has little meaning for him. From the viewpoint of the equations
of motion, on the other hand, the absolute definition is more significant.
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The generalized definition (25.57) of the understeer fator

Kus =
g

ay
(δ − δkin) ,

and the corresponding definition of the stability factor holds in the present case as
well. They are essentially the difference between the steering angle needed to keep
the vehicle on a given trajectory in dynamic conditions and that corresponding
to kinematic steering, multiplied by a suitable factor proportional to 1/V 2.

Generally speaking, they depend on the speed and on other conditions, like
acceleration.

Also for the understeer factor it is, however, possible to introduce an incre-
mental definition

1
Kus

=
1
g

day

d (δ − δkin)
. (25.119)

In this case the point in which the understeer factor vanishes and the vehicle
is neutral steer is point A in Fig. 25.20b instead of being point B

25.7 NEUTRAL POINT AND STATIC MARGIN

The neutral-steer point of the vehicle is usually defined as the point on the plane
of symmetry on which is applied the resultant of the cornering forces due to the
tires as a consequence of a sideslip angle β, obviously with δ = 0 and r = 0. The
cornering forces under these conditions, computed through the linearized model,
are simply −C1β and −C2β and the x coordinate of the neutral point is

xN =
aC1 − bC2

C1 + C2
. (25.120)

A better definition of neutral-steer point may, however, be introduced. If all
forces and moments due to a sideslip angle β, with δ = 0 and r = 0 are considered,
the resultant force and moment are simply Yββ and Nββ respectively7. The x
coordinate of the neutral-steer point, defined as the point of application of the
resultant of all lateral forces is thus

xN =
Nβ

Yβ
. (25.121)

The static margin Ms is the ratio between the x coordinate of the neutral
point and the wheelbase

Ms =
xN

l
. (25.122)

An external force applied to the neutral-steer point does not cause any
steady-state yaw velocity, as will be seen when dealing with the response to

7Yβ may be considered as a sort of cornering stiffness of the vehicle.
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TABLE 25.1. Directional behavior of the vehicle.
Behavior K Kus Ms xN |α1| − |α2| Nβ

Understeer > 0 > 0 < 0 < 0 > 0 > 0
Neutral steer 0 0 0 0 0 0
Oversteer < 0 < 0 > 0 > 0 < 0 < 0

external forces and moments. Owing to the mathematical model used in the
present chapter, the height of the neutral-steer point cannot be defined.

Note that to obtain a neutral-steer response, the neutral-steer point must
coincide with the centre of mass, i.e.

xN = 0 , Ms = 0 , Nβ = 0 .

If they are positive the vehicle is oversteer8 (centre of gravity behind the
neutral point); the opposite applies to understeer vehicles.

The signs of parameters K, Kus, Ms, xN , |α1|− |α2| and Nβ corresponding
to oversteer, understeer or neutral-steer behavior are reported in Table 25.1.

Since Nβ = 0 in case of neutral-steer, the second equation of motion (25.108)
uncouples from the first and simplifies as

Jz ṙ = Nrr + Nδδ + Mze
. (25.123)

The behavior of a neutral-steer motor vehicle is thus that of a first order
system rather than a second order system.

Example 25.4 Study the directional behavior of the vehicle of Appendix E.2, using

the simplified and the complete formulations.

The value of Nβ is positive and hence the vehicle is understeer. Using the values of

the derivatives of stability computed from the cornering stiffness at 100 km/h, the values

of the coordinate of the neutral-steer point and of the static margin are xN = −175

mm, Ms = −0.081, while the values obtained, always at 100 km/h, using a complete

expression of the derivatives of stability are xN = −200 mm, Ms = −0.093.

The path curvature gain, the lateral acceleration gain, the sideslip angle gain and

the yaw velocity gain are plotted as functions of the speed in Fig. 25.21. The values

obtained from the complete expressions of the derivatives of stability are shown as full

lines, while the dashed lines refer to the simplified expressions for the derivatives of

stability (constant or proportional to 1/V for Yr and Nr) obtained by considering only

the cornering forces computed at 100 km/h. The dotted lines refer to a neutral-steer

vehicle.

The vehicle has a strong understeer behavior, even more so if the complete ex-

pression of the derivatives of stability is considered. However, the simplified approach

allows one to obtain a fair approximation of the directional behavior of the vehicle.

8Sometimes the position of the neutral-steer point and the static margin are defined with
different sign conventions: Instead of referring to the position of the neutral- steer point with
respect to the centre of mass, the position of the latter with respect to the former is given. In
this case the signs of xN and Ms are changed and an understeer vehicle has a positive static
margin.
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FIGURE 25.21. Example 25.4: path curvature gain, lateral acceleration gain, sideslip
angle gain and yaw velocity gain as functions of the speed. Full lines: Values obtained
from the complete expressions of the derivatives of stability; dashed lines: Simplified ap-
proach (constant derivatives of stability, Yr and Nr proportional to 1/V , obtained con-
sidering only the cornering forces computed at 100 km/h); dotted lines: Neutral-steer
vehicle.

25.8 RESPONSE TO EXTERNAL FORCES
AND MOMENTS

From the equivalent mass-spring-damper model the steady state response to an
external force Fye

or an external moment Mze
is immediately obtained. The

relevant gains are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
RFye

=
Nβ

V U

V 2

RFye

=
V Nβ

U

β

Fye

=
−Nr

U

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
RMze

=
−Yβ

V U

V 2

RMze

=
−V Yβ

U

β

Mze

=
−mV + Yr

U
.

(25.124)
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FIGURE 25.22. I. Response to a force Fye applied to the centre of mass; (a)
neutral-steer, (b) understeer and (c) oversteer vehicle. II. Response to a lateral wind;
point of application of the side force in the neutral-steer point (a), forward (b) and
after the neutral-steer point (c) and (d).

If the vehicle is neutral-steer, Nβ = 0 and consequently

1
RFye

= 0 .

In neutral steer vehicles, then, the path remains straight under the effect of
an external force (Fig. 25.22Ia). This may be easily understood considering that
the neutral-steer point lies in the centre of mass, i.e. in the point of application
of the external force.

Actually, this condition can be used to define the neutral-steer point as the
point in which the application of an external force does not cause a yaw rotation
of the vehicle. If the presence of the suspension is accounted for, it is possible
to define, instead of a neutral-steer point, a neutral-steer line as the locus of the
points in the xz plane in which an external force applied in the y direction does
not cause any yaw rotation.

The path is, however, changed from the one preceding the application of
force Fye

: The deviation is equal to angle β, i.e. to −Fye
/Yβ . The lateral velocity

of the vehicle is simply

v = V β = −V
Fye

Yβ
.

Remark 25.10 It is very important that Yβ be as large as possible in order to
avoid large lateral velocities, particularly in the case of fast vehicles.

If the vehicle is understeer, the neutral-steer point is behind the centre of
mass and the path bends as in Fig. 25.22Ib. The opposite effect can be found in
the case of oversteer vehicles. Note that the trajectories so computed are steady-
state trajectories, and when the force is applied an unstationary motion occurs
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(dashed lines in the figure). This first part of the path cannot be computed with
the above mentioned equations.

All the gains expressed by Eq. (25.124) tend to infinity when approaching
the critical speed if the vehicle is oversteer, while they decrease with the speed
in case of understeer vehicles.

The effect of a crosswind may be considered as the combined effect of a force
and a moment. If the relative velocity is changed by angle ψw with respect to
the velocity in still air, the force and the moment acting on the vehicle due to
crosswind are

Fyw
= (Fyaer

),βψw , Mzw
= (Mzaer

),βψw . (25.125)

Note that this approach, essentially a linearization of aerodynamic forces,
holds only for small values of ψw, or, better, for values causing angle β + ψw

to remain within the range where the side force and the yawing moment can
be linearized. This occurs either for feeble crosswinds or for head- or tailwinds.
If the wind velocity is not small, the aerodynamic terms of the derivatives of
stability must be computed using Vr instead of V .

The response in terms of curvature of the path, computed as the sum of the
response to a force and to a moment, is

1
R

=
Fyw

Nβ − Mzw
Yβ

V [Nβ (mV − Yr)NrYβ ]
=

Fyw
Yβ

V U

(
Nβ

Yβ
− Mzw

Fyw

)
. (25.126)

Ratio Mzw
/Fyw

is nothing but the distance of the point of application of
the aerodynamic side force from the centre of mass. If it is equal to Nβ/Yβ ,
the aerodynamic force is applied to the neutral steer point and a straight path
occurs. The deviation angle is

β =
Mzw

Yβ
= −Fyw

xN

Nβ
. (25.127)

In general, the value of β is

β =
Fyw

U

[
−Mzw

Fyw

(mV − Yr) − Nr

]
. (25.128)

The trajectories are shown in Fig. 25.22II.
Usually the point of application of the aerodynamic force is in front of

both the centre of mass and the neutral-steer point. In this case the path bends
downwind (curve b).

The path bends upwind (curves c and d) on the other hand, if the point of
application of aerodynamic forces is behind the neutral-steer point . If this effect
is not too strong (curve d3), it is beneficial since very little correction is needed,
but if the result resembles that of curve d1 a large correction may be required
in a direction opposite to the instinctive reaction of the driver.
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Remark 25.11 It must be noted again that the present steady-state model has
limited application in the case of wind gusts, which involve primarily unsteady
phenomena.

The application of a side force to the centre of mass is easy: It is sufficient to
use a road with a transversal slope fashioned in a proper way. Wind gusts may
be simulated using jet engines and suitable ducts to distribute the gust with the
required profile.

25.9 SLIP STEERING

As stated in Chapter 4, the trajectory of a vehicle on pneumatic tires may be
controlled by applying differential longitudinal forces to the tires on the right
and left side instead of steering some of the wheels. This method of driving a
vehicle is usually referred to as slip steering: While it is the usual strategy for
controlling tracked vehicles, it is used as a primary strategy for wheeled vehicles
only on some light construction machines. In the automotive field, however, it
is increasingly used as an additional control in connection with VDC (Vehicle
Dynamics Control) systems (see Chapter 27).

Consider the mathematical model of the vehicle expressed by equations
(25.108), and add a control yawing torque Mzc

to the second equation
{

mV
(
β̇ + r

)
+ mV̇ β = Yββ + Yrr + Yδδ + Fye

Jz ṙ = Nββ + Nrr + Nδδ + Mze
+ Mzc

.
(25.129)

If the two wheels of the ith axle, whose track is ti, produce a longitudinal
force

FxiL,R,
=

Fxi

2
± ΔFxi

, (25.130)

where subscripts L and R designate the left and right wheel, the control torque is

Mzc
=

∑
∀i

ΔFxi
ti . (25.131)

If the longitudinal slip σ of the tires is small enough, the longitudinal force is
proportional to the slip through the slip stiffness Cσ (see Section 2.6). Assuming
that the differential longitudinal slip Δσ is the same on all axles, the yawing
moment can thus be expressed as

Mzc
= NσΔσ , (25.132)

where
Nσ =

∑
∀i

Cσi
ti . (25.133)
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The equation of motion is still Eq. (25.109)

ż = Az + Bcuc + Beue ,

but now

uc =
{

δ
Δσ

}
, Bc =

⎡
⎢⎢⎢⎣

Yδ

mV
0

Nδ

Jz

Nσ

Jz

⎤
⎥⎥⎥⎦ .

In steady-state conditions, it is possible to define a path curvature gain for
slip steering

1
RΔσ

=
−NσYβ

V [Nβ (mV − Yr) + NrYβ ]
, (25.134)

expressing the ratio between the curvature of the path and the differential lon-
gitudinal slip. If the simplified expressions for the derivatives of stability are
accepted, it follows that

1
RΔσ

=
C1 + C2

C1C2l2

∑
∀i

Cσi
ti

1 + Kus
V 2

gl

, (25.135)

Remark 25.12 This approach to slip steering assumes that the differential lon-
gitudinal slip is imposed. Different equations would be obtained for cases in which
the differential velocity of the wheels is imposed.

Remark 25.13 The formulae above are based on the assumption that the radius
of the trajectory is much larger than the wheelbase: They do not hold when slip
steering is used for very sharp turns, or even for turning on the spot.

Remark 25.14 Even when the speed tends to zero no kinematic conditions exist:
By definition slip steering implies that the wheels operate with both longitudinal
and side slip.

25.10 INFLUENCE OF LONGITUDINAL FORCES
ON HANDLING

A vehicle’s directional behavior is strongly influenced by the presence of longi-
tudinal forces between tires and road. Any longitudinal force causes a reduction
of cornering stiffness: If applied to the front axle, it reduces the value of C1 and
consequently makes the vehicle more understeer or less oversteer. The opposite
effect is caused by a longitudinal force applied to the rear axle.

In the linearized model this can be easily accounted for by using the elliptical
approximation which, if a complete linearization of the behavior of the tires is
assumed, can be applied directly to each axle
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Ci = C0i

√
1 −

(
Fxi

μpFzi

)2

. (25.136)

Note that the forces and the cornering stiffness refer to the whole axle.
The driving force needed to maintain a constant speed increases with the

latter and, as a consequence, the cornering stiffness of the tires of the driving
axle decreases. The effect is felt particularly if road conditions are poor, since in
Eq. (25.136) the ratio between the actual and the maximum value of the driving
force is present.

The variation of static margin for a front-wheel and a rear-wheel drive saloon
car with the speed due to the effect of the driving forces is shown in Fig. 25.23.
It is clear that the effect is minor in the whole practical speed range of the car
if the road conditions are good while, if μp is low, the change in handling of the
car due to traction is quite strong.

In the case of rear-wheel drive vehicles driving forces increase oversteer or
decrease understeer. The critical speed, if it exists, decreases or a critical speed
may appear. In bad road conditions, a rear-wheel drive vehicle may have a very
low critical speed and the driver may be required to limit the speed for stability
reasons, to avoid spinout. Starting and accelerating the vehicle may be difficult
and the driver has to exert a great care in operating the accelerator control;
antispin or TCS devices are very useful in these conditions.

FIGURE 25.23. Variation of the stability margin due to the longitudinal forces on the
tires in the cases of front- and rear-wheel drive saloon cars. Various values of μp; a
completely linearized model has been used.
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Front-wheel drive vehicles, on the other hand, have a tendency toward un-
dersteering and become more stable with increasing speed or decreasing μp and
an increasingly large steering angle is needed to maintain the vehicle on a given
path. The limit condition is that of an infinitely stable vehicle, i.e. a vehicle that
can only move on a straight line.

In vehicles with more than one driving axle, and when braking, handling
depends upon how the longitudinal forces are distributed between the axles.
If the front axle is working with a larger longitudinal force coefficient μx than
the rear axle, which does not necessarily imply that force Fx is larger but that
the ratio Fx/Fz of the front wheels is larger than that of the rear wheels, the
vehicle becomes more understeering and is, in a sense, more stable. When the
limit conditions are reached and the front wheels slip (lock in braking or spin in
traction) the vehicle cannot be steered and follows a straight path.

A larger ratio Fx/Fz at the rear wheels makes the vehicle more oversteer
and readily introduces a critical speed. When reaching limit conditions a spinout
occurs, unless the driver promptly reduces the longitudinal forces and counter-
steers, a manoeuvre that can be expected only from very proficient drivers. To
avoid this situation the braking system must be such that the working point on
the Fx1 ,Fx2 plane is not found above the curve for ideal braking. Antispin and
antilock devices are very important from this viewpoint.

When all values of μx are equal, the behavior should theoretically not be
affected by the longitudinal forces; however, when limit conditions occur, the
vehicle can spin out or go straight depending on small changes in many pa-
rameters, such as the conditions of the individual wheels and brakes, the load
transfer, etc.

Example 25.5 Study the directional behavior of the vehicle of Appendix E.2, taking

into account the reduction of the cornering stiffness of the driving wheels caused by the

longitudinal forces needed to move at constant speed. Repeat the computation for two

values of μp, namely 1 and 0.2.

The study is performed by computing, at each speed, the values of the longitudinal

and normal component of the tire forces, using the “magic formula” for the cornering

stiffness and then reducing it through the elliptic expression (25.136).

The results, in terms of path curvature gain, lateral acceleration gain, sideslip

angle gain and yaw velocity gain, are plotted as functions of the speed in Fig. 25.24 for

both values of the maximum longitudinal force coefficient. The dashed lines refer to the

simplified expressions for the derivatives of stability (constant or proportional to 1/V

for Yr and Nr) obtained considering only the cornering forces computed at 100 km/h;

the dotted lines refer to a neutral-steer vehicle.

By comparing Fig. 25.24 with Fig. 25.21, it is clear that the effect of the driving

force is almost negligible throughout the entire speed range if the road conditions are good

(μp = 1): The lines of the two figures are almost completely superimposed. However, if

μp is lowered to 0.2, the understeer behavior becomes much more marked, particularly

at high speed.
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FIGURE 25.24. Example 25.5: path curvature gain, lateral acceleration gain, sideslip
angle gain and yaw velocity gain as functions of the speed. Values obtained from the
complete expressions of the derivatives of stability, with the effect of the driving forces
accounted for; (1): μt = 1; (2): μt = 0.2; (3): Simplified approach (constant derivatives
of stability, Yr and Nr proportional to 1/V , obtained considering only the cornering
forces computed at 100 km/h, assuming no longitudinal force effects); (4): Neutral-steer
vehicle.

25.11 TRANSVERSAL LOAD SHIFT

No allowance has yet been taken for the transversal load shift. If the dependence
on the load of the cornering stiffness of a single wheel is of the type shown in
Fig. 25.25, this does not introduce errors if the load transfer ΔFz is small, lower
than (ΔFz)lim in the figure (condition a).

But if the load shift is larger, as in the case of ΔFzb, the increase in stiffness of
the more loaded wheel cannot compensate for the decrease in the other wheel and
the cornering stiffness of the axle is reduced. This effect introduces a nonlinearity
in the behavior of the vehicle.

The simultaneous presence of longitudinal forces and load transfer makes
things more complicated. Even if the cornering stiffness is still in the linear
part of the plot of Fig. 25.25, i.e. the load transfer is smaller than (ΔFz)lim,
the combined effect yields a nonlinear behavior. Assuming that the longitudinal
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FIGURE 25.25. Effect of load transfer on the cornering stiffness.

force splits equally on its two wheels, the cornering stiffness of the axle, computed
using the elliptical approximation, is

C =
1
2

(
C0 + ΔFz

∂C

∂Fz

)√
1 −

[
Fx

μp(Fz + 2ΔFz)

]2

+

+
1
2

(
C0 − ΔFz

∂C

∂Fz

)√
1 −

[
Fx

μp(Fz − 2ΔFz)

]2

,

(25.137)

where forces Fx and Fz refer to the whole axle.
Owing to the presence of the square root, the decrease in cornering stiffness

of the less loaded wheel is greater, particularly if μx is low, than the increase at
the other wheel.

Load transfer on the driving axle thus increases the effect of longitudinal
forces; this combined action can be reduced by introducing an anti-roll bar on the
other axle. Operating in this way, the increased load transfer on the non-driving
axle also reduces its cornering stiffness, reducing the overall effect of longitudinal
forces on handling.

Anti-roll bars affect the distribution of transversal load shift between the
axles, increasing the load shift on the relevant one while decreasing that on the
other axles. They can be used to correct the behavior of the vehicle, particularly
in conditions approaching the limit lateral acceleration, as their effect on the
cornering stiffness increases when the latter increases.
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Remark 25.15 A large rear-wheel drive saloon car can benefit from the ap-
plication of an anti-roll bar at the front axle to correct the strong oversteering
tendency when the rear wheels approach their traction limit, while a small front
wheel car can use an anti-roll bar at the rear axle to reduce its understeering
behavior.

It is impossible to state the effect of anti-roll bars on the gains defined in
the previous sections since they introduce a strong nonlinearity into the math-
ematical model of the vehicle and the very definition of the gains is based on
a complete linearization. It is only possible to study a number of specific cases
where the lateral acceleration is defined, and to compute the response of the
vehicle in such conditions.

25.12 TOE IN

Consider an axle (e.g., the front axle), in which the midplanes of the wheels are
not exactly parallel and assume that the x-axes of the reference frames of the
wheels converge in a point lying forward with respect to the axle 9.

Let αc be the angle each wheel makes with the symmetry plane of the vehicle,
positive when the toe-in is positive. With reference to Fig. 4.1, the steering angle
of the wheel on the right side of the vehicle is increased by an angle equal to αc,
while the steering angle of the wheel on the left side is decreased by the same
quantity.

If the usual linearization assumptions are accepted, the sideslip angles of
the two wheels of the axle are then⎧⎪⎪⎨

⎪⎪⎩
αir

= β +
xi

V
r − δi − αc = αi − αc

αil
= β +

xi

V
r − δi + αc = αi + αc ,

(25.138)

where subscripts r and l refer to the right and left wheels respectively and i
refers to the ith axle.

Consider a vehicle negotiating a bend to the left; the sideslip angle αi is
negative while the side force is positive. The transversal load shift causes an
increase of the load on the wheels on the right, the sideslip angle αi is negative
and the side force is positive.

If C is the total stiffness of the axle, the cornering force the axle exerts is

Fy = −1
2

[
(αi − αc)

(
C + ΔFz

∂C

∂Fz

)
+ (αi + αc)

(
C − ΔFz

∂C

∂Fz

)]
, (25.139)

9Toe in is usually defined as the difference between the distance of the front part and the
rear part of the wheels of an axle, measured at the height of the hub, when the steering is in
its central position. It is positive when the midplanes converge forward.
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i.e.
Fy = C|αi| + αcΔFz

∂C

∂Fz
. (25.140)

If transversal load shift is not taken into account, and the two wheels have
the same cornering stiffness, toe in has no effect within the validity of the lin-
earized model. The situation is different if load shift is included into the model:
then toe in causes an increase of the cornering force due to the axle. This has
the effect of increasing the cornering stiffness of the axle, depending on the load
shift. Toe-in at the front wheels or toe-out of the rear ones thus has an oversteer
effect.

The effect of toe in is complicated since αc depends on the steering angle
due to steering error, on suspension geometry and on the relative roll stiffness
of the suspensions that affect the total shift of the various axles.

25.13 EFFECT OF THE ELASTO-KINEMATIC
BEHAVIOR OF SUSPENSIONS
AND OF THE COMPLIANCE
OF THE CHASSIS

In the present chapter the vehicle is modelled as a rigid body moving on a plane.
Suspensions, apart from causing inertial effects that cannot be studied using
the present model, also change all working angles of the tires and thus affect
the forces acting on the vehicle. The effects introduced by the elasto-kinematic
characteristics of suspensions may be of two different types: some of these effects
may be studied using linearized models, at least for small motion about a nominal
configuration, while others must be studied by considering their nonlinear effects,
even for small displacements

An example of the first type is roll steer. The characteristics δ(φ) can be
linearized, and a steering angle

(δ),φ φ

can easily be added to the steering angle of the various wheels, or the various
axles in monotrack models.

When, on the contrary, the compliance of the suspensions is accounted for,
the characteristic angles of the wheels depend in a nonlinear way on the variables
of motion and the resulting effects are nonlinear. No general results can thus be
obtained and numerical simulation must be used.

Even if it is possible to remain within linearity limits, the mathematical
models seen in this chapter are too simplified to depict how the elasto-kinematic
characteristics of the suspensions affect the behavior of the vehicle. Some more
complex models taking suspensions into account will be seen in Part V.

Similar considerations also hold for the compliance of the chassis or the
body. In this case, the displacements due to compliance are usually considered
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small and the models describing their flexibility are linearized. However, although
linear, these models are complex owing to the large number of deformation de-
grees of freedom involved, together with the rigid body degrees of freedom typical
of the rigid-body models. Some models of this kind will be studied in Part V.

In general, we can say that the compliance of the chassis in its plane has
little influence on the handling of the vehicle. On the other handy, its torsional
deformations can strongly affect handling and lateral behavior.

25.14 STABILITY OF THE VEHICLE

It is customary to define a static and a dynamic stability. A system is statically
stable in a given equilibrium condition if, when its state is perturbed, it tends to
return to the previous situation. If the motion following this tendency towards
the previous state of equilibrium succeeds, at least asymptotically, at restoring it,
then the system is dynamically stable. This motion can tend to the equilibrium
condition monotonically or through a damped oscillation. If, on the contrary, the
equilibrium conditions are not reached, usually because a divergent oscillation
takes place, the system is dynamically unstable. If an undamped oscillation oc-
curs, as in the case of an undamped spring-mass system, the dynamic stability
is neutral.

Remark 25.16 If the system is linear, such definitions hold in the entire range
in which the state variables are defined. If, on the contrary, the system is non-
linear, this definition holds “in the small”, i.e. for small variations of the state
variables about the values corresponding to an equilibrium point in the state space.
The linearized model here studied is then a linearization suitable for the stability
“in the small”.

The definition of stability above refers to the state of the system; in the
case of the handling model with two degrees of freedom the state variables are β
and r (or v and r). A motor vehicle is thus stable if, when in motion with given
values β0 and r0 of β and r, after a small external perturbation, it follows that

β(t) → β0 , r(t) → r0 .

No reference is made to the path: After a perturbation the vehicle cannot
return to the previous path, and a correction by the driver or by an automatic
control system is required in order to maintain the vehicle on the road.

25.14.1 Locked controls

If the steering wheel is kept in a position that allows the vehicle to maintain
the required path, the stability can be studied simply by using the homogeneous
equation of motion

ż = Az .
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The eigenvalues of the dynamic matrix A are readily found and the stabil-
ity is assessed from the sign of their real part, which must be negative. If the
imaginary part is nonzero the behavior is oscillatory, which does not necessarily
imply that the path is oscillatory but only that the time histories β(t) and r(t)
are.

The analogy with the spring-mass-damper system allows a simpler approach
to the study of the stability at constant speed.

Assuming a solution of the type

β(t) = β0e
st , r(t) = r0e

st ,

the characteristic equation yielding the poles of the system is

Ps2 + Qs + U = 0 . (25.141)

Since P , Q and U depend in general on the speed V , it is possible to com-
pute the roots locus at various speed. By using the simplified expression for the
derivatives of stability, the characteristic equation reduces to

JzmV s2 +
[
Jz(C1 + C2) + m(a2C1 + b2C2)

]
s+

+mV (−aC1 + bC2) + C1C2
l2

V
= 0 . (25.142)

At any rate, the analogy allows to state that

• to ensure static stability the stiffness U must be positive,

• to ensure dynamic stability the damping coefficient Q must be positive,

• if Q is lower than the critical damping 2
√

PU the system has an oscillatory
behavior.

Using the simplified expression of the derivatives of stability, the following
expression of the “stiffness” U can be readily obtained

U =
C1C2l

2

V
(1 + KV 2) , (25.143)

where K is the stability factor defined by Eq. (25.58).
U is thus always positive for understeer and neutral-steer vehicles, and in

the latter case it tends to zero when the speed tends to infinity. In the case
of oversteer vehicles, it is positive up to the critical speed, where it vanishes
to become negative at higher speed. The critical speed is thus the threshold
of instability for oversteer vehicles. Similar results are obtained if the complete
expressions for the derivatives of stability are used.

It is also easy to verify that Q is always positive: If the vehicle is statically
stable it is also dynamically stable. If the simplified expression for the derivatives
of stability is accepted, the value of Q is independent of the speed

Q = Jz(C1 + C2) + m(a2C1 + b2C2) . (25.144)
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The critical damping of the equivalent system Qcrit is, under the same sim-
plifying assumptions

Qcrit = 2
√

PU = 2
√

C1C2Jzml2(1 + KV 2) . (25.145)

It is a constant in the case of neutral-steer vehicles, increases with speed
for understeer vehicles, and decreases, vanishing at the critical speed, in case of
oversteer ones.

By comparing the actual with the critical damping, it follows that under-
steer vehicles tend to develop an oscillatory behavior with a frequency which
increases with the speed (similar to a spring-mass-damper system with constant
damping and increasing stiffness). Oversteer vehicles, on the other hand, tend to
return to the original state without oscillations, but in a way that slows with in-
creasing speed, similar to a spring-mass-damper system with constant damping
and decreasing stiffness.

In a neutral-steer vehicle, under the same assumptions seen above, when
K = 0 and

C1a = C2b ,

the values of Qcrit and Q are

Qcrit = 2
C1lJz

b

√
mab

Jz
,

Q =
C1lJz

b

(
1 +

mab

Jz

)
. (25.146)

In many cases ratio
mab

Jz

is not far from unity. By writing

mab

Jz
= 1 + ε,

and expanding the above expressions in a power series in ε it follows

Q =
C1lJz

b
(2 + ε) . (25.147)

Qcrit = 2
C1lJz

b

√
1 + ε =

C1lJz

b

(
2 + ε − ε2

4
+ ...

)
.

Thus it is clear that the damping coefficient Q has its critical value with an
error as small as a term in ε2. A neutral-steer vehicle is then critically damped,
at least in an approximate way, while understeer and oversteer vehicles are,
respectively, underdamped and overdamped: The free behavior of the former
can then be expected to be oscillatory. It must be noted, however, that the
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TABLE 25.2. Example 25.6. Values of P , Q, U , Qcrit and of the real and imaginary parts
of the roots at 100 km/h (27.78 m/s). Column 1: Simplified expression of the derivatives
of stability; 2: Complete expressions, with no allowance for the effect of driving forces;
3: With driving forces with μp = 1; 4: With driving forces with μp = 0.2.

1 2 3 4

P [kg2m3/s] 2.790 × 107 2.790 × 107 2.790 × 107 2.790 × 107

Q [kg2m3/s2] 2.876 × 108 2.899 × 108 2.897 × 108 2.829 × 108

U [kg2m3/s3] 1.243 × 109 1.334 × 109 1.335 × 109 1.369 × 109

Qcrit [kg2m3/s2] 3.725 × 108 3.858 × 108 3.860 × 108 3.908 × 108

�(s) [1/s] -5.155 -5.196 -5.192 -5.070
�(s) [1/s] ±4.242 ±4.562 ±4.573 ±4.834

issue of whether a given vehicle has an oscillatory behavior or not cannot be
satisfactorily resolved using the present rigid body model since the presence of
rolling motions, which are neglected here and are almost always underdamped
and thus oscillatory, can also induce an oscillatory behavior for β and r. This is
particularly true for vehicles whose suspensions exhibit roll steer.

Example 25.6 Study the stability with locked controls of the vehicle of Appendix E.2,

taking into account the reduction of the cornering stiffness of the driving wheels caused

by the longitudinal forces needed to move at constant speed.

The parameters of the equivalent spring-mass-damper system are evaluated first

and then the poles of the system are computed. The values obtained at 100 km/h (27.78

m/s) are reported in Table 25.2.

It is clear that the effect of driving forces on stability at 100 km/h is not great,

even if the available traction is quite low, and that the simplified formulae already yield

satisfactory results.

The values of P , Q and U are reported, together with that of Qcrit, as functions of

the speed in Fig. 25.26a. In the same figure, the real and imaginary parts of s and the

roots locus are also shown. The figure has been obtained using the complete expressions

of the derivatives of stability, but neglecting the effect of driving forces.

Note that the stiffness U reduces with speed without tending to zero as in the case

of neutral vehicles, and that the vehicle is almost always underdamped, except for very

low speed, when Q > Qcrit.

25.14.2 Free controls

If the steering wheel is not controlled, motion of the vehicle with free controls
occurs. The steering angle δ then becomes not an input to the system but one
of its state variables, and a new equation stating the equilibrium of the steering
system has to be included.

The same approach could be followed in the study of motion with locked
controls, since what is locked is actually not the steering angle δ but the position
of the steering wheel and, if the compliance of the steering system is accounted
for, steering angle and position of the wheel do not coincide.
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FIGURE 25.26. Example 5.5: Study of the stability. (a) Parameters of the equivalent
spring-mass-damper system as functions of the speed. (b) Real and imaginary parts of
the eigenvalues as functions of the speed. (c) Roots locus at varying speed. Complete
expressions of the derivatives of stability, with the effect of driving forces neglected.

However, if the compliance of the steering system is considered, oscillatory
motions with high frequency can usually be found, and it is unrealistic to consider
the driver as a device that inputs a position signal δ to the vehicle. It is more
correct to consider the driver as a device supplying a driving torque on the
steering wheel. The motion thus occurs in conditions closer to a free than a
locked control situation.

The actual situation is mixed: at low frequencies, such as those typical of
the motion of the vehicle as a whole, the locked control model is adequate, while
for high frequency modes the free control model is more suitable.

At any rate, since the motion of the vehicle includes high frequency compo-
nents, the dynamic behavior of the tires cannot be neglected. The simplest way
to include it into a linearized model is to use relationships of the type

Fy = −C (α − Bα̇) ,
Mz = (Mz),α (α − B′α̇) ,

(25.148)

for the cornering force and the aligning torque.
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The time derivatives of the sideslip angles are obviously

α̇i = β̇ +
xi

V
ṙ − δ̇i . (25.149)

The equations of motion (25.109) modify as
{

mV
(
β̇ + r

)
+ mV̇ β = Yββ + Yrr + Yδδ + Yβ̇ β̇ + Yṙ ṙ + Yδ̇ δ̇ + Fye

Jz ṙ = Nββ + Nrr + Nδδ + Nβ̇ β̇ + Nṙ ṙ + Nδ̇ δ̇ + Mze
,

(25.150)

where the expressions of the derivatives of stability already seen still hold while
those of the others are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yβ̇ =
∑
∀i

CiBi

Yṙ =
1
V

∑
∀i

xiCiBi

Yδ̇ = −
∑
∀i

K ′
iCiBi ,

(25.151)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nβ̇ =
∑
∀i

[
xiCiBi − (Mzi

),αB′
i

]

Nṙ =
1
V

∑
∀i

[
x2

i CiBi − (Mzi
),αxiB

′
i

]

Nδ̇ =
∑
∀i

[
− K ′

iCixiBi + K ′
i(Mzi

),αB′
i

]
.

The equation that must be added to equations (25.150) states the equi-
librium to rotation of the steering system, assumed to be a rigid system. The
geometry of the steering system is sketched in Fig. 25.27. The wheel rotates
about an axis, the kingpin axis, which is neither perpendicular to the ground
nor passing through the centre of the contact area: The caster angle ν, the lat-
eral inclination angle λ and the longitudinal and lateral offset at the ground dl

and dt are reported in the figure. In the figure, the kingpin axis intersects with
the rotation axis of the wheel, a very common situation. The case in which the
two axes are skewed will not be dealt with here.

If the kingpin axis were perpendicular to the ground and no offset were
present, the torque acting on the wheel as a consequence of the road-tire interac-
tion forces would be the aligning torque alone. The actual situation is different,
however, and the torque about the kingpin axis contains all forces and moments
acting on the wheel.

With geometrical reasoning, assuming that all angles are small, the total
moment Mk about the kingpin axis of both wheels of a steering axle may be
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FIGURE 25.27. Simplified geometry of the steering system and definition of the caster
angle ν, the lateral inclination angle λ and the offset at the ground dl and dt. The right
wheel is sketched and ν, λ and dt are positive. The kingpin axis is assumed to intersect
the rotation axis of the wheel.

approximated as10

Msr = −(Fzl
+ Fzr

)dt sin(λ) sin(δ) + (Fzl
− Fzr

)dt sin(ν) cos(δ)+
+(Fyl

+ Fyr
)rs tan(ν) + (Fxl

− Fxr
)dt + (Mzl

+ Mzr
) cos

(√
λ2 + ν2

)
,

(25.152)
where r and l indicate the right and left wheels respectively.

In symmetrical conditions, the forces on the ground at the two wheels are
equal. By assuming that the steering angle is small, Eq. (25.152) reduces to

Msr = −Fzdt sin(λ)δ + Fyrs tan(ν) + Mz cos
(√

λ2 + ν2
)

, (25.153)

where forces and moments refer to the whole axle.
By introducing expressions (25.148) into Eq. (25.153) the following lin-

earized expression of the moment about the kingpin is obtained

Msr = Mβ̇ β̇ + Mṙ ṙ + Mδ̇ δ̇ + Mββ + Mrr + Mδδ , (25.154)

where

Mβ̇ = CBrs tan(ν) − (Mz),αB′ cos
(√

λ2 + ν2
)

,

Mṙ = Mβ̇

a

V
, Mδ̇ = −Mβ̇ ,

Mβ = −Crs tan(ν) + (Mz),α cos
(√

λ2 + ν2
)

,

Mr = Mβ
a

V
, Mδ = −Mβ − Fzdt sin(λ) .

(25.155)

10 T. D. Gillespie, Fundamentals of Vehicle Dynamics, SAE, Warrendale, 1992.
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The linearized equation of motion of the steering system is then

Jsδ̈ + csδ̇ = Mβ̇ β̇ + Mṙ ṙ + Mδ̇ δ̇ + Mββ + Mrr + Mδδ + Msτs, (25.156)

where Ms, τs, cs and Js are, respectively, the torque exerted by the driver on
the steering wheel, the steering ratio (the ratio between the rotation angle of the
wheel and that of the kingpin), the damping coefficient of the steering damper
and the moment of inertia of the whole system, the latter two reduced to the
kingpin. Note that the steering ratio is often not constant and that the compli-
ance of the mechanism, here neglected, may have a large effect on it.

No gyroscopic effect of the wheels has been accounted for, which is consistent
with the assumption of a rigid vehicle, even if a weak gyroscopic effect should
be present if the kingpin axis is not perpendicular to the road.

Equation (25.156) holds also when more complicated geometries are ac-
counted for, provided that a linearization about a reference position is performed.
In this case, the expressions of the derivatives of stability Mβ , Mr etc. also con-
tain the longitudinal offset at the ground.

Since the second derivative of the state variable δ enters the equations of
motion, a further state variable

vδ = δ̇

must be introduced and a further equation stating the mentioned identity must
be added. The state equation is still Eq. (25.109)

ż = Az + Bcuc + Beue ,

where the state and input vectors z, uc and ue are

z =

⎧⎪⎪⎨
⎪⎪⎩

β
r
vδ

δ

⎫⎪⎪⎬
⎪⎪⎭

, uc = Ms , ue =
{

Fye

Mze

}
,

the dynamic matrix is

A =

⎡
⎢⎢⎣

mV − Yβ̇ −Yṙ −Yδ̇ 0
−Nβ̇ Jz − Nṙ −Nδ̇ 0
−Mβ̇ −Mṙ Js 0

0 0 0 1

⎤
⎥⎥⎦
−1

×

⎡
⎢⎢⎣

Yβ −mV + Yr 0 Yδ

Nβ Nr 0 Nδ

Mβ Mr (Mδ̇ − cs) Mδ

0 0 1 0

⎤
⎥⎥⎦

and the input gain matrices are

Bc =

⎡
⎢⎢⎣

mV − Yβ̇ −Yṙ −Yδ̇ 0
−Nβ̇ Jz − Nṙ −Nδ̇ 0
−Mβ̇ −Mṙ Js 0

0 0 0 1

⎤
⎥⎥⎦
−1 ⎡

⎢⎢⎣
0
0
τ s

0

⎤
⎥⎥⎦ ,
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Be =

⎡
⎢⎢⎣

mV − Yβ̇ −Yṙ −Yδ̇ 0
−Nβ̇ Jz − Nṙ −Nδ̇ 0
−Mβ̇ −Mṙ Js 0

0 0 0 1

⎤
⎥⎥⎦
−1 ⎡

⎢⎢⎣
1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ .

The state equation can be used to study the stability of the vehicle and
the response to any given law Ms(t). In a similar way, it is possible to study the
steady-state performance simply by assuming that all derivatives are vanishingly
small (the last state equation may then be dropped, since it reduces to the
identity 0 = 0)

⎡
⎣ −Yβ mV − Yr −Yδ

−Nβ −Nr −Nδ

−Mβ −Mr −Mδ

⎤
⎦
⎧⎨
⎩

β
r
δ

⎫⎬
⎭ =

⎧⎨
⎩

Fye

Mze

Msτs

⎫⎬
⎭ . (25.157)

The steering wheel torque gain Ms/δ with reference to the steering angle
and that referring to the curvature of the path MsR, may be easily computed.

The eigenproblem
det(A − sI) = 0 (25.158)

allows one to study stability. Since the size of the dynamic matrix A is only
four, it is possible to write the characteristic equation and to solve it using the
formula for 4-th degree algebraic equations. However, no closed form solution
from which to draw general conclusions is available. The eigenvalues are either
a pair of complex conjugate solutions − yielding damped oscillations (if both
real parts are negative), one usually at low frequency and the other at high
frequency − or two nonoscillatory solutions and one high frequency oscillation.
The high frequency solution is usually linked with the dynamics of the steering
device while the others are linked primarily to the behavior of the vehicle.

The vibrations of the steering system were of concern in the past, particu-
larly in the 1930s, when they were referred to as steering shimmy . Such vibra-
tions were also present in the tailwheel of aircraft undercarriages. The use of tires
with lower pneumatic trail and, above all, the introduction of damping in the
steering mechanism has completely rectified the problem. Both viscous damp-
ing and dry friction have been used with success, but the latter decreases the
reversibility of the steering system and thus decreases its precision and its cen-
tering characteristics.

The, now common, use of servosystems in the steering control implies the
presence of non-negligible damping with viscous characteristics in the steering
device.

The present model is, however, too imprecise for a detailed study of this
phenomenon, since the compliance of the steering system and the lateral com-
pliance of the suspension are important causal factors in this type of vibration
that may become self-excited.

If only the low-frequency overall behavior of the vehicle is studied, it is
possible to neglect the dependence of the tire forces on the time derivative of
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the sideslip angle. In this case, the expressions of the dynamic matrix and of the
input gain matrix simplify as follows

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yβ

mV

Yr

mV
− 1 0

Yδ

mV

Nβ

Jz

Nr

Jz
0

Nδ

Jz

Mβ

Js

Mr

Js

−cs

Js

−Mδ

Js

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bc =

⎡
⎢⎢⎢⎣

0
0
τ s

Js
0

⎤
⎥⎥⎥⎦ , Be =

⎡
⎢⎢⎢⎢⎢⎣

1
mV

0

0
1
Jz

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦

.

If the inertia and the damping of the steering system are likewise neglected,
Eq. (25.156) can be solved in δ. By introducing this value into the equations of
motion, an approximate model for the behavior of the vehicle with free controls
is obtained.

By assuming that the speed V is constant, the homogeneous state equation
for a vehicle with front axle steering only is then

{
β̇
ṙ

}
=

⎡
⎢⎢⎢⎣

Yβ + Yδ

mV

Yr + Yδ
a
V

mV
− 1

Nβ + Nδ

Jz

Nr + Nδ
a
V

Jz

⎤
⎥⎥⎥⎦
{

β
r

}
. (25.159)

The equation is formally identical to the homogeneous Eq. (25.108) and in
this case as well, it is possible to resort to a spring-mass-damper analogy and to
study the constant speed stability in a simple way. It can be shown that both
the stiffness and the damping coefficient are always positive, denoting both static
and dynamic stability.

By introducing only the cornering forces due to the tires, the vehicle is
overdamped at low speed, up to

V =
1
2

(
b2 +

Jz

m

)√
C2

Jzb
.

Above that speed the behavior becomes more and more underdamped, with
an increasingly oscillatory behavior.

Note, however, that the last simplification is usually too rough: In most
cases, the high value of the steering ratio τ s makes the inertia of the steering
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wheel when reduced to the kingpin axis non-negligible and the use of equation
(25.159) can lead to non-negligible errors. Other errors may be introduced by
neglecting steering damping since a certain amount of damping is present in the
system, the neglect of which may cause dynamic instability.

Example 25.7 Compute the torque that must be exerted on the steering wheel nec-

essary to maintain the vehicle of Appendix E.2 on a circular path with a radius of 100

m and to counteract a transversal slope of 1◦ at constant speed.

The additional data for the steering system are: λ = 11◦, ν = 3◦, d = 5 mm and

τs = 16.

The steering wheel torque gain MsR can be computed from Eq. (25.157). By stating

Fye = 0, Mze = 0 and Ms = 1, it is possible to obtain the yaw velocity r that follows

the application of a unit torque to the steering wheel.

Since R = V/r, the gain MsR may be immediately computed and thus the value of

the torque needed to maintain any given circular path. The results for R = 100 m are

reported in Fig. 25.28a.
To obtain the steering torque needed to counteract a transversal road slope, Eq.

(25.156) needs to be rearranged. The slope αt is felt by the vehicle as a side force

Fye = mg sin(αt).

If the path is straight, r = 0 and also Mze is equal to zero, as no external moment

acts on the vehicle. The unknowns are β, δ and Ms.
The equation is rearranged as

⎡
⎣ −Yβ −Yδ 0

−Nβ −Nδ 0
−Mβ −Mδ τs

⎤
⎦
⎧⎨
⎩

β
δ

Ms

⎫⎬
⎭ =

⎧⎨
⎩

mg sin(αt)
0
0

⎫⎬
⎭ .

FIGURE 25.28. Example 25.7: Steering wheel torque needed to maintain the vehicle
on a circular path with a radius of 100 m (a) and to counteract a transversal slope of
1◦ at constant speed (b).
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25.15 UNSTATIONARY MOTION

The response to a steering input in unstationary conditions may be computed
using the constant-speed linearized model expressed by equations (25.110) or
(25.111), reported here without the terms due to external forces and moments

P β̈ + Qβ̇ + Uβ = S′δ + T ′δ̇,

P r̈ + Qṙ + Ur = S′′δ + T ′′δ̇ .
(25.160)

If the variable for motion in the y direction is the lateral velocity v instead
of the sideslip angle β, the first equation becomes

P v̈ + Qv̇ + Uv = V S′δ + V T ′δ̇ . (25.161)

If an input of the type
δ = δ0e

st

is assumed, the solution takes the form

β = β0e
st , r = r0e

st , v = v0e
st.

The algebraic equations into which the differential equations transform are(
Ps2 + Qs + U

)
β0 = (T ′s + S′) δ0,(

Ps2 + Qs + U
)
r0 = (T”s + S”) δ0,(

Ps2 + Qs + U
)
v0 = V (T ′s + S′) δ0.

(25.162)

The transfer functions are then

β0

δ0
=

T ′s + S′

Ps2 + Qs + U
, (25.163)

r0

δ0
=

T”s + S”
Ps2 + Qs + U

, (25.164)

v0

δ0
= V

β0

δ0
= V

T ′s + S′

Ps2 + Qs + U
. (25.165)

In non-stationary conditions, the lateral acceleration is

ay = v̇ + rV (25.166)

and thus the relevant transfer function is

ay0

δ0
= V

T ′s2 + (T” + S′) s + S”
Ps2 + Qs + U

. (25.167)

By using the simplified expressions of the derivatives of stability, the de-
nominator of all transfer functions is

Δ = JzmV s2 +
[
Jz(C1 + C2) + m(a2C1 + b2C2)

]
s+

+mV (−aC1 + bC2) + C1C2
l2

V .
(25.168)
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The equation Δ = 0 allows the poles of the system to be computed, as seen
in section 6.13.1.

Assuming only front axle steering, the transfer functions are

r0

δ0
=

mV aC1s + lC1C2

Δ
, (25.169)

ay0

δ0
=

JzV C1s
2 + C1C2bls + lV C1C2

Δ
. (25.170)

By equating the numerator of the transfer functions (25.169) and (25.170)
to zero it is possible to find their zeros. For functions (25.169) the result is
straightforward, and the only zero is real and negative

s = − lC2

mV a
. (25.171)

The computation for function (25.170) is not as simple. The zeros are

s =
−blC2 ±

√
b2l2C2

2 − 4V 2lJzC2

2JzV
. (25.172)

At low speed, i.e. if

V ≤

√
b2lC2

4Jz
, (25.173)

the two solutions are both real and negative. They are distinct if Eq. (25.173)
holds with (<), coincident if it holds with (=).

At higher speeds, the two solutions are complex conjugate

s =
−blC2

2JzV
±

√
4V 2lJzC2 − b2l2C2

2

4J2
z V 2

, (25.174)

with a negative real part: the zeros lie in the left part of the Argand plane.
The situation may be different for the sideslip angle: S′ may be either posi-

tive or negative depending on the values of the parameters. By using the simpli-
fied expressions of the derivatives of stability, the value of the relevant transfer
function is

β0

δ0
=

JzV C1s + C1C2bl − maV 2C1

V Δ
. (25.175)

The expression of the zero is obtained by equating to zero the numerator

s =
maV 2C1 − C1C2bl

JzV C1
. (25.176)

At low speed the zero is negative and real, but if

V >

√
blC2

am
(25.177)
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it moves to the positive part of the Argand plane and then the system is a
non-minimum phase system.

From Eq. (25.110) and following it is clear that the response to steering is
a linear combination of the laws δ(t) and δ̇(t). If the numerator of the transfer
function is linear in s, and if the zero of the transfer function (which is always
real since the numerator is linear) is negative, the coefficients of the linear com-
bination have the same sign and the sign of the response does not change in
time.

Example 25.8 Plot the roots locus of the transfer function related to the lateral ac-

celeration at varying speed for the vehicle in Appendix E.2, taking into account both the

simplified and the complete expressions of the derivatives of stability used in Example

25.5. Compute the speed at which the transfer function β0/δ0 becomes a non-minimum

phase function.

Then compute the response to a step steering input at a speed of 100 km/h.

The transfer function ay0/δ0 has two real zeros up to a speed of 24.67 km/h; it

then has two complex conjugate poles. The locus of the zeros is reported in Fig.25.29a.

The two formulations yield practically the same results. Function β0/δ0 has a

negative real zero up to a speed of 56.22 km/h; than has a positive real zero.
If function δ(t) is a unit step function

{
δ = 0 per t < 0
δ = 1 per t ≥ 0 ,

FIGURE 25.29. a): Locus of the zeros of the transfer function ay0/δ0. Full line: complete
expression of the derivatives of stability; dashed line: simplified expression. b) and c):
response to a step steering input computed in closed form.



25.15 Unstationary motion 315

its derivative δ̇ is an impulse function(Dirac’s δ):

⎧⎨
⎩

δ̇ = 0 per t < 0

δ̇ = ∞ per t = 0

δ̇ = 0 per t > 0

∫ ∞

−∞
δ̇dt = 1 .

Since the vehicle is understeer, the step and impulse responses g(t) and h(t) are
both oscillatory and are

h(t) = 1

mωn

√
1−ζ2

e−ζωnt sin
(√

1 − ζ2ωnt
)

g(t) = 1
k
− e−ζωnt

k

[
cos

(√
1 − ζ2ωnt

)
+ ζ√

1−ζ2
sin

(√
1 − ζ2ωnt

)]
,

where

m = P , ωn =

√
U

P
, ζ =

Q

2
√

PU
.

The total response is a linear combination of the step and impulse responses

β(t) = S′g(t) + T ′h(t)
r(t) = S”g(t) + T”h(t) .

At 100 km/h the mass-spring-damper system is underdamped, since the damping

ratio has a value ζ = 0.77. The natural frequency of the undamped system is ωn= 6.67
rad/s = 1.06 Hz, while the frequency of the free damped oscillations is ωp= 4.24
rad/s = 0.68 Hz.

The results are reported in Fig. 25.29b) and c).

The step and impulse responses have the same sign for the yaw velocity,
and they simply add in modulus. In the response for the sideslip angle they have
opposite sign and initially the second one prevails. When, after some time, the
first one begins to prevail, the sign of the response changes.

This is typical for non-minimum phase systems: the system initially reacts in a

direction opposite to that of the steady state response, then goes to zero and changes

its sign.

Once law r(t) has been obtained, it is possible to integrate it to yield the
yaw angle

ψ(t) =
∫ t

0

r(u)du . (25.178)

The path can then be obtained directly in the inertial frame X,Y . The
velocities Ẋ and Ẏ can be expressed in terms of angles β and ψ

{
Ẋ

Ẏ

}
= V

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]{
cos(β)
sin(β)

}
. (25.179)
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By integrating equations (25.179) the path is readily obtained

⎧⎪⎪⎨
⎪⎪⎩

X =
∫ t

0

V [cos(β) cos(ψ) − sin(β) sin(ψ)] du

Y =
∫ t

0

V [cos(β) sin(ψ) + sin(β) cos(ψ)] du .

(25.180)

The integration to obtain the path must actually be performed numerically
even in the simplest cases where laws β(t) and r (t) may be computed in closed
form owing to the fact that angle ψ is usually too large to allow linearizing its
trigonometric functions even when using the linearized model. In general, it is
more convenient to integrate the equations of motion numerically, since there
is no difficulty in doing so for Eq. (25.109) once laws δ(t), Fye

(t), Mze
(t) and

V (t) have been stated. Nowadays numerical integration is so straightforward
that closed form solutions that are too complicated to allow a quick qualitative
understanding of the phenomena to be obtained are considered of little use.

Example 25.9 Study the motion with locked controls of the vehicle of Appendix E.2

following a step steering input.

Assume that the value of the steering angle is that needed to obtain a circular path

with a radius of 200 m at a speed of 100 km/h.

At 100 km/h the path curvature gain 1/Rδ is equal to 0.2472 1/m. To perform a

curve with a radius of 200 m a steering angle δ = 0.0202 rad = 1.159◦ is needed.

In kinematic conditions, the radius of the path corresponding to the same value of

δ is 106.8 m. The fact that it is almost half the above was easily predictable, since 100

km/h is only slightly less than the characteristic speed.

The steady state values of r and β are respectively 0.1389 rad/s and −0.0131 rad =

−0.749◦.

The equation of motion of the vehicle was integrated numerically for a duration of

30 s. The results are plotted in Fig. 25.30. The time histories of the yaw velocity and

sideslip angle are shown along with the path.

The steady-state conditions are reached after a few seconds, with a slightly under-

damped behavior.

Example 25.10 Study the motion with locked controls of the vehicle of Appendix E.2

following a wind gust. Assume a step lateral gust, like the one encountered when exiting

a tunnel. Assume an ambient wind velocity va = 10 m/s and a vehicle speed of 100

km/h.

The driver does not react to the gust and the steering angle is kept equal to zero.
The presence of a cross-wind is accounted for by adding a side force Fye and a

yawing moment Mze equal to

⎧⎪⎪⎨
⎪⎪⎩

Fye =
1

2
ρV 2S(Cy),βψw

Mye =
1

2
ρV 2Sl(CMz ),βψw ,
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FIGURE 25.30. Example 25.9: Response to a step steering input. (a) Time histories of
the yaw velocity and sideslip angle and (b) path.

where ψw is the angle between the direction of the relative velocity and the tangent to the

path. This is clearly an approximation since it relies on the linearity of the aerodynamic

forces and moments with the aerodynamic sideslip angle and holds only if angle β +ψw

remains small.
As the path of the vehicle curves after the manoeuvre, the components of the rel-

ative velocity along the path and in a direction perpendicular to it are{
V‖ = V − va sin(ψ + β)
V⊥ = −va cos(ψ + β) ,

yielding

ψw = arctan

(
−va cos(ψ + β)

V − va cos(ψ + β)

)
.

The above relationships may be approximated by neglecting angle β.

Another approximation is neglecting the contribution of the wind velocity to the

airspeed, which is always considered at 100 km/h.

The equation of motion of the vehicle has been integrated numerically for a duration

of 10 s. The results are plotted in Fig. 25.31. The time histories of the yaw velocity and

sideslip angle are shown along with the path.

Quasi steady-state conditions are again reached after a few seconds, with a slightly

underdamped behavior. The conditions are not actually steady-state since the direction

of the wind is fixed, while the direction of the vehicle axes change. However, this effect

is minimal for the duration of the manoeuvre, and a good approximation could have

been obtained by assuming a constant value for angle ψw (ψw increases from 19.8◦ to

20.9◦ for t = 0 to t = 10 s).

At the end of the manoeuvre, the values of r and β are, respectively, 0.0505 rad/s

and −0.0036 rad = −0.2073◦. The errors linked to neglecting β in the above expression

are thus negligible. The response in terms of β in this case is that typical of a non-

minimum phase system.



318 25. HANDLING PERFORMANCE

FIGURE 25.31. Example 25.10: Response to a cross-wind gust. (a) Time histories of
the yaw velocity and sideslip angle and (b) path.

Example 25.11 The following manoeuvre is often performed by test drivers to assess

the handling and stability of a car: A step steering input is supplied and the steering

wheel is kept in position for a short time. The driver then releases the wheel and the

vehicle returns to a straight path. The whole manoeuvre is performed at constant speed.

Study the motion of the vehicle of Appendix E.2 following a manoeuvre of this kind

with a 45 ◦ steering wheel input held for 1.5 s at 100 km/h.

The data for the steering system are Js = 15 kg m2, cs = 150 Nms/rad, λ = 11◦,

ν = 3◦, d = 5 mm and τs = 16.

The first part of the manoeuvre is the same as in Example 25.9, only with a greater

value of δ: 2.81◦.

The integration in time is performed in two parts: A locked controls model is used

for the first 1.5 s; a free control model is used after the driver releases the wheel.

This second part of the simulation is performed using two alternative models: One

in which the dependence of tire forces on the derivative α̇ is neglected, and a second in

which the inertia and damping of the steering system are also not considered.

The time histories of the yaw velocity, sideslip angle and steering angle are reported

together with the path in Fig. 25.32.

The inertia of the steering system plays an important role in the response, since it

slows the recovery of the vehicle, thus affecting the path. It also increases the oscillatory

behavior of the vehicle, and if no damping is considered, an unstable behavior emerges.

The effect of neglecting the inertia of the steering system can be verified by com-

paring the poles of the system: If neither inertia nor damping is accounted for, the two

eigenvalues are −3.011± 7.709i, while the more complete model yields four eigenvalues

−9.129 ± 8.2921i and −1.065 ± 5.563i. The first is quite damped and is not important

in the motion, but the second is clearly different from that obtained from the simpler

model. The high value of the steering ratio, whose square enters the computation of the

equivalent inertia of the steering wheel, is responsible for this effect.
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FIGURE 25.32. Example 25.11: Response to a step steering input and a subsequent
recovery of the straight path with free controls. (a) Time histories of the yaw velocity
and sideslip angle and (b) of the steering angle; (c) path. The inertia and damping of
the steering system are considered (full lines) and then neglected (dashed lines).

25.16 VEHICLES WITH TWO STEERING
AXLES (4WS)

In the majority of vehicles with two axles, only the front wheels are provided with
a steering system. However, beginning in the 1980s, an increasing number of cars
with steering on all four wheels (4WS) appeared on the market, in the beginning
most of them Japanese. The primary goal was to improve manoeuvrability and
handling characteristics both in low- and high-speed steering. 4WS system were
dealt with in Part I, Chapter 6.

Simple four-wheel steering may be implemented by equipping the rear axle
with a compliance purposely designed to provide the required steering action
under the effect of road loads without adding an actual steering device. This
approach is defined as passive steering. Active steering occurs when the rear
axle is provided with a second steering device, operated by the driver along with
that of the front axle through adequate actuators.

To reduce the radius of the path in low-speed (kinematic) conditions, the
rear axle must steer in a direction opposite to the front; if the absolute values of
the steering angles are equal, the radius is halved and the off-tracking of the rear
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axle is reduced to zero. Using the notation introduced in the preceding sections,
this situation is characterized by

K ′
1 = 1 , K ′

2 = −1

(in the following it will always be assumed that K ′
1 = 1).

In practical terms, this value is too high since the rear axle would initially
be displaced too far to the outside of the line connecting the centres of the wheels
in the initial position, particularly when starting the motion with the wheels in
a steered position. It would be difficult, for example, to move a vehicle parked
near a curb or, worse, near a wall.

Assuming that K ′
1 = 1 and K ′

2 is constant, the path curvature gain and the
off-tracking distance are

1
Rδ

≈ 1 + K ′
2

l
, Ra − R1 ≈ l2(1 − K ′

2)
2R(1 + K ′

2)
. (25.181)

In high-speed cornering the situation is different. The equation of motion
is still Eq. (25.108) and, if the speed V is constant, it is possible to use the
spring-mass-damper analogy (either equation (25.110) or (25.111)).

To study the effect of rear steer, consider the simplified expression of the
derivatives of stability. The expression of P , Q and U do not change, while

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S′ = mV (−aC1K
′
1 + bC2K

′
2) + C1C2

l

V
(K ′

1b + K ′
2a)

S′′ = lC1C2 (K ′
1 − K ′

2)
T ′ = Jz (K ′

1C1 + K ′
2C2)

T ′′ = mV (aK ′
1C1 − bK ′

2C2) .

The expressions of the gains in steady state conditions become:

• path curvature gain
1

Rδ
=

1
l

(K ′
1 − K ′

2)
1 + KV 2

, (25.182)

• lateral acceleration gain

V 2

Rδ
=

V 2

l

(K ′
1 − K ′

2)
1 + KV 2

, (25.183)

• sideslip angle gain

β

δ
=

b

l

[
K ′

1 + K ′
2

a

b
− mV 2

l

(
aK ′

1

bC2
− K ′

2

C1

)]
1

1 + KV 2
, (25.184)

• yaw velocity gain
r

δ
=

V

l

(K ′
1 − K ′

2)
1 + KV 2

. (25.185)
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From the equations above it is clear that opposite steering (K ′
1 and K ′

2

with opposite signs) produces an increase of the gains related to the curvature
of the path, while steering with the same sign allows larger cornering forces to
be produced for the same steering angle

However, the most important advantages of 4WS are felt in non-steady state
conditions, making it important to assess the transfer functions in these condi-
tions. Equations from (25.162) to (25.167) still hold. If the simplified expressions
of the derivatives of stability are used, it follows that

r0

δ0
=

mV (aK ′
1C1 − bK ′

2C2) s + lC1C2 (K ′
1 − K ′

2)
Δ

, (25.186)

ay0

δ0
=

JzV (K ′
1C1 + K ′

2C2) s2 + C1C2l (aK ′
1 + bK ′

2) s + lV C1C2 (K ′
1 − K ′

2)
Δ

,

(25.187)
where Δ is still expressed by Eq. (25.168).

Opposite steering also makes the vehicle more responsive about the yaw
axis in non-steady state conditions. The second transfer function shows how
steering in the same direction increases the response at the highest frequencies, in
particular for lateral acceleration due to motion in the y direction, while opposite
steering increases the contribution due to centrifugal acceleration, especially at
low frequency.

Strong rear axle steering may cause some of the zeros of the transfer func-
tions to lie into the positive half-plane of the complex plane, making the system a
non-minimum phase system. This will be studied in greater detail in Chapter 27.

The limiting case of same sign steering is, for a vehicle with the center of
mass at mid-wheelbase, that with equal steering angles

K ′
1 = K ′

2 = 1 .

Remark 25.17 This is, however, too theoretical, since the vehicle would be quick
in a lane change, moving sideways, but would never be able to move on a curved
path. Instead of turning, it would move sideways.

Thus it is clear that the steering mechanism must adapt the value of K ′
2 to

the external conditions and to the requests of the driver. As seen in Part I, the
simplest strategy is to use a device, possibly mechanical, to link the two steering
boxes with a variable gear ratio: When angle δ is small, as typically occurs in
high speed driving, K ′

2 is positive and the steering angles have the same direction
while when δ is large, as occurs when manoeuvring at low speed, K ′

2 is negative.
Obviously, K ′

2 must be much smaller than K ′
1.

However, more complicated control laws for the steering of the rear axle must
be implemented to fully exploit the potential advantages of 4WS. The parameters
entering such laws are numerous, e.g. the speed V , the lateral acceleration, the
sideslip angles αi, etc. Such devices must be based on electronic controllers and
actuators of different types, and their implementation enters into the important
field of autronics (Chapter 27).
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From the viewpoint of mathematical modelling, the situation is, at least
in principle, simple. There is no difficulty in introducing a suitable function
K ′

2(V, δ, . . . ) into the equations (actually it would appear only in the derivatives
of stability Yδ and Nδ) and in modifying the equations of the rigid-body model
seen above accordingly. The more advanced models of the following sections
can be modified along the same lines. If function K ′

2 includes some of the state
variables, the modifications can be larger but no conceptual difficulty arises.

Except in the latter case, locked control stability is not affected by the
introduction of 4WS, while stability with free controls can be affected by it.

Generally speaking, the advantages of 4WS are linked with an increase in
the quickness of the response of the vehicle to a steering input, but this cannot
be true for all types of manoeuvres: Steering all axles in the same direction may
make the vehicle quick in lane change manoeuvres but slower in acquiring a
given yaw velocity. The sensations of the driver may be strange and, at least at
the beginning, unpleasant. A solution may be a device that initially steers the
rear wheels in the opposite direction for a short time, to initiate a yaw rotation,
and then steers them in the same direction as the front wheels, to generate
cornering forces. This requires a more complicated control logic, possibly based
on microprocessors.

As a final consideration, most applications are based on vehicles already
designed for conventional steering to which 4WS is then added, normally as an
option. In this case, the steering of the rear wheel is limited to 1◦÷2◦ or even less
since the rear wheel wells lack the space required for larger movement. Even if the
car is designed from the beginning for 4WS, a trade-off between its advantages
and the loss of available space in the trunk due to 4WS will take place.

25.17 MODEL WITH 4 DEGREES OF FREEDOM
FOR ARTICULATED VEHICLES

25.17.1 Equations of motion

An articulated vehicle modelled as two rigid bodies hinged to each other has,
in its motion on the road surface, four degrees of freedom (Fig. 25.33). The
assumption of rigid bodies implies that the hinge is cylindrical and that its axis
is perpendicular to the road: In practice different setups are used, but if rolling
is neglected the present one is the only possible layout.

There is no difficulty in writing the six equations of motion of the two rigid
bodies (each has three degrees of freedom in the planar motion on the road)
and then in introducing the two equations for the constraints due to the hinge
to eliminate two of the six. The forces exchanged between the two bodies are
explicitly introduced.

Here a different approach is followed and the equations of motion are
obtained through Lagrange equations. To this end, a set of four generalized
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FIGURE 25.33. Articulated vehicle. Reference frames and generalized coordinates.

coordinated is first stated: X and Y are the inertial coordinates of the centre of
mass of the tractor and ψ is its yaw angle. They are the same coordinates used
in the study of the insulated vehicle. The added coordinate is angle θ between
the longitudinal axes x of the tractor and xR of the trailer. Positive angles are
shown in Fig. 25.33.

Instead of angle θ, it is possible to use the yaw angle of the trailer ψR, i.e.
the angle between the inertial X-axis and the body-fixed axis xR.

The model can be simplified and linearized, as seen for the model of the
isolated vehicle, by assuming that the motion occurs in a condition not much
different from the symmetrical, which implies that the trailer angle θ and the
sideslip angles are small. Moreover, the vehicle will be assumed to be a monotrack
vehicle, i.e. the sideslip angles of the wheels of each axle will be assumed to be
equal. The model will be built in terms of axles rather than wheels.

As a damper with damping coefficient Γ may be attached to the hinge
between tractor and trailer, a Raleigh dissipation function must be written along
with the kinetic energy. No conservative forces act in the plane of the road,
assuming the hinge has no elastic restoring force, and hence no potential energy
need be computed.

The position of the centre of mass of the trailer is

(
GR − O

)
=

{
X − c cos(ψ) − aR cos(ψ − θ)
Y − c sin(ψ) − aR sin(ψ − θ)

}
. (25.188)
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The velocity of the centre of mass of the tractor is simply

VG =
{

Ẋ

Ẏ

}
, (25.189)

while that of point GR is

VGR
=

⎧⎨
⎩

Ẋ + ψ̇c sin(ψ) +
(
ψ̇ − θ̇

)
aR sin(ψ − θ)

Ẏ − ψ̇c cos(ψ) −
(
ψ̇ − θ̇

)
aR cos(ψ − θ)

⎫⎬
⎭ . (25.190)

The kinetic energy of the system is then:

T =
1
2
mT V 2

G +
1
2
mRV 2

GR
+

1
2
JT ψ̇

2
+

1
2
JR

(
ψ̇ − θ̇

)2

, (25.191)

where mT , mR, JT and JR are, respectively, the masses and the baricentric
moments of inertia about an axis of the tractor and the trailer perpendicular to
the road.

By introducing the expressions for the velocities into Eq. (25.191) and ne-
glecting the terms containing squares and higher powers of small quantities, also
in the series for trigonometric functions, it follows

T = 1
2m

(
Ẋ2 + Ẏ 2

)
+ 1

2J1ψ̇
2

+ 1
2J3θ̇

2 − J2ψ̇θ̇+

+mR

[
cψ̇ + aR

(
ψ̇ − θ̇

)][
Ẋ sin(ψ) − Ẏ cos(ψ)

]
+

−mRaRθ
(
ψ̇ − θ̇

)[
Ẋ cos(ψ) − Ẏ sin(ψ)

]
,

(25.192)

where ⎧⎪⎪⎨
⎪⎪⎩

m = mT + mR ,
J1 = JT + JR + mR

[
a2

R + c2 + 2aRc
]

,
J2 = JR + mR

[
a2

R + aRc
]

,
J3 = JR + mRa2

R .

The components of the velocity in the tractor reference frame may be used
⎧⎪⎪⎨
⎪⎪⎩

u
v
r
vθ

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

cos(ψ) sin(ψ) 0 0
− sin(ψ) cos(ψ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Ẋ

Ẏ

ψ̇

θ̇

⎫⎪⎪⎬
⎪⎪⎭

, (25.193)

where r is the yaw angular velocity of the tractor and vθ is the relative yaw an-
gular velocity of the trailer with respect to the tractor. The relationship between
angular velocities and derivatives of the generalized coordinates is

w = AT q̇ , (25.194)
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where the structure of A is that of a rotation matrix, and then

AT = A−1 (25.195)

The final expression of the kinetic energy is then

T = 1
2m

(
u2 + v2

)
+ 1

2J1r
2 + 1

2J3vθ
2 − J2rvθ+

−mRv

[
cr + aR (r − vθ)

]
− mRaRθu (r − vθ) .

(25.196)

The rotation kinetic energy of the wheels has been neglected: No gyroscopic
effect of the wheels will be obtained in this way.

The Raleigh dissipation function due to the above mentioned viscous damper
is simply

F =
1
2
Γθ̇

2
. (25.197)

The equations of motion obtained in the form of Lagrange equations are

d

dt

(
∂T
∂q̇i

)
− ∂T

∂qi
+

∂F
∂q̇i

= Qi , (25.198)

where the coordinates qi are X, Y , ψ and θ and Qi are the corresponding gen-
eralized forces FX , FY and the moments related to rotations ψ and θ.

The velocities in the reference frame fixed to the tractor can be considered as
derivatives of pseudo-coordinates. Operating in the same way as for the isolated
vehicle, and remembering that the kinetic energy does not depend on coordinates
X and Y :

(
∂T
∂X

=
∂T
∂Y

= 0
)

,

that the dissipation function does not depend on the linear velocities

(
∂F
∂Ẋ

=
∂F
∂Ẏ

= 0
)
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and that angular velocities r and vθ coincide with ψ̇ and θ̇, the equation of
motion can be written in the form (A.126), with the derivatives of the dissipation
function added11

∂

∂t

({
∂T
∂w

})
+ AT

(
Ȧ−

[
wT AT ∂A

∂qk

]){
∂T
∂w

}
+

−AT
{

∂T
∂qk

}
+

{
∂F
∂w

}
= AT

⎧⎪⎪⎨
⎪⎪⎩

FX

FY

Qψ

Qθ

⎫⎪⎪⎬
⎪⎪⎭

.

(25.199)

The terms included in the equation of motion are

{
∂T
∂w

}
=

⎧⎪⎪⎨
⎪⎪⎩

mu − mRaRθ (r − vθ)
mv − mR [(c + aR) r − aRvθ]

J1r − J2vθ − mRaRθu − mRv (c + aR)
J3vθ − J2r + mRvaR + mRaRθu

⎫⎪⎪⎬
⎪⎪⎭

, (25.200)

d

dt

({
∂T
∂w

})
=

⎧⎪⎪⎨
⎪⎪⎩

mu̇ − mRaRvθ (r − vθ) − mRaRθ (ṙ − v̇θ)
mv̇ − mR [(c + aR) ṙ − aRv̇θ]

J1ṙ − J2v̇θ − mRaRθu̇ − mRaRuvθ − mRv̇ (c + aR)
J3v̇θ − J2ṙ + mRv̇aR + mRaRθu̇ + mRaRuvθ

⎫⎪⎪⎬
⎪⎪⎭

,

(25.201)

AT

(
Ȧ −

[
wT AT ∂A

∂qk

]){
∂T
∂w

}
=

=

⎧⎪⎪⎨
⎪⎪⎩

−r {mv − mR [(c + aR) r − aRvθ]}
r [mu − mRaRθ (r − vθ)]

−v [mu − mRaRθ (r − vθ)] + u {mv − mR [(c + aR) r − aRvθ]}
0

⎫⎪⎪⎬
⎪⎪⎭

,

(25.202)

AT

{
∂T
∂qk

}
=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

−mRaRu (r − vθ)

⎫⎪⎪⎬
⎪⎪⎭

, (25.203)

{
∂F
∂w

}
=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
Γθ̇

⎫⎪⎪⎬
⎪⎪⎭

, AT

⎧⎪⎪⎨
⎪⎪⎩

FX

FY

Qψ

Qθ

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

Qx

Qy

Qψ

Qθ

⎫⎪⎪⎬
⎪⎪⎭

. (25.204)

11In this case, the equation of motion is not written in its general form, but only for the
case with AT = A−1.
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The first two equations are then
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m (u̇ − vr) − mRaRθ (ṙ − v̇θ) − 2mRaRrvθ + mRaRvθ
2+

+ mR (c + aR) r2 = Qx

m (v̇ + ur) − mR [c + aR] ṙ + mRaRrv̇θ − mRaRθr (r − vθ) = Qy .
(25.205)

Remembering that, owing to the assumption of small angles, V ≈ u and
also that v is small, equations (25.205) may be linearized as

{
mV̇ = Qx

m (v̇ + V r) − mR (c + aR) ṙ + mRaRrθ̈ = Qy .
(25.206)

The third and forth equations, those for generalized coordinates ψ and θ,
once linearized, are

⎧⎨
⎩

J1ṙ − J2v̇θ − mR (c + aR) (v̇ + V r) − mRaRV̇ θ = Qψ

J3v̇θ − J2ṙ + mRaR (v̇ + V r) + mRaRθV̇ = Qθ .

(25.207)

where the damping term Γθ̇ is included in term Qθ.

25.17.2 Sideslip angles of the wheels

The sideslip angles of the wheels of the tractor are the same as for the insulated
vehicle. In a similar way, it is possible to write the sideslip angles of the wheels
of the trailer.

With reference to Fig.25.34, the coordinates of point Pi, the centre of the
contact zone of the ith wheel of the trailer, are

{
XPi

= X − c cos(ψ) − li cos (ψ − θ) − yRi
sin (ψ − θ)

YPi
= Y − c sin(ψ) − li sin (ψ − θ) + yRi

cos (ψ − θ) .
(25.208)

The velocity of the same point may be obtained by differentiating the expres-
sions of the coordinates. For the computation of the sideslip angle the velocity
of point Pi must be expressed in the reference frame GRxRyR of the trailer

{
ẊPi

ẎPi

}
R

=
[

cos (ψ − θ) sin (ψ − θ)
− sin (ψ − θ) cos (ψ − θ)

]{
ẊPi

ẎPi

}
. (25.209)

The velocity of the centre of the contact area can thus be expressed in the
reference frame of the trailer as⎧⎨

⎩
V̇xR

(Pi) = u cos(θ) − v sin(θ) + cψ̇ sin(θ) − yRi

(
ψ̇ − θ̇

)
V̇yR

(Pi) = u sin(θ) + v cos(θ) − cψ̇ cos(θ) − li

(
ψ̇ − θ̇

)
,

(25.210)
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FIGURE 25.34. Position of the centre Pi of the contact area of the i-th wheel of the
trailer.

or, remembering that some of the quantities are small,⎧⎨
⎩

V̇xR
(Pi) = V − yRi

(
ψ̇ − θ̇

)
V̇yR

(Pi) = V θ + v − cψ̇ − li

(
ψ̇ − θ̇

)
.

(25.211)

Since the sideslip angle of a steering wheel can be obtained as the arctangent
of the ratio of the y and x components of the velocity minus the steering angle
δ, it follows that

αi = arctan

⎡
⎣V θ + v − cψ̇ − li

(
ψ̇ − θ̇

)

V − yRi

(
ψ̇ − θ̇

)
⎤
⎦− δi . (25.212)

Using the monotrack vehicle model (yRi
= 0) and remembering that the

sideslip angle is small, it follows that

αi = θ + β − r

V
(c + li) +

θ̇

V
li − δi . (25.213)

The term in yRi
does not enter the expression of the sideslip angle: The

wheels of the same axle have the same sideslip angle, and it is also possible to
work in terms of axles instead of single wheels for the trailer.

The steering angle δi is either 0 or, if the axle can steer, is usually not
directly controlled by the driver but is linked with the variables of the motion,
e.g. with angle θ. If law δi(θ) is simply

δi = −K ′
iθ ,
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the expression for the sideslip angle is

αi = θ(1 + K ′
i) + β − r

V
(c + li) +

θ̇

V
li . (25.214)

If some of the wheels of the trailer are free to pivot about their kingpin,
an equilibrium equation for the relevant parts of the steering system of those
axles must be written, similar to the procedure for the study of motion with free
controls.

25.17.3 Generalized forces

The contributions to the generalized forces Qx, Qy and Qψ due to the tractor
are the same as those of the insulated vehicle. The tractor does not give any
contribution to force Qθ. To compute the contributions due to the ith wheel of
the trailer and the aerodynamic forces of the latter, the easiest method is to
write their virtual work δL due to a virtual displacement

{δs} = [δx, δy, δψ, δθ]T .

Using the assumption of small angles, it follows that
{

δxR(Pi) = δx − θδy + cθδψ − yRi
(δψ − δθ)

δyR(Pi) = θδx + δy − cδψ − li (δψ − δθ) .
(25.215)

If the ith wheel has a steering angle δi, the forces it exerts in the reference
frame GRxRyRzR, the same in which the virtual displacement has been written,
are simply

FxiR
= Fxip

cos(δi) − Fyip
sin(δi) ≈ Fxip

− Fyip
δi,

FyiR
= Fxip

sin(δi) + Fyip
cos(δi) ≈ Fxip

δi + Fyip
,

(25.216)

where Fxip
and Fyip

are the forces in the reference frame of the tire.
The virtual work can be computed by multiplying the forces and moments

(the aligning torque Mzi
) by the corresponding virtual displacement (for the

moment, rotation δψ − δθ)

δL =
[
Fxip

+ Fyip
(θ − δi)

]
δx +

[
−Fxip

(θ − δi) + Fyip

]
δy+

+
{

Fxip
[c(θ − δi) − yRi

− liδi] + Fyip
(−c + yRi

δi − li) + Mzi

}
δψ+

+
{

Fxip
(yRi

+ liδi) + Fyip
(−yRi

δi + li) − Mzi

}
δθ.

(25.217)
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The generalized forces due to the ith wheel of the trailer can be obtained
by differentiating the virtual work δL with respect to the virtual displacements
δx, δy, δψ and δθ:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qxi
=

∂δL
∂δx

= Fxip
+ Fyip

(θ − δi)

Qyi
=

∂δL
∂δy

= −Fxip
(θ − δi) + Fyip

Qψi
=

∂δL
∂δψ

= Fxip
[c(θ − δi) − yRi

− liδi] + Fyip
(−c + yRi

δi − li) + Mzi

Qθi =
∂δL
∂δθ

= Fxip
(yRi

+ liδi) + Fyip
(−yRi

δi + li) − Mzi
.

(25.218)

In a similar way, the generalized forces resulting from the aerodynamic forces
and moments acting on the trailer can be accounted for. It is usually difficult
to distinguish between the forces acting on the tractor and those acting on the
trailer, as what is measured in the wind tunnel are the forces acting on the whole
vehicle. In the following equations, it will be assumed that the forces acting on
the tractor are measured separately from those acting on the trailer, and that
they are applied at the centre of mass of the relevant rigid body and decomposed
along the axes fixed to it. The forces acting on the trailer are so decomposed
along axes xRyRzR.

The generalized forces due to aerodynamic forces acting on the tractor con-
tribute to Qx, Qy and Qψ just as they do for the insulated vehicle, while the
expression of the generalized aerodynamic forces applied on the trailer can be
obtained from equations (25.218), by substituting FxRaer

, FyRaer
, MzRaer

and
aR to Fxip

, Fyip
, Mzi

and li and by setting both yRi
and δi to zero.

The external force FyeR
acting on the centre of mass or the trailer and

the component of the weight mRg sin(α) due to a longitudinal grade α of the
road will be assumed to act in the directions of axes x and y of the tractor;
consequently the relevant equations must be modified accordingly.

25.17.4 Linearized expressions of the forces

The linearized expressions of the generalized forces Qx, Qy, Qψ and Qθ can be
obtained with the methods used for the isolated vehicle. Linearization can be
performed by introducing the cornering and aligning stiffnesses Ci and (Mzi

),α

of the axles (subscript i refers now to the ith axle and not to the ith wheel).
In the same way, the derivatives of the aerodynamic coefficients (Cy),β , etc. can
also be introduced.
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A simple expression for Qx is thus obtained:

Qx = Xm −
(
f0 + KV 2

) [
mg cos(α) − 1

2ρV 2 (SCz + SRCzR
)
]
+

− 1
2ρV 2 (SCx + SRCxR

) − mg sin(α),
(25.219)

where, as usual, Xm is the driving force of the driving axle, but may also be the
total braking force.

By substituting the sideslip angle β of the vehicle for ratio v/V , the expres-
sions of the forces appearing in the handling equations are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qy = (Qy),ββ + (Qy),rr + (Qy),θ̇ θ̇ + (Qy),θθ + (Qy),δδ + Fye
+ FyeR

Qψ = (Qψ),ββ + (Qψ),rr + (Qψ),θ̇ θ̇ + (Qψ),θθ + (Qψ),δδ + Mze
+

+MzeR
− (c + aR)FyeR

Qθ = (Qθ),ββ + (Qθ),rr + (Qθ),θ̇ θ̇ + (Qθ),θθ − MzeR
+ aRFyeR

.

(25.220)
The derivatives of stability entering the expression for Qy are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Qy),β = Yβ −
∑
∀iR

Ci +
1
2
ρV 2

r SR(CYR
),β

(Qy),r = Yr +
1
V

[∑
∀iR

(c + li)Ci +
1
2
ρV 2

r SR(c + aR)(CYR
),β

]

(Qy),θ̇ = − 1
V

[∑
∀iR

liCi −
1
2
ρV 2

r SRaR(CYR
),β

]

(Qy),θ = −
∑
∀iR

Ci +
1
2
ρV 2

r SR(CYR
),β

(Qy),δ = Yδ ,

(25.221)

where Yβ , Yr and Yδ are the derivatives of stability of the tractor expressed by
equations (25.103).

The derivatives of stability entering the expression for Qψ and Qθ are re-
spectively

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Qψ),β = Nβ +
∑
∀iR

C1 + (c + li)Ci + (Mzi
),α

(Qψ),r = Nr −
1
V

[∑
∀iR

(c + li)2Ci + (c + li)(Mzi
),α + (c + aR)Ca1

]

(Qψ),θ̇ =
1
V

[∑
∀iR

li(c + li)Ci + li(Mzi
),α + aRCa1

]

(Qψ),θ =
∑
∀iR

(c + li)Ci + (Mzi
),α + Ca1

(Qψ),δ = Nδ ,
(25.222)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Qθ),β =
∑
∀iR

C2 − liCi − (Mzi
),α

(Qθ),r =
1
V

[∑
∀iR

(c + li)liCi + (c + li)(Mzi
),α + (c + aR)Ca2

]

(Qθ),θ̇ = − 1
V

[∑
∀iR

l2i Ci + li(Mzi
),α + aRCa2

]
− Γ

(Qθ),θ = (Qθ),β

(Qθ),δ = 0 ,

(25.223)

where aerodynamic terms Ca1 and Ca2 are:

Ca1 =
1
2
ρV 2

r SR [lR(CNR
),β − (c + aR)(CYR

),β ] ,

Ca2 =
1
2
ρV 2

r SR [lR(CNR
),β − aR(CYR

),β ] .

Nβ , Nr and Nδ are the derivatives of stability of the tractor expressed by
equations (25.107). All axles of the trailer have been assumed as non-steering

If the axles of the trailer can steer and their steering angles δi are linked
with angle θ by the law

δi = −K ′
iθ ,

the expressions of the derivatives of stability reported above still hold, except
for (Qy),θ, (Qψ),θ and (Qθ),θ in which all terms in Ci and (Mzi

),α must be
multiplied by (1 + K ′

i).

25.17.5 Final expression of the equations of motion

As with the equations of the insulated vehicle, the linearization of the equations
allows the longitudinal behavior (first equation of motion) to be uncoupled from
the lateral, or handling behavior, which can be studied using only the three
remaining equations. This occurs if the law u(t), which can be confused with
V (t), is considered as a stated law, while the unknowns are the driving or braking
forces Fx for the longitudinal behavior and β, r and θ for handling.

The linearized equation for the longitudinal behavior

mV̇ = Qx (25.224)

can thus be studied separately.
The linearized equations for the lateral behavior of the articulated vehicle

can be expressed in the space of the configurations as

Mẍ + Cẋ + Kx = F , (25.225)

where the vectors of the generalized coordinates and of the forces are

x =

⎧⎨
⎩

y
ψ
θ

⎫⎬
⎭ , F =

⎧⎨
⎩

(Qy),δδ + Fye
+ FyeR

(Qψ),δδ + Mze
+ MzeR

− (c + aR)FyeR

−MzeR
+ aRFyeR

⎫⎬
⎭ (25.226)
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and the matrices are

M =

⎡
⎣ m −mR(c + aR) mRaR

−mR(c + aR) J1 −J2

mRaR −J2 J3

⎤
⎦ ,

C =

⎡
⎢⎢⎢⎢⎣

− (Qy),β

V
mV − (Qy),r −(Qy),θ̇

− (Qψ),β

V
−mRV (c + aR) − (Qψ),r −(Qψ),θ̇

− (Qθ),β

V
mRV aR − (Qθ),r −(Qθ),θ̇

⎤
⎥⎥⎥⎥⎦ , (25.227)

K =

⎡
⎣ 0 0 −(Qy),θ

0 0 −(Qψ),θ

0 0 −(Qθ),θ

⎤
⎦ .

The set of differential equations (25.225) is actually of the fourth order and
not of the sixth, since variables y12 and ψ appear in the equation only as first
and second derivatives (the first two columns of matrix K vanish). The equation
can thus be written in the state space in the form of a set of four first order
differential equations by introducing a fourth state variable vθ = θ̇

ż = Az + Bcuc + Beue . .

The state vector z is simply

z =
[

β r vθ θ
]T

,

the dynamic matrix is

A =

⎡
⎢⎢⎣ −M−1C M−1

⎧⎨
⎩

(Qy),θ

(Qψ),θ

(Qθ),θ

⎫⎬
⎭[

0 0 1
]

0

⎤
⎥⎥⎦ ,

the input gain matrices are

Bc =

⎡
⎢⎢⎣ M−1

⎡
⎣ (Qy),δ

(Qψ),δ

0

⎤
⎦

0

⎤
⎥⎥⎦ ,

Be =

⎡
⎢⎢⎣ M−1

⎡
⎣ 1 1 0 0

0 −(c + aR) 1 1
0 aR 0 −1

⎤
⎦

[
0 0 0 0

]

⎤
⎥⎥⎦ ,

12Actually, as already stated, v is the derivative of a pseudo-coordinate and thus y has no
physical meaning. It has been introduced into the equations only for completeness and, since
it is always multiplied by 0, its presence can be accepted.
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and the input vector is

uc = δ . ue =
[

Fye
FyeR

Mze
MzeR

]T
.

25.17.6 Steady-state motion

To study the steady-state behavior of the vehicle, Eq. (25.225) can be used, along
with the assumption that v̇ = ṙ = θ̇ = θ̈ = 0. The following equation is thus
obtained⎡

⎣ −(Qy),β mV − (Qy),r −(Qy),θ

−(Qψ),β −mRV (c + aR) − (Qψ),r −(Qψ),θ

−(Qθ),β mRV aR − (Qθ),r −(Qθ),θ

⎤
⎦
⎧⎨
⎩

β
r
θ

⎫⎬
⎭ =

=

⎧⎨
⎩

(Qy),δδ + Fye
+ FyeR

(Qψ),δδ + Mze
+ MzeR

− (c + aR)FyeR

−MzeR
+ aRFyeR

⎫⎬
⎭ .

(25.228)

There is no difficulty in solving such a set of equations. For instance, after
stating that δ = 1 and setting all other inputs to zero, the gains 1/Rδ, β/δ etc.
can be computed.

A particularly simple solution is obtained for a two-axle vehicle with a one-
axle trailer if only the cornering forces of the wheels are accounted for

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Rδ

=
1
l

1
1 + KV 2

θ

δ
=

a + c + K ′V 2

l(1 + KV 2)
,

(25.229)

where the stability factor K and K ′ are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K =
1
l2

[(
mT + mR

lR − aR

lR

)(
b

C1
− a

C2

)
+

−mR
c(lR − aR)

lR

(
1
C1

+
1
C2

)]

K ′ =
1
l

{
m

a

C2
+

mR

lR

[
(a + c)(lR − aR)

C2
− lRaR

C1

]}
.

(25.230)

The same definitions used for the insulated vehicle also hold in this case and,
if the derivatives of stability are constant or proportional to 1/V , the sign of the
stability factor allows one to state immediately whether the vehicle is oversteer,
neutral-steer or understeer.

The simplified expression of the stability factor (25.230) is composed of two
terms: The first usually has the same sign of bC1 − aC2, i.e. of the factor that
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decides the behavior of the tractor alone. The second term is negative, unless
the product c(lR − aR) is negative, i.e. the centre of mass of the trailer is behind
its axle.

If
c(lR − aR) > 0 ,

the trailer increases the understeering character of the vehicle, more so if the
hinge is far from the centre of mass of the tractor and the centre of mass of
the trailer is close to the hinge. In the case of trailers with a single axle, like
caravans, this effect can be reduced by reducing the distance between its centre
of mass and the axle.

If the centre of mass is exactly on the axle, that is, if

lR − aR = 0 ,

the trailer has no effect on the steady state behavior of the tractor; it does,
however, affect its dynamic behavior and stability.

If the centre of mass of the trailer is behind its axle,

lR − aR < 0 ,

the trailer increases the oversteer behavior of the tractor. If the vehicle is over-
steer, the presence of a critical speed can be expected.

Remark 25.18 This way of comparing the behavior of the tractor alone with
that of the complete vehicle is not correct however: The presence of the trailer
can change the loads on the wheels of the former, thus affecting their cornering
stiffness.

Example 25.12 Study the steady state directional behavior of the articulated truck

of Appendix E.9. Compare the results obtained using the complete expressions of the

derivatives of stability with those computed considering only the cornering forces of the

tires.

The computation is straightforward. At each value of the speed the normal forces on

the ground must be computed, although they change little with the speed. The cornering

stiffness and the aligning stiffness of the axles are readily obtained from the normal

forces.

At 100 km/h, for instance, the normal forces on the axles are 57.25, 107.28, 79.83,

83.56 and 56.14 kN, yielding the following values for the cornering stiffness and the

aligning stiffness: 422.05, 806.64, 641.34, 665.89, 416.42 kN/rad and 22.724, 41.472,

26.102, 28.175, 22.116 kNm/rad.

The path curvature gain, the sideslip angle gain and the trailer angle gain θ/δ are

plotted as functions of the speed in Fig. 25.35. The values obtained from the complete

expressions of the derivatives of stability are shown as full lines while the dashed lines

refer to the simplified expressions for the derivatives of stability obtained by considering

only the cornering forces.
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FIGURE 25.35. Example 25.12: Path curvature gain, sideslip angle gain and trailer
angle gain as functions of the speed. Full lines: Values obtained from the complete
expressions of the derivatives of stability; dashed lines: Simplified approach obtained
considering only the cornering forces.

When the speed tends to zero, the path curvature gain does not tend to the kine-

matic value 1/l of the tractor: The trailer has a number of axles greater than one and

correct kinematic steering is impossible. The vehicle is understeer, even if weakly.

The simplified approach allows one to obtain a fair approximation of the directional

behavior of the vehicle, the differences between the two results being due mostly to the

aligning torques of the tires and only marginally to aerodynamic forces and moments.

25.17.7 Stability and nonstationary motion

The study of the stability in the small, i.e., for small changes of the state of the
system around the equilibrium conditions, may be performed by computing the
eigenvalues of the dynamic matrix. The plot of the eigenvalues (their real and
imaginary parts) as functions of the speed and the plot of the roots locus give a
picture of the stability of the system that can be easily interpreted.

The eigenvalues of the system are four; two of these are usually complex
conjugate showing an oscillatory behavior; the corresponding eigenvector shows
that the motion of the trailer is primarily involved. These oscillations are usually
lightly damped, and can become, mainly at high speed, self excited leading to a
global instability of the vehicle.

Remark 25.19 The presence of an eigenvalue with positive real part, and hence
of an instability in the mathematical sense, is felt by the driver as a source of
discomfort rather than an actual instability. If the values of both the imaginary
and the real parts of the eigenvalue are small enough, i.e. if the frequency is
low and the amplitude grows slowly, the driver is forced to introduce continuous
steering corrections without actually recognizing the instability of the vehicle.
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The introduction of a damper at the trailer-tractor connection can solve
this problem, while the use of steering axles on the trailer makes things worse.
A steering axle, controlled so that the wheels steer in the direction opposite
to those of the tractor with a magnitude proportional to angle θ, provides a
restoring force to keep the trailer aligned with the tractor. The effect is similar
to that of increasing the stiffness of a system: If the damping is not increased
the underdamped character is magnified, while the natural frequency is also
increased.

For the study of motion in nonstationary conditions, the considerations
already seen for the insulated vehicle still hold. The more complicated nature of
the equations of motion, however, compels us to resort to numerical integration
in a larger number of cases.

Example 25.13 Study the stability with locked controls of the articulated truck of

Appendix E.9.

The plot of the real and imaginary parts of s and the roots locus are shown in

Fig. 25.36.

The figure has been obtained using the complete expressions of the derivatives of

stability, but neglecting the effect of driving forces. At 100 km/h the eigenvalues are

−2.3364 ± 1.5896i , −2.2698 ± 3.4037i;

the corresponding eigenvectors are

⎧⎪⎪⎨
⎪⎪⎩

−0.8723 ± 0.4849i
0.0305 ± 0.0424i

−0.0037 ∓ 0.0346i
0.0058 ± 0.0109i

⎫⎪⎪⎬
⎪⎪⎭

,

⎧⎪⎪⎨
⎪⎪⎩

−0.6448 ∓ 0.6533i
−0.0521 ± 0.0862i
−0.1322 ± 0.3429i

0.0518 ∓ 0.0734i

⎫⎪⎪⎬
⎪⎪⎭

.

FIGURE 25.36. Example 25.13: Study of the stability. (a) Real and imaginary parts of
s as functions of the speed. (b) Roots locus at varying speed. Complete expressions of
the derivatives of stability, with the effect of driving forces neglected.
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FIGURE 25.37. Example 25.14: Path curvature gain, sideslip angle gain and trailer an-
gle gain as functions of speed. Full lines: Values obtained from the complete expressions
of the derivatives of stability; dashed lines: Simplified approach obtained considering
only the cornering forces.

The vehicle has a strong oscillatory behavior, even if both modes are well damped

and no dynamic instability occurs; both modes involve the tractor as well as the trailer.

Example 25.14 Study the directional response and the stability with locked controls

of the car of Appendix E.5 with a caravan with a single axle. Assume the following data

for the caravan: Mass mR = 600 kg, moment of inertia JR = 800 kg m2, c = 2.87 m,

aR = l3 = 2.5 m, hR = 1 m, SR = 2.5 m2; (CYR),β = −1.5, (CNR),β = −0.6. Assume

that the trailer has the same tires used on the tractor.

The path curvature gain, sideslip angle gain and trailer angle gain are plotted

against the speed in Fig. 25.37. Both the complete and simplified expressions of the

derivatives of stability have been used, while the effect of driving forces has been ne-

glected.

Note that the curve obtained from the simplified expressions of the derivatives of

stability is completely superimposed on that describing the behavior of the insulated

vehicle, as was predictable since aR = l3. Note also that the path curvature gain tends

to the kinematic value for a speed tending to zero, since the trailer has a single axle

and correct kinematic steering is possible.

The plot of the real and imaginary parts of s and the roots locus are reported in

Figs. 25.38a and b. Here only the complete expressions of the derivatives of stability have

been used. The vehicle is stable, but the absolute value of the real part of the Laplace

variable s is quite low at high speed, denoting a strong and little damped oscillatory

motion, which occurs at low frequency.

To compare the behavior of the vehicle with and without trailer the computation

has been repeated without the latter and the results are shown in Figures 25.38c and d.

The comparison shows that the modes affecting primarily the vehicle are fairly

uncoupled from those primarily affecting the trailer, although a correct analysis of such

coupling demands a through analysis of the eigenvectors.
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FIGURE 25.38. Example 25.14: Study of the stability. (a) Real and imaginary parts of
s as functions of the speed. (b) Roots locus at varying speed. (c), (d): Same as (a), (b)
but for the vehicle without trailer. Complete expressions of the derivatives of stability,
with the effect of driving forces neglected.

The trailer mode with low frequency and low dynamic stability is superimposed

on the more stable tractor mode, which is not strongly affected by the presence of the

trailer. The motion of the tractor in the trailer mode can also be quite large, as this

mode affects the whole system.

Example 25.15 Study the stability with locked controls of the car of Appendix E.2

with the caravan of Example 25.14. Assume that the tires of the caravan are the same

as those used on the tractor. Then study the motion with locked controls of the same

vehicle following a step steering input at 80 and 140 km/h. Assume that the value of the

steering angle is that needed to obtain a circular path with a radius of 200 m, computed

neglecting the presence of the trailer.

The plot of the real and imaginary parts of s and the roots locus computed using

the complete expressions of the derivatives of stability are shown in Figures. 25.39a
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FIGURE 25.39. Example 25.15: Study of the stability. (a) Real and imaginary parts of
s as functions of speed. (b) Roots locus at varying speed. Note the instability threshold
at about 120 km/h. Complete expressions of the derivatives of stability, with the effect
of driving forces neglected.

and b. The vehicle is stable only up to a speed of about 120 km/h, where the real part

of the Laplace variable s related to one of the two modes vanishes, to become positive

at higher speed.

The absolute value of the real part of s is always quite low, denoting a marginal

dynamic stability at low speed and a marginal instability at higher speed.

This type of behavior is quite evident in the response to a step steering input. The

steering angle needed to obtain a radius of the path of 200 m is 0.9659◦ at 80 km/h

and 1.7271◦ at 140 km/h. The integration of the equation of motion was performed

numerically. At 80 km/h the response is stable but the step input excites a strong,

slowly damped, oscillatory behavior (Fig. 25.39a).

The strong oscillatory behavior is primarily due to the trailer, and the time history

showing more pronounced oscillations is that of the trailer angle θ. After 6 s the values

of r/V δ, βδ and θδ are almost stabilized at the values of 0.3018, −0.4056 and 0.3098

that characterize the steady state behavior (the former two are almost the same as those

obtained for the vehicle without trailer, except for a small difference due to the difference

in aerodynamic drag, which influences the loads on the road and hence the cornering

stiffness). The path is, however, not oscillatory.

At 140 km/h the vehicle is unstable and the oscillations of r, β and θ quickly

diverge. The path reported in Fig. 25.40b, however, is not strongly oscillatory.

This example is a limiting case since the trailer is not correctly matched to the

vehicle, nor are the tires correct for the trailer; it has been shown as an example of

unstable behavior occurring in an incorrectly designed vehicle with trailer.

Note that a step input is prone to excite strongly an unstable behavior and is the

worst thing to do with a marginally stable vehicle. The oscillations have a low frequency,

and it is possible that the driver may be able to stabilize the vehicle even at speeds at

which the real part of s is positive: A test driver would probably find the handling and
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FIGURE 25.40. Example 25.15: Response to a step steering input. (a) Time histories
of the yaw velocity, sideslip angle β and trailer angle θ at 80 km/h and (b) path at 80
and 140 km/h.

comfort of the vehicle poor rather than seeing the vehicle as unstable, owing to the need

for continuous steering corrections.

On the other hand, it is possible that a vehicle with a low negative real part of

s becomes unstable because of the action of the driver. Ultimately, the stability of the

vehicle-driver system is what counts, but intrinsic stability of the vehicle is necessary,

so that the driver is not forced to stabilize a system that is itself unstable.

25.18 MULTIBODY ARTICULATED VEHICLES

25.18.1 Equations of motion

Consider a vehicle with a trailer with two axles, one connected to its body,
the other connected to the draw bar (Fig. 25.41a). Its dynamic behavior may
be studied using the same kind of model seen in the previous section, where
the trailer is modelled as two simple trailers connected in sequence. The model
has five degrees of freedom, and the five generalized coordinates may be X Y , ψ,
θ1 and θ2. The first two coordinates can be substituted by displacements x and y
referred to the frame of the tractor and the first equation for longitudinal motion
may be decoupled from the others, if the equations of motion are linearized. The
transversal behavior can be studied using a set of four differential equations that
can be linearized under the usual conditions, yielding a set of linear differential
equations whose order is six.

This procedure can be generalized to a generic multibody vehicle made of
a tractor and a set of n trailers (Fig. 25.41b). Note that while in Europe no
vehicle with multiple trailers is legal for road use, in America and Australia
such vehicles are legal but subject to restrictions (Fig. 25.42). The model here
described, leading to a set of n + 3 differential equations (n + 2 for the lateral
behavior if the first equation is uncoupled), allows one to study the behavior of
any vehicle of this type.
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FIGURE 25.41. (a) Vehicle with a trailer with two axles. (b) model of a multibody
articulated vehicle; parameters for the i-th trailer.

With reference to Fig. 25.41b, the position of the centre of mass of the ith
trailer is

(
Gi − O

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X − c cos(ψ) −
i−1∑
k=1

lk cos(ψ − θk) − ai cos(ψ − θi)

Y − c sin(ψ) −
i−1∑
k=1

lk sin(ψ − θk) − ai sin(ψ − θi)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(25.231)
The velocity of point Gi is

VGi
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẋ + ψ̇c sin(ψ) +

i−1∑
k=1

(
ψ̇ − θ̇k

)
lk sin(ψ − θk) +

(
ψ̇ − θ̇i

)
ai sin(ψ − θi)

Ẏ − ψ̇c cos(ψ) −
i−1∑
k=1

(
ψ̇ − θ̇k

)
lk cos(ψ − θk) −

(
ψ̇ − θ̇i

)
ai cos(ψ − θi)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(25.232)
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FIGURE 25.42. Examples of multibody vehicles; note that only the first three are road
legal in Europe.

The contribution to the kinetic energy due to the ith trailer with mass mi

and moment of inertia Ji about a baricentric axis parallel to z-axis is then

T i =
1
2
miV

2
i +

1
2
Ji

(
ψ̇ − θ̇i

)2

, (25.233)

i.e.

T i = 1
2m

[
ẋ′2 + ẏ′2 − 2

(
Ẋαi + Ẏ βi

)
cos(ψ)+

+2
(
Ẋβi − Ẏ αi

)
sin(ψ)

]
+ 1

2Ji

(
ψ̇ − θ̇i

)2

,
(25.234)

where

αi =
i∑

j=1

lij

(
ψ̇ − θ̇j

)
sin(θj) ,

βi = cψ̇ +
i∑

j=1

lij

(
ψ̇ − θ̇j

)
cos(θj),
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and constants lij are the elements of the matrix

l =

⎡
⎢⎢⎢⎢⎣

a1 0 0 0
l1 a2 0 0
l1 l2 a3 0
. . . . . . . . . . . .
l1 l2 l3 an

⎤
⎥⎥⎥⎥⎦ .

Here again the rotation kinetic energy of the wheels has been neglected and
no gyroscopic effect of the wheels can be obtained.

The Raleigh dissipation function due to a generic viscous damper located
between the (i − 1)-th and the ith trailer is simply

F =
1
2
Γ
(
θ̇i − θ̇i−1

)2

. (25.235)

Operating in the manner used for the insulated vehicle and linearizing the
result, the first equation of motion, related to the displacement in x direction, is

mV̇ = Qx , (25.236)

where

m = mT +
n∑

i=1

mi

is the total mass of the vehicle.
The second equation of motion, related to the displacement in the y direc-

tion, is

m
(
v̇ + V ψ̇

)
+

n∑
i=1

⎡
⎣−ψ̈

⎛
⎝c +

i∑
j=1

lij

⎞
⎠ +

i∑
j=1

lij θ̈j

⎤
⎦ = Qy . (25.237)

The third equation refers to the degree of freedom ψ

{
JT +

n∑
i=1

[
mi

(
S2

i + C2
i

)
+ Ji

]}
ψ̈ +

n∑
i=1

mi

{(
−u̇ + vψ̇

)
Si+

−
(
v̇ + uψ̇

)
Ci − Si

i∑
j=1

lij

[
θ̈j sin(θj) − θ̇j

(
ψ̇ − θ̇j

)2

cos(θj)
]

+

−Ci

i∑
j=1

lij

[
θ̈j cos(θj) + θ̇j

(
ψ̇ − θ̇j

)2

sin(θj)
]

+

+ψ̇Si

i∑
j=1

lij θ̇j cos(θj) −
(
ψ̇Ci + v

) i∑
j=1

lij θ̇j sin(θj)
}

= Qψ ,

(25.238)
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where

Si =
i∑

j=1

lij sin(θj) ,

Ci = c +
i∑

j=1

lij cos(θj) .

The third equation can also be linearized, yielding
{

JT +
n∑

i=1

[
miC

2
i + Ji

]}
ψ̈+ (25.239)

n∑
i=1

mi

⎡
⎣V̇ Si −

(
v̇ + V ψ̇

)
Ci − Ci

i∑
j=1

lij θ̈j

⎤
⎦ = Qψ ,

where

Si =
i∑

j=1

lijθj , Ci = c +
i∑

j=1

lij .

The following n equations refer to the rotational generalized coordinates θj

(for j = 1, 2, . . . , n). The generic equation for θk, i.e. the (3 + k)-th equation, is

n∑
i=k

milik

⎧⎨
⎩sin(θk)

⎡
⎣u̇ − vψ̇ + ψ̇

2
Ci − ψ̈Si −

i∑
j=1

lij θ̈j sin(θj)+

−2ψ̇

i∑
j=1

lij θ̇j cos(θj) +
i∑

j=1

lij θ̇
2

j cos(θj)

⎤
⎦+

+ cos(θk)

⎡
⎣v̇ + uψ̇ − ψ̈Ci + −ψ̇

2
Si +

i∑
j=1

lij θ̈j cos(θj) + 2ψ̇
i∑

j=1

lij θ̇j sin(θj)+

−
i∑

j=1

lij θ̇
2

j sin(θj)

⎤
⎦
⎫⎬
⎭ + Jk

(
θ̈k − ψ̈

)
= Qθk

.

(25.240)
By linearizing also these equations, it follows that

Jk

(
θ̈k − ψ̈

)
+

n∑
i=k

milik

⎛
⎝θkV̇ + v̇ + V ψ̇ − ψ̈Ci +

i∑
j=1

lij θ̈j

⎞
⎠ = Qθk

. (25.241)

The derivatives of the Raleigh dissipation function have not been included
in the equations: The generalized forces due to the dampers, if they exist at all,
will be included in the forces Qθk

.
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25.18.2 Sideslip angles of the wheels and generalized forces

The sideslip angles of the wheels of the trailer can be computed as they were for
the articulated vehicle. If the rth wheel of the ith trailer has a steering angle δir

,
using the monotrack vehicle model, the sideslip angle is

αir
= θi + β − ψ̇

V

⎛
⎝c +

i∑
j=1

l∗ij

⎞
⎠ +

i∑
j=1

l∗ij
θ̇i

V
− δir

. (25.242)

where l∗ij are equal to lij , but defined using distance bir
of the axle instead of ai.

The contributions to the generalized forces Qx, Qy and Qψ due to the tractor
are the same as for the insulated vehicle. As usual, the tractor does not give any
contribution to the forces Qθk

. To compute the contributions due to the rth
wheel of the ith trailer and to the aerodynamic forces of the latter, it is possible
to proceed as for the previous models, by writing their virtual work and then
differentiating with respect to the virtual displacements.

The results obtained for the wheels are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qxir
= Fxirt

+ Fyirt
(θi − δir )

Qyir
= −Fxirt

(θi − δir ) + Fyirt

Qψir
= Fxirt

[
c(θi − δri) +

∑i
j=1 l∗ij(θi − θj − δri) − yir

]
+

+ Fyirt

[
−c −

∑i
j=1 l∗ij + yir (δri)

]
+ Mzri

Qθkir
= Fxirt

l∗ik(θi − θk − δri) + Fyirt
l∗ik if k < i

Qθkir
= Fxirt

[yir + l∗ikδri ] + Fyirt
[−yir δri + l∗ik] − Mzri

if k = i

Qθkir
= 0 . if k > i

(25.243)
The generalized forces due to the aerodynamic forces and moments acting on

the trailers can be accounted for in a similar way. Assuming that it is possible to
distinguish between the forces acting on the various rigid bodies, the generalized
forces can be computed immediately from equations (25.243), using lij instead of
l∗ij , setting δir

to zero and using the aerodynamic forces and moments instead of
the forces acting between road and wheels.

The generalized forces due to dampers located between the various bodies
are⎧⎪⎪⎨

⎪⎪⎩

Qx = Qy = 0
Qψ = −Γ1ψ̇ + Γ1θ̇1

Qθ1 = Γ1ψ̇ − (Γ1 + Γ2) θ̇1 + Γ2θ̇2

Qθk
= Γkθ̇k−1 − (Γk + Γk+1) θ̇k + Γk+1θ̇k+1 k = 2, ..., n .

(25.244)

The external forces Fyei
acting in the centres of mass of the trailers and the

components of the weight mig sin(α) are assumed to act in the directions of axes
x and y of the tractor; the expressions of the generalized forces must therefore
be modified accordingly.

The equations of motion are n+3; together with the equations yielding the
sideslip angles of the wheels, those expressing the forces and moments of the tires
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as functions of the sideslip angles, the load, and the other relevant parameters,
they allow one to study the handling of the vehicle.

As was the case for all the previous models, the linearization of the equations
allows one to uncouple the longitudinal behavior (first equation of motion) from
the lateral behavior, which can be studied using the remaining n + 2 equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
(
v̇ + uψ̇

)
− ψ̈

n∑
i=1

midi +

n∑
i=1

θ̈i

(
i∑

j=i

mj lji

)
=

= (Qy)ββ + (Qy)ψψ +
n∑

i=1

[(Qy)θiθi] + (Qy)θ̇i
θ̇i + (Qy)δδ + Fye +

n∑
i=1

Fyei

J ′ψ̈ −
n∑

i=1

J ′
i θ̈i +

n∑
i=1

mi

{
−V̇

i∑
j=1

lijθj −
(
v̇ + V ψ̇

)
di

}
=

= (Qψ)ββ + (Qψ)ψψ +
n∑

i=1

[
(Qψ)θiθi + (Qψ)θ̇i

θ̇i

]
+ (Qψ)δδ+

+Mze +
n∑

i=1

Mzei
−

n∑
i=1

Fyei
dj

n∑
i=k

milik

(
θkV̇ + v̇ + V ψ̇ − diψ̈ +

i∑
j=1

lij θ̈j

)
= (Qθk)ββ + (Qθk )ψψ+

+
n∑

i=1

[
(Qθk)θiθi + (Qθk)θ̇i

θ̇i

]
+ (Qθk )δδ − Mzei

+
k∑

i=1

Fyei
lik ,

(25.245)
where

di =
i∑

j=1

lij , J
′ = JT +

n∑
i=1

(Ji + mid
2
i )

and

J ′
i =

i∑
j=1

(Ji + midj lji) .

By linearizing the generalized forces Qx, Qy, Qψ and Qθk
as for the previous

models, the derivatives of stability entering Eq. (25.245) are readily computed.
The set of (n + 2) differential equations (25.245) is of the (2n + 2)-th order,

since variables y and ψ appear in the equation only as first and second derivatives.
The equation can thus be written in the state space in the form of a set of 2n+2
first order differential equations by introducing the state variables vθi

= θ̇i.

25.19 LIMITS OF LINEARIZED MODELS

Linearized models have some features that make them particularly useful. These
are namely

• They allow us to simplify the equations of motion to obtain closed form
solutions which, when simple enough, provide a general insight into the
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dynamic behavior of the vehicle, particularly in terms of the effect of
changes to its parameters.

• The possibility of studying the stability with the usual methods of linear
dynamics.

The disadvantages are also clear: Linearized models can be applied only
within a limited range of sideslip angles and lateral acceleration, and used for
trajectories whose radius is large with respect to the size of the vehicle. They
can thus be applied with confidence to the conditions corresponding to normal
vehicle use, while they fail for sport driving and above all for the motions involved
in road accidents.

Another consideration for the models seen in the present chapter is that
they are based on rigid body dynamics, with the presence of the suspensions
neglected. This assumption is well suited to describe the behavior of a vehicle
driven in a relaxed way: Although dependent on the stiffness of the suspensions,
the roll and pitch angles under these conditions are very small and may be
assumed to have little effect on the dynamic behavior.

It must, however, be stated that a linearization carried too far will lead to
results contradicting experimental evidence.

If the cornering stiffness is assumed to be proportional to the load Fz acting
on the wheel not only for the small load variations acting on each wheel but also
for the differences of load between front and rear axle, in the case of a vehicle
with two axles with equivalent tires it follows that

C1

C2
=

Fz1

Fz2

=
b

a
. (25.246)

If only the cornering forces of the tires are included in the formula for the
neutral-steer point, it follows that this point always coincides with the centre
of mass, leading to the conclusion, clearly incorrect, that all vehicles with four
equivalent wheels are neutral-steer.
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COMFORT PERFORMANCE

The definition of comfort in a motor vehicle is at once complex and subjective,
changing not only with time (cars considered comfortable just twenty years
ago are nowadays considered unsatisfactory) but also from user to user. The
same user may change his appraisal depending on circumstances and his psycho-
physical state. But comfort remains an increasingly important parameter in cus-
tomer choice and strongly competitive factor among manufacturers.

This chapter will deal primarily with vibrational comfort, although it is dif-
ficult to separate it from acoustic comfort without entering into details linked
more with the driveability and handling of the vehicle. Not just driving com-
fort, but vibrational and acoustic comfort as well (the latter deeply affects the
conditions in which the driver operates), all have a strong impact on vehicle
safety.

It is possible to distinguish between vibrational and acoustic comfort −
linked with the vibration and noise produced inside vehicles by mechanical de-
vices or on its surface by the air − and ride comfort, which is linked primarily
with the ability of the tires and the suspensions to filter out vibration caused by
motion on a road that is not perfectly smooth.

With this distinction in mind, SAE defines:

• ride, low frequency (up to 5 Hz) vibration of the vehicle body

• shake, vibration at intermediate frequency (between 5 and 25 Hz), at which
some natural frequencies of subsystems of the vehicle occur

G. Genta, L. Morello, The Automotive Chassis, Volume 2: System Design, 349
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• harshness, high frequency vibration (between 25 and 100 Hz) of the struc-
ture and its components, felt primarily as noise

• noise, acoustic phenomena occurring between 100 Hz and 22 kHz, i.e. up
to the threshold of human hearing.

26.1 INTERNAL EXCITATION

The sources of vibration on board a vehicle are essentially three: The wheels,
the driveline and the engine. All contain rotating parts and, as a consequence,
a first cause of dynamic excitation is imbalance. A rotor is perfectly balanced
when its rotation axis coincides with one of its principal axes of inertia; however,
this condition can only be met approximately and balancing tolerances must be
stated for any rotating object1. As a consequence of the residual imbalance a
rotating object exerts on its supports, a force whose frequency is equal to the
rotational speed Ω and its amplitude is proportional to its square Ω2. Because
the engine, the driveline and the wheels rotate at different speeds, the excitations
they cause are characterized by different frequencies.

Apart from the excitation due to imbalance, there are other effects that are
peculiar to each element. Wheels may show geometrical and structural irregular-
ities. The outer shape of the tires cannot be exactly circular and is characterized
by a runout (eccentricity) having the same effect as mass imbalance, exciting
vibrations with a frequency equal to the rotational speed, plus other harmonic
components which excite higher harmonics. An ovalization of the shape excites
a vibration with frequency equal to 2Ω, a triangular shape with frequency 3Ω,
etc. The very presence of the tread excites higher frequencies, which are usually
found in the acoustic range; to avoid a strong excitation with a period equal to
the time of passage of the single tread element, the pattern of the tread is usually
made irregular, with randomly spaced elements.

The same effect occurs for variations of stiffness; these induce dynamic forces
with frequencies equal to the rotational speed and its multiples. As various har-
monics are present in differing degrees in different tires, the spectrum of the
dynamic force exerted by the tire on the unsprung mass depends upon each tire.
As is common in the dynamics of machinery, such a typical spectrum is referred
to as the mechanical signature of the tire.

When the wheel is called upon to exert longitudinal and transversal forces,
the irregularities, both geometrical and structural, also introduce dynamic com-
ponents in these directions. The tire-wheel assembly, however, is a complex me-
chanical element with given elastic and damping properties that can filter out
some of the frequencies produced at the road-tire interface. High frequencies are

1G. Genta, Vibration of structures and machines, Springer, New York, 1995, G. Genta,
Dynamics of rotating systems, Springer, New York, 2005.
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primarily filtered out by the tire itself, before being further filtered by the sus-
pension. These frequencies are felt onboard primarily as airborne vibration, i.e.
noise.

The excitation due to driveline imbalance is usually transferred to the vehicle
body through its soft mountings. The transmission is, however, made of flexible
elements and, particularly at high frequency, these may have resonances. A long
drive shaft has its own critical speeds, and in the case of a two-span shaft with
a central joint (common in front-engine, rear-drive layouts), a critical speed,
corresponding to a mode in which the two spans behave as rigid bodies on a
compliant central support, is usually located within the working range. If the
balancing of the central joint is poor, strong vibration occurs when crossing this
critical speed.

When Hooke’s joints are present, torque pulsations occurring when the input
and output shaft are at an angle can be a major problem. In modern front
wheel drive cars, the joints near the wheels are of the constant-speed type to
avoid vibration, but care must be taken to design the driveline layout to avoid
excitations from these joints.

The engine is a major source of vibration and noise caused by imbalance of
rotating parts, inertial forces from reciprocating elements and time variations of
the driving torque. The excitation due to imbalance of rotating parts, mostly the
crankshaft, has the frequency of the engine speed Ω. To reduce it, the crankshaft
must be balanced accurately. The reciprocating masses produce forcing functions
with frequencies that are equal to Ω and its multiples, in particular 2Ω and 4Ω.

The components with frequency Ω interact with those due to imbalance and
can be reduced by using counter-rotating shafts with eccentric masses. Their
compensation depends on the architecture of the engine, and above all on the
number of cylinders; they are particularly strong in single cylinder engines, such
as those used on many motor cycles. The simplest way to partially compensate
for them is to use a counterbalance slightly larger than that used to compensate
for the imbalance of rotating masses (this technique is usually referred to as
overbalancing). To reduce components with frequency 2Ω, it is possible to use
shafts counter-rotating at a speed twice the speed of the crankshaft, a practice
fairly common on the engines of luxury cars.

Torsional vibration of the engine is another important source of vibration.
Torsional vibrations of the engine were traditionally regarded as having little
effect on comfort, important only for the structural survival of the mechanical
components of the engine, in particular the crankshaft. This is, however, increas-
ingly unrealistic, and the excitation caused by torsional vibration is increasingly
seen as important for vehicle comfort.

The reason for this is the increasing number and mass of the ancillary de-
vices, such as larger generators for coping with the increasing electrical needs
of the vehicle, air conditioning compressors, power steering pumps, etc., that
are located on brackets and driven by belts. Torsional vibration from the engine
can set the system made by accessories, their brackets, belts covers, etc. into
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vibration These vibrations are then transferred to both engine and structure,
producing noise both inside the vehicle and outside, because these accessories
are usually located close to the cooling air intakes.

The use of diesel engines makes things worse, because the more abrupt
changes of pressure in the combustion chamber lead to strong high order har-
monics in torsional vibration. All vehicular diesel engines, and nowadays also
spark ignition engines, have torsional vibration dampers, of the viscous (on in-
dustrial vehicles) or elastomeric type (passenger vehicles), but they may be not
enough. More complex dampers have been introduced, both for reducing vibra-
tion of the crankshaft and for insulating the accessories. Moreover, the geometry
of the engine is such that it is impossible to distinguish, at least as a first ap-
proximation, between torsional, axial and flexural vibration of the crankshaft.

Vibrations linked to the thermodynamic cycle have a fundamental frequency
which, in four-stroke engines, is equal to half the rotational speed but a large
number of harmonics are usually present. Because a reciprocating engine usually
has a number of torsional critical speeds, its dynamics is quite complicated. It
has been the object of many studies and the subject of many books2.

The harmonics whose order is equal to the number of cylinders and its
multiples are usually referred to as major harmonics; these often are the most
dangerous. In the case of a four-in-line engine the frequency of the lowest major
harmonics is 2Ω, coinciding with one of the forcing functions due to reciprocating
masses. A partial compensation is often performed by setting the shaft counter-
rotating at a speed 2Ω in unsymmetrical position.

The design of the engine suspension system is a complex issue. The elimi-
nation of the sources of vibration, e.g. using dampers on the crankshaft or coun-
terbalance shafts spinning at twice the rotational speed, properly insulating the
engine from the vehicle structure by using adequate soft mountings and dampers,
and insulating the passenger compartment for noise, are all useful provisions for
increasing ride comfort. The engine suspension should be soft, to insulate the
vehicle from vibration due to the engine, but must be stiff enough to avoid large
relative motion between engine and vehicle.

The engine suspension is subject to a constant load, the weight of the engine,
and to variable loads, such as inertia forces due to reciprocating parts and the
motion of the vehicle, and a torque equal and opposite to the engine torque. The
latter changes rapidly from zero to its maximum value, but can also change its
sign when the engine is used to brake the vehicle.

Engine and gearbox are often in one piece, and in this case the torque acting
on the engine suspension is the torque at the output of the gearbox (3 − 5 times
the engine torque). If the differential is also inside the gearbox, the torque is that
at the output of the final reduction, which may be as large as 10 − 14 times the
engine torque.

2See, for instance, W. Thompson, Fundamental of automobile engines balancing, Mech.
Eng. Publ. Ltd., 1978.
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The solution once universally accepted, based on three elastomeric supports,
is nowadays often replaced by a solution based on two elastomeric supports plus
a connecting rod, hinged at its ends by two elastomeric supports, that reacts to
the driving torque

The engine suspension must be designed with the aim of reducing, as much
as possible, the transmission of engine vibration to the vehicle, but also allowing
for the fact that the stresses in the engine components are influenced by how the
engine is attached to the vehicle. The transmission the commands to the engine
and, in particular, to the gearbox, is important in reducing the transmission of
vibration to the vehicle. Instead of using rigid rods to transfer commands to
the gearbox, it is convenient to use flexible cables or even to avoid mechanical
transmission of commands altogether (servo-controlled gearbox).

Together with the conventional solutions based on elastomeric supports,
more advanced and even active solutions in which it is possible to change the
relevant parameters are now used.

The engine suspension can be used as a kind of dynamic vibration absorber.
The engine mass, the compliance and the damping of its support constitute a
damped vibration absorber that can be tuned on the main wheel hop resonance,
about 12 – 15 Hz, to control vertical shake vibration due to wheel excitation.

The contribution to overall noise due to aerodynamics can be large and of-
ten, as discussed in Chapter 21, has specific causes that may be different from
those causing aerodynamic drag. Aerodynamic noise is primarily caused by vor-
tices and detached flow on the front part of the vehicle, generally in the zone
close to the windshield and the first strut (pillar A). The wake and aerodynamic
field at the rear of the vehicle, important in causing aerodynamic drag, usually
make a limited contribution to overall noise.

Active noise cancellation is a promising way to increase acoustic comfort.
Already applied in aeronautics, the first automotive applications in the form
of active engine mufflers and passenger compartment noise control are due to
appear soon. With the introduction of active noise control, more advanced goals
than pure noise suppression can be achieved. As an example, experience in the
field of rail transportation has shown that complete noise suppression is not
considered satisfactory by most passengers, as it decreases privacy by allowing
others to listen to what people are saying. A completely noiseless machine may
seem unnatural (in the field of domestic appliances there have been cases of
dishwashers considered too quiet by their users), and may even be dangerous in
some automotive applications. The ultimate goal may not be to suppress noise,
but to achieve a noise that users find pleasant.

Similarly, absolute vibration suppression may be undesirable because vibra-
tion conveys useful information to the driver and can give warning symptoms of
anomalies. Here again the goal seems more to supply a vibrational environment
the user finds satisfactory than to completely suppress all vibrational input.
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26.2 ROAD EXCITATION

Knowledge of the excitation due to motion on uneven road is important for the
study of riding comfort. Road excitation reduces the ability of the tires to exert
forces in the x and y direction, because it causes a variable normal load Fz,
and increases the stressing of the structural elements. Because such excitation
cannot be studied with a deterministic approach, the methods used for random
vibrations must be applied.

A number of studies have been devoted to characterizing road profiles ex-
perimentally and interpreting the results statistically. From experimental mea-
surements of the road profile (Fig. 26.1), a law h(x) can be defined and its power
spectral density obtained through harmonic analysis. Note that the profile is
a function of space and not of time, and the frequency referred to space ω is
expressed in rad/m or cycles/m and not in rad/s or in Hz. The power spectral
density S of law h(x) is thus expressed in m2/(rad/m) or in m2/(cycles/m).

The law S(ω) can be expressed by a straight line on a logarithmic plot, i.e.
by the law

S = cω−n , (26.1)

where n is a nondimensional constant while the dimensions of c depend on n (if
n = 2, c is expressed in m2(cycles/m), for instance).

An old I.S.O. proposal3 suggested n = 2 for road undulations, i.e. for dis-
turbances with a wavelength greater than 6 m, and n = 1.37 for irregularities,
with a wavelength smaller than the mentioned value. The proposal stated various
values of c depending on the type of road.

FIGURE 26.1. Examples of road profiles

3B.S.I. Proposal for Generalized Road Inputs to Vehicles, ISO/TC 108/WG9 Document 5,
1972.
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A more recent approach is to abandon the distinction between undulations
and irregularities. Often used values are

c = 4.7 × 10−6 m3 n = 2.1 highway,
c = 8.1 × 10−7 m3 n = 2.1 road in poor conditions (26.2)

A4 recent ISO proposal subdivides road profiles into 8 classes, indicated by
letters from A to H, stating an exponent always equal to 2 for Eq. (26.1). The
values of constant c for the various profiles are shown in Table 26.1. Classes from
A to D are for hard-surfaced roads, with A for very smooth roads. Classes E
and F are for natural surface roads or roads in bad conditions, such as a badly
maintained pavé. G and H are for highly irregular surfaces. The power spectral
density is defined in a frequency range from 0,01 to 10 cycles/m (wavelength
from 100 m to 100 mm).

Some examples of power spectral density S for tarmac, concrete and pavé
roads5 are shown in Fig. 26.2 as functions of ω together with the old ISO recom-
mendation and ISO 8606:1995 standard.

If the vehicle travels with velocity V , it is possible to transform the law
h(x) into a law h(t) and compute a frequency ω and a power spectral density S
(measured in m2/(rad/s) or m2/Hz) referred to time from ω and S defined with
respect to space ⎧⎪⎨

⎪⎩
ω = V ω ,

S =
S

V
.

(26.3)

The dependence of S from ω is thus

S = cV n−1ω−n . (26.4)

TABLE 26.1. Minimum, average and maximum values of constant c for the various
classes of road following ISO 8606:1995 standard.

Class cmin (m2cycles/m) caverage (m2cycles/m) cmax (m2cycles/m)
A − 1.6 × 10−7 3.2 × 10−7

B 3.2 × 10−7 6.4 × 10−7 1.28 × 10−6

C 1.28 × 10−6 2.56 × 10−6 5.12 × 10−6

D 5.12 × 10−6 1.024 × 10−5 2.048 × 10−5

E 2.048 × 10−5 4.096 × 10−5 8.192 × 10−5

F 8.192 × 10−5 1.6384 × 10−4 3.2768 × 10−4

G 3.2768 × 10−4 6.5536 × 10−4 1.31072 × 10−3

H 1.31072 × 10−3 2.62144 × 10−3 −

4ISO 8606:1995, Mechanical vibration - Road surface profiles - Reporting of measured data,
1/9/1995.

5G.H. Tidbury, Advances in Automobile Engineering, part III, Pergamon Press, Londra,
1965.
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FIGURE 26.2. Power spectral density of some road profiles, ISO/TC 108/RS9
Document 5, 1972 recommendation (dashed lines) and ISO 8606:1995 standard
(full lines)

Remark 26.1 If n = 2, as is suggested by the most recent ISO standards, the
power spectral density of the displacement is proportional to ω−2 and thus the
power spectral density of the vertical velocity is constant: Road excitation is then
equivalent to white noise in terms of vertical velocity of the contact point.

The law S(ω) at various speeds for a road at the limit between the B and C
classes (a fair but not very good road) following ISO standards is plotted in
Fig. 26.3.

Once the power spectral density S(ω) of the excitation (namely of function
h(t)) and the frequency response H(ω) of the vehicle are known, the power
spectral density of the response Sr(ω) is easily computed as

Sr(ω) = H2(ω)S(ω) . (26.5)

The root mean square (r.m.s.) value of the response is the square root of
the power spectral density integrated in the relevant frequency range. If, for
instance, the frequency response H(ω) is the ratio between the amplitude of the
acceleration of the sprung mass and that of the displacement of the contact point,
the response in terms of r.m.s. acceleration in the frequency range between ω1

and ω2 is

arms =

√∫ ω2

ω1

Sr (ω) dω . (26.6)



26.3 Effects of vibration on the human body 357

FIGURE 26.3. Power spectral density of the displacement h(t) as a function of the
frequency ω at various speeds for road at the border between the B and C classes
following ISO standards

To summarize the quality of a road profile in a single figure an International
Roughness Index (IRI), referring not to the road itself but to the way a given
standard quarter car model (see below) reacts to it, was introduced. Because
it refers to a particular model, the so-called quarter car with two degrees of
freedom, it will be dealt with when we discuss suspension models.

26.3 EFFECTS OF VIBRATION ON THE HUMAN
BODY

The ability of the human body to withstand vibration and related discomfort has
been the object of countless studies and several standards on the subject have
been stated. ISO 2631 standard (Fig. 26.4)6, distinguishes between vibrations
with a frequency in the range between 0,5 Hz and 80 Hz that may cause a reduc-
tion of comfort, fatigue, and health problems, and vibrations with a frequency
in the range between 0,1 Hz and 0.5 Hz that may cause motion sickness.

6ISO Standards 2631, 1997, Mechanical vibration and shock - Evaluation of human expo-
sure to whole-body vibration. The standards are older, but were revised in 1997.
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FIGURE 26.4. rms value of the vertical acceleration causing reduced physical efficiency
to a sitting subject as a function of the frequency. The curves for different exposure
times have been reported (ISO 2631 standard)

Standards refer to the acceleration due to vibration and suggest weight-
ing functions of the frequency to compute the root mean square values of the
acceleration. Such functions depend both on the point of the body where the
acceleration is applied and the direction along which it acts.

Figure 26.4, shows the r.m.s. value of the acceleration causing, in a given
time, a reduction of physical efficiency. The exposure limits can be obtained by
multiplying the values reported in the figure by 2, while the “reduced comfort
boundary” is obtained by dividing the same values by 3.15 (i.e., by decreasing
the r.m.s. value by 10 dB). From the plot it is clear that the frequency range in
which humans are more affected by vibration lies between 4 and 8 Hz.

As already stated, frequencies lower than 0.5 − 1 Hz produce sensations
that may be associated with motion sickness. They depend on many parameters
other than acceleration and vary among individuals. Between 1 and 4 Hz, the
ability of humans to tolerate acceleration decreases with the frequency, reaching a
minimum between 4 and 8 Hz. Between 8 and 80 Hz this tolerance increases again
in a practically linear law with frequency. In practice, what creates discomfort
in that range is not so much acceleration, but the ratio between acceleration and
frequency.

Above 80 Hz the effect of vibration depends upon the part of the body
involved, as local vibrations become the governing factor, making impossible to
give general guidelines. There are also resonance fields at which some parts of
the body vibrate with particularly large amplitudes. As an example, the thorax-
abdomen system has a resonant frequency at about 3−6 Hz, although all resonant
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FIGURE 26.5. Curves of constant discomfort, following BSI 6472 (a) and VDI 2057 (b)

frequency values depend strongly upon individual characteristics. The head-neck-
shoulder system has a resonant frequency at about 20 − 30 Hz, and many other
organs have more or less pronounced resonances at other frequencies (e.g., the
eyeball at 60 − 90 Hz, the lower jaw-skull system at 100 − 220 Hz, etc.).

Essentially similar results are plotted in Fig. 26.5. The plots are related to
equal discomfort lines following BSI 6472 (a) and VDI 2057 (b).

Other curves related to vertical and horizontal vibration from various
sources and reported by M.W. Sayers, S.M. Karamihas, The Little Book of Pro-
filing, The University of Michigan, 1998, are plotted in Fig. 26.6.

Remark 26.2 The lower natural frequencies, those linked with the motion of
the sprung mass, must be high enough to avoid motion sickness, but low enough
to be well below 4 Hz. A common choice is to locate them in the range between
1,2 and 1,6 Hz. Higher frequencies, those due to the motion of unsprung masses,
should be well above 8 − 10 Hz. A good choice could be to locate them around
15 − 20 Hz.

26.4 QUARTER-CAR MODELS

The simplest model for studying the suspension motions of a vehicle is the so-
called quarter car model , including a single wheel with related suspension and the
part of the body whose weight is imposed on it. Often, in four wheeled vehicles,
the quarter vehicle including the suspension and the wheels is called a corner of
the vehicle. The quarter car model may be more or less complex, including not
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FIGURE 26.6. Comparison between discomfort limits from ISO and other sources for
vertical (a) and horizontal (b) vibration

FIGURE 26.7. Quarter-car models with one (a), two (b) and three (c) degrees of free-
dom

only the compliance of the suspension, but the compliance of the tire and also
that of the rubber mounts connecting the frame carrying the suspension to the
body. It may even include the inertia of the tire.

Three models based on the quarter car approach are shown in Fig. 26.7.
The first model has a single degree of freedom. The tires are considered rigid

bodies and the only mass considered is the sprung mass. This model holds well
for motions taking place at low frequency, in the range of the natural frequency
of the sprung mass (in most cases, up to 3 − 5 Hz, in the range defined as ride
by SAE).

The second model has two degrees of freedom. The tire is considered as a
massless spring, and both the unsprung and the sprung masses are considered.
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This model holds well for frequencies up to the natural frequency of the unsprung
mass and slightly over (in most cases, up to 30 − 50 Hz, including the ranges
ride, shake and partially harshness).

The third model has three degrees of freedom. The tire is modelled as a
spring-mass-damper system, representing its dynamic characteristics in the low-
est mode. This model allows us to study motions taking place at frequencies in
excess of the first natural frequency of the tires (up to 120 − 150 Hz, including
then harshness).

If higher frequencies must be accounted for, it is possible to introduce a
higher number of tire modes by inserting other masses. These models, essen-
tially based on the modal analysis of the suspension-tire system, are clearly
approximated because a tire can be considered a damped system and one that
is usually nonlinear.

26.4.1 Quarter-car with a single degree of freedom

Consider the simplest quarter-car model shown in Fig. 26.7a. It is a simple mass-
spring-damper system that, among other things, has been used in the past to
demonstrate that the shock absorber must be a linear, symmetrical viscous
damper7.

The equation of motion of the system is simple. Using the symbols shown
in the figure it is

mz̈ + cż + Kz = cḣ + Kh , (26.7)

where z (t) is the displacement from the static equilibrium position, referred to
an inertial frame, and h (t) is the vertical displacement of the supporting point
due to road irregularities8.

The frequency response of the quarter car can be obtained simply by stating
a harmonic input of the type

h = h0e
iωt .

The output is itself harmonic and can be expressed as

z = z0e
iωt ,

where both amplitudes h0 and z0 are complex numbers to account for the dif-
ferent phasing of response and excitation due to damping.

By introducing the time histories of the forcing function and the excitation
into the equation of motion, an algebraic equation is obtained:(

−ω2m + iωc + K
)
z0 = (iωc + K) h0 . (26.8)

7Bourcier De Carbon C.: Théorie mathématiques et réalisation pratique de la suspension
amortie des vehicules terrestres, Proceedings SIA Conference, Paris, 1950.

8The z coordinate must be considered as the displacement from the static equilibrium
position. By doing this, the static problem of finding the equilibrium position is separated
from the dynamic problem here dealt with. This can only be done because of the linearity of
the system.
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It links the amplitude of the response to that of the excitation, and yields

z0 = h0
iωc + K

−ω2m + iωc + K
. (26.9)

If h0 is real (that is, if the equation is written in phase with the excitation),
the real part of the response (the in phase component of the response) can be
separated easily from its imaginary part (in quadrature component)

⎧⎪⎪⎨
⎪⎪⎩

Re (z0)
h0

=
K

(
K − mω2

)
+ c2ω2

(K − mω2)2 + c2ω2

Im (z0)
h0

=
−cmω3

(K − mω2)2 + c2ω2
.

(26.10)

The amplification factor, i.e. the ratio between the absolute values of the
amplitudes of the response and the excitation and the phase of the first with
respect to the second, can be easily shown to be (Figures 26.8a and 26.8c)

FIGURE 26.8. Quarter car with a single degree of freedom, response to harmonic exci-
tation. Ratios between the amplitudes of the displacement (linear (a) and logarithmic
(c) scales) and (d) the acceleration of the sprung mass, and the amplitude of the ground
displacement and (b) phase, for different values of shock absorber damping. The re-
sponses are plotted as functions of the non-dimensional frequency ω∗ = ω

√
m/K
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|z0|
|h0|

=

√
K2 + c2ω2

(K − mω2)2 + c2ω2

Φ = arctan
(

−cmω3

K (K − mω2) + c2ω2

)
.

(26.11)

More than the frequency response expressing the ratio between the
amplitudes of response and excitation, what matters in motor vehicle suspensions
is the ratio between the amplitudes of the acceleration of the sprung mass and
that of the displacement of the supporting point. Because in harmonic motion
the amplitude of the acceleration is equal to the amplitude of the displacement
multiplied by the square of the frequency, it follows that:

|(z̈)0|
|h0|

= ω2 |z0|
|h0|

.

Both frequency responses are plotted in Fig. 26.8 for different values of the
damping of the shock absorber, together with the phase Φ. The responses are
plotted as functions of the nondimensional frequency

ω∗ = ω

√
m

K

and damping is expressed as a function of the optimum damping defined below.
All curves pass through point A, located at a frequency equal to

√
2K/m.

Because the acceleration of the sprung mass must be kept to a minimum to
produce a comfortable ride, a reasonable way to optimize the suspension is to
choose a value of shock absorber damping that leads to a relative maximum, or
at least a stationary point, at point A on the curve related to acceleration. By
differentiating the expression of

ω2 |z0|
|h0|

with respect to ω and equating the derivative to zero at point A, the following
value of the optimum damping is obtained

copt =

√
Km

2
=

ccr

2
√

2
, (26.12)

where
ccr = 2

√
Km

is the critical damping of the suspension.
Although this method for optimizing the suspension can be readily crit-

icized, because the comfort of a suspension is far more complex than simple
reduction of the vertical acceleration (the so-called “jerk”, i.e. the derivative of
the acceleration with respect to time d3z/dt3 also plays an important role), it
nonetheless gives important indications.
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The dynamic component of the force the tire exerts on the ground is

Fz = c
(
ż − ḣ

)
+ K(z − h) = −mz̈ . (26.13)

Remark 26.3 Minimizing the vertical acceleration leads to minimizing the dy-
namic component of the vertical load on the tire, which has a negative influence
on the ability of the tire to exert cornering forces. The condition leading to op-
timum comfort seems, then, to coincide with that leading to optimum handling
performance.

Equation (26.12) allows one to choose the value of the damping coefficient c.
For the value of the stiffness K there is no such optimization: To minimize both
the acceleration and the dynamic component of the force, K should be kept as
low as possible. The only limit to the softness of the springs is the space available.

Remark 26.4 This reasoning has, however, the following limitation: The softer
the springs, the larger the oscillations of the sprung mass. Large displacements
must be avoided because they may cause large errors in the working angles of the
tire, causing the tires to work in conditions that may be far from optimal.

An empirical rule states that soft suspensions improve comfort while hard
suspensions improve handling. This is even more true if aerodynamic devices are
used to produce negative lift: suspensions allowing a large degree of travel cause
major changes of vehicle position with respect to the airflow, producing changes
of the aerodynamic force that are detrimental.

Moreover, at a fixed value of the sprung mass, the lower the stiffness of
the spring, the lower the natural frequency. Very soft suspensions easily lead to
natural frequencies of about 1 Hz or even less, which may cause motion sickness
and a reduction in comfort that varies from person to person. Cars with soft
suspensions with large travel, typical of some manufacturers, are popular with
some customers but considered uncomfortable by others.

The optimum value of the damping expressed by Eq. (26.12) is lower than
the critical damping. The quarter car is then underdamped and may undergo
free oscillations, even if these generally damp out quickly because the damping
ratio ζ = c/ccr is not very low:

copt

ccr
=

1
2
√

2
≈ 0, 354 . (26.14)

Example 26.1 Consider a quarter car model with the following characteristics:

sprung mass m = 250 kg; stiffness K = 25 kN/m; damping coefficient c = 2,150 Ns/m.

Compute the natural frequency of the suspension and its frequency response. As-

sume that the vehicle travels at 30 m/s on a road that may be classified, following ISO

standards, at the limit between class B and class C, and compute the power spectral

density of the acceleration of the sprung mass and its root mean square value. Assess

the performance of the quarter car in these conditions.
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Frequency response. The natural frequency is

ω =

√
K

m
= 10 rad/s = 1.59 Hz

The value of the optimum damping is

copt=

√
mK

2
= 1, 770 Ns/m

and thus the suspension has a damping higher than the optimum value.

The dynamic compliance, that is the ratio between the displacement of the sprung

mass and that of the supporting point,

|H(ω)|= |z0|
|h0|

=

√
K2+c2ω2

(K − mω2)2 +c2ω2
(26.15)

is plotted in Fig. 26.9, together with the inertance ω2H, that is the ratio between the

acceleration of the sprung mass and the displacement of the supporting point.

Response to road excitation. The power spectral density is plotted in Fig. 26.2 in

m2/(cycles/m) as a function of the frequency ω′ in cycles/m. The equation of the

line dividing zone B from zone C is

S′ = cω′n ,

where the frequency with respect to space is expressed in cycles/m and the power spectral

density in m2/(cycles/m); constants c and n are

c = 1.28 × 10−6 m , n = −2

FIGURE 26.9. Dynamic compliance and inertance of the quarter car model with a
single degree of freedom. Power spectral density of the acceleration due to motion on
a road at the boundary between ISO classes B and C at a speed of 30 m/s
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Computing the quantities referred to time from those referred to space at a speed of 30

m/s it follows that

S = c′ωn

where, expressing ω in Hz and S in m2/Hz,

c′ =
c

V n+1
= 3.84 × 10−5 m3 s−2

The power spectral density of the acceleration of the sprung mass can thus be

immediately computed by multiplying the square of the inertance by the power spectral

density of the road profile, obtaining the result reported in Fig. 26.2. The r.m.s. value

of the acceleration can be computed by integrating the power spectral density. The limits

of integration referred to the space frequency are 0,01 and 10 cycles/m. By referring

them to time, the frequency range extends from 0,3 to 300 Hz, obtaining

arms = 5.84 m/s2 = 0, 60 g

This is a high value that causes reduced physical efficiency in less than 1 s at a

frequency between 1 and 2 Hz, where the resonance of the sprung mass is located. This

result should not surprise us, for the quarter car model has only one degree of freedom

and no tire. From the power spectral density it is clear that the largest contribution to

the integral is due to the range between 10 and 300 Hz, because the response is still

quite high even with increasing frequency. The computation, performed by neglecting

the ability of the tire to filter out the excitation at medium-high frequency, has little

meaning.

What the example shows is that the suspension alone is unable to filter out road

excitation, and that the presence of the tire is compulsory.

Because the quarter car model is linear, the damper was assumed to be
acting both in the jounce and in the rebound stroke (double effect damper)
and to be symmetrical (having the same damping coefficient for motion in both
directions). Dampers used in early automotive suspensions acted only in rebound
and are today double effect, but they are not symmetrical because the damping
coefficient in the jounce stroke is much lower than in the rebound stroke.

To understand the advantages of symmetrical double effect dampers9, con-
sider a quarter car with a single degree of freedom, passing at high speed over a
bump or pothole (Fig. 26.10). If the time needed to cross the road irregularity
is far shorter than the period of oscillation of the sprung mass (for instance, a
bump 0.3 m long is crossed in 0.01 s at a speed of 30 m/s), an impulsive model
can be used to compute the trajectory of the sprung mass. The effects of the
perturbation to its motion can be considered as a variation of the vertical com-
ponent of the momentum applied instantly. The trajectory of the sprung mass

9Bourcier De Carbon C.: Théorie mathématiques et r éalisation pratique de la suspension
amortie des vehicules terrestres, Proceedings SIA Conference, Paris, 1950.



26.4 Quarter-car models 367

FIGURE 26.10. Quarter car with a rigid wheel crossing a ditch

deviates by an angle α:
tan(α) =

w

u
,

where w is the vertical component of the velocity. It can be computed using the
momentum theorem

mw =
∫ t2

t1

Fdt . (26.16)

The integral in Eq. (26.16) is the impulse of the forces due to the spring and
to the damper from time t1, when the wheel enters the ditch, to time t2 when it
gets out

w =
1
m

(∫ t2

t1

Fmdt +
∫ t2

t1

Fadt

)
. (26.17)

The force due to the spring is the part exceeding the static value compen-
sating for the weight. If the integrals on the right hand side of Eq. (26.17) vanish,
the suspension completely absorbs the irregularity, without any perturbation be-
ing transmitted to the sprung mass. The first of the two integrals is assumed to
be far smaller than the second, because in a small amplitude, high frequency
disturbance the force due to the spring, which is proportional to the displace-
ment, is negligible compared to the force due to the shock absorber, which is
proportional to the velocity. By neglecting the first integral and assuming that
the damper is symmetrical, the expression for the vertical velocity becomes

w =
1
m

∫ t2

t1

−cḣdt = − c

m
(h2 − h1) , (26.18)

where h(x) is the law expressing the road profile.
From Eq. (26.18) it is clear that if h2 = h1 the suspension is able to insulate

the sprung mass perfectly from the road irregularity, a result that is due to the
fact that the damping coefficient in rebound is equal to that in jounce.

This result, however, is compromised by the oversimplification of the model.
It is well known that, while the shock absorber must act in both the up- and
the down-stroke, the damping coefficients must be unequal for best performance.
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This is easily explained by noting that while the instant value of the force due to
the shock absorber is larger than that due to the spring, the same inequality does
not hold for the integrals, particularly when the first one vanishes. Another factor
is that the road-wheel constraint is unilateral. The disturbance when crossing a
bump at high speed is higher than when crossing over a hole. In the first case,
the force due to the spring acts upwards; in the second a damping coefficient
higher in the downstroke gives a negative value of the second integral of Eq.
(26.17), which may compensate for the positive value of the first one. Some
approximations are also linked to the use of the impulsive model, particularly
because if the unsprung mass and its natural frequency are accounted for, the
time needed to cross the obstacle is no longer much smaller than the period of
the free oscillations of the system.

Example 26.2 Consider the quarter car with a single degree of freedom studied in
Example 26.1, crossing at a speed V=30 m/s over an obstacle with harmonic profile
similar to the usual obstacles (Fig.26.11c). Let the profile be

h = h0 sin

[
π

x − x1

x2 − x1

]
. (26.19)

with h0 = 100 mm and a length (x2 − x1) of 300 mm. Because

x = V t , (26.20)

the vertical velocity is

ḣ =
πV h0

x2 − x1
cos

[
π

x − x1

x2 − x1

]
. (26.21)

Eq. (26.7) was numerically integrated, with the results shown in Fig.26.11a in

terms of displacements and in Fig. 26.11b in terms of velocity. The quarter car with

FIGURE 26.11. Response in terms of displacement (a) and velocity (b) of a single
degree of freedom quarter car model crossing at 30 m/s a bump 300 mm wide and 100
mm high (c). Full line: symmetric damper; dashed line: the contribution of the spring
to the impulse has been neglected; dotted line: asymmetric damper
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symmetric damper (full line curve) succeeds well at filtering out the obstacle, with a

maximum displacement of 6 mm. (6% of the displacement of the supporting point). The

plot of the velocity shows that the negative impulse in the second part of the obstacle

practically balances the positive impulse in the first one.

The dashed line was computed by neglecting the contribution of the spring to the

impulse.

The dotted line was computed assuming that the damper has a coefficient in the

jounce stroke equal to 80% of that in the rebound stroke. It is clear that the best per-

formance are obtained with a symmetric damper. This consideration is, however, de-

pendent on the extreme simplification of the model. Among other simplifications, the

mono-lateral nature of the road-wheel contact has been neglected.

26.4.2 Quarter-car with two degrees of freedom

The following model is that shown in Fig. 26.7b. It is well suited for the study
of the behavior of vehicle suspensions in a frequency range beyond the natural
frequency of the unsprung mass.

With reference to Fig. 26.7b, the equation of motion of the model is
[

ms 0
0 mu

]{
z̈s

z̈u

}
+

[
c −c
−c c + cp

]{
żs

żu

}
+

+
[

K −K
−K K + P

]{
zs

zu

}
=

{
0

cpḣ + Ph

}
,

(26.22)

where zs and zu are the displacements from the static equilibrium position and
are referred to an inertial frame.

The response to a harmonic excitation h(t) is readily obtained in the same
way used for the previous model and yields a harmonic oscillation, not in phase
with the excitation. The relationship linking the complex amplitudes of the re-
sponse and the excitation is

{
−ω2

[
ms 0
0 mu

]
+ iω

[
c −c
−c c + cp

]
+

+
[

K −K
−K K + P

]}{
zs0

zu0

}
= h0

{
0

iωcp + P

}
,

(26.23)

By neglecting the damping of the tire cp, which is usually small, the ampli-
fication factors of the sprung and unsprung masses are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|zs0 |
|h0|

= P

√
k2 + c2ω2

f2 (ω) + c2ω2g2 (ω)

|zu0 |
|h0|

= P

√
(k − mω2)2 + c2ω2

f2 (ω) + c2ω2g2 (ω)
,

(26.24)
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where ⎧⎨
⎩

f (ω) = msmuω4 − [Pms + K(ms + mu)] ω2 + KP

g (ω) = (ms + mu)ω2 − P .

The dynamic component of the force exerted by the tire on the ground in
the z direction may be easily computed in a similar way. The force in the z
direction is

Fz = −P (zu − h) (26.25)

and thus
|Fz0 | = P (|zu − h|) . (26.26)

The modulus of zu − h is not coincident with the difference between the
modulus of zu and that of h because the two time histories are out of phase with
each other. By performing the relevant computations, it follows that

|Fz0 |
|h0|

= Pω2

√
[K(ms + mu) − msmuω2]2 + c2(ms + mu)ω2

f2 (ω) + c2ω2g2 (ω)
. (26.27)

The frequency responses related to both the sprung and the unsprung masses
are plotted in Fig. 26.12a and b for a system with P = 4K and ms = 10mu. The
plots, shown using the non-dimensional frequency

ω∗ = ω

√
m

K
, (26.28)

include curves obtained with different values of damping c; all curves lie in the
non-shaded region of the graph.

If c = 0 the natural frequencies are two and the peaks are infinitely high.
Also for c → ∞ the peak, corresponding to the natural frequency of the whole
system, which is now rigid, over the spring simulating the tire, goes to infinity.

The frequency responses of Fig. 26.12a and b multiplied by ω∗2
are shown in

Fig. 26.12c and d; they give the non-dimensional ratio between the accelerations
of the two masses and the displacement of the supporting point (suitably made
non-dimensional). All curves pass through points O, A, B and C. Between O
and A and between B and C the maximum acceleration of the sprung mass
increases with decreasing damping, while between A and B and from C upwards
it increases with damping

An optimum value of damping can be found by trying to keep the accelera-
tion as low as possible in a large range extending up to the natural frequency of
the unsprung mass, i.e. by looking for a curve having a relative maximum or a
stationary point in A. Operating as seen with the previous model, the following
value is obtained

copt =

√
Km

2

√
P + 2K

P
. (26.29)
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FIGURE 26.12. Quarter car with two degrees of freedom, response to harmonic ex-
citation. Ratios between the amplitudes of the displacements of the sprung and the
unsprung masses (a, b) and of the accelerations (c, d) to the amplitude of the displace-
ment of the ground, for different values of the damping of the shock absorber. The
responses are plotted as functions of the nondimensional frequency ω∗ = ω

√
m/K

Because P is much larger than K, the value of
√

(P + 2K)/P is close to
unity (in the case of Fig. 26.12

√
(P + 2K)/P = 1.22 ) and the optimum damping

is only slightly larger than that computed for the model with a single degree of
freedom (Eq. (26.12)). From Fig. 26.12c it is clear that this value of damping is
effective in keeping the acceleration low in a wide frequency range.

The amplitude of the dynamic component of force Fz (Eq. (26.29)) is plotted
in non-dimensional form (divided by P |h0|) as a function of the nondimensional
frequency in Fig. 26.13. The value of the optimum damping expressed by Eq.
(26.29) is also effective in keeping the maximum value of the dynamic component
of force Fz as low as possible, at least at low frequencies. At higher frequencies,
a slightly higher value of damping could be effective, even if it would result in a
larger acceleration of the sprung mass.

The maximum value of the non-dimensional amplitude of force Fz has been
plotted as a function of ratio c/copt in Fig. 26.14a. When the damping goes
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FIGURE 26.13. Quarter car with two degrees of freedom, response to harmonic excita-
tion. Ratio between the amplitude of the dynamic component of force Fz between tire
and road and the displacement of the ground, made non-dimensional by dividing it by
the stiffness of the tire P , for different values of the damping of the shock absorber.
The response is plotted as a function of the non-dimensional frequency ω∗ = ω

√
m/K

FIGURE 26.14. (a) Maximum value of the amplitude of the dynamic component of
force Fz in a frequency range between 0 and 30

√
K/m as a function of ratio c/copt.

Same characteristics as the system studied in the previous figures. (b) Minimum value
of the ground force (static force minus amplitude of the dynamic component) as a
function of ratio c/copt for a quarter car model with parameters typical for a small car:
ms = 238 kg; mu = 38kg; K = 15.7 kN/m; P = 135 kN/m; actual value of c/copt equal
to 1.53
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beyond the optimum value computed above, a certain decrease of the maximum
amplitude of the force at high frequency is clearly obtained.

The minimum value of the force on the ground (computed as the static
component minus the amplitude of the dynamic component) has been plotted
as a function of ratio c/copt in Fig. 26.14b, using data similar to those related to
the front suspension of a small car. The curves refer to different amplitudes of
the excitation h0. If the damping is small enough the wheel can bounce on the
road. Clearly, when this occurs the present linear model is no longer applicable.

Example 26.3 Repeat the computations of example 26.1 using a quarter car model

with two degrees of freedom. To the data already considered (sprung mass ms = 250

kg; stiffness of the spring K = 25 kN/m; damping coefficient of the damper c = 2,150

Ns/m.) add the following: unsprung mass mu = 25 kg; stiffness of the tire kt = 100

kN/m.

Compute the r.m.s. value of the acceleration as a function of the speed.

Natural frequencies. The optimum damping is

copt = 2,170 Ns/m,

a value very close to the actual one.
The characteristic equation allowing the natural frequencies of the undamped sys-

tem to be computed is
ω4 − 5.100ω2 + 400.000 = 0.

The values of the natural frequencies are then
{

ω1 = 8.93 rad/s = 1.421 Hz
ω2 = 70.85 rad/s = 11.28 Hz.

Frequency response. The dynamic compliance H(ω) and the inertance are plotted in

Fig.26.15.

Response to road excitation. The power spectral density can be computed in a way

similar to what seen in the previous example. The result is plotted in Fig. 26.15.
The r.m.s. value of the acceleration is

arms = 1.34 m/s2 = 0.136 g.

By comparing the results of the two examples it is clear that the presence of the

tire is effective in filtering out high frequency disturbances, while the transmissibility at

the natural frequency is slightly higher. At any rate, the r.m.s. value of the acceleration

is now acceptable, even if it is not optimal. From the plot of Fig. 26.4, it is clear that

this value causes reduced physical efficiency in 3 hours; however, the driver and the

passengers are also insulated from vibration from the road by the seats.

Considering the integral between a wavelength of 0,1 and 100 m is practically equiv-

alent to considering the whole spectrum from 0 to infinity, because the power spectral

density vanishes outside this range.
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FIGURE 26.15. Dynamic compliance and inertance of the quarter car model with two
degrees of freedom. Power spectral density of the acceleration due to motion on a road
at a speed of 30 m/s

FIGURE 26.16. Power spectral density of the acceleration of the sprung mass (a) and
its r.m.s. value (b) at different values of the speed of the vehicle

The computation has been repeated for various values of the speed and the results

are shown in Fig. 26.16. The r.m.s. value of the acceleration grows with increasing speed.

From the considerations above it is possible to draw the conclusion that
the value of the damping coefficient expressed in Eq. (26.29) is optimal both
from the viewpoint of comfort and handling, because it leads to low variations



26.4 Quarter-car models 375

in the forces on the ground. A slightly higher damping may, however, somewhat
improve handling because it slightly reduces the variable component of the force
on the ground.

This conclusion, obtained from a highly simplified model, is not in good
accordance with experimental evidence stating that the value of damping for
optimizing riding comfort is lower than that for optimizing handling.

To optimize the value of the damping coefficient of the suspension it is
possible to consider motion on a road profile of the type defined by ISO 8606:1995
standard and expressed by Eq. (26.1) with n = 2. An excitation of this type may
be considered, as already stated, as a white noise in terms of velocity, defined in
the frequency range between 0,01 and 10 cycles/m.

The power spectral density of the vertical displacement of the contact point
with the ground can be expressed as

S = cV ω−2 . (26.30)

In S.I. units (rad/s), the value of coefficient c is that reported in Table
26.1 multiplied by 2π. The frequency range in which the spectrum is defined is
between frequencies ω1 and ω2, where:

ω1 = 0, 01 ∗ 2πV , ω2 = 10 ∗ 2πV . (26.31)

The r.m.s. value of the vertical acceleration of the sprung mass is

arms =

√∫ ω2

ω1

ω4H2S dω =
√

cV

√∫ ω2

ω1

ω2H2 dω , (26.32)

where H is the frequency response yielding the displacement of the sprung mass.
In a similar way the r.m.s. value of the variable component of the vertical

road-tire force on the ground is

Fzrms
=

√∫ ω2

ω1

H2
F S dω =

√
cV

√∫ ω2

ω1

H2
F

ω2
dω , (26.33)

where HF is the frequency response yielding the variable component of the force.
The r.m.s. values of the acceleration and of the dynamic component of force

Fz are easily computed for different values of the damping coefficient of the
shock absorber. The plot of the former versus the latter allows some interesting
conclusions to be drawn on the choice of the value of the damping (Fig. 26.17).

It must be remembered that ratios arms/
√

cV and Fzrms
/
√

cV are inde-
pendent from c, that is from the characteristics of the road, but not completely
independent from the speed. Actually they would be so if the integrals where
computed in a frequency range from 0 to infinity, but the speed is included in
the integration limits here defined.

Remark 26.5 The conditions leading to optimum comfort (in the sense of min-
imum acceleration) and to optimum handling (in the sense of minimum force
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FIGURE 26.17. Ratio arms/
√

cV versus Fzrms/
√

cV for the quarter car model with
two degrees of freedom with the same data as in Fig. 26.14b (ms = 238 kg; mu = 38kg;
K = 15.7 kN/m; P =135 kN/m). Computation referred to a speed of 30 m/s

variations) are readily identified: The first is obtained with a damping lower
than the optimum damping defined above, while the second for a damping value
that is higher. This result is in better accordance with experimental results than
the previous one.

As already stated, the presence of the tires has a negligible effect on the
frequency response at low frequency, while at higher frequencies their stiffness
must be accounted for. A comparison between the results obtained using the
quarter car models with one and two degrees of freedom is shown in Fig. 26.18.

26.4.3 International Roughness Index

As already stated, the International Roughness Index (IRI) is defined with refer-
ence to a particular quarter car with two degrees of freedom moving at a specified
speed. The data of the quarter car, often defined as golden car, are:

K

ms
= 63, 3 s−2 ,

P

ms
= 653 s−2 ,

mu

ms
= 0, 15 ,

c

ms
= 6 s−1 .

The value of the optimum damping is
copt

ms
= 6, 147 s−1

and thus the model has a damping that is close to optimal.
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FIGURE 26.18. Acceleration of the sprung mass as a function of the frequency for a
unit displacement input. Comparison between the quarter car model with one and two
degrees of freedom (in the latter case P = 4K, ms = 10mu). 1): 2 degrees of freedom; 2):
1 degree of freedom, damping defined by Eq. (26.29); 3): 1 degree of freedom, damping
defined by Eq. (26.12).

The reference speed is 80 km/h.
To define the Roughness Index of a given road profile, the motion of the

quarter car is simulated and the cumulative travel of the sprung mass with
respect to the unsprung mass is calculated over time. The index is the total
value of the travel divided by the distance travelled by the vehicle

IRI =
1

V T

∫ T

0

|żs − żs| dt . (26.34)

The index so defined is a non-dimensional quantity, but one that is often
measured in non-consistent units, [m/km] or [in/mi]. A correlation between the
road characteristics and the roughness index is shown in Fig. 26.19.

Remark 26.6 The Roughness Index may also be interpreted as the average
value of the absolute value of the relative speed of the two masses divided by
the vehicle speed.

The use of an index to define the quality of the road surface, one based on
the ratio between the total motion of the suspension and the distance travelled,
dates back to the 1940s. It is used at present by many international organizations.
Since 1982 the World Bank has used it to compare of road conditions in various
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FIGURE 26.19. Correlation between the road characteristics and the roughness index

Countries. It has been shown that a good correlation exists between the index
and both the vertical acceleration and the variation of the force on the ground;
this property allows the comfort and the performance on a given road to be
understood.

26.4.4 Quarter car with secondary suspension (three degrees
of freedom)

In many vehicles the suspensions are not assembled directly to the body, but
are mounted on a secondary frame, one that often carries other elements with
a non-negligible mass as well. This auxiliary frame is connected to the chassis
with a secondary suspension made by elastomeric mounts. A quarter car of this
type is shown in Fig. 26.7c).

Its equation of motion is

⎡
⎣ ms 0 0

0 mt 0
0 0 mu

⎤
⎦
⎧⎨
⎩

z̈s

z̈t

z̈u

⎫⎬
⎭ +

⎡
⎣ c −c 0

−c c + ct −ct

0 −ct ct + cp

⎤
⎦
⎧⎨
⎩

żs

żt

żu

⎫⎬
⎭+ (26.35)
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+

⎡
⎣ K −K 0

−K K + Kt −Kt

0 −Kt Kt + P

⎤
⎦
⎧⎨
⎩

zs

zt

zu

⎫⎬
⎭ =

⎧⎨
⎩

0
0

cpḣ + Ph

⎫⎬
⎭ .

The response to a harmonic excitation can be computed as with previous
models.

Example 26.4 Repeat the computations of the previous example assuming that a

secondary suspension is located between the sprung and unsprung masses. The data are:

sprung mass ms = 250 kg; mass of the auxiliary frame mt = 10 kg; unsprung mass mu

= 25 kg; stiffness of the spring K = 25 kN/m; stiffness of the spring of the auxiliary

suspension Kt = 100 kN/m; stiffness of the tire kt = 100 kN/m; damping coefficient

of the damper c = 2,150 Ns/m; damping coefficient of the auxiliary suspension ct =

5,000 Ns/m.

The values of the natural frequencies are

⎧⎨
⎩

ω1 = 8.30 rad/s = 1.32 Hz
ω2 = 59.68 rad/s = 9.50 Hz
ω3 = 130.28 rad/s = 20.73 Hz

The dynamic compliance H(ω) and the inertance ω2H are plotted in Fig. 26.20,

along with the power spectral density of the acceleration of the sprung mass when the

vehicle travels at 30 m/s on a road defined as in-between classes B and C ISO 8606:

1995.

The r.m.s. value of the acceleration is

arms = 1.21 m/s2 = 0.12 g.

FIGURE 26.20. Dynamic compliance and inertance of the quarter car model with three
degrees of freedom. Power spectral density of the acceleration due to motion on a road
at a speed of 30 m/s
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The auxiliary suspension improves comfort slightly. By comparing the plots, however,

it is clear that the improvement is concentrated in the medium-high frequency range.

If the comparison were done at a higher speed, in a condition in which high frequency

excitation were more significant, the improvement would be larger.

26.4.5 Quarter-car model with dynamic vibration absorber

A dynamic vibration absorber essentially consists of a mass connected to the
system through a spring and possibly a damper (Fig. 26.21a). If properly tuned,
it can reduce the amplitude substantially at one of the resonances of the origi-
nal system, but it introduces an additional resonance whose peak amplitude is
controlled by the value of its damping cd.

The frequency response of the system of Fig. 26.21a is shown in Fig. 26.21c
for 3 different values of damping: If cd is low, two resonance peaks are present,

FIGURE 26.21. Dynamic vibration absorber, applied to a spring-mass system (a) and
to a quarter car model (b). Frequency response of the first of the two systems for
different values of cd and with md/m = 0.2 (c) and value of the peak amplitude with
optimum damping as a function of the mass ratio md/m (d)
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while if cd is high, there is only one peak. If the damping tends to zero the two
peaks have an infinite height, while if it tends to infinity the system reduces to
an undamped system with a single degree of freedom and thus a single peak with
infinite height. It is possible to demonstrate that the stiffness kd which reduces
the amplitude of the motion of mass m to a minimum is10

(Kd)opt = K
mmd

(m + md)2
. (26.36)

The value (cd)opt of the damping necessary to obtain such a minimum and
the peak amplitude are respectively

(cd)opt =
md

m + md

√
K

3mmd

2(m + md)
,

∣∣∣∣ z0

h0

∣∣∣∣
max

=
√

1 +
2m

md
. (26.37)

Sometimes the vibration absorber may have no elastic element or may be
provided with a damper whose behavior is modelled better by dry friction than
by viscous damping.

Dynamic vibration absorbers are sometimes used in motor vehicle suspen-
sions, as in the quarter car model of Fig. 26.21b, in which a standard shock
absorber is also represented. The equation of motion of the system is⎡

⎣ ms 0 0
0 md 0
0 0 mu

⎤
⎦
⎧⎨
⎩

z̈s

z̈d

z̈u

⎫⎬
⎭ +

⎡
⎣ c 0 −c

0 cd −cd

−c −cd c + cd + cp

⎤
⎦
⎧⎨
⎩

żs

żd

żu

⎫⎬
⎭+

+

⎡
⎣ K 0 −K

0 Kd −Kd

−K −Kd K + Kd + P

⎤
⎦
⎧⎨
⎩

zs

zd

zu

⎫⎬
⎭ =

⎧⎨
⎩

0
0

cpḣ + Ph

⎫⎬
⎭ .

(26.38)

The various frequency responses may be obtained immediately as with the
other quarter car models. Some results are reported in Fig. 26.22. Because no at-
tempt has been made to optimize the suspension, the figure has only a qualitative
interest.

Curve 1 deals with a conventional quarter car model as studied in the pre-
vious section. Curves 2 and 3 refer to a system in which a vibration absorber is
applied to the unsprung mass, tuned on the first and the second natural frequency
(
√

kd/md = 0.89 and
√

kd/md = 7.09). The mass of the vibration absorber is
1/20 of the sprung mass and the damping cd is 2

√
kdmd.

To add a vibration absorber to a conventional suspension changes its per-
formance only slightly, both in terms of acceleration of the sprung mass and
of forces on the ground. But vibration absorbers are interesting because of the
possibility of using them instead of conventional shock absorbers, as in the case
shown by curve 4.

10J.P. Den Hartog, Mechanical vibrations, McGraw Hill, New York, 1956.
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FIGURE 26.22. Quarter car model with dynamic vibration absorber: Non-dimen-
sional amplitude of the acceleration (a) and of the dynamic component of the force
Fz (b) as functions of the non-dimensional frequency ω∗ (P = 4K; ms = 10mu;
c =

√
6mK/8). Line 1: Quarter car without vibration absorber; line 2: md = 0.05ms,√

kd/md = 0.89, cd = 2
√

kdmd; line 3: md = 0.05ms,
√

kd/md = 7.09, cd = 2
√

kdmd;

line 4: md = 0.05ms, c = 0,
√

ks/ms = 4.8, cs = 0.8
√

ksms

In the case shown, in which the values of the parameters were obtained by
trial and error without a true optimization, the acceleration of the sprung mass
is quite low in the entire frequency range, except for a strong resonance peak at
low frequency.

Remark 26.7 The height of the peak is obviously limited, however, because some
damping is present, and in practice is further limited by the other forms of damp-
ing present in the actual system, such as that due to the tire.

If the stiffness of the springs K is low, the peak occurs at very low frequency,
where its importance may be marginal, and the advantages of the vibration
absorber, primarily linked to lower cost and complexity of the system due to
elimination of the need for an element mounted between the body and the wheel,
add to its excellent suspension performance.

Dynamic vibration absorbers, used instead of conventional shock absorbers,
proved advantageous on several low cost small cars with soft suspensions; they
may also, however, be added to conventional luxury cars to further increase ride
comfort.

26.4.6 Quarter car with many degrees of freedom to study
the suspension-tire interaction

In the model of Fig. 26.7c, an additional degree of freedom has been included to
account for the compliance of the tire. To proceed in a more comprehensive way it
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is possible to use the component mode synthesis approach, which is theoretically
applicable only if the tire is a linear elastic system, or at least a lightly damped
but nonetheless linear system.

The part of the system that may be considered a substructure can be iden-
tified. When the system is discretized and the generalized coordinates are the
displacements of a certain number of points (the nodes), it is possible to subdi-
vide the nodes into two groups: the connection nodes, that are common to the
substructure and to other parts of the system, and the internal nodes. The vector
of the generalized coordinates and the stiffness matrix of the substructure may
be accordingly partitioned

q =
{

q1

q2

}
, K =

[
K11 K12

K21 K22

]
, (26.39)

where subscripts 1 and 2 refer respectively to the boundary and the internal
degrees of freedom. The other matrices (mass and damping matrices) may be
partitioned in the same way.

In the present case, if the tire is a substructure, the connection nodes are
located on the wheel rim and the internal nodes are all others. If the rim is a rigid
body and, as in the case of the quarter car model, only the vertical displacement
is considered, the only generalized coordinate that is common to the tire and the
other parts of the system is displacement zu (q1 has just one element).

Consider the tire in its deformed configuration under the static forces due
to the load applied to the suspension and linearize its behavior about this con-
figuration. Neglecting the forces applied to the internal nodes in the static con-
figuration, vector q2 is

q2 = K−1
22 K21q1 . (26.40)

To express the dynamic deflected configuration it is ideally possible to lock
the boundary nodes (in this case by constraining the rim of the wheel) and per-
form dynamic analysis. The natural frequencies and the mode shapes of the tire
are then obtained by solving the eigenproblem related to matrices K22 and M22:

det
(
−ω2M22 + K22

)
= 0.

Once the eigenproblem has been solved, it is possible to use the eigenvector
matrix Φ to perform the modal transformation

q2 = Φη2 .

The generalized coordinates of the substructure can thus be expressed as
{

q1

q2

}
=

{
q1

−K−2
22 K21q1 + Φη2

}
=

=
[

I 0
−K−1

22 K21 Φ

]{
q1

η2

}
= Ψ

{
q1

η2

}
.

(26.41)
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Equation (26.41) is a coordinate transform, allowing the deformation of
the internal part of the substructure to be expressed in terms of constrained and
internal modes. Matrix Ψ expressing this transformation can be used to compute
new mass, stiffness and, if needed, damping matrices and a force vector

K∗ = ΨT KΨ , M∗ = ΨT MΨ , C∗ = ΨT CΨ , f∗ = ΨT f . (26.42)

If the constrained coordinates are m (in the present case m = 1) and the
internal coordinates are n and only k modes of the constrained substructure are
considered (k < n), the size of the original M, K, etc. matrices is m + n, while
that of matrices M∗, K∗, etc. is m + k.

Remark 26.8 If all internal modes are considered (k = n) the method does not
introduce errors, but there is no simplification. Both approximation and simpli-
fication increase while decreasing the number of modes considered.

The substructure so obtained can be easily assembled to the other parts of
the system. If, for instance, only one boundary degree of freedom (the vertical
displacement of the unsprung mass) and only one vibration mode of the tire are
considered, the quarter car model has three degrees of freedom, two ‘physical’
ones (displacements of the sprung and unsprung masses) plus a modal one.

Example 26.5 Consider the quarter car model of the previous examples, taking into

account the inertia of the tire as well. A realistic model of the tire not being available,

consider it as made of a number of rigid rings, the first being attached to the rim and

the last connected to the ground, connected to each other by linear springs and dampers

(Fig. 26.23a, where the rigid rings are 4). The dynamic model of the quarter car is

shown in Fig. 26.23b.

Assume the following data: sprung mass ms= 250 kg; unsprung mass mu = 23

kg; masses of the 4 rings modelling the tire mi= 1 kg (i = 0, ..., 3), stiffness of the

suspension spring K= 25 kN/m; stiffness of the springs simulating the tire ki = 300
kN/m (i = 0,..., 3); damping coefficient of the shock absorber c = 2 150 Ns/m; damping

coefficient of the dampers simulating the tire ci= 100 Ns/m (i = 0, ..., 3 ).
The values of kiwere chosen so that, in static conditions, the stiffness of the tire

(that is, the stiffness of the three springs in series) is the same as in the previous exam-

ples. A certain damping of the tire must be introduced in the present model; otherwise,

the response tends to infinity at the resonance of the latter. The value chosen is, how-

ever, low enough not to influence the results at other frequencies, and it allows the tire

to be studied with the assumption of small damping.
The tire is a system with three degrees of freedom; its mass, stiffness and damping

matrices and the forcing vector due to the motion of the contact point are

M = m0

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , K = k0

⎡
⎣ 1 −1 0

−1 2 −1
0 −1 2

⎤
⎦ ,

C = c0

⎡
⎣ 1 −1 0

−1 2 −1
0 −1 2

⎤
⎦ , f = h

⎧⎨
⎩

0
0

iωc0 + k0

⎫⎬
⎭ .
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FIGURE 26.23. a): Simplified dynamic model of a tire made of 4 rigid rings connected
to each other by springs. b): Dynamic model of a quarter car with the tire simulated
as in a). c) and d): Response of the quarter car model with three degrees of freedom
based on the model in b)

The first degree of freedom coincides with the vertical displacement of the unsprung

mass and is thus a constrained degree of freedom; the other two are internal degrees of

freedom of the tire. The stiffness matrix must then be partitioned as

K11= k0 , K12 =
[
−k0 0

]
, K21 =

[
−k0

0

]
, K22 = k0

[
2 −1

−1 2

]
.

The other matrices are partitioned in the same way. Modal analysis of the internal
modes yields the following values for the natural frequencies and the eigenvectors

{
ω1 = 457 rad/s = 87 Hz
ω1 = 949 rad/s = 151 Hz

Φ =

⎡
⎢⎣

√
2

2

−
√

2

2√
2

2

√
2

2

⎤
⎥⎦ .
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The transformation matrix Ψ is

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0

2

3

√
2

2

−
√

2

2

1

3

√
2

2

√
2

2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The transformed matrices are then

M∗ = m0

⎡
⎣ 1.556 0.7071 −0.2357

0.7071 1 0
−0.2357 0 1

⎤
⎦ ,

K∗= k0

⎡
⎣ 0.3333 0 0

0 1 0
0 0 3

⎤
⎦ ,

C∗ = c0

⎡
⎣ 0.3333 0 0

0 1 0
0 0 3

⎤
⎦ , f∗ = h (iωc0 + k0)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

3
−
√

2

2√
2

2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

If a model with three degrees of freedom is required, just one of the internal modes
of the tire is needed. The third row and column of the transformed matrices may then
be cancelled and the tire can be assembled to the quarter car model, obtaining⎡

⎣ ms 0 0
0 mu + 1.556m0 0.7071m0

0 0.7071m0 m0

⎤
⎦
⎧⎨
⎩

z̈s

z̈u

η̈

⎫⎬
⎭+

+

⎡
⎢⎣

c −c 0
−c c + 0.3333c0 0
0 0 c0

⎤
⎥⎦
⎧⎪⎨
⎪⎩

żs

żu

η̇

⎫⎪⎬
⎪⎭+

+

⎡
⎣ K −K 0

−K K + 0.3333k0 0
0 0 k0

⎤
⎦
⎧⎨
⎩

zs

zu

η

⎫⎬
⎭ = h (iωc0 + k0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
1

3
−
√

2

2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The values of the natural frequencies are⎧⎨
⎩

ω1 = 8.93 rad/s = 1.42 Hz
ω2 = 72.97 rad/s = 11.61 Hz
ω3 = 553.74 rad/s = 88.13 Hz .

The dynamic compliance H(ω) and the inertance ω2H are reported in Fig. 26.23

together with the power spectral density of the acceleration of the sprung mass.
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The r.m.s. value of the acceleration is

arms = 1.36 m/s2 = 0.14 g.

The inertia of the tire has no major effect on the results, except in a narrow

frequency range about its natural frequency, where a small peak can be seen in the

frequency responses. The r.m.s. value of the acceleration is slightly higher and, because

of the presence of high frequency components, an auxiliary suspension may be useful.

Because of the approximate tire model here used, this example is simply an indication

of how the component modes synthesis approach can be used.

26.4.7 Effect of the suspension kinematics

In the previous cases the motion of the unsprung mass is only a vertical trans-
lation, as if the suspension kinematism were a prismatic guide with axis parallel
to the body-fixed z-axis. This model for an independent suspension is, however,
quite rough, because no actual suspension is made with a prismatic guide. Each
type of suspension has its own kinematics, or better elasto-kinematics because
the various linkages are rigid only as a first approximation.

Usually the deviations of the trajectory of the unsprung mass from a straight
line parallel to the z-axis are considered shortcomings of the guiding kinematic
arrangement, as if straight motion were the ideal situation. But it is actually
advisable, on the contrary, that when the wheel gets a shock in the horizontal
direction the suspension allows it to move backwards, reducing the excitation in
the x-direction transferred to the vehicle body. Moreover, as seen in Part I and
in a later section, only by accepting that the wheel does not move exactly in the
z-direction is it possible to counteract the dive effects that occur when braking,
and the lift (or squat) effects found when driving.

The first of these effects, the ability to absorb horizontal shocks, may be
obtained in two ways: by using a kinematic arrangement to produce a suitable
trajectory, as in the case of trailing arms (note that the opposite arrangements,
which could be defined as leading arms, cause a forward displacement of the wheel
when the latter moves upwards and for this reason are seldom used today); or
by giving a suitable horizontal compliance to the suspension.

In the first case, it is still possible to use the quarter car model, while in
the second the model must include a further degree of freedom for each wheel,
namely horizontal displacement.

While a knowledge of the exact elasto-kinematics of the suspension is es-
sential for stating the position of the wheel with respect to the ground and thus
for assessing contact forces, its actual effect on the inertia forces acting on the
elements of the suspension and on the forces due to the spring and the shock
absorber is limited. Thus it is possible to neglect the compliance of the guiding
elements and proceed to a first approximation study related to comfort by using
models based on the quarter car approach.
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FIGURE 26.24. Quarter car model with two degrees of freedom. The dashed lines are
the trajectories of points G, A and M in the xz plane (functions fG, fA and fM)

It is possible to define the trajectories of points G, M and A (Fig. 26.24),
i.e. of the center of mass of the unsprung mass and the attachment points of the
spring and of the shock absorber in a reference frame x1y1z1 fixed to the sprung
mass. The trajectory of a generic point P of the unsprung mass is

{
f1P (x1, y1, z1) = 0
f2P (x1, y1, z1) = 0 .

(26.43)

The motion of the unsprung mass occurs mostly in the z1 direction, and
thus it is expedient to transform Equations (26.43) by solving them in x1 and y1.
The coordinates of point P are then linked to each other by the relationships

{
x1P = fP (z1P)
y1P = gP (z1P) .

(26.44)

Using geometrical considerations it is possible to obtain a third equation
expressing coordinate z1P of point P as a function of the coordinate z1G of the
center of mass of the unsprung mass

z1P = hP (z1G) . (26.45)

The inertial coordinate zu of the center of mass of the unsprung mass is

zu = zs + z1G . (26.46)

The kinematics of the suspension is then completely defined.
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To write a linearized equation of motion for studying small oscillations about
a reference position (for instance, that of static equilibrium), the equations ex-
pressing the trajectory of the generic point P may be linearized as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1P = x1P0 +
(

dfP
dz1P

)
0
z1P

y1P = y1P0 +
(

dgP
dz1P

)
0
z1P

z1P = z1P0 +
(

dhP
dz1G

)
0
z1G ,

(26.47)

that is ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1P = x1P0 +
(

dfP
dz1P

)
0
z1P0 +

(
dfP

dz1P

)
0

(
dhP
dz1G

)
0
z1G

y1P = y1P0 +
(

dgP
dz1P

)
0
z1P0 +

(
dgP
dz1P

)
0

(
dhP
dz1G

)
0
z1G

z1P = z1P0 +
(

dhP
dz1G

)
0
z1G .

(26.48)

The velocity of point P can be expressed in x1y1z1 reference frame as

VP =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
dfP

dz1P

)
0

(
dhP
dz1G

)
0
ż1G(

dgP
dz1P

)
0

(
dhP
dz1G

)
0
ż1G(

dhP
dz1G

)
0
ż1G

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (26.49)

where
ż1G = żu − żs . (26.50)

In the case of point G, function hG and its derivative are

hG (z1G) = z1G ,
dhG

dz1G

= 1 (26.51)

and thus the velocity of the unsprung mass is

VG =

⎧⎪⎪⎨
⎪⎪⎩

(
dfG

dz1G

)
0
(żu − żs)(

dgG
dz1G

)
0
(żu − żs)

żu

⎫⎪⎪⎬
⎪⎪⎭

. (26.52)

The translational kinetic energy of the quarter car with two degrees of free-
dom is then

T =
1
2
msż

2
s +

1
2
muż2

u +
1
2
mu

[(
dfG

dz1G

)2

+
(

dgG

dz1G

)2
]

(żu − żs)
2 , (26.53)

i.e.:

T =
1
2

(ms + muβ) ż2
s +

1
2
mu (1 + β) ż2

u + muβżużs , (26.54)
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where β is a constant whose value is

β =
(

dfG

dz1G

)2

0

+
(

dgG

dz1G

)2

0

. (26.55)

The mass matrix can be immediately obtained from the kinetic energy

M =
[

ms + muβ muβ
muβ mu (1 + β)

]
. (26.56)

Distance MM’ must be computed to obtain the potential energy of the
spring. The coordinates of point M’ are constant in the x1y1z1 frame. They can
be written as x0M’ , y0M’ , z0M’ . The potential energy of the spring is then

U =
1
2
K

[
(xM − xM’)

2 + (yM − yM’)
2 + (zM − zM’)

2
]

, (26.57)

where the system has been assumed to behave linearly about its static equilib-
rium position. Only the quadratic terms of the potential energy enter the stiffness
matrix. The linear terms actually produce constant terms (generalized forces) in
the equation of motion that do not affect the dynamic behavior about the equi-
librium position, and these constant terms are arbitrary. Taking into account
only the quadratic terms, the potential energy reduces to

U =
1
2
Kγz2

1G
=

1
2
Kγ (zu − zs) , (26.58)

where

γ =
(

dhM

dz1G

)2

0

[
1 +

(
dfM

dz1M

)2

0

+
(

dgM

dz1M

)2

0

]
. (26.59)

Taking into account also the deformation potential energy of the tire

UP =
1
2
Pz2

u

(after neglecting constant and linear terms), the stiffness matrix of the system is

K =
[

Kγ −Kγ
−Kγ Kγ + P

]
. (26.60)

By substituting subscript M with subscript A, Eq. (26.49) yields directly
the relative velocity of point A with respect to the sprung mass, i.e. to point A’.
However, what matters for the computation of the forces due to the shock ab-
sorber is not the relative velocity but only its component in the direction AA’.
Distance AA’ is:

AA
′
=

√
(xA − xA’)

2 + (yA − yA’)
2 + (zA − zA’)

2 . (26.61)
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The Raleigh dissipation function of the shock absorber is then

F =
1
2
c

(
dAA

′

dt

)2

. (26.62)

The dissipation function can be simplified by linearizing it about the equi-
librium position, as

F =
1
2
cδ (żu − żs)

2 , (26.63)

where

δ =
(

dhA

dz1G

)2

0

[
(xA0 − xA0’)

(
dfA

dz1A

)
0

+ (yA0 − yA0’)
(

dgA
dz1A

)
0

+ (zA0 − zA0’)
]2

(xA0 − xA0’)
2 + (yA0 − yA0’)

2 + (zA0 − zA0’)
2 ,

(26.64)

By also inserting the term due to the damping of the tire into the expression
of the dissipation function, the damping matrix of the system is obtained

C =
[

cδ −cδ
−cδ cδ + cP

]
. (26.65)

As far as the elastic and damping terms are concerned, the linearized equa-
tion of motion is still Eq. (26.22), except for the values of the stiffness of the spring
or the damping coefficient of the shock absorber which are ‘reduced’ through co-
efficients γ and δ. The mass matrix is, on the other hand, different, because it is
not diagonal. An inertial coupling proportional to the value of the unsprung mass
is then present. It will cause a larger motion of the sprung mass at frequency
ranges typical of the motion of the unsprung mass.

In any case, the quarter car model assumes that the sprung mass moves
along the z direction, an approximation that is increasingly unrealistic with
increasing coupling of horizontal and vertical motion of the unsprung mass due
to the kinematics of the suspension. In particular, a motion of the sprung mass
in the x direction due to a motion in the z direction may be detrimental to
comfort, and cannot be studied using such simple models.

Example 26.6 Consider the quarter car with two degrees of freedom shown in Fig.

26.25. The trailing arm suspension is hinged about an axis parallel to y-axis of the

vehicle. The data are: sprung mass ms= 250 kg; unsprung mass mu = 25 kg; stiffness

of the spring K= 700 kN/m; damping coefficient c = 19.35 kNs/m; Data of the tire:

P = 100 kN/m; cP = 0. Geometrical data: l = 500 mm, lA = 300 mm, lM = 100 mm;

position of C:
[

200 0 −300
]T

mm; position of M’:
[
−200 0 −360

]T
mm;

position of A’:
[

200 0 0
]T

mm.
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FIGURE 26.25. Trailing arm quarter car: geometrical definitions

The functions f1 and f2 defining the trajectory of a point P of the suspension are

{
(x1 − x0)

2 + (z1 − z0)
2 − l2P = 0

y1 − y0 = 0 ,

where x0, y0 and z0 are the coordinates of point C. The corresponding functions fP and
gP are {

fP = x0 ±
√

lP2 − (z1P − z0)
2

gP = y0 .

The double sign does not give problems, because it is determined by the geometry of

the system: Sign (+) must be used if point P is forward of the axis of the hinge. Because

the suspension lies in a plane parallel to the xz plane, coordinate y of all points can be

assumed as zero (y0 = 0).
The derivative

(
df
dz

)
0

is then

(
dfP

dz1P

)
0

=

⎛
⎝ − (z1P − z0)√

l2P − (z1P − z0)
2

⎞
⎠

0

The static equilibrium position is defined by

{
x1G0 = x0 + l cos (θ0) = 633 mm
z1G0 = z0 − l sin (θ0) = −550 mm

and thus (
dfG

dz1G

)
0

= 0.577 , β = 0.333 .

The mass matrix is then

M =

[
258, 33 8, 33
8, 33 33, 33

]
.
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By remembering that triangles CMH’ are CGH similar, the coordinate z1 of point
M is obtained:

z1M = z0 −
lM
l

√
l2 − (z1G − z0)

2

and then (
dhM

dz1G

)
0

= − lM
l

⎛
⎝ (z1G − z0)√

l2 − (z1G − z0)
2

⎞
⎠

0

.

Thus it follows that(
dfM

dz1P

)
0

= 1.732 ,

(
dhM

dz1G

)
0

= 0.116 , γ = 0.0364 .

The coordinate of point A is obtained in a similar way

z1A = z0 +
lA
l

(z1G − z0)

and thus (
dhA

dz1G

)
0

=
lA
l

= 0.6 .

Finally, it follows that(
dfM

dz1G

)
0

= 0.577 , δ = 0.111 .

Note that the values of K and c were chosen in such a way that the reduced values

Kγ and cδ were practically identical to those of example 26.3.

The dynamic compliance H(ω) and the inertance ω2H are plotted in Fig. 26.26

together with the power spectral density of the acceleration of the sprung mass.

FIGURE 26.26. Dynamic compliance and inertance of the trailing arm quarter car
model. Power spectral density of the acceleration due to motion on a road at a speed
of 30 m/s
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The r.m.s. value of the acceleration is

arms = 1.34 m/s2 = 0.14 g.

By comparing the plot with that obtained for the simple two degrees of freedom

quarter car model, it will be noted that the peak of the response is higher, and also that

the response is in general higher at frequencies close to the resonances of both sprung

and unsprung masses. At higher frequencies the response is lower, primarily because the

inertia is in some way increased by the coupling of longitudinal and vertical motion,

causing the suspension to behave as if it were softer. The reduction of the r.m.s. value

of the acceleration is, however, minimal.

26.5 HEAVE AND PITCH MOTION

26.5.1 Simplified models with rigid tires

The heave motion of the vehicle is strictly coupled with pitch motion. The sim-
plest model for studying the heave-pitch coupling is shown in Fig. 26.27a. Its
equation of motion is that of a beam on two elastic and damped supports

[
mS 0
0 Jy

]{
Z̈s

θ̈

}
+

[
c1 + c2 −ac1 + bc2

−ac1 + bc2 a2c1 + b2c2

]{
Żs

θ̇

}
+

+

[
K1 + K2 −aK1 + bK2

−aK1 + bK2 a2K1 + b2K2

]{
Zs

θ

}
=

=

{
c1ḣA + c2ḣB + K1hA + K2hB

−ac1ḣA + bc2ḣB − aK1hA + bK2hB

}
.

(26.66)

The overturning moment due to weight (term −mSgh to be added in
position 22 in the stiffness matrix) is not included in Eq. (26.66), because no
assumption has been made on the height of the pitch center over the road plane.
Nor is any aerodynamic term is introduced into the equation of motion. The
longitudinal position of the springs and the shock absorbers has been assumed
to be the same.

The forcing functions were written in a form that considers only the vertical
motion of points A and B, neglecting horizontal forces at the ground-wheels
interface and the possible coupling between vertical and horizontal motions due
to suspensions.

If mass ms and moment of inertia Jy are those of the whole sprung mass,
the stiffnesses Ki and the damping coefficients ci are those of a whole axle and
are then twice those of a single spring or shock absorber.

The compliance of the tires was neglected in the beam model shown in Fig.
26.27a. It may thus be considered an evolution of the quarter car with a single
degree of freedom. In some cases it can be reduced to a pair of quarter cars,
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FIGURE 26.27. Beam models for heave and pitch motions

as shown in Fig. 26.27b. To compare the two models, it is possible to use the
coordinates ZA and ZB instead of Zs and θ to describe the motion of the beam.
The coordinate transformation may be expressed as:

{
Zs

θ

}
=

1
l

[
b a
−1 1

]{
ZA

ZB

}
. (26.67)

The mass matrix to be included in the equation of motion when using the
new coordinates is

M′ = TT MT,

where T is the transformation matrix defined by Eq. (26.67). All other matrices
can be obtained in the same way. Eq. (26.66) then becomes

mS

l2

[
b2 + r2

y ab − r2
y

ab − r2
y a2 + r2

y

]{
Z̈A

Z̈B

}
+

[
c1 0
0 c2

]{
ŻA

ŻB

}
+

+

[
K1 0
0 K2

]{
ZA

ZB

}
=

{
c1ḣA + K1hA

c2ḣB + K2hB

}
,

(26.68)

where ry is the radius of gyration of the sprung mass about the y-axis.
A dynamic index Id of the sprung mass can thus be defined as

Id =
r2
y

ab
. (26.69)

If Id is equal to unity, i.e. if

Jy = mSab ,

that is
r2
y = ab ,
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the two equations uncouple from each other, yielding the two equations of motion
of two separate quarter cars with sprung masses

mS
b

l
and mS

a

l
,

and the model of Fig. 26.27a reduces to that of Fig. 26.27b.
This condition is usually not verified in practice. The tendency to increase

the wheelbase for stability reasons leads to values of the dynamic index usually
smaller than 1, even smaller than 0.8.

The natural frequencies of the undamped system may be computed using
the homogeneous equation associated with Eq. (26.66) or (26.68), after cancelling
the damping term. If the solution

{
ZA

ZB

}
=

{
ZA0

ZB0

}
eiωt , (26.70)

is introduced in the second of the mentioned equations, the characteristic
equation

det
[
−ω2 mS

l2

[
b2 + r2

y ab − r2
y

ab − r2
y a2 + r2

y

]
+

[
K1 0
0 K2

]]
= 0 (26.71)

is obtained.
The natural frequencies are then the roots of equation

ω4 − ω2
K1(r2

y + a2) + K2(r2
y + b2)

mSr2
y

+ K1K2
l2

m2
Sr2

y

= 0 , (26.72)

that yields

ωi =

√(
b2 + r2

y

)
K2 +

(
a2 + r2

y

)
K1 ± Δ

ry

√
2mS

, (26.73)

where

Δ =
√(

b2 + r2
y

)2
K2

2 + 2K1K2

[(
ab − r2

y

)2 − r2
yl2

]
+

(
a2 + r2

y

)2
K1

2 .

The corresponding eigenvectors are

qi =

⎧⎨
⎩

(
b2 + r2

y

)
K2 −

(
a2 + r2

y

)
K1∓Δ

2K1

(
ab − r2

y

)
1

⎫⎬
⎭ .

The solution with (+) sign yields two positive values, that generally are
not equal to each other. The motion of the beam is neither a rotation about its
center of mass (pitch) nor a translational motion in the z direction (heave), but
the very fact that the displacements at the front and rear axles have the same
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FIGURE 26.28. Heave and pitching motions. (a) and (b): General case; primarily heave
(a) and primarily pitching (b) motions. (c) and (d): Case with Id = 1. (e) and (f): Case
with aK1 = bK2.

sign means that the node (the point with zero displacement) lies outside of the
wheelbase, and thus the motion is primarily translational (heave, Fig. 26.28a).
The solution with (−) sign (Fig. 26.28b) yields a positive and a negative value:
the displacements of the front and rear axles are one positive and one negative
and the node is within the wheelbase. The motion is primarily rotational, even
if not about the center of mass, and it is primarily a pitching motion.

If the dynamic index Id has a unit value (Fig. 26.28c e d), it follows that

Δ =
(
b2 + r2

y

)
K2 −

(
a2 + r2

y

)
K1 = l (bK2 − aK1)

and then

ω1 =
√

lK2

amS
, ω2 =

√
lK1

bmS
. (26.74)

As previously stated, the natural frequencies in this case are those of the
two separate quarter cars of Fig. 26.27b. The corresponding eigenvectors are

q1 =
{

0
1

}
, q2 =

{
1
0

}
,

and the free oscillations of the sprung mass are rotations about the points where
the suspensions are connected to the body. It is impossible to identify a heave
and a pitch mode; it is more accurate to speak about a front-axle and a rear-axle
mode. The limiting case is where the node internal to the wheelbase and that
external to it tend to the ends of the wheelbase.
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The other limiting case (Fig. 26.28e and f) is when

aK1 = bK2 . (26.75)

From Eq. (26.66) without damping terms it is clear that the two equations
of motion uncouple: the heave motion uncouples from the pitch motion. The
first is translational, while the second is rotational and occurs about the center
of mass. The natural frequencies are then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω1 =
√

lK1

bmS
bounce,

ω2 =

√
laK1

r2
ymS

= ω1

√
ab

r2
y

pitch.
(26.76)

The two limiting cases may also occur simultaneously. From Eq. (26.76) it
follows that when this is the case the two natural frequencies have the same
value.

Remark 26.9 This solves an apparent inconsistency; if

aK1 = bK2 ,

the centers of rotation are one in the centre of mass (pitch mode) and one at
infinity (heave mode), while when the dynamic index has an unit value they
are at the end of the wheelbase. When both conditions occur simultaneously,
the two natural frequencies coincide; in this case, any linear combination of the
eigenvectors is itself an eigenvector. Thus in the case of a rigid beam, any point
of the beam (or better, of the straight line constituting the beam axis) may be
considered as a center of rotation.

Example 26.7 Consider a vehicle having the following characteristic: sprung mass

ms = 1,080 kg; pitching moment of inertia Jy = 1,480 kg m2; stiffness of the suspen-

sions (referred to the axles) K1 = 45 kN/m; K2 = 38 kN/m; a = 1.064 m; b = 1.596

m, ( l = 2.66 m). Study the pitching oscillations of the vehicle, using a beam model.
The pitching radius of gyration and the dynamic index are

ry =

√
Jy

m
= 1.17 m , Id =

r2
y

ab
= 0.807 . (26.77)

The sprung mass may be subdivided into two masses, one at the front axle and one
at the rear

m1 =
bms

l
= 648 kg , m2 =

ams

l
= 432 kg . (26.78)

The two natural frequencies of the independent quarter car models are

ω1 = 1.33 Hz , ω2 = 1.49 Hz . (26.79)
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Because the dynamic index is different from 1, the approximation so obtained is
a rough one. By solving the characteristic equation, the correct natural frequencies are
obtained

ω1 = 1.36 Hz , ω2 = 1.62 Hz . (26.80)

The corresponding eigenvectors, normalized so that the largest element has a unit value,
are

q1 =

{
1

−0.32

}
, q2 =

{
0.44
1

}
,

The node of the first mode lies within the wheelbase and, because it is 2,015 m

from the front axle, is behind the center of mass. This is essentially a pitching mode.

The node of the second mode, a heave mode, is in front of the vehicle, 2,09 m from the

front axle.

26.5.2 Pitch center

No guiding linkage is considered in the model of Fig. 26.27a, but it is implicitly
assumed that the connection points of the suspension to the body may move
only in a vertical direction. The wheelbase of the vehicle is then not affected
either by bounce or pitch motion. Moreover, it is assumed that the inertia of the
unsprung masses does not affect the motion of the body.

It is, in any caser, possible to find a point along the x-axis such that a vertical
force applied to it produces a vertical motion but no pitching. This point is the
pitch center.

To define the position of the pitch center, a static force F can be applied to
the body in a vertical direction at in a point on the x-axis at a generic distance
d from the center of mass. Equation (26.66) becomes

[
K1 + K2 −aK1 + bK2

−aK1 + bK2 a2K1 + b2K2

]{
Zs

θ

}
= F

{
1
d

}
. (26.81)

Solving for the pitch angle θ, it follows that

θ =
aK1 − bK2 − d (K1 + K2)

K1K2l2
. (26.82)

Equating the numerator to zero, it follows that if

d =
aK1 − bK2

K1 + K2
(26.83)

angle θ vanishes. This value of d is the distance in the x direction of the pitch
center from the center of mass; it is positive if the pitch center is forward of the
mass center. In the majority of cases, d is positive. If Eq. (26.75) holds, d = 0
and the mass center is above or below the mass center.

The presence of kinematic guides for suspensions does not change things:
Eq. (26.66) still holds, even if the meaning of the terms may vary. Consider, for
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FIGURE 26.29. Vehicle with longitudinal swing arm suspensions. a): sketch of the
system; b) position during bounce and pitch motion

instance, a vehicle with longitudinal swing arm suspensions and springs located
below the floor. Linearize the equations of motion about a reference position
(Fig. 26.29).

Assume that the suspended mass moves vertically by a distance Δz and
rotates in pitch by an angle θ. Points A and B move vertically by

{
ΔzA = Δz − cθ
ΔzB = Δz + dθ . (26.84)

By linearizing the system about the horizontal position, rotations φi of the
two swing arms are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δφ1 =
ΔzA

a − c
ΔxA =

Δz − cθ

a − c

Δφ2 = − ΔzB

b − d
ΔxA = −Δz + dθ

b − d
.

(26.85)

The springs stretch by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δl1 = −Δφ1h = −h
Δz − cθ

a − c

Δl2 = Δφ2h = −h
Δz + dθ

b − d
.

(26.86)
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The change in elastic potential energy is then

ΔU = 1
2K1Δl21 + 1

2K2Δl22 =

=
1
2
K1

(
h

Δx − cθ

a − c

)2

+
1
2
K2

(
h

Δx + dθ

b − d

)2

.
(26.87)

By differentiating the potential energy with respect to the generalized dis-
placements, the following relationships linking the vertical force and the pitching
moment applied to the vehicle body with the generalized displacements emerge

{
Fz

My

}
=

[
K∗

1 + K∗
2 −cK∗

1 + dK∗
2

−cK∗
1 + dK∗

2 c2K∗
1 + d2K∗

2

]{
Δzs

θ

}
, (26.88)

where:

K∗
1 = K1

(
h

a − c

)2

, K∗
2 =

(
h

b − d

)2

.

As clearly seen, the structure of the stiffness matrix is identical to the general
case, even if it includes terms that are typical of the particular type of suspension.
The damping matrix may be obtained along the same lines.

The suspension type also affects the mass matrix to be introduced into
Eq. (26.66), because heave and pitch motions also cause some movements of
the unsprung masses, causing their inertial parameters to enter the mass matrix
as well.

The height of the pitch center becomes important when the wheels exert lon-
gitudinal forces, because the coupling between driving (or braking) and pitching
depend on it. The antidive and antilift (or antisquat) characteristics of the sus-
pensions also depend on the height of the pitch center.

If the wheels do not exert longitudinal forces, the pitch center is assumed to
lie roughly at the height of the centers of the wheels, which amounts to assuming
that the wheels travel at constant speed even when the body oscillates in heave
or pitch11.

26.5.3 Empirical rules for the design of suspensions

As already stated, the bounce and pitch dynamics of the suspended mass are
strictly related to each other. Some empirical criteria for the choice of the relevant
parameters are here reported: They date back to the 1930s and were introduced
by Maurice Olley12.

• The vertical stiffness of the front suspension must be about 30% lower than
that of the rear suspension;

11Milliken W.F., Milliken D.L., Chassis Design, Professional Engineering Publishing, Bury
St. Edmunds, 2002.

12T.D. Gillespie, Fundamentals of vehicle dynamics, SAE, Warrendale, 1992.
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• The pitch and bounce frequencies must be close to each other; the bounce
frequency should be less than 1.2 times the pitch frequency;

• Neither frequency should be greater than 1.3 Hz;

• The roll frequency should be approximately equal to the bounce and pitch
frequency.

The first rule states that the natural frequency of the rear suspension is
higher than that of the front, at least if the weight distribution is not such that
the rear wheels are far more loaded than those in front . The importance of
having a lower natural frequency for the front suspension may be explained by
observing that any road input reaches the front suspension first and then, only
after a certain time, the rear one. If the natural frequency of the latter is higher,
when the vehicle rides over a bump the rear part quickly “catches up” to the
motion of the front and, after the first oscillation, the body of the vehicle moves
in bounce rather than pitch, a favorable factor for ride comfort. Then the rear
part of the vehicle should lead the motion, but by that time damping has caused
the amplitude to decrease.

The second rule is easily fulfilled in modern cars. The problem here may be
that of having the pitch frequency much higher than the bounce one, and higher
than 1.3 Hz (third rule), as may happen when the dynamic index is smaller than
unity (vehicle with long wheelbase and small front/rear overhang). Generally
speaking, a dynamic index close to unity is considered a desirable condition for
good ride properties, while a complete bounce-ride uncoupling as occurs when
aK1 = bK2 is considered a nuisance. Coupling between bounce and pitching is
good as it tends to avoid strong pitch oscillations.

The fourth rule has nothing to do with pitch motion, and will be discussed
later.

Example 26.8 Check whether the vehicle studied in the previous example complies

with the criteria defined by Olley. Study the response of the vehicle when crossing a road

irregularity at a speed of 100 km/h = 27.8 m/s by using an impulsive model, assuming

that the impulse given by the irregularity first to the front axle and then to the rear axle

has a unit value.

To study the motion of the body after crossing the irregularity, assume that both

suspensions are damped with a damping coefficient equal to the optimum value computed

using a quarter car model with a single degree of freedom.

The natural frequencies of the suspensions, computed using the model with two

independent quarter cars, are 1.33 (front axle) and 1.49 Hz (rear axle). The second

is higher than the first by about 12%. By considering that the natural frequencies are

proportional to the square root of the stiffness, this corresponds to a stiffness of the rear

axle 24% greater than that of the front, a value not much different from the suggested

30%.

Because the dynamic index has no unit value (Id = 0.807 ), the model made by

two quarter cars is not accurate. If the system is considered as a coupled system, the
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frequencies for bounce and pitch motions are 1,36 and 1,62 Hz, which does not coincide

with those previously computed (the first is not much different, while the second is

greater by about 8%). The first is smaller than 1.2 times the second (actually smaller

than that) and the frequencies are relatively similar. However, the natural frequency in

pitch is greater than 1,3 Hz, and is higher than what has been suggested, even if not by

much.
The values of the damping of the shock absorbers, computed using the quarter car

model with a single degree of freedom, are

c1 =

√
K1m1

2
= 3,820 Ns/m , c2 =

√
K2m2

2
= 2,865 Ns/m . (26.89)

The delay between the instant the front axle is excited and that when the rear axle
is on the irregularity is, at 100 km/h,

τ =
l

V
= 0.096 s . (26.90)

To compute the response of the model made by two independent quarter car models
to a unit impulse, it is enough to compute the free responses of the two systems with the
initial conditions due to the impulse. The front suspension will start with the following
initial conditions

(zA)0 = 0 , (żA)0 =
I

mA
for t = 0 . (26.91)

In the same way, the initial conditions for the rear suspension are

(zB)0 = 0 , (żB)0 =
I

mB
for t = τ . (26.92)

The result is reported in Fig. 26.30a in terms of time histories. The vertical dis-

placement at the center of mass and the pitch angle may be computed through Eq.

(26.67) from the displacements of the points where the suspensions are attached. The

result is plotted in Fig. 26.30b, dashed curves. Because the natural frequency of the rear

axle is greater than that of the front axle, the two masses move synchronously after a

single oscillation is completed: pitch motions extinguish faster than bounce.

To avoid the approximations due to the model with two independent quarter cars, it

is possible to numerically integrate the system’s equations of free motion (homogeneous

equation associated to Eq. (26.66)) in two distinct intervals of time, between t = 0 and

t = τ and after t = τ . In the first interval the initial conditions are those following the

first impulse.

{
zG

θ

}
0

=
{

0
0

}
,

{
żG

θ̇

}
0

=

{ I
m

−aI
J

}
for t = τ . (26.93)
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FIGURE 26.30. Bounce and pitch response for a vehicle crossing an obstacle with the
front and the the rear axle at 100 km/h. The obstacle causes a unit vertical impulse.
Displacements of points A and B (a) and of the center of mass and rotation (b) com-
puted using the simplified (Fig. 26.27b) and complete (Fig. 26.27a) model

For the second interval, that following the second impulse, the initial conditions are

{
zG

θ

}
0

=

{
zG

θ

}
1

,

{
żG

θ̇

}
0

=

{
żG

θ̇

}
1

+

⎧⎨
⎩

I
m

bI
J

⎫⎬
⎭ for t = τ , (26.94)

where subscript 1 designates the condition at the end of the first part of the integration,

just before receiving the second impulse. The result is shown in Fig. 26.30b, full lines.

The errors due to the model made by two independent quarter cars are small, even if

the dynamic index is smaller than one.

26.5.4 Frequency response of the model with two degrees
of freedom

If, when using the quarter car model road, roughness excites only bounce mo-
tions, in a complete vehicle it excites both bounce and pitching motions, as
already seen. Neglecting roll, it is possible to use a model of the type seen in
Fig. 26.27a, assuming that laws hA (t) and hB (t) are identical, except for the
fact that the second is delayed with respect to the first by time

τ =
l

V
, (26.95)

needed to travel a distance equal to the wheelbase. To compute the frequency
response of the vehicle, the forcing functions to be introduced into equation
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(26.68) are then
{

hA = ho sin(ωt)
hB = ho sin[ω(t + τ)] = ho[sin(ωt) cos(ωτ) + cos(ωt) sin(ωτ)] .

(26.96)

Term ωτ is proportional to the ratio between the wheelbase l of the vehicle
and the wavelength of road irregularities λ. The frequency ω related to space
instead of time is linked with the wavelength by the relationship

λ =
2π

ω
(26.97)

and to the frequency related to time by the relationship

ω =
ω

V
. (26.98)

It follows then
ωτ =

ωl

V
= 2π

l

λ
. (26.99)

At low frequency, the excitation at the two axles occurs almost in phase,
with the result that pitch motions are little excited. In a similar way, if l is a
whole multiple of the wavelength λ (the wavelength is equal to the wheelbase
or to one of its whole sub-multiples), ωτ is a whole multiple of 2π and then
cos(ωτ) = 1 and sin(ωτ) = 0. The two axles are excited in phase: if the equations
of motion were uncoupled and the center of mass were at mid-wheelbase, only
bounce motion would be excited and no pitching would occur. Although this is
not exactly true due to coupling, the result is that the vehicle pitches much less
than it bounces.

If, on the contrary, l is an odd multiple of λ/2 (the wavelength of the irreg-
ularities is twice the wheelbase or is a whole multiple of twice the wheelbase), it
follows that cos(ωτ) = −1 and sin(ωτ) = 0, and the two axles are excited with
180◦ phasing. In this case, if the center of mass were at mid-wheelbase and the
system uncoupled, no bouncing would occur and the vehicle would only pitch.
This consideration holds qualitatively for actual cases.

This phenomenon, usually referred to as wheelbase filtering, introduces a
dependence between the response of the system and speed. If, for instance, the
wheelbase is 2 m and the speed is 20 m/s, the delay τ is 0,1 s. The maximum
pitch response, with a very low bounce, occurs when the irregularities have a
wavelength equal to twice the wheelbase or one of the odd submultiples of twice
the wheelbase, that is 4, 4/3, 4/5, . . . m. At 20 m/s, the corresponding frequencies
at which bounce motions are minimal are 5, 15, 25, . . . Hz. In the same way,
the maximum bounce motions with little pitching occur at wavelengths equal
to the wheelbase and its whole submultiples, 2, 1, 0,5, . . . m. At a speed of 20
m/s, the corresponding frequencies are 10, 20, 30, . . . Hz. Moreover, little pitch
excitation occurs at very low frequency, as already stated, and as a consequence
pitch excitation is minimal in highway driving.
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The situation may be different for industrial vehicles owing to the larger
wheelbase and lower speed coupled with high spring stiffness: wheelbase filtering
may lead to strong pitch response, accompanied by low bounce. The effect is fur-
ther worsened by the fact that in tall vehicles pitch excitation causes longitudinal
oscillation in points above the center of mass that may prove quite inconvenient.

In general, the expression of the excitation vector is

h0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
K1 + K2 cos(ωτ) − c2ω sin(ωτ)

]
sin(ωt)+

+
[
c1ω + c2ω cos(ωτ) + K2 sin(ωτ)

]
cos(ωt)[

− aK1 + bK2 cos(ωτ) − bc2ω sin(ωτ)
]

sin(ωt)+

+
[
− ac1ω + bc2ω cos(ωτ) + bK2 sin(ωτ)

]
cos(ωt)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (26.100)

The equation of motion (26.66) for vertical and pitch oscillations can then be
written as[

mS 0
0 Jy

]{
Z̈s

θ̈

}
+

[
c1 + c2 −ac1 + bc2

−ac1 + bc2 a2c1 + b2c2

]{
Żs

θ̇

}
+

+

[
K1 + K2 −aK1 + bK2

−aK1 + bK2 a2K1 + b2K2

]{
Zs

θ

}
=

= h0

{
f1(ωτ) sin(ωt) + g1(ωτ) cos(ωt)
f2(ωτ) sin(ωt) + g2(ωτ) cos(ωt)

}
,

(26.101)

where:
f1(ωτ) = K1 + K2 cos(ωτ) − c2ω sin(ωτ) ,
f2(ωτ) = −aK1 + bK2 cos(ωτ) − bc2ω sin(ωτ) ,
g1(ωτ) = c1ω + c2ω cos(ωτ) + K2 sin(ωτ) ,
g2(ωτ) = −ac1ω + bc2ω cos(ωτ) + bK2 sin(ωτ) .

(26.102)

Functions fi(ωτ) and gi(ωτ) may be considered as filters that, applied to
the sine and cosine components of the excitation due to the road profile, yield the
bounce and pitch excitation. However, because of coupling between the equations
of motion, all terms of the excitation contribute to both bouncing and pitching.

To obtain a first approximation evaluation of the effect of wheelbase filtering,
assume that the equations of motion are uncoupled (aK1 = bK2 and bc2 = ac1)
and that the center of mass is at mid wheelbase (a = b). To comply with both
these conditions the front and rear suspensions must have the same elastic and
damping characteristics (K1 = K2 and c2 = c1).

The two equations of motion uncouple, reducing to

mSZ̈s + 2c1Żs + 2K1Zs = h0 [f1(ωτ) sin(ωt) + g1(ωτ) cos(ωt)] , (26.103)

where
f1(ωτ) = K1 [1 + cos(ωτ)] − c1ω sin(ωτ) ,
g1(ωτ) = c1ω [1 + cos(ωτ)] + K1 sin(ωτ) ,

(26.104)
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for vertical motions, and

Jy θ̈ + 2a2c1θ̇ + 2a2K1θ = h0 [f2(ωτ) sin(ωt) + g2(ωτ) cos(ωt)] , (26.105)

where
f2(ωτ) = aK1 [−1 + cos(ωτ)] − ac1ω sin(ωτ) ,
g2(ωτ) = ac1ω [−1 + cos(ωτ)] + aK1 sin(ωτ) ,

(26.106)

for pitching motions.
If the phasing between bounce and pitch motion is not to be computed, it

is useless to obtain the sine and cosine components of the response separately:
what matters is solely its amplitude. The amplitude of the excitation for bouncing
motions is

h0

√
2 (K2

1 + c2
1ω

2)
√

1 + cos(ωτ) . (26.107)

The corresponding frequency response is then
∣∣∣∣Zs0

h0

∣∣∣∣ =

√
4 (K2

1 + c2
1ω

2)
(2K1 − mω2)2 + 4c2

1ω
2

√
1 + cos(ωτ)

2
. (26.108)

The first square root is nothing else than the amplification factor of a quarter
car with a single degree of freedom with mass m/2, stiffness K1 and damping c1.
The second term gives the wheelbase filtering effect for vertical motions. Function

√
1 + cos(ωτ)

2

is plotted in Fig. 26.31a versus the frequency, together with the frequency re-
sponse for the acceleration (inertance) of the quarter car model and their prod-
uct. The values of the speed and the wheelbase used to plot the figure are 30
m/s and 2.16 m respectively.

In a similar way, the amplitude of the excitation entering the second equa-
tion, that for pitching motions, is

h0

√
2a2 (K2

1 + c2
1ω

2)
√

1 − cos(ωτ) . (26.109)

The frequency response for pitch motion is
∣∣∣∣ θ0

h0

∣∣∣∣ =

√
4a2 (K2

1 + c2
1ω

2)
(2a2K1 − Jyω2)2 + 4a2c2

1ω
2

√
1 − cos(ωτ)

2
, (26.110)

that is, introducing the dynamic index Id,
∣∣∣∣ θ0

h0

∣∣∣∣ =

√
4 (K2

1 + c2
1ω

2)
(2K1 − mIdω2)2 + 4c2

1ω
2

√
1 − cos(ωτ)

2
. (26.111)

If the dynamic index has a unit value, the first square root coincides with
that seen for vertical motions, that is, it coincides with the amplification factor
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FIGURE 26.31. Wheelbase filtering. (a): Function
√

2[1 + cos(ωτ)] (dashed line), iner-
tance of the quarter car model (dotted line) and product of the two (full line); (b): Same
as in (a), but for function

√
2[1 − cos(ωτ)]. V = 30 m/s; l = 2.16 m.

of a quarter car with a single degree of freedom with mass m/2, stiffness K1 and
damping c1; reference must otherwise be made directly to the pitching oscillations
of the beam constituting the model of the vehicle. The second term yields the
wheelbase filtering effect for pitching motions. Function

√
1 − cos(ωτ)

2

is plotted in Fig. 26.31b versus the frequency, together with the inertance of the
quarter car and their product, using the same values of V and l, as in Fig. 26.31a.

Remark 26.10 The subjective feeling of riding comfort is also affected by the
position of the passengers; when they are close to the centre of mass, pitching
oscillations are slight, but they may be a nuisance in points located a greater
distance from it. Bounce - pitch coupling due to suspensions may severely reduce
riding comfort.

Example 26.9 Compute functions fi(ωτ) and gi(ωτ) for the vehicle of the previous

examples at a speed of 100 km/h = 27.8 m/s and plot the frequency responses for bounce

and pitch oscillations.

The computation will be performed initially using a first approximation model (un-

coupling between bounce and pitch and unit dynamic index), and then factoring in the

actual value of the parameters.

To uncouple the equations, the actual values of a and b are substituted by l/2
and those of K1, K2, c1 and c2 by the mean values of the stiffnesses and damping

coefficients. Morover, Jy is assumed to be equal to mab.

The results are plotted in Fig. 26.32a and b. As expected, at vanishing frequency

and when l is equal to a whole multiple of λ (ω = 0, ω = 10.44 Hz, ... ) the pitching
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FIGURE 26.32. Functions fi(ωτ) and gi(ωτ) and frequency responses for bounce and
pitch motions for the vehicle of the previous examples at 100 km/h. (a) and (b): sim-
plified uncoupled model. (c) and (d): actual value of the parameters

response vanishes and only bounce is present. If l is an odd multiple of λ/2 (ω = 5.22
Hz, ω = 15.66 Hz, ... ) the bounce response vanishes and only pitch is present.

The results obtained from the actual values of the parameters are shown in

Fig. 26.32c and d. As is clear from the figure, the results differ from those obtained

by uncoupling the equations, but the difference is not large. In particular, the bounce

response never vanishes, even if at about 5 and 15 Hz it becomes quite small.

It must be noted that the model with stiff tires used here should not be used for

frequencies higher than 4 − 6 Hz.

26.5.5 Effect of tire compliance

If the compliance of tires is accounted for, the model must contain also the
unsprung masses. The minimum number of degrees of freedom needed to study
bounce and pitch motions is four (Fig 26.33a). If the dynamic index has a unit
value, the model of Fig 26.33a may be substituted by that of Fig 26.33b.
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FIGURE 26.33. Beam models with 4 degrees of freedom for the study of pitch and
bounce motions taking into account the compliance of tires

Remembering that the excitation due to the vertical motion of points
A and B can be expressed by equations (26.96), the equation of motion can
be written in the form

⎡
⎢⎢⎣

mS 0 0 0
0 J∗

y 0 0
0 0 m1 0
0 0 0 m2

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Z̈s

θ̈

Z̈1

Z̈2

⎫⎪⎪⎬
⎪⎪⎭

+

+

⎡
⎢⎢⎣

c1 + c2 −ac1 + bc2 −c1 −c2

a2c1 + b2c2 ac1 −bc2

c1 + 2cp1 0
symm. c2 + 2cp2

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Żs

θ̇

Ż1

Ż2

⎫⎪⎪⎬
⎪⎪⎭

+

(26.112)

+

⎡
⎢⎢⎣

K1 + K2 −aK1 + bK2 −K1 −K2

a2K1 + b2K2 aK1 −bK2

K1 + 2P1 0
symm. K2 + 2P2

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Zs

θ
Z1

Z2

⎫⎪⎪⎬
⎪⎪⎭

=

= h0

⎧⎪⎪⎨
⎪⎪⎩

0
0

2P1 sin(ωt) + 2ωcp1 cos(ωt)
2f(ωτ) sin(ωt) + 2g(ωτ) cos(ωt)

⎫⎪⎪⎬
⎪⎪⎭

,

where m1 and m2 are the unsprung masses of the two axles.

f(ωτ) = P2 cos(ωτ) − cp2ω sin(ωτ) ,
g(ωτ) = cp2ω cos(ωτ) + P2 sin(ωτ) .

(26.113)

Example 26.10 Compute the frequency responses for bounce and pitch motion using

the model with 4 degrees of freedom. Compare the results with those obtained from the

model with two degrees of freedom.



26.5 Heave and pitch motion 411

FIGURE 26.34. Frequency responses for displacements and accelerations in bounce and
pitch motions for the vehicle of the previous examples at 100 km/h. (a) and (b): model
with two degrees of freedom; (c) and (d): model with four degrees of freedom

Data of the unsprung masses: mn1= mn2= 65 kg, P1= P 2= 125 kN/m,

cp1= cp2= 0.

The results obtained using the model with 2 degrees of freedom are reported in

Fig. 26.34a and b, while those obtained using the model of 4 degrees of freedom are

reported in Fig. 26.34c and d. The values of the natural frequencies of the undamped

system are 1,25, 1,51, 10,61 e 10,74 Hz, while those of the simplified model are 1,36 e

1,62 Hz .

At low frequency the results obtained from the two models are similar, while at

frequencies higher than those of the unsprung masses the filtering effect of the tires

reduces the amplitude of the response.

26.5.6 Interconnected suspensions

If the value of the pitch natural frequency is too high when compared with
that of the bounce motions, ride comfort may be affected. To control the nat-
ural frequencies of pitch and bounce independently, without changing the wheel
positions and the inertial properties of the body, the suspensions can be inter-
connected. Pitching frequencies can be raised without increasing those in bounce
if the front and rear wheels are connected by a spring opposing pitching motions,
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FIGURE 26.35. Longitudinal interconnection of the suspensions. (a) Sketch of an ap-
plication; (b) model in which the interconnection is implemented using a beam hinged
to the sprung mass. The tires are considered as rigid bodies and not included into the
model

similar to the anti-roll bars used for rolling motions. This is however the opposite
of what is usually needed and, moreover, has the effect of decreasing the damping
of pitch.

Various types of mechanical, hydraulic or pneumatic interconnections may
be used, the latter particularly in the presence of air or hydraulic springs. A me-
chanical solution is shown in Fig. 26.35a: The vehicle is based on longitudinal
swing arm suspensions, with springs located longitudinally under the sprung
mass. The springs are connected to a further element, itself elastically connected
to the vehicle body. The system is functionally similar (even if simpler) to the
model shown in Fig. 26.35b, in which the intermediate element is a beam, hinged
to the vehicle body and connected to the unsprung masses through springs. The
tires are considered here as rigid bodies and have not been included in the model.

If the beam and springs with stiffness χ1 and χ2 were not included, the
equation of motion would have been Eq. (26.66), without the damping matrix,
as in the figure, if damping is neglected. If the inertia of the beam is neglected,
no further degree of freedom is needed, because the position of the beam is
determined by the displacement z and the rotation θ of the sprung mass. The
stiffness matrix may be obtained simply by adding the potential energy of springs
χ1 and χ2 and performing the relevant derivatives.

The positions of points P and Q are simply{
zP = z + cθ − l1γ
zQ = z + cθ + l2γ ,

(26.114)

where γ is the angle between line PQ and the horizontal and all relevant angles
are assumed to be small.

The potential energy due to the two added springs is

2U = χ1z
2
P + χ2z

2
Q = (χ1 + χ2)

(
z2 + c2θ2 + 2cθz

)
+

+γ2(l21χ1 + l22χ2) + 2γ(z + cθ)(l1χ1 − l2χ2) .
(26.115)
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The value of γ can be easily computed by stating

∂U
∂γ

= 0 ,

which yields

γ = −(z + cθ)
l1χ1 − l2χ2

l21χ1 + l22χ2

. (26.116)

The final expression for the potential energy is then

U =
1
2
(z + cθ)2

χ1χ2(l1 + l2)2

l21χ1 + l22χ2

. (26.117)

By performing the relevant derivatives, the stiffness matrix becomes

K =
[

K1 + K2 + χ −aK1 + bK2 + χc
−aK1 + bK2 + χc a2K1 + b2K2 + χc2

]
, (26.118)

where

χ =
χ1χ2(l1 + l2)2

l21χ1 + l22χ2

.

From Eq. (26.118) it is clear that the terms due to the interconnection
between front and rear suspensions affect in a different way the various elements
of the stiffness matrix and allow to modify independently the values of the bounce
and pitch natural frequencies, possibly lowering the latter without affecting the
former.

26.6 ROLL MOTION

26.6.1 Model with a single degree of freedom

As already stated, roll is coupled with handling and not with ride comfort. How-
ever it is also true that rolling can affect strongly the subjective feeling of riding
comfort.

The simplest model for studying roll motion is a rigid body, simulating the
sprung mass, free to rotate about the roll axis, constrained to the ground by a
set of springs and damper with a stiffness and a damping coefficient equal to
those of the suspensions (Fig. 26.36). If Jx, ms, χi and Γi are respectively the
moment of inertia about the roll axis, the sprung mass, the torsional stiffness
and the damping coefficient of the ith suspension, the equation of motion is

Jxφ̈ + (Γ1 + Γ2) φ̇ + (χ1 + χ2) φ − msghG sin (φ) = (26.119)

= Γ1α̇t1 + Γ2α̇t2 + χ1αt1 + χ2αt2 ,

where the forcing functions are those due to the transversal inclination of the
road αti

at the ith suspension.
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FIGURE 26.36. Model with a single degree of freedom for the study of roll motion.
Cross section in a plane containing the center of mass G of the sprung mass. The roll
axis goes through point CR

The inertia of the unsprung masses and the compliance of the tires are not
included in such a simple model, which is formally identical to the quarter car
with a single degree of freedom.

For small values of the roll angle, the model may be linearized, stating
sin (φ) ≈ φ. The roll natural frequency is then

ωroll =
√

χ1 + χ2 − msghG

Jx
. (26.120)

The optimum damping value may be obtained from Eq. (26.12):

Γopt =

√
Jx (χ1 + χ2 − msghG)

2
. (26.121)

This condition is generally not satisfied, particularly if the vehicle has anti-
roll bars. The torsional damping of the suspensions is supplied by the same shock
absorbers normally designed to optimize vertical motion; the roll damping they
supply is usually lower than needed. The increase in stiffness due to anti-roll bars
is not accompanied by an increase in damping. The effect is causes a decrease of
the damping ratio, together with an increase of the natural frequency.

The stiffer the suspension in torsion, the more underdamped the roll
behavior, if the increase in stiffness is due to anti-roll bars. Although reduc-
ing rolling in stationary conditions, they may increase it in dynamic conditions.
An overelongation in the step response, as when roll is due to a moment abruptly
applied (steering step input, wind gusts or other similar instances), may then
result. A large roll in dynamic conditions my cause rollover.

The stationary value of the roll angle on a road with transversal slope αt =
αt1 = αt2 is

φ = αt
χ1 + χ2

χ1 + χ2 − msghG
. (26.122)
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The importance of a center of mass not too high on the roll axis and stiff
suspensions (in roll) is then clear. The last condition contradicts the need for a
small roll in dynamic conditions.

Example 26.11 Consider the vehicle studied in Example 26.7, and assume that the

moment of inertia Jx is equal to 388.8 kg m2 and the sprung mass is 1,080 kg. Compute

the time history of the roll angle when the vehicle encounters a ramp leading from a

horizontal road to a transversal slope αt = 5◦ in a distance of 10 m at a speed of 30

m/s.

Other data: stiffnesses of the axles K1 = 45 kN/m, K2 = 38 kN/m, damping of

the axles c1 =3,820 Ns/m, c2 =2,865 Ns/m, distance of the springs and dampers from

the symmetry plane d = 0.5 m, wheelbase l = 2.66 m. Repeat the computation, adding

an anti-roll bar at the front axle, with a stiffness χb =4,000 Nm/rad.

Computation without anti-roll bar.
The stiffnesses and damping coefficients of the axles can be computed using for-

mulae of the type
χi = Kid

2
i . (26.123)

It then follows that: χ1 = 11.25 kNm/rad, χ2 = 9.5 kNm/rad, Γ1 = 955

Nms/rad, Γ2 = 716 Nms/rad. The total roll damping Γ1 + Γ2 = 1.671 Nms/rad is

then smaller than the optimum damping computed by neglecting the gravitational ef-

fect (2.008 Nms/rad), while only slightly smaller than that computed by taking it into

account (1.733 Nsm/rad).

The roll natural frequencies are then ω = 1.00 Hz (gravitational effect included)

or ω = 1.16 Hz.
The linearized, state space equation

{
v̇φ

φ̇

}
=

[
− (Γ1+Γ2)

Jx
− χ

Jx

1 0

]{
vφ

φ

}
+

1

Jx

[
Γ1 Γ2 χ1 χ2

0 0 0 0

]
⎧⎪⎪⎨
⎪⎪⎩

α̇t1

α̇t2

αt1

αt2

⎫⎪⎪⎬
⎪⎪⎭

(26.124)

where vφ = φ̇, can be written and then solved numerically to compute the time history

of the response.
The input to the system is given by angles αi and their derivatives. If the excitation

is due to motion at a speed V on a ramp having a length lr leading linearly to a
transversal slope αt, assuming that at time t = 0 the front axle meets the ramp, it
follows that

αt1 =

⎧⎨
⎩

0 for t ≤ 0

αtt
V
lr

for 0 < t < lr
V

αt for t ≥ lr
V

αt2 =

⎧⎨
⎩

0 for t ≤ l
V

αt

(
t − l

V

)
V
lr

for l
V

< t < lr+l
V

αt for t ≥ lr+l
V

(26.125)

α̇t1 =

⎧⎨
⎩

0 for t ≤ 0

αt
V
lr

for 0 < t < lr
V

αt for t ≥ lr
V

α̇t2 =

⎧⎨
⎩

0 for t ≤ l
V

αt
V
lr

for l
V

< t < lr+l
V

αt for t ≥ lr+l
V

(26.126)
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FIGURE 26.37. Time history of the roll angle when the vehicle manages a ramp leading
from level road to a transversal slope αt. Model with 1 degree of freedom

Computation with anti-roll bar.

The computation is then repeated after adding the stiffness of the anti-roll bar to

that of the suspensions. The roll natural frequency is now ω = 1.13 Hz.

The results are reported in non-dimensional form in Fig. 26.37. Results obtained

with both the actual and the optimum damping are reported for the case without anti-roll

bar. In this case, the actual damping is smaller than the optimum and the difference

between the two results is small.

As expected, the steady state inclination of the body coincides with the transversal

slope of the road, if the effect of the weight is neglected. If weight is accounted for,

the final inclination of the body is greater. The nonlinear model has been integrated

numerically to check whether the results obtained are realistic: owing to the low values

of the angles, the difference between the linearized and the nonlinear results is negligible.

If an anti-roll bar is present the whole curve decreases, when the effect of weight is

taken into account. If the latter is neglected, the effect of the anti-roll bar is minimal.

26.6.2 Model with many degrees of freedom

A simple model with three degrees of freedom may be used to take rolling of
unsprung masses and compliance of the tires into account. The unsprung masses
are modelled as rigid bodies free to rotate about the roll axis of the vehicle.
It is clear that this model is a rough approximation, particularly if independent
suspensions are used. This further approximation, however, does not worsen mat-
ters, because the largest errors come from studying roll motion without taking
into account that they are coupled with handling motions.
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The linearized equation for the study of roll motion is

⎡
⎣ Jx 0 0

0 Jx1 0
0 0 Jx1

⎤
⎦
⎧⎨
⎩

φ̈

φ̈1

φ̈2

⎫⎬
⎭ +

⎡
⎣ Γ1 + Γ2 −Γ1 −Γ2

−Γ1 Γ1 + Γp1 0
−Γ2 0 Γ2 + Γp2

⎤
⎦×

×

⎧⎨
⎩

φ̇

φ̇1

φ̇2

⎫⎬
⎭ +

⎡
⎣ χ1 + χ2 − msghG −χ1 −χ2

−χ1 χ1 + χp1
0

−χ2 0 χ2 + χp2

⎤
⎦
⎧⎨
⎩

φ
φ1

φ2

⎫⎬
⎭ =

=

⎧⎨
⎩

0
Γp1 α̇t1 + χp1

αt1

Γp2 α̇t2 + χp2
αt2

⎫⎬
⎭ ,

(26.127)

where χi, χpi
, Γi, Γpi

are the stiffness and the damping of the suspensions and
of the tires. The excitation is given by the transversal slope of the road αt1 and
αt2 at the front and rear axles.

Equation (26.127) can be solved numerically and allows the natural frequen-
cies of roll oscillations to be computed.

To drastically simplify the model, the moment of inertia of the unsprung
masses and the damping of the tires can be neglected. The equations of motion
are thus a set of a second order equations plus two first order ones. The state
space equation so obtained is of the fourth order:⎧⎪⎪⎨

⎪⎪⎩

v̇φ

φ̇

φ̇1

φ̇2

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

0 msghG/Jx −χp1
/Jx −χp2

/Jx

1 0 0 0
1 χ1/Γ1 −

(
χ1 + χp1

)
/Γ1 0

1 χ2/Γ2 0 −
(
χ2 + χp2

)
/Γ2

⎤
⎥⎥⎦×

×

⎧⎪⎪⎨
⎪⎪⎩

vφ

φ
φ1

φ2

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

χp1
/Jx χp2

/Jx

0 0
χp1

/Γ1 0
0 χp2

/Γ2

⎤
⎥⎥⎦
{

αt1

αt2

}
.

(26.128)

Example 26.12 Consider the vehicle of the previous example, assuming that the

stiffness of the tires is 125 kN/m. Assuming a value of 1.48 m for the track, the torsional

stiffness for the unsprung masses is χ1 = χ2 = 136.9 kNm/rad. The results are reported

in Fig. 26.38 in nondimensional form.

As is clear from the figure, the effect of the compliance of the tire is not large.

26.7 EFFECT OF NONLINEARITIES

26.7.1 Shock absorbers

As previously stated, shock absorbers are far from being linear viscous dampers.
In fact, most automotive shock absorbers are unsymmetrical, with a damping



418 26. COMFORT PERFORMANCE

FIGURE 26.38. Time history of the roll angle when the vehicle manages a ramp leading
from level road to a transversal slope αt. Model with 3 degrees of freedom

which is larger in the rebound stroke. Apart from the nonlinearities in the be-
havior of the shock absorbers and those due to the geometry of the suspension,
along with asymmetries purposely built in, other unwanted nonlinear effects,
such as dry friction, are often present. Particular care must be devoted to the ef-
fects of lateral loads in McPherson suspensions, due to a more or less pronounced
dependence of the characteristics on temperature and cavitation. The latter phe-
nomenon is primarily felt at high temperature, and consists in the vaporization
of the fluid or the expansion of the gasses dissolved in it.

Moreover, even in cases where shock absorbers are assumed to act in the
same direction as other forces, some deviations may occur in practice, introducing
further nonlinearities that should be accounted for.

By neglecting the inertia of moving elements and temperature variations,
the force exerted by a shock absorber may be considered as a function of both
relative displacement and relative velocity of its endpoints:

F = F (z, ż) . (26.129)

The experimental results are often reported in the form of a force-
displacement plot (Fig. 26.39a). If the force were proportional to velocity (viscous
damping) the plot obtained in harmonic motion conditions would be an ellipse,
with a ratio between its axes proportional to the frequency. If the characteris-
tics were linear but unsymmetrical (i.e. bilinear) the plot would be made by two
semi-ellipses, one above (the smallest) and one below (the largest) the abscissa’s
axis.
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FIGURE 26.39. (a): Force-displacement experimental plot for a shock absorber at var-
ious temperatures. Note the anomaly, likely due to cavitation, in the second quadrant.
(b): Force-speed plot for the same shock absorber, obtained in slightly different condi-
tions

The force-speed plot (characteristic plot) of the same shock absorber is
reported in Fig. 26.39b. If no cavitation occurs, the force depends only on the
speed, i.e. the intersections of the surface (26.129) with planes with ż constant
are horizontal straight lines, and the characteristic diagram is unique. In this
case, force F depends only on ż and may be written as the sum of a linear
characteristic (viscous damping), an odd function fo (ż) and an even function
fe (ż) of the speed ż:13

F = −c ż − fe (ż) − fo (ż) . (26.130)

The two functions are, respectively, the deviation from symmetry and the
deviation from linearity.

13G. Genta, P. Campanile, An Approximated Approach to the Study of Motor Vehicle Sus-
pensions with Nonlinear Shock Absorbers, Meccanica, Vol. 24, 1989, pp. 47-57.
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In the simplest case of bilinear characteristic, only the former is present and
the characteristic is

F = −cż [1 + μ sgn (ż)] . (26.131)

The characteristic of a shock absorber described by Eq. (26.131) is plotted
for various values of μ, in Fig. 26.40a.

The experimental characteristics of two automotive shock absorbers are plot-
ted in Fig. 26.41. The characteristic of the first is bilinear, and may be approxi-
mated with good precision using Eq. (26.131) with:

c = 3.25 kNs/m , μ = 0.3846 .

FIGURE 26.40. a): Characteristics of bi-linear shock absorbers (Eq. (26.131)), with
various values of μ. b) Effect of dry friction on the characteristics of a nonlinear non-
symmetric shock absorber

FIGURE 26.41. Characteristics of two shock absorbers, one bi-linear and the other one
nonlinear
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The characteristic of the second is more complicated and can be expressed
by Eq. (26.130) with

c = 1000 kNs/m , fo = 268.6
√

|ż| + 350 |ż| ,

fe = 268.6
√

|ż|sgn (ż) − 350ż ,

where ż is in m/s.
A step function centered in the origin can be added to fo (ż) to include dry

friction in the model. The characteristics of Fig. 26.41b with dry friction added
is shown in Fig. 26.40b.

Consider a quarter car model with a single degree of freedom with a non-
linear shock absorber whose characteristic is expressed by Eq. (26.130). The
equation of motion is

mz̈ + cż + Kz + fe

(
ż − ḣ

)
+ fo

(
ż − ḣ

)
= cḣ + Kh . (26.132)

In this case, it is easier to write the equation in terms of relative displacement

zr = z − h,

instead of the displacement z, obtaining

mz̈r + cżr + Kzr + feżr + fożr = −mḧ . (26.133)

Because the system is nonlinear, the response will be a generic periodic but
non-harmonic law even if the forcing function is harmonic. It may, at any rate,
be expressed by a Fourier series

zr = z0 +
∞∑

i=0

zi sin (iωt + φi) , (26.134)

where all harmonics, including that of order 0, may be present, because the
nonlinear function contains both even and odd terms. If the nonlinearities are
not too strong, a first approximation solution may be obtained by truncating
the series after the term with i = 1. Working in phase with the response and not
with the excitation, it is possible to write{

h = h0 sin (ωt − φ)
zr = z0 + z1 sin (ωt) . (26.135)

By introducing solution (26.135) into Eq. (26.133), the latter transforms
into the algebraic equation

F(t) = 0 , (26.136)

where

F(t) = z1

[(
K − mω2

)
sin (ωt) + cω cos (ωt)

]
+

+z0K + fe (ωz1 cos (ωt)) + fo (ωz1 cos (ωt)) + (26.137)
−ω2mh0 [cos (φ) sin (ωt) − sin (φ) cos (ωt)] .
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An approximated solution for z0 and z1 may be obtained by stating that
Eq. (26.136) holds as an average for a whole period, instead of holding in each
instant. This may be formalized by stating that the integral of the virtual work

F(t)δzr = F(t) [δz0 + δz1 sin (ωt)] (26.138)

for a period vanishes.
Because the virtual displacements δz0 and δz1 are arbitrary, this amounts

to stating ⎧⎪⎪⎨
⎪⎪⎩

∫ T

0

F(t)dt = 0∫ T

0

F(t) sin (ωt) dt = 0.

(26.139)

Since the integrals over a period of sine and cosine functions and of all odd
functions of any trigonometric function vanish, the first equation yields

z0KT +
∫ T

0

fe (ωz1 cos (ωt)) dt = 0 . (26.140)

It follows then that

z0 = − 1
2πK

∫ 2π

0

fe (ωz1 cos (ωt)) d (ωt) . (26.141)

In the case of the bi-linear shock absorber, from Eq. (26.131) it follows

fe = cżμ sgn (ż) = cωz1μ |cos (ωt)| (26.142)

and then

z0 = −cωz1μ

2πK

∫ 2π

0

|cos (ωt)| d (ωt) = −2cωz1μ

πK
. (26.143)

From simple symmetry considerations, it follows that
∫ T

0

fe (ωz1 cos (ωt)) sin (ωt) dt = 0∫ T

0

fo (ωz1 cos (ωt)) sin (ωt) dt = 0

and then the second Eq. (26.131) yields

z1

(
K − mω2

)
= ω2mh0 cos (φ) . (26.144)

The phasing between the forcing function and the harmonic component of
the response can be computed by stating that the energy dissipated in a cycle
by the damper is equal to the energy supplied by the forcing function

∫ T

0

[c ż + fe (ż) + fo (ż)] żdt =
∫ T

0

−mḧżdt , (26.145)



26.7 Effect of nonlinearities 423

that is ∫ T

0

[
cz1ω cos2 (ωt) + fe (ωz1 cos (ωt)) cos (ωt) + (26.146)

+ fo (ωz1 cos (ωt)) cos (ωt)] dt = −mh0ω
2

∫ T

0

cos2 (ωt) sin (φ) dt.

Because ∫ T

0

fe (ωz1 cos (ωt)) cos (ωt) dt = 0 , (26.147)

it follows that

cz1ω +
1
π

∫ 2π

0

fo (ωz1 cos (ωt)) cos (ωt) d (ωt) = −mh0ω
2 sin (φ) . (26.148)

Equations (26.144) and (26.148) allow the two remaining unknowns, z1 and
φ to be computed By adding the squares of the two equations, it follows that

z2
1

(
K − mω2

)2
+

[
cωz1 +

1
π2

∫ 2π

0

fo (ωz1 cos (ωt)) cos (ωt) d (ωt)
]2

= ω4m2h2
0 .

(26.149)
Once function fo (ż) has been stated, this equation allows the amplitude of

the motion z1 to be computed.
By dividing Eq. (26.148) by Eq. (26.144) it follows that

φ = artg

[
−

πcz1ω +
∫ 2π

0
fo (ωz1 cos (ωt)) cos (ωt) d (ωt)
πz1 (K − mω2)

]
. (26.150)

It is then possible to demonstrate that the even function (deviation from
symmetry) causes a displacement of the center of oscillation from the static
equilibrium position, but has little effect on the dynamic response of the system.
If the deviation from symmetry is neglected, the characteristics of the shock
absorber can be linearized in the origin, and it is possible to use the equivalent
linear viscous damping to study the small oscillations of the system. This explains
why linearized models may be used even when the effect of nonlinearities seems
to be important. This holds true even for small oscillations.

Example 26.13 Consider a quarter car with two degrees of freedom with the para-
meters typical of the suspension of a small car: ms = 240 kg, mu = 25 kg, K = 20, 8
kN/m, P = 125 kN/m. Assume that the shock absorber is nonlinear and asymmetrical,
and that its characteristics may be modeled using Eq. (26.131) with

c = 1.8 kNs/m , μ = 0.65 .

Moreover, dry friction is also present. It may be modeled using the following odd
function

fo = 60 sign (ż) N .
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Compute the response to harmonic excitation with amplitude h0 = 100 mm by

numerically integrating the equation of motion, and compare this result with the lin-

earized solution and with the approximated solution of the nonlinear equation. Repeat

the computation for an amplitude of the forcing function of 10 mm.
The equation of motion is Eq. (26.22), to which the nonlinear terms are added.

However, to simplify the equation, it is possible to substitute coordinates

{
z1 = zu − h
z2 = zs − zu .

(26.151)

to variables zs and zu.
Neglecting the damping of the tire, the equation of motion becomes

[
mT ms

ms ms

]{
z̈1

z̈2

}
+

[
0 0
0 c

]{
ż1
ż2

}
+

+

[
P 0
0 K

]{
z1

z2

}
+

{
0

fe (ż2) + fo (ż2)

}
=

{
mT ḧ

msḧ

}
,

(26.152)

where

mT = ms + mu , fe = −cμż sgn (ż) (26.153)

and fo is given by the above mentioned expression
A solution of the type of Eq. (26.135) is

⎧⎨
⎩

h = h0 sin (ωt − φ) = h0 [sin (ωt) cos (φ) − cos (ωt) sin (φ)]
z2 = z20 + z21 sin (ωt)
z1 = z10 + z11s sin (ωt) + z11c cos (ωt) .

(26.154)

By introducing this solution into the first equation of motion, which is linear, and
remembering that the damping of the tire has been neglected, it follows that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z10 = 0

z11s = ω2−mT h0 cos (ωt) + msz21

P − ω2mT

z11c = ω2 mT h0 sin (ωt)

P − ω2mT
.

(26.155)

By introducing the values of the unknowns so obtained into the second equation of
motion, an equation formally identical to that of a quarter car with a single degree of
freedom (Equations (26.136) and (26.137)) is obtained, once

z20 , ms
P − ω2mu

P − ω2mT
, h0

P

P − ω2mT
(26.156)

are substituted for z1, ms and h0.

The results for a forcing function with an amplitude of 100 mm are reported in

Fig. 26.42a. It is clear that the amplitude of the motion of both the sprung and unsprung

masses (in terms of zs and zu and not of z1 and z2) obtained using numerical integration

and the approximated nonlinear computations are close to each other. Moreover, the
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FIGURE 26.42. Response to a harmonic forcing function with amplitudes of 100 mm
(a) and 10 mm (b) as a function of frequency for a quarter car model with two degrees
of freedom provided with a nonlinear shock absorber

amplitude of the motion almost coincides with that obtained from the linearized model,

with the difference that in this case there is a displacement of the central position of the

oscillation.

The results obtained for an amplitude of the forcing function of 10 mm are shown

in Fig. 26.42b. In this case, there is some difference between the linearized and the

nonlinear solution at low frequency, due to dry friction that locks the suspension in this

condition. In general, however, the accuracy of the linearized model is confirmed.

26.7.2 Springs

Dry friction in leaf springs introduces hysteresis and an apparent increase of
stiffness in low amplitude motion. A qualitative force-deflection characteristics
of a leaf spring is shown in Fig. 26.43: The hysteresis cycle is readily visible. The
overall elastic behavior is practically linear, with a hysteresis cycle occurring
about the straight line representing the average stiffness. If small amplitude os-
cillations occur about the equilibrium position, the apparent stiffness is strongly
dependent on the amplitude, with a value tending to infinity when the amplitude
tends to zero. This behavior is typical of dry friction that causes the spring to
lock when very small movements are required. The stiffness for the small oscilla-
tions typical of ride behavior can then be much larger than the overall stiffness
of the spring.

The presence of dry friction makes linear models inapplicable, or at least
makes their results inaccurate, and causes a deterioration of the ride qualities of
the suspension.

Other nonlinearities may be introduced by nonlinear springs, which are
sometimes used for industrial vehicles in order to avoid large variations of the
natural frequencies with the load. Air springs are also widely used on industrial
vehicles, and their characteristics are strongly nonlinear. However, nonlinearities
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FIGURE 26.43. Load-deflection characteristics of a leaf spring exhibiting hysteretic
behavior. The hysteresis cycle for small displacements about the equilibrium position
is shown

of the behavior of the springs can be dealt with in the same way as those due
to the kinematics of the suspensions and, in the motion about any equilibrium
condition, a linearized study holds with good approximation.

26.8 CONCLUDING REMARKS ON RIDE
COMFORT

The linearized study of suspension motions, based primarily on quarter-car mod-
els, shows that the value of shock absorber damping for optimizing comfort is
the same as that for reducing the dynamic component of the force on the ground
to a minimum, and hence optimizing handling. However, some results obtained
considering the root mean square value of the acceleration and the dynamic com-
ponent of the force show that, even when using a simplified linearized model, the
value optimizing comfort is lower than that optimizing handling.

The last statement is also confirmed by other considerations. Firstly, the
reduction of the force is not the only goal in handling optimization. The dis-
placement of the sprung with respect to the unsprung masses is also important.
Every type of suspension has some deviations from a perfect kinematic guide,
thus causing the wheels to be set in a position different from the nominal (e.g.,
changes of the camber angles, roll steer etc.); this negatively affects the handling
characteristics of the vehicle. The larger the displacement of the sprung mass,
the worse the problem.
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Operating in the same way as for minimizing the acceleration, it can be
shown that the value of the damping minimizing displacement is

c =

√
m(P + K)(P + 2K)

2P
, (26.157)

which is higher than the optimum value computed above.
This also suggests an increase in the stiffness of the suspensions and goes

against the criterion of “the softer the better” deriving from consideration of the
vertical acceleration alone.

Another point is linked to roll oscillations. The damping of the shock ab-
sorbers is usually chosen with bounce in mind; this causes rolling motions in most
cases to be excessively underdamped. When anti-roll bars are used, the situation
becomes worse: By increasing roll stiffness without increasing the corresponding
damping, they cause a more marked underdamped behavior and a decrease of
the dynamic stability of roll motions. This not only increases the amplitude of
rolling motions and the dynamic load transfer, while lowering the roll angle in
steady state conditions, but also makes rollover in dynamic conditions easier.

The increase of shock absorber damping beyond the value defined above as
optimum is effective in reducing these effects, which affect handling more than
comfort.

On the other hand, the need for reducing jerk to increase comfort goes
in the opposite direction. The value of damping minimizing jerk is lower than
that minimizing acceleration, which leads to better comfort when damping is
decreased.

The effect of the stiffness of springs on comfort is in a way contradictory: On
one hand, as already stated, the need of reducing vertical accelerations suggests
that stiffness be reduced as much as possible, but this would lead to very low
natural frequencies which may, in turn, cause motion sickness and similar effects.

The compliance of the frame or of other parts of the vehicle may also affect
riding comfort. The effect of the compliance of those elements that, in simplified
models, are assumed to be stiff, is at any rate smaller than the effect the flexibility
of the same elements has on handling. While, as already stated, the compliance
of the body in bending in the xy plane and above all the torsional compliance
about the z axis may have a strong effect (usually reducing performance) on
handling, bending compliance in the xz plane may affect comfort, though not
always in a negative way.

The local compliance of the body and the frame may strongly affect acoustic
and vibrational comfort when it leads to natural frequencies that can be excited
by the forcing functions that are always present on a vehicle. A typical example is
the compliance of the supporting structure of the engine ancillaries (alternator,
air conditioning compressor, etc.) that may cause resonances of the system made
by the same elements, the supporting brackets, the belts and other elements
connected to them. Because such a system is located close to, or even directly
on, the engine, which is a strong source of excitations at various frequencies,
many resonant vibrations are possible.
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As usual, when local resonances are possible, there are many different cures:

• Increasing the damping of the system, usually by adding damping material,
to reduce the amplitude of vibration below acceptable limits. This is the
simplest cure, one that may induce a non-negligible increase of weight
and often gives only marginal improvements. A typical example is the
application of damping paints or sheet metal covered by damping material
on the floor or the firewall.

• Increasing the stiffness of the structure, so as to increase the natural fre-
quencies and thus move the resonance to frequencies at which there is little
excitation. The opposite method, reducing the stiffness to decrease the nat-
ural frequencies, is usually not applicable in the automotive field, because it
would cause excessive deformations and would, at any rate, induce several
low frequency resonances. This cure usually causes a weight penalty as well
and to increase the stiffness of a vibrating system without also increasing
the damping makes the system more underdamped, with the consequence
of increasing the amplitude of vibration in case a resonance occurs.

• Reducing the amplitude of the excitation at the source. Although this is
the most effective cure, it is seldom applicable. To reduce the vibration
caused by imbalance of rotating elements the best procedure is to improve
balancing, but the prescribed balancing grade is usually chosen compatibly
with constraints such as construction techniques and costs. Moreover, wear
can reduce balance over time and the compliance of rotating elements may
make it difficult to obtain good balancing in all operating conditions.

• Preventing vibration transmitted from the source to the resonant element.
This often requires design changes or innovative concepts. For instance, the
transmission of vibration from the engine to the passenger compartment
is drastically reduced, with improvements in acoustic and vibrational com-
fort, by substituting the standard rigid linkage for gearbox control with a
device bases on flexible cables.

• Adding dampers close to the zones affected by vibration. The use of dy-
namic vibration absorbers is widespread in automotive technology, both
on the chassis and in the engine (crankshaft dampers, etc.). Because the
components of the vehicle are excited by a number of frequencies in a wide
range, damped vibration absorbers (i.e. containing dissipative elements)
are usually used instead of purely dynamic absorbers. The example given
for the quarter car with dynamic vibration absorber can be extended to
other cases.



27
CONTROL OF THE CHASSIS
AND ‘BY WIRE’ SYSTEMS

27.1 MOTOR VEHICLE CONTROL

As already stated, a road vehicle on pneumatic tires cannot maintain a given
trajectory under the effect of external perturbations unless managed by some
control device, which is usually a human driver. Its stability solely involves such
state variables as the sideslip angle β and the yaw velocity r.

In the case of two-wheeled vehicles the capsize motion is intrinsically unsta-
ble forcing the driver not only to control the trajectory but stabilize the vehicle.

A possible scheme of the vehicle-driver system is shown in Fig. 27.1. The
driver is assumed to be able to detect the yaw angle ψ, the angular and linear
accelerations β̇, ṙ, dV/dt, V 2/R and to be able to assess his position on the road
(X and Y ). Moreover, the driver receives other information from the vehicle,
such as forces, moments, noise, vibrations, etc. that allow him to assess, largely
unconsciously, the conditions of the vehicle and the road-wheel interactions.

27.1.1 Conventional vehicles

In all classical vehicles of the second half of the twentieth century up to the 1990s,
the driver had to perform all control and monitoring tasks. The only assistance
came from devices like power steering or power brakes that amplified the force
the driver exerted on the controls. In this situation, the human controller is fully
inserted in the control loop or, as usually said, the systems include a human in
the loop.
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FIGURE 27.1. Simplified scheme of the vehicle-driver system.

Actually the driver must control high level functions (choice of the trajec-
tory, decisions about speed and driving style, about manoeuvres like overtaking,
etc.) and intermediate level functions (reacting to perturbations coming from
the air and the road, following the chosen trajectory, etc.). Only stability at the
lowest level, involving the sideslip angle and the yaw velocity, is provided by
the dynamic behavior of the vehicle. As already stated, in motorbikes the driver
must also act as a stabilizer against capsizing.

In particular:

• Direction control is implemented by applying a torque to the steering
wheel that is then transmitted through a mechanical system (steering
box, steering arms, various linkages) to the steering wheels, which are al-
ways the front wheels. The torque exerted by the driver may be increased
by an hydro-pneumatic or electromechanical system (power steering) that
nonetheless never replaces the driver by exerting the whole moment. The
required sensitivity is provided by the torque the steering system exerts on
the driver through the aligning torque and the contact forces at the wheel-
road interface. These, in turn, depend upon the geometry of the steering
system (caster angle, toe in, offsets, etc.).

• The control of the power supplied by the engine is managed through the
accelerator pedal, operating directly through a mechanical leverage. Sensi-
tivity is supplied by the elastic reaction of a spring that reacts to the motion
of the pedal. The driver must control the power accurately enough so that
the maximum force the wheel can exert on the ground is not exceeded.

• Engine control is accompanied by control of the gearbox and the clutch,
which operate through the clutch pedal and the gear lever. These controls
are often automatic.
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• Braking control is performed by applying a force on the brake pedal that
is then transmitted through a system (usually hydraulic, but pneumatic in
industrial vehicles) to the brakes located in all wheels. Here the force ex-
erted by the driver can also be augmented by a hydro-pneumatic device
(power braking). In all cases, sensitivity is granted by the fact that the
force exerted by the driver is proportional (or at least depends in an al-
most linear way) to the braking torque and then to the braking force. The
driver must control the braking force so that the wheels do not lock.

These basic controls are accompanied by many secondary controls, such as
those of the lighting systems, window cleaning and defrosting, parking brake etc.
Although not directly used to control the motion of the vehicle, these are ex-
tremely important for driving safety. The basic controls are standardized on all
vehicles, with some difference in special vehicles, and are subjected to detailed
standards. In the case of particular arrangements, to be used by persons with dis-
abilities of various kinds that do not allow them to operate conventional controls
directly, a non-conventional user interface is provided, designed as needed for
each particular installation. The transmission of commands, however, remains
the same: for instance, the accelerator control may be brought to the steering
wheel with a ring coaxial to the wheel that can be moved axially. This, in turn,
operates the conventional accelerator control through levers.

The situation with two-wheeled vehicles is essentially the same, the only
difference being that the driver can change the inertial and geometrical charac-
teristics of the vehicle, using these changes as control inputs: for instance, he can
move the center of mass sideways or change the aerodynamic characteristics. The
controls are obviously different with the front and rear brakes often operating
independently.

27.1.2 Automatic and intelligent vehicles

The possibility of introducing automatic control devices in road vehicles has led
in recent years to many studies aimed at designing vehicles able to perform au-
tomatically a number of those control functions that at present are entrusted
to the driver, with the long term goal of building road vehicles able to per-
form all their functions automatically, essentially transforming the driver into a
passenger. This goal is still distant and, as with predictions of so-called strong
artificial intelligence, there are doubts as to its achievability, at least with today’s
technologies and those likely to be developed in the foreseeable future.

However, while the goal of building a fully automatic road vehicle may be a
long way off, many partial applications are already available or are about to be
realized.

One source of inspiration is what has been done in the field of aeronautics.
Since World War II, devices able to keep an aircraft at a given attitude and
on a prescribed course, allowing the pilot to leave the controls for a more or
less prolonged time, have entered common use. Such devices do not need to
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sense external conditions and adapt to them; they are simple regulators, that
only need to maintain the predetermined motion conditions. Devices of this kind
have only a limited use in road vehicles (for instance, cruise control devices)
because vehicles must continuously adapt their motion to the road and traffic
conditions.

Military aircraft are increasingly built on configurations that reduce intrin-
sic stability or are even unstable, with the goal of improving manoeuvrability;
the task of stabilizing the aircraft is given to suitable control devices. More-
over, the senses of the pilot have been enhanced by supplying additional infor-
mation through the control devices, such as devices that shake the control stick
when stall conditions approach. Artificial stability may prove interesting in the
vehicular field as well, not so much for improving manoeuvrability as for allowing
the use of configurations that are advantageous but reduce stability.

Devices providing an artificial sensibility, often referred to as haptic, are
those that provide a reaction force through by wire controls that is similar to
the reaction that conventional mechanical controls would supply. They may also
add further information, like the devices that cause the accelerator or the brake
pedal to shake when getting close to slip conditions in traction or braking. Such
devices are intrinsically necessary when controls are made automatic. They are
at present under study and in same cases already on the market.

Nowadays in the aeronautical field commands are no longer transmitted by
mechanical (rods, cables, etc. ) or hydraulic devices but by electric systems (fly
by wire), the only exception being small and low cost aircraft. There are two
main advantages: first, freedom in architectural and layout is greatly increased
(it is much easier to route electric cables than mechanical controls), resulting in
a mass reduction. Second, it is much easier to integrate control systems, which
are mostly electronic, in by wire than in conventional architectures. In the most
modern aircraft, the pilot interacts with a computer that in turn actuates the
control surfaces through by wire devices.

A similar evolution is also underway in the automotive industry. Here the
term steer by wire is used for the steer control, brake by wire for the braking
function and drive by wire for the accelerator control. The generic term for these
systems is X by wire, where the generic X stands for the various controls. The
advantages are similar to those in the aeronautical field, with the added bonus
of allowing the use of different user interfaces that can, for example, be designed
specifically for disabled persons and even adapted for individual cases.

However, the transfer from the aeronautic fly by wire to the automotive X
by wire is not simple. A first difference between the two fields is linked to cost,
or better, to the ratio reliability/cost. The total cost of an aircraft is greater
than the cost of a motor vehicle by orders of magnitude, allowing the use of
control systems and components much more expensive than those that may be
used in vehicles. Something similar can be said for the low cost segment of the
aeronautical market: fly by wire systems are still not used in light and ultralight
aviation.
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The scale of production may mitigate this problem: development costs are
subdivided, in the automotive market, into a much greater (even by orders of
magnitude) number of machines than in the aeronautical market. Reliability is
strictly linked to costs: when dealing with functions that are vital for safety, like
steering or braking, the need for extremely high reliability leads to high costs,
because the required safety is obtained through redundancy of sensors, actua-
tors, control units and communication lines as well as high quality components.
Electronic and computer based devices have been available for motor vehicles
for several years in non-vital functions and, more often, in gadgets performing
tasks that are of little practical use.

However, it is not just a matter of cost: motor vehicles are designed for
general use; their mission analysis is less determinate than that of aircraft, and
they must be able to work in conditions far from those for which they have been
designed, with a less stringent respect for maintenance schedules. This makes
technology transfer from aeronautics to automotive industry even more difficult,
particularly where complex and even critical technologies are concerned.

One field where technology transfer may be facilitated is that of racing cars,
and in particular Formula 1 racers, because these vehicles must be optimized
with a limited number of parameters in mind, accrue higher costs and are used
in controlled conditions. However their design specifications are strictly linked
to racing regulations, which at present (2008) do not allow the use of automatic
and control devices.

At present, the fields in which control devices are more common or are at
least being actively studied are:

• Engine control systems. All modern automotive internal combustion en-
gines are provided with one or more electronic control units (ECU) that
control its main functions. The motor control may be conventional or by
wire, but in the latter case there is no problem in supplying the driver with
adequate sensory inputs. Because these systems are studied in conjunction
with the engine and not with the chassis, they will not be dealt with here.

• Longitudinal slip control in traction, (ASR, Anti Spin Regulator1).
These are systems that detect the beginning of driving wheel skid and
reduce the power supplied by the engine. Theoretically, they should mea-
sure the longitudinal slip of the tires, but in practice they measure the
acceleration of the driving wheels.

• Longitudinal slip control in braking, (ABS, Antilock Braking System).
They are systems that detect the beginning of wheel skid and reduce the
braking torques. They, too, should measure the longitudinal slip of the
tires, but actually measure the deceleration of the wheels.

1The acronyms here mentioned are often trade marks of a particular manufacturer, even if
many of them have entered technical jargon to designate a variety of similar devices.
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• Vehicle dynamics control systems, (VDC, Vehicle Dynamic Control, ESP,
Enhanced Stability Program, DSC, Dynamics Stability Control). The goal
of these systems is to improve the dynamic response of the vehicle. They
often act by differentially braking (and sometimes differentially driving)
the wheels of the same axle to produce a yaw torque. The driver controls
the trajectory normally through the steering wheel, while the control device
tries to counteract the difference between the behavior required and that
actually obtained by applying yaw torques.

• Suspension control systems. Many different types of controlled, semi-active
and active suspensions have been and are being developed. These can sim-
ply adapt the suspension characteristics to the type and conditions of the
road or, in the most advanced cases, completely substitute an active system
for the conventional suspension.

• Electric Power Steering (EPS). Strictly speaking, EPS should not be con-
sidered a control system any more than conventional power steering, but
electric actuation allows steering control functions to be added. EPS, then,
may be considered as a first step towards steer by wire.

• Electric braking. A wide span of functions are available through electric
braking, from simple electric power braking with an electric actuator on
the master cylinder of a conventional hydraulic system (which should not
be listed here) to a true brake by wire system, with the electric actuators
at the wheels.

• Servo controlled gearbox and clutch. These systems provide automatic
gearbox functions by controlling a more or less conventional manual trans-
mission using suitable actuators, with all the advantages of classic auto-
matic transmissions but with a much more efficient mechanical transmis-
sion without a torque converter.

• Finally, the parking brake must be counted among the secondary controls
that may be made automatic. The advantages are that it is possible to
ensure that the brake is applied every time the driver leaves the vehicle,
without the possibility of forgetting it, while reducing the effort needed
to engage and disengage the brake. Electric parking brake yields a larger
freedom to the designer of the interior of the vehicle.

The components of some of these systems and the main control strategies
have already been described in Part I.

All the mentioned systems allow the tasks of the driver to be simplified and
safety increased, assuming that they meet reliability standards. The driver is still
in the control loop, but his work is made simpler by avoiding low level control
tasks so that he can concentrate on high level decisions.

Strong research activity is now devoted to going beyond this approach by
making it possible to perform higher level functions automatically, as in systems
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able to recognize and follow the road automatically using video cameras that
identify the outer edges of the road and the lines delimiting the lanes. Other
examples include systems able to regulate the speed, keeping a constant dis-
tance from the preceding vehicle, and anti-collision systems based on obstacle
recognition.

There is no doubt that systems of this kind are feasible once the critical
technologies have been developed at acceptable costs and with the required re-
liability. However, systems that can do completely without the presence of a
human in the loop are beyond present and predictable technology.

27.2 MODELS FOR THE VEHICLE-DRIVER
SYSTEM

Before embarking on the study of automatic systems aimed at controlling the
vehicle, it is advisable to study the vehicle driver system in conventional vehicles,
where the human driver is fully integrated in the control loop. Such a study has
two primary goals:

• To build a mathematical model of a human driver that can be integrated
into the mathematical model of the vehicle in simulations. It is not neces-
sarily true that a system made of two subsystems that are both stable is
itself stable. The study of stability, therefore, should take into account the
behavior of the driver even if the vehicle is intrinsically stable. Moreover,
in the case of motorcycles, the intrinsic instability of the system makes it
necessary to introduce a driver model, at least as a roll stabilizer, to allow
the dynamic behavior of the system to be numerically simulated.

• To supply guidelines for the design of automatic control systems. Auto-
matic controllers are often inspired by the behavior of the human controller,
if for no other reasons than that it is the only available model. Moreover,
the performance of human controllers is better than that expected from
automatic devices. Automatic control systems must interact with a human
controller and supply the latter with information and sensory inputs that
are not much different from those he is used to.

It is clear that stability of the vehicle-driver system is mandatory, but it
is not sufficient to assess the required handling and comfort characteristics of
the vehicle. The greater the stability with free and locked controls of the vehicle
itself, the fewer the corrections the driver has to introduce to obtain the required
trajectory. A vehicle that is stable in β and r requires from the driver only those
inputs needed to follow the required trajectory, but not those needed to stabilize
the motion on it.

On the other hand, a vehicle that is too stable may lack the manoeuvrability
needed to cope with emergency conditions or simply to allow sport driving.
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The amount of stability must be assessed in each case, taking into account the
type of vehicle, the market target, the traditions and image of the manufacturer.

Usually stability, handling and comfort characteristics of a vehicle are as-
sessed on the basis of prolonged road testing performed by skilled test drivers.
This approach has the drawback of being in a way subjective, and above all
of focusing on the global characteristics of the vehicle, without giving detailed
suggestions on causal relationships between the construction parameters of the
vehicle and its behavior. It also demands that long and costly road tests be per-
formed and, above all, forces evaluation of the performance of the vehicle to be
postponed to a stage in which prototypes are available.

The availability of mathematical models for the driver-vehicle interaction
has a number of advantages that are too obvious for a detailed discussion. The
difficulty of translating concepts like comfort and user friendliness into mathe-
matical functions is a serious obstacle in this study, making experimental and
numerical approaches likely to remain complementary.

A model able to simulate the behavior of the driver must be built for the
study of man-machine interactions. The difficulties encountered in such a task
are so large that many different approaches have been attempted. Up to now
there is no standard driver model that can be applied.

The first systematic studies were performed in the aeronautical field2, but
beginning in the 1970s, a large number of models specialized for the vehicu-
lar field have been published. A quick bibliographic scan identifies more than
sixty models published in less than 25 years. These span from simple constant-
parameter single-input single-output linear models to multi-variable, nonlinear,
adaptive models or models based on fuzzy logic and/or neural networks.

As always, the complexity of the model must be chosen in a way that is
consistent with the aims of the study and the availability of significant input
data.

27.2.1 Simple linearized driver model for handling

As previously stated, the driver may be thought as a controller receiving a num-
ber of inputs from the vehicle and the environment and outputting a few control
signals to the vehicle. Under manual control, the driver performs the tasks of the
sensors, the controller, the actuators and the source of control power, even if his
control actions may be assisted by devices such as power steering or braking.

In building a simple driver model, a small number of the inputs the driver
receives is selected and simple control algorithms are chosen to link them with
the outputs. The latter are usually only the steering angle δ and the position of
the accelerator/brake pedals. Only the former is considered if the driver model
is used in connection with a constant speed handling model.

2See, for instance, D.T. McRuer, E.S.Crendel, Dynamic response of human operators,
WADC T.R. 56-524, Oct. 1957.



27.2 Models for the vehicle-driver system 437

The simplest driver model is a proportional linear tracking system reacting
to the error ψ − ψ0, where ψ0 is the desired yaw angle, with a control action in
terms of steering angle δ proportional to the error. Because the controller has a
delay τ , this means

δ(t + τ) = −Kg[ψ(t) − ψ0(t)] , (27.1)

where Kg is the proportional gain of the controller. By developing function δ(t+
τ) in Taylor series about time t and truncating the series after the linear term,
it follows that

τ δ̇(t) + δ(t) = −Kg[ψ(t) − ψ0(t)] , (27.2)

Equation (27.2) is only an approximation, yielding results that are increas-
ingly inadequate with increasing delay τ . In the present case, it is possible to
assume that the values of the delay range between 0,08 s for a professional driver
to more than 0,25 s for an occasional driver. Consequently, Eq. (27.2) may lead
to non-negligible errors.

The transmission ratio of the steering system must be introduced into the
gain Kg, because δ is the steering angle at the wheels and not at the steering
wheels.

The simplest handling model that may be coupled to the driver model is a
rigid body model that, assuming that the vehicle is neutral steer, reduces to a
first order system (Eq.(25.108a)):3

Jz ṙ = Nrr + Nδδ + Mze
. (27.3)

Remembering that
r = ψ̇ ,

the dynamic equation of the controlled system in the state space is⎧⎨
⎩

ṙ

δ̇

ψ̇

⎫⎬
⎭ = A

⎧⎨
⎩

r
δ
ψ

⎫⎬
⎭ + Bcψ0 + BdMze

, (27.4)

where the dynamic matrix and the control and disturbances input gain matrices
are

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Nr

Jz

Nδ

Jz
0

0 −1
τ

−Kg

τ

1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Bc=

⎡
⎢⎢⎢⎢⎢⎣

0

Kg

τ

0

⎤
⎥⎥⎥⎥⎥⎦

, Bd=

⎡
⎢⎢⎢⎢⎢⎣

1
Jz

0

0

⎤
⎥⎥⎥⎥⎥⎦

.

If the delay vanishes, the vehicle-driver system reduces to a second order
system

Jzψ̈ − Nrψ̇ + NδKgψ = NδKgψ0(t) + Mze
. (27.5)

3P.G. Perotto, Sistemi di automazione, Vol.I, Servosistemi, UTET, Torino, 1970.
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Because Nr is always negative, while product NδKg is always positive, the
system is always stable, both statically and dynamically. Its behavior is not
oscillatory if

|Nr| > 2
√

JzNδKg , (27.6)

i.e.

Kg <
N2

r

4JzNδ
. (27.7)

If the derivatives of stability are computed considering the cornering forces
of the tires alone, such a condition becomes

Kg <
al2C1

4Jz

1
V 2

. (27.8)

If the delay τ of the driver is accounted for, the stability of the system
can be studied by searching for the eigenvalues of the dynamic matrix. The
characteristic equation is

s3 +
(

1
τ
− Nr

Jz

)
s2 − Nr

τJz
s +

NδKg

τJz
= 0 . (27.9)

From the Routh-Hurwitz criterion, it follows that the real parts of the so-
lutions of the cubic equation

as3 + bs2 + cs + d = 0

are all negative if

a > 0 , b > 0 , det
[

b a
d c

]
= bc − ad > 0 ,

det

⎡
⎣ b a 0

d c b
0 0 d

⎤
⎦ = d (bc − ad) > 0 .

In the present case, the first two conditions are always satisfied (Nr is always
negative) The last condition is always satisfied provided that the third one is,
because d > 0. The condition for stability is then the third condition

τ

(
1 − JzNδKg

N2
r

)
>

Jz

Nr
. (27.10)

Because the term at the right side is negative, the system is always stable
if the term in brackets is positive, i.e. when

Kg <
N2

r

JzNδ
. (27.11)
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If such a condition is not met, the system is stable if

τ <
JzNr

N2
r − JzNδKg

. (27.12)

To explicitly express the dependence of the stability of the vehicle-driver
system on speed, and remembering that Nr is proportional (at least as a first
approximation) to 1/V , it is possible to introduce parameter V Nr, the reduced
delay τ ′ and the reduced gain K ′

g defined as

K ′
g = Kg

JzNδ

V 2N2
r

, τ ′ = τ
V |Nr|

Jz
.

The first condition for stability then becomes

K ′
g <

1
V 2

. (27.13)

If such a condition is not met, the system is stable if

τ ′ <
V

K ′
gV

2 − 1
.

For the system to be stable, the driver must react quickly (with minimal
delay) and gradually (small value of the gain). These requests become more
demanding with increasing speed. If the delay τ (or better τ ′) is given, a single
condition for stability in terms of Kg (or better K ′

g) can be written

K ′
g <

τ ′ + V

τ ′V 2
. (27.14)

Condition (27.14) is plotted in Fig. 27.2.
If only the cornering forces of the tire are considered in computing the

derivatives of stability, the expressions of K ′
g and τ ′ reduce to

K ′
g = Kg

Jz

al2C1
, τ ′ = τ

alC1

Jz
. (27.15)

To avoid the approximations of Eq. (27.2), it is still possible to obtain the
response of the controlled system by numerically integrating the equations of
motion. By introducing the steering angle at time t

δ(t) = −Kg[ψ(t − τ) − ψ0(t − τ)] (27.16)

into the equation of motion (25.108) of a neutral steer vehicle, it follows that

{
ṙ

ψ̇

}
=

⎡
⎢⎣

Nr

Jz
0

1 0

⎤
⎥⎦
{

r
ψ

}
+ (27.17)
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FIGURE 27.2. Values of the gain K′
g allowing a stable working of the vehicle-driver

system versus the speed, for different values of the delay τ ′.

+

⎡
⎢⎣

KgNδ

J

1
Jz

0 0

⎤
⎥⎦
{

−[ψ(t − τ) − ψ0(t − τ)]
Mze

(t)

}
.

Example 27.1 Consider a neutral vehicle with the following characteristics: Jz =

1, 428 kg Nm2, a = 1.3 m, b = 1.35 m, C1 = 50 kN/rad. A linearized drive modelled by

Eq. (27.2) steers it along a standard ISO lane change manoeuvre at 80 km/h. Assume

a delay τ = 0.1 s and a value of the gain such that the system is stable but not overly

oscillatory.

Plot the root locus of the vehicle-driver system for various values of the speed and

compute the trajectory obtained through numerical integration of Equations (27.2) and

(27.17). Repeat the computations for a delay of 0.3 s.

The ISO lane change manoeuvre, intended to simulate overtaking, was described

in Part III. It requires the vehicle to travel for 15 m in the original lane, to change

lane with a lateral displacement of 3.5 m in 30 m, to stay in this lane for 25 m and to

return to the original lane in 25 m. The manoeuvre must be performed at 80 km/h. The

lane changes may be performed using any trajectory, provided that none of the cones

delimiting the three straight lanes are touched. The width of these lanes are, in meters,

1.1 B + 0.25 for the first lane, 1.2 B + 0.25 for the second and 1.3 B + 0.25 for the
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third, where B is the width of the vehicle. If the vehicle is 1.56 m wide, the three lanes

are then 1.966, 2.122 and 2.278 m wide, leaving a margin of 0.203, 0.281 and 0.359 m

on both sides of the theoretical trajectory.

The actual lane changes are left to the driver. In the present simulation, a cosine

function is used, which has the advantage of being simple and the drawback of yielding

a discontinuity of curvature at each transition with a straight path.
The trajectory and angle ψ0 are then

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Y = 0 for X < 15

Y =
3, 5

2

{
1 − cos

[ π

30
(X − 15)

]}
for 15 ≤ X < 45

Y = 3, 5 for 45 ≤ X < 70

Y =
3, 5

2

{
1 + cos

[ π

25
(X − 70)

]}
for 70 ≤ X < 95

Y = 0 for 95 ≤ X < 125

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ0 = 0 for X < 15

ψ0 = arctan

{
3, 5π

60
sin

[ π

30
(X − 15)

]}
for 15 ≤ X < 45

ψ0 = 0 for 45 ≤ X < 70

ψ0 = − arctan

{
3, 5π

50
sin

[ π

25
(X − 70)

]}
for 70 ≤ X < 95

ψ0 = 0 for 95 ≤ X < 125

The value of τ ′ corresponding to τ = 0.1 s, computed using Eq. (27.15) is τ ′ =

12.06 m/s.The maximum value of K′
g to obtain stability at 80 km/h is 0.0058 s2/m2,

corresponding to a gain of Kg = 1.84. To guarantee stability and minimal oscillations,

a value equal to 20% of the maximum allowable is assumed: Kg = 0.368.

The roots locus (at varying speed) obtained for those values of the gain is plotted

in Fig. 27.3a. The results of the numerical simulation are reported in Fig. 27.3b.

FIGURE 27.3. (a): Root locus of the vehicle-driver system with a delay of 0.1 s. (b):
Trajectory obtained during an ISO lane change test computed while taking into account
the delay without approximations (full line) and using the approximation of Eq. (27.2).
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FIGURE 27.4. (a): Root locus of the vehicle-driver system with a delay of 0.3 s. (b):
Trajectory obtained during an ISO lane change test computed while taking into account
the delay without approximations (full line) and using the approximation of Eq. (27.2).

The computation was repeated with a delay τ = 0.3 s, corresponding to τ ′ =

36.18 m/s. The maximum value of K′
g to obtain stability at 80 km/h is 0.0033 s2/m2,

corresponding to a gain of Kg = 1.04. Again, to have stability and minimal oscillations,

a value equal to 20% of the maximum is assumed: Kg = 0.21. The trajectory is shown in

Fig. 27.4b. The trajectory follows that required with much delay and strong oscillations.

Note that the approximation of Eq. (27.2) leads in this case to non-negligible errors.

In both cases, the driver is unable to perform the lane change manoeuvre without

hitting the cones.

To consider a more realistic vehicle behavior, it is possible to remove the as-
sumption that it is neutral steer by inserting Eq. (25.108) instead of Eq. (25.108a)
into the vehicle driver model. The equation of the controlled system is then⎧⎪⎪⎨

⎪⎪⎩

β̇
ṙ

δ̇

ψ̇

⎫⎪⎪⎬
⎪⎪⎭

= A

⎧⎪⎪⎨
⎪⎪⎩

β
r
δ
ψ

⎫⎪⎪⎬
⎪⎪⎭

+ B

⎧⎨
⎩

ψ0

Fye

Mze

⎫⎬
⎭ , (27.18)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yβ

mV

Yr

mV
− 1

Yδ

mV
0

Nβ

Jz

Nr

Jz

Nδ

Jz
0

0 0 −1
τ

−Kg

τ

0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

mV
0

0 0
1
Jz

Kg

τ
0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Remark 27.1 It is, however, uncertain whether it is worthwhile to introduce a
more realistic vehicle model when the driver is modelled in such a rough way.
An approach of this type is too simple to produce realistic results. The lack of a
predictive action and the assumption that the driver reacts only to the yaw angle
leads to a reduced overall stability.

Remark 27.2 The only interesting result of this model, although quite obvious,
is that, to avoid instability, driving must be quick, i.e. with a limited delay, and
smooth, i.e. with a low gain.

27.2.2 More realistic models of linearized driver

The delay is usually assumed to be the sum of three different delays: the first
due to the reaction time, i.e. the time needed for the driver to elaborate the
information coming from the vehicle and the environment; a neuromuscular de-
lay, the time needed for the command to reach the muscles involved in the control
action; and an actuation delay, due to the time needed to actually perform the
control action. Some models consider the three delays in distinct ways, and also
factor in any predictive action the human operator can perform. Experience
shows that such predictive action, which can be much improved with training,
is of paramount importance in actual driving conditions. A simple open loop
transfer function of a linearized driver is

y(s)
u(s)

= Kg
(1 + TLs)e−τs

1 + TDs
, (27.19)

where y, u, Kg, TL, τ , TD are respectively the output and the input of the driver,
the gain, the prediction time, the reaction time and the neuromuscular delay.

In many cases, the prediction time is neglected and all the delays are added
together in a single delay τ , yielding a simpler open loop transfer function

y(s)
u(s)

= Kge
−τs . (27.20)

By expressing the exponential as a power series and truncating it after three
or two terms, its expression reduces to

y(s)
u(s)

≈ Kg
1

1 + τs + 1
2τ2s2

≈ Kg
1

1 + τs
. (27.21)

The last of these expressions corresponds, in the time domain, to the already
seen expression

τ ẏ(t) + y(t) = Kgu(t) . (27.22)

The choice of which inputs to consider is a delicate one. The results are
different if a quantity linked to the position, such as coordinates X and Y or,
better, the deviation from the required trajectory, or the yaw angle ψ is used.



444 27. CONTROL OF THE CHASSIS AND ‘BY WIRE’ SYSTEMS

It is a common experience that a snaking trajectory is obtained when the
driver uses a reference a point close to the front end of the vehicle, as when
driving in the fog looking at the curb, while the oscillations disappear when the
reference point is far in front of the vehicle.

A simple way to incorporate a kind of predictive behavior into the model is
that of using as error not the difference between the desired and the actual value
of the yaw angle, but the distance d between a point on the vehicle x-axis at a
given distance L in front of the vehicle and the required trajectory (distance d
in Fig. 27.5a).

With simple computations and assuming that angle ψ −ψ1 is small, such a
distance can be approximated as

d = L
(
ψ − ψ1 +

y

L

)
, (27.23)

where y is the lateral displacement of the vehicle, i.e. the integral of the lateral
velocity v. If the speed of the vehicle is constant, with the usual linearization, it
coincides with the integral of β, multiplied by V . Angle ψ1 is the angle between
the X-axis and a line passing through two points of the trajectory at a distance
L; it may be easily computed from the shape of the trajectory.

By using the linearized expression for the delay seen above, the equation
expressing the time domain model of the driver is then

τ δ̇(t) + δ(t) = −Kg

[
ψ(t) − ψ1(t) +

y(t)
L

]
. (27.24)

FIGURE 27.5. Definition of distance d.
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By introducing Eq. ((27.24) into the simplest mathematical open-loop model
of linearized vehicle, remembering that

ẏ = V β ,

and operating as for the previous model, the state equation for the vehicle-driver
system is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β̇
ṙ

δ̇

ψ̇
ẏ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= A

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β
r
δ
ψ
y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ Bcψ1 + Bc

{
Fye

Mze

}
, (27.25)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yβ

mV

Yr

mV
− 1

Yδ

mV
0 0

Nβ

Jz

Nr

Jz

Nδ

Jz
0 0

0 0 −1
τ

−Kg

τ
−Kg

Lτ

0 1 0 0 0
V 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bd=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
mV

0

0
1
Jz

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Bc=
[

0 0
Kg

τ
0 0

]T

.

The errors linked with Eq. (27.24) can be avoided by numerically integrat-
ing the equations of motion. Neglecting external disturbances and writing the
steering angle at time t

δ(t) = −Kg

[
ψ(t − τ) − ψ1(t − τ) +

y(t − τ)
L

]
, (27.26)

the equation of motion of the vehicle-driver system is

⎧⎪⎪⎨
⎪⎪⎩

β̇
ṙ

ψ̇
ẏ

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yβ

mV

Yr

mV
− 1 0 0

Nβ

Jz

Nr

Jz
0 0

0 1 0 0
V 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

β
r
ψ
y

⎫⎪⎪⎬
⎪⎪⎭

+ (27.27)
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−Kg

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yδ

mV

Nδ

Jz

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[
ψ(t − τ) − ψ1(t − τ) +

y(t − τ)
L

]
.

Example 27.2 Repeat the simulation of the previous example using the driver model

of Eq. (27.24).

The values of the time delay, the gain and the prediction distance L are assumed

to be, respectively, 0.20 s, 0.25 and 30 m.

The trajectory is shown in Fig. 27.6b. The driver model is now successful in per-

forming the required manoeuvre. The tendency to oscillate about the required trajectory

is much reduced, and the driver is successful in anticipating the required correction.

Remark 27.3 Both models here described are a drastic oversimplification of ac-
tual human behavior, but the second performs satisfactorily in many instances.
In particular, the results obtained in the previous examples were based on a trial
and error definition of the characteristics of the driver that satisfied the require-
ments of the particular case studied. To obtain acceptable results in different
manoeuvres, a further adaptation of driver parameters would be needed. To per-
form simulations of more practical value, more sophisticated models are needed.

FIGURE 27.6. (a): Root locus of the vehicle-driver system with a delay of 0.2 s. (b):
Trajectory obtained during an ISO lane change test computed while taking into account
the delay without approximations (full line) and using the approximation of Eq. (27.2).



27.2 Models for the vehicle-driver system 447

27.2.3 Longitudinal control

Apart from acting on the steering wheel to maintain course, the driver needs to
regulate the vehicle speed by acting on the accelerator pedal and, occasionally,
the brakes. If traffic is not intense and the road is largely straight or contains
bends with a large radius, it is possible to use a simple regulator maintaining
a constant speed at a value set by the driver. These regulators are usually re-
ferred to as cruise control systems. They are now found in most cars, at least
as an option, but they are practically useful in particular conditions: they were
first applied in the United States, where they are usable primarily on interstate
highways, while in Europe they can be used on highways only when traffic is
particularly low.

When traffic is intense, and in particular when there is a line of cars, the
driver has to control the accelerator pedal, and occasionally the brakes as well,
to maintain a constant distance from the vehicle travelling in the same lane
in front of him. In these conditions, long lines of cars can form on highways,
with each driver trying to regulate the speed of his vehicle so that the distance
from the previous vehicle is constant. Many anti-collision systems, imitating this
behavior, have been developed.

The simplest model of driver, or of anti-collision system, that follows this
approach is a linear controller based on measuring the distance from the previous
vehicle. Let Vi and di be the speed of the ith vehicle and the distance between
the ith and the (i − 1)th vehicle, whose speed is Vi−1.

The derivative of the distance with respect to time is obviously linked to
the speed by the relationship

d

dt
(di) = Vi−1 − Vi . (27.28)

The driver of the ith vehicle tries to maintain the distance at a fixed value
by accelerating when the distance increases and decelerating while it decreases,
but this action is applied with a certain delay. A linear model for this action is
the following

dVi(t + τ)
dt

= K
d

dt
(di) = K(Vi−1 − Vi) , (27.29)

where K is the gain and τ the delay time.
By using the series for the function Vi(t + τ) truncated after the second

term, Eq. (27.29) reduces to

τ V̈i + V̇i + KVi = KVi−1 , (27.30)

which is formally identical to the equation of motion of a second-order system,
with mass τ , unit damping and stiffness K. If

K >
1
4τ

(27.31)
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the system has an oscillatory behavior with natural frequency4 and damping
ratio

ωn =

√
K

τ
, ζ =

1
2
√

Kτ
. (27.32)

Equation (27.30) can be used to predict the behavior of the vehicle-driver
system that follows another vehicle travelling at constant speed or, at least, at
a speed having a known time history (the law Vi−1(t) is known). The behavior
must be quick and smooth (both τ and K must be small), so that no oscillations
are induced.

The delay here is likely larger than in the previous cases linked with han-
dling, because it is much more difficult to perceive when the distance from the
vehicle in front of us changes than to detect changes of trajectory.

The same equation may be used to study the behavior of a line of vehicles.
Consider n vehicles (i = 1, ..., n) in a line behind a first vehicle (i = 0). Let τ i

and Ki be the delay and the gain of the ith vehicle; the n equations of the type
of Eq. (27.30) are

⎡
⎢⎢⎣

τ1 0 ... 0
0 τ2 ... 0
... ... ... ...
0 0 ... τn

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

V̈1

V̈2

...

V̈n

⎫⎪⎪⎬
⎪⎪⎭

+ I

⎧⎪⎪⎨
⎪⎪⎩

V̇1

V̇2

...

V̇n

⎫⎪⎪⎬
⎪⎪⎭

+ (27.33)

+

⎡
⎢⎢⎣

K1 0 ... 0
−K2 K2 ... 0
... ... ... ...
0 0 ... Kn

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

V1

V2

...
Vn

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

K1V0

0
...
0

⎫⎪⎪⎬
⎪⎪⎭

.

As can be seen, the equation describing the behavior of a line of vehicles is
then similar, although not identical, to that governing a system made of a set of
masses linked to each other by springs and dampers. The stiffness matrix is not
symmetrical because the behavior of each vehicle depends on those preceding it,
but not those following it.

The eigenvalues can be immediately computed, because the characteristic
equation is ∏

i=1,n

(
τ is

2 + s + Ki

)
= 0, (27.34)

whose 2n solutions are

s = − 1
2τ i

± i

√
1 − 4τ iKi

2τ i
per i = 1, ..., n (27.35)

and thus coincide with those of n independent systems described by Eq. (27.30),
with the various values of the parameters.

4The natural frequency is referred, as usual, to the undamped system. If the damping ratio
ζ is larger than one, the damped system will not have free oscillations.
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The frequency response of the ith vehicle with respect to the first one is

(V0)i

(V0)0
=

∏
k=1,i Kk∏

k=1,i

√
(Kk − τkω2)2 + ω2

. (27.36)

Remark 27.4 The present model does not consider the characteristics of the
vehicle, and in particular the possibility that its acceleration is not sufficient
to get close to the preceding one in the predicted way. If a limitation to the
acceleration of the vehicle is introduced, the model is no longer linear, and the
approach followed here no longer holds.

Example 27.3 Consider a line of vehicles controlled by identical drivers, with a gain

K = 1.6 1/s and delay τ = 0.6 s. Plot the frequency response of the various vehicles to

an harmonic variation of the speed of the first one.

The frequency response is plotted in Fig. 27.7 for some values of i. The line of

vehicles has a resonant frequency and may be expected to oscillate.

This linearized model is obviously too rough to give quantitative indications,
but qualitatively explains the oscillatory behavior of long lines of vehicles and also
the fact that in the case of dense highway traffic periodic stops can be experienced
without any obvious explanation. Clearly, when the oscillations become too large
the linearized model loses validity: The acceleration required for some vehicles
may be too large or the distance too small, forcing some vehicles to stop.

FIGURE 27.7. Frequency response of the velocity of the i-th vehicle in a line using as
input the velocity variations of the first one. K = 1.6 1/s; τ = 0.6 s.
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27.3 ANTILOCK (ABS) AND ANTISPIN (ASR)
SYSTEMS

27.3.1 Basic principles

The force a tire can exert in the longitudinal direction at the wheel-road contact
is limited by the available traction. As previously stated when dealing with the
tire, to exert a longitudinal force the tire must work with a longitudinal slip,
i.e. its angular velocity must be different (smaller when braking, larger when
driving) from that characterizing pure rolling. Longitudinal slip was defined as

σ =
v

V
,

where v is the average slip velocity of the tire on the ground. The longitudinal
force, or better the longitudinal force coefficient

μx =
Fx

Fz

is linked to the slip by a nonlinear relationship of the type shown in Fig. 27.8,
where both force and slip are assumed to be negative in braking and positive in
driving.

The dashed lines indicate unstable working of the tire: once the traction has
reached its peak value, not only does the force decrease, but the wheel tends to
lock if braking, or to accelerate until a full slip is reached if driving. The equation
of motion of a free wheeling wheel in braking is

Jr
dΩ
dt

= Mm − Mb = |μx|Fzrl − Mb , (27.37)

FIGURE 27.8. Longitudinal force coefficient of a tire as a function of the longitudi-
nal slip.



27.3 Antilock (ABS) and antispin (ASR) systems 451

where the driving torque acting on the wheel Mm is due to the longitudinal force
at the wheel-road contact |μx|Fz multiplied by the loaded radius rl. If |μx| de-
creases at increasing slip, any slowing down of the wheel, with an accompanying
increase in slip, will cause a decrease of the longitudinal force and then a further
slowing down of the wheel and a further increase of the slip. If the driver does
not reduce the braking torque by releasing the pressure on the brakes, the wheels
lock. In a similar way, a driving wheel accelerates until it spins freely.

Note that the peak, and the following decrease of traction, are more pro-
nounced in case of high performance tires: racing tires can show values of μxp

much higher than one (even up to 1,8 - 2), while the value at complete slip μxs

remains not much greater than 1. The tendency for the wheel to lock or go into
uncontrolled spin is then much greater.

The problems linked with the slipping of a pneumatic tire are, however, not
linked solely to the ensuing decrease of the longitudinal force, but deeply affect
handling and the very stability of the vehicle. When the traction used in the
longitudinal direction increases, the ability of the tire to supply cornering forces
decreases and, when the limit traction conditions are reached, the force the tire
exerts on the ground has the same direction as the relative velocity between the
thread band and the ground. In these conditions, the cornering stiffness of the
tire practically vanishes and the wheel loses its ability to supply cornering forces.
If the rear wheels lock, the vehicle becomes unstable, while locking of the front
wheels causes the vehicle to be uncontrollable, in the sense that it can move only
on a straight trajectory.

In traditional vehicles it is the driver who, with his ability to understand
the conditions of the vehicle, controls braking forces so that maximum traction
conditions are never exceeded. The usefulness of devices that can help the driver
in this task is obvious. They can keep the slip of the wheels under control and
prevent maximum traction conditions from being exceeded. Actually, it is diffi-
cult to measure the longitudinal slip of the tires, because it would require the
angular velocity of the wheels to be measured (a simple matter) as well as the
speed of the vehicle, a complicated task, and one that requires instrumentation
of a kind not usually provided on vehicles.5

The first devices of this kind to be used were the anti-lock systems (ABS)
used on aircraft for braking during landings and aborted takeoffs. Such devices
only measured the speed of the wheel and computed its derivative: a quick de-
crease of speed shows that locking is about to occur. Subsequently, the device
directly reduces the pressure in the hydraulic braking system and then reduces
the braking torque. The wheel then returns to a speed close to that of pure
rolling and the system ceases to intervene. Braking then recurs, making it likely
that the locking conditions repeat, with an ensuing new intervention of the ABS

5Normal speedometers, always present on motor vehicles, estimate the velocity of the ve-
hicle from that of an element connected with the output shaft of the gearbox, assuming that
the wheels are in pure rolling conditions. Regulations state that speedometers may have only
positive errors, i.e. the speed they show must never be less than the actual.
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FIGURE 27.9. Working of an anti-lock system (ABS). (a) Time history of the speed of
the vehicle and of the peripheral velocity of the wheel during braking with ABS. (b)
Zone of the curve μx(σ) where the ABS keeps the longitudinal force coefficient.

device. Brakes then act as before, with frequent intervention by the ABS, and
the longitudinal force coefficient remains close to its maximum value (Fig. 27.9).

Controlling braking in this way does not allow a traction as good as that
at the maximum of the curve μx(σ) to be obtained, but it does prevent the
wheel from locking and allows a fair lateral force and cornering stiffness to be
maintained.

In the automotive field, ABS were initially applied to trailers, owing to
the difficulties the driver has in understanding trailer braking conditions. They
were then applied to industrial vehicles and luxury cars. Most cars sold today
are equipped with ABS.

The control logic of anti-lock systems evolved, even if it is still based mostly
on the measurement of the speed of the wheels and on the computation of their
deceleration. However, while this method is adequate for free wheels, things
are more complex for driving wheels. Here, the inertia of the engine and the
transmission must be accounted for along with the inertia of the wheel, and
the value of Jr in Eq. (27.37), which depends on the transmission ratio, is much
higher. While in the highest gear the apparent increase of the inertia of the wheel
may be of 200% or 300%, in the lowest gear the inertia may increase by one or
two orders of magnitude. The deceleration of the wheel in these conditions may
also depend on both the braking torque of the engine and the position of the
accelerator. It may be low enough to prevent the increase of the longitudinal slip
from being detected in wheel acceleration measurements.

It is important to evaluate the slip but, as already stated, a measurement
of the speed of the vehicle that does not depend on the speed of the wheels is
needed, requiring complex and costly equipment. Different strategies are possible,
and sometimes more than one can apply. A reference velocity can be defined by
elaborating the speeds of all wheels and possibly the longitudinal deceleration of
the vehicle as well. By averaging the speed of the wheels, it is possible to obtain
a reliable value for the reference velocity, until a quick deceleration of the wheels
shows that the longitudinal slip has begun to increase.
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By integrating the acceleration of the vehicle in time it is possible to update
the values of the speed to obtain a better estimate of the slip. At this point
it is possible to use different definitions of the reference speed and different
algorithms to compute it, possibly using different definitions for the various axles
as well, so that the required performance can be obtained. Suitable corrections
may be introduced to take different factors into account, such as the roughness
of the road, which is detected from oscillations in the wheel deceleration. It is
possible that in the near future devices allowing the vehicle speed to be obtained
directly will be available, devices based, for instance, on GPS. By estimating, or
even better, by measuring the vehicle speed and then the longitudinal slip, the
control system can not only prevent the wheels from locking, but may also try
to maintain the slip in the zone where the braking force is highest.

27.3.2 Control strategies for ABS

How the anti-lock system acts on the various wheels has a large effect on stability.
Older systems were simple two channel devices, i.e. they jointly controlled the
two wheels of the same axle. The control of an axle may be performed following
two distinct strategies, usually referred to as select high and select low. In the
former case, if the wheels are in different conditions, the wheel governing the
behavior of the system is the one in the best condition. In other words, the ABS
device allows the wheel in the worst condition to slip, reducing the pressure in
the braking system only when the wheel in the best situation begins to slip. The
second strategy, on the other hand, begins to reduce the braking pressure when
the wheel in the worst condition encounters a critical situation.

The latter strategy guarantees that the two wheels exert the same longitu-
dinal force, thus preventing yawing moments. But it decreases the total amount
of braking force to what the axle could exert when all its wheels are in the con-
dition of the wheel that initially slips. Another advantage is that it guarantees
a high value for the cornering stiffness of the axle.

Select high strategy, on the other hand, allows the ability of the wheel in the
best condition to exert a high force to be exploited, while the other wheel works
in conditions close to slipping. The braking force is much higher, but the axle
produces a yawing moment that may be quite strong. The ability of the axle to
produce cornering forces is compromised, because the cornering stiffness of the
wheel in the worst condition vanishes, while that of the other wheel is reduced
due to the strong longitudinal force.

A reasonable global strategy is to use select low at the rear wheels, which
do not, in any case, exert large braking forces, and select high at the front wheels
which produce most of the braking force. The total braking force is thus close
to the highest possible, the rear axle has good cornering stiffness, while that
of the front axle decreases, with the result that the vehicle is more understeer
and thus mode stable. The drawback is the generation of a yawing moment that
compels the driver to control the trajectory by acting on the steering wheel, with
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a steering angle that, owing to the decrease of the ability of the front wheels to
generate lateral forces, may be large.

Performance is increased by using two separate ABS systems at the front
axle, so that the wheel in worst conditions does not lock, with an increase of
the overall braking force, decrease of the yawing moment and, above all, lower
reduction of the corner stiffness of the front wheels. The vehicle remains more
manoeuvrable, and it is easier for the driver to counteract the yawing moment.

The rear axle may remain controlled by a single ABS device with a select
low logic. The system then has three channels, or it may have two distinct ABS
devices. In the latter case (four channel ABS), the select low strategy may be
implemented on the ECU, keeping open the possibility of modifying the strategy
depending on the values of a number of parameters.

The ground is usually not uniform, so the traction may change from wheel to
wheel. However, the average traction (in time) is the same usually for all wheels.
In some cases, the road under the wheels on one side has characteristics that are
not the same as those at the other side, such as when the wheels near the curb
are on wet road or, even worse, on snow or ice, while those toward the center of
the road are on a clean and dry surface. These conditions are usually referred to
as μ-split . In this case, a select low strategy at the front axle would lead to very
low values of the braking force, while a select high strategy may lead to very high
yawing moments. The use of an accelerometer measuring yawing accelerations
or an instrument that can measure the yaw angular velocity allows intermediate
strategies to be implemented. The braking force on the front wheel that is in
better conditions can be limited when the yaw angular acceleration increases, so
that the stability of the vehicle can be maintained without overly penalizing the
braking force. A strategy of this type depends largely on the characteristics of
the vehicle, and particularly on its moment of inertia about the yaw axis and
its geometrical characteristics (wheelbase, track). The larger the yaw moment of
inertia, the larger the allowable yaw moments.

The devices used to implement an ABS system were described in Part I.
Here we must just remember that although an ABS device is conceptually simple
(to reduce the braking torque it is sufficient to use an electrovalve discharging
a quantity of high pressure fluid from the hydraulic system, thus reducing the
pressure in the cylinders of the brakes), in practice a simple ABS of this kind
cannot be used, because after a number of interventions the brake pedal would
sink owing to the discharge of fluid. This problem may be solved at the cost
of greater system complexity, using a pump actuated by an electric motor that
takes the discharged fluid and reintroduces it into the high pressure part of the
circuit. There are alternatives that avoid adding an electric motor with its control
devices to a system that is already complex, but a pump allowing the system to
be put under pressure with no intervention by the driver on the brake pedal is
required for other functions like traction control.

The ABS system interferes with other devices usually included in the braking
system, such as the pressure proportioning valve. The function of the latter can
actually be integrated into the ABS system, obtaining what is often referred to
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as EBD (Electronic Brake Distributor). However, the strategy of an ABS system
and a pressure proportioning valve are radically different. The first must step in
when locking conditions are approached, while the second must always function,
so that the braking torques at the rear axle are reduced when the weight acting
on it is reduced because of longitudinal load shift. Conceptually, the slip of the
front and rear wheels must be continuously monitored so that the longitudinal
slip at the front is larger than that at the rear. All the difficulties seen for
measurement of the slip while dealing with ABS systems are present, with the
simplification that what matters here is not an absolute measurement but simply
the measurement in the difference of slip between the axles. The measurement
of the longitudinal acceleration, and then of the load shift, may be very useful.

27.3.3 Traction control systems (TCS, ASR)

The problem of preventing driving wheels from slipping is similar to that of
braking wheels, even if it is usually less severe and occurs only in the case of
powerful vehicles or in conditions of poor traction. Wheel slipping in this case has
two effects: a decrease of the force exerted in the longitudinal direction and a loss
of the ability to exert transversal forces, with effects on stability and driveability.
The latter are considered less severe in front wheel drive vehicles, which become
less controllable, than in rear wheels drive vehicles, which become less stable.

The systems that control the slipping of driving wheels are usually referred
to as Traction Control Systems (TCS) or Anti Spin Regulators (ASR). The sen-
sors are the same as for the anti-lock system: they measure the angular velocity
of the wheels so that their acceleration can be computed. When a wheel begins to
spin, it is possible to react in two ways: either by reducing the power supplied by
the engine or operating the brakes. The second strategy is usually quicker, but
the actual implementation follows a mixed strategy: The brakes are first used to
slow the wheel that has begun to spin, after which the power of the engine is
reduced.

The two strategies have different effects and are used to solve different prob-
lems. If the vehicle is in symmetrical conditions, i.e., if the right and left wheels
are in the same conditions, it is useless to use brakes and not advisable, because
both wheels of the same axles should be braked. The result is that the transmis-
sion is much more stressed than usual, at least until the power from the engine
is reduced. In this case, the reduction of the driving torque prevents both wheels
from slipping.

The advantage is not so much improved performance, because the driving
force the wheels can exert when not slipping is not much greater than they
would exert when slipping (except in the case of high performance tires), but
the possibility of exerting side forces. In particular, in the case of rear wheel
drive vehicles, the vehicle remains stable, while in that of front wheel drive, the
vehicle remains manoeuvrable.

The reduction of power may then be realized by acting on the motor control
system.
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In case of asymmetric conditions (μ-split), this strategy would penalize per-
formances excessively, because it would apply a sort of select low strategy: both
wheels would exert a force equal to what the wheel in the worst conditions can
exert.

On the other hand, by braking the slipping wheel, the differential gear sub-
dividing the driving torque between the driving wheels allows the wheel in better
condition to transfer a torque equal to the sum of the braking torque applied on
the other wheel plus the torque the latter is able to transfer. By acting on the
brakes an increase in performance is obtained, but has a small effect on stability
or manoeuvrability. TCS systems can thus be used as an alternative to controlled
slip differential because, by applying a braking torque on the wheel that would
slip, the system allows a certain driving torque to be transferred to the other
wheel even in case where the differential is of the simplest type.

While ABS systems act on the braking system to reduce the pressure exerted
by the driver, possibly assisted by the power brake, the TCS must use a pump
to put the hydraulic system under pressure, independent of the force exerted by
the driver on the brake pedal. However, in many cases such a pump is already
included in the ABS system, so the complexity introduced is not great.

To combine the requirements on performance with those on stability, TCS
systems must act on both the engine and the brakes, even at the expense of
added complexity. The two strategies can be mixed following a logic that is
based on many parameters, apart from the wheel slip and the acceleration of the
vehicle: for instance, at low speed it is possible to give priority to acceleration
performance through a strategy based on the use of brakes, while at high speed
it is possible to give priority to stability by acting on the engine.

TCS systems allow drivers with limited ability to drive difficult vehicles,
such as rear wheel drive high powered cars, even in critical road conditions.

27.3.4 Electric braking

Electric braking may be performed in two radically different ways: by electrically
actuating the pump of a conventional hydraulic (pneumatic in industrial vehicles)
system, or by substituting an electric braking system for the hydraulic one. This
second strategy may in turn be implemented in two different ways, by replacing
the hydraulic system with an electromechanical one (including, for instance, an
electric motor in each wheel that operates the calipers using a ball screw) or by
putting a pump operated by an electric motor in each wheel, sending pressurized
liquid to a more or less conventional caliper.

Even if all these approaches allow ABS and possibly TCS functions to be
integrated more easily into the braking system, only the total replacement of
the hydraulic system with an electromechanical one where the electric control
reaches each wheel directly (possibly using a fully electromechanical actuator)
allows the full performance predicted for by wire devices to be attained, but at
the cost of many reliability problems.
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27.4 HANDLING CONTROL

27.4.1 General considerations

As seen in Part I, the lateral dynamics of the vehicle is controlled by the driver,
who creates a yawing moment by setting the steering wheels at a certain steering
angle; this torque causes a yaw rotation that puts all wheels at a certain yaw
angle and consequently produces a lateral force that alters the trajectory. The
yawing torque may be produced in many ways: acting on the front steering
wheels (setting them at a sideslip angle and then creating a side force that,
being applied in front of the center of mass, produces a yawing moment), acting
on all wheels that are steering (setting them at a sideslip angle in the opposite
direction and then producing a yawing moment), and also by creating a yawing
torque directly through differential braking or traction on the right and left
wheels. It is also possible to act on all the wheels, setting them at a steering
angle in the same direction and thus producing directly the side forces needed
to alter the trajectory without any yaw rotation or sideslip angle of the vehicle.

Traditional vehicles are controlled using only the first of these strategies:
manual direction control through front wheel steering. If the road conditions are
good and the required manoeuvre is not too severe, the simplified models seen
in Chapter 25 allow the response of the vehicle to be predicted fairly well. The
average driver is able to maintain control without difficulty.

In particular, the dynamic analogy of the vehicle with a mass, spring,
damper system (equations (25.110) and (25.111)) is fairly accurate and the re-
sponse to a steering command δ(t) is that of a second order system excited by a
linear combination of laws δ(t) and δ̇(t). The response in terms of yaw velocity
and lateral acceleration is expressed by Equations (25.117) and (25.115), and
that in term of sideslip angle β(t) is expressed by Eq. (25.116).

Even if the response is that of a non-minimum phase system, in which the
sideslip angle may initially take values of opposite sign with respect to the steady
state value, the sideslip angle can be felt by the driver only to a limited extent
and does not create confusion or dangerous situations.

It is interesting to study the response of the vehicle if the control strategy
is based on rear wheel steering. The non-stationary response can be computed
from previously seen equations by stating K1 = 0 and K2 = −1 into Equations
(25.183) and (25.184). By using the simplified expressions of the derivatives of
stability, it follows that

r0

δ0
= C2

mbV s + C1l

Δ
, (27.38)

ay0

δ0
= C2

−V Jzs
2 − C1las + V C1l

Δ
, (27.39)

β0

δ0
= C2

−
(
mbV 2 + C1la

)
s + JzV

V Δ
, (27.40)

where Δ is still expressed by Eq. (25.168).



458 27. CONTROL OF THE CHASSIS AND ‘BY WIRE’ SYSTEMS

Note that the steady state response in terms of yaw velocity r and lateral
acceleration is that already seen for front wheel steering, while that in terms of β
is similar except for the term C2 substituting for C1. The steady state response
is little changed if the vehicle is steered by operating the rear instead of the front
wheels.

In non-stationary conditions, things are quite different. By setting the nu-
merator of the first and the third transfer functions to zero, one can see that the
responses in terms of r and β have only one real positive zero and thus cause no
problem. The zeros of the transfer function ay0/δ0 are

s = C2
−C1la ±

√
C2

1 l2a2 + 4JzV 2C1l

2V Jz
. (27.41)

The two zeros are real, one positive and one negative. The response is then that
of a non-minimum phase system at all speeds. The vehicle initially accelerates
laterally in a direction opposite to that in which it will accelerate in steady state,
disorienting the driver.

It has been proven that it is still possible to drive the vehicle under these
conditions, provided that the driver is suitably trained, but driving using the rear
wheels is much more difficult. This solution is used only on very slow vehicles
(earth-moving machines, dumpers, etc.), because the zero in the right half plane
of the roots locus tends to move towards the origin when the speed tends to zero.

The above mentioned considerations are based on linearized models. The ex-
perience of the average driver is based on driving conditions in which the behavior
of the vehicle is essentially linear. If the limit conditions are approached, either
because road conditions are poor or because high performance is required, the
nonlinearity of the system, due both to the tires (and possibly to aerodynamic ac-
tions), and the geometry of the system, starts to become important. The vehicle
may start to behave differently from what the driver expects.

It is difficult for the driver to assess the traction available due to road
conditions and the sideslip angle of the tires, so when the wheels start slipping
they do so abruptly. The feeling the driver has in normal conditions is that of
kinematic driving (the wheels seem not to be at a sideslip angle and the trajectory
seems to be defined by the position of the steering wheels in a geometrical way).
When the sideslip angles increase to values that can no longer be neglected, the
driver feel he has lost control of the vehicle. And indeed he has, for the average
driver is unable to control the vehicle when the sideslip angles are large.

Actually, the behavior of the vehicle may change considerably when the
sideslip angles take values beyond the linearity range. From the viewpoint of
theoretical study, it is possible to compute the steady state working conditions
using nonlinear models and then to linearize the equations about those con-
ditions. This allows us to study, for instance, the stability or manoeuvrability
under these conditions (Chapter 25). The aim of a study of this kind should be
to reduce the difference between handling in limit and in linearized conditions
so the driver is able to control the vehicle even outside the linearity range.
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FIGURE 27.10. Response to a steering input. Curve a): conditions far from the limit.
Curve b): conditions close to the limit. Curve c): conditions beyond the limit.

Consider, for instance, a steering input, aimed at putting the vehicle on a
curved trajectory (Fig. 27.10). If road conditions are good, the vehicle moves on
its trajectory in conditions that are far from limit conditions. The sideslip angles
are small and the behavior is essentially that of a linear system (curve a). If road
conditions are worse (or if the driver steers the tires so as to develop side forces
that approach the limit) the sideslip angles become larger and the tires work in
nonlinear conditions (curve b). Control is still possible, but the driver must have
a proficiency beyond that of an average driver. Finally, if the road conditions
are worse still, the vehicle may rotate about the yaw axis, but the wheels slip
laterally, so that the vehicle can no longer follow the required trajectory (curve c).
The sideslip angles increase in an unbounded way and the yaw rotation becomes
uncontrolled. An alternative outcome is that the vehicle cannot rotate due to
lateral slipping of the steering wheels. It may then go out of its trajectory with
limited, or even small, values of the sideslip angles.

27.4.2 Control using a reference model

It is impossible for the vehicle to maintain a behavior corresponding to what
the driver is used to based on his experience with the linearized response when
he approaches conditions close to the limit. However, it is possible to introduce
control strategies giving the vehicle an apparent behavior the user can find pre-
dictable. This can be done by building a reference model allowing the response
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to the control inputs supplied by the driver to be computed in real time, and by
implementing it on a control system that forces the vehicle to behave as close as
possible to the computed results. This strategy is not new, and is widely used in
the aerospace field, particularly for flying aircraft that are particularly difficult
to control. The most typical example is the Space Shuttle6: its aerodynamic con-
figuration is such that controlling it during landing, the most critical phase of
the flight, is extremely difficult. A mathematical model based on a standard civil
aircraft is used as a reference model; it runs on a control system that corrects
the behavior of the spacecraft so that it simulates that of the model, making
maneuvering much easier.

To transfer this strategy to the automotive field is not simple, but the ad-
vantage of providing the vehicle with a response the driver is used to is clear.
It is also clear that the model cannot control the vehicle when this is physically
impossible, such as when the driver demands a lateral acceleration higher than
that made possible by the maximum forces the road-wheels contact can exert.
The control system must then realize when the limit conditions are approaching
and warn the driver, or manage the high slip conditions in the best possible way.

A possible sketch of a control strategy of this type is shown in Fig 27.11.
If the vehicle used to build the reference model is the actual vehicle used

under the linearized conditions, the control device will perform little work in
conditions far from the limit, and only when the behavior deviates from the
linearized behavior will it be asked to correct the response. If, on the other
hand, this strategy is used to induce a vehicle behavior different from standard
operations, the control device will have to act in all driving conditions.

Only the steering angle δ is sensed in the sketch of Fig 27.11, but it is
possible to use devices that are much more complex, measuring the driving or
braking forces (at minimum, sensing the position of the accelerator pedal and the
pressure in the braking system), because directional control is much influenced

FIGURE 27.11. Sketch of a possible strategy based on a reference model to implement
lateral control.

6D. Karnopp, Vehicle Stability, Dekker, New York, 2004
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by longitudinal forces exerted by the tires. The sensors for the actual behavior
of the vehicle may be of a different type, including not only a yaw velocity and a
lateral acceleration sensor, but also other sensors allowing the slip of the various
wheels to be computed as in ABS systems. Actuators may also be of a different
type and corrections may be exerted using different strategies.

27.4.3 VDC systems

Acronyms for the devices implementing lateral dynamics control are many, and
they are often trademarks of the various manufacturers, designating systems
working with different strategies. In this chapter they will be referred to under
the general name of Vehicle Dynamics Control (VDC).

The simplest way to control vehicle dynamics is to leave full control of the
steering to the driver, performing the control action by differentially braking
the wheels using the existing braking and traction control system, assuming the
vehicle already has ABS and TCS devices.

Assume, for instance, that the control system detects a yaw speed that is
higher than that computed by the reference mathematical model for the mea-
sured steering angle and speed. A situation of this kind, similar to that shown in
Fig 27.10, curves b or c, may be defined as an excess of oversteer and corresponds
to an excessive sideslip angle of the rear wheels. It may occur for various reasons,
such as an underinflated rear tire, low traction at the rear wheels, a center of
mass located far to the rear, driving forces created by a rear wheel drive vehicle,
or many other possibilities. To reduce the yaw angular velocity it is possible to
brake the wheels outside the curved trajectory. In this case, it is expedient to
brake the front wheel, both because it is likely that the front axle still has trac-
tion available and because by doing so the vehicle becomes more understeer. In
a similar way, if the yaw velocity is lower than the computed value, it is possible
to brake the rear wheel inside the turn (Fig 27.12).

FIGURE 27.12. Differential braking used to correct directional behavior.
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Instead of using differential braking, it is possible to have a steering front
axle controlled by the VDC system. This strategy is different from that assumed
in the section on 4WS where the rear steering was controlled directly by the
driver along with the front steering. In the present case, the driver controls the
vehicle using the front steering only, while the rear steering is used to perform
corrections aimed at forcing the vehicle to follow the behavior of the reference
model.

Differential braking has the advantage of acting more quickly than rear
steering, because the latter requires not only that the wheels be set at a sideslip
angle, something that cannot occur instantly, but also that the wheels start
exerting cornering forces, something that requires the vehicle to travel a distance
equal to the relaxation length. Nor is the action of the brakes is instantaneous,
but its characteristic time is lower.

This drawback of controlling by steering particular wheels is not typical of
rear steering, but is present whenever tires exert cornering forces. Another draw-
back of this strategy is that any steering control performed on the rear wheels
involves a non-minimum phase system. The control action initially produces a
lateral acceleration in a direction that is opposite to that occurring in steady
state. Although this may in itself be an advantage (non-minimum phase systems
are often quicker than standard systems), it may be felt as a drawback by the
driver, who may prefer a vehicle without VDC.

Instead of using rear steering, or in addition to it, the VDC system may
control front steering, removing it in part or totally from the direct control of
the driver. While the strategies seen above are additional to the usual ways
of controlling the vehicle’s course, this method does offer an alternative. If the
control system uses a reference model to perform driver commands, the latter
may not even realize that the control system is overriding his command. He may
have the feeling that the vehicle behaves as expected, which is true: The goal
of the driver is to keep the vehicle on the required trajectory, and it does not
matter whether to do so the steering wheels are set to the angle the driver sets
on the steering wheel or the control system produces a different steering angle,
possibly while the brakes act differentially and the rear wheels steer.

If the vehicle is provided with a steer by wire system, there is no difficulty
in removing, in part or totally, steering from the direct control of the driver: It
is enough that the steer actuator not only receives the signal from the sensor
measuring the angle of the steering wheel, but is driven by the controller that acts
according to a more complex logic. However, as it will be seen later, at present
(2008) there are still difficulties, included those linked to standards, in uncoupling
the steering system completely from the steering wheel. It is possible to use
a partially mechanical solution, where the steering mechanism is connected to
a differential gear, receiving an input from the steering wheel through the shaft in
a conventional way, along with the input coming from an electric motor controlled
by the VDC system. The steering angle of the wheels is then a combination of
the angle of the steering wheel and that imposed by the actuator.
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Apart from operating the brakes, the rear steering and the front steering,
the VDC system may also operate through the suspensions. If an active anti-roll
bar is used, it is possible to shift the load transfer from the front to the rear axle,
or vice versa, making the vehicle more or less oversteering. This strategy will be
dealt with later when we discuss active suspensions.

Devices of the kind seen above not only affect the driveability of a vehicle
and the feeling the driver gets from it, but may also change its intrinsic stability.
While the steering on all wheels, implemented by controlling the steering boxes
of the two axles using the steering control, has no effect on the stability of the
vehicle (although it may affect the stability of the vehicle driver system), a device
in which a closed loop controller oversees the lateral behavior (like that sketched
in Fig 27.11 or in Fig 27.12) may alter it to some extent.

In general, a VDC system may make the vehicle more stable, by making it
less subject to external disturbances, as is predictable for a closed-loop device. If
a strategy based on a reference model is applied, the stability of the vehicle should
be brought to coincide with that of the model, but this must be accurately studied
at the design stage. It must be noted that if the VDC system is designed to
operate in conditions in which the vehicle has a nonlinear behavior (in conditions
far from the limit, where the vehicle is essentially linear, the usefulness of VDC
is debatable) both the system and the controller are nonlinear, complicating the
study of stability. This also applies to cases where the goal of the control device
is to make the global behavior of the controlled system (as seen by the driver)
as linear as possible.

Finally, any system controlling the handling of a vehicle has limitations. The
vehicle may remain on the trajectory the driver sets, thanks to the control system,
only until the maximum cornering forces are reached. From this viewpoint, a
device that changes the behavior of the system so that it remains close to the
behavior in conditions far from critical may be dangerous, because it prevents
the driver from realizing that he is dangerously approaching critical conditions.

If the control system must warn the driver of the approaching of limit con-
ditions, the controller must be designed so that it changes its control logic when
the limit conditions are reached. If, notwithstanding the intervention of the con-
troller, the vehicle cannot be kept on the desired trajectory, the device must
perform an emergency manoeuvre, quite a difficult thing because also the driver
may be trying to do something similar.

It is unlikely that the control system should have authority to override the
driver, because the latter has information the control system ignores (if nothing
else, information on the road conditions) and, if the driver is proficient, he may
be able to manage the emergency situation better than any control device. This
consideration may not apply to average drivers, who may panic and react in a
completely wrong way.

Another reason to limit the authority of the controller is to give the driver
some margin to react to a malfunctioning of the device. This consideration may
be important for present applications, while in the future the authority of the
system may be increased as more experience on these systems is gained. However,
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it is perhaps unrealistic to believe that in the future stability control systems
that cannot be a cause of accidents a particularly good human driver could
prevent will be built. We must probably reason in statistical terms: A system is
useful when the number of accidents it may prevent is larger than the number of
accidents it may cause. This criterion is, however, difficult to implement, because
it is impossible to say how many accidents a vehicle dynamics control system
may prevent.

A further point is that the authority of the VDC system may need to be
limited to prevent the driver from feeling that he cannot master his vehicle. An
expert driver may appreciate the feeling of being in a complete control and may
even enjoy the nonlinear behavior in conditions close to the limit. For this reason
the driver can be given the option to switch off the VDC system, as he chooses.
The vehicle may have completely different behavior in the two cases, satisfying
customers who might otherwise buy two different vehicles, one for everyday use
and one for sport driving.

Finally it would be a mistake to think that modifying the handling of a
vehicle using a control system makes efforts aimed at designing well-handling
vehicles useless. As already stated, it is better to avoid giving too much authority
to the control system for safety reasons, and a failure of the control system
that makes the vehicle outright unstable must be avoided. Moreover, it must
be added that the control system is unable to generate arbitrarily high control
forces, leading to limitations to its capabilities.

27.4.4 Simplified VDC with yaw velocity control.

Consider a device controlling the yaw velocity of the vehicle, implemented by
steering the front wheels. The steering angle of the front wheels is then a linear
combination, one that can be implemented using a differential gear that has as
inputs the steering wheel and the controlled actuator, of angles δg expressed by
the driver and δc imposed by the control system. A possible implementation of
this system is shown in Section 6.1.2 of Part I.

Assuming that the coefficients of the linear combination have a unit value,
it follows that

δ = δg + δc . (27.42)

Let the reference model be the two degrees of freedom model studied in
Chapter 25: {

v̇r

ṙr

}
= Ar

{
vr

rr

}
+ Brδg , (27.43)

where the dynamic matrix at constant speed and the input gain matrix are

Ar =

⎡
⎢⎢⎢⎣

Yβr

mV

Yrr

m
− V

Nβr

JzV

Nrr

Jz

⎤
⎥⎥⎥⎦ , (27.44)
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Br =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Yδr

m

Nδr

Jz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (27.45)

The parameters of the reference model may be chosen with different criteria.
For instance, Yβr, Yrr, ... may be chosen to be equal to the values Yβ , Yr, ... as
computed for the actual vehicle. In this way the control system will be almost
inactive when the vehicle behavior is similar to the linearized model, and the
driver will have the impression that the behavior of the vehicle is what he is
used to in conditions of smooth driving.

Another strategy may be to modify the behavior of the vehicle in all condi-
tions, giving it, for instance, a neutral steer response. In this case

Nβr = 0, Yrr = 0 (27.46)

while the derivatives of stability may be

Yβr = − l

b
C1, Nrr = −al

V
C1,

Yδr = C1, Nδr = aC1.

(27.47)

If only the yaw velocity r is to be controlled, it is possible to define an error

e = r − rr . (27.48)

As an example, a purely proportional controller may be used: It generates
a steering angle δc proportional to the error through a gain k of the controller,
yielding

δc = −ke = −k (r − rr) . (27.49)

Although a control of this kind is easy to implement (only r must be mea-
sured and rr computed), its performance would be poor, particularly in terms
of control robustness.

An example based on the sliding mode technique is reported in Vehicle
Stability by Dean Karnopp.7

Example 27.4 Consider the vehicle studied in Example 26-4 and apply to it a VDC

system of the type shown above with the aim of making it neutral steer, using a simple

proportional control. Compute the gains of the vehicle in steady state conditions and

simulate a steering step manoeuvre to put it on a circular trajectory with a radius of

200 m at a speed of 100 km/h = 27.78 m/s.
The behavior of the system may be modelled using an equation of the type

ż = Az + Bu + d, (27.50)

7D. Karnopp, Vehicle Stability, Dekker, New York, 2004.
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where z is the state vector, the input u can be assumed as

δ = δg + δc

and d is a vector containing the external disturbances and those due to the deviation

from the linear behavior implicit in matrices A and B.

The order n of the model used for the vehicle may be different from the order of the

reference model, which is equal to 2, but in the present case also the former is assumed

to be a model with two degrees of freedom. Thus assume n = 2. Neglecting disturbances

and nonlinearities, d = 0
If the output of the system is only the yaw velocity, the output equation reduces to

r = Cz, (27.51)

where the output gain matrix C is a row matrix which, if r is one of the states of the

system, has all elements equal to zero and one equal to 1. In the present case, C has

just 2 elements.
The state equation for the system made by the vehicle and the reference model is

{
ż = Az + B (δg + δc) +d
żr = Arzr + Brδg

(27.52)

Remembering equations (27.49) and (27.51) and neglecting d, Eq. (27.52) becomes

{
ż
żr

}
=

[
A 0
0 Ar

]{
z
zr

}
+

[
B
Br

]
δg − k

[
B
0

]
(Cz − Crzr) , (27.53)

where Cr is a matrix similar to C, but for the reference model. In the present case, the

two matrices are the same.
With simple computations, it follows that

{
ż
żr

}
=

[
A − kBC kBCr

0 Ar

]{
z
zr

}
+

[
B
Br

]
δg . (27.54)

Assume a unit value for k (note that k in this case is not non-dimensional, but
has the dimension of a time. It must then be said that k = 1s). Using symbols Acl and
Bcl for the matrices in Eq. ( 27.54), the steady state response is

{
ż
żr

}
ss

= −A−1
cl Bclδg. (27.55)

The trajectory curvature gain and the sideslip angle gain are

1

Rδg
= − 1

V

[
0 1 0 0

]
A−1

cl Bcl. (27.56)

β

δg
= − 1

V

[
1 0 0 0

]
A−1

cl Bcl.



27.4 Handling control 467

FIGURE 27.13. Trajectory curvature gain (a), sideslip angle gain (b) and lateral ac-
celeration gain (c) as functions of the speed for the vehicle of example 25.4 for the
reference model (neutral steer) and for the vehicle with VDC. In (d) the response to a
step steering input to insert the vehicle on a trajectory with 200 m radius is shown.

The trajectory curvature gain, the sideslip angle gain and the lateral acceleration

gain are plotted as functions of the speed in Fig 27.13. The reference model is that of a

neutral steer vehicle with the same geometry and front tires.

From the trajectory curvature gain it is clear that the vehicle has an almost neutral

steer behavior, but a proportional control cannot completely compensate for stationary

conditions, as expected. To produce an exactly neutral behavior at least a proportional

integrative (PI) control must be used.
At a speed of 100 km/h the original vehicle, strongly understeer, has complex con-

jugate poles. From the model with two degrees of freedom it follows that

s1,2 = −5.1915 ± 4.5730i.

The poles of the vehicle with VDC are obviously 4, because the model has 4 states,
and their values are

s1,..4 =
[
−3.7585 −4.8822 −7.7146 −48.8114

]
.

Even if a much simplified control has been used, and no optimization of the gain

has been attempted, the vehicle is stable.
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To obtain a trajectory with a radius of 200 m the vehicle without VDC must have

a steering angle δg = 0.0202 rad = 1.159◦, values that coincide with those of Example

25.4. To obtain the same curvature with the VDC system, the steering angle must be

δg = 0.0115 rad = 0.658◦. The time history of the response is shown in Fig 27.13d).

The behavior of the understeer vehicle is oscillatory, while that of the controlled vehicle

is not.

27.5 SUSPENSIONS CONTROL

Performance of passive suspensions (i.e. suspensions made of springs and
dampers) both in terms of comfort and handling is limited and, as stated in
Chapter 26, any improvement of the first is often accompanied by a worsening of
the latter and vice versa. The role of damping in the optimization of the handling
and comfort characteristics is shown in Fig. 26.17. The figure is here shown in a
qualitative way, with its scales starting at zero to show the range in which the
parameters span (Fig. 27.14).

The curve is the lower envelope of the performance that may be obtained
with passive suspensions, while the zone between the horizontal and vertical tan-
gents shown in the figure is the locus of the points defining optimal performance.

Moreover, as stated earlier, the kinematic errors that are present in all types
of suspensions make it impossible to use very soft springs, because they will lead
to larger suspension movements and thus to larger unwanted motions of the
unsprung mass (changes of track, steering and camber angles, etc., with heave
and roll motion).

FIGURE 27.14. r.m.s. value of the acceleration of the sprung mass versus the r.m.s.
value of the oscillating component of the force on the ground for a quarter car excited
by a white noise in velocity. Lower envelope for passive suspensions and zone for active
suspensions.
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FIGURE 27.15. Quarter car with semiactive (a) suspension (the damping coefficient
c is variable in a controlled way) and active suspensions with a controlled actuator
supplying all the force exerted between the sprung and unsprung masses with no other
mechanical device (b) or with the help of a spring (c).

To improve the situation, suspensions controlled by suitable devices have
been studied and sometimes applied in mass produced vehicles. As shown in
Section 5.3 in Part I, it is possible to distinguish between semi-active suspen-
sions (Fig. 27.15a) and active suspensions (Fig. 27.15 b and c) depending on
whether the control system simply controls the parameters of the system (usu-
ally damping) with limited energy requirements, or directly controls the force
exerted by the suspension on the sprung mass, using actuators of a different
type that involve a relatively large power consumption.

The performance of semi-active suspensions lies in Fig. 27.14 on the same
curve shown for passive suspensions, with the difference that while the latter
are represented by a single point, the former may move on the curve when the
value of the damping coefficient is changed. It is also possible to imagine semi-
active suspensions where the stiffness of the spring can also be changed, as in the
system in which the attitude of the vehicle is controlled, shown in the referenced
section of Part I. However, devices of this kind usually require much more power
than that needed to control damping.

In the case of active suspensions, it is possible to have performance repre-
sented by points lying below the envelope, in the zone shown in the plot. In the
figure such a zone is very small, because it has been assumed that the stiffness
of the suspension is the same as that of the passive suspension, but it may be
much larger if a fully active suspension is used.

Another important parameter is the maximum frequency at which the active
system operates. The practical difficulties and the power needed in an active
system increase with increasing frequency. If the suspension must control the
attitude of the vehicle and the frequency at which it works is low, on the order
of the frequency of the sprung mass, the system is relatively straightforward. If
the control must operate at frequencies on the order of the unsprung masses, or
even higher, the systems becomes more complicated.
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27.5.1 Active roll control (ARC)

As stated in the chapter on comfort, roll stiffness is in general too low, and roll
motions are above all too little damped. Adding anti-roll bars solves the problem
only partially, because while limiting the roll angle in static conditions, it makes
roll motions even more underdamped. anti-roll bars are actually used on one axle
only, to increase load shift on that axle and to decrease it correspondingly on the
other. In this way, it is possible to modify the directional behavior, particularly
in conditions close to the limit.

Active Roll Control (ARC) has the advantage of reducing roll on a curved
path, while increasing roll damping or modifying handling characteristics, de-
pending on the control strategies used, without the drawbacks involved in an
increase of the roll stiffness of the vehicle.

First consider roll in quasi-static conditions. If the center of mass is above
the roll center, as is almost always the case, the vehicle rolls toward the outside of
the path. This is inadvisable both for stability (because the center of mass moves
outwards, reducing the rollover factor − making rollover easier − and increasing
load shift) and for comfort. Moreover, because of the rolling condition, the wheels
take a camber angle that results in camber forces usually directed against the
sideslip forces that bend the trajectory. The last effect depends strongly on the
type of suspensions used and particularly on their camber recovery.

Even if suspensions were infinitely stiff, the subjective feeling of the passen-
gers when rounding a turn would be that their bodies were inclined outward,
because the local vertical direction is inclined with respect to the true vertical.
The actual inclination of the vehicle body adds to this effect with results that
may be detrimental to comfort, particularly if the lateral acceleration is high.

Roll may be controlled by an actuator exerting a torque between the body
and one or more axles. The simplest scheme is that of an active anti-roll bar.
Conceptually, imagine cutting the anti-roll bar of an axle, for instance, in the
middle, and inserting a rotational actuator exerting a torque. An example of a
device of this kind is discussed in section 6.3.4 of Part I.

With the torsional stiffness of the axle unchanged, the vehicle behaves pas-
sively if the actuator does not work or is locked. If the actuator exerts a torque
to rotate the body back to a position perpendicular to the ground, the effect
is an apparent increase of the roll stiffness because the angle is reduced. But
the actual stiffness does not change nor does underdamping of the suspension
increase, as it would if the stiffness actually had increased.

A first strategy is to cancel the roll angle, obtaining an apparently infinite
stiffness. The feeling of lateral tilting of the vehicle is reduced but not cancelled,
while above all the changes of track, steering, camber, etc. due to roll vanish.
Because kinematic errors related to suspensions linked with roll (or better with
the static component of roll) are completely cancelled, handling is improved.

From the viewpoint of mathematical modelling, rigid-body models become
more precise, because the assumption that roll angle is vanishingly small holds
exactly. Often, while applying this strategy, roll is compensated only up to a
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certain lateral acceleration. Some rolling toward the outside of the path, although
smaller than usual, is accepted. This may be necessary, because the torque the
actuator must exert increases with the lateral acceleration and may become
quite large. Operating in this way, the roll angle can warn the driver that critical
conditions are approaching, but it is doubtful whether the geometric roll angle
may be separated from the apparent roll angle due to the inclination of the local
vertical.

Another strategy is to overcompensate for rolling by inclining the vehicle
toward the inside of the trajectory. The limit condition is defined by aligning
axis z with the local vertical. This option will be discussed later in detail, in
relation to tilting vehicles.

As seen when dealing with two-wheeled vehicles, the roll angle is

φ = arctan
(

V 2

Rg

)
. (27.57)

There are advantages in both comfort and handling. If the control is precise
and quick enough, passengers do not feel any centrifugal acceleration. In rail
transportation the diffusion of tilting trains owes mostly to comfort, even if the
larger radii of railways when compared to roads cause lower lateral accelerations
than in motor vehicles. On the other hand, the great sensitivity of the organs
of human equilibrium in detecting lateral acceleration allows us to detect a tilt
of less than one degree, and an angle of just a few degrees causes a strong
discomfort.

In terms of handling, if roll compensates exactly for lateral acceleration,
load shift is exactly zero and all its effects are cancelled. On the other hand, the
effects of kinematic suspensions errors do not vanish and may be larger, although
of opposite sign, than those typical of conventional vehicles. If the suspensions
keep the midplanes of the wheels parallel to the xz plane, i.e. if

∂γ

∂φ
= 1 ,

the position of the wheels on the ground is similar to that of the wheels of
motorcycles. The strong camber forces then add to the side forces due to sideslip.

The roll angle needed to compensate for the lateral acceleration may be
large. For instance, at an acceleration of 0.2 g the angle is 11◦ while if the ac-
celeration is 0.5 g the angle is 27◦. While angles larger than 40◦ are needed to
compensate for the lateral acceleration in high performance cars, it is impossi-
ble to use this strategy in racing cars because angles of 70◦ or more would be
required. The steady state torque the actuator must exert may be small even in
the case of large lateral accelerations. The actuator must maintain an unstable
equilibrium position If it is maintained with precision, reacting quickly to de-
viations, the moment the actuator must exert is theoretically very small. It is,
however, impossible that the equilibrium condition be followed instant by instant
with a precision sufficient to cancel all rollover moments, and the actuator may
be called to exert a high torque.
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Many studies on tilting vehicles based on active roll control have recently
been undertaken. These were followed by prototypes and even some small scale
production. The vehicles are mostly narrow, often designed for city use, and can
be considered a synthesis of motorcycle and car. If the vehicle is very narrow
it is possible to reach inclination angles large enough to compensate for lateral
acceleration without the body of the vehicle touching the ground at the inside
of the path. Many of these tilting body vehicles have three wheels.

The simplest model for roll control is the model with a single degree of
freedom described in Section 26.6.1 (Fig.26.36). It is quite a rough model because
it neglects the compliance of the tires and above all because it is impossible to
study roll dynamics separately from lateral dynamics. The equation of motion
of a passive vehicle is Eq. (26.119), repeated here

Jxφ̈ + (Γ1 + Γ2) φ̇ + (χ1 + χ2) φ − msghG sin (φ) =

= Γ1α̇t1 + Γ2α̇t2 + χ1αt1 + χ2αt2 ,

where the forcing functions are due to the lateral slope of the road αti
at the

i-th suspension. Jx is the moment of inertia about the roll axis of the sprung
mass alone.

If two active anti-roll bars exerting a torque Mai
(i = 1, 2) are added and if

a generic moment Me is included into the model, the equation of motion becomes

Jxφ̈ + (Γ1 + Γ2) φ̇ + (χ1 + χ2) φ − msghG sin (φ) = (27.58)

= Ma1 + Ma2 + Me + Γ1α̇t1 + Γ2α̇t2 + χ1αt1 + χ2αt2 .

If moment Me is due to the centrifugal force on a path with radius R, its
value is

Me =
mshGV 2

R
cos (φ) . (27.59)

Assuming that the moment exerted by the anti-roll bar coincides with that
due to the actuator, reduced to the bar through suitable transmission ratios, the
stiffnesses χi and damping coefficients Γi are those of the passive suspensions. If
the actuator is controlled by an ideal proportional-derivative (PD) system that
uses the roll angle as error, the moments are

Mai
= −kpiφ − kdiφ̇ ,

where kpi and kdi are the i-th proportional and derivative gains.
The system behaves as a passive system, with stiffness and damping in-

creased by the gains

Jxφ̈ + (Γ1 + Γ2 + kd1 + kd2) φ̇ + (χ1 + χ2 + kp1 + kp2) φ+ (27.60)

−msghG sin (φ) = Me + Γ1α̇t1 + Γ2α̇t2 + χ1αt1 + χ2αt2 .
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Assuming that the roll angle is small, the steady state roll angle in a bend
is

φ =
mshGV 2

R (χ1 + χ2 + kp1 + kp2 − msghG)
. (27.61)

As expected, a PI control is unable to compensate for steady state roll,
even if it is possible to reduce it by increasing the proportional gains. There are,
however, limitations on the values of the gains, mainly for stability reasons.

The steady state torque the actuators must exert is

Mai
= −kpiφ ,

and it grows with V 2.
The load shift on the i-th axle, with track ti, is

ΔFzi
=

mshGV 2 (χi + kpi)
Rti (χ1 + χ2 + kp1 + kp2 − msghG)

. (27.62)

To compensate for the steady state roll it is possible to use a proportional-
integrative-derivative (PID) control

Mai
= −kpiφ − kdiφ̇ − kii

∫
φdt .

By introducing the auxiliary states vφ and iφ, respectively the derivative
and the integral of φ, the state-space model of the system is

⎧⎨
⎩

v̇φ

φ̇

i̇φ

⎫⎬
⎭ =

⎡
⎣ − K

Jx
− C

Jx
− D

Jx

1 0 0
0 1 0

⎤
⎦
⎧⎨
⎩

vφ

φ
iφ

⎫⎬
⎭+ (27.63)

+
1
Jx

⎧⎨
⎩

msghG sin (φ) + Me + Γ1α̇t1 + Γ2α̇t2 + χ1αt1 + χ2αt2

0
0

⎫⎬
⎭ ,

where
K = χ1 + χ2 + kp1 + kp2,
C = Γ1 + Γ2 + kd1 + kd2,
D = ki1 + ki2.

(27.64)

Example 27.5 Consider the vehicle of example 26.11. The data entering the simpli-

fied roll model are Jx = 388.8 kg m2, ms = 1,080 kg, χ1 = 11.25 kNm/rad, χ2 = 9.5

kNm/rad, Γ1 = 955 Nms/rad, Γ2 = 716 Nms/rad, hG = 0.5 m. Compute the time

history of the roll angle and of the load shift of the vehicle without active systems after

a step steering input to insert it on a curve with a radius of 200 m at a speed of 100

km/h = 27.7 m/s.

Repeat the computation for a vehicle with an active anti-roll bar at the rear axle,

with a PD controller with kpi = 10 kNm/rad, kdi = 3 kNms/rad.
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FIGURE 27.16. Time history of the roll angle (a) and of the load shift on both axles
(b) for the three cases of a passive vehicle and a vehicle with an active anti-roll bar at
the rear axle with PD and PID controller.

Add then an integral control with kii = 100 kNm/srad. For computing load shift,

assume a track of 1.3 m on both axles.

Because the system is nonlinear, the equation of motion was integrated numeri-

cally. The results are reported in Fig.27.16(a) and (b) for the roll angle and the load

shift.

Note that the load shift is larger at the front angle in the case of the passive vehicle,

while the active anti-roll bar displaces it at the rear axle. The high value of the derivative

gain leads to an almost non-oscillatory behavior of the PD system, while oscillations

are caused by the integrative control in the case of PID.

The example is only an indication, because the model is quite rough (even a step

steering input causes the lateral acceleration to grow more gradually) and because the

values of the gains were assumed arbitrarily. In an actual case it would not be advisable

to move the load shift to the rear axle (except for correcting understeer), because in this

way the oversteer characteristics of the vehicle would increase.

Remark 27.5 Up to now it has been assumed that the controller has used the
absolute roll angle as a reference, something that requires the use of an artificial
horizon like those used on aircraft. If the roll angle is measured with reference to
the position of the axle, the vehicle body tends to follow the transversal slope of
the road, while if the roll angle is measured with reference to the local vertical,
a measurement easily performed using an accelerometer, the vehicle tends to tilt
toward the inside of the bend, as already shown for tilting vehicles.

Example 27.6 Repeat the study of the previous example, using as a reference the roll
angle measured from the local vertical. Owing to the type of input assumed, during the
entire manoeuvre the local vertical makes an angle

φr = −artg

(
V 2

Rg

)
= −21.36◦

with the perpendicular to the ground.
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FIGURE 27.17. Time history of the roll angle (a), of the load shift on both axles (b)
and of the control torques (c) for the three cases of a passive vehicle and a vehicle with
an active anti-roll bar at both the rear and front axles with PD and PID controller.

Because φr is constant, the moment exerted by the actuators is

Mai = −kpi (φ − φr) − kdiφ̇ − kii

∫
(φ − φr) dt =

= −kpiφ − kdiφ̇ − kii

∫
φdt + kpiφr + kiiφrt .

The results of the numerical integration are shown in Fig.27.17(a), (b) and (c)

for the roll angle, the load transfer and the torque exerted by the actuators. To avoid

too large a load shift on a single axle, two active anti-roll bars are used, with gains

distributed between the axles in the same ratio as the stiffness of the suspensions. The

sum of the gains on the two axles is, however, the same.

Note that the device with a PID controller succeeds in keeping the vehicle inclined

toward the inside of the path so as to compensate for load transfer, even if the actuators

must exert large torques. This is due to the fact that they must balance the torques due

to the suspension springs, which try to keep the vehicle upright: if the control system

is used to keep the vehicle inclined in the curve like a motorcycle, no passive stiffness

must be put in series to the actuator. If the suspension must be passively stable with

non-working actuators, the suspension springs must be put in series and not in parallel

to the actuators.

27.5.2 Heave control

Quarter car with ideal skyhook

Consider a quarter car with two degrees of freedom, like that shown in Fig. 26.7b.
A damper located not between the two masses but between the sprung mass and
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FIGURE 27.18. Quarter car model with two degrees of freedom with skyhook. a) and
b): Ideal skyhook, on a quarter car without and with shock absorber between the
two masses. c): Practical implementation, in which the ideal skyhook is approximated
by a controlled damper located between the two masses (semi-active solution). If the
controlled damper is substituted by an actuator, an active solution is obtained.

a fixed point would be needed to damp the motion of the vehicle body in an
optimal way. A model with this configuration, usually referred to as skyhook8, is
shown in Fig. 27.18 a) or b). The point to which the damper is attached is fixed
in an inertial frame; the damper substitutes for the conventional shock absorber
in the first scheme, while it is added to it in the second.

With reference to Fig. 27.18 a), the equation of motion is

[
ms 0
0 mu

]{
z̈s

z̈u

}
+

[
cs 0
0 cp

]{
żs

żu

}
+

+
[

K −K
−K K + P

]{
zs

zu

}
=

{
0

cpḣ + Ph

}
,

(27.65)

where zs and zu are the displacements with respect to the static equilibrium
position and are measured in an inertial reference frame.

By introducing the non-dimensional ratios

a =
mu

ms
, b =

P

K
, ζs =

cs

2
√

msK
, ζp =

cp

2
√

msK
, (27.66)

8The term skyhook as used in automotive technology must not be confused with the same
term used in aerospace, indicating a long (and hypothetical) cable system attached to a planet
(e.g. the Earth), extending beyond synchronous orbit and rotating at the same speed as the
planet.
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the equation of motion may be written as

ms

[
1 0
0 a

]{
z̈s

z̈u

}
+ 2

√
msK

[
ζs 0
0 ζp

]{
żs

żu

}
+

+K

[
1 −1
−1 1 + b

]{
zs

zu

}
=

{
0

cpḣ + Ph

}
.

(27.67)

By neglecting the damping of the tire cp, which is usually quite small, the
amplification factor of the sprung and unsprung masses are

|zs0 |
|h0|

= PK

√
1

f2 (ω) + c2
sω

2g2 (ω)
(27.68)

where ⎧⎨
⎩

f (ω) = msmuω4 − [Pms + K(ms + mu)] ω2 + KP

g (ω) = muω2 − K − P .

If the shock absorber between the two masses is still present (Fig. 27.18 b),
the equation of motion is

[
ms 0
0 mu

]{
z̈s

z̈u

}
+

[
c + cs −c
−c c + cp

]{
żs

żu

}
+

+
[

K −K
−K K + P

]{
zs

zu

}
=

{
0

cpḣ + Ph

}
,

(27.69)

i.e.

ms

[
1 0
0 a

]{
z̈s

z̈u

}
+ 2

√
msK

[
ζs + ζ −ζ
−ζ ζp + ζ

]{
żs

żu

}
+

+K

[
1 −1
−1 1 + b

]{
zs

zu

}
=

{
0

cpḣ + Ph

}
.

(27.70)

The frequency response of a quarter car with skyhook is plotted in non-
dimensional form in Fig. 27.19. The figure is similar to Fig. 26.12a and c, and was
obtaining using the same values of the non-dimensional parameters b = P/K = 4,
a = mu/ms = 0.1. The response of the quarter car with skyhook with ζs = 1
is compared with that of a conventional quarter car with optimum damping
(Eq. (26.29)) and to a quarter car with skyhook plus a damper between the two
masses with damping equal to 1/3 of the optimum value.

The amplification factor of the unsprung mass is shown in Fig. 27.19a, while
the inertance is reported in Fig. 27.19b. The presence of the skyhook greatly
reduces the displacement and the acceleration at low frequency, while causing a
very high, although not infinite, resonance peak at the resonant frequency of the
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FIGURE 27.19. Non-dimensional frequency response of the sprung mass of a quarter
car with two degrees of freedom. Non-dimensional parameters: b = P/K = 4 and
a = mu/ms = 0.1.The response of a passive system with optimum damping (ζ = 0.433)
is compared with that of a system with skyhook (ζs = 1) and with skyhook with the
same value of ζs plus a damper between the two masses with damping equal to 1/3 of
the optimum value, (ζ = 0.1443).

unsprung mass. The peak is fairly narrow and in theory can easily be reduced,
because when cs tends to infinity the response tends to 0. It is, however, impos-
sible to increase the damping of the skyhook indefinitely, with the result that the
peak cannot be eliminated with this configuration. If a damper, even a small one,
is added between the two masses, the resonance peak in the medium frequency
range disappears without greatly changing the response at low frequency.

A skyhook damper of this kind is quite effective in controlling the motion
of the sprung mass, but the control of the unsprung mass is unsatisfactory. The
amplification factors of the displacement and the acceleration of the unsprung
mass are shown in Fig. 27.20 a and b: The skyhook has practically no effect on the
motion of the unsprung mass at frequencies close to its resonance. However, the
presence of a damper between the two masses strongly reduces the displacement
and the acceleration of the unsprung mass. In the figure, the damping of the
conventional damper is quite low, being about one third of the optimum; if it
is increased the height of the resonance peak decreases, disappearing when the
optimum value is reached. In these conditions there is a small increase of the
response at low frequency.

The ideal skyhook is, then, an ideal solution to control the low frequency
motions of the sprung mass, but it is only a reference solution, because it cannot
be implemented in practice.
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FIGURE 27.20. Non-dimensional frequency response of the unsprung mass of the same
quarter car with two degrees of freedom studied in Fig. 27.19.

Semi-active quarter car with ‘real world’ skyhook

The fixed point where the skyhook damper is attached does not exist in the
real world. This strategy must therefore be implemented using a device located
between the sprung and the unsprung masses. The semi-active solution, based
on a damper with controllable damping coefficient, is shown in Fig. 27.18c and
is described in Section 6.3.2. of Part I.

The controlled damper must supply a force

F = −csżs − c (żs − żu) , (27.71)

that is

F = −
(

cs
żs

żs − żu
+ c

)
(żs − żu) . (27.72)

Theoretically, it should be possible to implement a device able to simulate
the skyhook simply by modulating the damping coefficient of the damper so that
it is, in each instant, equal to

ceq = cs
żs

żs − żu
+ c . (27.73)

Actually, even operating in this way, only an approximation of the ideal
skyhook can be obtained because, even if the forces it exerts on the sprung
mass are those of the ideal device, the forces exerted on the unsprung mass are
different.

Remark 27.6 Equation (27.73) cannot be implemented by a passive device.
When the equivalent damping coefficient is positive, the device dissipates energy,
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something a passive system can do, but when ceq is negative the damper should
introduce energy into the system, requiring an active device to be used.

An approximated but simple solution is to use two different values of the
damping coefficient. One is high, and is used when the equivalent damper simu-
lating the skyhook must dissipate energy, i.e. when żs and żs − żu have the same
sign (their product is positive). The other is very low, even approaching zero,
and is used when the damper should introduce energy into the system (żs and
żs − żu have opposite sign, i.e. their product is negative). This method is simple
because it only requires a damper with two different values of the damping co-
efficient. It may be obtained, for instance, with a standard shock absorber with
suitable valves to control the motion of the fluid, or by using electrorheological
or magnetorheological fluids. The control is also simple, because it requires only
an on-off system, while greater difficulties can arise from the measurement of the
absolute velocity of the sprung mass.

Other solutions are based on a linear variation of the damping coefficient
with ratio żs/ (żs − żu). The damping coefficient is nonetheless set to zero or to
a very small positive value when it should be negative.

An approach of this kind leads to a nonlinear behavior of the system, making
it impossible to make a general comparison between the behavior of this device
and that of other suspensions.

Active quarter car with ‘real world’ skyhook

An active system, able to transfer energy to the system, is needed to follow the
law (27.73). As usually stated, a device operating on four quadrants must be
used. This expression comes from the force-velocity plot of the damper: All the
conditions in which a passive system can operate lie in the second and fourth
quadrants, i.e. in the quadrants where force and velocity have opposite signs (if
the force is that exerted by the damper to one of its end points and the velocity
is that of the same point while the other is constrained). An active system may
also exert forces with the same sign of the velocity, in which case it works in all
quadrants.

Consider for instance the quarter car of Fig. 26.7c, where the damper with
controllable damping is substituted by an actuator operating on four quadrants.
By neglecting the damping of the tires, the equation of motion is

[
ms 0
0 mu

]{
z̈s

z̈u

}
+

[
K −K
−K K + P

]{
zs

zu

}
=

{
F
−F

}
+

{
0

Ph

}
,

(27.74)
where F is the force exerted by the actuator on the sprung mass, that is

ms

[
1 0
0 a

]{
z̈s

z̈u

}
+ K

[
1 −1
−1 1 + b

]{
zs

zu

}
=

{
F
−F

}
+

{
0

Ph

}
.

(27.75)
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To simulate the skyhook, such a force must be (Eq. (27.73)):

F = −csżs − c (żs − żu) = − (cs + c) żs + cżu . (27.76)

The system is equivalent to an ideal proportional control on the states (ve-
locities żs and żu are two of the states of the system). Clearly, this is an idealized
system, both because the gains are considered as constants and because in prac-
tice it is impossible to measure the absolute velocity of the sprung mass directly.
A system of this kind may be approximated using a state observer.

By introducing Eq. 27.76 into Eq. 27.75, it follows

ms

[
1 0
0 a

]{
z̈s

z̈u

}
+ 2

√
Kms

[
ζs + ζ −ζ

− (ζs + ζ) ζ

]{
zs

zu

}
+ (27.77)

+K

[
1 −1
−1 1 + b

]{
zs

zu

}
=

{
0

Ph

}
.

As predicted, the damping matrix is not symmetrical, because there is no
Raleigh dissipation function able to express the damping of the system.

Consider the quarter car studied in figures 27.19 and 27.20. Because the
system is active, its stability must first be checked. The poles of the system are

s =

⎧⎨
⎩

−1.5732 ± 6.4207 i
−1.3519,
−0.6771.

All poles have a negative real part, hence the system is stable. One of the
poles has a non-vanishing imaginary part, and the behavior of the system is
oscillatory.

The frequency response of the sprung mass (in terms of displacement and
acceleration) is shown in Fig. 27.21. The response of the quarter car with a
skyhook of this kind is not essentially different from that with an ideal skyhook.

The frequency response of the unsprung mass is shown in Fig. 27.22. The
response of the quarter car is in this case much different from that with an ideal
skyhook and, more significantly, is unsatisfactory. To solve this problem a larger
value of ζ is needed. Note that damping between the two masses may be supplied
by a passive damper, leaving the active system with only the task of simulating
the skyhook.

Quarter car with groundhook

The very concept of skyhook was introduced to minimize the vertical accelera-
tions of the sprung mass, with no consideration about the motion of the unsprung
mass. It is not surprising, then, that the motion of the unsprung mass is too large
and the corresponding variations of the force on the ground are unacceptable. As
said in Section 7.4.2, the variable component of the vertical force on the ground
Fz may be approximated by neglecting the damping of the tire

Fz = −P (zu − h) .
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FIGURE 27.21. Non-dimensional frequency response of the sprung mass of a quarter
car with two degrees of freedom with b = P/K = 4 and a = mu/ms = 0.1. The
response of a passive quarter car with optimum damping (ζ = 0.433) is compared with
one with an ideal skyhook (ζs = 1, ζ equal to 1/3 of the optimum value, ζ = 0.1443)
and with an actual skyhook with the same values of the parameters.

FIGURE 27.22. Frequency response of the unsprung mass of the same quarter car of
Fig. 27.21.

The frequency response in terms of tire-ground force of the quarter car
of Fig. 27.21 is shown in Fig. 27.23. As can be clearly seen, there is a strong
improvement at low frequency, but at high frequency things are much worse.
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FIGURE 27.23. Frequency response in terms of force on the ground of the same quarter
car of Fig. 27.21.

FIGURE 27.24. Quarter car with two degrees of freedom with a damper ideally located
between the unsprung mass and the contact point with the ground (groundhook).

To minimize the variable component of the force on the ground either the
stiffness of the tire or the deformation (zu−h) must be reduced. To reduce the lat-
ter a damper between the unsprung mass and the contact point with the ground
may be ideally introduced (Fig. 27.24). Using a designation similar to the sky-
hook, this approach is usually referred to as groundhook.

It is clear from the figure that introducing a groundhook is equivalent to
increasing the damping of the tire. Actually, it impossible to do so in an actual
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situation, and not only for practical reasons. Because the tire rotates, an increase
of cp would cause an unacceptable increase of rolling resistance, accompanied by
a strong heating of the tire.

The equation of motion of the system of Fig. 27.24 is[
ms 0
0 mu

]{
z̈s

z̈u

}
+

[
c −c
−c c + cp + cg

]{
żs

żu

}
+

+
[

K −K
−K K + P

]{
zs

zu

}
=

{
0

(cp + cg) ḣ + Ph

}
.

(27.78)

Here it is not only the homogeneous part of the equation that is affected:
The forcing function is also changed. Again, this approach is ideal and in practice
may be realized using only the scheme of Fig. 27.18 c), where an active or semi-
active device is located between the two masses. If an active system is used, the
force exerted on the unsprung mass is

F = −cg żu . (27.79)

In this way, not only is an equal and opposite force exerted on the sprung
mass, but the effect linked with the vertical motion of the contact point on the
ground is lost. The equation of motion is not Eq. (27.78), but becomes[

ms 0
0 mu

]{
z̈s

z̈u

}
+

[
c −c − cg

−c c + cp + cg

]{
żs

żu

}
+

+
[

K −K
−K K + P

]{
zs

zu

}
=

{
0

cpḣ + Ph

}
.

(27.80)

Note as well that the damping matrix is not symmetrical.
A combination of the two strategies may be implemented introducing the

following damping matrix

C = 2
√

Kms

[
ζs + ζ −

(
ζg + ζ

)
− (ζs + ζ) ζg + ζ + ζp

]
. (27.81)

Because C is not symmetrical, it can be subdivided into a symmetric and
a skew-symmetric matrix or, a more expedient procedure, in a matrix corre-
sponding to a passive damper with constant damping coefficient and a matrix
corresponding to an active system.

By introducing the mean and the deviatoric values of the damping of the
skyhook and the groundhook

ζm =
ζs + ζg

2
, ζd =

ζs − ζg

2
, (27.82)

it follows that

C = 2
√

Kms

[
ζ0 −ζ0

−ζ0 ζ0 + ζp

]
+ 2

√
Kms

[
ζd ζd

−ζd −ζd

]
, (27.83)
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where the passive damping is

ζ0 = ζ + ζm = ζ +
ζs + ζg

2
. (27.84)

The dynamic behavior of the quarter car is then determined by a single
parameter, ζd, that states the entity of force

F = −2
√

Kmsζd (żs + żu) (27.85)

the actuator exerts on the sprung mass. A positive value of ζd shows that the
skyhook effect dominates, while a negative value shows that the system is pri-
marily a groundhook. For instance, the suspension with skyhook of Fig. 27.21 is
equivalent to a suspension with ζ0 = 0.6443 and ζd = 0.5.

To compare the two control strategies, consider the same quarter car of Fig.
27.21, choosing a value ζ0 = 0.433, corresponding to the optimal value of the
passive suspension, and two values of ζd, equal to 0.4 and −0.4 (Fig. 27.25). In the
first case, corresponding to a skyhook, the performance of the active suspension is
better than that of a passive system for the sprung mass, in a low frequency range.
In the second case (groundhook), on the other hand, performance is improved
at high frequencies, particularly if the unsprung mass is considered.

FIGURE 27.25. Non-dimensional frequency response of the sprung (a,c) and unsprung
(b, d) mass of a quarter car with two degrees of freedom with b = P/K = 4 and
a = mu/ms = 0.1. The response of the passive quarter car with optimum damping
(ζ = 0.433) is compared with that with skyhook (ζd = 0.4, a,b) and groundhook
(ζd = −0.4, c,d).
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FIGURE 27.26. Non-dimensional frequency response of the sprung (a) and unsprung
(b) masses of a quarter car with two degrees of freedom with b = P/K = 4 and
a = mu/ms = 0.1. The response of a passive suspension with optimum damping
(ζ = 0.433) is compared with that of a quarter car with a value of ζd variable with the
frequency between 0.4 and −0.4.

An active suspension should thus have characteristics similar to a skyhook
at low frequency and to a groundhook at frequencies close to that of the un-
sprung mass, something that may be actually implemented if ζd is a function of
frequency. For the quarter car of Fig. 27.25 it is possible to assume a value equal
to 0.4 for non-dimensional frequencies lower than ω

√
m/K = 1 and to −0.4 for

frequencies higher than ω
√

m/K = 5. Between these values a linear variation of
ζd with the frequency may be assumed, so that the suspension behaves passively
at ω

√
m/K = 3 (Fig. 27.26).

Performance is in this case quite good in the whole frequency range both
for the sprung and the unsprung masses. The variable component of the force
on the ground is shown in Fig. 27.27 (the figure is similar to Fig. 26.13 plotted
for passive suspensions). The strategy seen in Fig. 27.26 is also optimal from this
viewpoint.

Example 27.7 Consider the quarter car studied in Example 26.2 (ms= 250 kg; K=

25 kN/m; c = 2,150 Ns/m mu = 25 kg; P = 100 kN/m) and add an actuator realizing

the control strategy seen above.

Assume that the vehicle travels at a speed of 30 m/s on a road whose surface is

at the limit between zones B and C following ISO standards, and compute the power

spectral density of the acceleration of the sprung mass and the related r.m.s. value.

Compare the results in terms of comfort with those seen for the passive suspension.

The natural frequency of the sprung mass
√

K/m is equal to 10 rad/s = 1.59 Hz,

in which case the deviatoric damping of the active suspensions takes a value ζd = 0.4

up to 1.59 Hz and ζd = −0.4 above 7.96 Hz. Between these values it varies linearly.
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FIGURE 27.27. Variable component of the force in z direction on the ground as a
function of frequency for the quarter car of Fig. 27.26.

FIGURE 27.28. Dynamic compliance and inertance of the passive and active quarter
car with two degrees of freedom (a). Power spectral density of the acceleration of the
sprung mass while travelling on a road between zones B and C of ISO standards at a
speed of 30 m/s (b).

Frequency response. The dynamic compliance H(ω), i.e. the ratio between the dis-

placement of the sprung mass and that of the supporting point on the ground, and the

inertance, that is the ratio between the acceleration of the sprung mass and the displace-

ment of the same point, ω2H, are plotted in Fig. 27.28a) for both the passive and active

suspension. The ability of the active suspension to filter out the perturbations reaching

the sprung mass at its natural frequency is clear.

Response to road excitation. The power spectral density of the acceleration of the

sprung mass may be computed as seen in the previous examples. The result is shown

in Fig. 27.28 b). The resonance peak is completely cancelled, while at frequencies close



488 27. CONTROL OF THE CHASSIS AND ‘BY WIRE’ SYSTEMS

to the resonance of the unsprung mass the active suspension is slightly worse than the

passive. This is due to the groundhook effect, which has been introduced to reduce the

variable component of the force on the ground and thus to improve handling.

Comfort is, however, much improved, because the r.m.s. value of the acceleration

is

arms = 1.11 m/s2 = 0.113 g

about 20% less than in the case of the passive suspension

Quarter car controlled following the acceleration of the sprung mass

Consider a quarter car with two degrees of freedom and put an actuator in par-
allel to the spring and the shock absorber. By neglecting, as usual, the damping
of the tire, the state space equation of the controlled system is

ż = Az + Bdud + Bcuc, (27.86)

where various vectors, the dynamic matrix and the input and gain matrices for
inputs due to disturbances and control are
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, uc = F .

Consider the acceleration measured by an accelerometer on the sprung mass
as output of the system. Assuming that the sensor is ideal, its output is

y = Cz , (27.87)

where the output gain matrix is

C =
[

− c

ms

c

ms
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ms

K

ms

]
.
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Assuming a simple proportional control law, the control loop can be closed
simply by stating that the force exerted by the actuator is proportional to the
acceleration of the sprung mass through the gain G:

F = −Gy. (27.88)

The dynamic equation of the system is

ż = (A − BcGC) z + Bdh. (27.89)

The transfer function yielding the four components of the state vector is

1
h
z = (sI − A − BcGC)−1 Bd. (27.90)

The transfer function for the control force is

F

h
= GC (sI − A − BcGC)−1 Bd. (27.91)

If
G = ms,

the first row of the closed loop dynamic matrix A − BcGC vanishes, allowing
the suspension to filter out the road irregularities completely. Such a solution,
apart from problems linked with its practical feasibility, is also impossible from
a theoretical viewpoint, because it would optimize the acceleration of the sprung
mass but would lead to a strong increase of the dynamic component of the force
on the ground.

Example 27.8 Repeat the previous example, using a quarter car controlled on the

acceleration of the sprung mass. Look for a gain of the control system that reduces the

r.m.s. value of the acceleration of the sprung mass with reference to the conditions seen

in the previous example (speed of 30 m/s on a road of the same type) without overly

penalizing performance in term of forces on the ground or leading to high control forces.

First, the r.m.s. values of the acceleration, the force on the ground and the control

force are computed for different values of the gain. The computation is fairly long but

not complicated: The transfer functions can be computed for each value of the gain

through Equations (27.90) and (27.91).

Remembering that s = iω, the frequency responses for the power spectral density

of the response can be computed. The required r.m.s. values are obtained by integrating

the latter.

The values so computed are plotted in Fig. 27.29a. A range for the gain between 0

(passive system) and 300 Ns2/m, was chosen. It includes the value G = 250 Ns2/m,

at which the response in terms of acceleration of the sprung mass vanishes.

The r.m.s. values of the force on the ground and the acceleration were made non-

dimensional by dividing them by the values of the passive system, while those of the con-

trol force were divided by the value obtained for a gain G = 300 Ns2/m. As predictable,
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FIGURE 27.29. (a): Non-dimensional r.m.s. values of the acceleration of the sprung
mass, the force on the ground and the control force at varying gain. (b): Frequency
responses of the displacement and acceleration of the sprung mass and of the vari-
able component of the force on the ground. (c) e (d): Power spectral density of the
acceleration of the sprung mass and of the forces.

the acceleration decreases with increasing G, but the force has a shallow minimum to

increase again, with a strong increase of the control force. A good compromise value

may be

G = 120 Ns2/m.

With this gain

arms = 0.964 m/s2 = 0.098 g, Fzrms
= 356 N , Frms = 223 N.

With respect to the passive solution, the acceleration is reduced by 28% and the

force on the ground by little more than 8%.

The frequency responses of the displacement and the acceleration of the sprung

mass and of the variable component of the force on the ground are plotted in Fig. 27.29b,

while the power spectral density of the acceleration of the sprung mass and of the forces

are reported in Fig. 27.29c and d.

The results show a strong improvement of comfort performance, even if of a dif-

ferent kind than that plotted in the previous example. In that case, the improvement
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was entirely at low frequency where the peak disappeared, while at high frequency per-

formance was similar, if not worse, than that of the passive suspension.

In this case, the improvement is distributed over the entire frequency range. The

handling performance seems to be essentially unchanged, at least in terms of the force

on the ground. This could be expected, owing to the type of control used.

Final considerations

Some control strategies for active suspensions were considered in the previous
sections. It must be first stressed that this is only a theoretical study, because the
strategies that may actually be implemented depend on the actual characteristics
of the actuators, sensors and power systems used, and in particular on their
limitations in terms of manageable power and frequency response. Moreover, all
solutions considered are based on a suspension including a passive spring, while
the active or semi-active systems introduce a damping force only.

This solution, often considered because it allows relatively small forces to
be controlled, clearly has a basic limitation: The elastic characteristics of the
suspension are those of the passive device from which it derives. The zone labelled
as active suspensions in Fig. 27.14 refers to solutions of this kind. If the stiffness of
the suspension can also be controlled or, even better, if the force exerted between
the sprung and the unsprung mass is completely controllable, performance can
be optimized in a much wider range.

The techniques used are often based on optimal control, with observers used
to estimate the quantities that cannot be measured directly, but the greater
difficulties are found not so much in the definition and implementation of the
control algorithms, but in the implementation and in the optimization of the
actuation and power systems.

The models shown above are based on the quarter car model and assume
a decentralized control in which each wheel (or as is often said, each corner of
the vehicle) acts in an independent way. The roll and pitch characteristics of the
vehicle come from those of single suspensions, as was also seen for the passive
suspensions. A decentralized control is often implemented, and the interactions
between the suspensions are considered as non-modelled dynamics, as well as
other phenomena that are neglected. As seen in Section 27.5.1, roll motions may
be controlled independently from heave motions by using active anti-roll bars.
In the same way it is possible to control pitch motions by connecting the control
of the front and rear axis suspensions in what may be defined as a centralized
control, even if solutions of this kind are in general not yet applied.

27.6 By wire systems

The active systems used on motor vehicles are usually based on hydraulic com-
ponents or, particularly on industrial vehicles, on pneumatic devices. Control of
the actuators is performed by electrovalves and the actuation power is supplied
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by pumps, which are usually powered by the engine or by electric motors. Tra-
ditionally, the same holds for systems helping the driver, such as power steering
or power brakes.

The development of electromechanical components and systems has led to
the consideration of alternative solutions in which electric actuators are con-
trolled directly without the need for electrovalves, pumps and other hydraulic
or pneumatic devices. The tendency to replace hydraulic and pneumatic devices
with electric systems is widespread and in many fields more-electric or even
all-electric systems are considered. The advantages are many, among them the
following:

• interfacing electric devices to control systems is easier than hydraulic de-
vices;

• the transmission of power and command signals requires electric cables,
which allow much greater freedom of layout than hydraulic pipes or me-
chanical transmissions as used with mechanical controls;

• electric devices are less affected by environmental conditions, above all tem-
perature, than hydraulic systems. In particular, in the latter the viscosity
of hydraulic fluids is strongly dependent on temperature;

• the fluids used in hydraulic devices require anti-pollution measures during
construction, maintenance and ultimately disposal of the vehicle that are
not required in electric devices;

The drawbacks of electric devices that have up to now hampered their dif-
fusion are:

• electric actuators are in general heavier and often more bulky than the
corresponding hydraulic actuators;

• the cost of high performance magnetic materials (in particular rare earth
magnets) is still high for automotive applications;

• electric systems are in general ’stiffer’ than hydraulic systems requiring a
more precise control. They may cause more noise and vibration.

Progress in the fields of magnetic materials (above all permanent magnets),
control systems and power amplifiers is gradually reducing these drawbacks al-
lowing us to predict that the implementation of hydraulic and pneumatic systems
will diminish. The cost of permanent magnets with high energy density is also
decreasing, thanks to a liberalization of the markets due to the expiry of many
patents.

An apparently marginal problem that is nonetheless hampering the intro-
duction of by wire devices is the voltage of the on-board electric system. The
increase in the power of the electric devices on motor vehicles makes it con-
venient to increase the voltage from the traditional (on cars) 12 V to at least
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24 V, as on industrial vehicles, or even to 36 or 48 V. In this way, the current
needed by the various devices would be reduced, with advantages in cost and
weight. This is not a marginal change, as it might seem, because it would require
the simultaneous redesign, production and marketing of a large number of new
electric components (batteries, bulbs, switches, electric motors, etc.).

Another problem under intense study is electromagnetic compatibility. The
electromagnetic environment in which automotive electromechanical and elec-
tronic devices must operate is very dirty, which may induce malfunctionings of
different kinds. These must be by all means prevented when electric systems are
entrusted functions that are vital for the safety of the vehicle.

By wire systems are now one of the most actively researched fields in the
automotive industry, with different solutions under study. They will probably
enter mass production in the relatively near future. The following sections will
deal briefly with some applications already mentioned in this text. Note that
the problems to be solved before vehicles completely controlled by wire may be
marketed are not only technical (design, production, marketing, etc.) but also
legal, regulatory and standards-based.

27.6.1 Steer by wire

Electric steering systems like Electric Power Steering (EPS) are in common use,
primarily in cars in the low or medium market segment. Their application does
not imply substitution for the mechanical steering system, but simply the pres-
ence of an electric actuator in parallel with the manual steering system. The
electric motor may act directly, exerting a torque on the steering wheel shaft,
or it may exert a force on the rack. The torque exerted by the power steering is
proportional to that applied by the driver, following strategies that may depend
on many parameters. The steering control may be made ’harder’ with increasing
speed, to compensate for the decrease of steering torque typical of many cars
and to induce the driver to act on the wheel with more care.

As already stated in our discussion of handling control devices, the steering
actuator may act independently of the command given by the driver, as when
using a differential gear having as inputs the steering wheel shaft and an actuator
controlled independently. In this case, direct control remains, but the authority
of the control system is greater.

In a true by wire system, there is no direct control link and the steering
wheel is connected solely to a rotation sensor (potentiometer, encoder...) or a
torque sensor supplying the value of the angle or the moment to the system
that controls the steering actuator. A system of this kind is much more flexible,
allowing different control strategies to be used, such as a variable ratio between
the rotation of the steering wheel and the steering rotation of the wheels. This
allows the command from the driver to interact in more complex way with the
command from the control system. Because there is no direct link between the
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wheels and the steering wheel, there must be an actuator exerting a torque on the
steering wheel to supply the driver with information on the working conditions
of the wheels (haptic controls).

27.6.2 Brake by wire

Electric power brakes may be simple devices in which an electric motor actuates
a pump amplifying the command given by the driver through the master cylin-
der connected with the brake pedal. In more complicated systems no pump is
connected with the brake pedal, with the latter simply supplying a position or
force signal that, through a control system, acts on the actuators at the brakes.

The actuator may be a single pump supplying high pressure fluid to a more
or less conventional braking system, or an electric actuator located in each wheel.
In the latter case, the actuator may pressurize a fluid acting on the pistons of the
caliper or may directly actuate the caliper through a ball screw or a mechanical
system of other kinds. The choice among the various solutions must take into
account the mass, the cost, the reliability of the system, the need for maintenance
and adjustments, and the possibility of self-adjusting.

Clearly, an actuator in each wheel allows functions like ABS, TCS, VDC,
etc. to be performed without the need of valves discharging the pressure from
the branch of the system in each wheel or of pumps that recover the fluid. The
brake in each wheel is controlled independently following the commands from
the driver and the various control devices.

27.6.3 Electromechanical suspensions

Semi-active suspensions already use systems that are at least partially electro-
mechanical, such as the shock absorbers based on electrorheological of magne-
torheological fluids. Electric actuators may replace hydraulic actuators in active
suspensions (for instance in ARC systems) and above all, electromechanical eddy
current dampers may replace classical shock absorbers. In particular, eddy cur-
rent dampers may work as passive, uncontrolled components (in this case they
may behave as almost perfect viscous dampers, without the drawback of the
presence of the fluid and with a greater stability in changing environmental con-
ditions), they may be inserted in an electric circuit containing controlled elements
or they may work in a fully active way. At present, their mass is comparable to
that of similar hydraulic devices and their cost, although still higher, is quickly
decreasing.

27.6.4 Other by wire controls

As already stated, all functions of the vehicle may be controlled by electro-
mechanical actuators. Because control of the engine is the simplest, conversion,
by wire accelerators are now common. The clutch and the gearbox may also be
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controlled by electric devices. Apart from the advantage of avoiding mechanical
linkages between the gearbox and the passenger compartment, which may trans-
mit vibration, this solution allows for the building of fully automated gearboxes.
Secondary controls, such as the parking brake, may also be replaced by electric
devices, with the advantages of automation (in the case of the parking brake, it
is possible to guarantee that the brake is applied when the vehicle is stopped and
released when it moves), thus allowing a greater freedom in command placement
and design of the user interface, as well as a much simpler design of the control
transmission.



28
MATHEMATICAL MODELS
FOR THE VEHICLE

An increasingly competitive automotive market offers its products to increasingly
demanding customers. Numerous standards and rules, primarily regarding safety
and environmental impact, are issued by regulating bodies and governments,
making today’s vehicles more and more complex.

The specifications vehicles must comply with often contrast with each other.
The time between the conception of a vehicle and its entering the market, the
so called time to market , is an essential factor for its commercial success. The
traditional approach, based on the construction of prototypes, subsequent ex-
perimentation and modification, is no longer adequate.

When design changes are introduced during the development of any ma-
chine, they should be implemented as early as possible. The later such changes
are made, the smaller the advantages, both in terms of economics but also more
generally, while related costs are higher (Fig. 28.1). In the early stages of devel-
opment, when the vehicle is merely an idea or the result of a preliminary study,
major changes may be introduced at low cost, but when the design proceeds
toward the construction of prototypes or the product launch, the freedom of
designers is reduced and the costs linked to changes, not only to the design but
also to prototypes and above all to production equipment, soar.

This consideration alone can explain the increasing significance of activi-
ties like the construction of mathematical models, virtual experimentation and
simulation in the motor vehicle industry.

The costs linked with the construction of prototypes and physical ex-
perimentation are continuously growing, while the increase of computational
power causes a decrease of computational times and thus of the costs linked
with the construction of mathematical models and the ensuing numerical
experimentation.
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FIGURE 28.1. Qualitative trend of costs and advantages of design changes in the
various stages of the design and construction of a machine.

The importance of being able to predict the behavior of the system and
its components before the construction of prototypes is therefore increasing in
automotive technology. The goal, at present still far from being achieved, is to
reduce the importance of physical testing to a simple verification of what virtual
testing has ascertained.

28.1 MATHEMATICAL MODELS FOR DESIGN

The computational predictions of the characteristics and the performance of a
physical system are based on the construction of a mathematical model1, con-
structed from a number of equations, whose behavior is similar to that of the
physical system it replaces. In the case of dynamic models, such as those used
to predict the performance of motor vehicles, the model is usually built from a
number of ordinary differential equations2 (ODE).

The complexity of the model depends on many factors, that represent the
first choice the analyst has to make. The model must be complex enough to allow

1Note that simulation is not always based on a mathematical model in a strict sense. In
the case of analog computers, the model was made from an electric circuit whose behavior
simulated that of the physical system. Simulation on digital computers is based on actual
mathematical models.

2A dynamic model, or a dynamic system, is a model expressed by one or more differential
equations containing derivatives with respect to time.
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a realistic simulation of the system’s characteristics of interest, but no more. The
more complex the model, the more data it requires, and the more complicated
are the solution and interpretation of results. Today it is possible to built very
complex models, but overly complex models yield results from which it is difficult
to extract useful insights into the behavior of the system.

Before building the model, the analyst must be certain what he wants to
obtain from it. If the goal is a good physical understanding of the underlying
phenomena, without the need for numerically precise results, simple models are
best. Skilled analysts have simulated even complex phenomena with precision
using models with a single degree of freedom. If, on the contrary, the aim is
precise quantitative results, even at the price of more difficult interpretation, the
use of complex models becomes unavoidable.

Finally, it is important to take into account the available data at the stage
reached by the project: Early in the definition phase, when most data are still
not available, it can be useless to use complex models, into which more or less
arbitrary estimates of the numerical values must be introduced. Simplified, or
synthetic, models are the most suitable for a preliminary analysis. As the design
is gradually defined, new features may be introduced into the model, reaching
comprehensive and complex models for the final simulations.

Such complex models, useful for simulating many characteristics of the vehi-
cle, may be considered as true virtual prototypes. Virtual reality techniques allow
these models to yield a large quantity of information, not only on performance
and the dynamic behavior of the vehicle, but also on the space taken by the vari-
ous components, the adequacy of details and the esthetic qualities of the vehicle,
that is comparable to what was once obtainable only from physical prototypes.

The models of a given vehicle often evolve initially toward a greater com-
plexity, from synthetic models to virtual prototypes, to return later to simpler
models. Models are useful not only to the designer in defining the vehicle and its
components, but also to the test engineer in interpreting the results of testing
and performing all adjustments. Simplified models can be used on the test track
to allow the test engineer to understand the effect of adjustments and reduce the
number of tests required, provided they are simple enough to give an immedi-
ate idea of the effect of the relevant parameters. Here the final goal is to adjust
the virtual prototype on the computer, transferring the results to the physical
vehicle and hoping that at the end of this process only a few validation tests are
required.

Simplified models that can be integrated in real time on relatively low power
hardware are also useful in control systems. A mathematical model of the con-
trolled system (plant, in control jargon) may constitute an observer (always in
the sense of the term used in control theory) and be a part of the control archi-
tecture.

The analyst has the duty not only of building, implementing and using the
models correctly, but also of updating and maintaining them. The need to build
a mathematical model of some complexity is often felt at a certain stage of
the design process, but the model is then used much less than necessary, and
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above all is not updated with subsequent design changes, with the result that it
becomes completely useless or needs updating when the need for it again arises.

There are usually two different approaches to mathematical modelling: mod-
els made by equations describing the physics of the relevant phenomena, − these
may be defined as analytical models − and empirical models, often called black
box models.

In analytical models the equations approximating the behavior of the various
parts of the system, along with the required approximations and simplifications,
are written. Even if no real world spring behaves exactly like the linear spring,
producing a force proportional to the relative displacement of its ends through a
constant called stiffness, and even if no device dissipating energy is a true linear
damper, the dynamics of a mass-spring-damper system can be described, often
to a very good approximation, by the usual ordinary differential equation (ODE)

mẍ + cẋ + kx = f(t) . (28.1)

The behavior of a tire, on the other hand, is so complex that writing equa-
tions to describe it beginning with the physical and geometrical characteristics
of its structure is forbiddingly difficult. The magic formula is a typical example
of the empirical, black box, model. The behavior of the tire is studied exper-
imentally after which a mathematical expression able to describe it is sought,
identifying the various parameters from the experimental data. While each of the
parameters m, c and k included in the equation of motion of the mass-spring-
damper system refers to one of the parts of the system and has a true physical
meaning, the many coefficients ai, bi and ci appearing in the expressions for
A, B, C, etc. in the magic formula have no physical meaning, and refer to the
system as a whole.

Among the many ways to build black box models, that based on neural
networks must be mentioned3. Such networks can simulate complex and highly
nonlinear systems, adapting their parameters (the weights of the network) to
produce an output with a relationship to the input that simulates the input-
output relationship of the actual system.

Actually, the difference between analytical and black-box models is not as
clear cut as it may seem. The complexity of the system is often such that it is
difficult to write equations precisely describing the behavior of its parts, while
the values of the parameters cannot always be known with the required precision.
In such cases the model is built by writing equations approximating the general
pattern of the response of the system, with the parameters identified to make
the response of the model as close as possible to that of the actual system. In
this case, the identified parameters lose a good deal of their physical meaning
related to the various parts of the system they are conceptually linked to and
become global parameters of the system.

3Strictly speaking, neural networks are not sets of equations and thus do not belong to the
mathematical models here described. However, at present neural networks are usually simulated
on digital computers, in which case their model is created by a set of equations.
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In the following, primarily analytical models will be described and an at-
tempt will be made to link the various parameters to the components of the
system.

28.2 CONTINUOUS AND DISCRETIZED MODELS

The objects constituting our real world are all more or less compliant and are
quite well modelled as continuous systems. A compliant body is usually mod-
elled as a continuum or, if its behavior can be considered linear and damping
is neglected, as a linear elastic continuum. It is clear that the elastic continuum
is only a model, because no actual body is such at an atomic scale, but for
most objects studied by structural dynamics the continuum model is more than
adequate.

An elastic body may then be thought of as consisting of an infinity of points.
The configuration at any time t can be obtained from the initial configura-
tion once a vector function expressing the displacements of all points is known
(Fig. 28.2). The displacement of a point is a vector, with a number of components
equal to the number of dimensions of the reference frame. The components of
this vector are usually taken as the degrees of freedom of each point, and thus the
number of degrees of freedom of a deformable body is infinite. The correspond-
ing generalized coordinates can be manipulated as functions of space and time
coordinates, usually continuous and differentiable up to a suitable order, while
the characteristics of the material are defined by functions of the coordinates in
the whole part of space occupied by the continuum. In general, these functions
need not be continuous.

FIGURE 28.2. Deformation of an elastic continuum; reference frame and displacement
vector.
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The theory of continuous functions is the natural tool for dealing with
deformable continua. Function −→u (x, y, z, t) describing the displacement of the
points of the body is differentiable with respect to time at least twice; the first
derivative gives the displacement velocity and the second the acceleration. Usu-
ally, however, higher-order derivatives also exist.

Assuming that the forces acting on the body are expressed by function
�f(x, y, z, t), the equation of motion can generally be written as

D[�u(x, y, z, ẋ, ẏ, ż, t)] = �f(x, y, z, t) , (28.2)

where the differential operator D completely describes the behavior of the body.
Eq. (28.2) is a partial derivatives differential equation, in general nonlinear, con-
taining derivatives with respect to both time and space coordinates and veloci-
ties.

If the system is linear, Eq. (28.2) is also linear and does not contain the
velocities ẋ, ẏ, ż if the system is conservative. To such an equation other equations
expressing the boundary conditions and the initial conditions must be added.

The actual form of the differential operator may be obtained by resorting
directly to the dynamic equilibrium equations or by writing the kinetic and po-
tential energies and using Lagrange equations. The boundary conditions usually
follow from geometrical considerations.

Equation (28.2) may be solved in closed form only in a small number of cases,
owing to the difficulties deriving from the differential equation and especially
from the boundary conditions.

For complex systems the only feasible approach is the discretization of the
continuum and then the application of the methods used for discrete systems.
The replacement of a continuous system, characterized by an infinite number
of degrees of freedom, with a discrete system, sometimes with a large but finite
number of degrees of freedom, is usually referred to as discretization. This step is
of primary importance in the solution of practical problems, because the accuracy
of the results depends largely on the adequacy of the discrete model to represent
the actual system.

In recent centuries many discretization techniques were developed with the
aim of substituting the partial derivatives differential equation of motion (with
derivatives with respect to time and space coordinates) with a set of ordinary
differential equations containing only derivatives with respect to time. The set
of equations so obtained is often made by a number of second-order equations
equal to the number of degrees of freedom of the discretized system.

When the model is made by equations that are not all of the second-order
(and often when they are) it is expedient to reduce it to a set of equations of the
first order, by resorting to a number of auxiliary variables. If the model has n
degrees of freedom (defined by n generalized coordinates) and is made of a set of
n second-order equations, n auxiliary variables (generally the generalized veloc-
ities) are needed, and the resulting model is made by 2n first-order equations.
The 2n variables (n generalized coordinates and n generalized velocities) are the
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state variables of the system. The vector containing the state variables is called
the state vector and is usually indicated by z.

If the set of 2n first-order equations is solved in the derivatives of the state
variables, or it is solved in monic form, it has the form

ż = f(z, t) . (28.3)

The simplest way to discretize a model is by concentrating its inertial char-
acteristics in a certain number of rigid bodies, or even material points, with its
elastic and damping properties in massless springs and dampers. The models
seen in the previous chapters to analyze the dynamic behavior of motor vehi-
cles belong mostly to this type, as for instance the spring-mass-damper model
expressed by Eq. (28.1).

Because a point has 3 degrees of freedom in three-dimensional space, the
most obvious choice is to use as generalized coordinates the 3 coordinates of the
point referred to an inertial frame. A rigid body has, in a three-dimensional space,
6 degrees of freedom. Thus a reasonable choice for the generalized coordinates
is to use the three components of the displacement of one of its points, usually
the center of mass, and 3 rotations. While the displacement is a vector, so that
there is no difficulty in choosing the 3 coordinates related to displacement, things
are much more complicated for the coordinates linked to rotations and, as will
be seen later, different choices are possible.

The choice of the generalized coordinates and the equations of motion of a
rigid body will be described in detail in Appendix A.

If it becomes impossible to neglect the compliance of some parts of the sys-
tem, it is possible to resort to the Finite Element Method (FEM). The body is
subdivided into a number of regions, the finite elements, so-called to specify their
difference from the infinitesimal regions of space used to write the equations of
motion of continuous systems. The inflected shape of each region is approximated
by the linear combination of a number of functions of space coordinates through
parameters that are taken as the generalized coordinates of the element. Usually
such functions of space coordinates (the shape functions) are very simple and the
generalized coordinates have a physical meaning, such as generalized displace-
ments of some points of the element, called nodes. The analysis then proceeds
by writing a set of differential equations of the type typical of discrete systems.

28.3 ANALYTICAL AND NUMERICAL MODELS

Once the model has been discretized and the equations of motion written, there
is no difficulty in studying the response to any input, assuming the initial con-
ditions are stated. A general approach is to numerically integrate the ordinary
differential equation constituting the model, using any of the many available nu-
merical integration algorithms. In this way, the time history of the generalized
coordinates (or of the state variables) is obtained from any given time history of
the inputs (or of the forcing functions).
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This approach, usually referred to as simulation or numerical experimenta-
tion, is equivalent to physical experimentation, where the system is subjected to
given conditions and its response measured.

This method is broadly applicable, because it

• may be used on models of any type and complexity, and

• allows the response to any type of input to be computed.

Its limitations are also clear:

• it doesn’t allow the general behavior of the system to be known, but only
its response to given experimental conditions,

• it may require long computation time (and thus high costs) if the model
is complex, or has characteristics that make performing the numerical in-
tegration difficult, and

• it allows the effects of changes of the values of the parameters to be pre-
dicted only at the cost of a number of different simulations.

If the model can be reduced to a set of linear differential equations with
constant coefficients, it is possible to obtain a general solution of the equations
of motion. The free behavior of the system can be studied independently from
its forced behavior, and it is possible to use mathematical instruments such as
Laplace or Fourier transforms to obtain solutions in the frequency domain or
in the Laplace domain. These solutions are often much more expedient than
solutions in the time domain that, as stated above, are in general the only type
of solution available for nonlinear systems.

The possibility of obtaining general results makes it convenient to start the
study by writing a linear model through suitable linearization techniques. Only
after a good insight into the behavior of the linearized models is obtained will
the study of the nonlinear model be undertaken. When dealing with nonlinear
systems it is often expedient to begin with simplified methods, such as harmonic
balance, or to look for series solutions before starting to integrate the equations
numerically.
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MULTIBODY MODELLING

A vehicle on elastic suspensions may be modelled as a system made by a certain
number of rigid bodies connected with each other by mechanisms of various kinds
and by a set of massless springs and dampers simulating the suspensions. A ve-
hicle with four wheels can be modelled as a system with 10 degrees of freedom,
six for the body and one for each wheel. This holds for any type of suspension,
if the motion of the wheels due to the compliance of the system constraining
the motion of the suspensions (longitudinal and transversal compliance of the
suspensions) is neglected. The wheels of each axle may be suspended separately
(independent suspensions) or together (solid axle suspensions), but the total
number of degrees of freedom is the same (Fig. 29.1). Additional degrees of free-
dom, such as the rotation of the wheels about their axis or about the kingpin,
can be inserted into the model to allow the longitudinal slip or the compliance
of the steering system to be taken into account.

The multibody approach can be pushed much further, by modelling, for
instance, each of the links of the suspensions as a rigid body. To model a short-
long arms (SLA) suspension it is possible to resort to three rigid bodies, sim-
ulating the lower and upper triangles and the strut, plus a further rigid body
simulating the steering bar. While modelling the system in greater detail, the
number of rigid bodies included in the model increases. However, if the compli-
ance of the various elements is neglected (i.e. if these bodies are rigid bodies),
the number of degrees of freedom does not increase along with the number of
bodies: an SLA suspension always has a single degree of freedom, even if it is
made up of a number of rigid bodies simulating its various elements.

The mathematical model of a multibody system is thus made up of the equa-
tions of motion of the various elements, which in tri-dimensional space are 6n, if n
is the number of the rigid bodies, plus a suitable number of constraint equations.
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FIGURE 29.1. Example of models for the dynamic study of road vehicles. (a), (b) and
(c): Vehicle with two axles, 10 d.o.f.; (d): Articulated truck with 6 axles, 21 d.o.f.; (e):
Vehicle with 3 wheels; 9 d.o.f.

Consider for instance the articulated truck of Fig. 29.1d. The rigid bodies
are 8 (tractor, trailer and 6 rigid axles) and thus the equations of motion are 48
second order differential equations. The constraint equations are 27: 3 equations
for the constraint between tractor and trailer (these state that the coordinates
of the center of the hitch, assumed to be a spherical hinge, are the same if this
point is seen as belonging to the tractor or to the trailer) and 4 equations for each
axle, leaving to each one of them just two, out of its 6 degrees of freedom. The
27 constraint equations are algebraic equations containing only the generalized
coordinates but not the velocities (holonomic constraints).

By using the 27 constraint equations to eliminate 27 of the generalized
coordinates, a set of 21 equations in the 21 independent generalized coordinates
is obtained. It must be emphasized that in the 48 equations of motion originally
written, the forces the various bodies exchange at the constraints are included;
these forces are then eliminated when the constraint equations are introduced.
The 27 equations so eliminated can be used to compute the constraint forces.

This approach is the broadest, and is usually implemented in general purpose
multibody computer codes.

It is possible to resort to a simpler approach in the case of the multibody
models used in motor vehicle dynamics, because the internal constraints are
holonomic and the system is branched. One of the bodies may be chosen as
main body, to which a number of secondary, first level bodies are attached. Other
secondary bodies, considered as second level bodies, are then attached, and so on.
Secondary bodies have only the degrees of freedom allowed by the constraints.
In this way, the minimum number of equations needed for the study are directly
obtained. Such equations are all differential equations, usually of the second
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FIGURE 29.2. Model of the articulated truck with 6 axles shown as a branched model:
the tractor is the main body, the axles of the tractor and the trailer are first level
secondary bodies and the axles of the trailer are second level secondary bodies. The
constraint between tractor and trailer is a spherical hinge constraining 3 degrees of
freedom, while those constraining the axles to the sprung masses lock 4 degrees of
freedom each.

order. The forces exchanged at the constraints between the bodies do not appear
explicitly in the equations and need not be computed in the dynamic study of
the system as a whole. The model of the articulated truck with 6 axles shown in
Fig. 29.1d obtained in this way is sketched in Fig. 29.2: the tractor is considered
as the main body, the axles of the tractor and the trailer are first level secondary
bodies, and the axles of the trailer are second level secondary bodies.

29.1 ISOLATED VEHICLE

The model for an isolated vehicle can thus be easily built through the following
steps:

• choice of the generalized coordinates;

• computation of the expressions for the kinetic and potential energies, the
dissipation function and the virtual work of external forces (road-wheels
forces and aerodynamic forces);

• writing the equations of motion through Lagrange equations.

The basic degrees of freedom of the model are:

• six degrees of freedom for the sprung mass (usually three components of the
displacement define the position of the vehicle and three rotations define
its orientation in space);

• two degrees of freedom for each rigid axle;

• one degree of freedom for each independent suspension.
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The total number of degrees of freedom is then 6 + 2m, where m is the
number of axles.

To these basic degrees of freedom, it is possible to add the following:

• The rotation χ of each wheel, or better its angular velocity χ̇, if the angle of
rotation of each wheel is considered as an independent variable. It is then
possible to compute longitudinal forces at the road-wheel contact from the
longitudinal slip.

As an alternative, it is possible to neglect the longitudinal slip and to
compute the wheel rotations from the space covered by the vehicle or,
better, to compute their velocity from the velocity of the vehicle, but in
this case the wheel rotations are not degrees of freedom of the system.

• The steering angle δ of the steering wheels. It may be considered as:

– a given quantity, or better, an input, if the motion is studied with
locked controls and the compliance of the steering system is neglected;

– a known function of a single variable, the angle at the steering wheel
δv, if the motion is studied with free controls but the compliance of
the steering system is neglected;

– a variable, linked by a an equation expressing the compliance of the
steering system, to the angle at the steering wheel δv that is a given
quantity, or better, an input, if the motion is studied with locked
controls and the compliance of the steering system is accounted for;

– an independent variable, to which a further independent variable, the
angle at the steering wheel δv is added, if the motion is studied with
free controls and the compliance of the steering system is accounted
for.

A motor vehicle with four wheels can then be described by a model with 10
degrees of freedom (Fig. 29.1) in the simplest case (locked controls, neglecting
longitudinal slip and the compliance of the steering system), that become 14
if the slip of the wheels is considered, 15 if the study is performed with free
controls and rigid steering, or 16, 17 or 19 depending on how the steering system
is modelled and, in the latter case, on how many wheels steer.

Once the kinematics of the suspensions has been defined, it is possible to
write the equations of motion. An approach also used in commercial codes is to
introduce the elasto-kinematic characteristics of the suspensions directly (often
the kinematic characteristics alone, because the suspensions are assumed to be
made of rigid bodies) to define the kinematics of the system. The characteristics
of the tires, including the cornering forces, the aligning torques, and the rela-
tionships linking the longitudinal slip with the longitudinal forces (in case the
longitudinal slip is not neglected) can be expressed using the magic formula.



29.2 Linearized model for the isolated vehicle 515

The ten (or more, depending on the model used) equations can thus be
written. They are quite complicated nonlinear equations, difficult to write in
explicit form. They will not be shown here.

The solution of such a set of equations can be undertaken only by nu-
merically integrating the equations in time starting from a given set of initial
conditions and specifying the time history of the various inputs (steering angle,
if the manoeuvre with locked controls, or the torque acting on the steering wheel
for the motion with free controls). As an alternative, it is possible to use a model
of the driver to simulate the behavior of the vehicle-driver system. Suspensions
are modelled by introducing their elasto-kinematic characteristics directly.

Several commercial computer codes operating in this way exist. One of the
most common is Carsim R©, based on a model with 14 degrees of freedom.

A more complex alternative is the use of one of the standard multibody
general purpose codes to simulate the suspensions in detail, taking into account
the exact kinematics of the system and again simulating the tires using the
magic formula. An example of a commercial code operating along these lines is
ADAMS-Car R©, based on the general purpose code ADAMS R©.

Codes of the latter type draw upon a much larger number of equations,
because they do not use just the minimum number of generalized coordinates,
but are based on the explicit equations of motion of the various parts and on the
relevant constraint equations.

The two approaches are equivalent to the user, because in both cases it is
necessary to resort to the numerical integration of the equations of motion, sim-
ulating the dynamic behavior of the vehicle. The only actual difference for the
user is that in the first case the behavior of the suspensions is introduced in syn-
thetic form, computing their kinematic characteristics separately or measuring
experimentally and then introducing them into the computations, while in the
second case the geometry of the suspensions is directly introduced in analytic
form.

29.2 LINEARIZED MODEL FOR THE ISOLATED
VEHICLE

29.2.1 Basic assumptions

While in the case of the nonlinear model the exact geometry or the elasto-
kinematic characteristics of the suspensions must be introduced, in the case of
linearization it is possible to write a model that is fairly precise and quite general,
while allowing analytical solutions to be obtained. In this case it is worthwhile
to write the equations of motion in explicit form, so that it is possible to obtain
general results and closed form solutions. In particular, it will be possible to
obtain solutions in the frequency domain and to perform stability studies.
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The model is based on the following additional assumptions:

• Reference is made to a certain configuration of the vehicle. It may be the
static equilibrium condition with the vehicle at standstill or travelling at
a constant speed. If the shape of the vehicle is such that it produces little
aerodynamic lift and pitching moment, the first choice may be the best,
because it allows the motion at constant speed to be studied. However,
if aerodynamic forces are important, as in racing cars, the configuration
of the suspensions may change considerably at varying speed, so much
so that linearization is not possible, and reference must then be made to
the equilibrium configuration at the given speed. The linearization of the
model allows us to resort to the superimposition of effects and then to
neglect static forces (weight, aerodynamic lift in the reference conditions,
etc.) in the dynamic study.

• The kinematics of suspensions is linearized around the reference position.

• Pitch and roll angles are small enough to linearize their trigonometric func-
tions. Also, the displacements in Z direction and all linear and angular
velocities, with the exception of the forward speed and the rotation speed
of wheels, are considered as small quantities.

Two other assumptions, needed to further simplify the equations of motion,
are then added:

• The vertical plane xz through the center of mass is a symmetry plane for
the vehicle and its parts.

• Sideslip angles of the wheels are small enough to linearize the cornering
forces and the aligning torque

29.2.2 Sprung mass

Let the reference frame of the sprung mass be xsyszs, with axis xs parallel to the
roll axis and axis zs lying in the plane of symmetry. Axis x∗ coincides with the
projection of the roll axis on the ground. A plane perpendicular to the road and
to axis x∗ containing the centre of mass G of the vehicle in the reference position
is defined (section B-B in Fig. 29.3). The roll axis intersects such a plane in H;
O is the point on the ground vertically under H (it may be located above H, as
the roll axis may lie below the ground in particular cases). Two further reference
frames are defined. They are:
— xyz, fixed to the sprung mass, with origin in point H, x-axis coinciding with
the roll axis, z axis laying in the symmetry plane of the sprung mass;
— x∗y∗z∗ with origin in point O; x∗-axis coincides with the projection on the
ground of the roll axis and z∗ axis is perpendicular to the road.

Instead of using the coordinates of the centre of mass Gs of the sprung mass
to define the generalized coordinates for the translational degrees of freedom, the
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FIGURE 29.3. Reference frames for the sprung mass and definition of points H and O.

coordinates XH , YH and ZH of point H in the inertial frame OXiYiZi will be
used. In the following, to simplify the notation it will be X = XH and Y = YH .
Operating in this way, if the roll and pitch motions are locked, the frame x∗y∗z∗

coincides with frame xyz defined in Fig. 25.15 and the model reduces to that of
a rigid vehicle.

Coordinate ZH can be considered as the sum of a constant value Z0 corre-
sponding to a reference position and a displacement Z:

ZH = Z0 + Z . (29.1)

The generalized coordinates for translations of the sprung mass are then X,
Y and Z, with Z considered as a small displacement with respect to the reference
position.

The generalized coordinates for rotations are three Tait-Bryan angles
(Appendix A, Fig. A.5): the yaw angle ψ, the pitch angle, here considered as
the sum of a constant value θ0 related to the reference position and a pitch gen-
eralized coordinate θ, and the roll angle φ. Angle θ0 is the inclination on the
horizontal direction of the roll axis in the reference position and will be consid-
ered as a small angle. All generalized coordinates and velocities, except vx, are
then small quantities.

Velocity vx may be confused with the velocity V along the vehicle path. This
is made possible by the smallness of the pitch angle θ0 + θ and of the sideslip
angle β.

The rotation matrix allowing us to pass from the frame Gxyz fixed to the
body to the inertial frame XiYiZi is:

R = R1R2R3 , (29.2)

where:

R1 =

⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ , R2 =

⎡
⎣ cos(θ0 + θ) 0 sin(θ0 + θ)

0 1 0
− sin(θ0 + θ) 0 cos(θ0 + θ)

⎤
⎦ ,
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R3 =

⎡
⎣ 1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤
⎦ .

Its explicit expression is reported in Appendix A (Equation (A.106)), in
which θ0 + θ is substituted for θ).

If the pitch and roll angles are small, i.e. their cosine is approximately equal
to 1 and their sine is equal to the angle, product R2R3 is, approximately:

R2R3 ≈

⎡
⎣ 1 0 θ0 + θ

0 1 −φ
−θ0 − θ φ 1

⎤
⎦ . (29.3)

Because the generalized forces are written in the body-fixed frame, it is
expedient to write the kinetic energy in term of the components vx, vy and vz

of the velocity written in the x∗y∗z∗ frame and the components Ωx, Ωy and Ωz

of the angular velocity in frame Gxyz.
The components of the velocity and angular velocity so obtained are not

the derivatives of true coordinates, but are linked with the derivatives of the
coordinates by the six kinematic equations

V =

⎧⎨
⎩

vx

vy

vz

⎫⎬
⎭ = RT

1

⎧⎨
⎩

Ẋ

Ẏ

Ż

⎫⎬
⎭ , (29.4)

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎡
⎣ 1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(θ) cos(φ)

⎤
⎦
⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ . (29.5)

The third Eq. (A.109) is justified because Z differs from ZH by a constant.
The vector of the generalized coordinates is then

q =
[

X Y Z φ θ ψ
]T . (29.6)

Let the generalized velocities for translational degrees of freedom be the
components of the velocity in the x∗y∗z∗ frame. For the rotational degrees of
freedom, on the other hand, the derivatives φ̇, θ̇ and ψ̇ of coordinates φ, θ and
ψ, which in the following will be indicated as vφ, vθ and vψ, will be used in-
stead of the components Ωx, Ωy and Ωz of the angular velocity, as shown in
Appendix A. This choice is due to the fact that the yawing moments are more
easily expressed when considering an axis perpendicular to the road, and also
because the linearization of the model allows us to proceed in this way without
difficulties.

The generalized velocities are then

w =
[

vx vy vz vφ vθ vψ

]T . (29.7)



29.2 Linearized model for the isolated vehicle 519

The relationship linking the generalized velocities to the derivatives of the
generalized coordinates may then be written as

w = AT q̇ , (29.8)

where matrix A1 is:

A =
[

R1 03×3

03×3 I3×3

]
. (29.9)

The inverse transformation is Eq. (A.85):

q̇ = Bw ,

where2 B = A−T is the inverse of the transpose of A. In this case, A is a rotation
matrix, and then

A−1 = AT ; B = A . (29.10)

If r1 is the vector defining the position of the center of mass of the sprung
mass GS with respect to point H, the position of the former in the inertial frame
is

(GS−O’) = (H − O’) + Rr1. (29.11)

Assume that the vehicle body has a symmetry plane and that this plane
coincides with plane xz in Fig. 29.3. In the reference position, points G and
GS then belong to the symmetry plane and the second component of vector r1

vanishes. The coordinates of the center of the sprung mass are c, 0 and h in the
xyz frame, and thus the expression of vector r1 is:

r1 =
[

c 0 h
]T

. (29.12)

Because r1 is constant, the velocity of point GS is:

VGS =
[

Ẋ Ẏ Ż
]T

+ Ṙr1 . (29.13)

i.e.,
VGS = R1V + Ṙr1 . (29.14)

and then the translational kinetic energy of the sprung mass is

Tt =
1
2
m

(
VT V + r1T ṘT Ṙr1+2VT RT

1 Ṙr1
)

. (29.15)

Because xz is a symmetry plane for the sprung mass, its inertia tensor is

Js=

⎡
⎣ Jxs

0 −Jxzs

0 Jys
0

−Jxzs
0 Jzs

⎤
⎦ . (29.16)

1Matrix A here defined has nothing to do with the dynamic matrix of the system, which
is also indicated as A.

2Matrix B here used must not be confused with the input gain matrix, which is also usually
indicated as B.



520 29. MULTIBODY MODELLING

The rotational kinetic energy of the sprung mass is then

Tw =
1
2
ΩT JsΩ. (29.17)

Performing the relevant computations, expressing the components of the
angular velocity as functions of the derivatives of the coordinates and neglecting
the terms containing powers higher than 2 of small quantities, it follows that

Ts = 1
2
ms

(
vx

2 + vy
2 + vz

2
)

+ 1
2

(
msh

2 + Jxs

)2
φ̇

2
+

+ 1
2

[
ms

(
h2 + c2

)
+ Jys

]
θ̇
2

+ 1
2

(
msc

2 + Jzs

)
ψ̇

2 − (msch + Jxzs) ψ̇ φ̇+

−msvx

[
(cθ0 − h) θ̇ − hψ̇ φ + cθ̇θ

]
− msvy

(
hφ̇ − cψ̇

)
− mscvz θ̇.

(29.18)

The height of the center of mass of the sprung mass on the road is

ZG = Z0 + Z + eT
3 Rr1 , (29.19)

where:
e3 =

[
0 0 1

]T

is the unit vector of axis Z.
The potential energy of the sprung mass is simply its gravitational potential

energy; its expression is:

Us = msg (Z0 + Z) + msgeT
3 Rr1 , (29.20)

or, performing the relevant computations

Us = msg (Z0 + Z) + msg [−c sin ( θ0 + θ) + h cos ( θ0 + θ) cos (φ)] . (29.21)

Because the model is linearized, the trigonometric functions of small angles
may be substituted by their series, truncated after the quadratic term

sin ( θ0 + θ) ≈ θ0 + θ , cos ( φ) ≈ 1 − φ2

2
,

cos ( θ0 + θ) ≈ 1 − ( θ0 + θ)2

2
= 1 − θ2

0

2
− θ2

2
− θ0θ .

Neglecting the constant term, it follows that

Us = msg

[
Z − (c + hθ0) θ − h

θ2

2
− h

φ2

2

]
. (29.22)

29.2.3 General solid axle suspension

Geometry of the suspension

A solid axle suspension can be modelled as a secondary rigid body having two
degrees of freedom with respect to the main body.
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FIGURE 29.4. Sketch of an idealized solid axle suspension.

The geometry of the suspension may be simplified by assuming that it is
possible to identify a roll center CR in the motion about the reference position.
This is a point belonging to the roll axis x and to a plane perpendicular to
the ground passing through the centers of the wheels. In the heave motion,
point CR belonging to the sprung mass, indicated as CRs, will not coincide
with the corresponding point CRu belonging to the axle. Assume that the latter
moves along a trajectory belonging to the xz plane fixed to the vehicle body.
For small displacements of the body, substitute the trajectory with its tangent
in CRs.(Fig. 29.4).

Let the position of CRs in the frame fixed to the sprung mass be

(CRs−H) =
[

0 0 xu

]T . (29.23)

If the unit vector tangent to the trajectory of CRu in CRs is

s =
[

sx 0 sz

]T (29.24)

and ζ is the distance between these two points, the position of CRu in the frame
fixed to the sprung mass is

(CRu−H) =
[

xu + ζsx 0 ζsz

]T ≈
[

xu + ζsx 0 ζ
]T . (29.25)

The second of the two expressions is justified by the fact that the angle
between vector s and axis z is small.

If the roll rotation of the unsprung mass occurs about an axis parallel to
the roll axis x, its rotation matrix is

Rk = R1R2R3k , (29.26)
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where the rotation matrices for yaw and pitch rotations are the usual ones, while
the roll rotation is

R3k =

⎡
⎣ 1 0 0

0 cos(φk) − sin(φk)
0 sin(φk) cos(φk)

⎤
⎦ .

The axis about which the unsprung mass rotates may be different from the
roll axis of the vehicle. It is then possible to define a unit vector sk (Fig. 29.4)
that defines such a rotation axis. If the components of this vector, all functions
of ζ, are xus, yus and zus, it is possible to define a matrix Rus, that is a function
of ζ too, allowing the reference frame of the unsprung mass to be rotated so that
its longitudinal axis coincides with the rotation axis of the sprung mass

Rus(ζ) = − 1√
x2

us + y2
us

⎡
⎣ xus

√
x2

us + y2
us −yus −zusxus

yus

√
x2

us + y2
us xus −zusyus

zus

√
x2

us + y2
us 0 x2

us + y2
us

⎤
⎦ . (29.27)

If the deviation of the roll axis of the unsprung mass from the longitudinal
direction is small, vector sk is contained in the symmetry plane, and the rotation
matrix reduces to

Rus(ζ) ≈

⎡
⎣ 1 0 −zus

0 1 0
zus 0 1

⎤
⎦ . (29.28)

Translational kinetic energy

The rotation matrix of the unsprung mass is then

Rk = R1R2RusR3k . (29.29)

Once linearized, the product of matrices R2RusR3k is

R2RusR3k ≈

⎡
⎣ 1 0 θ + θ0 − zus

0 1 −φk

−θ − θ0 + zus φk 1

⎤
⎦ . (29.30)

Let the coordinates of the center of mass Gu of the unsprung mass in the
reference position in the reference frame of the vehicle be xGu, yGu and zGu

(yGu = 0 for symmetry reasons). Its position in the inertial frame is

(Gu−O’) = (H − O’) + R1r , (29.31)

where

r = R2

⎡
⎣R3

⎧⎨
⎩

xu + ζsx

0
ζ

⎫⎬
⎭+RusR3N

⎧⎨
⎩

xGu − xu

0
zGu

⎫⎬
⎭
⎤
⎦ , (29.32)
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that is, linearizing,

r =

⎧⎨
⎩

xGu − zuszGu + θ0zGu + θzGu

−φkzGu

ζ + zGu + zus (xGu − xu) − xGu (θ + θ0)

⎫⎬
⎭ . (29.33)

The height of the center of mass of the kth suspension from the ground may
be considered as the sum of a constant value related to the reference position,
plus a displacement of the same order of the other small quantities (like Z):

ZGu
= Z0k + Zk = Z0 + Z + eT

3 R1r . (29.34)

Performing the relevant computations and linearizing the trigonometric
functions of small angles, it follows that

Z0k + Zk = Z0 + Z − xGu (θ0 + θ) + ζ + zGu + zus (xGu − xu) . (29.35)

In the reference position, its value is

Z0k = Z0 − xGuθ0 + zGu + zus (xGu − xu) (29.36)

and then the relationship linking ζ to Zk is simply

ζ = Zk − Z + xGuθ . (29.37)

The component variable in time Zk of the Z coordinate of the center of
mass of the kth suspension will be assumed to be the generalized coordinate for
the vertical displacement of the unsprung mass.

Introducing the linearized value of ζ into the expression for r, it follows that

r =

⎧⎨
⎩

xGu − zuszGu + θ0zGu + θzGu

−φkzGu

zGu + zus (xGu − xu) − xGuθ0 + Zk − Z

⎫⎬
⎭ . (29.38)

Its derivative with respect to time, once linearized, is

ṙ =

⎧⎨
⎩

θ̇zGu

−φ̇kzGu

Żk − Ż

⎫⎬
⎭ . (29.39)

The velocity of the center of mass of the unsprung mass is then

VGu=
[

Ẋ Ẏ Ż
]T

+ R1ṙ + Ṙ1r . (29.40)

The velocity VGu
in the x∗y∗z∗ frame is obtained by premultiplying this

expression by RT
1 . Remembering that

RT
1 R1 = I , RT

1 Ṙ1 = ψ̇S =ψ̇

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ , (29.41)



524 29. MULTIBODY MODELLING

it follows that
VGu

= V + ṙ + ψ̇Sr . (29.42)

The translational kinetic energy of the unsprung mass is then

Tt =
1
2
mu

(
VT V + ṙT ṙ+ψ̇

2
rT ST Sr+2VT ṙ + 2ψ̇VT Sr + 2ψ̇ṙT Sr

)
, (29.43)

that is, by indicating as rx, ry, rz the components of vector r,

Tt = 1
2mu

{
v2

x + v2
y + v2

z + ṙ2
x + ṙ2

y + ṙ2
z + ψ̇

2 (
r2
x + r2

y

)
+

+2 (vxṙx + vy ṙy + vz ṙz) + 2ψ̇ (−vxry + vyrx − ṙxry + ṙyrx)
}

.
(29.44)

Only the constant and linear terms of r are present in all terms, except for
the term in vxṙx. Only the expression of ṙx containing also the quadratic terms

ṙx=β1θ̇ + xGuθ̇θ + β3 (vk − vz) + θ
(
Żk − Ż

)
+ θ̇ (Zk − Z) , (29.45)

where
β1 = zGu + zus (xGu − xu) + xusx , β3 = θ0 + sx (29.46)

and vk = Żk is the velocity of the kth unsprung mass, needs to be written
explicitly.

The following simplified expression is so obtained

Tt = 1
2mu

{
v2

x + v2
y + v2

k + φ̇
2

kz2
Gu +

(
z2

Gu + x2
Gu

)
θ̇
2

+ x2
Guψ̇

2
+

−2Żkθ̇xGu + 2vx

[(
Żk − Ż

)
β3 + θ̇β1 + θ̇ (Zu − Z) +

+θ
(
Żk − Ż

)
+ xGuθθ̇ + ψ̇φkzGu

]
+

+2vy

[
−φ̇kzGu + ψ̇xGu

]
+ 2ψ̇φ̇kzGuxGu

}
.

(29.47)

Angular velocity of the wheels

If the axle did not rotate with respect to the body about its longitudinal axis,
its absolute angular velocity about its longitudinal axis, as expressed in its own
reference frame, is

Ωk = RT
usΩ =

⎧⎨
⎩

Ωx + zusΩz

Ωy

Ωz − zusΩx

⎫⎬
⎭ . (29.48)

In reality, the unsprung mass is free to rotate about that axis and its angular
velocity is

Ωk =

⎧⎨
⎩

φ̇k

Ωy

Ωz − zusΩx

⎫⎬
⎭ . (29.49)
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The rotation and steering motion of each wheel are taken into account inde-
pendently. Let the rotation angles of the wheels be χR and χL and the steering
angles be δR and δL (R and L designate the right and left wheel of the axle).

If the wheel’s rotation axis coincided with axis yu of the unsprung mass,
and both were parallel to the y axis of the axle, the angular velocity of the ith
wheel in the reference frame of the kth unsprung mass would be

Ωwi = Ωk + χ̇ie2 (i = L, R). (29.50)

Generally speaking, the direction of the rotation axis of the wheel may be
different (although usually not by much except for steering) from that of the y
axis, making it possible to define the unit vector of the rotation axis ewi in the
reference frame of the unsprung mass. Such a unit vector does not depend upon
the position of the suspension and thus is a function neither of ζ nor of φk. It
follows that

Ωwi = Ωk + χ̇iewi (i = L, R). (29.51)

The position of the rotation axis may be defined by introducing a rotation
matrix Rwi, allowing us to pass from the reference frame of the unsprung mass
to a frame whose y axis coincides with the rotation axis of the wheel

ewi = Rwie2 . (29.52)

If xw, yw are zw the components of unit vector ewi
3, the value of the rotation

matrix Rw is

Rwi =
1√

x2
w + y2

w

⎡
⎣ yw xw

√
x2

w + y2
w −xwzw

−xw yw

√
x2

w + y2
w −ywzw

0 zw

√
x2

w + y2
w x2

w + y2
w

⎤
⎦ . (29.53)

The rotation axis of the wheel is usually little inclined with respect to the
horizontal direction. The trigonometric functions of the rotation axis included in
matrix Rwi may be linearized. It follows thus

Rwi =

⎡
⎣ 1 xw 0

−xw 1 −zw

0 zw 1

⎤
⎦ , (29.54)

where xw coincides with the steering angle of the wheel (when the axle does
not steer) with its sign changed (this angle is usually due to toe in and is very
small), while zw coincides with the camber angle of the wheel and is also small.
For symmetry reasons, it follows that

xwR
= −xwL

, zwR
= −zwL

. (29.55)

3Obviously
√

x2
w + y2

w + z2
w = 1.
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The angular velocity of the wheel in its reference frame, instead of the frame
of the unsprung mass, is

Ωwi = Rwi
T Ωk+χ̇e2 . (29.56)

If the wheel steers, the reference frame of the ith wheel will no longer be
parallel to the frame xuyuzu of the unsprung mass, but will be rotated by a
steering angle δi. Assume that the kingpin axis of the wheel is parallel to axis
zu and define a further rotation matrix

R4i =

⎡
⎣ cos(δi) − sin(δi) 0

sin(δi) cos(δi) 0
0 0 1

⎤
⎦ . (29.57)

In this case, the kingpin axis is generally not parallel to the z axis of the
axle. If ek is the unit vector of the kingpin axis (its components will be indicated
as xk, yk and zk

4), which in solid axle suspensions may be considered as fixed,
the rotation matrix Rki allowing the reference frame of the unsprung mass to
be rotated so that its zu axis coincides with the kingpin axis of the ith wheel is

Rki =
1√

x2
w + z2

w

⎡
⎣ zw −xwyw xw

√
x2

w + z2
w

0
(
x2

w + z2
w

)
yw

√
x2

w + z2
w

−xw −zwyw zw

√
x2

w + z2
w

⎤
⎦ . (29.58)

Usually the longitudinal inclination angle (the pitch angle of the kingpin
axis) and the transversal inclination angle (the roll angle of the kingpin axis),
are quite small, and the rotation matrix Rk reduces to

Rki ≈

⎡
⎣ 1 0 xk

0 1 yk

−xk −yk 1

⎤
⎦ , (29.59)

where xk and yk coincide respectively with the longitudinal inclination angle
(not larger than about 1◦) and the transversal inclination angle changed in sign
(usually not larger than about 10◦). For symmetry reasons, it follows that

xkR
= xkL

, ykR
= −ykL

. (29.60)

The angular velocity of the wheel in the reference frame of the sprung mass
is then

Ωwi = Ωk+δ̇iRkie3 + χ̇iRkiR4iRT
kiRwie2 . (29.61)

To obtain the angular velocity of the wheel in its own reference frame, Eq.
(29.61) must be premultiplied by (RkiR4iRT

kiRwi)T . Remembering that

R4ie3 = e3 ,

4Obviously
√

x2
k + y2

k + z2
k = 1.
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it follows that
Ωwi = χ̇e2 + δ̇α1 + α2Ωk. (29.62)

where
α1 = RT

wiRkie3 , α2 = RT
wiRkiRT

4iR
T
ki . (29.63)

It must be remembered that in a suspension there are two matrices Rwi and
Rki (i = L, R), one for each wheel.

Rotational kinetic energy

Because the wheel is a gyroscopic body (two of the principal moments of inertia
are equal to each other), with a principal axis of inertia coinciding with the
rotation axis, its inertia tensor has a peculiar form

Jw = diag
([

Jtw Jpw Jtw

])
, (29.64)

where Jpw and Jtw are respectively the polar and transversal moment of inertia
of the wheel.

The rotational kinetic energy of the ith wheel is

Twri = 1
2Ω

T
k αT

2 Jwα2Ωk + 1
2 χ̇2eT

2 Jwe2 + 1
2 δ̇

2
αT

1 Jwα1+
+χ̇δ̇eT

2 Jwα1 + χ̇eT
2 Jwα2Ωk + δ̇αT

1 Jwα2Ωk .
(29.65)

The first term is the rotational kinetic energy due to the angular velocity of
the unsprung mass.

By neglecting the first term, which will later be included in the kinetic energy
of the axle, and by linearizing and introducing the linearized expressions of the
kinematic equations, the rotational kinetic energy of the ith wheel reduces to

Twri =
1
2
χ̇2

i Jpw+
1
2
δ̇
2

i Jtpw + χ̇iδ̇iJpw (yk + zw) + (29.66)

+χ̇iJpw

[
θ̇ + φψ̇ + (xw − δi) φ̇k + zwψ̇

]
+ δ̇Jtwψ̇ . (29.67)

The first term that was neglected above can be inserted into the rotational
kinetic energy of the unsprung mass Tur:

Tur = 1
2Ω

T
k JuΩk, (29.68)

if the inertia tensor Ju also includes the inertia of the wheels, assumed to be
non-rotating and non-steering.

Operating in this way, the variation of the inertia of the unsprung mass at
the changing steering angle is neglected, but this approximation is acceptable.
The inertia tensor of the unsprung mass has a structure similar to that of the
sprung mass, because the suspension also has a symmetry plane coinciding with
the xuzu plane.

Performing the relevant computations, it follows that

Tur = 1
2Jxu

Ω2
xk + 1

2Jyu
Ω2

yk + 1
2Jzu

Ω2
zk − Jxzu

ΩxkΩzk (29.69)



528 29. MULTIBODY MODELLING

and, by linearizing and including the linearized kinematic equations, the simple
expression is obtained

Tur = 1
2J2

xu
φ̇k + 1

2Jyu
θ̇
2

+ 1
2Jzu

ψ̇
2

+ Jxzu
φ̇ψ̇ . (29.70)

The total rotation kinetic energy of the axle is then

Turt = Tur + TwrR + TwrL . (29.71)

Total kinetic energy

The kinetic energy of the axle is then

Twri = χ̇iJpw

[
θ̇ + φψ̇ + zwψ̇

]
, (29.72)

Tu = 1
2mu

(
v2

x + v2
y + v2

k

)
+ 1

2β11θ̇
2

+ 1
2β12ψ̇

2
+ 1

2β13φ̇k+
+β14ψ̇φ̇k + 1

2 χ̇2
sJpw+ 1

2 δ̇
2

sJtw + 1
2 χ̇2

RJpw+ 1
2 δ̇

2

RJtw+
+χ̇sδ̇sJpw (yk + zw) − χ̇Rδ̇RJpw (yk + zw) − β16vkθ̇

+muvx

(
θ̇β1 + θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz+

+xGuθθ̇ + β5ψ̇φk

)
+ muvy

(
−β5φ̇k + xGuψ̇

)
+

+β19δ̇Lψ̇ + β19δ̇Rψ̇ + χ̇Lβ20 (xw − δs) φ̇k − χ̇Rβ20 (xw + δR) φ̇k+
+χ̇LJpr

(
θ̇ + φψ̇ + zwψ̇

)
+ χ̇RJpr

(
θ̇ + φψ̇ − zwψ̇

)
,

(29.73)

where

β5 = zGu , β11 = mu

(
z2

Gu + x2
Gu

)
+ Jyu

, β12 = mux2
Gu + Jzu

,
β13 = muz2

Gu + Jxu
, β14 = muzGuxGu − Jxzu

,
β16 = muxGu , β19 = Jtw , β20 = Jpw.

Potential energy

The height of the center of mass of the axle on the ground is

hu = eT
3 (GN−O’) = eT

3 (H − O’) + eT
3 R1r , (29.74)

i.e.,
hu = Z0 + Z + rz , (29.75)

The expression of rz, obtained by approximating vector r with its Taylor
series truncated after the quadratic term in the small quantities and cancelling
the constant terms that do not influence the equations of motion, is

rz = Zk − Z − θβ22 −
1
2
θ2zGu − 1

2
φ2

kzGu, (29.76)

where
β22 = zGu (θ0 − zus) .
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The gravitational potential energy

Ug = mughu (29.77)

is then

Ug = mug

(
Zk − θβ22 −

1
2
θ2zGu − 1

2
φ2

kzGu

)
. (29.78)

On each of the springs of the suspension it is possible to identify two points:
one of these (A) is fixed to the body, while the other (B) is fixed to the axle.
Considering rA and rB as the vectors defining their positions in the frame of the
sprung mass (rA is constant, while rB depends on ζ and φk), it is possible to
compute the shortening of the spring and then its elastic potential energy. In a
similar way, it is possible to compute the potential energy of possible anti-roll
bars applied to the axle.

In a linearized model of the suspension, the spring system linking the two
rigid bodies can be reduced to a spring with stiffness Kζ reacting to linear
displacements, and a torsional spring with stiffness Kφ reacting to the relative
rotation between sprung and unsprung masses φ − φk.

The general expression of the elastic potential energy of the whole suspen-
sion is

Um =
1
2
Kζ (ζ + ζ0)

2 +
1
2
Kφ (φ − φk)2 . (29.79)

Note that for symmetry reasons the stiffness for heave and roll motions are
fully independent from each other.

By introducing the expression for ζ as a function of the generalized coordi-
nates, it follows that

Um = 1
2K11 (Z + Z0)

2 + 1
2K22 (Zk + Zk0)

2 + 1
2K33 (θ + θ0)

2 +
−K12 (Z + Z0) (Zk + Zk0) − K13 (Z + Z0) (θ + θ0) +

+K23 (Zk + Zk0) (θ + θ0) + 1
2Kφφ2 + 1

2Kφφ2
k − Kφφφk,

(29.80)

where constants Kij depend on both the elastic and geometric characteristics of
the suspension.

This expression of the potential energy, along with the expression of the
kinetic energy seen above, takes implicitly into account the actual trajectory of
the suspension, or better, because the model is linearized, the tangent to the
trajectory in the reference position. On the other hand, using a model of this
kind makes it impossible to account for the deformation in longitudinal and
lateral directions, and for the yaw and pitch compliance of the suspension.

In a similar way, the general expression of the elastic potential energy due
to the deformation of the tires of the suspension is

Up =
1
2
Kpz (Zk + Zk0)

2 +
1
2
Kpφφ2

k . (29.81)

If Kp is the stiffness of a single tire and t is the track of the axle, for an axle
with two wheels it follows that

Kpz = 2Kp , Kpφ =
1
2
t2Kp . (29.82)
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Dissipation function

Operating with the same method used for the elastic potential energy of the
suspension, the dissipation function due to the shock absorbers is

Fa =
1
2
c11v

2
z +

1
2
c22v

2
k +

1
2
c33θ̇

2
+

1
2
cφφ̇

2
+

1
2
cφφ̇

2

k +

−c12vzvk − c13vz θ̇ + c23vkθ̇ − cφφ̇φ̇k, (29.83)

where constants cij depend both on the characteristics of the dampers and on
the geometry of the suspension.

The dissipation function due to the damping of tires can be computed in
the same way:

Fp =
1
2
cpzv

2
k +

1
2
cpφΩ2

k . (29.84)

29.2.4 General independent suspension

Geometry of the suspension

An axle with independent suspensions will be assumed to be made with two sus-
pensions that are the mirror image of each other. Some parameters are identical
for the two suspensions (for instance the mass mi, some geometrical character-
istics, some angles, etc.); others will be identical in modulus but with opposite
sign (for instance, the product of inertia Jxy, some angles, etc.). In the latter
case, reference will be made to the left suspension (subscript i = L), while the
characteristics of the right suspension (subscript i = R) will have opposite sign.

The simplest case, although only an ideal one, is a suspension in which
the unsprung masses can only move along a straight line in the direction of
the z axis of the sprung mass. The sprung mass is the main body, while the
single suspension (wheel, hub and all parts attached to it) is the secondary body
(Fig. 29.5). The suspension is constrained to the main body by a prismatic guide
whose axis is parallel to the z axis. The reference point C is on the axis of the
guide and the distance ζ between the position C1 of C belonging to the sprung
mass and C2 belonging to the unsprung mass is taken as a generalized coordinate.
Obviously in the reference position with ζ = 0, C1 coincides with C2. Moreover,
assume that the directions of the axes of frame xuyuzu coincide with those of
the axes of frame xyz.

Consider as reference point for translational coordinates the same point H
already used to compute the kinetic energy of the sprung mass. The position of
the center of mass of the suspension Gu in the inertial frame is
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FIGURE 29.5. Sketch of an idealized independent suspension.

(Gu−O’) = (H − O’) + R (rC1 + rGu + ζe3) = (H − O’) + Rr2 , (29.85)

where R is the rotation matrix defining the position of the xyz frame with respect
to the inertial frame XiYiZi, e3 is the unit vector of the z axis and

r2 = rC1 + rC2 + ζe3 . (29.86)

If the steering of the wheel is accounted for, a part of the unsprung mass may
rotate about the kingpin axis, which in the simplified model may be assumed to
be parallel to zu, and thus to the z, axis. The wheel also rotates about its own
axis, which may be assumed to be parallel to the y axis when the steering angle
is zero.

However, this model of independent suspension is too simple. No modern car
has suspensions made by prismatic guides parallel to the z axis of the unsprung
mass, nor is the kingpin axis parallel to the same axis, while the rotation of the
wheels does not occur about an axis parallel to the y axis.

Each suspension has its own specific kinematics (as an example, an SLA sus-
pension is shown in Fig. 29.6), or better, its own elasto-kinematics, because the
various elements of the suspensions are rigid bodies only as a first approximation.
However, while the exact elasto-kinematics is important in assessing the position
of the wheel with respect to the ground and thus the forces they exchange, its
effects on the inertia reactions of the various components of the suspension are
usually very limited. It is then possible to neglect the deformation of the various
links in the computation of the inertial part of the equations of motion and to
introduce them later in the computation of the forces due to the tires.

If the deformation of the linkages is neglected, it is possible to define the
trajectory of all points of the suspension in a reference frame fixed to the sprung
mass. The trajectory of the center of mass, for instance, may be expressed by a
function

r2 = r2(ζ) , (29.87)

where ζ is a generalized coordinate that defines the position of the unsprung
mass, with reference to a given position. In the extremely simplified case seen
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FIGURE 29.6. Sketch of an SLA suspension.

above, coordinate ζ is nothing other than the displacement of the unsprung
mass in the z direction, and function r2(ζ) is the linear function expressed by
Eq. (29.86).

The function expressed by Eq.(29.87) can be developed in McLaurin series
about the reference position and the terms of an order higher than the first
may be neglected. The position of the center of mass Gu of the suspension with
respect to point H is

(Gu−H) = r2 = r20 +
(

dr2

dζ

)
ζ=ζ0

ζ . (29.88)

Equation (29.88) coincides with Eq. (29.86) if vector

s0 =
(

dr2

dζ

)
ζ=ζ0

is substituted for e3, the unit vector of the z axis. The components of vector r20

will be indicated as xGu, yGu and zGu.
As an example, in the case of a trailing arms suspension hinged about an

axis parallel to the y axis (Fig. 29.7) and with point C on the hinge axis in the
oscillation plane of the center of mass, ζ0 is the angle line CGu makes with the
x axis in the reference position, and coordinate ζ ′ is the angle the suspension
rotates with respect to that position. The position of the center of mass may be
thus defined by the function
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FIGURE 29.7. Sketch of a trailing arm suspension.

r2 =

⎧⎨
⎩

x0 + d cos
(
ζ ′ + ζ0

)
y0

z0 − d sin
(
ζ ′ + ζ0

)
⎫⎬
⎭ . (29.89)

If ζ ′ is small, the truncated series yielding the position of Gu is

r2 =

⎧⎨
⎩

x0 + d cos (ζ0)
y0

z0 − d sin (ζ0)

⎫⎬
⎭ +

⎧⎨
⎩

− sin (ζ0)
0

− cos (ζ0)

⎫⎬
⎭ dζ ′ . (29.90)

Or, to give coordinate ζ the meaning of a displacement in the z direction of
the unsprung mass, it is possible to state

ζ = − cos (ζ0) dζ ′ , (29.91)

and then

r2 =

⎧⎨
⎩

x0 + d cos (ζ0)
y0

z0 − d sin (ζ0)

⎫⎬
⎭ + s0ζ , (29.92)

where
s0 =

[
tan (ζ0) 0 1

]T . (29.93)

The generalized coordinate for the ith unsprung mass (right or left) may be
the height on the ground of its center of mass instead of ζ. Such height is simply

c = eT
3

[
(H − O’) + Rr2

]
(i = L, R) . (29.94)

Also, ZGui
may be considered as the sum of a value taken at the reference

position plus a displacement, one that is of the same order as the other small
quantities (like Z):

ZGui
= ZGu0 + Zui

= Z0 + Z + eT
3 R

⎧⎨
⎩

xGu + ζsx

yGu + ζsy

zGu + ζsz

⎫⎬
⎭ . (29.95)
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Note that, owing to symmetry, ZGu0 , xGu, zGu, sx, and sz are equal for the
two suspensions of the same axle, while yGu and sy have opposite signs. In the
following, as already stated, the signs of the left suspension (that with positive
yGu) will be taken as a reference.

In the reference position it follows that

Z0u
= Z0 − xGuθ0 + zGu . (29.96)

By performing the computations, linearizing the trigonometric functions of
the small angles and assuming that sz = 1 and that sx and sy are small, it
follows that

Zui
= Z − xGuθ + yGuφ + ζ (29.97)

and thus the relationship linking ζ to Zu is simply

ζ = Zui
− Z + xGuθ − yGuφ . (29.98)

Rotation of the wheels

Assume that the rotation axis of the wheels is fixed to the unsprung mass. Let χ
be the angle of rotation of the wheel and χ̇ its angular velocity in a frame fixed
to the suspension. The signs of angular velocities have been defined in such a
way that, when χ̇ is positive, the wheel rotates in a direction that is consistent
with a positive velocity vx of the vehicle.

If the direction of the rotation axis of the wheel coincides with that of axis
yu of the unsprung mass, and then is parallel to the y axis of the vehicle (whose
unit vector is e2), the absolute angular velocity of the wheel is, in the reference
frame of the sprung mass,

Ωw = Ω + χ̇e2 =

⎧⎨
⎩

Ωx

Ωy + χ̇
Ωz

⎫⎬
⎭ . (29.99)

However, the rotation axis of the wheel usually has a direction that may be
different (only slightly, when the wheel is not steered) from the y axis, so that
it is possible to define the unit vector of the rotation axis ew in the reference
frame of the sprung mass. Obviously such a vector depends on the position of
the suspension and is then a function of ζ:

ew = ew (ζ) . (29.100)

As an alternative, the position of the rotation axis can be defined by stating
a yaw angle ψw (steering due to the motion of the suspension) and a roll angle
φw of the rotation axis of the wheel. A rotation matrix Rw is then written to pass
from the reference frame of the sprung mass to a frame whose y axis coincides
with the rotation axis of the wheel. Since the two ways of describing the position
of the rotation axis must yield the same results, it follows that

ew = Rwe2 . (29.101)
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With xw, yw and zw being the components5 of unit vector ew, the rotation
matrix Rw is still expressed by Eq. (29.53). Because the rotation axis of the
wheel is usually not far from horizontal, the trigonometric functions of ψw and
φw can be linearized. Eq. (29.54), repeated here, still holds

Rw =

⎡
⎣ 1 xw 0

−xw 1 −zw

0 zw 1

⎤
⎦ .

The angular velocity of the wheel in the reference frame of the sprung mass
is

Ωw = Ω + χ̇ew (ζ) . (29.102)

Actually, it is expedient to write the components of the angular velocity of
the wheel in the frame fixed to the wheel instead of that fixed to the sprung
mass.

The angular velocity of the wheel in its own reference frame is

Ωw = Rw
T Ω+χ̇e2 . (29.103)

Steering

If the wheel steers, the reference frame of the wheel will no longer be parallel to
frame xuyuzu of the unsprung mass, but will be rotated by a steering angle δ.
Here two different approaches are possible: δ may be one of the variables of mo-
tion (free controls approach), or a constant or a known variable (locked controls
approach).

Assume that the kingpin axis of the wheel is parallel to the z axis of the
unsprung mass and define a further rotation matrix

R4 =

⎡
⎣ cos(δ) − sin(δ) 0

sin(δ) cos(δ) 0
0 0 1

⎤
⎦ . (29.104)

Assuming that the direction of the rotation axis does not change with the
heave motion and is parallel to the z axis, the rotation velocity of the wheel,
referred to its own reference frame, is

Ωw = χ̇e2 + δ̇e3 + RT
4 Ω . (29.105)

Actually, the kingpin axis moves with changing ζ and in general is not
parallel to the z axis of the unsprung mass, but its direction is defined by the
unit vector ek, which is a function of ζ:

ek = ek (ζ) . (29.106)

5Obviously, they are functions of ζ and
√

x2
w + y2

w + z2
w = 1.
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The rotation matrix Rk to rotate the reference frame of the unsprung mass
so that its z axis coincides with the kingpin axis

ek = Rke3 , (29.107)

can also be written.
By defining a pitch angle θk of the kingpin axis (coinciding with the lon-

gitudinal inclination angle) and a roll angle φk (coinciding with the transversal
inclination angle), and by indicating with xk, yk and zk the components6 of the
unit vector ek, the rotation matrix Rk is still expressed by Eq. (31.67). If θk and
φk are small angles, matrix Rk reduces to:

Rk ≈

⎡
⎣ 1 0 xk

0 1 yk

−xk −yk 1

⎤
⎦ . (29.108)

The velocity of the wheel in the reference frame of the sprung mass is then

Ωw = Ω+δ̇ek + χ̇RkR4RT
k ew . (29.109)

To write it in the principal reference frame of the wheel, the expression of
the angular velocity must be multiplied by

(
RkR4RT

k Rw

)T :

Ωwi = χ̇e2 + δ̇α1 + α2Ω, (29.110)

where
α1 = RT

wiRkiRT
4 e3 , α2 = RT

wiRkiRT
4iR

T
ki . (29.111)

The steering angle so defined does not coincide exactly with the steering
angle defined in the preceding chapters, because it also has components along
axes x and y.

Translational kinetic energy

The position of the center of mass of the unsprung mass in the inertial reference
frame is

(Gu−O’) = (H − O’) + R1r , (29.112)

where

r = R2R3

⎧⎨
⎩

xGu + ζs
x

yGu + ζs
y

zGu + ζ

⎫⎬
⎭ . (29.113)

By linearizing the expression for r and substituting its value for ζ, it follows
that

r =

⎧⎨
⎩

xGu + θ0zGu + θzGu

yGu − φzGu

zGu − θ0xGu + Zu − Z

⎫⎬
⎭ . (29.114)

6Obviously, they are functions of ζ and
√

x2
k + y2

k + z2
k = 1.
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Its derivative, again approximated to the first-order term in the small quan-
tities, is

ṙ =

⎧⎨
⎩

θ̇zGu

−φ̇zGu

Żu − Ż

⎫⎬
⎭ . (29.115)

The speed of the center of mass of the unsprung mass, written in the inertial
frame, is still expressed by Eq. (29.40) while the expression of the translational
kinetic energy of the unsprung mass is identical to that seen for the rigid axle
suspension (Eq. (29.44), where rx, ry, rz are the components of vector r). The
equation is repeated here:

Tt = 1
2mui

{
v2

x + v2
y + v2

z + ṙ2
x + ṙ2

y + ṙ2
z + ψ̇

2 (
r2
x + r2

y

)
+

+2 (vxṙx + vy ṙy + vz ṙz) + 2ψ̇ (−vxry + vyrx − ṙxry + ṙyrx)
}

.

To obtain an expression containing all terms up to the quadratic in small
quantities, the linearized expression of the components of r and their derivatives
may be used, except for the term in vxṙx, where the quadratic terms must also
be used

ṙx=β1θ̇ + xGuθ̇θ + β3 (vu − vz) + θ (vu − vz) + θ̇ (Zu − Z) − yGusxφ̇ (29.116)

where
β1 = xGusx + zGu , β3 = θ0 + sx . (29.117)

By linearizing the kinematic equations (A.111) and indicating with vui the
derivative of Zui, the following expression of the translational kinetic energy of
a single independent suspension is obtained:

Tti = 1
2mui

(
v2

x + v2
y + v2

ui + φ̇
2
z2

Gu + θ̇
2
z2

Gu

)
+

+muivx

[
β1θ̇ + xGuθ̇θ + β3 (vui − vz) +

+θ (vui − vz) + θ̇ (Zui − Z) − yGusxφ̇ − ψ̇yGu + zGuφψ̇
]
+

+muivy

(
ψ̇xGu − φ̇zGu

)
− muiψ̇θ̇zGuyGu + muiψ̇φ̇zGuxGu .

(29.118)

Note that operating in this way the translational kinetic energy linked with
steering has been neglected. This would be correct if the center of mass of the
steering part of the suspension lies on the kingpin axis; however, the small error
so introduced may be at least partially compensated for by introducing the
moment of inertia of the steering parts about the kingpin axis instead of about
a baricentric axis.

Rotational kinetic energy

The rotational kinetic energy of the wheel is

Twr = 1
2Ω

T αT
2 Jwα2Ω+1

2 δ̇2αT
1 Jwα1+δ̇αT

1 Jwα2Ω+
+χ̇δ̇eT

2 Jwα1 + 1
2 χ̇2eT

2 Jwe2 + χ̇eT
2 Jwα2Ω .

(29.119)
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Because the wheel is a gyroscopic body (two of its principal moments of
inertia are equal to each other), with one of its principal axes of inertia coinciding
with the rotation axis, its inertia matrix is diagonal and has a particular form

Jw = diag
([

Jtw Jpw Jtw

])
, (29.120)

where Jpw and Jtw are the polar and transversal moments of inertia, respectively.
The rotational kinetic energy of the non-rotating parts of the suspensions is

Tnr =
1
2
δ̇
2
αT

1 Jmα1 +
1
2
ΩT αT

2 Jmα2Ω+δ̇αT
1 Jmα2Ω .

where Jm is the inertia tensor of the non-rotating parts of the unsprung mass.
The first three terms of Eq. (29.119) may be directly included in the expres-

sion of Tnr if the inertia of the wheels is included in tensor Jm.
Remembering that all angular velocities except for χ̇ are small quantities,

the expression of the kinetic energy truncated to the second-order terms is fairly
simplified.

Stating that Jm is the inertia tensor of the unsprung mass, which in general
has no symmetry property, and remembering the peculiar structure of the inertia
tensor of the wheel, the rotational kinetic energy of the unsprung mass (i.e., of
one of the two unsprung masses of the axle) is

Tur = 1
2Jpwχ̇2 + 1

2 δ̇
2
Jmz + 1

2 φ̇
2
Jmx + 1

2 θ̇
2
Jmy+

+ 1
2 ψ̇

2
Jmz − φ̇θ̇Jmxy − φ̇ψ̇Jmxz − θ̇ψ̇Jmyz+

−δ̇φ̇Jmxz − δ̇θ̇Jmyz + δ̇ψ̇Jmz + χ̇δ̇Jpw (yk + zw) +
+χ̇φ̇Jpw (xw − δ) + χ̇Jpw

[
θ̇ + ψ̇ (zw + φ)

]
.

(29.121)

As already stated, this expression is approximated for various reasons, and
also because the parts of the suspension that do not steer have been neglected.

Total kinetic energy of the axle

Because different types of suspensions may be used on the same vehicle for
front and rear axles, the equations of motion are best written with reference to
coordinates that may be used for both rigid axle and independent suspensions.
Consider the general kth axle made of two independent suspensions and assume

⎧⎪⎨
⎪⎩

Zk =
ZuL + ZuR

2
,

φk =
ZuL − ZuR

d0
,

(29.122)

where as usual subscripts L and R designate the left and right suspension and
d0 is an arbitrary length, for instance the distance between the centers of mass
of the two suspensions. Coordinate Zk coincides with the vertical displacement
of the center of mass of the system made by the two suspensions of the axle, and
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φk is the roll rotation of a line passing through the two centers of mass (if d0 is
their distance). The coordinates are then the same used for rigid axles.

Taking into account the symmetry of the two suspensions, some terms in
the kinetic energy are equal in modulus but have opposite signs (for instance
β2yGuφ̇) and then cancel each other. Remembering that mu = 2mui, substituting
the coordinates Zk and φk to Zui, the total kinetic energy of the system made
by the two suspensions is

Tu = 1
2mu

(
v2

x + v2
y + v2

k

)
+ 1

2β10φ̇
2

+ 1
2β11θ̇

2
+ 1

2β12ψ̇
2
+

1
2β13φ̇

2

k + β15φ̇ψ̇ + 1
2Jpwχ̇2

L + 1
2Jpwχ̇2

R + 1
2 δ̇

2

LJmz + 1
2 δ̇

2

RJmz+
+χ̇Lδ̇LJpw (yk + zw) − χ̇Rδ̇RJpw (yk + zw) +

+muvx

(
β1θ̇ + θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz+

+β4ψ̇φ + xGuθ̇θ
)

+ muvy

(
xGuψ̇ − β4φ̇

)
− β17δ̇Lφ̇ − β17δ̇Rφ̇+

−β18δ̇Lθ̇ + β18δ̇Rθ̇ + β19δ̇Lψ̇ + β19δ̇Rψ̇ + χ̇Lφ̇β21 (xw − δL) +
−χ̇Rφ̇β21 (xw + δR) + χ̇LJpw

[
θ̇ + ψ̇ (zw + φ)

]
+ χ̇RJpw

[
θ̇ + ψ̇ (−zw + φ)

]
,

(29.123)
where

β4 = zGu , β10 = muz2
Gu + 2Jmx , β11 = muz2

Gu + 2Jmy ,
β12 = 2Jmz , β13 = 1

2mud2
0 , β15 = muzuGxGu − 2Jmxz ,

β17 = Jmxz , β18 = Jmyz , β19 = Jmz , β21 = Jpw .

Potential energy

The height on the ground of the center of mass of one of the two suspensions is
still expressed by Eq. (29.75):

hu = Z0 + Z + rz .

The expression of rz, obtained by approximating vector r with its series
truncated after quadratic terms in the small quantities and eliminating the con-
stant terms that do not affect the equations of motion, is

rz = zGu − 1
2
θ0zGu + Zui − Z − θθ0zGu − 1

2
θ2zGu − 1

2
φ2zGu. (29.124)

Neglecting constant terms, the gravitational potential energy of one of the
two independent suspensions is

Ugi = muig

(
−θθ0zGu + Zui −

1
2
θ2zGu − 1

2
φ2zGu

)
. (29.125)

The potential energy of the system made by the two suspensions is then

Ug = mug

(
Zk − θβ22 −

1
2
θ2zGu − 1

2
φ2zGu

)
(29.126)
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where

β22 = θ0zGu .

The expressions for the linearized elastic potential energy of the axle and the
tires, as well as those of the dissipation functions, are those already seen for
rigid axles. Obviously, the expressions of the coefficients describing the various
stiffnesses and damping coefficients are different and must be computed in each
case from the mechanical and geometrical characteristics of the suspensions, but
in the linearized approach they are at any rate constant.

29.2.5 Comparison between independent and rigid axle suspensions

As already stated, the generalized coordinates here chosen may be used for both
types of suspensions. The general expression of the kinetic energy of the axle is

Tu = 1
2mu

(
v2

x + v2
y + v2

k

)
+ 1

2β10φ̇
2

+ 1
2β11θ̇

2
+ 1

2β12ψ̇
2

+ 1
2β13φ̇

2

k+

+β14ψ̇φ̇k + β15ψ̇φ̇ + 1
2 χ̇2

LJpw+ 1
2 δ̇

2

LJtw + 1
2 χ̇2

RJpw+ 1
2 δ̇

2

RJtw+

+χ̇Lδ̇LJpw (yk + zw) − χ̇Rδ̇RJpw (yk + zw) − β16Żkθ̇+

+muvx

(
θ̇β1 + θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz+

+β4φψ̇ + xGuθ̇θ + β5φkψ̇
)

+ muvy

(
−β5φ̇k + xGuψ̇ − β4φ̇

)
+

−β17δ̇Lφ̇ − β17δ̇Rφ̇ − β18δ̇Lθ̇ + β18δ̇Rθ̇ + β19δ̇Lψ̇ + β19δ̇Rψ̇+

+χ̇Lβ20 (xw − δL) φ̇k − χ̇Rβ20 (xw + δR) φ̇k + χ̇Lφ̇β21 (xw − δL) +

−χ̇Rφ̇β21 (xw + δR) + χ̇LJpw

(
θ̇ + φψ̇ + zwψ̇

)
+ χ̇RJpw

(
θ̇ + φψ̇ − zwψ̇

)
.

(29.127)
Some coefficients βi vanish in the case of rigid axles (for instance β10 or

β15), while others vanish in independent suspensions (for instance β14 or β16).
In a similar way, the gravitational potential energy can be written in the

form

Ug = mug

(
Zu − θβ22 −

1
2
θ2zGu − 1

2
φ2β24 −

1
2
φ2

uβ23

)
(29.128)

where

β23 = zGu , β24 = 0 (29.129)

in the case of rigid axles, and

β23 = 0 , β24 = zGu (29.130)

for independent suspensions.
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29.2.6 Lagrangian function of the whole vehicle

The Lagrangian function L = T − U of the whole vehicle can thus be computed
without any difficulty:

L = 1
2m

(
v2

x + v2
y

)
+ 1

2msv
2
z + 1

2Jxφ̇
2

+ 1
2Jy θ̇

2
+ 1

2Jzψ̇
2
+

−Jxzψ̇φ̇ − mscvz θ̇ + vxθ̇Js1 − Js3vyφ̇ + Js3vxφψ̇+

+
∑

∀k

[
1
2muv2

k + 1
2β13φ̇

2

k + β14ψ̇φ̇k + 1
2 χ̇2

LJpw+ 1
2 δ̇

2

LJtw + 1
2 χ̇2

RJpw+

+ 1
2 δ̇

2

RJtw + χ̇Lδ̇LJpw (yk + zw) − χ̇Rδ̇RJpw (yk + zw) − β16vkθ̇+

+muvx

(
θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz + β5φkψ̇

)
+

−muvyβ5φ̇k − β17δ̇Lφ̇ − β17δ̇Rφ̇ − β18δ̇Lθ̇ + β18δ̇Rθ̇+

+β19δ̇Lψ̇ + β19δ̇Rψ̇ + χ̇Lβ20 (xw − δL) φ̇k − χ̇Rβ20 (xw + δR) φ̇k+

+χ̇Lφ̇β21 (xw − δL) − χ̇Rφ̇β21 (xw + δR) + χ̇LJpw

(
θ̇ + φψ̇ + zwψ̇

)
+

+χ̇RJpw

(
θ̇ + φψ̇ − zwψ̇

)]
− msgZ + Mg1θ + 1

2Mg2θ
2 + 1

2Mg3φ
2+

−g
∑

∀k mu

(
Zu − 1

2β23φ
2
k

)
−

∑
∀k

(
1
2K11 (Z + Z0)

2 +

+ 1
2 (K22 + Kpz) (Zk + Zk0)

2 + 1
2K33 (θ + θ0)

2 +

−K12 (Z + Z0) (Zk + Zk0) − K13 (Z + Z0) (θ + θ0) +

+K23 (Zk + Zk0) (θ + θ0) + 1
2Kφφ2 + 1

2 (Kφ + Kpφ) φ2
k − Kφφφk

)
,

(29.131)
where

m = ms +
∑

∀k mk , Jx = JxL
+ msh

2 +
∑

∀k β10

Jy = JyL
+ ms

(
h2 + c2

)
+

∑
∀k β11 , Jz = JzL

+ msc
2 +

∑
∀k β12

Jxz = JxzL
− msch −

∑
∀k β15 , Js1 = −ms (cθ0 − h) +

∑
∀k mkβ1

Js3 = msh +
∑

∀k mkβ4 , Mg1 = msg (c + hθ0) + g
∑

∀k mkβ22 ,

Mg2 = msgh + g
∑

∀k mkzGu , Mg3 = msgh + g
∑

∀k mkβ24 .
(29.132)

29.3 MODEL WITH 10 DEGREES OF FREEDOM
WITH LOCKED CONTROLS

Consider a vehicle moving at a stated speed with a stated steering angle and
neglect the longitudinal slip of the wheels. The forward speed V , which in the
linearized approach (small value of the sideslip angle β) coincides with vx, and
its derivative V̇ are imposed, and so are the steering angles of the wheels and
their derivatives. The angular velocity of the wheels is simply
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χ̇i =
V

Rei

(29.133)

where Rei
is the effective rolling radius. This expression is approximated even

if the rolling radius corresponding with the actual longitudinal slip was used,
because the speed of the centers of the wheels does not coincide with the ve-
locity V of the center of mass of the vehicle. Nonetheless, if motion takes place
in conditions allowing the equations to be linearized, such assumptions can be
accepted.

Moreover, assume that the derivatives δ̇i of the steering angles are vanish-
ingly small, either because the steering angles are actually locked at a constant
value or because the dynamic effects of their variation are negligible

29.3.1 Expression of the Lagrangian function and its derivatives

The expression of the Lagrangian function is much simplified and may be writ-
ten as

L = 1
2mev

2
x + 1

2mv2
y + 1

2msv
2
z + 1

2Jxφ̇
2

+ 1
2Jy θ̇

2
+ 1

2Jzψ̇
2
+

−Jxzψ̇φ̇ − mscvz θ̇ + vxθ̇Js2 − Js3vyφ̇ + Js3vxφψ̇+

+
∑

∀k

{
1
2mkv2

k + 1
2β13φ̇

2

k + β14ψ̇φ̇k − β16vkθ̇ − mkvyβ5φ̇k+

+mkvx

(
θ̇Zk − θ̇Z + θvk − θvz + β3vk − β3vz + β5φkψ̇

)
+

+2 vx

Re

[
−β20δφ̇k − β21δφ̇ + Jprφψ̇

]}
− msgZ + Mg1θ + 1

2Mg2θ
2+

+ 1
2Mg3φ

2 − g
∑

∀k mk

(
Zk − 1

2β23φ
2
k

)
−

∑
∀k

(
1
2K11 (Z + Z0)

2 +

+ 1
2 (K22 + Kpz) (Zk + Zk0)

2 + 1
2K33 (θ + θ0)

2 +

−K12 (Z + Z0) (Zk + Zk0) − K13 (Z + Z0) (θ + θ0) +

+K23 (Zk + Zk0) (θ + θ0) + 1
2Kφφ2 + 1

2 (Kφ + Kpφ) φ2
k − Kφφφk

)
,

(29.134)
where the equivalent mass and Js2 are

me = m + 2
∑
∀k

Jpw
1

R2
e

, Js2 = Js1 + 2
∑
∀k

Jpw

Re
(29.135)

(coefficients 2 come from the assumption that each axle has two wheels) and δ
is the average steering angle of the axle

δ =
δL + δR

2
. (29.136)

The derivatives of the Lagrangian function with respect to the generalized
velocities and coordinates are

∂L
∂vx

= mevx + θ̇Js2 . (29.137)
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Note that the expression of this derivative has been further linearized by
cancelling the terms of the same order of the squares of small quantities. For
instance, the term in β3vk was cancelled because both β3 and vk are small quan-
tities. Moreover, the use of the equivalent mass, which includes only the contri-
bution to inertia due to the wheels, may be criticized because the transmission
has not been modelled. Physically, this corresponds to considering the vehicle
as pushed forward by an external force in the x direction, as in jet propelled
record vehicles, instead of propelled by the driving torque applied to the wheels
(or slowed by the braking torque).

∂L
∂vy

= mvy − Js3φ̇ −
∑
∀k

mkβ5φ̇k, (29.138)

∂L
∂vz

= msŻ − mscθ̇ − vx

∑
∀k

mk (θ + β3) , (29.139)

∂L
∂φ̇

= Jxφ̇ − Jxzψ̇ − Js3vy − 2
∑
∀k

vx

Re
β21δ, (29.140)

∂L
∂θ̇

= Jy θ̇ − mscŻ + vxJs2 +
∑
∀k

[
−β16Żk + mkvx (Zk − Z)

]
, (29.141)

∂L
∂ψ̇

= Jzψ̇ − Jxzφ̇ + Js3vxφ +
∑
∀k

(
β14φ̇k + mkvxβ5φk + 2

vx

Re
Jpwφ

)
, (29.142)

∂L
∂Żk

= mkŻk − β16kθ̇ + mkvx (θ + β3k) for k = 1, 2, (29.143)

∂L
∂φ̇k

= β13kφ̇k + β14kψ̇ − mkvyβ5k − 2
vx

Rek
β20kδk for k = 1, 2, (29.144)

∂L
∂X

=
∂L
∂Y

=
∂L
∂ψ

= 0, (29.145)

∂L
∂Z

= −msg −
∑
∀k

[
mkvxθ̇ + K11 (Z + Z0) +

−K12 (Zk + Z0k) − K13 (θ + θ0)] ,

(29.146)

∂L
∂θ

= Mg1 + Mg2θ +
∑
∀k

[
muvx

(
Żk − Ż

)
+

−K33 (θ + θ0) + K13 (Z + Z0) − K23 (Zk + Zk0)] ,

(29.147)

∂L
∂φ

= Js3vxψ̇ + Mg3φ +
∑
∀k

(
2

vx

Re
Jpwψ̇ − Kφφ + Kφφk

)
, (29.148)
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∂L
∂Zk

= −gmk + mkvxθ̇ − (K22k + Kpzk) (Zk + Zk0) +

+K12k (Z + Z0) − K23k (θ + θ0) ,

(29.149)

∂L
∂φk

= +mkvxβ5kψ̇ + gmkβ23kφk − (Kφk + Kpφk) φk + Kφkφ . (29.150)

The last two derivatives must be computed for the various axles (k = 1, 2
for a two-axles vehicle).

29.3.2 Kinematic equations

Even if velocity V is stated, all 10 equations of motion must be written, because
the generalized coordinates are 10. When all equations of motion have been
obtained, it will be possible to state that the forward velocity is known and one
of the equations can be eliminated.

The generalized coordinates for a two-axles vehicle are then

q =
[

X Y Z φ θ ψ z1 φ1 z2 φ2

]T . (29.151)

The vector containing the generalized velocities w is

w =
[

vx vy vz vφ vθ vψ v1 vφ1 v2 vφ2

]T . (29.152)

Remark 29.1 Velocities w are referred neither to a body-fixed frame nor to an
inertial frame. Linear velocities are referred to the intermediate frame x∗y∗z,
while the generalized velocities related to angular coordinates are the derivatives
of Tait-Bryan angles. This may make the analysis more complicated, but only to
a point.

The relationship linking the velocities to the derivatives of the coordinates
is, as usual

w = AT q̇ ,

where

A =

⎡
⎣ cos(ψ) − sin(ψ)

sin(ψ) cos(ψ) 0

0 I

⎤
⎦ (29.153)

and I is an identity matrix of size 8 × 8.
The kinematic equations are the inverse transformation

q̇ = A−Tw = Bw . (29.154)

A is in this case a rotation matrix, so that

A−1 = AT , B = A . (29.155)
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The equation of motion in the state space is made by the 10 equations of
motion, plus the 10 kinematic equations and is then Eq. (A.101):

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t

({
∂L
∂w

})
+ BTΓ

{
∂L
∂w

}
− BT

{
∂L
∂q

}
+

{
∂F
∂w

}
= BT Q ,

{q̇i} = B {wi} .

(29.156)

The column matrix BT Q containing the 10 components of the vector of the
generalized forces will be computed later by writing the virtual work of the forces
acting on the system. In the following equations its elements will be indicated
with Qx, Qy, Qz, Qφ, Qθ, Qψ, Qzk, Qφk.

The most complicated part of the computation is writing matrix BTΓ. By
performing fairly intricate computations, following the procedure described in
Appendix A, it follows that

BTΓ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −ψ̇

ψ̇ 0
0 0
0 0
0 0

−vy vx

⎤
⎥⎥⎥⎥⎥⎥⎦

06×8

04×2 04×8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By using the expressions of the derivatives with respect to the generalized
velocities seen above, and differentiating again with respect to time, it follows
that

∂

∂t

({
∂L
∂w

})
=

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mev̇x + θ̈Js2

mv̇y − Js3φ̈ −
∑

∀k mβ5kφ̈k

msZ̈ − mscθ̈ − v̇x

∑
∀k mk (θ + β3k) − vxθ̇

∑
∀k mk

Jxφ̈ − Jxzψ̈ − Js3v̇y − 2v̇x

∑
∀k

1
Rek

β21kδk

Jy θ̈ − mscZ̈ + v̇xJs2+
∑

∀k

[
−β16kZ̈k + mkv̇x (Zk − Z) +

+mkvx

(
Żk − Ż

)]
Jzψ̈ − Jxzφ̈ + Js3v̇xφ + Js3vxφ̇ +

∑
∀k

[
β14kφ̈k + mkv̇xβ5kφk+

+mkvxβ5kφ̇k + 2v̇x
1

Rek
Jpwkφ + 2vx

1
Rek

Jpwkφ̇
]

mkZ̈k − β16kθ̈ + mkv̇x (θ + β3k) + mkvxθ̇

β13kφ̈k + β14kψ̈ − mkv̇yβ5k − 2v̇x
1

Rek
β20kδk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(29.157)



546 29. MULTIBODY MODELLING

The last two equations refer to the coordinates of the axles, and then must
be repeated for k = 1, 2.

BTΓ
{

∂L
∂w

}
=

[
−ψ̇ ∂L

∂vy
ψ̇ ∂L

∂vx
0 0 0 −vy

∂L
∂vx

+ vx
∂L
∂vy

0 0 0 0
]T

.

(29.158)
By introducing the values of the derivatives and linearizing, it follows that

BT Γ
{

∂L
∂w

}
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
0
mevxψ̇

}

03×1

vx

[
−Js3φ̇ −

∑
∀k

(
2vyJpwk

1
R2

e
+ mkβ5φ̇k

)]
04×1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (29.159)

Finally:

BT

{
∂L
∂q

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
−msg −

∑
∀k

[
mkvxθ̇ + K11 (Z + Z0) +

−K12 (Zk + Zk0) − K13 (θ + θ0)]
Js3vxψ̇ + Mg3φ +

∑
∀k

(
2vx

1
Re

Jpwkψ̇ − Kφφ + Kφφk

)
Mg1 + Mg2θ +

∑
∀k

[
muvx

(
Żk − Ż

)
− K33 (θ + θ0) +

+K13 (Z + Z0) − K23 (Zk + Zk0)]
0
−gmk + mkvxθ̇ − (K22k + Kpzk) (Zk + Zk0) +

+ K12k (Z + Z0) − K23k (Z + Z0)
−mkvxβ5kψ̇ − gmukβ23kφk − Kφkφk + Kφkφ − Kpφkφk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(29.160)
The last two equations refer to the axles and must be repeated for k = 1,

2.
The derivatives of the dissipation function are

{
∂F
∂w

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0∑

∀k

(
c11kŻ − c12kŻk − c13kθ̇

)
∑

∀k

(
cφkφ̇ − cφkφ̇k

)
∑

∀k

(
c33kθ̇ − c13kŻ + c23kŻk

)
0
(c22k + cpzk) Żk − c12kŻ + c23kθ̇

(cφk + cpφk) φ̇k − cφkφ̇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (29.161)
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29.3.3 Equations of motion

First equation: longitudinal translation

By introducing the forward velocity of the vehicle V instead of vx, the first
equation becomes

meV̇ + θ̈Js2 = Qx . (29.162)

Second equation: lateral translation

mv̇y + meV ψ̇ − Js3φ̈ −
∑
∀k

muβ5φ̈k = Qy . (29.163)

Third equation: vertical translation

msZ̈ − mscθ̈ +
∑

∀k [K11 (Z + Z0) − K12 (Zk + Zk0) +
−K13 (θ + θ0) + c11kŻ − c12kŻk+

−c13kθ̇ − V̇ mk (θ + β3k)
]

= −msg + Qz .
(29.164)

Fourth equation: roll rotation

Jxφ̈ − Jxzψ̈ − Js3v̇y − Js3V ψ̇ − Mg3φ +
∑

∀k

(
−2V̇ 1

Rek
β21kδk+

−2vx
1

Re
Jpwkψ̇ + Kφφ − Kφφk + cφkφ̇ − cφkφ̇k

)
= Qφ .

(29.165)

Fifth equation: pitch rotation

Jy θ̈ − mscZ̈ + V̇ Js2 − Mg2θ+
∑

∀k

[
−β16Z̈k+

+mkV̇ (Zk − Z) + K33 (θ + θ0) − K13 (Z + Z0) +
+K23 (Zk + Zk0) + c33kθ̇ − c13kŻ + c23kŻk

]
= Mg1 + Qθ .

(29.166)

Sixth equation: yaw rotation

Jzψ̈ − Jxzφ̈ + Js3V̇ φ +
∑

∀k

[
β14kφ̈k + mkV̇ β5kφk+

+2V̇ 1
Re

Jpwkφ + 2V 1
Rek

Jpwkφ̇ − 2V vyJpwk
1

R2
ek

]
= Qψ .

(29.167)

Seventh and ninth equations: translation of axles

mkZ̈k − β16kθ̈ + mkV̇ (θ + β3k)+
+ (K22k + Kpzk) (Zk + Zk0) − K12k (Z + Z0) +

+K23k (θ + θ0) + (c22k + cpzk) Żk − c12kŻ + c23kθ̇ = −gmk + Qzk .
(29.168)
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Eighth and tenth equations: rotation of axles

β13kφ̈k + β14kψ̈ − mkv̇yβ5k − 2V̇ 1
Rek

β20kδk − mkvxβ5kψ̇ − gmkβ23kφk+
+ (Kφk + Kpφk) φk − Kφkφ + (cφk + cpφk) φ̇k − cφkφ̇ = Qφk .

(29.169)

29.3.4 Sideslip angles of the wheels.

The sideslip angles of the wheels can be computed directly from the components
of the speed of the centers of the wheel-ground contact zone in the x∗y∗z frame.
In the case of a solid axle suspension, the position of the center of the contact
zone may be computed with the methods used for the center of mass of the axle,
by substituting the coordinates of the center of the contact area xCn, yCn, zCn

for those of the center of mass xGu, 0, zGu in Eq. (29.32):

(Cu−O’) = (H − O’) + R1r , (29.170)

where

r = R2

⎡
⎣R3

⎧⎨
⎩

xu + ζs
x

0
ζ

⎫⎬
⎭+RusR3k

⎧⎨
⎩

xCu

yCu

zCu

⎫⎬
⎭
⎤
⎦ . (29.171)

Obviously, vector xCu, yCu, zCu must be expressed in the same reference
frame in which the coordinates of the center of mass xGu, 0, zGu were expressed.
This procedure is approximate, because the deformations of the tire are ne-
glected, but the approximation is not greater than those already introduced in
the linearized model.

By introducing the linearized expression for ζ, it follows that

r =

⎧⎨
⎩

xCt + θzCu

yCu − φkzCu

zCt + Zk − Z − xCuθ

⎫⎬
⎭ , (29.172)

where

xCt = xu + xCu − zusxCu + θ0zCu ,
zCt = zCu + zusxCu − θ0xCu. (29.173)

In the case of independent suspensions, it follows (Eq. 29.113) that:

r = R2R3

⎧⎨
⎩

xCu + ζs
x

yCu + ζsy

zCu + ζ

⎫⎬
⎭ . (29.174)

By linearizing the expression for r and introducing the value of ζ, it follows
that

r =

⎧⎨
⎩

xCt + θzCu

yCu − φzCu

zCt + Zk − Z

⎫⎬
⎭ , (29.175)
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where
xCt = xCu + θ0zCu , zCt = zCu − θ0xCu. (29.176)

Note that the meaning of symbols xCu, yCu, zCu is different for the two
suspension types.

To express r with a single equation, that holds in all cases, it is possible to
write

r =

⎧⎨
⎩

xCt + θzCu

yCu − φz1 − φkz2

zCt + Zk − Z

⎫⎬
⎭ , (29.177)

where
z1 = 0 , z2 = zCu, (29.178)

in the case of solid axles, and

z1 = zCn , z2 = 0, (29.179)

in the case of independent suspensions
The velocity of the center of the contact area, expressed in the inertial frame,

is
VCN=

[
Ẋ Ẏ Ż

]T
+ R1ṙ + Ṙ1r . (29.180)

By premultiplying the velocity by RT
1 it is possible to obtain its value in

the x∗y∗z∗ frame. Remembering Eq. (29.41), it follows that

VCu= V + ṙ + ψ̇Sr , (29.181)

where the linearized expression for the derivative of r with respect to time is

ṙ =

⎧⎨
⎩

θ̇zCu

−φ̇z1 − φ̇kz2

Żk − Ż − xCuθ̇

⎫⎬
⎭ . (29.182)

As a first approximation, it is possible to assume that the position of the
center of the contact area of the ith tire Pi coincides with the projection on the
ground of the center of the wheel. The velocity of the center of the contact area
is then

VPi=VCu

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ =

⎧⎨
⎩

vx + ṙx − ψ̇ry

vy + ṙy + ψ̇rx

0

⎫⎬
⎭ . (29.183)

By performing the relevant computations and linearizing, it follows that

VPi=

⎧⎨
⎩

vx + θ̇zCu − ψ̇yCu

vy − φ̇z1 − φ̇kz2 + ψ̇xt

0

⎫⎬
⎭ . (29.184)
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Because the mid-plane of the wheel is rotated by the steering angle δk (pos-
sibly increased by (δk),φ (φ − φk) to account for roll steer) with respect to the
x∗z plane, the usual linearizations allow writing

αk =
vy

V
+ ψ̇

xtk

V
− φ̇

z1k

V
− φ̇k

z2k

V
− δk − (δk),φ (φ − φk) , (29.185)

where subscript k refers to the axle.
The two wheels of the same axle are then at the same sideslip angle, as was

the case for the rigid vehicle. Linearization again allows us to work in terms of
axles instead of single wheels. The terms in φ̇ and φ̇k are usually small and will
be neglected in the following equations.

The sideslip angles are then

αk =
vy

V
+ ψ̇

xtk

V
− δk − (δk),φ (φ − φk) . (29.186)

This expression coincides with that obtained for the rigid vehicle, to which
roll steer has been added.

29.3.5 Generalized forces

The generalized forces Qk to be introduced into the equations of motion include
only the forces due to tires, aerodynamic forces and possible forces that may be
applied to the vehicle.

The virtual displacement of the left (right) wheel of the kth axle has an
expression similar to Eq. (29.184):

{δsPkL(R)}x∗y∗z =

⎧⎨
⎩

δx∗ + δθzCu − δψyCu

δy∗ − δφz1 − δφkz2 + δψxt

0

⎫⎬
⎭ . (29.187)

If coupling between vertical and horizontal displacements of the suspension
must be accounted for, a term(

∂x

∂z

)
k

(δZ − xtδθ) = (xk),z(δZ − xtδθ)

must be added to the x∗ component of the virtual displacement.
If the forces exerted by the tire in the direction of the x∗ and y∗ axes are

Fx
∗ = Fxp cos [δi − (δi),φφ] − Fyp sin [δi − (δi),φφ] ,

Fy
∗ = Fxp sin [δi − (δi),φφ] + Fyp cos [δi − (δi),φφ] ,

and assuming that the longitudinal forces acting on the wheels of any axle are
equal (if they are not, it is not difficult to add a yawing torque about the z axis),
the expression of the virtual work is

δLk = δx∗Fx
∗ + δZ(xk),zFx

∗ + δθFx
∗ (zCu − (xk),zxt)+

+δy∗Fy
∗ − δφFy

∗z1k − δφkFy
∗z2k + δψ {Fy

∗xtk + Mz} .
(29.188)
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The generalized forces may be obtained by differentiating the virtual work
with respect to the virtual displacements δx∗, δy∗, δθ, etc. The first two general-
ized forces are true forces directed along axes x∗ and y∗ and a suitable rotation
matrix can be used to obtain the forces along the axes of the inertial frame.

Force Fypi
on the ith tire may be expressed as a linear function of the

sideslip and camber angles αk and

γ0k + (γk),φφ + (γk),φk
φk + (γk),z(Z − Zk) .

Terms γ0k and (γk),z(Z − Zk) for the two wheels of any axle cancel each
other in the linearized model, because they produce equal and opposite forces.
The side forces applied on each axle are then

Fypk = −Ckαk + Cγk [(γk),φφ + (γk),φkφk] , (29.189)

where both Ck and Cγk are referred to the whole axle.
Assume that aerodynamic forces are applied to the center of mass of the

sprung mass. The virtual displacement of such a point in the x∗y∗z frame is

{δsGs
}x∗y∗z =

⎧⎨
⎩

δx∗ + hδθ + hφδψ
δy∗ − hδφ + (c + hθ0 + hθ) δψ

δZ − cδθ

⎫⎬
⎭ . (29.190)

The virtual work of aerodynamic forces and moments is

δLa = Fxaδx∗ + Fyaδy∗ + FzaδZ+
+
(
M ′

xa − Fyah
)
δφ +

(
Fxah − Fzac + M ′

ya + M ′
zaφ

)
δθ+

+
[
Fxahφ + Fya (c + hθ0 + hθ) − M ′

ya(θ0 + θ − φ) + M ′
za

]
δψ .

(29.191)

It is also possible to directly obtain the generalized forces by differentiating
the virtual work with respect to the virtual displacements.

Because the aerodynamic forces are applied in the center of mass of the
sprung mass instead of the center of mass of the vehicle, the aerodynamic mo-
ments referred to the former must be substituted for those defined in the usual
way, that is, with reference to the center of mass of the vehicle:⎧⎨

⎩
Mxa = M ′

xa − Fyah ,
Mya = M ′

ya + Fxah ,
Mza = M ′

za − Fya (c + hθ0) .
(29.192)

Due to the linearization of the vehicle, force Fxa may be considered as a
constant, while Fya, Mxa and Mza may be considered as linear with angle βa (if
there is no side wind, with angle β), while Fza and Mya may be considered as
linear with angle θ. Neglecting small terms, it follows that

δLaer = Fxaδx∗ + ∂Fya

∂β βδy∗ + ∂Fza

∂θ θδZ+ (29.193)

+
(

∂Mxa

∂β − ∂Fya

∂β βh
)

δφ + ∂Mya

∂θ δθ +
(
Fxahφ + ∂Mza

∂β β
)

δψ .
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The vector of the generalized forces may be obtained by differentiating the
virtual work with respect to the virtual displacements, and eliminating the terms
containing generalized forces multiplied by variables of motion, which would lead
to nonlinear terms once the generalized forces are expressed as functions of the
same variables

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx1 + Fx2 + Fxa

∑
∀k {−Ckαk + Cγk [(γk),φφ + (γk),φkφk]} + ∂Fya

∂β β

−(xi1),zFx1 − (xi2),zFx2 + ∂Fza

∂θ θ + (Fza)θ=0

∑
∀k z1,k {−Ckαk + Cγk [(γk),φφ + (γk),φkφk]} − ∂Mxa

∂β − ∂Fya

∂β βh

Fx1 (zCn1 − (xi1),zxt1) + Fx2 (zCn2 − (xi2),zxt2) + ∂Mya

∂θ θ+
+

(
Mya

)
θ=0

∑
∀k

(
∂Mz1

∂α α1 + xwiA
{−Ckαk + Cγk [(γk),φφ + (γk),φkφk]}

)
+

+ Fxahφ + ∂Mza

∂β β

0

z2,1 {−C1α1 + Cγ1 [(γ1),φφ + (γ1),φ1φ1]}

0

z2,2 {−C2α2 + Cγ2 [(γ2),φφ + (γk),φ2φ2]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(29.194)
The term

Fx1 [δ1 − (δ1),φ (φ − φ1)] + Fx2 [δ2 − (δ2),φφ (φ − φ2)]

should be included in the generalized force Qy. It results from the component
of the longitudinal force of the tire in the direction of the y axis of the vehicle
due to the steering angle. It is a small term, owing to the small size of the
longitudinal force Fx when compared to the cornering stiffness, and is usually
neglected. A similar term should also be included in Qψ, but is usually neglected
as well.

The vector of the generalized forces so obtained may be used directly in the
equation of motion, because it is referred to the pseudo-coordinates x∗, y∗ and
to coordinates Z, φ, θ, ψ, etc.
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29.3.6 Final form of the equations of motion

Remembering that the steering angles are small, it is easy to pass from the forces
expressed in a frame fixed to the vehicle to one fixed to the tires. The equations
of motion then take their form.

First equation: longitudinal translation

meV̇ + θ̈Js2 = Fx1 + Fx2 −
1
2
ρV 2SCx . (29.195)

Second equation: lateral translation

The sideslip angles, and then the cornering forces, may be easily expressed as
functions of the variables of motion. Assuming that the steering angles of the
axles are proportional to a reference value δ through constants K ′

k:

δk = K ′
kδ (29.196)

and adding a side force Fye applied to the vehicle, it follows that

Qy = Yvvy + Ywψ̇ + Yφφ + Yφ1φ1 + Yφ2φ2 + Yδδ + Fye , (29.197)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yv = − 1
V

∑
∀k Ck + 1

2ρVaS(Cy),β ,
Yw = − 1

V

∑
∀k xwkCk ,

Yφ =
∑

∀k Ci(δk),φ +
∑

∀k Cγk(γk),φ ,
Yφk = Cγk(γk),φ ,
Yδ =

∑
∀k K ′

kCk .

(29.198)

The second equation then becomes

mv̇y − Js3φ̈ −
∑

∀k mkβ5kφ̈k = Yvvy + Yψ̇ψ̇+

+Yφφ +
∑

∀k Yφk
φk + Yδδ + Fye ,

(29.199)

where
Yψ̇ = Yw − meV . (29.200)

Third equation: vertical translation

By introducing the generalized forces into the third equation, it follows that

msZ̈ − mscθ̈ + ZżŻ + Zθ̇ θ̇ + Zż1Ż1 + Zż2Ż2 + ZzZ + Zθθ+

+Zz1Z1 + Zz2Z2 +
∑

∀k (K11kZ0 − K12kZ0k − K13θ0) = −msg+

+V̇
∑

∀k mkβ3k + 1
2ρV 2S(CZ)θ=0 − (xi1),zFx1 − (xi2),zFx2 ,

(29.201)
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where⎧⎪⎪⎨
⎪⎪⎩

Zż =
∑

∀k c11k , Zθ̇ = −
∑

∀k c13k ,
Zżk = −c12k , Zz =

∑
∀k K11k ,

Zθ = −
∑

∀k K13k − 1
2ρV 2S(Cz),θ − V̇

∑
∀k mk ,

Zzk = −K12k .

(29.202)

Fourth equation: roll rotation

Operating with the same methods used for the second equation, and linearizing
the kinematic equations, the generalized forces may be written as functions of the
variables of motion. The final form of the fourth equation can thus be obtained,

Jxφ̈ − Jxzψ̈ − Js3v̇y = Lvvy + Lψ̇ψ̇ + Lφ̇φ̇ + Lφφ+

+
∑

∀k L /φk
φ̇k +

∑
∀k Lφkφk + Lδδ ,

(29.203)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lv = − 1
2ρVaS [h(Cy),β + t(CMx

),β ] − 1
V

∑
∀k Ckz1k ,

Lψ̇ = − 1
V

∑
∀k xwkz1kCk +

∑
∀k 2V 1

Rek
Jpwk + Js3V ,

Lφ̇ = −
∑

∀k cφk ,
Lφ = Mg3 −

∑
∀k [Kφk + Ck(δk),φz1k + Cγk(γk),φz1k] ,

Lφ̇k = cφk ,
Lφk = Kφk − Cγk(γk),φkz1k + Ck(δk),φz1k ,
Lδ =

∑
∀k

(
K ′

kCkz1k + 2 V̇
Re

β21

)
.

(29.204)

Fifth equation: pitch rotation

Jy θ̈ − mscZ̈ + V̇ Js2 −
∑

∀k β16kZ̈k + MżŻ + Mθ̇ θ̇ +
∑

∀k MżkŻk+

+MzZ + Mθθ +
∑

∀k MzkZu + K33kθ0 − K13kZ0 + K23kZk0 = Mg1+

+
(
Myaer

)
θ=0

−
∑

∀k Fx1 (zCu1 − (xi1),zxt1) + Fx2 (zCu2 − (xi2),zxt2) ,
(29.205)

where⎧⎪⎪⎨
⎪⎪⎩

Mż = Zθ̇ = −
∑

∀k c13k , Mθ̇ =
∑

∀k c33k ,
Mżk = c23k , Mz = −

∑
∀k K13k − mkV̇ ,

Mθ = − 1
2ρV 2

a S(C ′
My

),θ − Mg2 +
∑

∀k K33k ,
Mzk = K23k + mkV̇ .

(29.206)

Sixth equation: yaw rotation

Jzψ̈ − Jxzφ̈ +
∑

∀k β14kφ̈k = Nvvy + Nψ̇ψ̇ + Nφ̇φ̇+

+Nφφ +
∑

∀k Nφkφk + Nδδ + Mze ,
(29.207)
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where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nv = + 1
2ρVaSl(C ′

Mz
),β + 1

V

∑
∀k

[
−xwkCk + (Mzk),α + 2Jpwk

(
V
Re

)2
]

,

Nψ̇ = 1
V

∑
∀k

[
x2

wkCk + xwk(Mzk
),α

]
,

Nφ̇ = −2V
∑

∀k
1

Re
Jpwk ,

Nφ = −Js3V̇ − 1
2ρV 2ShCx +

∑
∀k [xwkCk(δk),φ + xwkCγk(γk),φ

−(Mzk),α(δk),φ − 2V̇ 1
Re

Jpwk

]
,

Nφk = xwkCγk(γk),φ − mkV̇ β5k − xwkCk(δk),φ + (Mzk
),α(δk),φ ,

Nδ =
∑

∀k [xwkK ′
kCk − (Mzk),α] .

(29.208)

Seventh and ninth equations: translations of axles

mkZ̈k − β16kθ̈ + ZkzkZk + ZzkZ + Mzkθ+

+ZkżkŻk + ZżkŻ + Mżkθ̇ + (K22k + Kpzk) Zk0+

−K12kZ0 + K23kθ0 = −mkV̇ β3k − gmk ,

(29.209)

where

Zkżk = c22k + cpzk , Zkzk = K22k + Kpzk (29.210)

and the other coefficients have already been defined.

Eighth and tenth equation: rotation of axles

β13kφ̈k + β14kψ̈ − mukv̇yβ5k =

= Lkββ + Lkψ̇ψ̇ + Lkφφ + Lkφ̇φ̇ + Lkφkφi + Lkφ̇kφ̇i + Lkδδ ,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lkv = − 1
V z2kCk ,

Lkψ̇ = +mkV β5k − 1
V xwkz2kCk ,

Lkφ̇ = Lφ̇k ,
Lkφ̇k = − (cφk + cpφk) ,
Lkφ = +Kφk − z2k [Ck(δk),φ + Cγk(γk),φ] ,
Lkφk = +gmkβ23k − (Kφk + Kpφk) − z2k [Cγk(γk),φ − Ck(δk),φ] ,
Lkδ = 2K ′

kV̇ 1
Rek

β20k .

(29.211)
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29.3.7 Handling-comfort uncoupling

The 10 equations of motion (6 + 2n equations in the generic case of a vehicle
with n axles) obtained in the previous section constitute a set of linear second-
order differential equations, even if the order of such a set is only 17 (9 + 4n)
because three of the unknowns, namely x∗, y∗ and ψ, are present only with their
derivatives V , vy and ψ̇.

However, a detailed examination of such equations shows clearly that, if the
speed V of the vehicle (which in the linearized model may be confused with its
component vx along the x∗ axis) is a known function of time, the equations form
two completely uncoupled sets of 5 (3 + n) equations each.

The first set contains only the generalized coordinates y∗, ψ, φ and φk (y∗ is
not a true but a pseudo-coordinate): as a consequence, it deals with the lateral
behavior of the vehicle, or, as is usually said, its handling.

The second set contains the generalized coordinates x∗, Z, θ and Zk, dealing
with the “suspension motion” of the vehicle − its ride behavior. This set can be
further uncoupled by separating the first equation, that regarding x∗ coordinate
(i.e. dealing with the longitudinal dynamics of the vehicle), and the following
(2 + n) equations containing coordinates Z, θ and Zk which allow ride comfort
in a proper sense to be studied.

This uncoupling is an interesting result, even if it is strictly linked with a
number of assumptions and, as a consequence, becomes inapplicable if one of
them is dropped. The first assumption is the existence of a plane of symmetry,
the xz plane. Usually the lack of inertial symmetry of the structure and the
differences between the characteristics of the individual springs and shock ab-
sorbers located at opposite sides of the vehicle are small enough to be neglected.
However, it can happen that the payload of the vehicle is placed asymmetrically,
leading to a position of the centre of mass outside the symmetry plane and to
non-vanishing moments of inertia Jxy and Jyz.

A second assumption is that of a perfect linearity of the behavior of the
springs and shock absorbers. The linearity of the elastic behavior of springs and
tires is an acceptable assumption in the motion about any equilibrium position,
provided that its amplitude is small. The nonlinearity of the shock absorbers,
on the other hand, cannot in principle be neglected even in the motion “in
the small” if their force-velocity characteristic is unsymmetrical, because in the
jounce and rebound movements they act with different damping coefficients even
if the amplitude of the motion tends to zero. This issue has already been dealt
with in detail in Part IV.

A third assumption regards angles β, αk, θ0, θ, φ and φk, which must be
small enough to allow the linearization of their trigonometric functions. This
assumption holds only for small displacements from the equilibrium position and
also depends on the characteristics of the vehicle: The harder the suspensions,
the more extended the range in which this assumption holds. In general, the
mentioned angles are small enough in all normal driving conditions, except for
vehicles with two wheels that may operate with large roll angles.
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The linearization of the tire behavior in terms of the generation of lon-
gitudinal and cornering forces and aligning torques is not strictly required for
uncoupling: Even if nonlinear laws Fy(α), Fy(γ), Mz(α), etc. are introduced into
the equations of motion, the two sets of equations for handling and ride would
remain uncoupled, although nonlinear. This last statement is important, because
the linear model for the behavior of the tires holds only for values of angles α and
γ far smaller than those allowing the trigonometric functions to be linearized.

The kinetic energy linked with wheel rotation was taken into account in
the model, with gyroscopic torques due to the wheels included in the equations.
If their plane of rotation is close to the xz plane, this effect does not prevent
uncoupling.

Some assumptions have been made on the modelling of the suspensions
that are better suited for solid axles than for independent suspensions. While
unavoidable kinematic errors cannot be accounted for in this way, it will be
shown that this does not affect uncoupling.

The interaction between cornering forces and loads in the x and z direction
on the tires should actually couple all equations. If the same approximated ap-
proach used for rigid vehicles is also adopted in the present case, however, it is
possible to resort to uncoupled equations.

The uncoupled model, even if it represents only a first approximation, is
important for two reasons. First, it sheds light on the actual behavior of road
vehicles and gives a theoretical foundation to the practice of using separate
approximate models for the study of handling and ride characteristics. Second,
simple linearized models, allowing closed form solutions to be obtained, are well
suited for optimization and parametric studies.

Clearly, there is no need to uncouple the equations. Comprehensive, detailed
nonlinear models can be used if numerical simulations are performed. The limit
in this case may well be the unavailability of good estimates of the numerical
values of many parameters that must be entered into the equations.

29.3.8 Handling of a vehicle on elastic suspensions

The explicit formulation of the mathematical model for the handling of a vehicle
with two axles is then

M1q̈1 + C1q̇1 + K1q1 = F1 , (29.212)

where
q1 =

[
y∗ ψ φ φ1 φ2

]T
,

M1 =

⎡
⎢⎢⎢⎢⎣

m 0 −Js3 −m1β5,1 −m2β5,2

Jz −Jxz β14,1 β14,2

Jx 0 0
β13,1 0

symm. β13,2

⎤
⎥⎥⎥⎥⎦ ,
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C1 =

⎡
⎢⎢⎢⎢⎢⎣

−Yv −Yψ̇ 0 0 0
−Nv −Nψ̇ −Nφ̇ 0 0
−Lv −Lψ̇ −Lφ̇ −Lφ̇1

−Lφ̇2

−L1v −L1ψ̇ −Lφ̇1
−L1φ̇1 0

−L2v −L2ψ̇ −Lφ̇2
0 −L2φ̇2

⎤
⎥⎥⎥⎥⎥⎦

,

K1 =

⎡
⎢⎢⎢⎢⎣

0 0 −Yφ −Yφ1
−Yφ2

0 0 −Nφ −Nφ1
−Nφ2

0 0 −Lφ −Lφ1
−Lφ2

0 0 −L1φ −L1φ1 0
0 0 −L2φ 0 −L1φ2

⎤
⎥⎥⎥⎥⎦ ,

F1 = δ
[

Yδ Nδ Lδ L1δ L2δ

]T +
[

Fye
Mze

0 0 0
]T

.

As already stated, coordinates y∗ and ψ are present only with their deriva-
tives7: The order of the set of differential equations is then 8 instead of 10.

The mass matrix is symmetrical, as can be readily predicted. The other
two matrices are not symmetrical; for instance, the damping matrix C1 contains
symmetrical terms, like Lφ̇1

and Lφ̇2
that are linked with the roll damping of

the axles, and skew symmetric terms, like

2V
1

Rek
Jpwk ,

due to the gyroscopic moment of the wheels of each axle, contained in Lψ̇ and,
with opposite sign, in Nφ̇. The other terms in Jpwk are not due to gyroscopic
effects but wheel acceleration (terms in Lδ and Lkδ) or the equivalent mass (term
in Nv), and thus have no particular symmetry properties. Other terms due to
generalized forces, such as the terms present in the stiffness matrix, are neither
symmetrical nor skew symmetrical.

Even if it is possible to separate the symmetrical and the skew-symmetrical
parts of the various matrices (so defining a gyroscopic and a circulatory matrix),
the advantages so obtained do not justify the work.

If a state-space approach is used (Eq. (A.5)), by introducing the state vari-
ables p = φ̇, p1 = φ̇1, p2 = φ̇2 and r = ψ̇, the relevant vectors and matrices
are:
– State vector

z =
[

v r p p1 p2 φ φ1 φ2

]T
, (29.213)

– Dynamic matrix

A =

⎡
⎢⎢⎣

−M−1
1 C1 −M−1

1 K∗
1⎡

⎣ 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎦

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦

⎤
⎥⎥⎦ , (29.214)

7They have no physical meaning.
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where K∗
1 is matrix K1 with the first two columns cancelled.

– input gain matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−M−1
1

⎡
⎢⎢⎢⎢⎣

Yδ 1 0
Nδ 0 1
Lδ 0 0
L1δ

0 0
L2δ

0 0

⎤
⎥⎥⎥⎥⎦

[0]3×3

⎤
⎥⎥⎥⎥⎥⎥⎦

, (29.215)

– input vector

u =
[

δ Fye
Mze

]T
. (29.216)

This approach may be used for the study of the stability of the vehicle or for
computing its response to the various inputs, as previously seen for rigid vehicle
models. This model is only marginally more complex if numerical solutions are
searched.

Even if the complexity of the model is not a factor, it is interesting to
perform a simplification allowing one to reduce its size without sacrificing its ap-
plicability to actual problems. Because the stiffness of the tires in the z direction
is much higher than that of the suspensions, their compliance becomes impor-
tant only in high frequency motions, much higher than the frequencies involved
in the handling of the vehicle. As a consequence, if the compliance of the tires
is neglected, which amounts to stating that φ1 and φ2 and their derivatives are
vanishingly small, the model reduces to a set of three equations (four first-order
equations in the state-space approach) that retains most of the features of the
complete, five equation set.

Because yawing moments due to load shift were not included in the present
model, the three equations of motion may be obtained directly from those of the
previous model by stating

φ1 = φ2 = 0 .

The sideslip angle β is often used in handling models instead of the lat-
eral velocity vy as a variable of motion, and the yaw velocity is indicated as r.
Remembering that

vy = V β , ψ̇ = r ,

it follows that
⎧⎪⎪⎨
⎪⎪⎩

mV β̇ − Js3φ̈ =
(
V Yv − mV̇

)
β + Yψ̇r + Yφφ + Yδδ + Fye

,

Jz ṙ − Jxzφ̈ = NvV β + Nψ̇r + Nφ̇φ̇ + Nφφ + Nδδ + Mze ,

Jxφ̈ − Jxz ṙ − Js3V β̇ =
(
LvV + Js3V̇

)
β + Lψ̇r + Lφ̇φ̇ + Lφφ + Lδδ ,

(29.217)
where terms YvV , NvV and LvV are often written as Yβ , Nβ and Lβ .
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If the terms in V̇ are dropped, the same set of equations frequently de-
scribed in the literature8 is obtained. There is, however, a difference: The model
described here is obtained from the complete model of the vehicle with elastic
suspensions through uncoupling and controlled simplifications, while that model
is obtained through a number of more or less arbitrary assumptions. Moreover,
this model accounts for the rotation of the wheels.

The study of either the stability or the response to a steering input or
external force or moment is straightforward and follows the same lines seen for
the rigid vehicle. Here the presence of an equation containing the first and second
derivative of a generalized coordinate φ together with the coordinate itself may
induce an oscillatory behavior. If roll oscillations are strongly coupled with those
of the other variables of the motion (namely β and r), as may be caused by roll
steer, the overall behavior may become strongly oscillatory and dynamic stability
may be decreased.

The steady-state response of the vehicle is easily obtained from the following
set of algebraic equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m
V 2

R
= Yββ + Yψ̇

V

R
+ Yφφ + Yδδ + Fye

,

0 = Nββ + Nψ̇
V
R + Nφφ + Nδδ + Mze

,

−Js3
V 2

R
= Lββ + Lψ̇

V

R
+ Lφφ + Lδδ ,

(29.218)

where the steady-state curvature of the trajectory

1
R

=
r

V

has been explicitly introduced.
By solving equations (29.218) in 1/R and neglecting external forces, the

path curvature gain 1/Rδ is readily obtained,

1
Rδ

=
DC − AE

V (BC − AF )
, (29.219)

where

A = NβLφ − NφLβ , B = Js3V Nφ − Nψ̇Lφ + NφLψ̇,

C = YβNφ − YφNβ , D = NδLφ − NφLδ,
E = YδNφ − YφNδ, F = mV Nφ − Yψ̇Nφ + YφNψ̇ .

8See for example W. Steeds, Mechanics of Road Vehicles, ILIFFE & Sons, London, 1960.
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29.3.9 Ride comfort

The explicit formulation of the mathematical model for ride comfort of a vehicle
with two axles is

M2q̈2 + C2q̇2 + K2q2 + K2stq2st = F2 + F2st , (29.220)

where
q2 =

[
x∗ Z θ Z1 Z2

]T
,

q2st =
[

0 Z0 θ0 Z10 Z20

]T
,

M2 =

⎡
⎢⎢⎢⎢⎣

mat 0 Js2 0 0
ms −msc 0 0

Jy −β16,1 −β16,2

m1 0
symm. m2

⎤
⎥⎥⎥⎥⎦ ,

C2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 Zż Zθ̇ Zż1 Zż2

0 Mθ̇ Mż1 Mż2

0 Z1ż1 0
0 symm. Z2ż2

⎤
⎥⎥⎥⎥⎦ ,

K2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 Zz Zθ Zz1 Zz2

0 Mz Mθ Mz1 Mz2

0 Zz1 Mz1 Z1z1 0
0 Zz2 Mz3 0 Z2z2

⎤
⎥⎥⎥⎥⎦

Kst =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 K11 K13 −K12,1 −K12,2

0 K33 K23,1 K23,2

0 K22,1 0
0 symm. K22,2

⎤
⎥⎥⎥⎥⎦ ,

F2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fx1 + Fx2 − 1
2ρV 2SCx

1
2ρV 2S(CZ)θ=0 + V̇

∑
∀k [mkβ3k − (xik),zFxk](

Myaer

)
θ=0

−
∑

∀k Fxk (zCuk − (xik),zxtk)
−m1V̇ β3,1

−m2V̇ β3,2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

F2st =
[

0 −msg Mg1 −gm1 −gm2

]T
.

In the reference condition, all variables of motion included in vector q2

vanish. It then follows that

K2stq2st = F2st . (29.221)



562 29. MULTIBODY MODELLING

Equation (29.221) allows the values of Z0, θ0, etc., − the static equilibrium
condition − to be computed. Although it is arbitrary to use the linearized equa-
tion for computing the static equilibrium condition, because Z0 and Zk0 are not,
generally, small quantities, this approximation influences the reference condition
so obtained but is immaterial for the study of the small oscillations about that
condition and thus does not detract from the dynamic study in the small here
shown.

By introducing Eq. (29.221) into Eq. (29.220), it follows that

M2q̈2 + C2q̇2 + K2q2 = F2 . (29.222)

The mass and damping matrices are symmetrical. The stiffness matrix is
symmetrical except for the terms in position 23 and 32: in Zθ a term of aerody-
namic origin is present, due to changes to aerodynamic lift caused by the pitch
angle that is absent from Mz. A similar term in Mz would denote a change in
the pitching moment due to vertical displacements that does not exist.

The first equation of the second set of five differential equations, that related
to the longitudinal dynamics, is weakly coupled with the others and may be
written in the form

V̇ =
Jsθ̈ +

∑
∀i Fxi + 1

2ρV 2
a SCx

m
. (29.223)

By introducing Eq. (29.223) into the other equations, the following set of
four equations describing the suspension motions of a vehicle with two axles is
obtained,

M3q̈3 + C3q̇3 + K3q3 = F3 , (29.224)

where
q3 =

[
Z θ Z1 Z2

]T
,

M3 =

⎡
⎢⎢⎢⎢⎣

ms −msc 0 0

Jy − J2
s2

mat
0 0

m1 0
symm. m2

⎤
⎥⎥⎥⎥⎦ ,

matrices C3 and K3 coincide with matrices C2 and K2 without the first row
and column, and

F3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2ρV 2S(CZ)θ=0 + V̇

∑
∀k [mkβ3k − (xik),zFxk]

1
2ρV 2

a S
[
− Js2

mat
Cx + l(CMy

)θ0

]
−

∑
∀k Fxk

(
zCuk − (xik),zxtk + Js2

mat

)
−m1V̇ β3,1

−m2V̇ β3,2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The expression for the generalized forces F3 was obtained assuming that the
reference configuration corresponds to the static equilibrium position with the
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vehicle at standstill and with no force Fxi. In such a condition, all generalized
coordinates are equal to zero, because they were defined as displacements from
the same condition.

The equations were written with reference to coordinate Z, i.e., to the
changes of the vertical displacement of point H in Fig. 29.3, which results in
an inertial coupling. To study ride comfort it is better to refer to the vertical dis-
placements of point H′, so that the equations of motion have no inertial coupling,
i.e. the mass matrix is diagonal. By introducing the coordinate

zs = Z − c(θ + θ0)

of point H′, the mass matrix becomes

M3 =

⎡
⎢⎢⎣

ms 0 0 0
J∗

y 0 0
m1 0

symm. m2

⎤
⎥⎥⎦ , (29.225)

where

J∗
y = Jy − c2ms −

J2
s2

me
.

The damping and stiffness matrices are unchanged, provided that the dis-
tances xi of wheels, springs and dampers are substituted by xi − c. All matrices,
except the stiffness matrix, remain symmetrical.

If the aerodynamic term causing the lack of symmetry of the stiffness matrix
is neglected, which introduces only a small error because of the small size of the
term, the system may be sketched as in Fig. 29.8a. The vehicle is modelled as a
beam with elastic and damped supports, connected to the ground through the
unsprung masses.

The quasi-static equilibrium attitude of the vehicle, which is different from
the reference position because it takes into account both longitudinal forces on
the tires and aerodynamic forces, can be immediately obtained from the steady-
state solution of Eq. (29.224). Even if the acceleration of the vehicle does not
appear explicitly in the equations, it is accounted for through forces Fxi.

The dynamic response of the vehicle to motion on uneven road is easily
computed by assuming that points A and B move in a vertical direction with
laws

hA(t) = h(V t) and hB(t) = h(V t + l) ,

where h(x) is a function expressing the road profile. This amounts to exciting
the two masses m1 and m2 with two forces equal to

Kpz1hA(t) + cpz1 ḣA(t) and Kpz2hB(t + τ) + cpz2ḣB(t + τ)

respectively, where τ = V/l is the delay due to the wheelbase.
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FIGURE 29.8. (a) Model with four degrees of freedom for the study of ride comfort;
(b) model in which the sprung mass is simulated by two separate masses. Lengths
a and b are the same as for the rigid vehicle, a = x1 and b = −x2. Note that the
longitudinal positions of the springs and shock absorbers are assumed to be coincident
(xi = xmi = xai)..

29.3.10 Conclusions

The linearized model with 10 degrees of freedom for a vehicle with two axles, or
more generally the model with 6 + 2n degrees of freedom for a vehicle with n
axles, splits into three separate models, namely

• Model for longitudinal behavior, or performance model. The model includes
a single degree of freedom, coordinate x∗ (or better the forward speed V ,
because on a curved trajectory x∗ is not a true coordinate), and allows
the relationship between the longitudinal forces at the wheel-road contact
and the vehicle speed to be computed, along with acceleration and braking
performance. A detailed model of the tires may be introduced if their lon-
gitudinal slip is accounted for, as well as a model of the transmission and
possibly of the engine. A model of the driver, intended as controller of the
longitudinal motion through the accelerator and brake pedals, may also be
introduced. Note that, owing to linearization, the longitudinal behavior on
a curved trajectory coincides with that on straight road and thus with that
studied in Chapter 23.

• Model for lateral behavior, or handling model. This model includes the
degrees of freedom of lateral displacement (or better, lateral velocity, for
the reasons cited above) and the yaw angle, which are the same degrees of
freedom seen for the study of the handling of a rigid vehicle, plus the degrees
of freedom related to the rolling of the vehicle body and of the axles. In
such a model the input is the steering angle, but this can be easily modified
to study the motion with free controls, possibly introducing a driver model
as a steering controller as well. It has been assumed that the variations of
the steering angle are slow enough to neglect its derivative δ̇. The presence
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of gyroscopic torques has no effect on the uncoupling between handling
and comfort models, because a mass rotating about the y axis couples yaw
and roll motions, both belonging to this model.

• Model for suspension motions, or ride comfort model. This model includes
the degrees of freedom for vertical motion of the body (heave motion)
and the axles, plus the pitch angle. Uncoupling between the longitudinal
and comfort model is not complete, as shown by the pitching motions due
to braking (dive) or driving (lift or squat). In the present chapter, the
changes of longitudinal acceleration have been assumed to occur slowly.
The changes of pitch angle may therefore be considered as a quasi static
phenomenon, introduced into the equations by the longitudinal tire-road
contact forces. In cases where longitudinal forces change quickly, ride com-
fort and longitudinal behavior (as well as transmission behavior) must be
studied jointly.

29.4 MODELS OF DEFORMABLE VEHICLES

The assumption that the vehicle body can be considered as a rigid body is clearly
an approximation that may be, in some cases, quite rough. This is particularly
true of industrial vehicles and some passenger vehicles, such as open cars, whose
stiffness is lower than usual.

If the body of the vehicle is not stiff, the position of any point P in the same
inertial reference frame OXiYiZi shown in Fig. 29.3 and already used to study
the model based on rigid bodies, may be written in the form

(P−O’) = (Pu−O’) + sP , (29.226)

where (Pu−O’) is the position of point P obtained by neglecting the deformation
of the body and

sP = [ux, uy, uz]TP , (29.227)

is the displacement function of time, due to compliance.
The position of P in undeflected conditions may be expressed by an equation

similar to Eq. (31.55), and then

(P−O’) = (H−O’) + R (rP + sP) , (29.228)

where vector
rP = [x, y, z]TP , (29.229)

is the vector, independent from time, leading from point H to point P, expressed
in the reference frame of the sprung mass.

The velocity of point P is then

VP =
[

Ẋ Ẏ Ż
]T

+ Ṙ (rP + sP) + RṡP (29.230)
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or, by introducing the velocity V in the reference frame x∗y∗z:

VP = R1V + Ṙ (rP + sP) + RṡP . (29.231)

By remembering that pitch and roll angles are small, and introducing matrix

R23 = R2R3 ≈

⎡
⎣ 1 0 θ0 + θ

0 1 −φ
−θ0 − θ φ 1

⎤
⎦ ,

it is possible to write

VP = R1

[
V +

(
Ṙ23 + ψ̇SR23

)
(rP + sP) + R23ṡP

]
, (29.232)

where

S ≈

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ .

The kinetic energy of the infinitesimal element of mass at coordinates x, y, z
is

dT = 1
2dm

[
VT V + rT

P

(
Ṙ23 + ψ̇SR23

)T (
Ṙ23 + ψ̇SR23

)
rP+

+2VT
(
Ṙ23 + ψ̇SR23

)
rP + sT

P

(
Ṙ23 + ψ̇SR23

)T (
Ṙ23 + ψ̇SR23

)
sP+

+2VT
(
Ṙ23 + ψ̇SR23

)
sP + ṡT

PRT
23R23ṡP + 2VT R23ṡP+

+2ṡT
PRT

23

(
Ṙ23 + ψ̇SR23

)
(rP + sP)

]
.

(29.233)
The sum of the first three terms (those not containing the deformation

sP or its derivatives) is the kinetic energy dTR of the same mass element in a
rigid motion. The other terms may be greatly simplified if the products of more
than two small quantities are neglected. Because the deformations sP and their
derivatives are small quantities, it follows that

dT = dTR + 1
2dm

(
u̇2

x + u̇2
y + u̇2

z

)
+ dm vx

[
θ̇uz − ψ̇uy+

+u̇x + (θ + θo) u̇z] + dm u̇x

(
θ̇z−ψ̇y

)
+

+dm u̇y

(
vy − φ̇z + ψ̇x

)
+ dm u̇z

(
vz − θ̇x + φ̇y

)
.

(29.234)

The deformation of the sprung mass can be expressed in terms of its modal
coordinates, i.e., as a linear combination of the eigenfunctions of the undamped
system. Note that this remains true even if the sprung mass is damped and even
for nonlinear systems. Because the sprung mass has a plane of symmetry (in
the present case the xz plane), its modes may be subdivided into symmetrical
and skew-symmetrical modes, designated by subscripts s and a in the following
equations.
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The displacements sP = [ux, uy, uz]T of point P(x, y, z) can thus be ex-
pressed as ⎧⎨

⎩
ux

uy

uz

⎫⎬
⎭ = Qs(x, y, z)ηs(t) + Qa(x, y, z)ηa(t) , (29.235)

where Qi(x, y, z) are matrices containing the eigenfunctions while ηi(t) are vec-
tors containing the modal coordinates. Equation (29.235) is exact only if an
infinity of eigenfunctions and modal coordinates are considered; however, a very
good approximation is usually obtained by taking into account a small number
of modes, particularly if the system is linear and lightly damped. The modes
considered in the equation are those of the free structure; the rigid-body modes
need not be considered because they have already been included in the rigid-body
analysis already performed.

Instead of using the eigenfunctions, a set of arbitrary functions of the space
coordinates may be used, as is common in the assumed modes methods for
structural analysis; in this case, however, the number of coordinates needed to
obtain a good approximation is higher and depends on the choice of the arbitrary
functions: Moreover, the mass and stiffness matrices are not diagonal, as they
are when using the eigenfunctions.

Let A and B be two points located in symmetrical positions with respect to
the xz plane. It follows that

uxA
= uxB

, uyA
= −uyB

, uzA
= uzB

for symmetrical modes and

uxA
= −uxB

, uyA
= uyB

, uzA
= −uzB

for skew-symmetrical ones. As a consequence of symmetry, some relevant inte-
grals extended to the whole unsprung mass may be written in a much simplified
form ∫

m

⎧⎨
⎩

ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩

A
0
C

⎫⎬
⎭ηs +

⎧⎨
⎩

0
B
0

⎫⎬
⎭ηa ,

∫
m

x

⎧⎨
⎩

ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩

N
0
F

⎫⎬
⎭ηs +

⎧⎨
⎩

0
D
0

⎫⎬
⎭ηa ,

∫
m

y

⎧⎨
⎩

ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩

0
H
0

⎫⎬
⎭ηs +

⎧⎨
⎩

E
0
G

⎫⎬
⎭ηa ,

∫
m

z

⎧⎨
⎩

ux

uy

uz

⎫⎬
⎭ dm =

⎧⎨
⎩

I
0
L

⎫⎬
⎭ηs +

⎧⎨
⎩

0
M
0

⎫⎬
⎭ηa ,

∫
m

(
u2

x + u2
y + u2

z

)
dm = ηT

s Msηs + ηT
a Maηa ,

(29.236)
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where the diagonal matrices Ms and Ma are the modal mass matrices for sym-
metrical and skew-symmetrical modes, and where matrices from A to N are row
matrices whose size is 1×n, where n is the number of modal coordinates (either
symmetrical or skew-symmetrical) that are considered.

By integrating Eq. (29.234), the kinetic energy of the sprung mass reduces
to

T = TR + 1
2 η̇T

s Msη̇s + 1
2 η̇T

a Maη̇a + ψ̇ (D − E) η̇a + θ̇ (I − F) η̇s+

+φ̇ (G −M) η̇a + V
[
Aη̇s + θ̇Cηs + (θ + θ0) Cη̇s − ψ̇Bηa

]
+vyBη̇a+vzCη̇s .

(29.237)
The gravitational potential energy of the sprung mass may be expressed in

the form

UgS = g

∫
m

Zpdm = g

∫
m

eT
3

[
(H−O’) + R (rP + sP)

]
dm . (29.238)

It then follows that

UgS = g (Z + Z0) ms + g

∫
m

eT
3 R23rPdm + g

∫
m

eT
3 R23sPdm . (29.239)

The first two terms are the potential energy UgR of the rigid body computed
above. By introducing the linearized expression of matrix R23 it follows that

UgS = UgR + g

∫
m

[− (θ + θ0) ux + φuy + uz] dm , (29.240)

or, by introducing the modal coordinates to express the deformation of the vehicle
body,

UgS = UgR + g [− (θ + θ0)Aηs + φBηa + Cηs] .

The deformation potential energy of the springs of the kth suspension is still
expressed by Eq. (29.79), to which the terms linked with the deformation modes
are added. Assuming that the points of attachment of the springs of the left
(right) kth suspension are xi, ±yi and zi, it follows that

Umk =
1
2
Kζ (ζ + ζ0 − Qzskηs)

2 +
1
2
Kφ (φ − φk − Qzakηa)2 , (29.241)

where Qzsk and Qzak are the parts of the matrices of the eigenfunctions for
symmetrical and skew-symmetrical modes linked to uz computed at the point of
coordinates xi, yi, zi.

The potential energy of the kth suspension is then

Umk = UmR + 1
2ηT

s K44ηs + K14 (Z + Z0) ηs + K24 (Zk + Zk0) ηs+

+K34 (θ + θ0) ηs + 1
2KφηT

a QT
zakQzakηa − KφφQzakηa + KφφkQzakηa ,

(29.242)
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where K44 is a square matrix of size ns × ns (where ns is the number of sym-
metrical modes considered), while K14, K24 and K34 are row matrices of size
1 × ns.

The deformation potential energy of the tires of the kth suspension is ex-
pressed by Eq. (29.81) without any change. The potential energy due to the
deformation of the sprung mass is obviously

UR =
1
2
ηT

s Ksηs +
1
2
ηT

a Kaηa , (29.243)

where Ks and Ka are the modal stiffness matrices.
In a similar way, the Raleigh dissipation function of the shock absorbers of

the kth suspension is

Fak = FakR + 1
2 η̇T

s c44η̇s + c14Żη̇s + c24Żkη̇s + c34θ̇η̇s+

+ 1
2cφη̇T

a QT
zakaQzakη̇a − cφφ̇Qzakaη̇a + cφφ̇kQzakaη̇a ,

(29.244)

where FakR is the function seen before for the rigid vehicle, matrices cij are
similar to matrices Kij seen above and Qzaka is similar to Qzak, but referred to
the points where the shock absorbers are attached.

The Raleigh dissipation function for the tires (Eq. 29.84) is unchanged, while
that linked with deformation modes of the sprung mass is

FR =
1
2
η̇T

s Csη̇s +
1
2
η̇T

a Caη̇a , (29.245)

where Cs and Ca are the modal damping matrices. Note that the last expression
is just an approximation, because modal damping matrices are not diagonal and
may couple the various modes. Other approximations are linked to the way the
presence of suspensions has been accounted for, but such approximations are
similar to those already seen for the other linearized models.

If the virtual work of the external forces is computed neglecting displace-
ments due to deformation modes, the expressions of the generalized forces are
the same as those used for models based on rigid bodies. Such an assumption
is well suited to the present linearized model, where the exact kinematics of
suspensions has not been taken into account.

A detailed inspection of the expressions of the kinetic and potential energies
and of the dissipation function shows that, if the forward velocity V is assumed
to be a known function, the equations of motion divide into two separate sets,
exactly as they do when the compliance of the sprung mass is neglected.

29.4.1 Handling model

A first set of equations contains generalized coordinates y∗, ψ, φ, φi and ηa.
If the vehicle has n axles and na skew-symmetrical modes are considered, their
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number is 3+n+na. The differential equations modelling the lateral behavior are

[
M1 MT

a1

Ma1 Ma

]{
q̈1

η̈a

}
+

[
C1 CT

a1

Ca1 Caa

]{
q̇1

η̇a

}
+

+
[

K1 K1a

Ka1 Kaa

]{
q1

ηa

}
=

{
F1

0

}
,

(29.246)

where q1, M1, C1, K1 and F1 are the same vectors and matrices seen in Eq.
(31.124), and

Ma1 =
[
BT DT − ET GT −MT 0 0

]
,

Ca1 =
[

0 −V BT −
∑

∀k cφkQT
zaka cφ1QT

za1a cφ2QT
za2a

]
,

Caa = Ca +
∑
∀k

ckQT
zakaQzaka ,

K1a =
[

0 −V̇ B gB −
∑

∀k kφkQzak kφ1Qza1 kφ2Qza2

]T
,

Ka1 =
[

0 0 gBT −
∑

∀k kφkQT
zak kφ1QT

za1 kφ2QT
za2

]
,

Kaa = Ka +
∑
∀k

kφkQT
zakQzak .

The expressions of the various matrices refer to a two-axle vehicle, but they
may be easily generalized.

As in the previous models, coordinates y∗ and ψ are present only with their
derivatives: the order of the differential set of equations is then 4 + 2n + 2na.

29.4.2 Ride comfort model

The second set of equations contains generalized coordinates x∗, Z, θ, Zi and
ηs. If ns symmetrical modes are included in the model, they are 3 + n + ns.

In this case the first equation, that describing longitudinal dynamics, is
weakly coupled with the others, and may be studied separately. Its expression is
still Eq. (29.223), with the term Aη̈s added to the left side.

Neglecting the deformation corresponding to the static equilibrium condi-
tion (which may be computed using an equation of the type of Eq. (29.221), in
which the modal coordinates corresponding to the static deformation and terms
like gC are included), the set of 2 + n + ns equations, remaining after separating
the first equation, describes the suspension motions of the vehicle:

[
M3 MT

s3

Ms3 Ms

]{
q̈3

η̈s

}
+

[
C3 CT

s3

Cs3 Css

]{
q̇3

η̇s

}
+

+
[

K3 KT
s3

Ks3 Kss

]{
q3

ηs

}
=

{
F3

Fs

}
,

(29.247)
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where q3, M3, C3, K3 and F3 are the same matrices and vectors seen in Eq.
(29.224), and

Ms3 =
[
CT IT −FT 0 0

]
,

Cs3 =
[ ∑

∀k cT
14k

∑
∀k cT

34k cT
24,1 cT

24,2

]T
,

Css = Cs +
∑
∀i

c44k ,

Ks3 =
[ ∑

∀k KT
14k V̇ CT − gAT +

∑
∀i K

T
34k KT

24,1 KT
24,2

]T
,

Kss = Ks +
∑
∀i

K44k ,

Fs = −V̇ Cθ0 .

All matrices are symmetrical, except for the stiffness matrix resulting from
the usual aerodynamic term included in K3. All aerodynamic forces have been
assumed to be independent from the deformation modes: if this assumption were
abandoned, the equations would change, but uncoupling would still hold.

29.4.3 Uncoupling of the equations of motion

Symmetrical and skew-symmetrical deformation modes thus play a very different
role in the dynamic behavior of the vehicle. The first, like bending modes in the
xz plane, affect riding comfort but have no importance in the study of handling.
The most important skew-symmetrical modes are those related to torsional de-
formations. The significance of their influence on handling, particularly in sport
cars and above all in Formula 1 racers, is well known. Transversal bending can
have a similar effect.

Modal matrices Ms, Ma, Ks and Ka are diagonal, and describe the dynamic
behavior of the vehicle body as a free compliant body. Usually the damping linked
to the deformation modes of the body is not large, and it may be considered as
an undamped, or at most a lightly damped, system. Neglecting damping, the
natural frequencies of the symmetrical and skew-symmetrical modes are

Ωsj =

√
Ksj

Msj

, Ωaj =

√
Kaj

Maj

. (29.248)

If the coupling matrices Ms3, Ma1, Cs3, Ca1, etc. were negligible, the dy-
namic behavior of the vehicle could be studied by separating the dynamic behav-
ior of the rigid vehicle on elastic suspensions (studied in the proceeding sections)
from the dynamic behavior of the vehicle body, considered as a compliant body
free in space.

In the case of passenger cars, the natural frequencies of deformation modes
are much higher than those typical of a vehicle on elastic suspensions (as already
stated, the typical frequencies of the sprung mass are slightly above 1 Hz while
those linked to the unsprung masses are at most 8 − 10 Hz). Coupling between
the dynamic behavior of the vehicle as made of rigid bodies and of the compliant
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vehicle body is weak, and the vibration of the latter influences acoustic comfort
more than handling or ride comfort.

Open cars and vans are often an exception: the stiffness of their bodies is
lower, particularly in torsion and bending in the symmetry plane, and the related
natural frequencies are little different than those linked with the behavior of the
vehicle as a whole. The torsional deformation of the chassis and the body may
have a strong effect on handling, usually making it worse. Bending of the body in
its plane may have some effect on comfort, even if it is impossible to determine
in general whether it improves or worsens it.

In the case of industrial vehicles, particularly trucks, some natural frequen-
cies of deformation modes are usually low and the related modes may strongly
interfere with handling modes (if skew-symmetrical) or with comfort modes (if
symmetrical).

29.5 ARTICULATED VEHICLES

Consider an articulated vehicle, such as a tractor and a trailer or a semi-trailer.
As already stated, it is possible to study its behavior using a multibody model,
if its parts may be considered rigid. The number of degrees of freedom is six for
each part constituting the body of the vehicle, plus a further degree of freedom
for each independent suspension and two degrees of freedom for each solid axle
suspension, minus the number of degrees of freedom constrained by the links
connecting the various parts constituting the body.

As an example, the articulated truck in Fig. 29.1d has 21 degrees of freedom
if the hitch connecting tractor and trailer may be modelled as a spherical hinge
(24 degrees of freedom for the two rigid bodies and the 6 solid axles, minus 3
degrees of freedom constrained by the hinge). If the hitch were modelled as a
cylindrical hinge with its axis in the vertical direction, the number of degrees
of freedom would reduce to 19 (the hinge would constrain 5 of them instead of
3), but to constrain pitch and roll rotations of the trailer with respect to the
tractor, the moments about the x and y axes the hinge would experience (and
with negligible deformations, otherwise some deformation degrees of freedom
would be needed) would be extremely high, creating a non-viable solution.

In normal operation the pitch, roll and yaw angles of the trailer with respect
to the tractor are small and, as in the case of articulated vehicles it is possible
to use linearized models. An articulated vehicle made by two rigid bodies plus
compliant suspensions may be thought of as a single compliant system, whose
deformation consists in the relative motion of the two bodies about the hinge.
The rigid body modes of this compliant body may be considered similar to the
deformation modes seen above, the only difference being that the relevant natural
frequencies are zero, because the modal stiffness vanishes. This is obvious because
there are no elastic systems applying restoring moments at the hitch.
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The rigid body modes may also be subdivided into symmetrical and skew-
symmetrical modes. In the case of an articulated truck the yaw rotation of the
trailer (like angle θ in the model seen in Section 25.15) and the rolling motion
of the trailer are skew-symmetric modes and thus couple with handling, while
pitching rotations of the trailer couple with ride comfort. In the case of the truck
and trailer system in Fig. 25.41a, it is possible to assume that the connection
of the draw bar to the trailer and that between the dolly and the trailer are
spherical hinges, even if the roll rotation between the trailer and the dolly may
in some cases be considered locked. The pitch rotation of the dolly and the trailer
thus enter the comfort model, while all yaw and roll rotations enter the handling
model.

29.6 GYROSCOPIC MOMENTS AND OTHER
SECOND ORDER EFFECTS

Gyroscopic moments due to wheel rotation were examined in the 10 degrees of
freedom model for isolated vehicles with two axles. Within the frame of a lin-
earized model, they have no effect on handling-comfort uncoupling and they en-
ter only into the handling model. Gyroscopic moments are automatically present
when the equations of motion are obtained through Lagrange equations, provided
that the angular velocity of all rotating parts of the model is considered.

To evaluate the impact of gyroscopic moments caused by the wheels on
handling, it is possible to assume, at least in the case of solid axle suspensions,
that the angular velocity of the ith wheel χ̇i lies on axis yk of the kth unsprung
mass. Any angular velocity of the vehicle about the xk and zk axes will produce
a gyroscopic moment due to the ith wheel that may be expressed in the xk, yk, zk

frame as

Mg = χ̇iJpi

⎧⎨
⎩

ψ̇
0

−φ̇k

⎫⎬
⎭ = Jpi

V

Rei

⎧⎨
⎩

ψ̇
0

−φ̇i

⎫⎬
⎭ , (29.249)

where the angular velocity of the wheel has been assumed to be linked with the
forward velocity by the usual relationship

χ̇i =
V

Rei
. (29.250)

As previously stated, the terms due to the gyroscopic moment are present in
Lψ̇ and, with opposite sign, in Lφ̇k. In steady state motion, gyroscopic moments
are usually quite small. Neglecting the camber angle, ψ̇ = V/R (where R is the
radius of the trajectory) and φ̇i = 0. The component Mgz

of the gyroscopic
moment vanishes, while

Mgx
=

V 2

R

∑
∀i

Jpi

Rei
, (29.251)
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where the sum extends to all wheels. Gyroscopic moment is thus proportional
to the centrifugal acceleration V 2/R, which is limited. If the sum of the polar
moments of inertia of the wheels of an axle and Re are equal, for instance, to
6 kg m2 and 0.5 m respectively, values related to an industrial vehicle, and the
centrifugal acceleration is 5 m/s2, a gyroscopic moment of 60 Nm is obtained. If
the track of the axle is 1.4 m, the load transfer due to the gyroscopic moment of
the two wheels is roughly 43 N.

Gyroscopic wheel moments may, however, be more important in non-statio-
nary conditions and, above all, can affect to a large extent the dynamics of the
steering system: Their effect on free-control dynamics may thus be important.
In solid axle suspensions of steering axles, strong reactions on the steering wheel
due to gyroscopic wheel moments may be caused by travelling on uneven road.
They can cause severe discomfort and make driving difficult.

Gyroscopic moments due to the engine or other rotating elements of the
vehicle are usually less important, except in particular cases (usually not related
with road vehicles), such as that of electric railway engines, in which they can
cause an increase of wear of the wheel rims. As a last consideration, a mass ro-
tating about an axis parallel to the z axis couples roll and pitch motions, making
uncoupling between handling and comfort impossible even if the assumptions of
small displacements, linearity and symmetry hold. This effect may even be ex-
ploited, as in the case of flywheel stabilizers in ships, where coupling allows the
larger pitch moment of inertia to be used to limit roll oscillations. Also, a mass
rotating about the x-axis has a coupling effect between pitch and yaw, while
a mass rotating about the y-axis couples roll and yaw, already coupled in the
handling behavior.

Other second-order dynamic effects may be of some importance. In non-
stationary motion, for example, the angular acceleration of rotating masses may
produce inertia torques of non-negligible size. Some of these effects have been
included in the model seen above and are included in the terms containing V̇
(because of the relationship assumed between the forward velocity V and the
wheel velocity χ̇, the acceleration χ̈ is proportional to V̇ ).

In the previous models some second order effects have been neglected. For
instance, the transmission of the driving torque to the wheels may cause a reac-
tion torque that, being exerted between the parts constituting the vehicle, has no
effect on its global dynamics, at least as a first approximation. This torque may,
however, modify the configuration of the vehicle and affect the forces the vehicle
exchanges with the ground or, although to a much lesser extent, with the air. In
a vehicle with longitudinal engine and rear wheel drive with the differential on a
solid axle, the driving torque causes a small roll angular displacement between
the vehicle body and the solid axle. The small roll angle may induce roll steer
that may affect handling. These effects are usually neglected, because they are
small, but there is no difficulty in introducing them into the model.

A larger effect may be caused by the reaction torque exerted on suspensions
when not directly transferred to the body by the suspension linkages. Instead it
loads the suspension springs, causing lifting or sinking of the attachment points,
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as seen in antidive, antilift or antisquat configurations. For this effect to be
present, the torque must be applied to the unsprung mass. For driving torques
this occurs only in the case of live axles, while in braking torques the brakes
are almost always located on the unsprung masses, the only exceptions being
the little used layout in which they are placed close to the differential gear in
De Dion axles, or when driving wheel suspension is independent. In such cases
the suspension layout must allow a vertical movement when a torque is applied
to it, i.e. the derivative ∂z/∂My must be other than zero, an example being that
of trailing arm suspensions.

Similarly it is possible to take into account the deformation of unsprung
masses without changing the general conclusion: This is important because con-
figurations based on the compliance of the unsprung masses are increasingly
common. With solid axles it is easy to evaluate which deformation modes of
the unsprung masses are symmetrical, and thus are to be included in comfort
dynamics, and which are skew-symmetrical and affect handling. In a suspen-
sion in which leaf springs are used as guiding elements, for instance, the lateral
compliance of the springs gives way to skew symmetrical modes and influences
handling, while their S deformation about the y axis is a symmetrical deforma-
tion and thus couples with comfort dynamics, or better longitudinal dynamics.
The longitudinal compliance of the suspension may strongly affect comfort.

In the case of independent suspensions, the suspension of the whole axle,
with its two rigid-body degrees of freedom, must be considered. The whole axle
must be studied as well for deformation modes, as was done in Eq. (29.122).
In this way it is again possible to distinguish between symmetrical and skew-
symmetrical modes.

But uncoupling is a more general feature still. The above considerations may
be applied to vehicles with two wheels, the only exceptions being that the roll
angle can easily take values beyond the range in which linearization of trigono-
metric functions applies, while the lateral movements of the driver, aimed at
displacing the centre of mass and producing unsymmetrical aerodynamic forces,
can destroy the symmetry on which uncoupling is based.

No particular assumption about the nature of the forces supporting the
vehicle has been made. The same uncoupling also holds for vehicles supported by
hydrostatic, aerostatic or aerodynamic forces. In the first case, the assumption of
the existence of a roll axis of the suspension is replaced by the assumption of a roll
axis fixed to the hull in its undeflected configuration. The small roll oscillations
are thus demonstrated to be uncoupled with pitch and bounce motions, which are
coupled with each other. In the case of aircraft, roll and yaw oscillations are
known to be coupled (dutch roll) while bounce and pitch oscillations are also
coupled with each other. Even the presence of aerodynamic forces due to the
deformations of the structure does not change the overall picture, provided that
they can be assumed to depend linearly on the modal coordinates ηs and ηa.
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The take-off manoeuvre of a vehicle was studied in Section 23.9 using a simple
model where the inertia of both engine and vehicle were modelled as two flywheels
connected to each other by a rigid shaft and a friction clutch. This model can
be made more realistic by adding the torsional compliance of the shaft, of the
joints and possibly the gear wheels, as well as the rotational inertia of the various
elements of the driveline. A model of the whole driveline is thus obtained, with
the engine and vehicle modelled as two flywheels located at its ends.

However, the engine shaft is itself a compliant system. Moreover, its piston-
connecting rod-crank systems should be modelled as systems with variable inertia
in time. At the other end of the driveline, the dynamics of the transmission and
the longitudinal dynamics of the vehicle are coupled by the tires, which are
themselves compliant in torsion. The longitudinal compliance of the suspensions
may affect the dynamics of the driveline and couples with the dynamics of the
vehicle, which is in turn coupled with comfort dynamics.

Because many of the parts that may be included in the model of the driveline
have a strongly nonlinear behavior, the model must include nonlinearities that
prevent frequency domain solutions from being obtained if a high degree of detail
is to be considered. In this case only time domain solutions can be obtained.

The mathematical models of the various parts of the transmission, from the
engine to the vehicle, will be described in this chapter.
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30.1 COUPLING BETWEEN COMFORT
AND DRIVELINE VIBRATION

As predictable in a system with many degrees of freedom, the driveline has many
vibration modes and natural frequencies. The effects of the various modes are
different, and a variety of models may be used for their study.

The most important mode for comfort is the first mode of the driveline,
which usually has a natural frequency not much different from those typical of
the comfort modes of the sprung mass related to heave and pitch. In this mode
the transmission behaves as a massless torsional spring connecting two large
inertias at its ends, those of the engine and the vehicle.

An extremely simple model may be used to study this mode, similar to those
used earlier for the take-off manoeuvre, the difference being that the clutch may
now be considered as a rigid joint. The natural frequencies of the crankshaft are
much higher, and at these low frequencies the engine may be considered as a
single moment of inertia.

In all reciprocating engines the driving torque changes in time, with a period
depending on the duration of the thermodynamic cycle, lasting two revolutions of
the crankshaft (in four-stroke cycle engines, one revolution in two-stroke cycle en-
gines). These frequencies are higher, often much higher, than 10 Hz. The driving
torque may be considered as constant at its average value computed over one
cycle: The variability of the pressure of the working gases on the piston and the
driving torque cannot excite vibration at such a low frequency.

Slower variations of the driving torque, however, such as those due to ma-
nipulation of the accelerator pedal, may have an important role in exciting low
frequency vibration. A typical case is that of a manoeuvre usually called tip-in,
tip-out : The driver pushes suddenly on the accelerator pedal while the vehicle is
travelling at a constant speed, usually low, causing a driving torque step. The
step increase of the driving torque may be followed by an equally sudden release
of the accelerator pedal.

Some experimental results obtained during a tip-in, tip-out manoeuvre are
shown in Fig. 30.1. The vehicle travels on a straight road at a given speed (in
the figure, at a speed corresponding to an engine speed of about 1,500 rpm
in top gear) and, when all parameters are constant, the accelerator pedal is
pushed fully down. When the engine speed has increased by about 500 rpm the
accelerator is fully released until the previous speed has again been attained.
This manoeuvre is repeated several times, at different initial speeds and with
different gears engaged. One of the cycles is shown in the figure; its duration is
about 8s.

The results shown were filtered with a low-pass filter removing all frequencies
higher than 25 Hz to make all phenomena occurring in the frequency range
from 0 to 10 Hz more apparent. As can be seen, the vehicle velocity shows
strong oscillations, causing longitudinal accelerations that were measured at two
points important for comfort: The attachment points of the seat and its back.
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FIGURE 30.1. Experimental results obtained in a tip-in, tip-out manoeuver. a): throttle
opening; b): engine speed; c): longitudinal acceleration measured at the attachment
opoints of the seat; d): longitudinal acceleration at the back of the seat.

By analyzing the results it is possible to show that when the engine is accelerating
the forced oscillations have a frequency of about 4 Hz, while when the vehicle
slows their frequency is 3 Hz. This difference can be explained by the nonlinearity
of some elements, such as the damper springs of the clutch disk, that perform
more stiffly when heavily loaded in torsion.

As is common for step inputs, all frequencies of the system are in this way
excited, particularly low frequencies, because the response of the engine is not
immediate and smooths out what in theory should be a true step. The vehicle
therefore does not accelerate (or decelerate) smoothly and torsional vibration of
the driveline causes longitudinal oscillations of the whole vehicle, with vertical
motions of the sprung and unsprung masses.

This manoeuvre may be performed at different speeds and in different ways,
but the oscillations produced by it strongly reduce comfort, making it an impor-
tant issue in vehicle testing. If problems appear, adequate correction must be
introduced, usually by increasing the torsional natural frequencies of the drive-
line or its damping. A provision that was recently found to be quite effective is
the use of a flywheel damper with two masses, as shown in Part II. The engine
flywheel is divided into two parts, connected to each other by a low stiffness
spring and adequate damping. Because the torsional oscillations of the transmis-
sion are triggered by manipulation of the accelerator, an effective solution is to
modify the throttle control of the engine so that sudden increases of the engine
torque are avoided. This is simple if a by wire engine control is used, because it
is sufficient to introduce a smoother control algorithm into the system.
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Apart from low frequency vibration, higher frequency vibration caused by
the torsional vibration of the crankshaft of the engine or the gearbox, is possible.
Its effect is to increase the noise produced by the gearbox (in jargon, rattle)
and to cause fatigue problems in the crankshaft, the shafts of the gearbox and
gearwheels. When this occurs, the useful provisions are, besides the use of a twin-
mass flywheel, those typical of torsional vibration, i.e. inserting in the engine
and possibly in the driveline suitable torsional dampers or compliant joints that
uncouple the vibration of the various parts of the system.

30.2 DYNAMIC MODEL OF THE ENGINE

Almost all vehicles presently on the road are propelled by a reciprocating inter-
nal combustion engine. Machines containing reciprocating elements have some
peculiar dynamic problems.

Most reciprocating machines, and practically all those used in the automo-
tive industry, are based on a crank mechanism, often in the form of a crankshaft
with several connecting rods and reciprocating elements. Such devices cannot,
in general, be exactly balanced: The inertial forces they exert on the structure
of the vehicle constitute a system of forces whose resultant is not insignificant
and is variable in time. The geometric configuration of the system created by
the crankshaft, the connecting rods, and the reciprocating elements can be quite
complex. Crankshafts not only do not possess axial symmetry but often lack
symmetry planes.

In these conditions, uncoupling among axial, torsional, and flexural behav-
ior is not possible, in anything other than a rough approximation, and vibration
modes become quite complicated. The external forces acting on the elements
of reciprocating machines are usually variable in time, often following periodic
laws, as the forces exerted by hot gases on the pistons of reciprocating internal-
combustion engines demonstrate. Their period is equal to the rotation period in
two-stroke cycle engines and is twice the rotation period in four-stroke cycle en-
gines. Their periodic time histories are not harmonic but, once harmonic analysis
has been performed, they may be considered as the sum of many harmonic com-
ponents whose frequencies are usually multiples, by a whole number or a rational
fraction, of the rotational speed of the machine. There may be many possibilities
of resonance between these forcing functions and the natural frequencies of the
system.

In general, the most dangerous vibrations are linked to modes that are essen-
tially torsional. These couple with the modes of the driveline and the longitudinal
dynamics of the vehicle

30.2.1 Equivalent system for a crank mechanism

The traditional approach to the study of torsional vibrations in reciprocating
machines is based on the reduction of the actual system made of crankshafts,
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FIGURE 30.2. Sketch of the crankshaft: (a) actual system; (b) equivalent system,
lumped-parameters model.

connecting rods, and reciprocating elements to an equivalent system. The latter
is usually modeled as a lumped-parameters system whose torsional behavior can
be studied separately1 (Fig. 30.2).

Consider the crank mechanism sketched in Fig. 30.3. It is made of a disc,
with a crankpin in B on which the connecting rod PB, whose center of mass is
G, is articulated. The reciprocating parts of the machine are articulated to the
connecting rod in P. The actual position of the center of mass of the reciprocating
elements, which may include the piston as well as the crosshead and other parts,
is not important in the analysis; in the following study this point will be assumed
to be located directly in P. The axis of the cylinder, i.e., the line of motion of
point P, does not necessarily pass through the axis of the shaft; the offset d
will, however, be assumed to be small. Let Jd, Jb, mb, and mp be the moment
of inertia of the disc that constitutes the crank, the moment of inertia of the
connecting rod (about its center of gravity G) and the masses of the connecting
rod and of the reciprocating parts, respectively.

1Torsional dynamics of reciprocating machinery is dealt with in many texts on vibration
dynamics, like G. Genta, Vibration of Structures and Machines, Springer, New York, 1998. For
a detailed study, specific texts on the subject can be found, such as E.J. Nestorides, A hand-
book on torsional vibration, Cambridge Univ. Press, 1958; K.E. Wilson, Torsional vibration
problems, Chapman & Hall, 1963.
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FIGURE 30.3. Sketch of the crank mechanism.

The coordinates of points B, G, and P can be expressed in the reference
frame Oxy, shown in Fig. 30.3 as functions of the crank angle θ, as

(B-O) =
{

r cos(θ)
r sin(θ)

}
, (G-O) =

{
r cos(θ) + a cos(γ)
r sin(θ) − a sin(γ)

}
, (30.1)

(P-O) =
{

r cos(θ) + l cos(γ)
d

}
.

Angle γ is linked to angle θ by the equation

r sin(θ) = d + l sin(γ), (30.2)

i.e.
sin(γ) = α sin(θ) − β,

where

α =
r

l
, β =

d

l
.

Ratios α and β are expressed by numbers smaller than 1, and in practice
they are quite small; usually α ≤ 0.3 and β = 0.

Remark 30.1 In the case of an ideal crank mechanism with an infinitely long
connecting rod (α = 0), with the axis of the cylinder passing through the axis of
the crank (β = 0), the motion of the reciprocating masses is harmonic when the
crank speed is constant.

Because θ̇ is the angular velocity of the crank, its kinetic energy is simply

Td =
1
2
Jdθ̇

2
. (30.3)
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The speed of the reciprocating masses can be easily obtained by differenti-
ating the third equation (30.1) with respect to time and obtaining the expression
for γ̇ from equation (30.2):

Vp = −rθ̇ sin(θ) − lγ̇ sin(γ) = −rθ̇

[(
1 + α

cos(θ)
cos(γ)

)
sin(θ) − β

cos(θ)
cos(γ)

]
. (30.4)

The kinetic energy of the reciprocating masses is

Tp =
1
2
mpr

2θ̇
2
f1(θ), (30.5)

where

f1(θ) =
[
sin(θ) + α

sin(2θ)
2 cos(γ)

− β
cos(θ)
cos(γ)

]2

.

Instead of computing the kinetic energy of the connecting rod by writing
the velocity of its center of gravity G, it is customary to replace the rod with a
system made of two masses m1 and m2, located at the crankpin B and the wrist
pin P, respectively, and a moment of inertia J0. To simulate the connecting rod
correctly, such a system must have the same total mass, moment of inertia, and
center of mass position. These three conditions produce three equations yielding
the following values for m1, m2, and J0:

m1 = mb
b

l
, m2 = mb

a

l
,

J0 = Jb − (m1a
2 + m2b

2) = Jb − mbab .

(30.6)

Generally speaking, the moment of inertia of masses m1 and m2 is greater
than the actual moment of inertia of the connecting rod and, consequently, the
term J0 is negative. The kinetic energy of mass m1 can be computed simply by
adding a moment of inertia m1r

2 to that of the crank.

Remark 30.2 The negative moment of inertia has no physical meaning in itself:
The minus sign indicates that it is simply a term that must be subtracted in the
expression of the kinetic energy.

Similarly, the kinetic energy of mass m2 can be accounted for by adding m2

to the reciprocating masses. The effect of the moment of inertia J0 can be easily
computed

TJ0 =
1
2
J0γ̇

2 =
1
2
J0θ̇

2
f2(θ), (30.7)

where

f2(θ) = α2

[
cos(θ)
cos(γ)

]2

.

The total kinetic energy of the system shown in Fig. 30.3 is, consequently,

T =
1
2
θ̇
2 [

Jd + m1r
2 + (m2 + mp)r2f1(θ) + J0f2(θ)

]
=

1
2
Jeq(θ)θ̇

2
. (30.8)
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It is now clear that the whole system can be modeled, from the viewpoint
of kinetic energy, by a single moment of inertia variable with the crank angle
Jeq(θ), rotating at the angular velocity θ̇.

The equivalent moment of inertia is a periodic function of θ, with a period
of 2π.

In the limiting case of α = β = 0, corresponding to an infinitely long
connecting rod (piston moving with harmonic time history), the expressions for
f1(θ) and f2(θ) are particularly simple

f1(θ) = sin2(θ) =
1 − cos(2θ)

2
, f2(θ) = 0 . (30.9)

In practice, it is impossible to neglect the fact that the length of the con-
necting rod is finite, even if α is usually not greater than 0.3. At any rate there
is no difficulty in expressing Jeq through a Fourier series

Jeq = J0 +
n∑

i=1

Jci cos(iθ) +
n∑

i=1

Jsi sin(iθ) , (30.10)

that is here truncated at the nth harmonics. Coefficients J0, Jci and Jsi may be
computed numerically without difficulty, by computing the values of functions
f1(θ) and f2(θ) for a number of values of angle θ and then applying one of
the standard FFT algorithms. The number of values of Jeq(θ) to be computed
depends on the value of n and, if many harmonics are required, 2048 or 4096
values may be needed.

Traditionally, before the numerical computation of the coefficients of the
Fourier series became straightforward, explicit expressions of the coefficients were
used; these are discussed in several handbooks. The coefficients were expressed
as power series in α and β; the number of terms needed depends on how many
harmonics must be accounted for. To compute six harmonics, series with terms
up to α4 and β4 were used.

If the axis of the cylinder passes through the center of the crank (β = 0),
as is usually the case, f1(θ) and f2(θ) are even functions of θ for symmetry
reasons. Jeq is then an even function and all coefficients Jsi vanish. If α = 0, the
expression of the average equivalent moment of inertia reduces to

J0 = Jd + r2 2m1 + m2 + mp

2
. (30.11)

30.2.2 Driving torque

A moment caused by the pressure of the gases contained in the cylinder p(t)
acts upon each crank, varying in time during the working cycle of the engine.
Once the pressure p(t) is known, the driving torque acting on the crankshaft
can be computed from the virtual work δL performed by that pressure during
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a virtual displacement δs of the piston. A virtual displacement δθ of the crank
corresponds to a displacement δs of the piston; the relationship between them is

δs =
Vp

θ̇
δθ = r

√
f1(θ)δθ . (30.12)

The corresponding virtual work δL performed by this pressure can be ex-
pressed as

δL = p(t)Aδs = p(t)rA
√

f1(θ)δθ, (30.13)

where function f1(θ) is given by equation (30.5) and A is the area of the piston.
The generalized force Mm due to the pressure p(t), i.e. the driving torque, is
consequently

Mm =
d(δL)
d(δθ)

= p(t)rA
√

f1(θ). (30.14)

In the case of two-stroke cycle engines working at constant speed, function
p(t) is periodic with a period equal to the time needed to perform one revolu-
tion of the crankshaft, i.e. its frequency is equal to the rotational speed Ω of
the engine. In the case of four-stroke-cycle internal combustion engines, again
assuming constant speed operation, the period of function p(t) is doubled, i.e. its
fundamental frequency is equal to Ω/2. Because the generalized force (moment)
Mm(t) is periodic, with the same frequency of law p(t), it can be expressed by a
trigonometric polynomial, truncated after m harmonic terms

Mm(t) = M0 +
m∑

k=1

Mck cos(kω′t) +
m∑

k=1

Msk sin(kω′t) , (30.15)

where the frequency ω′ of the fundamental harmonic is equal to Ω, except in the
case of four-stroke-cycle internal-combustion engines, in which

ω′ =
Ω
2

. (30.16)

The coefficients of the polynomial may be computed starting from the theoretical
or experimental law p(t), and empirical expressions can be found in the literature.
In any case, the driving torque depends upon working conditions. It is possible
to assume that coefficients Mck and Msk are proportional to the average driving
torque M0 or to the product of half the capacity of the cylinder (the area of the
piston times the crank radius) times the mean indicated pressure.

Angle θ may be used instead of time as an independent variable and the
driving torque may be written as

Mm(θ) = M0 +
m∑

k=1

Mck cos(kθ′) +
m∑

k=1

Msk sin(kθ′) , (30.17)

where θ′ is equal to θ in two-stroke cycle engines and θ/2 in four-stroke cycle
engines.
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Remark 30.3 When the engine works at variable speed, it may be assumed
that the speed variations are much slower than the phenomena occurring in the
combustion chamber. Conditions at variable speed may be approximated by a
sequence of constant speed operations at the various speeds.

30.2.3 Forcing functions on the cranks of multicylinder machines

All motor vehicles other than motorcycles powered by single-cylinder engines
are provided with reciprocating engines with a number of cylinders. The most
common engine arrangement is in-line, but many engines have opposite cylinders
or V arrangements.

In machines with a number of cranks, if the various cranks, reciprocating
parts, and working cycles are all equal, the time histories of the moments acting
on the various nodes of the equivalent system are all equal but are timed dif-
ferently. Because each harmonic component of the moment acting on the cranks
can be represented as the projection on the real axis of a vector rotating in the
Argand plane with constant angular velocity, it is possible to draw, for each
harmonic, a plot in which the various vectors acting on the different cranks
of the machine are represented. Because, as already stated, the amplitudes of
these vectors are equal, the diagram is useful only for comparing the phases of
the vectors, which are traditionally plotted with unit amplitude. The phasing of
the vectors depends on the geometric characteristics of the machine and, in the
case of four-stroke-cycle engines, on the firing order. Such diagrams are usually
referred to as phase angle diagrams.

Consider, for example, an in-line four-stroke-cycle internal-combustion en-
gine. If the working cycles of the various cylinders are evenly spaced in time, the
cranks that subsequently fire must be at an angle of 4π/n rad, where n is the
number of cylinders. In a four-in-line engine, this angle is 180◦, and the most
common geometric configuration of the crankshaft is that shown in Fig. 30.4a,
chosen because it allows the best balancing of inertia forces. In the same figure,
the configuration of the crankshaft of a six-in-line engine is also shown.

In a four-cylinder engine, the possible firing orders are two: 1-2-3-4 and 1-
3-4-2. In both cases, it is impossible to prevent two contiguous cylinders from
immediately firing one after the other. The phase-angle diagrams for the first
four harmonics are plotted in Fig. 30.4b for the second of the two firing orders.

If the order of the harmonic is a whole multiple of the number of cylinders,
all rotating vectors are superimposed, i.e. the forcing functions acting on all
cranks are all in phase. These harmonics are usually the most dangerous and are
often referred to as major harmonics. The phase-angle diagrams for the (n+i)-th
harmonic coincide with that related to the ith harmonic and, consequently, only
the first n phase-angle diagrams are usually plotted.

Remark 30.4 The phase-angle diagrams have been plotted in such a way that
they supply the excitation phasing on the various cranks with respect to that
acting on a crank chosen as reference, usually the first. Each harmonic then has
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FIGURE 30.4. (a) Configuration of the crankshaft and crank angle diagrams for in-line
four-stroke-cycle four- and six-cylinder internal combustion engines. In the latter case
the configuration shown is just one of the possible choices; (b) phase-angle diagrams
for the same engines.

a phasing with respect to the fundamental harmonic that must be considered when
the effects of the various harmonics are added.

The forcing function acting on the jth crank may be approximated by the
following series, truncated at the mth harmonic

Mmj
=

m∑
k=0

Mmk
ei(kω′i+Φmk

+δjk) , (30.18)

where
• Mmk

and Φmk
are the amplitude and phase of the kth harmonic of the

driving torque, respectively. With reference to the series (30.15) approxi-
mating the driving torque, their values are

Mmk
=

√
M2

ck + M2
sk and Φmk

= arctan(Mck/Msk) ,

respectively.
• δjk

is the phase of the kth harmonic acting on the jth crank, as obtained
from the phase-angle diagram. If the diagram is referred to the first crank,
δjk

= 0 for j = 1.

30.2.4 Stiffness of the crankshaft

From the viewpoint of inertia forces, the cranks and reciprocating elements are
equivalent to a number of concentrated flywheels, even if their moments of inertia
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vary periodically with angle θ. The engine can thus be reduced to a lumped-
parameters equivalent system, with the various flywheels connected to each other
by straight shafts having an equivalent stiffness that models the actual stiffness of
the relevant portion of crankshaft (Fig. 30.2). The various flywheels have a length
equal to zero: the lengths of the various parts of the shaft must be contiguous,
each starting where the previous one ends. Traditionally, instead of reasoning in
terms of equivalent stiffness, the elastic properties of the shaft were computed
in terms of equivalent length, assuming that the shaft of the straight equivalent
shaft has the same diameter as the relevant part of the actual shaft or, more
often, has a conventional value, allowing its length to be computed so that its
torsional stiffness is that of the actual shaft.

It is not possible to compute the stiffness by modeling each part of the
crank as a simple body (beams loaded in torsion for the journals, beams loaded
in bending and torsion for the crankpins, beams loaded in bending for the crank
webs, etc.). The complex geometry, the presence of radii, and the low slenderness
of the beams make it impossible to resort to such approach.

There are three ways to evaluate the equivalent stiffness:

1. experimental evaluation,

2. use of semi-empirical methods, and

3. numerical modeling, mainly using the FEM.

Experimental evaluation clearly gives the most reliable results, but it cannot
be performed at the design stage without additional costs. Moreover, it increases
in the time required for dynamic analysis because of the need to build models
or prototypes.

Empirical and semi-empirical formulas, allowing at least approximate eval-
uations to be obtained, have been suggested by many authors and can be found
in several handbooks2.

Nowadays it is possible to build numerical models of a single crank and to
evaluate their static stiffness by numerical methods, mainly the FEM. This is
much simpler than the complete numerical simulation of the crankshaft using
the same numerical approach. Only one crank (or half, for symmetry) needs to
be modelled, assuming all cranks are equal, and the computation reduces to a
static evaluation.

Nevertheless, the geometric complexity and uncertainties on how to con-
strain the mathematical model may make this computation more difficult than
it appears.

Remark 30.5 Strictly speaking, the lack of symmetry couples torsional and flex-
ural deformations, and the stiffness of the crankcase and the presence of oil films
in the bearings may affect the results.

2See, for example, E.J. Nestorides, A Handbook on Torsional Vibration, Cambridge Univ.
Press, 1958, or W. Ker Wilson, Torsional Vibration Problems, Chapman & Hall, 1963.
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The equivalent stiffness and equivalent length, computed through any of the
mentioned approaches, are linked through the obvious formula

k = G
Ip

leq
. (30.19)

30.2.5 Damping of the system

If the damping present in the engine were mostly caused by the internal damping
of the material constituting the crankshaft, there would be no difficulty intro-
ducing a proportional damping with modal damping ratio equal for all modes:
ζj = η/2, where η is the loss factor of the material of the crankshaft.

But damping is actually due to many causes, among which friction between
moving parts (including that between the piston and the cylinder wall), elec-
tromagnetic forces (if an electric motor or generator is driven by the engine),
and the presence of fluid in which some rotating parts move, can be important.
Neglecting them would lead to a large underestimate of damping. It is usually
necessary to resort to experimental results, obtained from machines similar to
the one under study, and to empirical or semi-empirical formulas and numerical
values reported in the literature.

The damping due to the crank mechanism is usually evaluated by introduc-
ing a damping force acting on the crankpin that is proportional to the area of
the piston and the velocity of the crankpin. The damping moment acting on the
jth crank is

Md(t) = k′Ar2 , (30.20)

where k′ is a coefficient whose dimension is a force multiplied by time and divided
by the third power of a length. In S.I. units, it is expressed in Ns/m3. Values
of k′ included in the range between 3,500 and 10,000 Ns/m3 for in-line aircraft
engines and between 15,000 and 1.5 × 106 Ns/m3 for large internal-combustion
engines can be found in the literature.

Remark 30.6 The lower and upper values of these ranges are very different and
must be regarded only as indicative values; only experimental results on machines
similar to the one under study can be reliable.

The use of equation (30.20) leads to the assumption that in each crank there
is a viscous damper with damping coefficient equal to

cj = k′Ar2 . (30.21)

In many cases, it is impossible to prevent the amplitude of torsional vibration
from reaching values too large to insure safe operation of the machine or adequate
vibrational and acoustic comfort solely by exploiting the damping properties of
the system elements.

In such cases, torsional vibration dampers are applied at one end of the
crankshaft. They are made of a flywheel (usually referred to as seismic mass)



590 30. TRANSMISSION MODELS

FIGURE 30.5. Dissipative torsional vibration damper; (a): viscous damper; (b): elas-
tomeric damper; (c): sketch of the model for the dynamic study.

whose geometric configuration may draw on a wide variety of types, connected
to the shaft by suitable elastic and damping elements.

Almost all torsional vibration dampers can be reduced to the concept of
the damped vibration absorber. Without including all possible types, these can
be subdivided into three categories: dissipative dampers, damped vibration ab-
sorbers, and rotating pendulum vibration absorbers. The latter are seldom used
in automotive engines and will not be dealt with here.

A typical dissipative torsional damper used primarily in diesel engines for
industrial vehicles is the viscous damper shown in Fig. 30.5a. It is applied to one
end of the crankshaft and consists of a flywheel, generally shaped as a ring free
to rotate within a casing filled with a high viscosity fluid, for example a silicon-
based oil. Damping in this case is of the viscous type, i.e., the drag torque is
proportional to the relative angular velocity between the ring and the housing,
with the damping coefficient depending on the clearance between the two and
on the characteristics of the fluid. The latter are greatly influenced by the fluid
temperature. The model for the dynamic study of the system must be modified
by adding the moment of inertia of the casing, in the node in which the damper
is applied (node 1, Fig. 30.5c), and by adding a new node (node 0 in the same
figure) in which the inertia of the ring is located. The two nodes are connected
by a viscous damper and a spring with zero stiffness.

A viscous damper of this kind actually lacks stiffness only in static conditions
and at very low frequency. The characteristics of the fluid are such that an
elastic behavior of increasing strength occurs with increasing frequency, obviously
adding to the damping behavior. This means that the torque the damper applies
to the shaft depends not only on the relative velocity, but also on the angular
displacement. A stiffness, which is a function of the frequency, must be added to
the previous model, but this holds only in harmonic, or at least polyharmonic,
vibration.
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For a first-approximation evaluation of the optimum system damping, it
may be assumed that the presence of the damper does not significantly affect
the natural frequencies of the system. The above mentioned stiffness may be
neglected. Under this assumption, the behavior of the damper may be studied
separately, assuming the time history of the motion φ1(t) of the node where it
is applied. The equation of motion of node 0 is then

Jsφ̈0 + cφ̇0 = cφ̇10
. (30.22)

Assume that the time history at node 1, where the damper is applied, is
harmonic

φ1(t) = φ10
eiωt .

The time history at node 0 is also harmonic

φ0(t) = φ00
eiωt

although not in phase with the excitation. The response can be computed using
the frequency domain equation

(
−Jsω

2 + iωc
)
φ00

= iωcφ10
. (30.23)

By separating the real and imaginary parts of the response, it follows that
⎧⎪⎪⎨
⎪⎪⎩

(φ00
) = φ10

c2

c2 + J2
s ω2

,

�(φ00
) = φ10

−cJsω

c2 + J2
s ω2

.
(30.24)

If time t = 0 is chosen as the time when the angular displacement φ1 reaches
its maximum, i.e. if φ10

is real, the relative displacement can be expressed as

|φ0(t) − φ1(t)| =
√[

(φ00
) − φ10

]2 +
[
�(φ00

)
]2 (30.25)

and then

|φ0(t) − φ1(t)| = φ10

J2
s ω2√

c2 + J2
s ω2

. (30.26)

The energy dissipated in a period by the damper is

Ed =
∫ T

0

c
[
φ̇0(t) − φ̇1(t)

]2

dt = cφ2
10

π
J2

s ω4

c2 + J2
s ω2

. (30.27)

It is easy to verify that both conditions c = 0 and c → ∞ lead to a van-
ishingly small energy dissipation: In the first case because the seismic mass does
not interact with the system, and in the second case because nodes 1 and 0 are
rigidly connected. The value of the damping coefficient leading to a maximum
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energy dissipation can be obtained simply by differentiating equation (30.27)
and equating the derivative to zero

J2
s ω2 − c2 = 0 . (30.28)

The value of the optimum damping so obtained is

copt = Jsω . (30.29)

Even if the value of the optimum damping depends on the frequency,
dampers of the type described here allow a substantial reduction of the am-
plitude of vibration in a large frequency range.

Because all dissipative dampers convert mechanical energy into heat, they
are subject to potentially high temperatures. It is then necessary to verify that
they can dissipate all the thermal energy they produce, which can be computed
using formulas of the type of equation (30.27), at least in terms of average power
over a given period of time.

A limit to the ratio between the thermal power and the external surface
of the damper is usually assumed. For the type in Fig 30.5a, for example, it is
suggested not to exceed 1.9 × 104 kW/m2 in continuous operation and 5 × 104

kW/m2 for short periods of time.
If the seismic mass is connected to the shaft with a torsional spring with

non-vanishing stiffness, the device is a true dynamic vibration absorber. Such
torsional vibration absorbers introduce a new natural frequency into the system
and change the natural frequency on which they are tuned. The distance be-
tween the two resonance peaks increases with increasing moment of inertia of
the seismic mass. Because an undamped vibration absorber is effective in a very
narrow frequency range, outside of which it is not only ineffective but can cause
new resonances, the seismic mass is connected to the shaft through a system
that has a certain amount of damping. In such cases it is possible to obtain a
response that is fairly flat in an ample range of frequencies.

From a practical viewpoint, all dampers shown in the previous section can be
converted into damped vibration absorbers simply by adding an elastic element
between the shaft and the seismic mass, which allows the damper to be tuned
on the required frequency.

Elastomeric dampers are used on many automotive engines (Fig. 30.5b),
particularly on small diesel engines. They may be considered as damped vibration
absorbers. The elastomeric elements act as both springs and dampers, and can
be designed so as to achieve the required dynamic characteristics. In this case
the damper must be designed to take into account the heat generated within the
damping element, particularly because the thermal conductivity and mechanical
characteristics at high temperature of the rubber are both low. Overheating is
particularly dangerous, because any increase of temperature leads to a decrease
of the internal damping and then an increase of vibration amplitude. This leads
to a further temperature increase until the damper is destroyed, something that
could cause severe fatigue problems to the whole system.
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30.2.6 Ancillary equipment

The crankshaft drives a number of ancillary devices that are increasingly common
in modern cars. To the camshafts, the generator, the water pump and possibly
the fan (which is, however, often driven directly by an electric motor) and other
devices such as the power steering pump and the air conditioner compressor
must be added. These devices are usually driven through a V or a timing belt,
while camshafts are usually driven by a chain or a timing belt. Each shaft has
its own speed, so that each transmission has its own transmission ratio. The
transmission ratio of the cam shaft is always 1/2.

Ancillary devices may be included in the engine model as well as the driveline
by adding other concentrated moments of inertia connected to the main system
by secondary shafts that simulate the stiffness of the belt, chain or gearwheel
transmission. The same procedure that will be shown when dealing with the
driveline may be used to account for the different gear ratios. This approach
may, however, be only a first approximation, because the belt usually moves more
than one device and is kept tight by tensioners that have their own dynamics
based on their mass and stiffness. The belt is then not equivalent to a number of
shafts connecting the various devices to the crankshaft. Moreover, the behavior
of the belt is often nonlinear.

Because of the presence of many ancillary devices, usually mounted on brack-
ets with a limited stiffness, torsional vibration of the crankshaft causes vibration
of the brackets and the masses mounted on them. These vibrations may adversely
affect vibrational and acoustic comfort. Because these devices are usually located
close to the cooling air intake, noise caused by their vibration propagates outside
the vehicle and contributes to what is usually referred to as acoustic pollution.

Dynamic vibration absorbers or low stiffness joints are often located close
to the pulleys driving the belts, to reduce both noise and dynamic stresses. The
functions of elastic joint and damper are generally performed by a single device,
containing two or more seismic masses, one of which is the outer rim of the pulley
driving the belt.

Because the inertia of the ancillary device is not large and the stiffness of
the belt or other transmission devices is high, their dynamics lies in a frequency
range above that involving the sprung and unsprung mass modes, and primarily
affects acoustic comfort.

30.2.7 Engine control

Variations of the engine torque in time due to the thermodynamic cycle may
excite vibrations of the driveline at medium-high frequency. The fundamental
harmonic has a frequency Ω/2 in a four-stroke cycle engine, which at 1000 rpm
already corresponds to 8 Hz. At the speeds at which the engine usually operates,
frequencies are much higher. The other harmonics have a frequency that is a
multiple of the fundamental frequency and is often quite high, because 20 or even
25 harmonics must usually be taken into account. At the first natural frequency
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of the driveline the engine torque can be considered constant in time, as far as
the internal dynamics of the engine is concerned. The torque varies according to
the commands given by the driver.

In traditional layouts, the engine is controlled by the driver through the
accelerator pedal, with commands transmitted to the throttle or injection pump
by a mechanical (cable) or hydraulic transmission. Even when the driver ma-
noeuvres the accelerator quite quickly, the command is transferred directly to
the engine. The engine torque increases rapidly following a sudden opening or
closing of the throttle, with characteristic times typical of those of the thermo-
dynamic cycle: A sort of step input is then occurring, exciting all frequencies up
to values of some tens of Hz, or even more. The accelerator manoeuvre may then
excite the first torsional frequency of the driveline.

In more modern layouts the transmission of the accelerator control is per-
formed by a by wire device: The pedal is connected to a sensor supplying a
position signal to the engine control system. In this case it is possible to prevent
the transmission natural frequencies from being excited, avoiding high mechan-
ical stresses to the involved elements.

The simplest strategy is to introduce a low-pass filter, cutting out frequen-
cies above a value of about 1 or 2 Hz. This has the advantage of preventing
the excitation of the driveline natural frequencies, but the engine becomes less
responsive, both when accelerating and slowing down. More complex strategies
based on filters that cut out specific frequencies, or provide laws of torque as
a function of time to avoid excitation of resonant vibration, require a detailed
knowledge of the dynamics of the driveline and accurate adjustments. Strategies
of this type are called open loop or feedforward strategies, because they modify
the input of the system (in this case the driving torque) without measuring its
effects.

Such an open loop approach may be complemented by measuring the effects
of the accelerator manoeuvre, (i.e. acceleration of the vehicle, torsional deforma-
tion of the driveline, etc.) and then modifying the command of the throttle or
injection pump to limit vibration (closed loop or feedback control).

The model of the driveline must also contain in this case a mathematical
model of the device controlling the engine, to simulate specific step input or
tip-in, tip-out manoeuvres.

30.2.8 Engine suspension

The engine suspension system has two primary functions:

• supporting the static and dynamic loads due to the mass of the engine, its
reciprocating and rotating elements and driving torque,

• isolating the structure of the vehicle from vibration and noise produced by
the propulsion unit, which usually includes the engine, the gearbox and
often the differential.
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The suspension system should be stiff enough to perform the first task with-
out allowing large displacements and rotations, the limiting case being mounting
the engine stiffly on the vehicle body. On the other end, to effectively insulate
the vehicle from vibration produced by the propulsion unit, its suspension should
be as soft as possible. To strike a compromise between these contrasting require-
ments, it is of the utmost importance to locate the engine mounts suitably. These
are usually elastomeric elements performing the tasks of spring and damper si-
multaneously.

If the mounts had low stiffness and damping, the engine would behave like
a rigid body isolated in space and would transfer no vibration to the structure
except that transmitted by the surrounding air. The motion of the engine could
then be studied as that of an isolated rigid body on which the actions caused
by the pressure of the working gases and the inertia forces caused primarily
by imbalance of rotating elements as well as the linear inertia of reciprocating
masses are exerted. In this analysis the forcing functions acting on the engine,
which are periodic with a period equal to the duration of the thermodynamic
cycle (fundamental frequency equal to half the rotation frequency in four-stroke
cycle engines), may be developed in Fourier series. The static (zero-frequency)
component due to weight and the constant component of the driving torque must
be neglected in this computation, because it would lead to a non-periodic motion
of the engine that is not supported in any way.

If the motion of the engine as an insulated rigid body under the action of
dynamic forces were such that we could identify points where the amplitude
vanishes, locating the supports in those points would allow the engine to be
supported without transmitting dynamic loads. In actual conditions this is not
possible, but analysis of the free motion allows us to identify points where the
amplitude of that motion is relatively small. We can then identify configurations
from which the optimization of the engine suspension geometry can begin, taking
into account the compliance of the structure supporting the engine.

Among the possible layouts for engine suspensions, those based on three
supports, and on two supports withstanding the weight of the engine plus a link,
itself attached through elastomeric supports, to withstand the engine torque,
must be mentioned. The latter solution allows a high rotational stiffness to be
obtained, accompanied by a moderate translational stiffness.

The concept of complex stiffness may be used to identify an in-phase and
an in-quadrature stiffness, both functions of frequency, and then to describe the
elastic and damping behavior of the supports under a harmonic forcing function.
The characteristics of one of the supports of an engine suspension are shown in
Fig. 30.6 as an example. Supports with controllable characteristics and active
supports have been built and applied on some vehicles.

Remark 30.7 Engine suspension may have a strong influence not only on in-
sulation from vibration and noise produced by the engine, but also on riding
comfort, because the engine is quite a large mass suspended through an elastic



596 30. TRANSMISSION MODELS

FIGURE 30.6. Real (in-phase) and imaginary (in quadrature) parts of the complex
stiffness of a support for engine suspension versus the frequency.

and damping system that couples it to the heave and pitch dynamics of the vehicle
and also, even if to a lesser extent, to the torsional dynamics of the driveline.

30.3 DRIVELINE

The driveline, including shafts, gear wheels, joints and other elements such as the
clutch with related damper springs, may be modelled as a lumped parameters
system (made by massless shafts where the elastic properties of the system are
concentrated) with lumped masses modelling its inertial properties.

The damping of the system may be neglected altogether, or modelled by
introducing suitable viscous dampers in parallel to the springs modelling the
various parts of the shaft and joints.

If the clutch is assumed to be fully engaged and the gearbox is in a given
gear, the configuration of the driveline is fixed. There is then no difficulty in
building a simple mathematical model of the entire system.

Nor does the fact that the various elements of the driveline rotate at different
speeds cause problems. Consider the system sketched in Fig. 30.7a, in which the
two shafts are linked by a pair of gear wheels, with transmission ratio τ . For
the study of the torsional vibrations of the system, it is possible to replace the
system with a suitable equivalent , in which one of the two shafts is replaced by
an expansion of the other (Fig. 30.7b).

Assuming as well that the deformation of gear wheels is negligible, the equiv-
alent rotations φ∗

i may be obtained from the actual rotations φi simply by di-
viding the latter by the transmission ratio τ = Ω2/Ω1,

φ∗
i =

φi

τ
. (30.30)

The kinetic energy of the ith flywheel, whose moment of inertia is Ji, and
the elastic potential energy of the ith span of the shaft are, respectively,
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FIGURE 30.7. Geared system: Sketch of the (a) actual system and (b) equivalent
system; (c) planetary gear train. Sketch of the system and notation.
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(30.31)

where the equivalent moment of inertia and stiffness are, respectively,

J∗
i = τ2Ji , k∗

i = τ2ki . (30.32)

The moments of inertia and the torsional stiffness of the various elements of
the geared system can thus be reduced to the main system simply by multiplying
them by the square of the gear ratio

c∗i = τ2ci . (30.33)

In the same way, if damping of the shafts is accounted for by introducing
dampers in parallel to the springs, the damping coefficient must be multiplied
by the square of the gear ratio.

If the system includes a planetary gear train, the computation can be per-
formed without difficulties. The equivalent stiffness can be computed simply from
the overall transmission ratio. The total kinetic energy of the rotating parts must
be taken into account when computing the equivalent inertia. The angular ve-
locities of the central gear Ω1, of the ring gear Ω2, of the revolving carrier Ωi,
and of the intermediate pinions Ωp of the planetary gear shown in Figure 30.7c
are linked by the equation

Ω1 − Ωi

Ω2 − Ωi
= −r2

r1
, Ωp = (Ω1 − Ωi)

r1

rp
− Ωi. (30.34)

The equivalent moment of inertia of the system made of the internal gear,
with moment of inertia J1, the ring gear, with moment of inertia J2, the revolving
carrier, with moment of inertia Ji, and n intermediate pinions, each with mass
mp and moment of inertia Jp, referred to the shaft of the internal gear is
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Jeq = J1 + J2

(
Ω2

Ω1

)2

+ (Ji + nmpr
2
i )

(
Ωi

Ω1

)2

+ nJp

(
Ωp

Ω1

)2

. (30.35)

If the deformation of the meshing teeth must be accounted for, it is possible
to introduce two separate degrees of freedom for the two meshing gear wheels into
the model, modeled as two different inertias, and to introduce a shaft between
them whose compliance simulates the compliance of the transmission. This is
particularly important when a belt or flexible transmission of some kind is used
instead of the stiffer gear wheels. In a driveline there may be several shafts
connected to each other, in series or in parallel, by gear wheels with different
transmission ratios.

The equivalent system is referred to one of the shafts and the equivalent
inertias and stiffness of the elements of the others are all computed using the
ratios between the speeds of the relevant element and the reference shaft. The
equivalent system will then be made of a set of elements, in series or in paral-
lel, following the scheme of the actual system, but with rotations that are all
consistent.

If the compliance of the gears is to be accounted for in detail, the nonlin-
earities due to the contacts between the meshing teeth and backlash must be
considered, as will be seen later.

The driveline may cause comfort problems not only in terms of its torsional
compliance, but also its bending compliance. The propeller shaft and the wheel
shafts have their own flexural natural frequencies and critical speeds. They may
cause severe vibration when they operate close to a critical speed.

Without entering into details about the dynamic behavior of rotating ele-
ments3, the following considerations can be advanced.

• The gyroscopic effects of transmission shafts are weak. Critical speeds are
close to the natural frequencies when the system is not rotating.

• The balance conditions of the rotating elements have no effect on the nat-
ural frequency or the critical speed, but do determine the strength of the
excitation at such speeds.

• The damping of the shaft (and the joints) has no effect in limiting the
amplitude of vibration at the critical speeds, while the damping of the
supports (non-rotating damping) is essential to this aim.

The critical speeds of the wheel shafts are generally beyond the working
range and thus do not cause resonant vibration. However, the first critical speed
of the propeller shaft in vehicles with front engine and rear wheel drive is in the
working range. The critical speed of traditional propeller shafts, in two parts
with a Hooke joint and elastic support in the middle, occurs when the vehicle

3See, for instance, G. Genta, Dynamics of rotating systems, Springer, New York, 2005.
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travels at a low speed: The shaft then works normally in the supercritical regime,
when self-centred.

The shaft and above all the joint must be accurately balanced, so as to go
through the critical speed without strong vibration, while the central support
must supply enough damping. The damping of the support is also needed to
prevent the crossing of an instability threshold in high speed operation.

Cars with front engine and rear wheel drive are prone to vibrate strongly
when passing through the critical speed of the propeller shaft if the balancing of
the central joint deteriorates or the elastic and above all damping properties of
the support become worse due to aging or wear.

Misalignment of the propeller shaft or wheel shafts may also cause the driv-
eline to vibrate.

30.4 INERTIA OF THE VEHICLE

The tires may be considered as rigid bodies, allowing longitudinal slip to be
neglected when performing a first approximation study. In this case the vehicle
inertia and the resistance to motion may be accounted for as seen in Chapter 23
in the study of the take-off manoeuvre. The vehicle may then be modelled as a
flywheel, connected after the wheel shafts that, in the equivalent system, rotate
at the same speed as the engine.

Taking into account the inertia of all wheels, the moment of inertia of this
flywheel is

Jv =

(
m +

∑
∀i

Jri

R2
ei

)
R2

eτ
2 , (30.36)

where Jri is the moment of inertia of the ith wheel, which may have different
equivalent rolling radii, Re is the equivalent rolling radius of the driving wheels
and τ is the overall gear ratio between engine and wheels.

The drag torque Mr applied to the flywheel simulating the vehicle is

Mr = FrReτ , (30.37)

where the total resistance to motion (road load) Fr depends on the speed fol-
lowing Eq. (23.17):

Fr = A + BV 2 + CV 4 ,

and the expressions for constants A, B and C4 are as reported in Chapter 23.
For a more detailed study, both the compliance of the tire and its longitu-

dinal slip at the wheel-road contact must be accounted for. The simplest way
to model the former is by simulating the tire as a rigid ring, with mass mc and

4Parameters A, B and C used in the equation giving the road load must not be confused
with the parameters with the same name included in the magic formula.
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FIGURE 30.8. Model of the tire and the tire-road contact. a): Dynamic model of the
tire; b): Force-longitudinal slip characteristic for the tire. c) Dynamic model of the
tire-road contact (the moments of inertia and the torsional characteristics are drawn
as masses and translational characteristics).

moment of inertia Jc, corresponding to the tread band and the belt beneath it.
This is connected to the wheel hub, whose mass and moment of inertia are mm

and Jm through an elastic system having a radial and torsional stiffness equal
to kr and kt respectively.

The rim and hub are also assumed to be rigid bodies. Viscous dampers with
coefficients cr and ct (Fig. 30.8a) may be added in parallel to the springs. The
masses and the radial stiffness and damping are included in the ride comfort
models, as seen in the previous chapter, while the moments of inertia and the
torsional stiffness and damping are included in the driveline and longitudinal
models

The wheel-ground contact may be characterized by the plot of the longi-
tudinal force coefficient versus the sideslip μx(σ) (Fig. 30.8b). Usually only the
first part of the curve, approximated as a straight line, is used in the study of
the driveline dynamics. The slope of the line may be easily obtained from the
coefficients of the magic formula and is given by product BCD.

The longitudinal slip σ is linked to the ratio between the speed Ωc of the
wheel and the speed of the moment of inertia simulating the vehicle

Ωv =
V

Re

by the relationship

σ =
Ωc

Ωv
− 1 .

The longitudinal force the tire exerts is then

Fx = Fzμx = bFzσ = bFz

(
Ωc − Ωv

Ωv

)
, (30.38)

where
b = BCD .



30.5 Linearized driveline model 601

The moment exerted on the wheel due to the longitudinal slip is

M = ReFx =
bFzRe

Ωv
(Ωc − Ωv) . (30.39)

The wheel-ground contact may then be modelled as a viscous damper with
damping coefficient

cp =
bFzR

2
e

V
. (30.40)

Coefficient cp depends first upon the vehicle speed and then upon the vari-
able of motion Ωv: the equation of motion is then nonlinear. For small velocity
variations it is, however, possible to linearize the equations by using an average
value of the speed in the expression of cp. When the speed tends to zero, the
damping coefficient tends to infinity: This linearized model cannot be used in the
first instants of a take-off manoeuvre, when the vehicle is still stationary, because
in these conditions the longitudinal slip is high, or better tends to infinity.

The tire model is usually complemented by adding a spring in series with
the damper. Its stiffness is

kp =
bFzR

2
e

a
, (30.41)

where a is a length equal to half the length of the contact zone.
Stiffness kp can be suitably modified to take into account the longitudinal

compliance of the suspension of the driving wheels.
The tire is then modelled with two moments of inertia connected to each

other with a spring and a damper in parallel, and connected to the flywheel
simulating the vehicle with a spring and a damper in series. The model is sketched
in Fig. 30.8c, where the torsional springs and the moments of inertia are drawn
as springs and masses.

30.5 LINEARIZED DRIVELINE MODEL

A driveline model from the engine to the vehicle can thus be assembled using
the partial models seen above. As already stated, the elements to be taken into
account depend upon the aim for which the model has been built. A relatively
simple model is shown in Fig. 30.9a. If low frequency oscillations, such as those
occurring in tip-in, tip-out manoeuvres, are to be studied, the engine can be
modelled as a single moment of inertia. The two wheel shafts are modelled sep-
arately in this model, because in many cars with transversal front engine and
front-wheel drive their stiffnesses are different. However, the two branches of the
driveline can be joined if a first approximation study of the low frequency dy-
namics alone is required (Fig. 30.9b). This can be done by introducing inertias
and stiffnesses equal to the sum of those of the single branches.

The model shown in Fig. 30.9a has 10 degrees of freedom. Because two
of them have a vanishing associated mass, it has only 18 state variables. The
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FIGURE 30.9. Model of the driveline for the study of low frequency dynamics a), and
model in which the presence of two separate wheel shafts is neglected b).

generalized coordinates are the rotations of the various moments of inertia. It is
possible to order them by separating the nodes where there is a mass from those
that are massless. Thus

x =
[

xT
1 xT

2

]T
, (30.42)

where

x1 =
[

θmot θca θd θm1 θm2 θc1 θc2 θv

]T
,

x2 =
[

θi1 θi2

]T
.

The mass matrix of the system may be partitioned in four parts as

M =
[

M11 M12

M21 M22

]
(30.43)

where

M11 = diag
[

Jmot J∗
ca J∗

d J∗
m J∗

m J∗
c J∗

c J∗
v

]
(30.44)

and all other sub-matrices are null.
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The stiffness matrix may be partitioned in the same way

K11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kf −kf 0 0 0 0 0 0
kf + k∗

tr −k∗
tr 0 0 0 0 0

k1 −k∗
s1 −k∗

s2 0 0 0
k∗

s1 + k∗
t 0 −k∗

t 0 0
k∗

s2 + k∗
t 0 −k∗

t 0
k∗

t + k∗
p 0 0

k∗
t + k∗

p 0
symm. 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(30.45)
where

k1 = k∗
tr + k∗

s1 + k∗
s2 ,

K21 =
[

02×5

[
−k∗

p 0 0
0 −k∗

p 0

] ]
, (30.46)

K22 =
[

k∗
p 0
0 k∗

p

]
, K12 = KT

21 . (30.47)

In a similar way the submatrices of the damping matrix are

C11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cf −cf 0 0 0 0 0 0
cf + c∗tr −c∗tr 0 0 0 0 0

c1 −c∗s1 −c∗s2 0 0 0
c∗s1 + c∗t 0 −c∗t 0 0

c∗s2 + c∗t 0 −c∗t 0
c∗t 0 0

c∗t 0
symm. 2c∗p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(30.48)
where

c1 = c∗tr + c∗s1 + c∗s2 ,

C21 =
[

02×7

[
−c∗p
−c∗p

] ]
, C22 =

[
c∗p 0
0 c∗p

]
, C12 = CT

21 . (30.49)

The assumption that the damping of the various components of the driveline
can be modelled as viscous is only approximate, but it cannot be modelled as
hysteretic damping (which is not much better for elements like the clutch damper
springs) because that would not allow the numerical simulation of manoeuvres
such as the response to a step input. However, because the phenomenon here
studied occurs at a well determined frequency, it is possible to approximate
hysteretic damping with an equivalent viscous damping

ceq =
ηk

ω
, (30.50)
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where η and k are the loss factor and the stiffness of the relevant elements and
ω is the frequency of the oscillations of the driveline. It is possible to perform
a first computation with no damping (except that used to simulate tire slip) to
compute a value for the frequency of the free oscillations, and then to proceed
with calculations that include an equivalent damping.

The state vector can be written in the form

z =
[

vT
1 xT

1 xT
2

]T
, (30.51)

where v1 contains the derivatives of coordinates x1.
The state equation is then
⎡
⎣ M11 0 C12

0 0 C22

0 I 0

⎤
⎦ ż = −

⎡
⎣ C11 K11 K12

C21 K21 K22

−I 0 0

⎤
⎦ z+

⎧⎨
⎩

F1

0
0

⎫⎬
⎭ , (30.52)

where vector F1 contains the moments applied on the nodes whose coordinates
are included in vector x1. Because only the driving and drag torques are present,
it follows that

F1 =

⎧⎨
⎩

Mmot

06×1

Mr

⎫⎬
⎭ . (30.53)

The dynamic matrix of the system is then

A = −

⎡
⎣ M11 0 C12

0 0 C22

0 I 0

⎤
⎦
−1 ⎡

⎣ C11 K11 K12

C21 K21 K22

−I 0 0

⎤
⎦ . (30.54)

Example 30.1 Simulate a tip-in, tip-out manoeuvre in second gear with engine at

1,500 rpm. With the vehicle running at constant speed (driving torque equal to drag

torque) increase suddenly the driving torque to its maximum value and keep such a

value until 2,000 rpm. are reached. The accelerator is then fully released and the vehicle

slows down.

Data: maximum driving torque: Mmax = 40 Nm; braking torque of the engine:

Mf = −4 Nm.

Vehicle: Mass m = 950 kg, f0 = 0.013, K = 6.5×10−6 s2/m2, Cx = 0.32, S = 1.7

m2, Re = 257 mm, half-length of the contact area a = 50 mm. Neglect the efficiency of

the transmission.

Moments of inertia: engine (including the flywheel) Jmot = 0.125 kg m2, gear

Jca = 0.0045 kg m2, differential Jd = 0.065 kg m2, wheel hub Jm = 0.3 kg m2, thread

band Jc = 0.32 kg m2.

Stiffnesses: Clutch disk (with damper springs, when driving), kf = 975 Nm/rad,

wheel shafts ks1 = 7, 500 Nm/rad, ks2 = 10, 400 Nm/rad, tire kt = 59, 000 Nm/rad.

Neglect the damping of the driveline elements.

Gear ratios: Final gear τp = 0.2884; gearbox (second gear) τ c = 23/63.
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By using the tire model previously used to compute the contact parameters, stiffness
b is

b = A

(
K

α + d

)1/n

− D ,

where α = 0 (there is no sideslip angle), A = 1.12, K = 46, n = 0.6, d = 5, D = 1.

The compliance of the gearbox-differential connection is neglected and then a single

moment of inertia Jca = 0.0695 kg m2 is assumed for gearbox and differential, located

on the gearbox output shaft.

The values of the inertias and stiffnesses, reduced to the engine shaft (multiplied

by the squares of the transmission ratios) are: J∗
ca = 0.00926 kg m2, J∗

m = 0.00333

kg m2, J∗
c = 0.00355 kg m2, k∗

s1 = 83.14 Nm/rad, k∗
s2 = 115.3 Nm/rad, k∗

t = 654.1

Nm/rad.

The moment of inertia of the vehicle reduced to the engine shaft, including also

the two free wheels as well, is J∗
v = 0.696 kg m2.

The speed of the vehicle at 1,500 rpm is V = 4.25 m/s = 15.30 km/h.
Neglecting the term of the road load in V 4, the drag moment reduced to the engine

shaft may be written as
Mr = RReτ

2 = Ar + BrΩ
2
v ,

where Ar = 3.28 Nm, Br = 8.15 × 10−6 Nms2. The drag torque at 1,500 rpm is 3.48

Nm: Predictably, the quadratic term as a small effect at such a low speed.

Coefficients cp and kp are cp = 1, 913 Nms/rad and kp = 163, 000 Nm/rad at a

speed of 1,500 rpm. It then follows that c∗p = 21.21 Nms/rad and k∗
p = 1, 803 Nm/rad.

Natural frequencies are immediately obtained from the eigenvalues of the dynamic
matrix. Three eigenvalues are equal to zero, because rigid body modes are possible. The
eigenvalue with the smallest imaginary part , i.e. that corresponding to motion with the
lowest natural frequency, is

s = −1.69 ± 35.58 i 1/s ,

and the corresponding frequency of the damped free oscillations is 5.66 Hz. It is the low

frequency mode typical of the phenomenon under study.
The following eigenvalue is

s = −4.32 ± 347 i 1/s ,

corresponding to a damped oscillation with a frequency of 55.23 Hz. This is almost ten

times the frequency of the lowest mode. To study oscillations at this frequency it is

advisable to use a more detailed model.

The results of the tip-in, tip-out manoeuvre are shown in Fig. 30.10. In a) the

time histories of the velocity of engine and vehicle are reported, while the longitudinal

acceleration of the vehicle is plotted in b). By comparing the results of the simulation

with those shown in Fig. 30.1, a qualitative similarity is found, although the results

refer to different vehicles. The longitudinal acceleration computed in the simulation is

that of the wheel hub, while the experimental results were measured in the passenger

compartment and then filtered by the structure of the vehicle. Moreover, the mathemat-

ical model does not take into account the damping of the driveline, but only that caused

by tire slip.
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FIGURE 30.10. Results of a tip-in, tip-out manoeuvre. a): Engine and wheel speeds
(reduced to the engine shaft); b) longitudinal acceleration of the vehicle.

Example 30.2 Repeat the simulation of the previous example, taking into account n

hysteretic damping with a loss factor η = 0.2 for the clutch damper springs and η =

0.05 for all other elements. To convert hysteretic into viscous damping, the equivalent

damping at a frequency of 35.58 rad/s is computed.
The eigenvalue with the lowest imaginary part, i.e. that corresponding to the os-

cillations with the lowest frequency, is now

s = −2.88 ± 35.43 i 1/s ,

corresponding to oscillations at a frequency of 5.64 Hz. By comparing this result with

that seen above, it is clear that the decay rate has increased considerably (it almost

doubled), while the frequency is essentially the same.

The results of the simulation are reported in Fig. 30.11. The effect of damping is

fairly limited: the oscillations damp out in a shorter time, but the maximum values of

the acceleration are little changed.

30.6 NON-TIME-INVARIANT MODELS

If the torsional vibration of the driveline must be studied with the reciprocating
masses in the engine in mind, a model with inertial properties that are variable
in time must be used.

Three different approaches are possible. Listing them in order of increasing
complexity, they are

1. Traditional approach. The effect of the variable component of the moments
of inertia of the crank systems is modelled as a torque with known time
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FIGURE 30.11. Results of a tip-in, tip-out manoeuvre, computed while taking into
account the damping of the various elements. a): Engine and wheel speeds (reduced to
the engine shaft); b) longitudinal acceleration of the vehicle.

history applied to the node where the crank is located. Because the model
is linearized, it is possible to write the frequency domain equations and to
solve them analytically.

2. Approach in which the torsional deformations are considered small and the
corresponding angles can be neglected in the computation of the inertia
of the cranks. The equations of motion, nonlinear and non-time-invariant,
have coefficients with a known time history. No closed form of the equations
of motion is possible, and numerical integration is needed.

3. Approach with no particular simplifying assumption. The equations of mo-
tion must be solved numerically, but the solution is much more difficult
than in case (2).

30.6.1 Equations of motion

The equation of motion of the engine-driveline system can be obtained in the
usual way, using Lagrange equations. The system may be modelled starting
from a lumped parameters approach, obtaining a model of the type shown in
Fig. 30.9a, with the difference that now the engine is not lumped in a single
inertia, but is modelled as another lumped parameter system, with the various
moments of inertia modelling cranks, flywheel, ancillary devices, dampers, etc.
connected to each other by torsional springs and dampers. The system may be
in-line, like that in Fig. 30.9b, or multiply connected, like that in Fig. 30.9a.

There is no difficulty in linearizing the elastic and dissipative part of the
system by writing stiffness and damping matrices K and C. The stiffnesses of
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the part modelling the engine will be the equivalent stiffnesses and the damping
coefficients of the same elements can be computed as seen above. The potential
energy and the dissipation functions will have the structure typical of linear
systems

U =
1
2
xT Kx , F =

1
2
ẋT Cẋ . (30.55)

The mass matrix can be computed using the methods seen for the equivalent
system

M = diag [Jeqi
] , (30.56)

but here the equivalent moments of inertia of the cranks are functions of their
rotation angles and then of their generalized coordinates. The mass matrix is
still diagonal, so that the element at the ith row and ith column depends only
upon the ith generalized coordinate. Because the equivalent moment of inertia
must be written as a Fourier series (Eq. 30.12), it follows that

M = M0 + M1 (x) = diag [J0i] + diag [J1i (θi)] , (30.57)

where:

• M0 is a diagonal matrix containing the average values of the moments
of inertia of the cranks and the moments of inertia at all other nodes.
Except for the nodes with which no inertia is associated, the elements are
all non-zero and their values are J0i.

•

J1i (θi) =
m∑

k=1

[Jcik cos(kθi + δik) + Jsik sin(kθi + δik)] ; (30.58)

where

i is the subscript referring to the node (i = 1, ..., n);

• k is the subscript referring to the relevant harmonics and thus spans from
1 to m, the number of the harmonics considered in the series (in theory
m = ∞);

• θi is the rotation angle of the ith node, and thus is the ith element of
vector x;

• Jcik and Jsik are the coefficients of the terms in sine and cosine of the
Fourier series for the equivalent moments of inertia. These vanish for all
the nodes where no crank is located and are equal for all cranks (they do
not depend on subscript i) if the crank systems are all equal;

• δik are the phases of the various harmonics in the various cranks, as given
by the phase angle diagrams.
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The kinetic energy is then

T =
1
2
ẋT Mẋ . (30.59)

Assuming that the rotation angle θi of the ith node is given by the sum of
an average angle θ0 of the driveline and a torsion angle φi :

xi = θ0 + φi , (30.60)

for the first n − 1 nodes and

xn = θ0v + φn , (30.61)

for the last node where the moment of inertia simulating the vehicle is located.

Remark 30.8 The latter node must be kept separate, because, owing to the lon-
gitudinal slip of the tire, the average rotations of the driveline and the vehicle θ0

and θ0v diverge in time.

Let S be a vector of order n − 1, whose components are all equal to 1. It is
then possible to write

x =
{

θ0S
θ0v

}
+ φ . (30.62)

Remembering that the last row and the last column of matrix K vanish (Eq.
(30.45), where all nodes are present), the potential energy is

U =
1
2
θ2
0S

T K∗S+
1
2
φ∗T K∗φ∗+θ0ST K∗φ∗ , (30.63)

where K∗ and φ∗ are the stiffness matrix and the vector of the generalized coordi-
nates without the the last row and column and without the last row respectively.

Rotation expressed by vector θ0S is a rigid rotation. Because the driveline
is free to rotate, product K∗S is null and thus it follows that

U =
1
2
φ∗T K∗φ∗ , (30.64)

i.e.
U =

1
2
φT Kφ . (30.65)

In a similar way,

ẋ =
{

ΩtS
Ωv

}
+ φ̇ , (30.66)

where Ωt and Ωv are the average velocities of the driveline and the vehicle.
The damping matrix may be subdivided into three parts

C = C1+C2+C3 (30.67)

where
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• C1 is a diagonal matrix, where all dampings toward the ground are listed,
that is, all terms expressed by Eq. (30.21) to simulate the energy losses
due to the absolute rotation of the nodes,

• C2 is a matrix with the structure shown in Eq. (30.48) where all nodes are
present and the damping cp simulating the tire slip is not included,

• C3 is a matrix of type shown in Eq. (30.48) where all nodes are present; it
contains only the damping cp simulating the tire slip.

The dissipation function is then

F =
1
2

({
ΩtS
Ωv

}
+ φ̇

)T

(C1+C2+C3)
({

ΩtS
Ωv

}
+ φ̇

)
, (30.68)

that is, performing the products and remembering the properties of the involved
matrices

F =
1
2

{
Ωt

Ωv

}[ ∑n−1
i=1 c1i + 2cp −2cp

−2cp 2cp

]{
Ωt

Ωv

}
+

+
{

ΩtS
Ωv

}T

(C1 + C3) φ̇+
1
2
φ̇

T
Cφ̇ . (30.69)

In a similar way, remembering that the mass matrix is diagonal, it is possible
to write

T =
1
2

n−1∑
i=1

[J0i + J1i (θi)]
(
Ωt + φ̇i

)2

+
1
2
J0n

(
Ωv + φ̇n

)2

. (30.70)

30.6.2 Rigid-body motion of the driveline

The generalized coordinates are the average rotations of the driveline and the
flywheel simulating the vehicle (or better, their derivatives Ωt and Ωv) and the
torsional rotations φi of the various elements. It is possible to assume that the
low frequency dynamics (actually a non-periodic dynamics) may be studied sep-
arately from the torsional dynamics of the system.

When studying the first, the equations simplify: Not only the terms contain-
ing φ vanish, but if the cranks are all equal and (angularly) uniformly spaced,
it follows that

n−1∑
i=1

J1i (θi) = 0 , Jtot =
n−1∑
i=1

J0i . (30.71)

Neglecting torsional rotations, it follows that

U = 0 , (30.72)
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F =
1
2

{
Ωt

Ωv

}[ ∑n−1
i=1 c1i + 2cp −2cp

−2cp 2cp

]{
Ωt

Ωv

}
, (30.73)

T =
1
2
Ω2

t Jtot +
1
2
Ω2

vJv (30.74)

and the equation of motion is simply
[

Jtot 0
0 Jv

]{
Ω̇t

Ω̇v

}
+

[ ∑n−1
i=1 c1i + 2cp −2cp

−2cp 2cp

]{
Ωt

Ωv

}
=
{

Mm

Mv

}
.

(30.75)
Mm is the total driving torque, or better the constant component of the

total driving torque.

Remark 30.9 This result is trivial, and could be obtained from the previous,
simpler, models.

30.6.3 Torsional dynamics of the engine and driveline

The following assumptions can be made in the study of torsional dynamics:

• The average speed of the engine and the vehicle are known functions of
time;

• The changes in the average speeds are slow enough to neglect the deriva-
tives of the average speeds with respect to time.

The derivative of the kinetic energy with respect to the ith generalized
velocity is

∂T
∂φ̇i

= [J0i + J1i (θi)]
(
Ωt + φ̇i

)
, (30.76)

for i = 1, ..., n − 1 and
∂T
∂φ̇n

= J0n

(
Ωv + φ̇n

)
. (30.77)

Differentiating with respect to time, it follows that

d

dt

(
∂T
∂φ̇i

)
= [J0i + J1i (θi)] φ̈i +

∂J1i (θi)
∂t

(
Ωt + φ̇i

)
, (30.78)

i.e.
d

dt

(
∂T
∂φ̇i

)
= [J0i + J1i (θi)] φ̈i +

∂J1i (θi)
∂θi

(
Ωt + φ̇i

)2

, (30.79)

for i = 1, ..., n − 1 and
d

dt

(
∂T
∂φ̇n

)
= J0nφ̈n . (30.80)
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Finally, the derivatives of the kinetic energy with respect to the generalized
coordinates are

∂T
∂φi

=
1
2

∂J1i (θi)
∂θi

(
Ωt + φ̇i

)2

, (30.81)

for i = 1, ..., n − 1 and
∂T
∂φn

= 0 . (30.82)

Remembering that J1i (θi) vanishes in the last equation of motion (it ac-
tually vanishes in all equations regarding nodes where no crank is located), the
inertial part of all equations of motion is

d

dt

(
∂T
∂φ̇i

)
− ∂T

∂φi

= [J0i + J1i (θi)] φ̈i +
1
2

∂J1i (θi)
∂θi

(
Ωt + φ̇i

)2

, (30.83)

while in the last equation only the term J0nφ̈n is present.
The other terms of the equations of motion are

{
∂U
∂φi

}
= Kφ , (30.84)

∂F
∂φ̇i

= Cφ̇+ (C1 + C3)
{

ΩtS
Ωv

}
. (30.85)

The final form of the equation of motion is then

[M0 + M1 (x)] φ̈ +
1
2

∂M1 (x)
∂x

{(
Ωt + φ̇i

)2
}

+

+Cφ̇+Kφ =F − (C1 + C3)
{

ΩtS
Ωv

}
,

(30.86)

where vector F contains the driving torques applied to the various cranks and
the drag torque applied to the flywheel simulating the vehicle.

30.6.4 Traditional approach

Not only does Eq. (30.86) contain coefficients that are varying in time, (through
term θ0 included in the total rotations x and then in M1 (x)), but it is also
nonlinear, both because φi are present in the total rotations x and then in
M1 (x)), and because it includes the squares of the generalized displacements
φi.

The traditional approach is based on the following simplifications:

• M1 (x) is neglected with respect to M0 in the term in φ̈,

• φ̇i is neglected with respect to Ωt in the term in
(
Ωt + φ̇i

)2

,
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• M1 (x) is considered as a function of θ0 but not of φi: The inertia of the
crank system is considered as a function of the average rotation of the
crankshaft, but not of the torsional rotation of the various cranks,

• usually, even if it is not strictly needed, the angular velocity Ωt is assumed
to be constant, and then θ0 = Ωtt.

In these conditions, the term

∂M1 (x)
∂x

{(
Ωt + φ̇i

)2
}

becomes a known function of time and then is brought to the right-hand side of
the equation, together with the forcing functions.

The equation of motion reduces to

M0φ̈ + Cφ̇+Kφ =F + Fin + (C1 + C3)
{

ΩtS
Ωv

}
, (30.87)

where the terms

Fin = −1
2
Ω2

t

∂M1 (θ0)
∂θ0

S (30.88)

are usually defined as inertia torques of the cranks. By introducing the value of
M1 in the equation, the various inertia torques are

Fini
= −1

2
Ω2

t

m∑
k=1

k [−Jcik sin(kθ0 + δik) + Jsik cos(kθ0 + δik)] . (30.89)

Vector F contains the driving torque, which is periodic with period equal
to the time needed to perform two revolutions of the crankshaft in a four-stroke
cycle engine (fundamental frequency Ωt/2). Fin is also periodic, but its funda-
mental frequency is Ωt. Usually, Fin is written as if its fundamental frequency
were Ωt/2, with the amplitudes of all odd harmonics, including the fundamental
one, set to zero. In this way the sum F + Fin has a simpler structure.

The homogeneous equation associated with Eq. (30.87) does not take into
account the variability in time of the equivalent moments of inertia of the crank
systems. The natural frequencies are thus those of a system with constant inertia.

30.6.5 Numerical approach

Equation (30.86) may be solved directly by numerical integration. If nonlinearity,
and above all the dependence of the various parameters upon time, may make
it difficult to proceed with the integration, the number of degrees of freedom of
the system is nonetheless low (usually no more than 20), so the computation is
not difficult. The time histories of the rotations of the various nodes can thus be
obtained along with those of the stresses in the various parts of the crankshaft



614 30. TRANSMISSION MODELS

and driveline. The time histories can then be developed in Fourier series and
the various harmonic contents extracted. However, if the time histories of the
motion of the various elements of the driveline must be obtained, it now seems
more expedient to resort directly to multibody computer codes instead of writing
the equations of motion of the driveline and building ad hoc programs.

30.7 MULTIBODY DRIVELINE MODELS

The linearized models seen in the previous section have the advantage of yielding
closed form, frequency domain solutions and of correctly simulating manoeuvres
like tip-in, tip-out in a simple way. However, the assumption that the stiffness
and damping characteristics of elements such as the clutch damper springs or
elastomeric dampers may be simulated as linear springs and viscous dampers
leads to a poor approximation.

The torsional characteristic of a clutch plate with damper springs is shown
in Fig. 30.12a: Not only is it possible to identify three fields where the stiffness
takes different values, but a well-defined hysteresis that has the characteristics
of a dry friction is also present. The fact that the stiffness is variable in the three
ranges does not prevent the elastic behavior about a particular working condition
from being linearized, while the nature of the damping, which may be dealt with
as dry friction, makes it impossible to linearize the behavior of this element if
damping is accounted for. As an example, the hysteresis cycle for displacements
about a condition in which the driving torque is 50 Nm is shown in Fig. 30.12b.

FIGURE 30.12. Angular displacement-torque characteristics of a clutch with damper
springs. a) Characteristics with engine braking (left) and driving (right); b): zoom on
the zone of the plot for a condition where the torque cycles about a value of the driving
torque of 50 Nm.
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If a torsional displacement-torque characteristic like that shown in Fig. 30.12
prevents the use of linearized models, or better, introduces large errors if a lin-
earization is attempted, it may be included without difficulty in a multibody
model. Multibody codes operate by numerically integrating in time the nonlin-
ear equations of motion and thus are ideal for cases like this. It is then possible
to include the detailed mathematical models of nonlinear elements and proceed
to simulate the behavior of the driveline in detail. The engine may be modelled
directly with the pistons, connecting rods and cranks, while its elastic supports
may also be included. On the other end of the driveline, the suspension con-
necting the wheel to the vehicle body may also be included in the model with
its compliance in the longitudinal direction, which often introduces a coupling
between longitudinal motion of the vehicle and ride comfort. Multibody models
may also include the engine control to correctly simulate various manoeuvres.

In the case of models restricted to the engine, multibody models that take
the actual geometry of the reciprocating and rotating elements into account are
increasingly replacing the traditional approach based on the modelling of the
inertia torques applied to the cranks as external forcing functions. Obviously,
their basic drawback of not allowing closed form solutions to be reached remains.



31
MODELS FOR TILTING BODY
VEHICLES

The models seen in the previous chapters dealt with vehicles that maintain their
symmetry plane more or less perpendicular to the ground; i.e. they move with a
roll angle that is usually small. Moreover, the pitch angle was also assumed to
be small, with the z axis remaining close to perpendicular to the ground. Since
pitch and roll angles are small, stability in the small can be studied by linearizing
the equations of motion in a position where θ = φ = 0.

Two-wheeled vehicles are an important exception. Their roll angle is defined
by equilibrium considerations and, particularly at high speed, may be very large.
To study the stability in the small, it is still possible to resort to linearization of
the equations of motion, but now about a position with θ = 0, φ = φ0, where
φ0 is the roll angle in the equilibrium condition. An example of this method is
shown in Appendix B, where the equation of motion of motorcycles is discussed.

Two-wheeled vehicles aside, this condition also occurs when the body of
the vehicle is inclined with respect to the perpendicular to the road; this may
be accomplished manually, as in motorcycles, or by devices (usually an active
control system) that hold the roll angle to a value determined by a well-defined
strategy. Vehicles of this type are usually defined as tilting body vehicles.

The most common application of tilting body vehicles today is in rail trans-
portation, but road vehicles following the same strategy, particularly those with
three wheels, have been built.

Rolling may be controlled according to two distinct strategies: by keeping
the z-axis in the direction of the local vertical or by insuring that the load shift
between wheels of the same axle vanishes. In the case of two-wheeled vehicles, the
latter strategy results in maintaining roll equilibrium The two strategies coincide
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only if the roll axis is located on the ground and no rolling moments act on the
vehicle, so that the wheels in particular produce no gyroscopic moment.

Tilting body vehicles arouse much interest because they allow us to build
tall vehicles that, although having a limited width (or better having a large
height/width ratio), have good dynamic performance, particularly in terms of
high speed handling. It is thus possible to build vehicles that combine the typical
advantages of motorcycles (good handling in heavy traffic conditions, low road
occupation, ease of parking) with those of cars (ease of driving, active and passive
safety, shelter from bad weather, no equilibrium problem when operating with
frequent stops, etc.).

As always occurs when new concepts are experimented with, many config-
urations are considered both for geometry and mechanical solutions as well as
hardware and software for the tilt control. No mutually agreed upon solution has
yet arisen.

Most such vehicles are three-wheeled, both for legal and fiscal reasons (in
many countries vehicles with three wheels have particular fiscal advantages).
They are also much simpler and potentially lower in cost. If a two-wheel axle is
needed to control tilting (solutions using a gyroscope to control tilting and thus
do away with the need for an axle with two wheels, were proposed but seldom
tested), having a single wheel on the other axle simplifies the mechanical layout,
reducing weight, cost and size. Body tilting eliminates the stability problems
typical of three-wheeled vehicles by reducing or eliminating load shift. In some
solutions the single wheel is at the front, while in others it is at the back.

There are solutions where the roll axis is physically identified by a true
cylindrical hinge located between a rigid axle and the vehicle body. The two-
wheeled axle may be a solid axle or made by two independent suspensions with
limited excursion, particularly for roll motions, connected to a frame that in turn
carries the cylindrical hinge connected to the body (Fig. 31.1a). If the vehicle
has four wheels, the roll centers of the two axles, materialized by two cylindrical
hinges, identify the roll axis. If the vehicle has three wheels, the roll axis is

FIGURE 31.1. Prototypes of tilting vehicles. a): BMW C.L.E.V.E.R; b) Mercedes
F 300. http://it.cars.yahoo.com/06062006/254/t/bmw-c-l-v-r-concept.html; http://
www.3wheelers.com/mercedes.html.
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identified by the center of the tire-road contact zone of the single wheel and the
center of the cylindrical hinge on the two-wheeled axle. In this way the roll axis
remains in a more or less fixed position in roll motion.

Usually, however, a different solution is found: The axle with two wheels
has an independent suspension that allows large roll rotations of the body and
behaves like a roll hinge (Fig. 31.1b). The roll center of the suspension is virtual,
because it is not physically identified by a hinge; its position changes during roll
motion. The roll center is then a fixed point only for small angles about the
symmetric position (vanishing roll angle). In the case of large roll angles the roll
center, and the roll axis as well, lies outside the symmetry plane of the body.

31.1 SUSPENSIONS FOR HIGH ROLL ANGLES

The wheels remain more or less perpendicular to the ground (the inclination
angle of the wheels, here confused with the camber angle, is small) in those cases
where the roll axis is defined by a physical hinge located between the frame
carrying the suspension and the vehicle body. When independent suspensions
directly attached to the vehicle body are used, on the other hand, it is possible
to maintain the midplane of the wheels parallel to the symmetry plane of the
body, i.e. φ = γ, or ∂γ/∂φ = 1 or, at least, to obtain a large camber angle.

In such cases the possibility of setting the wheels at a large camber angle is
interesting: Since the vehicle tilts towards the inside of the turn, camber forces
add to sideslip forces, as in two-wheeled vehicles. Moreover, it is possible to
exploit the difference in camber angles of the wheels of the two axles to modify
the handling characteristics of the vehicle.

In the following sections two layouts will be considered: Trailing arms and
transversal quadrilateral suspensions1.

31.1.1 Trailing arms suspensions

Suspensions of this kind are characterized by

∂t

∂z
=

∂γ

∂z
=

∂t

∂φ
= 0 ,

∂γ

∂φ
= 1

for small angles about the symmetrical conditions.
The track, defined as the distance between the centers of the contact areas

of the two wheels of an axle, and the camber angle remain constant even at large
vertical displacements. The camber angle also remains equal to the roll angle for
large values of the latter. Indeed, the track is no longer constant at large roll
angles, but becomes

1The term SLA suspension does not apply here, since the upper and lower arms have
roughly the same length.
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t =
t0

cos (φ)
.

The changes in track, which are negligible for small values of the roll angle,
increase with φ. When φ = 45◦ (a value still reasonable in motorcycles), the track
increases by 40%. The roll center remains on the ground, so that a suspension
of this type behaves like a single wheel in the symmetry plane, except for the
changes of track. However, the wheels move in a longitudinal direction, both
for vertical and roll displacements, and changes in the direction of the kingpin
axis also occur, if the suspension is used for steering wheels. Such displacements
depend on the length of the arms and their position in the reference conditions.

31.1.2 Transversal quadrilateral suspensions

If the wheels must be maintained parallel to the symmetry plane, the transversal
quadrilaterals must actually be parallelograms: the upper and lower arms must
have the same length and be parallel to each other. In this case it follows that

∂γ

∂z
= 0 ,

∂γ

∂φ
= 1,

in any condition. If the links connecting the body with the wheel hub are hori-
zontal (Fig. 31.2a), the roll center of the suspension lies on the ground for φ = 0.

As usual, the suspension has two degrees of freedom, designated as φ1 and
φ2 in Fig. 31.2b.

FIGURE 31.2. Transversal parallelograms suspension. a): Roll axis located on the
ground and geometrical definitions; b) skew-symmetric deformation corresponding to
roll; c): suspension in high roll conditions; d) configuration equivalent to a).
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If angles φi are positive when the wheel moves in the up direction (with
respect to the body), the roll angle and the displacement in the direction of the
z axis of the body is easily computed:

φ = artg
(

l1 [sin (φ1) − sin (φ2)]
2 (d + d1) + l1 [cos (φ1) + cos (φ2)]

)
,

Δz = −l1
(d + d1) [sin (φ1) + sin (φ2)] + l1 sin (φ1 + φ2)

2 (d + d1) + l1 [cos (φ1) + cos (φ2)]
.

(31.1)

It is also possible to identify a symmetrical mode, linked with vertical dis-
placement, and a skew-symmetrical mode, linked with roll. The former is charac-
terized by φ2 = φ1, the latter by φ2 = −φ1. The skew symmetrical mode causes
no vertical displacements of the body and the symmetrical one causes no roll,
even for angle values that go beyond linearity.

Remark 31.1 The possibility of expressing a generic motion as the sum of a
symmetric and a skew-symmetrical mode is limited to conditions where the super-
imposition principle holds, that is, to conditions where it is possible to linearize
the trigonometric functions of the angles.

Let
t0 = 2 (d + d1 + l1)

be the reference value for the track; in a symmetrical mode the track depends
on φ1 through the relationship

t = 2 [d + d1 + l1 cos(φ1)] = t0 − 2l1 [1 − cos(φ1)] . (31.2)

Only when φ1 = 0 do the track variations vanish, i.e.,

∂t

∂z
= 0 .

Because the vertical displacement is

z = −l1 sin(φ1) (31.3)

it follows that

t = t0 − 2l1

⎡
⎣1 −

√
1 −

(
z

l1

)2
⎤
⎦ . (31.4)

In the skew-symmetrical roll mode, the relationship between φ and φ1 is

tan (φ) =
l1 sin (φ1)

d + d1 + l1 cos(φ1)
(31.5)

and the track is

t = 2
[d + d1 + l1 cos(φ1)]

cos (φ)
. (31.6)
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Equation (31.5) may be inverted, producing an equation allowing φ1 to be
computed as a function of φ,

tan2

(
φ1

2

)
− 2

l1
(d + d1 − l1) tan(φ)

tan
(

φ1

2

)
+

d + d1 + l1
d + d1 − l1

= 0. (31.7)

In the ideal case where d + d1 = 0, it follows that

φ1 = φ , (31.8)

and the track remains constant even for large values of the roll angle

∂t

∂φ
= 0 ;

otherwise the track remains constant only for small deviations from the symmet-
rical condition.

As already stated, the roll center remains on the ground only if in the
reference condition the upper and lower links are horizontal, that is, if angle φ1

and φ2 have equal moduli and opposite signs. If, on the contrary, the symmetrical
reference condition is characterized by positive values of φ1 and φ2 (the body is
in a lower position with respect to the situation mentioned above), the roll center
is below the road surface and vice-versa. These considerations are based on the
assumption that the tire can be considered as a rigid disk; if, on the contrary, the
compliance of the tire is accounted for, the position of the roll center is lower.
If the transversal profile of the tires is curved, so that in roll motion they roll
sideways on the ground, the roll center remains on the ground but is displaced
sideways, outside the symmetry plane of the tire.

If the vehicle is controlled so that the local vertical remains in the symmetry
plane, the load on the suspension changes with the roll angle (if, for instance,
φ = 45◦, the centrifugal force is equal to the weight. The load is then equal
to the static load multiplied by

√
2 ≈ 1, 4). The suspension is compressed with

increasing φ and the roll center goes deeper in the ground. To prevent this from
occurring, devices able to control the compression of the suspensions must be
used.

If the direction of the upper and lower links of the suspension is important in
the kinematics of the suspension, the direction of the links modelling the vehicle
body and the wheel hub is immaterial. The suspensions of Figs. 31.2a and 31.2d
behave in the same way.

31.1.3 Tilting control

Consider a vehicle equipped with a tilting control system. Assume that such a
device is integrated with the suspension springs, as shown in Fig. 31.3a: A rotary
actuator with axis at point C rotates the arm CB to which the suspension springs
AB and A′B are connected. Consider the rotation φc of the actuator arm as the
control variable.
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FIGURE 31.3. Sketch of the control of the transversal parallelograms suspension.

Assuming angles φi as positive when the suspensions move upwards with
respect to the body, the coordinates of points A, A′ and B in a system with
origin in C and whose axes are parallel to the y and z axes are

(A − C) =
{

d + l2 cos (φ1)
l2 sin (φ1)

}
,

(
A′ − C

)
=

{
−d − l2 cos (φ2)

l2 sin (φ2)

}
, (31.9)

(B − C) =
{

−r1 sin (φc)
r1 cos (φc)

}
. (31.10)

The length of the springs is then

A − B = lR =
√

β1 + β2 cos (φ1) + β3 sin (φc) − β4 sin (φ1 − φc) ,

A′ − B = lL =
√

β1 + β2 cos (φ2) − β3 sin (φc) − β4 sin (φ2 + φc) ,
(31.11)

where subscripts L and R designate the left and right suspensions and

β1 = d2 + r2
1 + l22 , β3 = 2dr1 ,

β2 = 2dl2 , β4 = 2l2r1 .
(31.12)

The length of the springs in the reference condition (φ1 = φ2 = φc = 0) is

l20 = l20L = l20R = β1 + β2 . (31.13)

First consider the springs as rigid bodies. The relationships yielding angles
φ1and φ2 as functions of φc may be obtained equating lR and lL to l0 :

−β2 + β2 cos (φ1) + β3 sin (φc) − β4 sin (φ1 − φc) = 0 ,

−β2 + β2 cos (φ2) − β3 sin (φc) − β4 sin (φ2 + φc) = 0 .
(31.14)

Equations (31.14) may be solved in φ1and φ2 obtaining

tan
(

φ1

2

)
=

β4 cos (φc) −
√

β2
4 − β2

3 sin2 (φc) + 2β2 (β3 + β4) sin (φc)

(β3 − β4) sin (φc) − 2β2

,

(31.15)
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tan
(

φ2

2

)
=

β4 cos (φc) −
√

β2
4 − β2

3 sin2 (φc) − 2β2 (β3 + β4) sin (φc)

(β4 − β3) sin (φc) − 2β2

.

(31.16)
A rotation φc causes not only a rolling motion, but in general produces a

displacement in the z direction as well. An exception is the case with d = 0 and
thus β2 = β3 = 0. In this case

φ1 = −φ2 = φc . (31.17)

Remark 31.2 If d = 0 a rotation of the control actuator produces a roll rotation
of the vehicle (skew-symmetrical mode) but no displacement in the z direction.
This statement amounts to saying that the roll center remains on the ground for
all roll angles. The center of mass obviously lowers, because the roll center is on
the ground, but the suspension behaves like a motorcycle wheel.

Example 31.1 Consider a transversal parallelogram suspension with the following

data: d1 = 81.5 mm, r1 = 138 mm, l1 = 414 mm, l2 = 388 mm.

Compute angles φ1and φ2 as functions of φc and the displacements of the roll

center along the z axis for three values of d, namely 0, 25 and 50 mm.

The results, computed using the above mentioned equations, are shown in Fig. 31.4.

As expected, if d = 0 rotation φc causes rolling of the vehicle body about the roll

center that remains on the ground. If, on the contrary, d 	= 0, φ1 is not equal to φ2

and a displacement along the z direction (positive, in the sense that the body moves in

the direction of the positive z axis) occurs. This displacement may reach 100 mm for

d = 50 mm and φc = 50◦.

The center of mass obviously moves downwards when the vehicle rolls, but less

than when d is zero.

FIGURE 31.4. Transversal parallelograms suspension. a) Angles φ1 and φ2; b) roll
angle φ and c) displacement in z direction of the roll center as a function of φc for
three values of d: d = 0; d = 25 mm and d = 50 mm.
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31.1.4 Suspension stiffness

The elastic potential energy of the springs, referred to the condition with φ1 =
φ2 = φc = 0, is

Um =
1
2
K

[
(lR − l0)

2 + (lL − l0)
2
]

, (31.18)

where K is the stiffness of the springs.
First consider a suspension with d = 0. In this case φ1 = −φ2 and Δz = 0,

when the springs are in the reference condition.
Let angles φ1 and φ2 vary about this condition by the small quantities dφ1

and dφ2. The roll angle and the displacement in the z direction may be obtained
from Eq. (31.1):

tg (φ + dφ) =
l1 [sin (φ1 + dφ1) − sin (φ2 + dφ2)]

2d1 + l1 [cos (φ1 + dφ1) + cos (φ2 + dφ2)]
, (31.19)

Δz+dΔz= l1
d1 [sin (φ1 + dφ1) + sin (φ2 + dφ2)] + l1 sin (φ1 + dφ1 + φ2 + dφ2)

d1 + l1 [cos (φ1 + dφ1) + cos (φ2 + dφ2)]
.

(31.20)

Rolling motion

Assume that
dφ1 = −dφ2 . (31.21)

Because angle dφ1 and dφ2 are small and Δz = 0, it follows that

tg (φ + dφ) =
l1 sin (φ1) + l1dφ1 cos (φ1)

d1 + l1 cos (φ1) − l1dφ1 sin (φ1)
, (31.22)

dΔz = 0 . (31.23)

The motion of the suspension is then rolling. Some computations are needed
to obtain a relationship linking dφ to dφ1. They yield

dφ1

dφ
=

d2
1 + l21 + 2d1l1 cos (φ1)

l21 + d1l1 cos (φ1)
. (31.24)

The derivative dUm/dφ, i.e. the restoring moment due to the spring sys-
tem, is

dUm

dφ
= K

[
(lR − l0)

dlR
dφ1

+ (lL − l0)
dlL
dφ2

dφ2

dφ1

]
dφ1

dφ
(31.25)

where
∂lR
∂φ1

=
1

2lR
[−β4 cos (φ1 − φc)] ,

dlL
dφ2

dφ2

dφ1

=
1

2lL
[β4 cos (φ1 − φc)] .

(31.26)



626 31. MODELS FOR TILTING BODY VEHICLES

Because it has been assumed that d = 0, the above mentioned equations
may be simplified, obtaining

∂Um

∂φ
= Kl2r1l0 cos (φ1 − φc)

∂φ1

∂φ
×

×
√

β1 + β4 sin (φ1 − φc) −
√

β1 − β4 sin (φ1 − φc)√
β2

1 − β2
4 sin2 (φ1 − φc)

.
(31.27)

As expected, if φ1 = φc the moment due to the springs vanishes, i.e.,

∂Um

∂φ
= 0 .

If the configuration is changed by a small angle about this equilibrium po-
sition, i.e. if

φ1 = φc + Δφ1 ,

the rolling moment is

∂Um

∂φ
= Kl2r1l0

∂φ1

∂φ

√
β1 + β4Δφ1 −

√
β1 − β4Δφ1

β1

(31.28)

and then
∂Um

∂φ
= 2K

l22r
2
1

l22 + r2
1

d2
1 + l21 + 2d1l1 cos (φ1)

l21 + d1l1 cos (φ1)
Δφ1. (31.29)

The rolling moment is proportional to angle Δφ1 and thus to the roll angle
φ about the reference position. The rolling stiffness of the suspension is then

Kφ =
1
φ

∂Um

∂φ
=

1
Δφ1

∂φ1

∂φ

∂Um

∂φ
, (31.30)

i.e.,

Kφ = 2K
l22r

2
1

l22 + r2
1

(
d2
1 + l21 + 2d1l1 cos (φ1)

l21 + d1l1 cos (φ1)

)2

. (31.31)

If d1 is also equal to zero,
∂φ1

∂φ
= 1

and the vehicle tilts, when there is no rolling moment, until an angle equal to φc

has been reached.

Motion in the z direction

If the deformation is symmetrical, i.e. if

dφ1 = dφ2, (31.32)
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it is possible to write
tg (φ + Δφ) = tg (φ) , (31.33)

dΔz = l1dφ1

d1 cos (φ1) + l1
d1 + l1 cos (φ1)

. (31.34)

The derivative dUm/dΔz, i.e. the force in the z direction due to the suspen-
sion springs, is

dUm

dΔz
= K

[
(lR − l0)

dlR
dφ1

+ (lL − l0)
dlL
dφ2

]
dφ1

dΔz
. (31.35)

Remembering that φ1 = −φ2, it follows that

dlL
dφ2

=
1

2lL
[β4 cos (φ1 − φc)] ,

dφ1

dΔz
=

d1 + l1 cos (φ1)
l1d1 cos (φ1) + l21

.

(31.36)

This result may also be simplified, obtaining

∂Um

∂Δz
= Kl2r1l0 cos (φ1 − φc)

∂φ1

∂Δz
×

×
√

β1 + β4 sin (φ1 − φc) −
√

β1 − β4 sin (φ1 − φc)√
β2

1 − β2
4 sin2 (φ1 − φc)

.
(31.37)

Because condition φ1 = φc was assumed to be an equilibrium condition, the
force in the z direction vanishes if φ1 = φc. Operating in the same way as a
rolling condition, assuming that

φ1 = φc + Δφ1 ,

the value of the force in the z direction is obtained:

∂Um

∂Δz
= 2K

l22r
2
1

l22 + r2
1

d1 + l1 cos (φ1)
l1d1 cos (φ1) + l21

Δφ1. (31.38)

The force in the z direction is then proportional to angle Δφ1 and thus to
the displacement Δz. The stiffness of the suspension in the z direction is then

Kz =
1

Δz

∂Um

∂Δz
=

1
Δφ1

∂φ1

∂Δz

∂Um

∂Δz
, (31.39)

i.e.,

Kz = 2K
l22r

2
1

l22 + r2
1

(
d1 + l1 cos (φ1)

l1d1 cos (φ1) + l21

)2

. (31.40)
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FIGURE 31.5. Transversal parallelograms suspension. a): Restoring moment due to
the suspension springs versus the roll angle φ for various values of the control variable
φc. b): Relationship between φ and φc. c): Stiffness for small roll oscillations about the
static equilibrium condition.

Example 31.2 Consider a transversal parallelogram suspension with the following

data: d = 0, d1 = 81.5 mm, r1 = 138 mm, l1 = 414 mm, l2 = 388 mm.

Compute the relationship linking φ to φ1 and plot the restoring moment due to the

suspension springs ∂Um/∂φ versus φ, for various values of φc and the stiffness of the

suspension Kφ versus φc.

The results are reported in Fig. 31.5.

From Fig. 31.5a it is clear that the restoring moment ∂Um/∂φ is linear with the

roll angle φ, while the stiffness depends only slightly on the position about which the

motion occurs (Fig. 31.5c). Also the dependence of φ1 from φ is almost linear, as shown

by Fig. 31.5b. Because d = 0, it follows that in the equilibrium condition φ1 = φc.

31.1.5 Roll damping of the suspension

Consider a damper system made by two shock absorbers located in parallel to
the springs between points A and B and points A′ and B.

The dissipation function of the suspension is then

F =
1
2
c

⎧⎪⎨
⎪⎩
[

d
(
A − B

)
dt

]2

+

⎡
⎣d

(
A′ − B

)
dt

⎤
⎦

2
⎫⎪⎬
⎪⎭ . (31.41)

Remembering that lengths lD =
(
A − B

)
and lL =

(
A’ − B

)
are functions

of φc and φ1, the dissipation function can be computed as

F =
1
2
c

{[(
∂lR
∂φ1

∂φ1

∂φ
φ̇ +

∂lR
∂φc

φ̇c

)]2

+
[(

∂lL
∂φ1

∂φ1

∂φ
φ̇ +

∂lL
∂φc

φ̇c

)]2
}

. (31.42)

The previous equation may be written in the form

F =
1
2

(
c11φ̇

2
+ c22φ̇

2

c + 2c12φ̇φ̇c

)
, (31.43)



31.1 Suspensions for high roll angles 629

where

c11 = c

[(
∂lR
∂φ1

)2

+
(

∂lL
∂φ1

)2
](

∂φ1

∂φ

)2

,

c12 = c

(
∂lR
∂φ1

∂φ1

∂φ

∂lR
∂φc

+
∂lL
∂φ1

∂φ1

∂φ

∂lL
∂φc

)
,

c22 = c

[(
∂lR
∂φc

)2

+
(

∂l2
∂φc

)2
]

.

(31.44)

Some of the derivatives are reported in Eq. 31.26; the others are
∂lR
∂φc

= − ∂lL
∂φc

=
1

2lL
[β3 cos (φc) + β4 cos (φ1 − φc)] . (31.45)

With the control locked, i.e. with φ̇c = 0, the damping coefficient of the
suspension coincides with c11.

If
d = 0 ,

it can immediately be derived that

c11 = c22 = −c12 = k
c

K
, (31.46)

where k is the roll stiffness of the suspension, while c and K are the characteristics
of the damper and the spring.

Example 31.3 Compute the rolling damping coefficient of the suspension of the pre-

vious example, with locked controls, as a function of the static equilibrium position.

The result is shown in Fig. 31.6. The linearized characteristics of the suspension

depend little on the position, in terms of damping.

FIGURE 31.6. Damping cefficient of the suspension of the previous example for small
movements about the equilibrium position.
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31.2 LINEARIZED RIGID BODY MODEL

The simplest model for a tilting body vehicle is one with four degrees of freedom.
It may be obtained from the model with 10 degrees of freedom of Fig. 29.3
(Section 29.2.2), locking the degrees of freedom θ and Z of the sprung mass and
the symmetrical motions of the suspensions.

In the case of a two-wheeled vehicle, the kinematics is much simplified be-
cause:

• the mid-plane of the wheels remains parallel to the symmetry plane of the
vehicle (actually coinciding with it);

• the roll axis is on the ground and in a fixed position, at least as a first ap-
proximation, if the effect of the transversal profile of the tires is neglected.

These considerations do not hold in the case of tilting body vehicles with
more than two wheels. The roll axis is determined by the characteristics of the
suspensions or by the position of a true cylindrical hinge: In the first case the
very concept of a roll is inappropriate because of the large roll angles vehicles
of this type can manage. The roll axis is an axis of instantaneous rotation, one
that has no meaning in case of large rotations.

Assume that the suspensions are designed so that the mid-plane of the
wheels remains parallel to the symmetry plane of the vehicle and the roll axis
remains on the ground, at the intersection of the symmetry plane and the ground
plane, as in simplified motorcycle models (See Appendix B).

The roll axis now coincides with the x∗-axis of the x∗y∗z∗ reference frame,
seen in the previous section (Fig. 31.7). In this case the generalized coordinates
for translations are the coordinates XH , YH (coordinate ZH vanishes) of point
H, instead of the coordinates of the center of mass. Point H is on the ground,
on the perpendicular to the roll axis passing through the center of mass G. Such
coordinates are defined in the inertial reference frame OXiYiZi. To simplify the
notation, subscript H will be dropped (X = XH and Y = YH).

FIGURE 31.7. Reference frames for the sprung mass and definition of point H.
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The generalized coordinates for rotations are the yaw angle ψ and the roll
angle φ. As usual, the assumption of small angles (particularly for the sideslip
angle β) allows the component of the velocity vx∗ to be confused with the forward
velocity V . Angular velocities ψ̇ and φ̇ will be considered small quantities as well.

31.2.1 Kinetic and potential energy

Because the pitch rotation is not included in the model, the roll axis is horizontal.
The rotation matrix allowing us to change from the body-fixed frame Gxyz to
the inertial frame XiYiZi is

R = R1R2 , (31.47)

where

R1 =

⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ , R2 =

⎡
⎣ 1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤
⎦ .

The derivative of the rotation matrix is

Ṙ = Ṙ1R2 + R1Ṙ2 . (31.48)

The components of the angular velocity in the direction of the body-fixed
axes are linked with the derivatives of the coordinates by the equation

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎡
⎣ 1 0

0 sin(φ)
0 cos(φ)

⎤
⎦
{

φ̇

ψ̇

}
. (31.49)

The vector of the generalized coordinates is

q =
[

X Y φ ψ
]T . (31.50)

The generalized velocities for translational degrees of freedom are the com-
ponents of the velocity in the x∗y∗z∗ frame. The derivatives of coordinates φ and
ψ, that will be referred to as vφ and vψ, will be used for the rotational degrees
of freedom. The generalized velocities are then

w =
[

vx vy vφ vψ

]T . (31.51)

The relationship between generalized velocities and derivatives of the gen-
eralized coordinates may be written in the usual form

w = AT q̇ , (31.52)
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where matrix A2 is

A =

⎡
⎢⎢⎣

cos(ψ) − sin(ψ) 0 0
sin(ψ) cos(ψ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (31.53)

Because in this case A is a rotation matrix, the inverse transformation is

q̇ = Bw = Aw .

The vector defining the position of the center of the sprung mass GS with
respect to point H is, in the body-fixed frame,

r1 = h
[

0 0 1
]T . (31.54)

In the inertial frame the position of the same point is

(GS−O’) = (H − O’) + Rr1. (31.55)

Because r1 is constant, the velocity of point GS is

VGS =
[

Ẋ Ẏ 0
]T

+ Ṙr1 , (31.56)

i.e.
VGS = R1V + Ṙr1 , (31.57)

and then the translational kinetic energy of the sprung mass is

Tt =
1
2
m

(
VT V + r1T ṘT Ṙr1+2VT RT

1 Ṙr1
)

. (31.58)

Because plane xz is a symmetry plane for the sprung mass, its inertia tensor
is

J =

⎡
⎣ Jx 0 −Jxz

0 Jy 0
−Jxz 0 Jz

⎤
⎦ . (31.59)

The rotational kinetic energy of the sprung mass is then

Tr =
1
2
ΩT JΩ . (31.60)

By performing the relevant computations, expressing the components of the
angular velocity as functions of the derivatives of the coordinates and neglecting
the terms containing powers of small quantities higher than the second, it follows
that

2Matrix A here defined must not be confused with the dynamic matrix in the state space,
which is also usually referred to as A.
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T = 1
2m

(
v2

x + v2
y

)
+ 1

2J∗
x φ̇

2
+ 1

2

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̇

2

−Jxz cos (φ) ψ̇ φ̇ + mvx hψ̇ sin (φ) − mvyhφ̇ cos (φ) ,
(31.61)

where
J∗

x=mh2 + Jx , J∗
y = mh2 + Jy .

The height of the center of mass of the sprung mass on the ground is

ZG = h cos (φ) , (31.62)

and then the gravitational potential energy of the vehicle is

Ug = mgh cos (φ) . (31.63)

The potential energy reduces to its gravitational components in the case of
a two-wheeled vehicle. In vehicles with three or more wheels with suspensions,
the elastic potential energy due to the springs must also be accounted for. In
the following study the elastic potential energy will be assumed to depend only
on the roll angle; however, it is not a simple quadratic function as in the case of
linearized models, because the roll angle may be large. In general, it is possible
to state that

Us = Us (φ) . (31.64)

If the vehicle has suspensions for the roll motion and the latter are provided
with dampers, a dissipative function may be defined,

F = F
(
φ, φ̇

)
. (31.65)

It must be expressly stated that the equations above were obtained without
resorting to the assumption that all variables of motion, with the exception of
the roll angle φ, are small quantities. Moreover, these equations are more general
and hold even if the roll axis does not lie on the ground or is exactly horizontal,
provided that the angle between the roll axis and the ground plane (referred to
as θ0 in the previous chapters) is a small angle and that h is the distance between
the center of mass and the roll axis instead of its height on the ground.

31.2.2 Rotation of the wheels

Because it has been assumed that, as in the case of vehicles with two wheels (see
Appendix B), the rotation axis of the wheels is perpendicular to the symmetry
plane, the absolute angular velocity of the ith wheel expressed in the reference
frame of the sprung mass is

Ωi =

⎧⎨
⎩

Ωx

Ωy + χ̇i

Ωz

⎫⎬
⎭ , (31.66)

where χi is the rotation angle of the wheel.
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If the wheel steers, the reference frame of the ith wheel will be rotated
by a steering angle δi about an axis, the kingpin axis, that in general is not
perpendicular to the ground. If ek is the unit vector of the kingpin axis (its
components will be indicated as xk, yk and zk)3, the rotation matrix Rki to
rotate the reference frame fixed to the sprung mass in such a way that its z axis
coincides with the kingpin axis of the ith wheel is

Rki =
1√

x2
k + z2

k

⎡
⎣ zk −xkyk xk

√
x2

k + z2
k

0
(
x2

k + z2
k

)
yk

√
x2

k + z2
k

−xk −zkyk zk

√
x2

k + z2
k

⎤
⎦ . (31.67)

The caster and the inclination angles of the kingpin are usually small in
suspensions for two-wheeled axles and, as seen in the previous sections, rotation
matrix Rki reduces to

Rki ≈

⎡
⎣ 1 0 xk

0 1 yk

−xk −yk 1

⎤
⎦ , (31.68)

where xk and yk are the caster and the inclination angles (the latter changed in
sign) of the kingpin axis. For symmetry reasons

xkD
= xkS

, ykD
= −ykS

. (31.69)

In motorcycles yk is zero, while the caster angle xk may be large. In the
following parts of this section this possibility will not be considered.

A further rotation matrix

R4i =

⎡
⎣ cos(δi) − sin(δi) 0

sin(δi) cos(δi) 0
0 0 1

⎤
⎦ (31.70)

can be defined for the rotation of the wheel about the kingpin axis.
The angular velocity of the wheel in the reference frame of the sprung mass

is then
Ωwi = Ω+δ̇iRkie3 + χ̇iRkiR4iRT

kie2 . (31.71)

Eq. (31.71) must be premultiplied by (RkiR4iRT
ki)

T to obtain the angular
velocity of the wheel in its own reference frame. Remembering that R4ie3 = e3,
it follows that

Ωwi = χ̇ie2 + δ̇iα1 + α2Ω , (31.72)

where
α1 = Rkie3 , α2 = RkiRT

4iR
T
ki . (31.73)

3Obviously
√

x2
k + y2

k + z2
k = 1.
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Because the wheel is a gyroscopic body (two of its principal moments of
inertia are equal) with a principal axis of inertia coinciding with its rotation
axis, its inertia matrix is diagonal and has the form

Jwi = diag
([

Jti Jpi Jti

])
, (31.74)

where Jpi is the polar moment of inertia and Jti is the transversal moment of
inertia of the ith wheel.

The rotational kinetic energy of the ith wheel is

Twri = 1
2Ω

T αT
2 Jwiα2Ω + 1

2 χ̇2
i e

T
2 Jwie2 + 1

2 δ̇
2

i α
T
1 Jwiα1+

+χ̇iδ̇ieT
2 Jwiα1 + χ̇ie

T
2 Jwiα2Ω + δ̇iα

T
1 Jwiα2Ω .

(31.75)

By performing the relevant computations and assuming that all variables of
motion, except for φ and χi, are small, it follows that

Twri = 1
2Jtiφ̇

2
+ 1

2

[
Jpi sin2 (φ) + Jti cos2 (φ)

]
ψ̇

2
+ 1

2Jpiχ̇
2
i +

+ 1
2 δ̇

2

i Jti − Jpiδiφ̇χ̇i + Jpi ykiχ̇iδ̇i + Jpi sin (φ) ψ̇χ̇i + Jti cos (φ) ψ̇δ̇i .
(31.76)

The first two terms express the rotational kinetic energy of the wheel due
to angular velocity of the vehicle and thus have already been included in the
expression of the kinetic energy of the vehicle, if the moments of inertia of the
wheels have been taken into account when computing the total inertia.

31.2.3 Lagrangian function

The Lagrangian function of the vehicle is then

L = 1
2m

(
v2

x + v2
y

)
+ 1

2J∗
x φ̇

2
+ 1

2

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̇

2
+

−Jxz cos (φ) ψ̇ φ̇ + mvx hψ̇ sin (φ) − mvyhφ̇ cos (φ) +
+
∑

∀i

[
1
2Jpiχ̇

2
i + 1

2 δ̇
2

i Jti − Jpiδiφ̇χ̇i + Jpi ykiχ̇iδ̇i+

+Jpi sin (φ) ψ̇χ̇i + Jti cos (φ) ψ̇δ̇i

]
− mgh cos (φ) − Us (φ) .

(31.77)

If the longitudinal slip of the wheels is neglected, their angular velocity is

χ̇i =
V

Rei

. (31.78)

In a way similar to our treatment of the four-wheeled vehicle, the kinetic
energy linked with the steering velocity δ̇ may be neglected in the locked control
motion. The Lagrangian reduces to

L = 1
2matV

2 + 1
2mv2

y + 1
2J∗

x φ̇
2

+ 1
2

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̇

2
+

−Jxz cos (φ) ψ̇ φ̇ + V Jsψ̇ sin (φ) − mvyhφ̇ cos (φ) +
−V

∑
∀i

Jpi

Rei
δiφ̇ − mgh cos (φ) − Us (φ) ,

(31.79)
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where

mat = m +
∑
∀i

Jpi

R2
ei

, Js = mh +
∑
∀i

Jpi

Rei

,

J∗
x = mh2 + Jx , J∗

y = mh2 + Jy .

The derivatives of the Lagrangian function are then

∂L
∂V

= matV + Jsψ̇ sin (φ) , (31.80)

∂L
∂vy

= mvy − mhφ̇ cos (φ) , (31.81)

∂L
∂φ̇

= J∗
x φ̇ − Jxz cos (φ) ψ̇ − mvyh cos (φ) − V

∑
∀i

Jpi

Rei

δi , (31.82)

∂L
∂ψ̇

=
[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̇ − Jxz cos (φ) φ̇ + V Jsh sin (φ) . (31.83)

The derivative with respect to time of the derivatives with respect to the
generalized velocities contains products that are themselves the products of two
or more small quantities, and thus must be neglected in the linearization process.
Also V̇ may be considered as a small quantity, and then terms containing, for
instance, product V̇ δ may be neglected. It then follows that

d

dt

(
∂L
∂V

)
= matV̇ + Jsψ̈ sin (φ) , (31.84)

d

dt

(
∂L
∂vy

)
= mv̇y − mhφ̈ cos (φ) , (31.85)

d

dt

(
∂L
∂φ̇

)
= J∗

x φ̈ − Jxz cos (φ) ψ̈ − mv̇yh cos (φ) , (31.86)

d

dt

(
∂L
∂ψ̇

)
=

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̈ − Jxz cos (φ) φ̈+

+JsV̇ sin (φ) + JsV cos (φ) φ̇ ,

(31.87)

∂L
∂x∗ =

∂L
∂y∗ =

∂L
∂ψ

= 0 , (31.88)

∂L
∂φ

= JsV ψ̇ cos (φ) + mgh sin (φ) − ∂Us (φ)
∂φ

. (31.89)
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31.2.4 Kinematic equations

Matrix A is what we have already seen for the model with 10 degrees of freedom,
except that the last six rows and columns are not present here.

The equation of motion in the configuration space is

∂

∂t

({
∂L
∂w

})
+ BTΓ

{
∂L
∂w

}
− BT

{
∂L
∂q

}
+

{
∂F
∂w

}
= BT Q . (31.90)

The column matrix BT Q containing the four components of the generalized
forces vector will be computed later, when the virtual work of the forces acting
on the system is described. In the following its elements will be written as Qx,
Qy, Qφ, Qψ.

As usual, the most difficult part is writing matrix BTΓ. By performing
somewhat complex computations, following the procedure outlined in Appendix
A, it follows that

BTΓ =

⎡
⎢⎢⎣

⎡
⎢⎢⎣

0 −ψ̇

ψ̇ 0
0 0

−vy vx

⎤
⎥⎥⎦ 04×2

⎤
⎥⎥⎦ .

By introducing the values of the derivatives and linearizing, it follows that

BT Γ
{

∂L
∂w

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
matV ψ̇

0
V

[
−mhφ̇ cos (φ) − vy

∑
∀k

(
Jpr

1
R2

e

)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (31.91)

Finally

BT

{
∂L
∂q

}
=

{
∂L
∂q

}
. (31.92)

31.2.5 Equations of motion

First equation: longitudinal translation

matV̇ + Jsψ̈ sin (φ) = Qx . (31.93)

Second equation: lateral translation

mv̇y + matV ψ̇ − mhφ̈ cos (φ) = Qy . (31.94)
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Third equation: roll rotation

J∗
x φ̈ − Jxz cos (φ) ψ̈ − mv̇yh cos (φ) − JsV ψ̇ cos (φ) +

−mgh sin (φ) + ∂Us(φ)
∂φ +

∂F(φ,φ̇)
∂φ̇

= Qφ .
(31.95)

Fourth equation: yaw rotation

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̈ − Jxz cos (φ) φ̈+

+JsV̇ sin (φ) + V cos (φ) φ̇
∑

∀i
Jpi

Rei
− V vy

∑
∀k

Jpi

R2
ei

= Qψ .
(31.96)

31.2.6 Sideslip angles of the wheels

The sideslip angles of the wheels may be computed from the components of the
velocities of the centers of the contact areas of the wheels in the x∗y∗z frame.
If the roll axis lies on the ground, some simplifications may be introduced: The
roll angle and the roll velocity do not appear in the expression of the velocity of
the wheel-ground contact points, if the track variations due to roll are neglected.
The expression of the sideslip angle coincides with that seen for the rigid vehicle,
except for the term containing the steering angle. Assuming that the sideslip
angle is small, it follows that

αk =
vy

V
+ ψ̇

xPk

V
− δk cos (φ) − δk (φ) cos (φ) , (31.97)

where subscript k refers to the axle, because the two wheels of the same axle
have the same sideslip angle.

The term cos (φ) multiplying the steering angle is linked to the circumstance
that the steering loses its effectiveness with increasing roll angle, and was com-
puted assuming that the kingpin axis is, when the roll angle vanishes, essentially
perpendicular to the ground. If it is not, the caster and inclination angles had
to be taken into account, together with their variation with the roll angle. The
term δk (φ) is roll steer that, in case of large roll angles, may be too large to be
linearized.

31.2.7 Generalized forces

The generalized forces Qk to be introduced into the equations of motion include
the forces due to the tires, the aerodynamic forces and possible forces applied on
the vehicle by external agents.
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The virtual displacement of the center of the contact area of the left (right)
wheel of the kth axle is

{δsPkL(R)}x∗y∗z =

⎧⎨
⎩

δx∗ − δψyPk

δy∗ + δψxPk

0

⎫⎬
⎭ , (31.98)

where xPk and yPk are the coordinates of the center of the contact area in the
reference frame x∗y∗z∗.

By writing as F ∗
x and F ∗

y the forces exerted by the tire in the direction of
the x∗ and y∗ axes, assuming that the longitudinal forces acting on the wheels
of the same axle are equal, the expression of the virtual work is

δLk = δx∗F ∗
x + δy∗F ∗

y + δψ
[
F ∗

y xPk + Mz

]
. (31.99)

Because of the small steering angle, forces F ∗
x and F ∗

y will be confused in the
following sections with the forces expressed in the reference frame of the wheel.

In a similar way, the virtual displacement of the center of mass for the
computation of the aerodynamic forces is, in the x∗y∗z∗ frame,

{δsGS
}x∗y∗z∗ =

⎧⎨
⎩

δx∗ + h sin (φ) δψ
δy∗ − h cos (φ) δφ

−h sin (φ) δφ

⎫⎬
⎭ . (31.100)

The aerodynamic forces and moments are referred to the xyz frame and not
to the x∗y∗z∗ frame. Force Fza, for example, lies in the symmetry plane of the
vehicle and is not perpendicular to the road. In this way it may be assumed that
aerodynamic forces do not depend on the roll angle φ. A rotation of the reference
frame is then needed:⎧⎨

⎩
F ∗

xa

F ∗
ya

F ∗
za

⎫⎬
⎭ =

⎧⎨
⎩

Fxa

Fya cos (φ) − Fza sin (φ)
Fya sin (φ) + Fza cos (φ)

⎫⎬
⎭ , (31.101)

⎧⎨
⎩

M∗
xa

M∗
ya

M∗
za

⎫⎬
⎭ =

⎧⎨
⎩

Mxa

Mya cos (φ) − Mza sin (φ)
Mya sin (φ) + Mza cos (φ)

⎫⎬
⎭ . (31.102)

The virtual work of the aerodynamic forces and moments is then

δLa = Fxaδx∗ + [Fya cos (φ) − Fza sin (φ)] δy∗+

+ (M ′
xa − Fyah) δφ + [(Fxah + Mya) sin (φ) + Mza cos (φ)] δψ .

(31.103)

It then follows that

Q =

⎧⎪⎪⎨
⎪⎪⎩

∑
∀k Fxk + Fxa∑

∀k Fyk+Fya cos (φ) − Fza sin (φ)
M ′

xa − Fyah∑
∀k

(
F ∗

y xPk + Mz

)
+ (Fxah + Mya) sin (φ) + Mza cos (φ)

⎫⎪⎪⎬
⎪⎪⎭

.

(31.104)
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Because of the linearization of the model, forces Fxa and Fza may be con-
sidered as constant, while Fya, Mxa and Mza may be considered as linear with
angle βa, or if there is no side wind, angle β.

The force Fyk on the kth axle may be considered as a linear function of the
sideslip angle and a more complex function of the camber angle, because the
latter was assumed to coincide with the roll angle φ and is therefore not small.
It then follows that

Fypk = −Ckαk + Fyγk (φ) , (31.105)

where both Ck and Fyγk (φ) are referred to the whole axle.
In the following the camber thrust will be assumed to be linear with the

camber angle, even for large values of the latter, and the side force will be
written as

Fypk = −Ckαk + Cγkφ . (31.106)

This is doubtless an approximated expression, but it must be made if search-
ing for closed form results. Roll steer will also be neglected.

31.2.8 Final form of the equations of motion

First equation: longitudinal translation

matV̇ + Jsψ̈ sin (φ) = Fx1 + Fx2 −
1
2
ρV 2SCx . (31.107)

Second equation: lateral translation

mv̇y + matV ψ̇ − mhφ̈ cos (φ) = [Yv + cos (φ) Yv1] vy + Yψ̇ψ̇+

+Yφφ + cos (φ) Yδδ − 1
2ρV 2SCz sin (φ) + Fye ,

(31.108)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yv = − 1
V

∑
∀k Ck ,

Yv1 = 1
2ρVaS(Cy),β ,

Yψ̇ = − 1
V

∑
∀k xPkCk ,

Yφ =
∑

∀k Cγk ,

Yδ =
∑

∀k K ′
kCk .

(31.109)

Third equation: roll rotation

J∗
x φ̈ − Jxz cos (φ) ψ̈ − mv̇yh cos (φ) − JsV ψ̇ cos (φ) +

−mgh sin (φ) + ∂Us(φ)
∂φ +

∂F(φ,φ̇)
∂φ̇

= Lvvy ,
(31.110)
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where
Lv =

1
2
ρV S [−h(Cy),β + t(CMx

),β ] . (31.111)

Fourth equation: yaw rotation

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̈ − Jxz cos (φ) φ̈+

+JsV̇ sin (φ) + V cos (φ) φ̇
∑

∀i
Jpi

Rei
=

= [Nv + cos (φ) Yv1] vy + Nψ̇ψ̇ + Nφφ + cos (φ) Nδδ+

+ 1
2ρV 2S(−hCx + lCMy

) sin (φ) + Mze ,

(31.112)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nv = 1
V

∑
∀k

[
−xPkCk + (Mzk),α + 2Jpr

(
V
Re

)2
]

,

Nv1 = 1
2ρVaSl(C ′

Mz
),β ,

Nψ̇ = 1
V

∑
∀k

[
−x2

PkCk + xrk
(Mzk

),α

]
,

Nφ =
∑

∀k xrkCγk ,

Nδ =
∑

∀k [xPkK ′
kCk − (Mzk),α] .

(31.113)

31.2.9 Steady-state equilibrium conditions

Consider a vehicle in which control of the roll angle is performed in such a way
that the transversal load vanishes. The condition that must be stated is that the
equilibrium to roll rotations is granted without the suspension exerting any roll
torque.

In steady-state conditions accelerations V̇ , v̇y, φ̈ and ψ̈ and velocity φ̇ vanish,
and the condition in which the suspension exerts no roll torques is

∂Us (φ)
∂φ

=
∂F

(
φ, φ̇

)
∂φ̇

= 0 .

The equilibrium equation to roll becomes

−JsV ψ̇ cos (φ) − mgh sin (φ) = Lvvy . (31.114)

In steady-state, the yaw velocity ψ̇ is linked to the forward velocity V and
to the radius of the path (which is circular) R by the usual relationship

ψ̇ =
V

R
, (31.115)
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and then the equilibrium equation reduces to

−Js
V 2

R
cos (φ) − mgh sin (φ) = Lvvy . (31.116)

By introducing the value of Js into the last equation, it follows that(
mh +

∑
∀i

Jpi

Rei

)
V 2

R
cos (φ) + mgh sin (φ) + Lvvy = 0 . (31.117)

The third term, due to aerodynamic actions, is small when compared with
the others and may, at least initially, be neglected. Eq. (31.117) then allows the
steady-state roll angle to be computed:

φ0 = −artg

[
V 2

Rg

(
1 +

1
mh

∑
∀i

Jpi

Rei

)]
, (31.118)

which coincides with the expression obtained from the simplified ideal steering
model.

31.2.10 Motion about the steady-state equilibrium position

Consider a vehicle working in a condition close to the above computed equilib-
rium condition. The roll angle may be expressed as

φ = φ0 + φ1 ,

where φ1 is a small angle. The trigonometric functions of the roll angle may then
be approximated as

sin (φ0 + φ1) ≈ sin (φ0) + φ1 cos (φ0) ,
cos (φ0 + φ1) ≈ cos (φ0) − φ1 sin (φ0) .

The elastic and damping behavior of the suspension may be linearized about
the equilibrium position, stating

∂Us (φ)
∂φ

= k(φ0)φ1 ,
∂F

(
φ, φ̇

)
∂φ̇

= c(φ0)φ̇1 . (31.119)

Neglecting the term in Lv, the equations of motion become

matV̇ + Jsψ̈ sin (φ0) = Fx1 + Fx2 −
1
2
ρV 2SCx , (31.120)

mv̇y + matV ψ̇ − mhφ̈1 cos (φ0) = Yvvy + Yψ̇ψ̇+

+Yφφ0 + Yφφ1 + cos (φ0) Yv1vy + cos (φ0) Yδδ+

− 1
2ρV 2SCz sin (φ0) − 1

2ρV 2SCzφ1 cos (φ0) + Fye ,

(31.121)
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J∗
x φ̈1 − Jxz cos (φ0) ψ̈ − mv̇yh cos (φ0) +

−mghφ1 cos (φ0) + k(φ0)φ1 + C(φ0)φ̇1 = 0 ,
(31.122)

[
J∗

y sin2 (φ0) + Jz cos2 (φ0)
]
ψ̈ − Jxz cos (φ0) φ̈1 + JsV̇ sin (φ0) +

+V cos (φ0) φ̇1

∑
∀i

Jpi

Rei
= Nvvy + Nψ̇ψ̇ + Nφφ0 + Nφφ1+

+ cos (φ0) Nδδ + Nv1vy cos (φ0) + 1
2ρV 2S(−hCx + lCMy

) sin (φ0) +

+ 1
2ρV 2S(−hCx + lCMy

)φ1 cos (φ0) + Mze .

(31.123)

In a more synthetic way, it is possible to write

Mq̈ + Cq̇ + Kq = F + F1 , (31.124)

where
q1 =

[
x∗ y∗ φ1 ψ

]T ,

M =

⎡
⎢⎢⎣

mat 0 0 Js sin (φ0)
m −mh cos (φ0) 0

J∗
x −Jxz cos (φ0)

symm. J∗
y sin2 (φ0) + Jz cos2 (φ0)

⎤
⎥⎥⎦ ,

C =

⎡
⎢⎢⎣

0 0 0 0
0 −Yv − cos (φ0) Yv1 0 matV − Yψ̇

0 0 c(φ0) 0
0 −Nv − Nv1 cos (φ0) V cos (φ0)

∑
∀i

Jpi

Rei
−Nψ̇

⎤
⎥⎥⎦ ,

K =

⎡
⎢⎢⎣

0 0 0 0
0 0 −Yφ + 1

2ρV SCz cos (φ0) 0
0 0 −mgh cos (φ0) + k(φ0) 0
0 0 1

2ρVaS(−hCx + lCMy
) cos (φ0) − Nφ 0

⎤
⎥⎥⎦ ,

F =

⎧⎪⎪⎨
⎪⎪⎩

Fx1 + Fx2 − 1
2ρV 2SCx

Yφφ0 − 1
2ρV 2SCz sin (φ0)

0
+Nφφ0 + 1

2ρV 2S(−hCx + lCMy
) sin (φ0)

⎫⎪⎪⎬
⎪⎪⎭

,

F1 = δ

⎧⎪⎪⎨
⎪⎪⎩

0
cos (φ0) Yδ

0
cos (φ0) Nδ

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

0
Fye

0
Mze

⎫⎪⎪⎬
⎪⎪⎭

.

As already stated, coordinates x∗, y∗ and ψ are present only in the form of
their derivatives: The order of the differential set of equations is then 5 rather
than 8.

The mass matrix is symmetrical, as could be easily predicted, while the two
other matrices are not.
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31.2.11 Steady-state handling

In steady-state conditions, the first equation reduces to

Fx1 + Fx2 −
1
2
ρV 2SCx = 0 ,

which coincides with the equation seen for the motor vehicle working with small
roll angles.

As expected, the third equation yields simply

φ1 = 0 .

The other two equations reduce to
[ −Yv − cos (φ0) Yv1 matV − Yψ̇

−Nv − Nv1 cos (φ0) −Nψ̇

]{
vy

ψ̇

}
= δ cos (φ0)

{
Yδ

Nδ

}
+ (31.125)

+
{

Yφφ0 − 1
2ρV S2Cz sin (φ0)

+Nφφ0 + 1
2ρV 2S(−hCx + lCMy

) sin (φ0)

}
+

{
Fye

Mze

}
.

Because in steady-state

vy = V β , ψ̇ =
V

R
,

the radius of the trajectory and the sideslip angle may be computed at any
given steering angle. As an alternative, the steering and sideslip angles may be
computed as functions of the radius of the trajectory. In the latter case, it follows
that[

−Yv − cos (φ0) Yv1 −Yδ cos (φ0)
−Nv − Nv1 cos (φ0) −Nδ cos (φ0)

]{
vy

δ

}
= −V

R

{
matV − Yψ̇

−Nψ̇

}
+

(31.126)

+
{

Yφφ0 − 1
2ρV 2SCz sin (φ0)

+Nφφ0 + 1
2ρV 2S(−hCx + lCMy

) sin (φ0)

}
+

{
Fye

Mze

}
.

The model is nonlinear at φ0, making it impossible to compute gains inde-
pendent from the conditions of motion.

It is, at any rate, interesting to write Eq. (31.126) assuming that angle φ0

is small enough to linearize its trigonometric functions and that the gyroscopic
effect of the wheels is negligible. In this case

φ0 = −artg
(

V 2

Rg

)
≈ −V 2

Rg

and, if no external forces and moments act on the vehicle, Eq. (31.126) becomes
[

−Y ∗
v −Yδ

−N∗
v −Nδ

]{
vy

δ

}
=

V

R

{
Yψ̇ − matV

Nψ̇

}
− V 2

Rg

{
Y ∗

φ

N∗
φ

}
, (31.127)
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where

Y ∗
v = Yv + Yv1 , Y ∗

φ = Yφ − 1
2ρV S2Cz ,

N∗
v = Nv + Nv1 , N∗

φ = Nφ + 1
2ρV S2(−hCx + lCMy

) . (31.128)

The path curvature gain is then

1
Rδ

=
1
V

N∗
v Yδ − NδY

∗
v[

Y ∗
v Nψ̇ + N∗

v

(
matV − Yψ̇

)]
+ V

g

[
N∗

v Y ∗
φ − N∗

φY ∗
v

] . (31.129)

The result is identical to that seen for the non-tilting vehicle (Y ∗
v and N∗

v

also coincide with the values computed in Chapter 25) except for the term in
braces at the denominator, containing terms Y ∗

φ and N∗
φ due to the camber

stiffness of the tires, plus some aerodynamic terms. It is interesting to note that
the tilt of the vehicle and thus the camber thrust (because it has been assumed
that γ = φ) affects its behavior even if the roll angle tends to zero.

Remark 31.3 This outcome should be obvious: If the vehicle does not tilt, the
side force is due only to the sideslip of the wheels, while if γ = φ, roll produces
a camber thrust that adds to the sideslip force. If R → ∞, both the components
of the side force tend to zero, but their ratio remains constant.

Example 31.4 Consider a three-wheeled vehicle with two wheels at the front axle,

with the following characteristics:

Geometrical data: l = 1.720 m, a = 0.77 m, h = 576 mm, Re1 = Re2 = 310 mm.

Inertial data: m = 358 kg, Jx = 31 kg m2, Jy = 125 kg m2, Jz = 111 kg m2,

Jxz = 0, Jp1 = Jp2 = 0.18 kg m2.

Aerodynamic data: ρ = 1.29 kg/m3, S = 1 m2, Cx = 0.35, CMy = (CMx),β =

(CMz),β = Cz = 0, (Cy),β = 0.026.

Tire data: f0 = 0.01, K = 4 × 10−6 s2/m2, C1/Fz = C2/Fz = 17.9 1/rad,

(Mz1),α/Fz = (Mz2),α/Fz = 0.21 m/rad, Cγ1/Fz = Cγ2/Fz = −1.1 1/rad.

Compute the steady state roll angle as a function of the ratio between centrifugal

and gravitational accelerations, and the path curvature gain for different values of the

radius of the trajectory.

Steady-state roll angle. The result, computed both by taking gyroscopic moments

into account and neglecting them, is reported in Fig. 31.8.

From the plot it is clear that the gyroscopic effect of the wheels has little influence

in determining the steady-state roll angle and that the conditions of no load shift and

local vertical aligned with the z axis coincide.

Trajectory curvature gain. The results, computed on a trajectory with a radius

tending to infinity, and equal to 1,000, 500, 200, 100 and 50 m are reported in Fig. 31.9,

together with the roll angle on the same radii. The dashed line, labelled φ0 = 0, refers

to a non-tilting vehicle.

The non-tilting vehicle is strongly understeer (traction has not been accounted

for). Tilting allows the vehicle to travel on the curve with smaller sideslip angles of the

wheels. At large radii, the vehicle even becomes oversteer.
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FIGURE 31.8. Steady state roll angle as a function of centrifugal acceleration, com-
puted both by considering the gyrosoping moments of the wheels and neglecting them.

FIGURE 31.9. Path curvature gain 1/Rδ and steady-state roll angle φ0 versus the
speed V on trajectories with different radii.

With decreasing path radius (and then at equal speed with increasing centrifugal

acceleration and roll angle) the vehicle first becomes less oversteer and then increasingly

understeer, the result of the term in cos (φ0) multiplying the steering angle δ. In the

figure the tilt is limited to 45◦, with the curve stopping at a given speed in the case of

a path with small radius.
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31.2.12 Stability about the steady-state condition

Assume that the vehicle is travelling at a constant speed V on a circular trajec-
tory in steady-state conditions characterized by the values vy0,

ψ̇0 =
V

R

and φ0 of the variables of motion and by the corresponding value δ0 of the
steering angle. Assume also that the external forces Fye

and Mze
vanish. The

small perturbations vy1, ψ̇1 and φ1 add to the above mentioned values of the
parameters.

Uncoupling, at least as a first approximation, the first equation dealing with
longitudinal motion, the remaining three equations of motion (31.124) become

mv̇y1 − mh cos (φ0) φ̈1 − [Yv + cos (φ0) Yv1] (vy1 + vy0) +

+
(
matV − Yψ̇

)(
ψ̇1 + ψ̇0

)
+ [Yφ + Yφ1 cos (φ0)] φ1 =

= Yφφ0 − 1
2ρV S2Cz sin (φ0) + cos (φ0) Yδδ0 ,

(31.130)

−mh cos (φ0) v̇y1 + J∗
x φ̈1 − Jxz cos (φ0) ψ̈1+

+c(φ0)φ̇1 + [−mgh cos (φ0) + k(φ0)] φ1 = 0 ,
(31.131)

−Jxz cos (φ0) φ̈1 +
[
J∗

y sin2 (φ0) + Jz cos2 (φ0)
]
ψ̈1+

+ [−Nv − Nv1 cos (φ0)] (vy1 + vy0) + V cos (φ0)
∑

∀i
Jpi

Rei
φ̇1+

−Nψ̇

(
ψ̇1 + ψ̇0

)
− [Nφ1 cos (φ0) + Nφ] φ1 = Nφφ0+

+ 1
2ρV 2S(−hCx + lCMy

) sin (φ0) + cos (φ0) Nδδ0 ,

(31.132)

where

Nφ1 =
1
2
ρV 2S(−hCx + lCMy

) ,

Yφ1 = −1
2
ρV 2SCz .

Because motion takes place about the static equilibrium condition, it is
possible to eliminate the parameters related to the latter by using Equations
(31.125) and (31.124), obtaining

mv̇y1 − mh cos (φ0) φ̈1 − [Yv + cos (φ0) Yv1] vy1+

+
(
matV − Yψ̇

)
ψ̇1 − [Yφ + Yφ1 cos (φ0)] φ1 = 0 ,

(31.133)
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−mh cos (φ0) v̇y1 + J∗
x φ̈1 − Jxz cos (φ0) ψ̈1+

+c(φ0)φ̇1 + [−mgh cos (φ0) + k(φ0)] φ1 = 0 ,
(31.134)

−Jxz cos (φ0) φ̈1 +
[
J∗

y sin2 (φ0) + Jz cos2 (φ0)
]
ψ̈1+

− [Nv + Nv1 cos (φ0)] vy1 + V cos (φ0)
∑

∀i
Jpi

Rei
φ̇1+

−Nψ̇ψ̇1 − [Nφ1 cos (φ0) + Nφ] φ1 = 0 .

(31.135)

The equations may then be written in the state space in the form

A2ż = A1z , (31.136)

where
z =

[
vy vφ vψ φ

]T ,

vφ = φ̇ , vψ = ψ̇ ,

and

A2 =

⎡
⎢⎢⎣

m −mh cos (φ0) 0 0
−mh cos (φ0) J∗

x −Jxz cos (φ0) 0
0 −Jxz cos (φ0) J∗

y sin2 (φ0) + Jz cos2 (φ0) 0
0 0 0 1

⎤
⎥⎥⎦ ,

A1 =

⎡
⎢⎢⎣

Y ∗
v 0 −matV + Yψ̇ Yφ + Yφ1 cos (φ0)
0 −c(φ0) JsV cos (φ0) mgh cos (φ0) − k(φ0)

N∗
v N∗

φ̇
Nψ̇ Nφ1 cos (φ0) + Nφ

0 1 0 0

⎤
⎥⎥⎦ ,

Y ∗
v = Yv + Yv1 cos (φ0) , N∗

v = Nv + Nv1 cos (φ0) ,

N∗
φ̇

= −V cos (φ0)
∑
∀i

Jpi

Rei

.

The dynamic matrix, whose eigenvalues allow the stability to be studied, is
then

A = A−1
2 A1 . (31.137)

Example 31.5 Study the stability of the vehicle of the previous example, assuming

that the stiffness and the damping of the suspension are constant with varying roll angle.

Use the values k = 4.000 Nm/rad and c = 90 Nms/rad.

The real and imaginary parts of the eigenvalues are plotted versus the speed together

with the roots locus for various path curvature radii in Fig. 31.10. As can be seen, the

vehicle is stable in all conditions.
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FIGURE 31.10. Real (a) and imaginary (b) parts of the eigenvalues of the dynamic
matrix versus the speed and (c) roots locus for various path curvature radii (R = 50,
100, 200, 500, 1000 m and R → ∞).

31.3 DYNAMIC TILTING CONTROL

Assume that the vehicle is provided with a tilt control device able to maintain
load shift at a zero value or to keep the local vertical in the symmetry plane. In
the previous section it was shown that in steady state conditions these two goals
almost coincide, at least with the usual values of the gyroscopic moments of the
wheels and of aerodynamic actions (the two curves in Fig. 31.8 are practically
superimposed upon each other).

If it is easy to define the roll angle to satisfy this requirement in steady state
conditions, it is much more difficult to identify a control strategy to do the same
in non-steady state conditions.

Assume that the actuator dynamics may be expressed by the equation

Jaφ̈c + c22φ̇c − c21φ̇s + k22φc − k21φs = Mc , (31.138)

where φs is the rotation angle of the actuator corresponding to roll angle φ when
the spring exerts no force, Ja is the moment of inertia of the actuator, Mc is
the torque it exerts, both reduced to its output shaft, and cij and kij are the
suspension damping coefficients and stiffnesses, which obviously are functions of
φ and φc.

If the error is defined as

e = φ + artg
(

ψ̇
V Js

gmh

)
, (31.139)
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a proportional, integrative and derivative (PID) strategy leads to a moment Mc

equal to

Mc = −Kp

[
φ + artg

(
ψ̇

V Js

gmh

)]
− Kd

(
φ̇ + ψ̈

V Js

gmh

)
+

−Ki

∫ [
φ + artg

(
ψ̇

V Js

gmh

)]
dt .

(31.140)

where Kp, Kd and Ki are the proportional, derivative and integrative gains. The
error for the derivative gain was simplified by conflating the arctangent with its
argument.

Because φs is a known function of φ, it is possible to add the control equation
to those of the vehicle, thus studying the dynamics of the controlled system.

In the following pages it will be assumed for simplicity that d = d1 = 0, and
then φs = φ. In this case c22 = c21 = cφ and k22 = k21 = kφ and the equation of
motion of the controlled actuator becomes

Jaφ̈c + Kdψ̈
V Js

gmh
+ cφφ̇c − (cφ − Kd) φ̇ + Kpartg

(
ψ̇

V Js

gmh

)
+

+kφφc − (kφ − Kp) φ + Ki

∫ [
φ + artg

(
ψ̇

V Js

gmh

)]
dt = 0 .

(31.141)

The equation of motion of the controlled system in the state space may be
written in the form

A2ż = A1z + f , (31.142)

where to the states of the vehicle

V , vy , vφ = φ̇ , vψ = ψ̇ , φ ,

other states must be added, namely φc and its derivative vφc = φ̇c plus a state
linked with the error of the derivative branch of the control

ei =
∫ [

φ + artg
(

ψ̇
V Js

gmh

)]
dt .

The state vector is then

z =
[

V vy vφ vψ vφc φ φc ei

]T .

The other terms included in the state space equation are

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mat 0 0 Js sin (φ) 0 0 0 0
m −mh cos (φ) 0 0 0 0 0

J∗
x −Jxz cos (φ) 0 0 0 0

J∗
z 0 0 0 0

Kd
V Js

gmh Ja 0 0 0
1 0 0

1 0
symm. 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where
J∗

z = J∗
y sin2 (φ) + Jz cos2 (φ) ,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 Y ∗

v 0 −matV + Yψ̇ 0 Yφ 0 0
0 Lv −cφ JsV cos (φ) cφ −kφ kφ 0
0 N∗

v N∗
φ̇

Nψ̇ 0 Nφ 0 0
0 0 (cφ − Kd) Kp

V
g −cφ kφ − Kp −kφ −Ki

0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y ∗
v = Yv + Yv1 cos (φ) , N∗

v = Nv + Nv1 cos (φ) ,

N∗
φ̇

= −V cos (φ)
∑
∀i

Jpi

Rei

,

and

f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx1 + Fx2 − 1
2ρV 2SCx

cos (φ) Yδδ − 1
2ρV 2SCz sin (φ) + F ye

mgh sin (φ)
cos (φ) Nδδ + 1

2ρV 2S(−hCx + lCMy
) sin (φ) + Mze

−Kpatan
(
ψ̇ V Js

gmh

)
0
0

atan
(
ψ̇ V Js

gmh

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Note that matrix A2 is not fully symmetrical owing to the term Kd in
position 5,4.

Example 31.6 Using the vehicle of the previous example, study the response to a

steering step, assuming that the actuator’s moment of inertia, reduced to the output

shaft, is Ja = 0.001 kg/m2. Assume control gains Kp = 60, 000 Nm/rad, Kd = 6, 000

Nms/rad, Ki = 10, 000 Nm/(s rad). The manoeuvre is performed at a speed of 120

km/h and the steering angle δ = 1◦ is given at t = 0.

Because the manoeuvre is performed at constant speed, the first equation may be

considered uncoupled from the others and is therefore not considered.

The results are reported in Fig. 31.11. From the plot it is clear that the vehicle

reaches steady-state conditions in about 1 s. After 2 s the values of φ and φc are

respectively 39.85◦ and 39.98◦, while the steady state value on the same path (R =

136.24 m) is 39.98◦ for both. The values of β (0.175◦) and ψ̇ (0.2447 rad/s) at the end

of the manoeuvre coincide with those computed for steady-state operation.

Because the input is a step, the sideslip angle becomes strongly negative at the

beginning and the center of mass moves to the outside of the curve, because the vehicle
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FIGURE 31.11. Response to a step steering input. Time histories of the roll angle φ
and rotation angle of the actuator φc (a) and of the sideslip angle β and yaw velocity
ψ̇ (b). (c): Path.

starts overturning. The controller immediately reacts with a high value of φc and starts

a correction that prevents the vehicle from rolling over: After several much damped

oscillations, equilibrium is restored.

31.4 HANDLING-COMFORT COUPLING

The dynamics of tilting body vehicles was studied in the previous sections in
terms of handling using a model with four degrees of freedom. However, this
approach can only be considered a rough approximation, because uncoupling
between handling and comfort is no longer applicable when the assumption of
small angles does not hold.

The present section will be devoted to developing a model similar to the
previous, but with two added degrees of freedom linked with comfort: heave and
pitch. It is thus a model with sixdegrees of freedom, still based on the assumption
of rigid tires, that could be extended to nine or 10 degrees of freedom (for vehicles
with three or four wheels respectively) by including the compliance of the tires.

The assumptions that the roll axis remains on the ground during heave
motion and that it remains in the same position shown for the vehicle without
suspension will be made. The displacement of the center of mass of the vehicle,
which will at any rate be considered a small quantity, will occur in the direc-
tion of the z axis of the body-fixed reference frame. Pitch rotation will occur
about the baricentric y axis, which is perpendicular to the symmetry plane in
its undeformed position.
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FIGURE 31.12. Reference frames for the sprung mass and definition of points G, G0

and H.

The roll axis will then display no pitch rotation. The generalized coordinates
for translations of the sprung mass will again be coordinates XH , YH of point H
located on the ground, on the perpendicular to the roll axis passing through the
centre of mass G. The z coordinate (Fig. 31.12), and the yaw ψ, roll φ and then
pitch θ, will be added as generalized coordinates. The three angles will be taken
in this order, with the latter considered as a small angle. Note that although the
order is different from the usual, these are still Tait−Bryan angles.

As usual, the assumption of small angles (particularly for the sideslip angle
β) allows the component vx∗ of the velocity to be conflated with the forward
velocity V . Linear velocities vy and ż and and angular velocities ψ̇, φ̇ and θ̇
will be considered as small quantities too. The small size of displacements z
and θ make the order in which these two displacements (linear and angular) are
performed immaterial.

31.4.1 Kinetic and potential energies

Because pitch rotation was not considered in the definition of the roll axis and
the latter is horizontal, the order of the rotations is now yaw, roll and pitch.
The rotation matrix allowing us to pass from the body-fixed frame Gxyz to the
inertial frame XiYiZi is:

R = R1R2R3 , (31.143)

where to matrices R1 and R2 seen in the previous section, a pitch matrix must
be added

R3 =

⎡
⎣ cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤
⎦ .

The time derivative of the rotation matrix is

Ṙ = Ṙ1R2R3 + R1Ṙ2R3 + R1R2Ṙ3 . (31.144)
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The components of the angular velocity in the body-fixed frame are linked
with the derivatives of the coordinates by the relationship

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎧⎨
⎩

0
θ̇
0

⎫⎬
⎭ + RT

3

⎧⎨
⎩

φ̇
0
0

⎫⎬
⎭ + RT

3 RT
2

⎧⎨
⎩

0
0
ψ̇

⎫⎬
⎭ , (31.145)

and then⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎡
⎣ cos(θ) 0 sin(θ) cos(φ)

0 1 sin(φ)
− sin(θ) 0 cos(θ) cos(φ)

⎤
⎦
⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ . (31.146)

The vector of the generalized coordinates is

q =
[

X Y z φ θ ψ
]T . (31.147)

Let the generalized velocities for translational degrees of freedom be the
components of the velocity vx and vy, referred to frame x∗y∗z∗, plus component
vz in the direction of axis z. The velocities for the rotational degrees of free-
dom are SIMPLY the derivatives of the coordinates φ, θ and ψ. They will be
designated as vφ, vθ and vψ respectively.

The vector of the generalized velocities is then

w =
[

vx vy vz vφ vθ vψ

]T . (31.148)

The relationship between generalized velocities and derivatives of coordi-
nates is the usual one

w = AT q̇ , (31.149)

where matrix A4 is:

A =
[

R1 03×3

03×3 I3×3

]
. (31.150)

Because A is a rotation matrix, the inverse transformation is

q̇ = Bw = Aw .

The vector defining the position of the center of mass of the sprung mass
GS with respect to point H is

r1 = (h + z)
[

0 0 1
]T , (31.151)

and then the absolute position of GS is

(GS−O’) = (H − O’) + Rr1. (31.152)

4Again, matrix A has nothing to do with the dynamic matrix of the system in the
state space, usually referred to as A.
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The velocity of GS may be written as

VGS =
[

Ẋ Ẏ 0
]T

+ Ṙr1 + Rṙ1 , (31.153)

i.e.
VGS = R1V + Ṙr + Rṙ1 . (31.154)

The translational kinetic energy of the sprung mass is then

Tt = 1
2m

(
VT V + r1T ṘT Ṙr1 + ṙT1 RTRṙ1

)
+

+m
(
VT RT

1 Ṙr1 + V
T
RT

1 Rṙ1 + r1TṘTRṙ1
)

.
(31.155)

Because plane xz coincides with the symmetry plane of the sprung mass,
the inertia tensor of the latter is

J =

⎡
⎣ Jx 0 −Jxz

0 Jy 0
−Jxz 0 Jz

⎤
⎦ . (31.156)

The rotational kinetic energy of the sprung mass is

Tr =
1
2
ΩT JΩ . (31.157)

By performing the relevant computations, expressing the angular velocity as
functions of the variables of motion and neglecting all terms containing powers
of small quantities higher than the second, it follows that

T = 1
2m

(
v2

x + v2
y + v2

z

)
+ 1

2J∗
x φ̇

2
+ 1

2

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̇

2
+

−Jxz cos (φ) ψ̇ φ̇ + Jy sin (φ) ψ̇θ̇ + mvx

{
θż + (h + z)

[
θ̇ + ψ̇ sin (φ)

]}
+

+ 1
2J∗

y θ̇
2 − mvy

[
ż sin (φ) + hφ̇ cos (φ)

]
,

(31.158)
where

J∗
x = mh2 + Jx , J∗

y = mh2 + Jy .

Note that in the present model the unsprung mass is neglected, making m
both the total mass of the vehicle and the mass of the body.

It can easily be seen that the expression of the kinetic energy coincides with
the expression obtained for the model with four degrees of freedom (Eq. 31.61),
plus the term

ΔT = 1
2mv2

z + 1
2J∗

y θ̇
2
+Jy sin (φ) ψ̇θ̇+

+mvx

[
θvz + θ̇ (h + z) + zψ̇ sin (φ)

]
− mvy ż sin (φ) .

(31.159)
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The height of the center of mass on the ground is

ZG = (h + z) cos (φ) cos (θ) , (31.160)

and then the gravitational potential energy of the vehicle is, with the usual
approximations due to the smallness of θ,

Ug = mg (h + z) cos (φ)
(

1 − θ2

2

)
. (31.161)

While in the previous model the potential energy due to suspensions was a
function of the roll angle only, here it depends also on the pitch angle and the
vertical displacement. However, it can be assumed that the suspensions are such
that it is possible to keep the two contributions separate:

Us = Us1 (φ) + Us2 (z, θ) . (31.162)

The potential energy is then what was seen in the previous model, plus a
contribution due to the two additional degrees of freedom

ΔU = mgz cos (φ) − mg cos (φ)
θ2

2
+ Us2 (z, θ) . (31.163)

In a similar way, also the dissipation function may be modified by simply
adding the term

ΔF = F2

(
ż, θ̇

)
. (31.164)

Because generalized coordinates z and θ are small quantities, functions Us2

and F2 are those of a linear system. F2 in particular does not depend on z and θ,
but only on their derivatives.

It is possible to assume, at least as a first approximation, that the two added
degrees of freedom have no effect on the kinetic energy of the wheels. In that
case the total Lagrangian function of the system is that of the previous model,
to which the term

ΔL = ΔT −ΔU (31.165)

is added.
The derivatives of the added terms in the Lagrangian function are

∂ΔL
∂V

= mθ̇h ,
∂ΔL
∂vy

= −mvz sin (φ) , (31.166)

∂ΔL
∂vz

= mvz − mvy sin (φ) ,
∂ΔL
∂φ̇

= 0 , (31.167)

∂ΔL
∂θ̇

= J∗
y θ̇+Jy sin (φ) ψ̇ + mvx (h + z) , (31.168)

∂ΔL
∂ψ̇

= Jy sin (φ) θ̇ + mvxz sin (φ) . (31.169)
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Always remembering that no term containing the products of two or more
small quantities may be present in the equations of motion, it follows that

d

dt

(
∂ΔL
∂V

)
= mθ̈h ,

d

dt

(
∂ΔL
∂vy

)
= −mv̇z sin (φ) , (31.170)

d

dt

(
∂ΔL
∂vz

)
= mv̇z − mv̇y sin (φ) ,

d

dt

(
∂ΔL
∂φ̇

)
= 0 , (31.171)

d

dt

(
∂ΔL
∂θ̇

)
= J∗

y θ̈+Jy sin (φ) ψ̈ + mV̇ (h + z) + mV vz , (31.172)

d

dt

(
∂ΔL
∂ψ̇

)
= Jy sin (φ) θ̈ + mV̇ z sin (φ) + mV ż sin (φ) , (31.173)

∂ΔL
∂x∗ =

∂ΔL
∂y∗ =

∂ΔL
∂ψ

= 0 , (31.174)

∂ΔL
∂z

= −mg cos (φ) − ∂Us2 (z, θ)
∂z

, (31.175)

∂ΔL
∂θ

= +mV vz + mgh cos (φ) θ − ∂Us2 (z, θ)
∂θ

, (31.176)

∂ΔL
∂φ

= mgz sin (φ) . (31.177)

31.4.2 Equations of motion

Matrix BTΓ is identical to that of the previous model, apart from the different
number of rows and columns

BTΓ =

⎡
⎢⎢⎣

[
0 −ψ̇

ψ̇ 0

]
02×4

03×2 03×4[
−vy vx

]
01×4

⎤
⎥⎥⎦ .

Matrix BTΓ
{

∂L
∂w

}
is the same too, except for a term that must be intro-

duced in the last equation that may be written as

BTΓ
{

∂ΔL
∂w

}
=

{
05×1

−mV vz sin (φ)

}
. (31.178)

By adding the relevant terms, the following equations may be obtained:

First equation: Longitudinal translation

matV̇ + mθ̈h + Jsψ̈ sin (φ) = Qx . (31.179)
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Second equation: Lateral translation

mv̇y + matV ψ̇ − mv̇z sin (φ) + mvzφ̇ cos (φ) − mhφ̈ cos (φ) = Qy . (31.180)

Third equation: Translation in the z direction

mv̇z − mv̇y sin (φ) + mg cos (φ) +
∂F2

(
ż, θ̇

)
∂ż

+
∂Us2 (z, θ)

∂z
= Qz . (31.181)

Fourth equation: Roll rotation

J∗
x φ̈ − Jxz cos (φ) ψ̈ − mv̇yh cos (φ) − JsV ψ̇ cos (φ) +

−mgh sin (φ) − mgz sin (φ) +
∂Us (φ)

∂φ
+

∂F
(
φ, φ̇

)
∂φ̇

= Qφ .

(31.182)

Fifth equation: Pitch rotation

J∗
y θ̈ + Jy sin (φ) ψ̈ + mV̇ (h + z) − mgh cos (φ) θ+

+
∂F2

(
ż, θ̇

)
∂θ̇

+
∂Us2 (z, θ)

∂θ
= Qθ .

(31.183)

Sixth equation: Yaw rotation

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̈ − Jxz cos (φ) φ̈ + Jy sin (φ) θ̈ + mV̇ z sin (φ) +

+JsV̇ sin (φ) + V cos (φ) φ̇
∑
∀i

Jpi

Rei

− V vy

∑
∀i

Jpi

R2
ei

= Qψ .

(31.184)

31.4.3 Final form of the equations of motion

The sideslip angles of the wheels and the generalized forces due to tires are
identical to those seen in the previous model.

The aerodynamic forces and moments are referred to the xyz frame: Because
the two added degrees of freedom cause a virtual displacement of the center of
mass in the z direction equal to δz, a virtual rotation δθ about the y axis and an
additional displacement proportional to δθ in the x direction, the virtual work
of aerodynamic forces and moments is
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δLa = Fxaδx∗ + [Fya cos (φ) − Fza sin (φ)] δy∗ + Fzaδz + (Fxah + Mya) δθ∗+

+ (M ′
xa − Fyah) δφ + [(Fxah + Mya) sin (φ) + Mza cos (φ)] δψ .

(31.185)
In the following equations the generalized aerodynamic forces included in

Qz and Qθ will be assumed to be constant.

First equation: Longitudinal translation

matV̇ + +mθ̈h + Jsψ̈ sin (φ) = Fx1 + Fx2 −
1
2
ρV 2SCx . (31.186)

Second equation: Lateral translation

mv̇y + matV ψ̇ − mv̇z sin (φ) + mvzφ̇ cos (φ) − mhφ̈ cos (φ) =

= [Yv + cos (φ) Yv1] vy + Yψ̇ψ̇ + Yφφ + cos (φ) Yδδ − 1
2ρV 2SCz sin (φ) + Fye ,

(31.187)
where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yv = − 1
V

∑
∀k Ck ,

Yv1 = 1
2ρVaS(Cy),β ,

Yψ̇ = − 1
V

∑
∀k xPkCk ,

Yφ =
∑

∀k Cγk ,

Yδ =
∑

∀k K ′
kCk .

(31.188)

Third equation: Translation in the z direction

mv̇z−mv̇y sin (φ)+mg cos (φ)+
∂F2

(
ż, θ̇

)
∂ż

+
∂Us2 (z, θ)

∂z
=

1
2
ρV 2SCz . (31.189)

Fourth equation: Roll rotation

J∗
x φ̈ − Jxz cos (φ) ψ̈ − mv̇yh cos (φ) − JsV ψ̇ cos (φ) +

−mgh sin (φ) − mgz sin (φ) +
∂Us (φ)

∂φ
+

∂F
(
φ, φ̇

)
∂φ̇

= Lvvy ,

(31.190)

where
Lv =

1
2
ρV S [−h(Cy),β + t(CMx

),β ] . (31.191)
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Fifth equation: Pitch rotation

J∗
y θ̈ + Jy sin (φ) ψ̈ + mV̇ (h + z) − mgh cos (φ) θ+

+
∂F2

(
ż, θ̇

)
∂θ̇

+
∂Us2 (z, θ)

∂θ
=

1
2
ρV 2S (hCz + lCMy) .

(31.192)

Sixth equation: Yaw rotation

[
J∗

y sin2 (φ) + Jz cos2 (φ)
]
ψ̈ − Jxz cos (φ) φ̈ + Jy sin (φ) θ̈+

+mV̇ z sin (φ) + JsV̇ sin (φ) + V cos (φ) φ̇
∑
∀i

Jpi

Rei

=

= [Nv + cos (φ) Yv1] vy + Nψ̇ψ̇ + Nφφ + cos (φ) Nδδ+

+ 1
2ρV 2S(−hCx + lCMy

) sin (φ) + Mze ,

(31.193)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nv = 1
V

∑
∀k

[
−xPkCk + (Mzk),α + 2Jpr

(
V
Re

)2
]

,

Nv1 = 1
2ρVaSl(C ′

Mz
),β ,

Nψ̇ = 1
V

∑
∀k

[
−x2

PkCk + xrk
(Mzk

),α

]
,

Nφ =
∑

∀k xrkCγk ,

Nδ =
∑

∀k [xPkK ′
kCk − (Mzk),α] .

(31.194)

31.4.4 Motion about the steady-state equilibrium configuration

Proceeding as in the previous model, a value for the roll angle in steady-state
conditions that coincides with that already computed is obtained. If the expres-
sions so obtained are directly compared, they appear different, because in the
present case there is a term

mgz sin (φ)

that was not present in the earlier model. However, this term has the same order
of magnitude of the term

mzV ψ̇ cos (φ) ,
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which was neglected, because it contained the product of two small quantities (z
and ψ̇) (actually, if the roll angle is less than 45◦ this product is even smaller).
The problem lies in the fact that once angle φ is no longer considered as a
small quantity, to consider other variables as such is no longer correct, leading
to problems that cannot be solved within the frame of models of this kind. The
only solution is to neglect the term mgz sin (φ) as well.

Assuming that the coordinates are expressed as the sum of a steady state
contribution (subscript 0) plus a contribution that varies in time (subscript 1),
the equations of motion may be written as

matV̇ + +mθ̈1h + Jsψ̈1 sin (φ0) = Fx1 + Fx2 −
1
2
ρV 2SCx , (31.195)

mv̇y1 + matV ψ̇1 + matV ψ̇0 − mv̇z1 sin (φ0) − mhφ̈1 cos (φ0) =

= [Yv + cos (φ0) Yv1] (vy0 + vy1) + Yψ̇

(
ψ̇0 + ψ̇1

)
+ Yφ (φ0 + φ1) +

+ cos (φ0) Yδ (δ0 + δ1) − 1
2ρV 2SCz sin (φ0) − 1

2ρV 2SCzφ1 cos (φ0) + Fye ,
(31.196)

mv̇z1 − mv̇y1 sin (φ0) + mg cos (φ0) − mgφ1 sin (φ0) +
∂F2

(
ż1, θ̇1

)
∂ż

+

+
∂Us2 (z0 + z1, θ0 + θ1)

∂z
=

1
2
ρV 2SCz ,

(31.197)

J∗
x φ̈1 − Jxz cos (φ0) ψ̈1 − mv̇y1h cos (φ0) − JsV ψ̇1 cos (φ0) +

−JsV ψ̇0 cos (φ0) − mgh sin (φ0) − mghφ1 cos (φ0) − mgz1 sin (φ0) +

+
∂Us (φ)

∂φ
+

∂F
(
φ, φ̇

)
∂φ̇

= Lv (vy0 + vy1) ,

(31.198)

J∗
y θ̈1+Jy sin (φ0) ψ̈1 + mV̇ (h + z0 + z1) − mgh cos (φ0) (θ0 + θ1) +

+
∂F2

(
ż, θ̇

)
∂θ̇

+
∂Us2 (z0 + z1, θ0 + θ1)

∂θ
=

1
2
ρV 2S (hCz + lCMy) ,

(31.199)
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[
J∗

y sin2 (φ0) + Jz cos2 (φ0)
]
ψ̈1 − Jxz cos (φ0) φ̈1 + Jy sin (φ0) θ̈1+

+mV̇ (z0 + z1) sin (φ0)+JsV̇ sin (φ0)+JsV̇ φ1 cos (φ0) + V cos (φ0) φ̇1

∑
∀i

Jpi

Rei
=

= [Nv + cos (φ) Yv1] (vy0 + vy1) + Nψ̇

(
ψ̇0 + ψ̇1

)
+ Nφ (φ0 + φ1) +

+ cos (φ0)Nδ (δ0 + δ1) + 1
2ρV 2S(−hCx + lCMy

) sin (φ0) +

+ 1
2ρV 2S(−hCx + lCMy

)φ1 sin (φ0) + Mze .
(31.200)

Steady-state conditions

Fx1 + Fx2 −
1
2
ρV 2SCx = 0 , (31.201)

matV ψ̇0 = [Yv + cos (φ) Yv1] vy0 + Yψ̇ψ̇0 + Yφφ0+

+ cos (φ0) Yδδ − 1
2ρV 2SCz sin (φ0) + Fye ,

(31.202)

mg cos (φ0) +
∂Us2 (z, θ)

∂z
=

1
2
ρV 2SCz , (31.203)

−JsV ψ̇ cos (φ0) − mgh sin (φ0) = Lvvy0 , (31.204)

−mgh cos (φ0) θ0 +
∂Us2 (z, θ)

∂θ
=

1
2
ρV 2S (hCz + lCMy) , (31.205)

[Nv + cos (φ) Yv1] vy0 + Nψ̇ψ̇0 + Nφφ0 + cos (φ0) Nδδ+

+ 1
2ρV 2S(−hCx + lCMy

) sin (φ0) + Mze = 0 .
(31.206)

The first, second, fourth and sixth equations coincide with those previously
seen, and may be used to compute first the driving forces needed to travel at
speed V , then the roll angle φ0 and vy0 (or, better, the sideslip angle β) and the
yaw velocity ψ̇0 (or better the radius of the path).

Finally, the third and fifth equations allow z0 and θ0 to be computed.

Remark 31.4 The steady-state condition is not influenced by the presence of
suspensions, even if the uncoupling between handling and comfort cannot be man-
aged because the roll angle is not small.

Motion about the steady-state condition

The equation of motion in the state space is

A2ż = A1z , (31.207)
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where:
z =

[
V vy vz vφ vθ vψ z φ θ

]T ,

vz = ż , vφ = φ̇ , vθ = θ̇ , vψ = ψ̇

and

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

mat 0 0 0 mh Jss
0 m −ms −mhc 0 0
0 −ms m 0 0 0
0 −mhc J∗

x 0 −Jxzc
m (h + z0) 0 0 0 J∗

y Jys
Jss 0 0 −Jxzc Jys J∗

y s2 + Jzc
2

⎤
⎥⎥⎥⎥⎥⎥⎦

06×3

I3×6 I3×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 Y ∗

v 0 0 0 m′ 0 Yφ + Yφ1c 0
0 0 −c11 0 −c12 0 −k11 −mgφ1s −k12

0 Lv 0 −cφ 0 JsV c +mgs m′′ 0
0 0 −c12 0 −c22 0 mV̇ − k12 0 −k∗

22

0 N∗
v 0 N∗

φ̇
0 Nψ̇ mV̇ s N∗

φ 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

c = cos (φ0) , s = sin (φ0) , Y ∗
v = Yv + Yv1c , k∗

22 = k22 − mghc ,

m′ = −mat + Yψ̇ , m′′ = mghc − kφ ,

N∗
v = Nv + Nv1c , N∗

φ̇
= −V c

∑
∀i

Jpi

Rei

, N∗
φ = Nφ1c + Nφ − JsV̇ c .

Remark 31.5 As could be predicted, handling and comfort are not uncoupled,
but all coupling terms contain the sine of angle φ0, and thus vanish when the roll
angle is small.

The coupled handling and comfort model can also be used for the study of
the controlled system by adding the equations describing the behavior of the roll
controller.



Appendix A
EQUATIONS OF MOTION
IN THE STATE
AND CONFIGURATION SPACES

A.1 EQUATIONS OF MOTION OF DISCRETE
LINEAR SYSTEMS

A.1.1 Configuration space

Consider a system with a single degree of freedom and assume that the equa-
tion expressing its dynamic equilibrium is a second order ordinary differential
equation (ODE) in the generalized coordinate x. Assume as well that the forces
entering the dynamic equilibrium equation are

• a force depending on acceleration (inertial force),

• a force depending on velocity (damping force),

• a force depending on displacement (restoring force),

• a force, usually applied from outside the system, that depends neither
on coordinate x nor on its derivatives, but is a generic function of time
(external forcing function).

If the dependence of the first three forces on acceleration, velocity and dis-
placement respectively is linear, the system is linear. Moreover, if the constants
of such a linear combination, usually referred to as mass m, damping coefficient
c and stuffiness k do not depend on time, the system is time-invariant. The
dynamic equilibrium equation is then

mẍ + cẋ + kx = f(t) . (A.1)
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If the system has a number n of degrees of freedom, the most general form
for a linear, time invariant set of second order ordinary differential equations is

A1ẍ + A2ẋ + A3x = f(t) , (A.2)

where:

• x is a vector of order n (n is the number of degrees of freedom of the
system) where the generalized coordinates are listed;

• A1, A2 and A3 are matrices, whose order is n× n; they contain the char-
acteristics (independent of time) of the system;

• f is a vector function of time containing the forcing functions acting on the
system.

Matrix A1 is usually symmetrical. The other two matrices in general are
not. They can be written as the sum of a symmetrical and a skew-symmetrical
matrices

Mẍ + (C + G) ẋ + (K + H)x = f(t) , (A.3)

where:

• M, the mass matrix of the system, is a symmetrical matrix of order n× n
(coincides with A1). Usually it is not singular.

• C is the real symmetric viscous damping matrix (the symmetric part of
A2).

• K is the real symmetric stiffness matrix (the symmetric part of A3).

• G is the real skew-symmetric gyroscopic matrix (the skew-symmetric part
of A2).

• H is the real skew-symmetric circulatory matrix (the skew-symmetric part
of A3).

Remark A.1 Actually it is possible to write the set of linear differential Equa-
tions (A.2) in such a way that no matrix is either symmetric or skew symmetric
(it is enough to multiply one of the equations by a constant other than 1). A
better way to say this is that M, C, and K can be reduced to symmetric matrices
by the same linear transformation that reduces G and H into skew-symmetric
matrices.

Remark A.2 The same form of Equation (A.2) may result from mathematical
modeling of physical systems whose equations of motion are obtained by means of
space discretization techniques, such as the well-known finite elements method.
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FIGURE A.1. Sketch of a system with two degrees of freedom (a) made by two masses
and two springs, whose characteristics (b) are linear only in a zone about the equilibrium
position. Three zones can be identified in the configuration space (c): in one the system
behaves linearily, in another the system is nonlinear. The latter zone is surrounded by
a ‘forbidden’ zone.

x is a vector in the sense it is a column matrix. Indeed, any set of n numbers
may be interpreted as a vector in an n-dimensional space. This space contain-
ing vector x is usually referred to as configuration space, because any point in
this space may be associated with a configuration of the system. Actually, not
all points of the configuration space, intended to be an infinite n-dimensional
space, correspond to configurations that are physically possible for the system:
It is then possible to define a subset of possible configurations. Moreover, even
systems that are dealt with using linear equations of motion are linear only for
configurations little displaced from a reference configuration (usually the equilib-
rium configuration) and thus the linear equation (A.2) applies in an even smaller
subset of the configuration space.

A simple system with two degrees of freedom is shown in Fig. A.1a; it consists
of two masses and two springs whose behavior is linear in a zone around the
equilibrium configuration with x1 = x2 = 0, but behave in a nonlinear way to
fail at a certain elongation. In the configuration space, which in the case of a
system with two degrees of freedom has two dimensions and thus is a plane, there
is a linearity zone, surrounded by a zone where the system behaves in nonlinear
way. Around the latter is another zone where the system loses its structural
integrity.

A.1.2 State space

A set of n second order differential equations is a set of order 2n that can be
expressed in the form of a set of 2n first order equations.
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In a way similar to above, a generic linear differential equation with constant
coefficients can be written in the form of a set of first order differential equations

A1ẋ + A2x = f(t) . (A.4)

In system dynamics this set of equations is usually solved in the first deriva-
tives (monic form) and the forcing function is written as the linear combination
of the minimum number of functions expressing the inputs of the system. The
independent variables are said to be state variables and the equation is written
as

ż = Az + Bu , (A.5)

where

• z is a vector of order m, in which the state variables are listed (m is the
number of the state variables);

• A is a matrix of order m × m, independent of time, called the dynamic
matrix ;

• u is a vector function of time, where the inputs acting on the system are
listed (if r is the number of inputs, its size is r × 1);

• B is a matrix independent of time that states how the various inputs act
in the various equations. It is called the input gain matrix and its size is
m × r.

As was seen for vector x, z is also a column matrix that may be considered
as a vector in an m-dimensional space. This space is usually referred to as the
state space, because each point of this space corresponds to a given state of the
system.

Remark A.3 The configuration space is a subspace of the space state.

If Eq. (A.5) derives from Eq. (A.2), a set of n auxiliary variables must be
introduced to transform the system from the configuration to the state space.
Although other choices are possible, the simplest choice is to use the derivatives
of the generalized coordinates (generalized velocities) as auxiliary variables. Half
of the state variables are then the generalized coordinates x, while and the other
half are the generalized velocities ẋ.

If the state variables are ordered with velocities first and then coordinates,
it follows that

z =
{

ẋ
x

}
.

A number n of equations expressing the link between coordinates and ve-
locities must be added to the n equations (A.2). By using symbol v for the
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generalized velocities ẋ, and solving the equations in the derivatives of the state
variables, the set of 2n equations corresponding to Eq. (A.3) is then{

v̇ = −M−1 (C + G)v − M−1 (K + H)x + M−1f(t)
ẋ = v .

(A.6)

Assuming that inputs u coincide with the forcing functions f , matrices A
and B are then linked to M,C, K, G and H by the following relationships

A =
[

−M−1 (C + G) −M−1 (K + H)
I 0

]
, (A.7)

B =
[

M−1

0

]
. (A.8)

The first n out of the m = 2n equations constituting the state equation
(A.5) are the dynamic equilibrium equations. These are usually referred to as
dynamic equations. The other n express the relationship between the position
and the velocity variables. These are usually referred to as kinematic equations.

Often what is more interesting than the state vector z is a given linear
combination of states z and inputs u, usually referred to as the output vector .
The state equation (A.5) is then associated with an output equation

y = Cz + Du , (A.9)

where

• y is a vector where the output variables of the system are listed (if the
number of outputs is s, its size is s × 1);

• C is a matrix of order s × m, independent of time, called the output gain
matrix ;

• D is a matrix independent of time that states how the inputs enter the
linear combination yielding the output of the system. It is called the direct
link matrix and its size is s× r. In many cases the inputs do not enter the
linear combination yielding the outputs, and D is nil.

The four matrices A, B, C and D are usually referred to as the quadruple
of the dynamic system.

Summarizing, the equations that define the dynamic behavior of the system,
from input to output, are {

ż = Az + Bu
y = Cz + Du.

(A.10)

Remark A.4 While the state equations are differential equations, the output
equations are algebraic. The dynamics of the system is then concentrated in the
former.

The input-output relationship described by Eq. (A.10) may be described by
the block diagram shown in Fig. A.2.
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FIGURE A.2. Block diagram corresponding to Eq. (A.10).

A.2 STABILITY OF LINEAR DYNAMIC SYSTEMS

The linearity of a set of equations allows one to state that a solution exists and is
unique. The general solution of the equation of motion is the sum of the general
solution of the homogeneous equation associated with it and a particular solution
of the complete equation. This is true for any differential linear set of equations,
even if it is not time-invariant.

The former is the free response of the system, the latter the response to the
forcing function.

Consider the equation of motion written in the configuration space (A.2).
As already stated, matrix A1 is symmetrical, while the other two may not be.

The homogeneous equation

A1ẍ(t) + A2ẋ(t) + A3x(t) = 0 (A.11)

describes the free motion of the system and allows its stability to be studied.
The solution of Eq. (A.11) may be written as

x(t) = x0 est , (A.12)

where x0 and s are a vector and a scalar, respectively, both complex and constant.
To state the time history of the solution allows the differential equation to be
transformed into an algebraic equation(

A1s
2 + A2s + A3

)
x0 = 0 . (A.13)

This is a set of linear algebraic homogeneous equations, whose coefficients
matrix is a second order lambda matrix 1; it is square and, because the mass
matrix A1 = M is not singular, the lambda matrix is said to be regular.

1The term lambda matrix comes from the habit of using the symbol λ for the coefficient
appearing in the solution q(t) = q0 eλt. Here symbol s has been used instead of λ, following a
more modern habit.
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The equation of motion (A.11) has solutions different from the trivial

x0 = 0 (A.14)

if and only if the determinant of the matrix of the coefficients vanishes:

det
(
A1s

2 + A2s + A3

)
= 0 . (A.15)

Equation (A.15) is the characteristic equation of a generalized eigenproblem.
Its solutions si are the eigenvalues of the system and the corresponding vectors
x0i

are its eigenvectors. The rank of the matrix of the coefficients obtained in
correspondence of each eigenvalue si defines its multiplicity: If the rank is n−αi,
the multiplicity is αi. The eigenvalues are 2n and, correspondingly, there are 2n
eigenvectors.

A.2.1 Conservative natural systems

If the gyroscopic matrix G is not present the system is said to be natural. If the
damping and circulatory matrices C and H also vanish the system is conserva-
tive. A system with G = C = H = 0 (or, as is usually referred to, an MK system)
is then both natural and conservative. The characteristic equation reduces to the
algebraic equation

det
(
Ms2

i + K
)

= 0 . (A.16)

The eigenproblem can be reduced in canonical form

Dxi = μixi, (A.17)

where the dynamic matrix in the configuration space D (not to be confused with
the dynamic matrix in the state space A) is

D = M−1K , (A.18)

and the parameter in which the eigenproblem is written is

μi = −s2
i . (A.19)

Because matrices M and K are positive defined (or, at least, semi-defined), the
n eigenvalues μi are all real and positive (or zero) and then the eigenvalues in
terms of si are 2n imaginary numbers in pairs with opposite sign

(si, si) = ±i
√

μi . (A.20)

The n eigenvectors xi of size n are real vectors.
When the eigenvalue si is imaginary, the solution (A.12) reduces to an un-

damped harmonic oscillation

x(t) = x0 eiωt , (A.21)
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where
ω = is =

√
μ (A.22)

is the (circular) frequency.
The n values of ωi, computed from the eigenvalues μi, are the natural fre-

quencies or eigenfrequencies of the system, usually referred to as ωni
.

If M or K are not positive defined or semidefined, at least one of the eigen-
values μi is negative, making one of the pair of solutions in s real, being made of
a positive and a negative value. As will be seen below, the real negative solution
corresponds to a time history that decays in time in a non-oscillatory way, the
positive solution to a time history that increases in time in an unbounded way.
The system is then unstable.

A.2.2 Natural nonconservative systems

If matrix C does not vanish while G = H = 0, the system is still natural and
non-circulatory, but is no longer conservative.

The characteristic equation (A.15) cannot be reduced to an eigenproblem in
canonical form in the configuration space and the state space formulation must
be used.

The general solution of the homogeneous equation associated with Eq. (A.5)
is of the type

z = z0e
st , (A.23)

where s is generally a complex number. Its real and imaginary parts are usually
indicated with symbols ω and σ

ω = � (s)
σ =  (s) (A.24)

and represent the frequency of the free oscillations and the decay rate. Solution
(A.23) can in fact be written in the form

z = z0e
σteiωt , (A.25)

or, because both σ and ω are real numbers,

z = z0e
σt [cos (ωt) + i sin (ωt)] . (A.26)

By introducing solution (A.23) into the homogeneous equation associated
with Eq. (A.5), the latter transforms from a set of differential equations to a
(homogeneous) set of algebraic equations

sz0= Az0 , (A.27)

i.e.
(A−sI) z0 = 0 . (A.28)
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As seen for the equation of motion in the configuration space, the homoge-
neous equations will have solutions other than the trivial solution z0 = 0 only if
the determinant of the coefficients matrix vanishes

det (A−sI) = 0 . (A.29)

Equation (A.29) can be interpreted as an algebraic equation in s, i.e. the
characteristic equation of the dynamic systems. It is an equation of power 2n,
yielding the 2n values of s. The 2n values of s are the eigenvalues of the system
and the corresponding 2n values of z0 are the eigenvectors. In general, both
eigenvalues and eigenvectors are complex.

If matrix A is real, as is usually the case, the solutions are either real or
complex conjugate. The corresponding time histories are (Fig. A.3):

• Real solutions (ω = 0, σ �= 0): Either exponential time histories, with
monotonic decay of the amplitude if the solution is negative (stable, non-
oscillatory behavior), or exponential time histories, with monotonic in-
crease of the amplitude if the solution is positive (unstable, non-oscillatory
behavior).

• Complex conjugate solutions (ω �= 0, σ �= 0): Oscillating time histories,
expressed by Eq. (A.26) with amplitude decay if the real part of the solution

FIGURE A.3. Time history of the free motion for the various types of the eigenvalues
of the system
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is negative (stable, oscillatory behavior) or amplitude increase in time if
the real part of the solution is positive (unstable, oscillatory behavior). If
the system is stable, stability is asymptotic.

To these two cases, that previously seen for conservative systems may be
added:

• Imaginary solutions (ω �= 0, σ = 0): Harmonic time histories (sine or
cosine waves, undamped oscillatory behavior). In this case stability is non-
asymptotic.

The necessary and sufficient condition for stable behavior is thus that the
real part of all eigenvalues is negative.

If any one of the real parts of the eigenvalues is zero, the behavior is still
stable (because the amplitude does not grow uncontrolled in time) but not as-
ymptotically stable.

If at least one of the real parts of the eigenvalues is positive, the system is
unstable.

If the system is little damped, i.e. the eigenvalues are conjugate and the
decay rates σ are small, the values of the natural frequencies ω are close to those
of the corresponding undamped system, i.e. to those of the MK system obtained
by simply neglecting the damping matrix C. In this case the natural frequencies
ωni

are still those of the corresponding undamped systems.
The general solution of the homogeneous equation is a linear combination

of the 2n solutions

z =
2n∑
i=1

Ciz0ie
sit , (A.30)

where the 2n constants Ci must be obtained from the initial conditions, i.e. from
vector z(0).

The equation allowing constants Ci to be computed can be written as

z(0)=
[

z01 z02 ... z02n

]
⎧⎪⎪⎨
⎪⎪⎩

C1

C2

....
C2n

⎫⎪⎪⎬
⎪⎪⎭

= ΦC , (A.31)

where Φ is the matrix of the complex eigenvectors.
A real and negative eigenvalue corresponds to an overdamped behavior,

which is non-oscillatory, of the relevant mode. If the eigenvalue is complex (with
negative real part) the mode has an underdamped behavior, i.e. has a damped
oscillatory time history. A system with all underdamped modes is said to be
underdamped, while if only one of the modes is overdamped, the system is said
to be overdamped. If all modes are overdamped, the system cannot have free
oscillations, but can oscillate if forced to do so.

It must be noted that if all matrices M, K and C are positive defined (or
at least semidefined), as in the case of a structure with viscous damping with



A.2 Stability of linear dynamic systems 675

positive stiffness and damping, there is no eigenvalue with positive real part and
hence the system is stable. If all matrices are strictly positive defined, there is
no eigenvalue with vanishing real part and the system is asymptotically stable.

A.2.3 Systems with singular mass matrix

If matrix M is singular, it is impossible to write the dynamic matrix in the usual
way. This usually occurs because a vanishingly small inertia is associated with
some degrees of freedom, as for instance in the case of the driveline models shown
in Fig. 30.9, where the tire is modelled as a spring and a damper in series, with
no mass between them. Clearly the problem may be circumvented by associating
a very small mass with the relevant degrees of freedom: A new very high natural
frequency that has no physical meaning is thus introduced and, if this is done
carefully, no numerical instability problem results. However, it makes little sense
to resort to tricks of this kind when it is possible to overcome the problem in a
more correct and essentially simple way.

The degrees of freedom can be subdivided into two sets: A vector x1 con-
taining those with which a non-vanishing inertia is associated, and a vector x2,
containing all others. All matrices and forcing functions may be similarly split
. The mass matrix M22 vanishes, and if the mass matrix is diagonal, M12 and
M21 also vanish.

Assuming that M12 and M21 are zero, the equations of motion become{
M11ẍ1 + C11ẋ1 + C12ẋ2 + K11x1 + K12x2 = f1(t)
C21ẋ1 + C22ẋ2 + K21x1 + K22x2 = f2(t) . (A.32)

To simplify the equations of motion neither the gyroscopic nor the circu-
lator matrices are explicitly written, but in what follows no assumption on the
symmetry of the stiffness and damping matrices will be made. The equations
also hold for gyroscopic and circulatory systems.

By introducing the velocities v1 together with generalized coordinates x1

and x2 as state variables, the state equation is

M∗

⎧⎨
⎩

v1

x1

x2

⎫⎬
⎭ = A∗

⎧⎨
⎩

v1

x1

x2

⎫⎬
⎭ +

⎡
⎣ I 0

0 I
0 0

⎤
⎦
{

f1(t)
f2(t)

}
, (A.33)

where

M∗ =

⎡
⎣ M11 0 C12

0 0 C22

0 I 0

⎤
⎦ , A∗ = −

⎡
⎣ C11 K11 K12

C21 K21 K22

−I 0 0

⎤
⎦ . (A.34)

The dynamic matrix and the input gain matrix are

A = M∗−1A∗ , B = M∗−1

⎡
⎣ I 0

0 I
0 0

⎤
⎦ . (A.35)
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Alternatively, the expressions of M∗ and A∗ can be

M∗ =

⎡
⎣ M11 C11 C12

0 C21 C22

0 I 0

⎤
⎦ , A∗ = −

⎡
⎣ 0 K11 K12

0 K21 K22

−I 0 0

⎤
⎦ . (A.36)

If vector x1 contains n1 elements and x2 contains n2 elements, the size of
the dynamic matrix A is 2n1 + n2.

A.2.4 Conservative gyroscopic systems

If matrix G is not zero, while both C and H vanish, the dynamic matrix reduces
to

A =
[

−M−1G −M−1K
I 0

]
. (A.37)

By premultiplying the first n equations by M and the other n by K, it
follows that

M∗ż + G∗z = 0 , (A.38)

where

M∗=
[

M 0
0 K

]
, G∗=

[
G K
−K 0

]
. (A.39)

The first matrix is symmetrical, while the second is skew symmetrical.
By introducing solutions (A.23) into the equation of motion, the following

homogeneous equation
sM∗z0+G∗z0= 0 (A.40)

is obtained.
The corresponding eigenproblem has imaginary solutions like those of an

MK system, even if the structure of the eigenvectors is different. In any case
the time history of the free oscillations is harmonic and undamped, because the
decay rate σ =  (s) is zero.

A.2.5 General dynamic systems

The situation is similar to that seen for natural non-conservative systems, in the
sense that the time histories of the free oscillations are those seen in Fig. A.3 and
stability is dominated by the sign of the real part of s.

Remark A.5 In general, the presence of a gyroscopic matrix does not reduce
the stability of the system, while the presence of a circulatory matrix has a desta-
bilizing effect.
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Consider, for instance, a two degrees of freedom system made by two inde-
pendent MK system; each with a single degree of freedom, and assume that the
two masses are equal. The equations for free motion are{

mẍ1 + k1x1 = 0
mẍ2 + k2x2 = 0 . (A.41)

Introduce now a coupling term in both equations, introducing for instance
a spring with stiffness k12 between the two masses. The equations of motion
become {

mẍ1 + (k1 + k12) x1 − k12x2 = 0 ,
mẍ2 − k12x1 + (k1 + k12) x2 = 0 . (A.42)

By introducing parameters

ω2
0 =

k1 + k2 + 2k12

2m
, α =

k2 − k1

2mΩ2
0

, ε =
k12

mΩ2
0

, (A.43)

the equation of motion can be written as{
ẍ
ÿ

}
+ ω2

0

[
1 − α ε

ε 1 + α

]{
x
y

}
= 0 . (A.44)

Note that
−1 ≤ α ≤ 1 . (A.45)

The matrix that multiplies the generalized coordinates is symmetrical and is
thus a true stiffness matrix. The coupling is said in this case to be non-circolatory
or conservative. Because there is no damping matrix and the stiffness matrix is
positive defined (−1 ≤ α ≤ 1), the eigenvalues are imaginary and the system is
stable, even if it is not asymptotically stable as it would be if a positive defined
damping matrix were present.

The natural frequencies of the system, made nondimensional by dividing
them by ω0, depend upon two parameters, α and ε. They are shown in Fig. A.4(a)
as functions of α for some values of ε. The distance between the two curves (one
for ω > ω0 and the other for ω < ω0) increases if the coupling term ε increases.
For this reason this type of coupling is said to be repulsive.

Consider now the case with coupling term ε in the form
{

ẍ
ÿ

}
+ Ω2

0

[
1 − α ε
−ε 1 + α

]{
x
y

}
= 0 . (A.46)

The terms outside the main diagonal of the stiffness matrix now have the
same modulus but opposite sign. The matrix multiplying the displacements is
made up of a symmetrical part (the stiffness matrix) and a skew-symmetrical
part (the circulatory matrix). A coupling of this type is said to be circulatory or
non-conservative.

While in the previous case the effect could be caused by the presence of a
spring between the two masses, it cannot be due to springs or similar elements
here. There are situations of practical interest where circulatory coupling occurs.
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FIGURE A.4. Nondimensional natural frequencies as functions of parameters α and ε
for a system with two degrees of freedom with non-circulatory (a) and circulatory (b)
coupling. Decay rate (c) and roots locus (d) for the system with circulatory coupling.

The natural frequencies of the system in this case also depend on the two
parameters α and ε. These are plotted in nondimensional form, by dividing them
by ω0, in Fig. A.4(b) as functions of α for some values of ε. The two curves now
close on each other. Starting from the condition with α = −1, the two curves
meet for a certain value of α in the interval (−1, 0). There is a range, centered
in the point with α = 0, where the solutions of the eigenproblem are complex.
Beyond this range the two curves separate again.

Because the two curves approach each other and finally meet, this type of
coupling is said to be attractive.

In the range where the values of s are complex, one of the two solutions has
a positive real part: It follows that an unstable solution exists, as can be seen
from the decay rate plot in Fig. A.4(c) and from the roots locus in Fig. A.4(d).

Remark A.6 Instability is linked with the skew-symmetric matrix due to cou-
pling, i.e. because of the fact that a circulatory matrix exists.



A.3 Closed form solution of the forced response 679

A.3 CLOSED FORM SOLUTION OF THE FORCED
RESPONSE

The particular solution of the complete equation depends on the time history of
the forcing function (input) u (t). In case of harmonic input

u = u0e
iωt , (A.47)

the response is harmonic as well

z = z0e
iωt , (A.48)

and has the same frequency as the forcing function ω. As usual, by introducing
the time history of the forcing function and the response into the equation of
motion, it transforms into an algebraic equation

(A−iωI) z0 + Bu0 = 0, (A.49)

that allows the amplitude of the response to be computed

z0 = − (A−iωI)−1 Bu0 . (A.50)

If the input is periodic, it may be decomposed in Fourier series and the
response to each of its harmonic components computed. The results are then
added. This is possible only because the system is linear.

If the input is not harmonic or at least periodic, it is possible to resort
to Laplace transforms or the Duhamel integral. These techniques apply only to
linear systems.

Remark A.7 Linear models allow closed form solutions to be obtained and sta-
bility, in particular, to be studied. In linear systems, moreover, stability is a
property of the system and not of its peculiar working conditions.

A.4 NONLINEAR DYNAMIC SYSTEMS

The state equations of dynamic systems are often nonlinear. The reasons for the
presence of nonlinearities may differ, owing to the presence of elements behaving
in an intrinsically nonlinear way (e.g. springs producing a force dependent in a
nonlinear way on the displacement), or the presence of trigonometric functions
of some of the generalized coordinates in the dynamic or kinematic equations.
If inertial forces are linear in the accelerations, the equations of motion can be
written in the form

Mẍ + f1(x, ẋ) = f(t) . (A.51)
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Function f1 may often be considered as the sum of a linear and nonlinear
part. The equation of motion can then be written as

Mẍ + (C + G) ẋ + (K + H)x + f2(x, ẋ) = f(t) , (A.52)

where function f2 contains only the nonlinear part of the dynamic system.
The state equations corresponding to Eq. (A.51) and Eq. (A.52) are

ż = f1(z) + Bu , (A.53)

or, by separating the linear from the nonlinear part,

ż = Az + f2(z) + Bu . (A.54)

Another way to express the equation of motion or the state equation of
a nonlinear system is by writing equations (A.3) or (A.10), where the various
matrices are functions of the generalized coordinates and their derivatives, or of
the state variables. In the state space it follows that

{
ż = A(z)z + B(z)u
y = C(z)z + D(z)u .

(A.55)

If the system is not time-invariant, the various matrices may also be explicit
functions of time {

ż = A(z, t)z + B(z, t)u
y = C(z, t)z + D(z, t)u .

(A.56)

Remark A.8 It is not possible to obtain a closed form solution of nonlinear
systems, and concepts like natural frequency or decay rate lose their meaning. It
is not even possible to distinguish between free and forced behavior, in the sense
that the free oscillations depend upon the zone of the state space where the system
operates.

In some zones of the state space the behavior of the system may be stable,
while in others it may be unstable.

In any case it is often possible to linearize the equations of motion about any
given working conditions, i.e. any given point of the state space, and to use the
linearized model so obtained in that area of the space state to study the motion
of the system and above all its stability. In this case the motion and stability are
studied in the small . It is, however, clear that no general result may be obtained
in this way.

If the state equation is written in the form (A.53), its linearization about a
point of coordinates z0 in the state space is

ż =
(

∂f1
∂z

)
z=z0

z + Bu , (A.57)

where
(

∂f1
∂z

)
z=z0

is the Jacobian matrix of function f1 computed in z0.
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If the formulation (A.55) is used, the linearized dynamics of the system
about point z0 may be studied through the linear equation{

ż = A(z0)z + B(z0)u
y = C(z0)z + D(z0)u .

(A.58)

Remark A.9 While the motion and stability in the small can be studied in
closed form, studying the motion in the large requires resorting to the numerical
integration of the equations of motion, that is, resorting to numerical simulation.

A.5 LAGRANGE EQUATIONS IN THE
CONFIGURATION AND STATE SPACE

In relatively simple systems it is possible to write the equations of motion directly
in the form of Eq. (A.3), by writing all forces, internal and external to the system,
acting on its various parts. However, if the system is complex, and in particular if
the number of degrees of freedom is large, it is expedient to resort to the methods
of analytical mechanics.

One of the simplest approaches to writing the equations of motion of multi-
degrees of freedom systems is by resorting to Lagrange equations. Consider a
generic mechanical system with n degrees of freedom, i.e. one whose configuration
may be expressed using n generalized coordinates xi. Its equations of motion can
in general be written in the form

d

dt

(
∂T
∂ẋi

)
− ∂T

∂xi
+

∂U
∂xi

+
∂F
∂ẋi

= Qi (i = 1,...., n), (A.59)

where:

• T is the kinetic energy of the system. This allows inertial forces to be
written in a synthetic way. In general,

T = T (ẋi, xi, t) .

The kinetic energy is basically a quadratic function of the generalized ve-
locities

T = T0 + T1 + T2 , (A.60)

where T0 does not depend on the velocities, T1 is linear and T2 is quadratic.

In linear systems, the kinetic energy must contain terms of the velocities
and coordinates having no powers higher than 2 or products of more than
two of them. As a consequence, T2 cannot contain displacements

T2 =
1
2

n∑
i=1

n∑
j=1

mijxixj =
1
2
ẋT Mẋ , (A.61)

where the terms mij don’t depend on either x or ẋ. If the system is time-
invariant, M is constant.
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T1 is linear in the velocities, and thus, if the system is linear, cannot contain
terms other than constant or linear in the displacements

T1 =
1
2
ẋT (M1x + f1) , (A.62)

where matrix M1 and vector f1 do not contain the generalized coordinates,
even if f1 may be a function of time even in time-invariant systems.

T0 does not contain generalized velocities but, in the case of linear sys-
tems, only contains terms with power not greater than 2 in the generalized
coordinates:

To =
1
2
xT Mgx + xT f2+e , (A.63)

where matrix Mg, vector f2 and scalar e are constant. Constant e does not
enter the equations of motion. As will be seen later, the structure of To is
similar to that of the potential energy. The term

U − T0

is often referred to as dynamic potential .

• U is the potential energy. It allows conservative forces to be expressed in a
synthetic form. In general,

U = U(xi) .

In linear systems, the potential energy is a quadratic form in the general-
ized coordinates and, apart from a constant term that does not enter the
equations of motion and thus has no importance, can be written as

U =
1
2
xT Kx + xT f0 , (A.64)

By definition the potential energy does not depend on the generalized ve-
locities and its derivatives with respect to the generalized velocities ẋi

vanish. Equation (A.59) is often written with reference to the Lagrangian
function

L = T − U
and becomes

d

dt

[
∂L
∂ẋi

]
− ∂L

∂xi
+

∂F
∂ẋi

= Qi . (A.65)

• F is the Raleigh dissipation function. It allows some types of damping
forces to be expressed in a synthetic form. In many cases F = F(ẋi), but
it may also depend upon the generalized coordinates. In linear systems, the
dissipation function is a quadratic form in the generalized velocities and,
apart from terms not depending upon ẋi that do not enter the equation of
motion and thus have no importance, may be written as

F =
1
2
ẋT Cẋ +

1
2
ẋT (C1x + f3) . (A.66)
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• Qi are generalized forces that cannot be expressed using the above men-
tioned functions. In general, Qi = Qi(q̇i, qi, t). In the case of linear systems,
these forces do not depend on the generalized coordinates and velocities,
and then

Qi = Qi(t) . (A.67)

In linear systems, by performing the relevant derivatives

∂(T − U)
∂ẋi

= Mẋ +
1
2

(M1x + f1) , (A.68)

d

dt

[
∂(T − U)

∂ẋi

]
= Mẍ +

1
2
M1ẋ + ḟ1 , (A.69)

∂(T − U)
∂xi

=
1
2
MT

1 ẋ + Mgx − Kx + f2 − f0 , (A.70)

∂F
∂ẋi

= Cẋ + C1x + f3 , (A.71)

the equation of motion becomes

Mẍ+
1
2

(
M1−MT

1

)
ẋ+Cẋ+(K−Mg + C1)x = −ḟ1 + f2−f3−f0+Q . (A.72)

Matrix M1 is normally skew-symmetric. However, even if it is not, it may
be written as the sum of a symmetrical and a skew-symmetrical part

M1 = M1symm + M1skew . (A.73)

By introducing this form into Eq. (A.72), the term

M1−MT
1

becomes

M1symm + M1skew − M1symm + M1skew = 2M1skew .

Only the skew-symmetric part of M1 is included in the equation of motion.
C1 is usually skew-symmetrical.

Writing M1skew as G and C1 (or at least its skew-symmetric part; if a
symmetric part existed, it could be included into matrix K) as H, and including
vectors f0, ḟ1, f2 and f3 into forcing functions Q, the equation of motion becomes

Mẍ + (C + G) ẋ + (K−Mg + H)x = Q . (A.74)

The mass, stiffness, gyroscopic and circulatory matrices M, K, G and H
have already been defined. The symmetric matrix Mg is often defined as a geo-
metric matrix2.

2Here the symbol Mg is used instead of the more common Kg to emphasize that it comes
from the kinetic energy.
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As already stated, a system in which T1 is not present is said to be natural .
Its equation of motion does not contain a gyroscopic matrix. In many cases T0

also is absent and the kinetic energy is expressed by Eq. (A.61).
The linearized equation of motion of a nonlinear system can be written in

two possible ways. The first is by writing the complete expression of the energies,
performing the derivatives obtaining the complete equations of motion and then
cancelling nonlinear terms.

The second is by reducing the expression of the energies to quadratic forms,
developing their expressions in power series and then truncating them after the
quadratic terms. The linearized equations of motion are then directly obtained.

Remark A.10 These two approaches yield the same result, but the first is usu-
ally more computationally intensive. At any rate, a set of n second order equa-
tions are obtained: These are either linear or nonlinear depending on the system
under study.

To write the state equations, a number n of kinematic equations must be
written

ẋi = vi (i = 1,...., n). (A.75)

If the state vector is defined in the usual way

z =
{

v
x

}
,

this procedure is straightforward.

A.6 HAMILTON EQUATIONS AND PHASE SPACE

If the generalized momenta are used as auxiliary variables instead of the gener-
alized velocities, the equations are written with reference to the phase space and
phase vector instead of the state space and vector.

The generalized momenta are defined, starting from the Lagrangian L, as

p =
∂L
∂ẋi

. (A.76)

If the system is a natural linear system, this definition reduces to the usual
one

p = Mẋ . (A.77)

By including the forces coming from the dissipation function in the gener-
alized forces Qi, the Lagrange equation simplifies as

ṗi=
∂L
∂xi

+ Qi . (A.78)
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A function H(ẋi, xi, t), called the Hamiltonian function, is defined as

H = pT ẋ−L . (A.79)

Because H is a function of pi, xi and t (H(pi, xi, t)), the differential δH is

δH =
n∑

i=1

(
∂H
∂pi

δpi +
∂H
∂xi

δxi

)
. (A.80)

On the other hand, Eq. (A.79) yields

δH =
n∑

i=1

(
piδẋi + ẋiδpi −

∂L
∂xi

δxi −
∂L
∂ẋi

δẋi

)
= (A.81)

=
n∑

i=1

(
ẋiδpi −

∂L
∂xi

δxi

)
,

and then

∂H
∂pi

= ẋi ,
∂H
∂xi

= − ∂L
∂xi

. (A.82)

The 2n phase space equations are then
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋi =
∂H
∂pi

ṗi= − ∂H
∂xi

+ Qi .

(A.83)

A.7 LAGRANGE EQUATIONS IN TERMS
OF PSEUDO COORDINATES

While in vehicle dynamics Hamilton equations are seldom used, the state equa-
tions are often written with reference to generalized velocities that are not simply
the derivatives of the generalized coordinates. In particular, it is often expedient
to use suitable combinations of the derivatives of the coordinates vi = ẋi as
generalized velocities

{wi} = AT {ẋi} , (A.84)

where the coefficients of the linear combinations included into matrix AT may
be constant, but in general are functions of the generalized coordinates.

Equation (A.84) may be inverted, obtaining

{ẋi} = B {wi} , (A.85)
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where
B = A−T (A.86)

and symbol A−T indicates the inverse of the transpose of matrix A.
In some cases matrix AT is a rotation matrix whose inverse coincides with

its transpose. In such cases
B = A−T = A .

However, this generally does not occur and

B �= A .

While vi are the derivatives of the coordinates xi, it is usually not possible
to express wi as the derivatives of suitable coordinates. Eq. (A.84) can be written
in the infinitesimal displacements dxi

{dθi} = AT {dxi} , (A.87)

obtaining a set of infinitesimal displacements dθi, corresponding to velocities wi.
Equations (A.87) can be integrated, yielding displacements θi corresponding to
the velocities wi, only if

∂ajs

∂xk
=

∂aks

∂xj
.

Otherwise equations (A.87) cannot be integrated and velocities wi cannot
be considered as the derivatives of true coordinates. In such cases they are said
to be the derivatives of pseudo-coordinates.

As a first consequence of the non-existence of coordinates corresponding to
velocities wi, Lagrange equation (A.59) cannot be written directly using veloci-
ties wi (which cannot be considered as derivatives of the new coordinates), but
must be modified to allow the use of velocities and coordinates that are not
direct derivatives of each other.

The use of pseudo-coordinates is fairly common, particularly in vehicle dy-
namics. If, for instance, the generalized velocities in a reference frame following
the body in its motion are used in the dynamics of a rigid body, while the coor-
dinates xi are the displacements in an inertial frame, matrix AT is simply the
rotation matrix allowing passage from one reference frame to the other. Matrix
B then coincides with A, but neither is symmetrical. The velocities in the body-
fixed frame cannot therefore be considered as the derivatives of the displacements
in that frame.

Remark A.11 The body-fixed frame rotates continuously so that it is not possi-
ble to integrate the velocities along the body-fixed axes to obtain the displacements
along the same axes. This fact notwithstanding, it is possible to use the compo-
nents of the velocity along the body-fixed axes to write the equations of motion.

The kinetic energy can be written in general in the form

T = T (wi, xi, t) .
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The derivatives ∂T
∂ẋi

included into the equations of motion are

∂T
∂ẋk

=
n∑

i=1

∂T
∂wi

∂wi

∂ẋk
, (A.88)

i.e., in matrix form, {
∂T
∂ẋ

}
= A

{
∂T
∂w

}
, (A.89)

where {
∂T
∂ẋ

}
=

[
∂T
∂ẋ1

∂T
∂ẋ2

...

]T

,

{
∂T
∂w

}
=

[
∂T
∂w1

∂T
∂w2

...

]T

.

By differentiating with respect to time, it follows that

∂

∂t

({
∂T
∂ẋ

})
= A

∂

∂t

({
∂T
∂w

})
+ Ȧ

{
∂T
∂w

}
, (A.90)

The generic element ȧjk of matrix Ȧ is

ȧjk =
n∑

i=1

∂ajk

∂xi
ẋi = ẋT

{
∂ajk

∂x

}
, (A.91)

and then

ȧjk = wT BT

{
∂ajk

∂x

}
. (A.92)

The various ȧjk so computed can be written in matrix form

Ȧ =
[
wT BT

{
∂ajk

∂x

}]
. (A.93)

The computation of the derivatives of the generalized coordinates
{

∂T
∂x

}
is

usually less straightforward. The generic derivative ∂T
∂xk

is

∂T ∗

∂xk
=

∂T
∂xk

+
n∑

i=1

∂T
∂wi

∂wi

∂xk
=

∂T
∂xk

+
n∑

i=1

∂T
∂wi

n∑
j=1

∂aij

∂xk
ẋj , (A.94)

where T ∗ is the kinetic energy expressed as a function of the generalized coor-
dinates and their derivatives (the expression to be introduced into the Lagrange
equation in its usual form), while T is expressed as a function of the generalized
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coordinates and of the velocities in the body-fixed frame. Equation (A.94) can
be written as

∂T ∗

∂xk
=

∂T
∂xk

+ wT BT ∂A
∂xk

{
∂T
∂w

}
, (A.95)

where product wT BT ∂A
∂xk

yields a row matrix with n elements, which multiplied
by the column matrix

{
∂T
∂w

}
yields the required number.

By combining these row matrices, a square matrix is obtained

[
wT BT ∂A

∂xk

]
, (A.96)

and then the column containing the derivatives with respect to the generalized
coordinates is

{
∂T ∗

∂x

}
=

{
∂T
∂x

}
+

[
wT BT ∂A

∂x

]{
∂T
∂w

}
. (A.97)

By definition, the potential energy does not depend on the generalized ve-
locities. Thus the term ∂U

∂xi
is not influenced by the way the generalized velocities

are written. Finally, the derivatives of the dissipation function are

{
∂F
∂ẋ

}
= A

{
∂F
∂w

}
(A.98)

The equation of motion (A.59) is then

A
∂

∂t

({
∂T
∂w

})
+ Γ

{
∂T
∂w

}
−

{
∂T
∂x

}
+

{
∂U
∂x

}
+ A

{
∂F
∂w

}
= Q , (A.99)

where

Γ =
[
wT BT

{
∂ajk

∂x

}]
−
[
wT BT ∂A

∂xk

]
(A.100)

and Q is a vector containing the n generalized forces Qi.
By premultiplying all terms by matrix BT = A−1 and attaching the kine-

matic equations to the dynamic equations, the final form of the state space
equations is obtained

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t

({
∂T
∂w

})
+ BTΓ

{
∂T
∂w

}
− BT

{
∂T
∂x

}
+ BT

{
∂U
∂x

}
+

{
∂F
∂w

}
= BT Q

{q̇i} = B {wi} .
(A.101)



A.8 Motion of a rigid body 689

A.8 MOTION OF A RIGID BODY

A.8.1 Generalized coordinates

Consider a rigid body free in tri-dimensional space. Define an inertial reference
frame OXY Z and a frame Gxyz fixed to the body and centred in its center
of mass. The position of the rigid body is defined once the position of frame
Gxyz is defined with respect to OXY Z, that is, once the transformation leading
OXY Z to coincide with Gxyz is defined. It is well known that the motion of the
second frame can be considered as the sum of a displacement plus a rotation.
The parameters to be defined are therefore 6: 3 components of the displacement,
two of the components of the unit vector defining the rotation axis (the third
component need not be defined and may be computed from the condition that
the unit vector has unit length) and the rotation angle. A rigid body thus has
six degrees of freedom in tri-dimensional space.

There is no problem in defining the generalized coordinates for the transla-
tional degrees of freedom, because the coordinates of the center of mass G in any
inertial reference frame (in particular, in frame OXY Z) are usually the simplest,
and the most obvious, choice. For the other generalized coordinates the choice is
much more complicated. It is possible to resort, for instance, to two coordinates
of a second point and to one of the coordinates of a third point (not on a straight
line through the other two), but this choice is far from being the most expedient.

An obvious way to define the rotation of frame Gxyz with respect to OXY Z
is to directly express the rotation matrix linking the two reference frames. It is
a square matrix of size 3× 3 (in tri-dimensional space) and thus has 9 elements.
Three of these are independent, while the other 6 may be obtained from the first
3 using suitable equations.

Alternatively, the position of the body-fixed frame can be defined with a
sequence of three rotations about the axes. Because rotations are not vectors,
the order in which they are performed must be specified.

Start rotating, for instance, the inertial frame about the X-axis. The second
rotation may be performed about axes Y or Z (obviously in the position they
take after the first rotation), but not about X-axis, because in the latter case
the two rotations would simply add to each other and would amount to a single
rotation. Assume, for instance, that the frame is rotated about the Y -axis. The
third rotation may occur about either the X-axis or the Z-axis (in the new
position, taken after the second rotation), but not about the Y -axis.

The possible rotation sequences are 12, but may be subdivided into two
types: Those like X → Y → X or X → Z → X, where the third rotation occurs
about the same axis as the first, and those like X → Y → Z or X → Z → Y ,
where the third rotation is performed about a different axis.

In the first cases the angles are said to be Euler angles, because they are of
the same type as the angles Euler proposed to study the motion of gyroscopes
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(precession φ about the Z-axis, nutation θ about the X-axis and rotation ψ, again
about the Z-axis). In the second case they are said to be Tait-Bryan angles3.

The possible rotation sequences are reported in the following table

First X Y Z
Second Y Z X Z X Y
Third X Z X Y Y Z Y X Z Y Z X

Type E TB E TB E TB E TB E TB E TB

In the case of vehicle dynamics Euler angles have the drawback of being
indeterminate when plane xy of the rigid body is parallel to THE XY -plane of
the inertial frame. They also yield indications that are less intuitively clear.

In the dynamics of vehicles the most common approach is to use Tait-Bryan
angles of the type Z → Y → X so defined (Fig. A.5):

• Rotate frame XY Z (whose XY plane is parallel to the ground) about the
Z-axis until axis X coincides with the projection of the x-axis on plane
XY (Fig. A.5a). Such a position of the X-axis can be indicated as x∗; the
rotation angle between axes X and x∗ is the yaw angle ψ. The rotation
matrix allowing passage from the x∗y∗Z frame, which will be defined as
the intermediate frame, to the inertial frame XY Z is

R1 =

⎡
⎣ cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ . (A.102)

FIGURE A.5. Definition of angles: yaw ψ (a), pitch θ (b) and roll φ (c).

3Sometimes all sets of three ordered angles are said to be Euler angles. With this wider
definition Tait-Brian angles are also considered as Euler angles.
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• The second rotation is the pitch rotation θ about the y∗-axis, so that axis
x∗ reaches the position of the x-axis (Fig. A.5b). The rotation matrix is

R2 =

⎡
⎣ cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤
⎦ . (A.103)

• The third rotation is the roll rotation φ about the x-axis, so that axes y∗

and z∗ coincide with axes y and z (Fig. A.5c). The rotation matrix is

R3 =

⎡
⎣ 1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤
⎦ . (A.104)

The rotation matrix allowing any vector in the body-fixed frame xyz to be
rotated to the inertial frame XY Z is clearly the product of the three matrices

R = R1R2R3 . (A.105)

Deriving the product of the rotation matrices, it follows that

R=

⎡
⎣ c(ψ)c(θ) c(ψ)s(θ)s(φ) − s(ψ)c(φ) c(ψ)s(θ)c(φ) + s(ψ)s(φ)

s(ψ)c(θ) s(ψ)s(θ)s(φ) + c(ψ)c(φ) s(ψ)s(θ)c(φ) − c(ψ)s(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)

⎤
⎦ ,

(A.106)
where symbols cos and sin have been replaced by c and s.

Roll and pitch angles are sometimes small. In this case it is expedient to
keep the last two rotations separate from the first ones, which cannot usually be
linearized.

The product of the rotation matrices related to the last two rotations is

R2R3. =

⎡
⎣ cos(θ) sin(θ) sin(φ) sin(θ) cos(φ)

0 cos(φ) − sin(φ)
− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)

⎤
⎦ , (A.107)

which becomes, in the case of small angles

R2R3 ≈

⎡
⎣ 1 0 θ

0 1 −φ
−θ φ 1

⎤
⎦ . (A.108)

The angular velocities ψ̇, θ̇ and φ̇ are not applied along the x, y and z axes,
and thus are not the components Ωx, Ωy and Ωz of the angular velocity in the
body-fixed reference frame4. Their directions are those of axes Z, y∗ and x, and
then the angular velocity in the body-fixed frame is

4Symbols p, q and r are often used for the components of the angular velocity in the
body-fixed frame.
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⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ = φ̇ex + θ̇RT

3 ey + ψ̇
[
R2R3

]T
ez , (A.109)

where the unit vectors are obviously

ex =

⎧⎨
⎩

1
0
0

⎫⎬
⎭ , ey =

⎧⎨
⎩

0
1
0

⎫⎬
⎭ , ez =

⎧⎨
⎩

0
0
1

⎫⎬
⎭ . (A.110)

By deriving the products, it follows that
⎧⎨
⎩

Ωx = φ̇ − ψ̇ sin(θ)
Ωy = θ̇ cos(φ) + ψ̇ sin(φ) cos(θ)
Ωz = ψ̇ cos(θ) cos(φ) − θ̇ sin(φ) ,

(A.111)

or, in matrix form
⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎡
⎣ 1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(φ) cos(θ)

⎤
⎦
⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ . (A.112)

If the pitch and roll angles are small enough to linearize the relevant trigono-
metric functions, the components of the angular velocity may be approximated
as ⎧⎨

⎩
Ωx = φ̇ − θψ̇

Ωy = θ̇ + φψ̇

Ωz = ψ̇ − φθ̇ .

(A.113)

Other alternatives sometimes used in vehicle modelling, such as quaternions,
will not be dealt with here.

A.8.2 Equations of motion - Lagrangian approach

Consider a rigid body in tri-dimensional space and chose as generalized coordi-
nates the displacements X, Y and Z of its center of mass and angles ψ, θ and
φ. Assuming that the body axes xyz are principal axes of inertia, the kinetic
energy of the rigid body is

T = 1
2m

(
Ẋ2 + Ẏ 2 + Ż2

)
+ 1

2Jx

[
φ̇ − ψ̇ sin(θ)

]2

+

+ 1
2Jy

[
θ̇ cos(φ) + ψ̇ sin(φ) cos(θ)

]2

+

+ 1
2Jz

[
ψ̇ cos(θ) cos(φ) − θ̇ sin(φ)

]2

.

(A.114)

Introducing the kinetic energy into the Lagrange equations

d

dt

(
∂T
∂q̇i

)
− ∂T

∂qi
= Qi ,
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and performing the relevant derivatives, the six equations of motion are directly
obtained. The three equations for translational motion are⎧⎨

⎩
mẌ = QX

mŸ = QY

mZ̈ = QZ .
(A.115)

The equations for rotational motion are much more complicated

ψ̈
[
Jx sin2(θ) + Jy sin2(φ) cos2(θ) + Jz cos2(φ) cos2(θ)

]
+

−φ̈Jx sin(θ) + θ̈ (Jy − Jz) sin(φ) cos(φ) cos(θ)+
+φ̇θ̇ cos(θ)

{[
1 − 2 sin2(φ)

]
(Jy − Jz) − Jx

}
+

+2φ̇ψ̇ (Jy − Jz) cos(φ) cos2(θ) sin(φ)+
+2θ̇ψ̇ sin(θ) cos(θ)

[
Jx − sin2(φ)Jy − cos2(φ)Jz

]
+

+θ̇
2
(−Jy + Jz) sin(φ) cos(φ) sin(θ) = Qψ,

ψ̈ (Jy − Jz) sin(φ) cos(θ) cos(φ) + θ̈
[
Jy cos2(φ) + Jz sin2(φ)

]
+

+2φ̇θ̇ (Jz − Jy) sin(φ) cos(φ) + φ̇ψ̇ (Jy − Jz) cos(θ)
[
1 − 2 sin2(φ)

]
+

+ψ̇φ̇Jx cos(θ) − ψ̇
2
sin(θ) cos(θ)

[
Jx − Jy sin2(φ) − Jz cos2(φ)

]
= Qθ,

(A.116)

Jxφ̈ − sin(θ)Jxψ̈ − θ̇ψ̇Jz sin2(φ) cos(θ)+
−ψ̇θ̇ cos(θ)

{
Jx + Jy

[
1 − 2 sin2(φ)

]
− Jz cos2(φ)

}
+

+θ̇
2
(Jy − Jz) sin(φ) cos(φ) − ψ̇

2
(Jy − Jz) cos(φ) cos2(θ) sin(φ) = Qφ .

Angle ψ does not appear explicitly in the equations of motion. If the roll
and pitch angles are small all trigonometric functions can be linearized. If the
angular velocities are also small, the equations of motion for rotations reduce to⎧⎨

⎩
Jzψ̈ = Qψ

Jy θ̈ = Qθ

Jxφ̈ = Qφ .
(A.117)

In this case, the kinetic energy may be directly simplified, by developing
the trigonometric functions in Taylor series and neglecting all terms containing
products of three or more small quantities. For instance, the term[

φ̇ − ψ̇ sin(θ)
]2

reduces to [
φ̇ − ψ̇θ + ψ̇θ3/6 + ...

]2

and then to φ̇
2
, because all other terms contain products of at least three small

quantities. The kinetic energy then reduces to

T ≈ 1
2
m

(
Ẋ2 + Ẏ 2 + Ż2

)
+

1
2

(
Jxφ̇

2
+ Jy θ̇

2
+ Jzψ̇

2
)

. (A.118)
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Remark A.12 This approach is simple only if the roll and pitch angles are
small. If they are not, the equations of motion obtained in this way in terms of
angular velocities φ̇, θ̇ and ψ̇ are quite complicated and another approach is more
expedient.

A.8.3 Equations of motion using pseudo-coodinates

Because the forces and moments applied to the rigid body are often written with
reference to the body-fixed frame, the equations of motion are best written with
reference to the same frame. The kinetic energy can then be written in terms of
the components vx, vy and vz (often referred to as u, v and w) of the velocity
and Ωx, Ωx e Ωx (often referred to as p, q and r) of the angular velocity.

If the body fixed frame is a principal frame of inertia, the expression of the
kinetic energy is

T =
1
2
m

(
v2

x + v2
y + vz

2
)

+
1
2
(
JxΩ2

x + JyΩ2
y + JzΩ2

z

)
.

The components of the velocity and the angular velocity in the body fixed
frame are not the derivatives of coordinates, but are linked to the coordinates
by the six kinematic equations

⎧⎨
⎩

vx

vy

vz

⎫⎬
⎭ = RT

⎧⎨
⎩

Ẋ

Ẏ

Ż

⎫⎬
⎭ , (A.119)

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎡
⎣ 1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(θ) cos(φ)

⎤
⎦
⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ , (A.120)

that is, in more compact form,

w = AT q̇ , (A.121)

where the vectors of the generalized velocities and of the derivatives of the gen-
eralized coordinates are

w =
[

vx vy vz Ωx Ωy Ωz

]T , (A.122)

q̇ =
[

Ẋ Ẏ Ż φ̇ θ̇ ψ̇
]T

(A.123)

and matrix A is

A =

⎡
⎢⎢⎣

R 0

0

⎡
⎣ 1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)
0 − sin(φ) cos(θ) cos(φ)

⎤
⎦

T

⎤
⎥⎥⎦ . (A.124)
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Note that the second submatrix is not a rotation matrix (the first submatrix
is) and then

A−1 �= AT ; B �= A . (A.125)

The inverse transformation is Eq. (A.85)

q̇ = Bw ,

where B = A−T.
None of the velocities included in vector w can be integrated to obtain a set

of generalized coordinates, and must all be considered as derivatives of pseudo-
coordinates.

The state space equation, made up of the six dynamic and the six kinematic
equations, is then equation (A.101), simplified because in the present case neither
the potential energy nor the dissipation function are present

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t

({
∂T
∂w

})
+ BTΓ

{
∂T
∂w

}
− BT

{
∂T
∂q

}
= BT Q

{q̇i} = B {wi} .

(A.126)

Here BT Q is simply a column matrix containing the three components of
the force and the three components of the moment applied to the body along
the body-fixed axes x, y, z.

The most difficult part of the computation is writing matrix BTΓ. Perform-
ing rather difficult computations it follows that

BTΓ =

[
Ω̃ 0
Ṽ Ω̃

]
. (A.127)

where Ω̃ and Ṽ are skew-symmetric matrices containing the components of the
angular and linear velocities

Ω̃ =

⎡
⎣ 0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

⎤
⎦ , Ṽ =

⎡
⎣ 0 −vz vy

vz 0 −vx

−vy vx 0

⎤
⎦ . (A.128)

If the body-fixed axes are principal axes of inertia, the dynamic equations
are simply ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mv̇x = mΩzvy − mΩyvz + Fx

mv̇y = mΩxvz − mΩzvx + Fy

mv̇z = mΩyvx − mΩxvy + Fz

JxΩ̇x = ΩyΩz (Jy − Jz) + Mx

JyΩ̇y = ΩxΩz (Jz − Jx) + My

JzΩ̇z = ΩxΩy (Jx − Jy) + Mx

(A.129)

Remark A.13 The equations so obtained are much simpler than equations
(A.116). The last three equations are nothing other than Euler equations.



Appendix B
DYNAMICS OF MOTOR CYCLES

When studying the handling behavior of a two-wheeled vehicle, rolling motions
and, to a lesser extent, gyroscopic moments must not be neglected. A linearized
model similar in many respects to that seen in Part IV for single-track vehicles
may be built.

Linearization obviously requires that the roll angle be small, severely limit-
ing the applicability of such a model to the study of stability on straight roads
and operating conditions where the lateral acceleration is small compared to
gravitational acceleration.

The mass of the driver, who controls the vehicle not only by acting on the
steering but also displacing his body, can be a substantial fraction of the total
mass. Moreover, a two-wheeled vehicle is intrinsically unstable. The driver thus
has to perform as a stabilizer for the capsize mode.

Finally, the body of the driver, acting as an aerodynamic brake or control
surface, contributes in a substantial way to aerodynamic forces. To model a two-
wheeled vehicle without modelling the driver is merely a first approximation
approach, useful for conditions in which only low performance is required.

In such cases the vehicle can be modelled as a rigid body that also includes
the driver. A sketch of the vehicle model is shown in Fig. B.1. The reference
frame Hxyz is fixed to such a rigid body, with origin at point H defined in the
same way as for the model of the vehicle on elastic suspensions. Its position is
defined by the yaw and roll angles ψ and φ; the first is defined as for a vehicle
with four wheels. The roll angle is defined as the angle between the z axis and the
perpendicular to the ground. The roll axis is assumed to pass through the centers
of the contact areas of the tires, a rough approximation only because motor cycle
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FIGURE B.1. Model for a two wheeled vehicle; reference frames and main geometrical
definitions

tires usually have a considerably rounded transversal profile. In locked control
dynamics the steering angle δ is an input, while in free control dynamics it is
one of the variables of motion.

The main difficulty is linked to the high values, even larger than 45◦, that
the roll angle may take: In these conditions, assumption of small angles does not
hold. The kinematic of the steering system is further complicated by the large
values that the caster angle (η in Fig. B.1) may take. The caster offset, shown in
the figure with symbol e, may be relatively large and is an important parameter
in the study of the behavior of motor cycles.

Since angle η may be not small, the steering angle δs measured on the ground
does not coincide with the steering angle δ at the handlebar. If the roll angle is
small, it follows that

δs ≈ δ cos (η) . (B.1)

The trajectory curvature gain in kinematic conditions is then

(
1

Rδ

)
c

≈ 1
l
δ cos (η) . (B.2)

It follows that the more the steering axis is inclined with respect to the
vertical, the lower the trajectory curvature gain and the less manoeuvrable the
vehicle.
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B.1 BASIC DEFINITIONS

The generalized coordinates are the coordinates X and Y of point H in the
inertial frame XY Z and the yaw ψ and roll φ angles. The steering angle δ may
be considered as a variable of the motion (free controls) or an input (locked
controls).

The components of the velocity in the body-fixed frame u and v are linked
to the derivatives of the generalized coordinates Ẋ, Ẏ in the inertial frame by
the usual relationship

⎧⎨
⎩

u
v
0

⎫⎬
⎭ = RT

1

⎧⎨
⎩

Ẋ

Ẏ
0

⎫⎬
⎭ =

⎡
⎣ cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦
⎧⎨
⎩

Ẋ

Ẏ
0

⎫⎬
⎭ , (B.3)

where R1 is the yaw rotation matrix.
The angular velocities Ωx, Ωy and Ωz about the body axes are linked to the

roll velocity p = φ̇ and yaw velocity r = ψ̇ by the relationship

Ω =

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ =

⎧⎨
⎩

φ̇
0
0

⎫⎬
⎭ + RT

2

⎧⎨
⎩

0
0
ψ̇

⎫⎬
⎭ , (B.4)

where R2 is the roll rotation matrix

R2 =

⎡
⎣ 1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤
⎦ .

Performing the relevant computations, the relationship linking the angular
velocities about the axes of the body-fixed frame and the derivatives of the
generalized coordinates is

Ω =

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ = AT

{
φ̇

ψ̇

}
=

⎧⎨
⎩

φ̇

ψ̇ sin(φ)
ψ̇ cos(φ)

⎫⎬
⎭ , (B.5)

where

AT =

⎡
⎣ 1 0

0 sin(φ)
0 cos(φ)

⎤
⎦ . (B.6)

The angular velocity of the steering system Ω1 must be explicitly computed
when studying motion in free controls conditions

Ω1=

⎧⎨
⎩

0
0
δ̇

⎫⎬
⎭ + RT

3 RT
η

⎧⎨
⎩

φ̇
0
0

⎫⎬
⎭ + RT

3 RT
η RT

2

⎧⎨
⎩

0
0
ψ̇

⎫⎬
⎭ , (B.7)
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i.e.

Ω1=

⎧⎨
⎩

0
0
δ̇

⎫⎬
⎭ + RT

3 RT
η Ω , (B.8)

where matrices R3 (steering rotation) and RT
η (matrix defining the direction of

the steering axis) are

R3 =

⎡
⎣ cos(δ) − sin(δ) 0

sin(δ) cos(δ) 0
0 0 1

⎤
⎦ , Rη =

⎡
⎣ cos(η) 0 − sin(η)

0 1 0
sin(η) 0 cos(η)

⎤
⎦ .

The final expression of the angular velocity of the steering system is

Ω1=

⎧⎨
⎩

φ̇ cos(η) cos(δ) + ψ̇ [cos(φ) sin(η) cos(δ) + sin(φ) sin(δ)]
−φ̇ cos(η) sin(δ) + ψ̇ [− cos(φ) sin(η) sin(δ) + sin(φ) cos(δ)]

δ̇ − φ̇ sin(η) + ψ̇ cos(φ) cos(η)

⎫⎬
⎭ . (B.9)

The position of the mass center G is

(G − O) =

⎧⎨
⎩

X
Y
0

⎫⎬
⎭ + R1R2

⎧⎨
⎩

0
0
h

⎫⎬
⎭ . (B.10)

The velocity of the same point is then

VG =

⎧⎨
⎩

Ẋ

Ẏ
0

⎫⎬
⎭ +

(
Ṙ1R2 + R1Ṙ2

)⎧⎨
⎩

0
0
h

⎫⎬
⎭ , (B.11)

that is

VG =

⎧⎨
⎩

Ẋ + hψ̇ cos(ψ) sin(φ) + hφ̇ sin(ψ) cos(φ)
Ẏ + hψ̇ sin(ψ) sin(φ) − hφ̇ cos(ψ) cos(φ)

−hφ̇ sin(φ)

⎫⎬
⎭ . (B.12)

In the study of free controls dynamics, the position and velocity of the center
of mass will be assumed to be unaffected by the steering angle δ.

The translational and rotational kinetic energies are respectively:

Tt =
1
2
mV 2

G , (B.13)

Tr =
1
2

⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭

T ⎡
⎣ Jx 0 Jxz

0 Jy 0
Jxz 0 Jz

⎤
⎦
⎧⎨
⎩

Ωx

Ωy

Ωz

⎫⎬
⎭ ,

i.e.

Tr =
1
2

{
φ̇

ψ̇

}T

A

⎡
⎣ Jx 0 Jxz

0 Jy 0
Jxz 0 Jz

⎤
⎦AT

{
φ̇

ψ̇

}
.
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The expression of the kinetic energy of the system is

T =
1
2
m

(
Ẋ2 + Ẏ 2

)
+

1
2
φ̇

2
J∗

x +
1
2
ψ̇2

[
Jz cos2(φ) + J∗

y sin2(φ)
]
+

+ ψ̇φ̇Jxz cos(φ) + mh
[
Ẋψ̇ sin(φ) − Ẏ φ̇ cos(φ)

]
cos(ψ) + (B.14)

+mh
[
Ẋφ̇ cos(φ) + Ẏ ψ̇sin(φ)

]
sin(ψ) ,

where
J∗

x = Jx + mh2, J∗
y = Jy + mh2

are the roll and pitch moments of inertia with respect to a reference frame set
on the ground.

The kinetic energy of the steering system due to steering motion, needed to
study the free controls behavior, is

Tr1 =
1
2
Ω1

T J1Ω1 , (B.15)

where J1 is the inertia tensor of the steering system. The kinetic energy of the
steering system and the front wheel were already partly taken into account in
the expression of the kinetic energy of the vehicle.

Since the steering angle is small in normal vehicle use, the trigonometric
functions of δ will be linearized when computing the kinetic energy Tr1 . It then
follows that

Tr1 = T01 +
1
2
Jz1δ̇

2
+ δ̇ψ̇ [Jz1 cos (η) + Jxz1 sin (η) cos (φ)] + (B.16)

+ δ̇ψ̇ [−Jz1 sin (η) + Jxz1 cos (η)] + A1δψ̇
2

+ A2δφ̇
2

+ A3δψ̇φ̇ ,

where the terms that do not depend on δ, and thus have already been accounted
for in the expression used for locked controls motion, are included in T01 . Terms
Ai are:

A1 =
(
Jx1 − Jy1

)
sin (φ) cos (φ) sin (η) + Jxz1 [sin (φ) cos (φ) cos (η)] ,

A2 = Jxz1 sin (φ) ,
A3 =

(
Jx1 − Jy1

)
cos (η) sin (φ) − Jxz1 sin2 (η) .

(B.17)

These will be neglected in the following equations.
The kinetic energy of the wheels due to rotation about their axis must be

computed to take into account their gyroscopic moments as well.
If χi is the rotation angle of the ith wheel, the angular velocity of the rear

wheel is

Ωw2 =

⎧⎨
⎩

φ̇
χ̇2

0

⎫⎬
⎭ + RT

2

⎧⎨
⎩

0
0
ψ̇

⎫⎬
⎭ = Ω +

⎧⎨
⎩

0
χ̇2

0

⎫⎬
⎭ , (B.18)
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i.e.,

Ωw2 =

⎧⎨
⎩

φ̇

ψ̇ sin(φ) + χ̇2

ψ̇ cos(φ)

⎫⎬
⎭ . (B.19)

Things are more complicated for the front wheel, because it can steer:

Ωw1 = Ω1 +

⎧⎨
⎩

0
χ̇1

0

⎫⎬
⎭ . (B.20)

In locked controls motion the kinetic energy of the ith wheel is

Tri
=

1
2
ΩT

wiJwiΩwi , (B.21)

where, because the wheels are gyroscopic solids (two of their moments of inertia
are equal to each other) the inertia matrix Jri

reduces to

Jwi
=

⎡
⎣ Jti

0 0
0 Jpi

0
0 0 Jti

⎤
⎦ .

Stating Ω1 = Ω, and remembering that, at least as a first approximation,
the angular velocity of the wheel is

χ̇i =
V

Rei

, (B.22)

the kinetic energy is

Tri
=

1
2
Jti

φ̇
2

+
1
2
Jti

ψ̇
2
cos2(φ) +

1
2
Jpi

ψ̇
2
sin2 (φ) +

1
2
V 2

J2
pi

R2
ei

+ V ψ̇ sin (φ)
Jpi

Rei

.

(B.23)
The first three terms were already included in the rotational kinetic energy

of the vehicle. It then becomes possible to account for the energy due to wheel
rotation simply by adding the term

ΔT =
1
2
V 2

(
J2

p1

R2
e1

+
J2

p2

R2
e2

)
+ V ψ̇ sin (φ)

(
Jp1

Re1

+
Jp2

Re2

)
, (B.24)

to the already computed value of the kinetic energy.
If the steering control is free, the expression of the kinetic energy is much

more complicated. With somewhat complex computations, assuming that angle
δ is small, a further increase of the kinetic energy is obtained

ΔT1 = −V
Jp1

Re1

δ
[
ψ̇ cos (φ) sin (η) + φ̇ cos (η)

]
. (B.25)

The gravitational potential energy is:

U = mgh cos (φ) . (B.26)
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B.2 LOCKED CONTROLS MODEL

B.2.1 Equations of motion

The locked controls Lagrangian function is

L =
1
2
m

(
Ẋ2 + Ẏ 2

)
+

1
2
φ̇

2
J∗

x +
1
2
ψ̇2

[
Jz cos2(φ) + J∗

y sin2(φ)
]
+

+ ψ̇φ̇Jxz cos(φ) + mh
[
Ẋψ̇ sin(φ) − Ẏ φ̇ cos(φ)

]
cos(ψ)+ (B.27)

+mh
[
Ẋφ̇ cos(φ) + Ẏ ψ̇sin(φ)

]
sin(ψ)+

1
2
V 2

(
J2

p1

R2
e1

+
J2

p2

R2
e2

)
+

+V ψ̇ sin (φ)
(

Jp1

Re1

+
Jp2

Re2

)
− mgh cos (φ) .

First two equations of motion

The derivatives entering the first two equations are

∂L
∂Ẋ

= m
[
Ẋ + hψ̇ sin(φ) cos(ψ) + hφ̇ cos(φ) sin(ψ)

]
,

∂L
∂Ẏ

= m
[
Ẏ + hψ̇ sin(φ) sin(ψ) − hφ̇ cos(φ) cos(ψ)

]
,

∂L
∂X

=
∂L
∂Y

= 0 .

(B.28)

Remembering that
{

Ẋ

Ẏ

}
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]{
u
v

}
= R1

{
u
v

}
, (B.29)

it follows that

∂T
∂Ẋ

= m
[
u + hψ̇ sin(φ)

]
cos(ψ) − m

[
v − hφ̇ cos(φ)

]
sin(ψ) ,

∂T
∂Ẏ

= m
[
u + hψ̇ sin(φ)

]
sin(ψ) + m

[
v − hφ̇ cos(φ)

]
cos(ψ) .

(B.30)

By performing the derivatives with respect to time, and collecting the terms
in cos(ψ) and sin(ψ), the following equations of motion can be obtained

m

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
× (B.31)
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×
{

u̇ − hψ̇v + hψ̈ sin(φ) + 2hψ̇φ̇ cos(φ)
v̇+uψ̇ − hφ̈cos(φ) + hφ̇

2
sin (φ) + hψ̇

2
sin (φ) .

}
=

{
QX

QY

}
.

Remembering that
{

QX

QY

}
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]{
Qx

Qy

}
= R1

{
Qx

Qy

}
, (B.32)

the first two equations reduce to
⎧⎪⎨
⎪⎩

m
[
u̇ − hψ̇v + hψ̈ sin(φ) + 2hψ̇φ̇ cos(φ)

]
= Qx ,

m
[
v̇ + uψ̇ − hφ̈cos(φ) + hφ̇

2
sin (φ) + hψ̇

2
sin (φ)

]
= Qy .

(B.33)

Third equation of motion

The third equation, describing the yaw angle ψ, can be obtained in the same
way. The derivatives are

∂L
∂ψ̇

= ψ̇
[
Jz cos2(φ) + J∗

y sin2(φ)
]

+ φ̇Jxz cos(φ) +

+ mhsin(φ)
[
Ẋ cos(ψ) + Ẏ sin(ψ)

]
+V sin (φ)

(
Jp1
Re1

+ Jp2
Re2

)
,

∂L
∂ψ

= −mh
[
Ẋψ̇ sin(φ) − Ẏ φ̇ cos(φ)

]
sin (ψ) +

+mh
[
Ẋφ̇ cos(φ) + Ẏ ψ̇sin(φ)

]
cos (ψ) ,

(B.34)

and then

d

dt

(
∂L
∂ψ̇

)
= ψ̈

[
Jz cos2(φ) + J∗

y sin2(φ)
]
+ 2ψ̇φ̇

(
−Jz + J∗

y

)
sin(φ) cos(φ)

+ φ̈Jxz cos(φ) − φ̇
2
Jxzsin(φ) +mhφ̇ cos (φ)

[
Ẋ cos(ψ) + Ẏ sin(ψ)

]
+

+ mhsin(φ)
[
Ẍ cos(ψ) + Ÿ sin(ψ)

]
+ +V φ̇ cos (φ)

(
Jp1
Re1

+ Jp2
Re2

)
+

+ mhψ̇sin(φ)
[
−Ẋ sin(ψ) + Ẏ cos(ψ)

]
+ V̇ sin (φ)

(
Jp1
Re1

+ Jp2
Re2

)
.
(B.35)

The third equation is then

ψ̈
[
Jz cos2(φ) + J∗

y sin2(φ)
]
+ 2ψ̇φ̇

(
−Jz + J∗

y

)
sin(φ) cos(φ)+

+ φ̈Jxz cos(φ) − φ̇
2
Jxzsin(φ)+ + mhsin(φ)

[
Ẍ cos(ψ) + Ÿ sin(ψ)

]
+

+ V̇ sin (φ)
(

Jp1
Re1

+ Jp2
Re2

)
+ V φ̇ cos (φ)

(
Jp1
Re1

+ Jp2
Re2

)
=Qψ .

(B.36)

Because
Ẍ cos(ψ) + Ÿ sin(ψ) = u̇ − vψ̇, (B.37)
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its final form is

ψ̈
[
Jz cos2(φ) + J∗

y sin2(φ)
]
+ 2ψ̇φ̇

(
−Jz + J∗

y

)
sin(φ) cos(φ)+

+ φ̈Jxz cos(φ) − φ̇
2
Jxzsin(φ) +mhsin(φ)

(
u̇ − vψ̇

)
+

+ V̇ sin (φ)
(

Jp1
Re1

+ Jp2
Re2

)
+ V φ̇ cos (φ)

(
Jp1
Re1

+ Jp2
Re2

)
=Qψ .

(B.38)

Fourth equation of motion

The fourth equation, describing the roll angle φ, may be obtained in the same
way. The derivatives are

∂L
∂φ̇

= φ̇J∗
x + ψ̇Jxz cos(φ)+ mh cos(φ)

[
−Ẏ cos(ψ) + Ẋ sin(ψ)

]
,

∂L
∂φ

= ψ̇2
[
−Jz + J∗

y

]
cos(φ)sin(φ) − ψ̇φ̇Jxzsin(φ)+

+mh
[
Ẋψ̇ cos(φ) + Ẏ φ̇ sin(φ)

]
cos(ψ)+ mgh sin (φ) +

+ mh
[
−Ẋφ̇ sin(φ) + Ẏ ψ̇ cos (φ)

]
sin(ψ)+ V ψ̇ cos (φ)

(
Jp1
Re1

+ Jp2
Re2

)
,

(B.39)
and then

d

dt

(
∂L
∂φ̇

)
= φ̈J∗

x + ψ̈Jxz cos(φ) − ψ̇φ̇Jxz sin(φ)+

− mhφ̇ sin(φ)
[
−Ẏ cos(ψ) + Ẋ sin(ψ)

]
+ mh cos(φ)

[
−Ÿ cos(ψ)+

+Ẍ sin(ψ)
]

+ +mhψ̇ cos(φ)
[
Ẏ sin(ψ) + Ẋ cos(ψ)

]
.

(B.40)
The fourth equation is

φ̈J∗
x + ψ̈Jxz cos(φ) − ψ̇2

[
−Jz + J∗

y

]
cos(φ)sin(φ)+

+mh cos(φ)
[
−Ÿ cos(ψ) + Ẍ sin(ψ)

]
+

−V ψ̇ cos (φ)
(

Jp1
Re1

+ Jp2
Re2

)
−mgh sin (φ) = Qφ .

(B.41)

Because

Ÿ cos(ψ) + Ẍ sin(ψ) = v̇ + uψ̇, (B.42)

it may be written in the form

φ̈J∗
x + ψ̈Jxz cos(φ) − ψ̇2

[
−Jz + J∗

y

]
cos(φ)sin(φ)+

−mh cos(φ)
(
v̇ + uψ̇

)
−V ψ̇ cos (φ)

(
Jp1
Re1

+ Jp2
Re2

)
−mgh sin (φ) = Qφ .

(B.43)
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B.2.2 Linearization of the equations of motion

If the values of φ and v are small, it is possible to linearize the equations of
motion. As usual in linearized models, V and u are interchangeable and the
terms containing the products of small quantities may be neglected. It then
follows that
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mV̇ = Qx ,

mv̇ + mV ψ̇ − mhφ̈ = Qy ,

Jzψ̈ + Jxzφ̈ + mφhV̇ + V φ̇
(

Jp1
Re1

+ Jp2
Re2

)
+V̇ φ

(
Jp1
Re1

+ Jp2
Re2

)
= Qψ ,

Jxφ̈ +Jxzψ̈−mhv̇ − mhV ψ̇ − V ψ̇
(

Jp1
Re1

+ Jp2
Re2

)
− mghφ = Qφ .

(B.44)

B.2.3 Generalized forces

The forces at the wheel-ground contact may be computed in a way similar to
that for the vehicle with two axles, with the monotrack model being no longer a
simplification but a realistic model.

The sideslip angle of the ith wheel is

αi = arctan

(
v + ψ̇xi

u

)
− δi . (B.45)

The rear wheel usually does not steer, while the front wheel steers about an
axis that is inclined with respect to the vertical. If the inclination angle is γ, it
follows that

δ1 = δ cos (γ) , δ2 = 0 . (B.46)

The linearized expression of the sideslip angle is then identical to that of
two-axles vehicles ⎧⎪⎨

⎪⎩
α1 = β +

a

V
r − δ cos (η) ,

α2 = β − b

V
r .

(B.47)

The virtual displacement of the center of the contact zone of the ith wheel
in the reference frame of the vehicle is

δui =
{

δx
δy + δψxi

}
. (B.48)

The virtual work of forces Fxi
and Fyi

and of the moment Mzi
exchanged

between wheel and ground is

δL = Fxi
δx + Fyi

(δy + δψxi) + Mzi
δψ . (B.49)

The aerodynamic forces are applied at the center of mass of the vehicle.
Assuming that the force components Fxa, Fya and Fza and the components of
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the moment Mza and Mxa are referred to the x and y axes laying on the ground
and to a vertical z axis, the virtual displacement of the center of mass of the
vehicle is

δuG =

⎧⎨
⎩

δx + hδψ sin (φ)
δy − hδφ cos (φ)
−hδφ sin (φ)

⎫⎬
⎭ . (B.50)

The virtual work of the aerodynamic forces and moments is then

δL = Fxa [δx + hδψ sin (φ)] + Fya [δy − hδφ cos (φ)] +
+Fza [−hδφ sin (φ)] + Mzaδψ + Mxaδφ . (B.51)

The generalized forces that must be introduced into the equations are then
⎧⎪⎪⎨
⎪⎪⎩

Qx = Fx1 + Fx2 + Fxa ,
Qy = Fy1 + Fy2 + Fya ,
Qψ = Fy1a − Fy2b + Mz1 + Mz2 − Fxah sin (φ) + Mza ,
Qφ = −hFya cos (φ) − Fzah sin (φ) + Mxa .

(B.52)

Side forces depend in this case not only on the slip angle but also on the
camber angle, which is here equal to the roll angle.

B.2.4 Linearized expression of the generalized forces

As in the case of four-wheeled vehicles, the generalized forces may be linearized.
Remembering that for small angles

β =
v

V
, (B.53)

and proceeding as seen in the previous models, it follows that

Qy = Yvv + Yrψ̇ + Yφφ + Yδδ + Fye
, (B.54)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Yv = 1
V

[
−C1 − C2 + 1

2ρV 2
r S(Cy),β

]
,

Yr = − 1
V (aC1 − bC2) ,

Yφ = (Fy1),γ + (Fy2),γ ,

Yδ = C1 cos (η) ,

(B.55)

and where (Fyi
),γ is the camber stiffness. Moreover,

Qψ = Nvv + Nrr + Nφφ + Nδδ + Mze
, (B.56)



708 Appendix B. DYNAMICS OF MOTOR CYCLES

where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Nv = −aC1 + bC2 + (Mz1),α + (Mz1),α + 1
2ρV 2

r S(CMz
),β ,

Nr = 1
V

[
−a2C1 − b2C2 + (Mz1),αa − (Mz2),αb

]
,

Nφ = a(Fy1),γ − b(Fy2),γ − 1
2ρV 2

r ShCx ,

Nδ = [C1a − (Mz1),α] cos (γ) .

(B.57)

At last
Qφ = Lvv + Lφφ , (B.58)

where ⎧⎨
⎩

Lv = 1
2ρVrS [l(CMx

),β − h(Cy),β ] ,

Lφ = − 1
2ρV 2

r ShCz .
(B.59)

B.2.5 Final expression of the linearized equations of motion

The linearized equations may be uncoupled, as in the case of four wheeled vehi-
cles, by assuming that the forward velocity V is a known function of time instead
of being a variable of motion. The first equation is the usual one

mV̇ = Fx1 + Fx2 + Fxa . (B.60)

It allows the driving (or braking) force needed to follow a given law V (t) to be
computed.

The other three equations may be written as
⎡
⎣ m 0 −mh

0 Jz Jxz

−mh Jxz Jx

⎤
⎦
⎧⎨
⎩

v̇

ψ̈

φ̈

⎫⎬
⎭ +

⎡
⎣ −Yv mV − Yr 0

−Nv −Nr Ng

−Lv −mhV − V Ng 0

⎤
⎦
⎧⎨
⎩

v

ψ̇

φ̇

⎫⎬
⎭+

(B.61)

+

⎡
⎢⎣

0 0 −Yφ

0 0 mhV̇ + V̇
(

Jp1
Re1

+ Jp2
Re2

)
− Nφ

0 0 −mgh − Lφ

⎤
⎥⎦
⎧⎨
⎩

y
ψ
φ

⎫⎬
⎭ =

⎧⎨
⎩

Yδδ + Fye

Nδδ + Mze

0

⎫⎬
⎭ ,

where

Ng = V

(
Jp1

Re1

+
Jp2

Re2

)
. (B.62)

The three matrices included in the equation of motion in the configuration
space are normally defined as mass, stiffness and damping matrices (M, C and
K). The first is symmetrical, while the other two are not. As usual in vehicle dy-
namics, the first two columns of the stiffness matrix vanish, because coordinates
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y1 and ψ do not appear directly in the equations. The order of the linearized
set of equations is then 4 and not 6, and the state space model is made by four
first-order differential equations.

The state space open loop model is the usual one

ż = Az + Bcuc + Beue , (B.63)

where
z =

[
v r p vδ

]T
,

r and p are the derivatives of ψ and φ with respect to time;

A =
[

−M−1C −M−1K∗

0 0 1 0

]
,

where K∗ has been obtained by cancelling the first two columns of K, and

Bc =
[

M−1
[

Yδ Nδ 0
]T

0

]
, Be =

[
M−1

0

]
,

uc = δ , ue =

⎧⎨
⎩

Fye

Mze

0

⎫⎬
⎭ .

B.3 LOCKED CONTROLS STABILITY

Stability with locked controls may be studied simply by searching the eigenvalues
of the dynamic matrix A. The eigenproblem usually yields two real eigenvalues
and one complex conjugated pair. Of the real solutions, one is negative and
has little importance in the behavior of the system, while the other is positive
and hence unstable. The latter corresponds to the capsize mode and must be
stabilized by the driver or by some control device. This eigenvalue decreases
with increasing speed, as gyroscopic moments of the wheels reduce the velocity
at which the motorcycle leans to the side.

The two complex conjugate pairs are related to the so-called weave mode;
this mode is primarily a yaw oscillation of the whole vehicle but it also involves
the roll and steering degrees of freedom. Weave oscillation is usually damped, at
least in locked control motion. At low speed it may not involve a true oscillation
(the imaginary part of the eigenvalue may be equal to zero, but in any case the
real part is negative).

Remark B.1 Weave motion usually becomes less stable with increasing speed,
i.e. the modulus of its real part decreases while the frequency increases. At high
speed it may be difficult for the driver to control the motion, because its frequency
is high enough to produce instability.

1v is the derivative of a pseudo-coordinate here and thus y has no physical meaning.
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B.3.1 Capsize motion

An extremely simplified model for capsize motion is an inverted pendulum
(Fig. B.2a). The linearized equation of a pendulum with length h and baricentric
moment of inertia Jx is the usual one

(
Jx + mh2

)
φ̈ − mghφ = 0 , (B.64)

where a (-) sign has been introduced in the gravitational term to take into account
the fact that the pendulum is inverted (the suspension point is below the center
of mass).

The characteristic equation may be obtained by introducing expression

φ = φ0e
st ,

into the equation of motion. It is

s2
(
Jx + mh2

)
− mgh = 0 , (B.65)

which yields

s = ±
√

mgh

Jx + mh2
. (B.66)

The positive solution shows that the capsize motion is unstable. Its time
constant is

τ =
1
s

= ±
√

Jx + mh2

mgh
. (B.67)

Actually the motorcycle does not behave as an inverted pendulum and the
time constant increases (that is, s decreases) with increasing speed. This is due
both to gyroscopic effect and the camber thrust of the tires caused by roll.

A way to factor in the latter effect is to build a simple model made by an in-
verted pendulum whose supporting point is free to move horizontally (Fig. B.2b).
The position of point P is

FIGURE B.2. Simplified models for capsize motion. a) Inverted pendulum; b) inverted
pendulum with moving supporting point
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(
P − O

)
=

⎧⎨
⎩

0
h cos (φ)
y − h sin (φ)

⎫⎬
⎭ (B.68)

and its velocity is

VP =

⎧⎨
⎩

0
−hφ̇ sin (φ)
ẏ − hφ̇ cos (φ)

⎫⎬
⎭ . (B.69)

The kinetic energy of the system is then

T =
1
2
m

[
ẏ2 − 2hẏφ̇ cos (φ) + h2φ̇

2
]

+
1
2
Jxφ̇

2
. (B.70)

The gravitational potential energy is

U = mgh cos (φ) . (B.71)

The equations of motion obtained through Lagrange equations by perform-
ing the relevant derivatives of the Lagrangian function T − U and linearizing
are {

mÿ − mhφ̈ = Qy ,
−mhÿ +

(
mh2 + Jx

)
φ̈ − mghφ = Qφ .

(B.72)

The side force acting on point Q is due to the tires, which work with both
a sideslip and camber angle. If the virtual displacement of point Q is δy and the
usual linearized expression is used for the side force Fy

Fy = −Cα + (Fy),γ φ , (B.73)

where the cornering stiffness C and the camber stiffness (Fy),γ are those of the
whole vehicle (the sum of the stiffness referred to the two tires), the virtual
work is

δL = δy
[
−Cα + (Fy),γ φ

]
. (B.74)

Assuming that the system moves along the x axis at a speed V , the velocity
of point Q is

VQ =
[

V ẏ 0
]T . (B.75)

The sideslip angle of the wheels is then

α = artg
(

ẏ

V

)
≈ ẏ

V
. (B.76)

By differentiating the virtual work with respect to the virtual displacement
the generalized forces are immediately obtained,

Qy = −C
ẏ

V
+ (Fy),γ φ , Qφ = 0 . (B.77)
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The equation of motion is then[
m −mh

−mh mh2 + Jx

]{
ÿ

φ̈

}
+

1
V

[
C 0
0 0

]{
ẏ

φ̇

}
+

+
[

0 − (Fy),γ

0 −mgh

]{
y
φ

}
= 0 . (B.78)

This equation coincides with Eq. (B.61), where the second row and column
have been cancelled in all matrices and aerodynamic terms have been neglected.

The characteristic equation allowing the natural frequencies to be com-
puted is

det
[

ms2 + C
V s −mhs2 − (Fy),γ

−mhs2
(
mh2 + Jx

)
s2 − mgh

]
= 0 , (B.79)

and then

s
{

mJxV s3 + C
(
mh2 + Jx

)
s2 + mhV

[
− (Fy),γ − mg

]
s − Cmgh

}
= 0 .

(B.80)
One solution is obviously s = 0; out of the other three, one is real and

positive (capsize motion) while the other two are complex with a negative real
part. The latter represent a kind of weave motion, but because the model does
not take yaw rotation into account, an important factor in weave motion, these
solutions have no physical meaning. In this way the time constant of capsize
motion becomes a function of speed.

B.3.2 Weave motion

It is possible to build a much simplified model for weave motion as well. Because
weave motion primarily involves the vehicle body and not the steering system, a
model based on an almost horizontal pendulum hinged on the steering axis (axis
H1H2 in Fig. B.3) can be built. The length of such a pendulum is GH1,

GH1 = l1 = [a + e − h tan (η)] cos (η) . (B.81)

The distance of the point where the side force of the rear tire is applied from
the hinge axis is P2H2:

P2H2 = l2 = (l + e) cos (η) . (B.82)

If the rotation angle of the pendulum about the steering axis is θ, the steering
angle with respect to the xz plane of the rear wheel is

θ cos (η)

and its lateral velocity is θ̇l2. The sideslip angle of the rear wheel is then

α2 = θ cos (η) + θ̇
l2
V

. (B.83)
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FIGURE B.3. Simplified model for weave motion

Because the roll angle has been assumed to be zero, the side force on the
tire is

Fy2 = −C2α2 = −C2

[
θ cos (η) + θ̇

l2
V

]
. (B.84)

The equation of motion of the vehicle body about the steering axis is

Jθ̈ +
C2l

2
2

V
θ̇ + l2C2θ cos (η) = 0 , (B.85)

where J is its moment of inertia about the same axis.
A rough approximation is

J = Jz + ml21

where Jz is the moment of inertia of the whole vehicle about the z axis and m
refers to the whole vehicle.

The pole for weave motion is

s =
−C2l

2
2 ±

√
C2

2 l42 − 4V 2Jl2C2 cos (η)
2V J

. (B.86)

At low speed the two solutions are both real and negative, so that weave
is stable and not oscillatory (weave is a misnomer in this case). Starting from a
speed

V =
l2
2

√
C2l2

J cos (η)
(B.87)
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the roots become complex conjugate and the motion is oscillatory. At low speed
the motion is damped, but at high speed the real part may become positive and
weave motion may become unstable.

Example B.1 Study the locked controls stability of the motorcycle of Appendix E.10.

Plot the eigenvalues as functions of the speed and the roots locus.

To correctly compute the roots locus the cornering stiffness of the tires must be

computed correctly. The forces on the ground Fzi
were then computed, factoring in

aerodynamic forces and rolling resistance. The effect of driving forces can also be ac-

counted for, at least using the elliptical approximation.

The values of the cornering and camber stiffness at standstill, at 100 and at 200

km/h are

V Fz1 Fz2 C1 C2 (Fy1)γ (Fy2)γ

km/h N N N/rad N/rad N/rad N/rad

0 1,451 1,394 39,600 41,400 −1, 708 −1, 905
100 1,384 1,414 37,700 38,600 −1, 630 −1, 933
200 1,183 1,473 32,300 32,300 −1, 392 −2, 013

The roots locus and the plot of the eigenvalues versus the speed are reported in

Fig. B.4.

Weave is oscillatory from about 100 km/h and becomes unstable slightly above 240

km/h, while capsize is, as is normal for motorcycles, unstable.

FIGURE B.4. Locked controls stability of a motor cycle. Roots locus and plot of the
eigenvalues versus the forward speed
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The values of the natural frequencies and of the time constant of capsize motion

at three values of speed are

V scap τ cap sweave τ∗
cap τ∗∗

cap s∗weave

km/h 1/s s 1/s s s 1/s

0 4.20 0.24 − 0.33 0.33 −
100 3.44 0.29 –8.76 0.33 0.37 –10.8±17.6i
200 2.00 0.50 –3.45±18.0 i 0.33 0.41 –4.26±17.8i

The values of the capsize time constants and of the eigenvalue for weave computed

using the simplified models (values with * and **), are also reported. The latter model

largely underestimates the speed at which weave becomes oscillatory (52 km/h against

about 100 in the model with three degrees of freedom), but once motion is oscillatory,

allows its frequency to be computed in a way that is surprisingly consistent with the

value obtained from the more complex model.

B.4 STEADY-STATE MOTION

Equation (B.61) may be used to compute the steady-state response by simply
assuming that v, r, φ, δ, and the speed V are constant. A simple way to compute
the steady-state response is to fix a certain value of either r or δ and then solve
the equations for v, φ, δ or r. Perhaps the most immediate approach is the first,
because in steady-state conditions, to state r means to state a value of the radius
of the path R. The problem is then stated in this form: Given a certain circular
path, a value of the speed and perhaps also of external forces, compute sideslip,
roll and steering angles (β = v/V , φ and δ). The relevant equation is

⎡
⎣ C11 K13 −Yδ

C21 K23 −Nδ

C31 K33 0

⎤
⎦
⎧⎨
⎩

V β
φ
δ

⎫⎬
⎭ = r

⎧⎨
⎩

−C12

−C22

−C32

⎫⎬
⎭ +

⎧⎨
⎩

Fye

Mze

0

⎫⎬
⎭ . (B.88)

By solving Eq. (B.88) it is possible to compute

• the path curvature gain:
1

Rδ
=

r

V δ
;

• the sideslip angle gain
β

δ
=

v

V δ
;

• the roll angle gain
φ

δ
.
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Owing to the linearity of the model, if the external forces are assumed to
be equal to zero, the mentioned gains are a function of the velocity only; i.e.,
they do not depend on the radius of the trajectory. Equation (B.88) can thus
be assumed to hold for very high speeds as well, if a large enough radius R is
considered.

Once the trajectory curvature gain has been obtained, the usual definitions
of understeer, neutral steer and oversteer can be applied.

The present model is linearized and hence holds only if the relevant angles
are small enough to allow the linearization of their trigonometric functions. The
limit in this case is primarily due to the roll angle φ which can easily exceed the
value of about 20◦ that can be considered a limit for linearization.

The computation of the steady-state response assumes that the motion is
possible, implying that the driver stabilizes the capsize mode, which is unstable
in open-loop operation.

Example B.2 Compute the steady-state steering response of the motorcycle of

Appendix E.10, assuming that no external force is present. Compute the values of β, δ,

and φ on a curve with a radius of 200 m at a speed of 80 km/h.

The various gains are plotted versus the speed in Fig. B.5. The nondimensional

curves hold for any value of the radius R: They are plotted for speeds up to 240 km/h,

although on a curve with a radius of 200 m the limit for linearization occurs at speeds

slightly in excess of 80 km/h.

At 80 km/h their values are 1/Rδ = 0.56 1/m; β/δ = 0.77, and φ/δ = −28.5. On

a curve of 200 m radius the steering angle is δ = 0.0090 rad = 0.52 ◦. Because the

FIGURE B.5. Values of the path curvature gain 1/Rδ = r/V δ, the sideslip angle gain
β/δ = v/V δ and the roll angle gain φ/δ for the motorcycle of Appendix E.10 versus
the speed V
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wheelbase is 1.316 m, the kinematic value of the trajectory curvature gain is 0.70 and

the steering angle is then δc = 0.0071 rad = 0.41◦. The vehicle is then understeer.

The other values are β = 0.0069 rad = 0.40◦, and φ = −0.257 rad = −14.7◦. The

value of the roll angle is quite close to the limit for linearization.

B.5 FREE CONTROLS MODEL

The Lagrangian function for a system with free controls is that already seen for
the locked controls model, with some additional terms

ΔL =
1
2
Jz1δ̇

2
+ δ̇ψ̇ [Jz1 cos (η) + Jxz1 sin (η) cos (φ)] +

+ δ̇φ̇ [−Jz1 sin (η) + Jxz1 cos (η)] + A1δψ̇
2

+ A2δφ̇
2

+

+A3δψ̇φ̇ − V
Jp1

Re1

δ
[
ψ̇ cos (φ) sin (η) + φ̇ cos (η)

]
.

First two equations of motion
ΔL Does not contain either X or Y or their derivatives. The first two equa-

tions are not changed by the free controls assumptions.
Third equation of motion
When linearizing the equation, terms in Ai disappear. The derivatives in-

cluded in the third equation are

∂ΔL
∂ψ̇

= δ̇ [Jz1 cos (η) + Jxz1 sin (η)] − V
Jp1

Re1

δ sin (η) ,

∂ΔL
∂ψ

= 0

(B.89)

and then

d

dt

(
∂ΔL
∂ψ̇

)
= δ̈ [Jz1 cos (η) + Jxz1 sin (η)] − V̇

Jp1

Re1

δ sin (η) − V
Jp1

Re1

δ̇ sin (η) .

(B.90)
The third equation is then

Jzψ̈ + Jxzφ̈ + δ̈ [Jz1 cos (η) + Jxz1 sin (η)] + mφhV̇ + V φ̇
(

Jp1
Re1

+ Jp2
Re2

)
+

−V
Jp1
Re1

δ̇ sin (η) + V̇ φ
(

Jp1
Re1

+ Jp2
Re2

)
− V̇

Jp1
Re1

δ sin (η) = Qψ .
(B.91)
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Fourth equation of motion
The fourth equation, dealing with the roll angle φ, may be obtained in the

same way. The derivatives are

∂ΔL
∂φ̇

= δ̇ [−Jz1 sin (η) + Jxz1 cos (η)] − V
Jp1

Re1

δ cos (η) ,

∂ΔL
∂φ

= 0

(B.92)

and then

d

dt

(
∂ΔL
∂φ̇

)
= δ̈ [−Jz1 sin (η) + Jxz1 cos (η)] − V

Jp1

Re1

δ̇ cos (η) − V̇
Jp1

Re1

δ cos (η) .

(B.93)
The fourth equation is then

Jxφ̈+Jxzψ̈ + δ̈ [−Jz1 sin (η) + Jxz1 cos (η)]−mhv̇ − mhV ψ̇ +

−V ψ̇
(

Jp1
Re1

+ Jp2
Re2

)
− V

Jp1
Re1

δ̇ cos (η) − V̇
Jp1
Re1

δ cos (η) − mghφ = Qφ .
(B.94)

Fifth equation of motion
A further equation describing the motion of the steering system must be

added to the first four equations. The relevant derivatives are

∂ΔL
∂δ̇

= Jz1δ̇ + ψ̇ [Jz1 cos (η) + Jxz1 sin (η)] + φ̇ [−Jz1 sin (η) + Jxz1 cos (η)] ,

∂ΔL
∂δ

= −V
Jp1

Re1

[
ψ̇ sin (η) + φ̇ cos (η)

]
,

(B.95)
and then

d

dt

(
∂ΔL
∂δ̇

)
= Jz1δ̈ + ψ̈ [Jz1 cos (η) + Jxz1 sin (η)] +

+φ̈ [−Jz1 sin (η) + Jxz1 cos (η)] . (B.96)

The fifth equation is

Jz1δ̈ + ψ̈ [Jz1 cos (η) + Jxz1 sin (η)] + φ̈ [−Jz1 sin (η) + Jxz1 cos (η)] +

+V
Jp1

Re1

[
ψ̇ sin (η) + φ̇ cos (η)

]
= Qδ . (B.97)

B.5.1 Generalized forces

The virtual displacement of the center of the contact zone of the rear wheel is
the same as seen for the case of locked controls motion. The sideslip angle of the
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front wheel, assuming that the steering angle is small, is

α1 = arctan

(
v + ψ̇a − δ̇e

u

)
− δ cos (η) . (B.98)

Its linearized expression is then

α1 = β +
a

V
r − e

V
δ̇ − δ cos (η) . (B.99)

The virtual displacement of the center of the contact area of the front
wheel is

δu1 =
{

δx
δy + δψa − eδδ

}
. (B.100)

The virtual work of forces Fxi
and Fyi

and of the moment Mzi
acting be-

tween wheel and ground is

δL1 = Fx1δx + Fy1 [δy + δψxi − eδδ] + Mzi
[δψ + δδ cos (η)] . (B.101)

The generalized forces to be introduced into the first equations of motion
are those already seen in the previous model. The force included in the fifth
equation is

Qδ = −eFy1 + Mzi
cos (η) . (B.102)

Proceeding as in the previous models, it follows that

Qy = Yvv + Yrψ̇ + Yδ̇ δ̇ + Yφφ + Yδδ + Fye
, (B.103)

Qψ = Nvv + Nrψ̇ + Nδ̇ δ̇ + Nφφ + Nδδ + Mze
, (B.104)

where the already defined derivatives of stability are not changed,

Yδ̇ = C1
e

V
, (B.105)

Nδ̇ = [C1a − (Mz1),α]
e

V
. (B.106)

The expression of Qφ is the same as seen for the locked controls model

Qφ = Mvv + Mrψ̇ + Mδ̇ δ̇ + Mφφ + Mδδ , (B.107)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mv = 1
V [C1e + (Mz1),α cos (η)] ,

Mr = a
V C1 [C1e + (Mz1),α cos (η)] ,

Mδ̇ = − e
V [C1e + (Mz1),α cos (η)] ,

Mφ = −e(Fy1),γ ,

Mδ = − [C1e + (Mz1),α cos (η)] cos (η) .

(B.108)
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B.5.2 Final expression of the linearized, free controls equations

The four equations describing the lateral free controls motions are
⎡
⎢⎢⎣

m 0 −mh 0
Jz Jxz Jz1 cos (η) + Jxz1 sin (η)

Jx −Jz1 sin (η) + Jxz1 cos (η)
symm. Jz1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

v̇

ψ̈

φ̈

δ̈

⎫⎪⎪⎬
⎪⎪⎭

+

+

⎡
⎢⎢⎣

−Yv mV − Yr 0 −Yδ̇

−Nv −Nr Ng −Nδ̇ − S∗

−Lv −mhV − V Ng 0 −V C∗

−Mv −Mr + V S∗ +V C∗ −Mδ̇ + cδ

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

v

ψ̇

φ̇

δ̇

⎫⎪⎪⎬
⎪⎪⎭

+ (B.109)

+

⎡
⎢⎢⎢⎣

0 0 −Yφ −Yδ

0 0 mhV̇ + V̇
(

Jp1
Re1

+ Jp2
Re2

)
− Nφ −Nδ − V̇ S∗

0 0 −mgh − Lφ −V̇ C∗

0 0 −Mφ −Mδ

⎤
⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

y
ψ
φ
δ

⎫⎪⎪⎬
⎪⎪⎭

=

=

⎧⎪⎪⎨
⎪⎪⎩

Yδδ + Fye

Nδδ + Mze

0
Mg

⎫⎪⎪⎬
⎪⎪⎭

,

where
S∗ =

Jp1

Re1

sin (η) , C∗ =
Jp1

Re1

cos (η) .

From matrices M, C and K, defined in the configurations space, it is im-
mediately possible to obtain the dynamic matrix in the state space. In this case
the first two equations are first- order differential equations, while the others
are second-order equations. The order of the set of equations is then 6 and the
dynamic matrix has 6 rows and columns.

B.5.3 Free controls stability

The stability with free controls may be studied simply by searching the eigenval-
ues of the dynamic matrix A. The eigenproblem usually yields two real eigen-
values and two complex conjugated pairs.

Out of the real solutions, one is negative and has practically no importance
in the behavior of the system, while the other is positive and hence unstable. As
in the locked control model, the latter corresponds to the capsize mode and must
be stabilized by the driver or by some control device. This eigenvalue decreases
with increasing speed, as gyroscopic moments of the wheels reduce the velocity
at which the motorcycle falls on its side.

The two complex conjugate pairs are related to the so-called weave and
wobble modes: The first, already seen in the locked control study, is primarily a
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yaw oscillation of the whole vehicle but involves the roll and steering degrees of
freedom as well, while the other is primarily an oscillation of the steering system
about its axis. The weave frequency is lower than the wobble frequency, and is
usually more dependent on speed.

While the first mode is usually damped, the latter can become unstable,
particularly at high speed. To stabilize wobble motion it is possible to introduce
a steering damper, which has been included in the present mathematical model.
The damper has the effect of reducing wobble instability, but may affect weave
negatively. Too large a damping can trigger weave instability: The value of co-
efficient cδ must be chosen with care and the present mathematical model can
supply useful guidelines.

Wobble motion

A simplified model may also be built for wobble motion. If the steering system
is considered separately from the vehicle using a model similar to that seen in
Fig. B.3 for the vehicle body, the following equation of motion is obtained,

Jδ̈ +
C1e

2 cos2 (η)
V

δ̇ + eC1δ cos2 (η) = 0, (B.110)

where J is the moment of inertia of the steering system about the steering axis.
If a steering damper is present, its damping coefficient must be added to the
term

C1e
2 cos2 (η)

V

multiplying δ̇. Note that the damping of the steering damper must also be added
in the equation related to weave.

The pole for wobble motion is

s = cos (η)
−C1e

2 cos (η) ±
√

C2
1e4 cos2 (η) − 4V 2JeC1

2V J
. (B.111)

At low speed there are two negative real poles, so that wobble motion is
stable. Starting from the speed

V =
e cos (η)

2

√
C1e

J
, (B.112)

the roots become complex and the motion is oscillatory. It is initially damped, but
with increasing speed the real part may become positive, producing an unstable
motion.

Example B.3 Study the free controls stability of the motorcycle studied in the previ-

ous example and plot the eigenvalues as functions of the speed and the roots locus.
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FIGURE B.6. Free controls stability study for the motorcycle of Appendix E.10. Roots
locus and plot of the eigenvalues versus the speed

Operating as seen in the previous examples, the plots shown in Fig. B.6 are ob-

tained.

Wobble motion becomes unstable starting from about 200 km/h.

The values of the natural frequencies and the time constant for capsize at three

values of the speed are

V scap τ cap sweave swob

km/h 1/s s 1/s 1/s

0 4.37 0.228 − −
100 3.07 0.326 –6.74±20.29 i –19.04±34.46 i
200 1.40 0.711 –6.11±29.95 i +0.43±42.35 i

V τ∗
cap τ∗∗

cap s∗weave s∗wob

km/h s s 1/s 1/s

0 0.33 0.33 − −
100 0.33 0.37 –10.8±17.6i –2.60±38.89 i
200 0.33 0.41 –4.26±17.8 i –1.11±36.03 i

Wobble motion becomes unstable at about 200 km/h. The values obtained using

the simplified models (values with *) are reported together with those obtained using the

present model.

The computation was repeated assuming that a steering damper with cδ = 25

Nms/rad is present. The relevant results are plotted in Fig. B.7. The damper stabilizes

wobble motion up to more than 250 km/h, but reduces weave stability.
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FIGURE B.7. Free controls stability study for the motor cycle of Appendix E.10. Roots
locus and plot of the eigenvalus versus the speed. Steering damper with cδ = 25 Nms/rad

B.5.4 Steady-state response

The steady-state response may be obtained directly from Eq. (B.109) by intro-
ducing the steering moment Ms as an unknown. The equation is

⎡
⎢⎢⎣

C11 K13 K14 0
C21 K23 K24 0
C31 K33 K34 0
C41 K43 K44 −1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

V β
φ
δ

Ms

⎫⎪⎪⎬
⎪⎪⎭

= r

⎧⎪⎪⎨
⎪⎪⎩

−C12

−C22

−C32

−C42

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

Fye

Mze

−hFye

eFye1

⎫⎪⎪⎬
⎪⎪⎭

. (B.113)

It is then possible to obtain, together with the path curvature gain, the
sideslip angle gain and the roll angle gain, as well as the steering moment gain
Ms/δ.

B.6 STABILITY AT LARGE ROLL ANGLES

B.6.1 Locked controls motion

In fast driving the roll angle of a motorcycle may become even larger than 45◦.
In these conditions the linearized model seen in the previous sections cannot be
used. However, even when managing a curve at high speed, the sideslip angles
and the steering angle are not large, and the only source of nonlinearity is the roll
angle. In these conditions stability may be studied by linearizing the equations
about a static equilibrium condition, characterized by a value φ0 of the roll angle,
that may be computed for example using Eq. (25.45).
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Assuming that the displacement from the equilibrium condition is small,
the roll angle is

φ = φ0 + φ1 , (B.114)

where angle φ1 is small and then

sin (φ) = sin (φ0) + φ1 cos (φ0) , (B.115)

cos (φ) = cos (φ0) − φ1 sin (φ0) . (B.116)

Remembering that φ0 is constant and its derivatives vanish, the locked con-
trols equations reduce to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
[
V̇ + hψ̈ sin(φ0)

]
= Qx

m
[
v̇+V ψ̇ − hφ̈1cos(φ0)

]
= Qy

ψ̈
[
Jz cos2(φ0) + J∗

y sin2(φ0)
]
+ φ̈1Jxz cos(φ0)+mhV̇ sin(φ0)+

+mhV̇ φ1 cos (φ0) + V̇ sin (φ0)
(

Jp1
Re1

+ Jp2
Re2

)
+

+ V̇ φ1 cos (φ0)
(

Jp1
Re1

+ Jp2
Re2

)
+ V φ̇1 cos (φ0)

(
Jp1
Re1

+ Jp2
Re2

)
=Qψ

φ̈J∗
x + ψ̈Jxz cos(φ0) − mh cos(φ0)v̇−V ψ̇ cos (φ0)

(
mh + Jp1

Re1
+ Jp2

Re2

)
+

−mgh sin (φ0) − mghφ1 cos (φ0) =Qφ .
(B.117)

The generalized forces are⎧⎪⎪⎨
⎪⎪⎩

Qx = Fx1 + Fx2 + Fxa ,
Qy = Fy1 + Fy2 + Fya ,
Qψ = Fy1a − Fy2b + Mz1 + Mz2 − Fxah sin (φ0) − Fxahφ1 cos (φ0) + Mza ,
Qφ = −hFya cos (φ0) − Fzah sin (φ0) − Fzahφ1 cos (φ0) + Mxa .

(B.118)
Assuming that the expression for the sideslip angles of the wheels is that

seen for small roll angles(an assumption that may be justly criticized at least for
the front wheel), the expression for Qy and for the derivatives of stability Yv, Yr,
Yφ and Yδ are those already seen.

Qψ and the derivatives of stability Nv, Nr and Nδ are not changed, but
derivative Nφ becomes

Nφ = a(Fy1),γ − b(Fy2),γ − 1
2
ρV 2

r ShCx cos (φ0) (B.119)

and a moment
N0 = −1

2
ρV 2

r SCxh sin (φ0) , (B.120)

due to aerodynamic drag, must be added to the external moment Mze
.

As far as Qφ is concerned, derivatives Lv and Lφ become⎧⎨
⎩

Lv = 1
2ρVrS [l(CMx

),β − h(Cy),β cos (φ0)] ,

Lφ = − 1
2ρV 2

r ShCz cos (φ0) ,
(B.121)



B.6 Stability at large roll angles 725

and a term
L0 = −1

2
ρV 2

r SCzh sin (φ0) (B.122)

must be added.

B.6.2 Equilibrium condition

The computation of the steady-state equilibrium condition at constant speed
reduces to the computation of either v, ψ̇ and φ0 (in this condition φ1 is equal
to zero) at a given value of δ or v, δ and φ0 for a given value of ψ̇. As usual
the linearized equations may be uncoupled and longitudinal dynamics does not
affect handling.

The other three equations may be written as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Yvv + (Yr − mV ) ψ̇ + Yφφ0 + Yδδ + Fye
= 0 ,

Nvv + Nrr + Nφφ0 + Nδδ + N0 + Mze
=0 ,

V ψ̇ cos (φ0)
(
mh + Jp1

Re1
+ Jp2

Re2

)
+ Lφφ0+

+ Lvv + L0 + mgh sin (φ0) = 0 .

(B.123)

Because unknown φ0 is present in an explicit way in the trigonometric func-
tions and also in an implicit way in Nφ, N0, Lv, Lφ and L0, it may be expedient
to choose a value of φ0 and then solve the equations in v, ψ̇ and δ, i.e., choose a
value of the roll angle and then compute the parameters of the resulting path,
obviously after also choosing a value for the speed. If the steady-state values are
v0 and ψ̇0, the equation becomes

⎡
⎢⎣

−Yv mV − Yr −Yδ

−Nv −Nr −Nδ

−Lv −V cos (φ0)
(
mh + Jp1

Re1
+ Jp2

Re2

)
0

⎤
⎥⎦
⎧⎨
⎩

v0

ψ̇0

δ0

⎫⎬
⎭ = (B.124)

=

⎧⎨
⎩

Yφφ1 + Fye

Nφφ1 + Nδδ + N0 + Mze

Lφφ0 + L0 + mgh sin (φ0)

⎫⎬
⎭ .

It is immediately clear that, if the aerodynamic terms are neglected, the last
equation uncouples and becomes

tan (φ0) = − V ψ̇

mgh

(
mh +

Jp1

Re1

+
Jp2

Re2

)
, (B.125)

which coincides with Eq. (25.45)2.

2The (−) sign comes from the fact that if the curve is toward the left (positive ψ̇) the
vehicle tilts to the left (negative φ).
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B.6.3 Stability at constant speed

The term ψ̈ present in the first equation of motion weekly couples this equation
to the others. If this term is neglected, and stating that

v = v0 + v1 , ψ̇ = ψ̇0 + ψ̇1

(because motion occurs with locked controls δ = δ0), it follows that

⎡
⎣ m 0 −mhcos(φ0)

0 Jz cos2(φ0) + J∗
y sin2(φ0) Jxz cos(φ0)

−mh cos(φ0) ψ̈Jxz cos(φ0) J∗
x

⎤
⎦
⎧⎨
⎩

v̇1

ψ̈1

φ̈1

⎫⎬
⎭+

(B.126)

+

⎡
⎣ −Yv mV − Yr 0

−Nv −Nr Ng cos (φ0)
−Lv − (mhV +Ng) cos (φ0) 0

⎤
⎦
⎧⎨
⎩

v1

ψ̇1

φ̇1

⎫⎬
⎭+ (B.127)

+

⎡
⎣ 0 0 −Yφ

0 0 −Nφ

0 0 −mgh cos (φ0) − Lφ

⎤
⎦
⎧⎨
⎩

y
ψ
φ1

⎫⎬
⎭ = 0.

Locked controls stability in the small for a motorcycle managing a curve in
steady-state condition with an arbitrarily large roll angle can thus be studied.

B.6.4 Free controls model

Operating as seen in previous models, the following equations may be written

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
[
V̇ + hψ̈ sin(φ0)

]
= Qx ,

m
[
v̇+V ψ̇ − hφ̈1cos(φ0)

]
= Qy ,

ψ̈
[
Jz cos2(φ0) + J∗

y sin2(φ0)
]
+δ̈ [Jz1 cos (η) + Jxz1 sin (η) cos(φ0)]+

+ φ̈1Jxz cos(φ0) − V
Jp1
Re1

δ̇ sin (η) cos(φ0) − V̇
Jp1
Re1

δ sin (η) cos(φ0)+

+mhV̇ φ1 cos (φ0) + V̇ sin (φ0)
(

Jp1
Re1

+ Jp2
Re2

)
+ mhV̇ sin(φ0)+

+ V̇ φ1 cos (φ0)
(

Jp1
Re1

+ Jp2
Re2

)
+ V φ̇1 cos (φ0)

(
Jp1
Re1

+ Jp2
Re2

)
=Qψ ,

(B.128)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̈J∗
x + ψ̈Jxz cos(φ0) + δ̈ [−Jz1 sin (η) + Jxz1 cos (η)] − mhv̇ cos(φ0)+

−V ψ̇ cos (φ0)
(
mh + Jp1

Re1
+ Jp2

Re2

)
− V

Jp1
Re1

δ̇ cos (η) +

− V̇
Jp1
Re1

δ cos (η)−mgh sin (φ0) − mghφ1 cos (φ0) =Qφ ,

Jz1δ̈ + ψ̈ [Jz1 cos (η) + Jxz1 sin (η) cos(φ0)] + φ̈ [−Jz1 sin (η) +

+Jxz1 cos (η)] + V
Jp1
Re1

[
ψ̇ sin (η) cos(φ0) + φ̇ cos (η)

]
= Qδ .

The four equations describing the lateral free controls motion about a posi-
tion defined by the values v0, ψ̇0, φ0 and δ0 (in this case δ is a variable and may
be written as δ0 + δ1) and thus allowing free controls stability to be studied, are

⎡
⎢⎢⎣

m 0 −mhcos(φ0) 0
J∗∗

z Jxzcos(φ0) Jz1 cos (η) + Jxz1 sin (η) cos(φ0)
J∗

x −Jz1 sin (η) + Jxz1 cos (η)
symm. Jz1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

v̇1

ψ̈1

φ̈1

δ̈1

⎫⎪⎪⎬
⎪⎪⎭

+

+

⎡
⎢⎢⎣

−Yv mV − Yr 0 −Yδ̇

−Nv −Nr Ng cos (φ0) −N∗

−Lv − (mhV + Ng) cos (φ0) 0 −V C∗
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Appendix C
WHEELED VEHICLES
FOR EXTRATERRESTRIAL
ENVIRONMENTS

Humankind has been exploring space surrounding its home planet, the Earth,
and the nearest celestial bodies since the late 1950s. Such exploration is not an
occasional enterprise, but the beginning of a trend that will see our species build
a true spacefaring civilization, one based on many worlds, initially in our solar
system and then beyond it.

There is no doubt that the great difficulties now being encountered and those
that will emerge in the future will make this expansion a slow one, requiring
decades or more likely centuries to yield important results. Owing to the size
of the Universe, it is an expansion that will never end. Certainly it will require
technological advancements that today cannot even be imagined. But it is also
true that such difficulties are only partially technological. Economical, social and
political factors will play an even more significant role.

Beginning with the first experiences of robotic and human exploration of
other celestial bodies, a need was felt for vehicles able to carry instruments,
objects of various kinds and finally the explorers themselves.

The vehicles for planetary exploration used up to now have all been robotic
vehicles operating on wheels, designed and built using technologies that have
little in common with standard automotive technologies. This is due in part to
their small size and above all to their low speed, which ranges from a maximum
of 1,5 km/h, for the Lunokhod, to some tens of m/h, for the automatic vehicles
used for Mars exploration.

At these speeds suspensions based on spring and damper systems are not
necessary, although articulated systems to suitably distribute the load on the
ground were needed, because all these vehicles have more than 3 wheels.

Kinematic steering is more than adequate to control the trajectory.
The only exception is the vehicle used in the last Apollo missions to grant

the needed mobility to the astronauts. Even if more than 30 years have passed
since this vehicle was used, it remains an interesting case.
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C.1 THE LUNAR ROVING VEHICLE (LRV)
OF THE APOLLO MISSIONS

The LRV is an electric four wheel drive and steering (4WDS) vehicle able to
carry two people in space suits at a speed of 18 km/h for a maximum distance
of 120 km (Fig. C.1).

The main characteristics of the LRV were1

• Mass: 210 kg,

• Payload: 450 kg,

• Length (overall): 3,099 mm,

• Wheelbase: 2,286 mm,

• Track: 1,829 mm,

• Maximum speed: 18 km/h,

• Maximum manageable slope: 25◦,

FIGURE C.1. The Lunar Roving Vehicle (LRV) of the last three Apollo missions on
the Lunar surface (NASA image)

1A. Ellery, An Introduction to Space Robotics, Springer Praxis, Chichester, 2000,
− − −, Lunar Roving Vehicle Operations Handbook, ttp://www.hq.nasa.gov/office
/pao/History/alsj/lrvhand.html.
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• Maximum manageable obstacle: 300 mm height,

• Maximum manageable crevasse: 700 mm length,

• Range: 120 km in four traverses,

• Operating life: 78 h.

At the time it was designed the LRV was a concentrate of high automotive
technology adapted to the peculiar operating conditions that could be found
on the Lunar surface. It marked the first time a vehicle with four steering and
driving wheels was built, with each wheel having its own motor in the hub.
Steering was by wire.

The project was deeply conditioned by the mass and size constraints driven
by the need to be carried to the Moon along with the astronauts by the Lunar
Excursion Module (LEM). Apart from the need to minimize its structural mass,
these constraints forced designers to use a foldable architecture; it is likely that
these considerations were determinant in the use of a by-wire configuration, in
that era a completely immature technology.

A short analysis of the various subsystems and some considerations on what
is still viable today and what, on the contrary, has been out-paced by techno-
logical advances, is reported in the following sections.

C.1.1 Wheels and tires

Pneumatic or solid rubber tires were discarded primarily to reduce the vehicle
mass. In their place tires made with an open steel wire mesh, with a number
of titanium alloy plates acting as treads in the ground contact zone, were built.
Inside the tire a smaller, more rigid frame acted as a stop to avoid excessive
deformation under high impact loads. The outer diameter of the tire was 818 mm.

Although the possibility of using standard pneumatic tires on a planet with-
out an atmosphere may be raised, the lack of air is not the point. The short
duration of use predicted (a single mission and few working hours) allowed such
an innovative technology to be chosen without the need to perform long duration
tests. In future missions aimed at building permanent outposts, things will be
different and more traditional solutions may be needed. It must be noted that
the version of the vehicle used to train the astronauts on Earth had standard
pneumatic tires.

C.1.2 Drive and brake system

The LRV had 4 independent, series wound DC brush electric motors mounted
in the wheel hubs together with harmonic drive reduction gears2. Each motor

2Harmonic drives are reduction gears based on a compliant gear wheel that meshes inside
an internal gear having one tooth more than the former wheel. An eccentric (wave generator)
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was rated 180 W, with a maximum speed of 17,000 rpm. The gear ratio of the
harmonic drives was 80:1. The nominal input voltage was 36 V, controlled by
PWM from the Electronic Control Unit. The drive unit was sealed, maintaining
an internal pressure of about 0.5 bar for proper lubrication and brush operation.

The energy needed for motion was supplied by two silver-zinc primary bat-
teries with a nominal voltage of 36 V and a capacity of 115 Ah (4,14 kWh) each.
The use of primary batteries derives from the fact that each vehicle had to be
used for a single mission, and for a limited time.

The LRV had four cable actuated drum brakes directly mounted on the
wheels. As will be seen later, braking torques are low in vehicles operating in
low gravity conditions and drum brakes are a reasonable solution. They are also
preferable because of dust, which may create problems for disc brakes because
they are more exposed to external contamination. Even if the braking power is
much smaller than that typical of vehicles used on Earth, the lack of air may
cause overheating problems.

The driver interface for longitudinal control was the same T handle that ac-
tuated the steering. Advancing the joystick actuated the motors forward. Pulling
it back actuated reverse, but only if the reverse switch were engaged. Actuating
the brakes required the handle to be pivoted backward about the brake pivot
point.

The wheels could be disengaged from the drive-brake system into a free-
wheeling condition.

C.1.3 Suspensions

Suspensions were fairly standard SLA suspensions, with the upper and lower
arms almost parallel. No anti-dive or anti-squat provisions seem to have been in-
cluded. Springs were torsion bars applied to the two arms, while a conventional
shock absorber was located as a diagonal of the quadrilateral. The ground clear-
ance varied from full load and unloaded conditions by 76 mm (between 356 and
432 mm). These values yield a vertical stiffness of the suspension-tire assembly
of 2.40 kN/m, a very low value. Assuming that the tire was much harder than
the suspension, the natural frequency in bounce was just 0.6 Hz for the fully
loaded vehicle or 1.1 Hz in empty conditions.

C.1.4 Steering

Steering controlled all wheels and was electrically actuated (steer by wire). The
geometry was designed with kinematic steering in mind: Ackermann steering
on each axle and opposite steering of the rear axle with equal angles at front

deforms the first wheel so that for each revolution of the eccentric the flexible wheel moves
by one pitch. Very high gear ratios can thus be obtained while maintaing good efficiency and
little backlash, but the high cost of such devices allows their use only in selected applications,
primarily in robotics.
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and rear wheels. The kinematic wall-to-wall steering radius was 3.1 m. Each
steering mechanism was actuated by an electric motor through a reduction gear
and a spur gear sector; in case of malfunction of one of the two steering devices,
the relevant steering could be centered and blocked and the vehicle driven with
steering on one axle only.

The same T handle controlling the motors and brakes operated the steering
by lateral displacement. A feedback loop insured that the wheels were steered by
an angle proportional to the lateral displacement of the handle, but there was no
force feedback except for a restoring force increasing linearly with the steering
angle up to a 9◦ handle angle, then increasing with a step and finally increasing
again linearly with greater stiffness.

Steering control may be the most outdated part of the LRV, although in a
way it was a forerunner of the 4WS and steer by wire systems currently available.
The 4WS logic was based strictly on kinematic steering. The low top speed
justifies this choice, but only to a point: The low gravitational acceleration of
the Moon implies that sideslip angles are much higher, for a given trajectory
and a given speed, than on Earth. The very concept of kinematic steering is
thus applicable only at speeds much lower than on Earth. Because centrifugal
acceleration is proportional to the square of the speed, the top speed Vmax = 18
km/h is equivalent, from this viewpoint, to the speed at which dynamic effect
starts to appear. No modern 4WS vehicle has such prominent rear axle steering.
Today a much more sophisticated rear steering strategy is present in even the
simplest vehicle with all-wheel steering.

A second difference is that today steer by wire systems are reversible and
the driver interface is haptic, i.e. there is an actuator supplying a feedback that
allows the driver to feel the wheel reaction, as in conventional mechanical steering
systems. The fact that it is possible to drive without a feedback is proven by
the fact that vehicles in videogames and radio controlled model cars can be
operated (the control of the LRV has surprising similarities with that of R/C
model cars) but it is considered unsafe and difficult to operate a full size car in
this way. Because Apollo astronauts needed much training to operate the LRV,
a purposely designed trainer simulating its performance had to be built, it being
impossible to operate the lunar vehicle on Earth.

C.2 TYPES OF MISSIONS

The types of missions requiring the use of vehicles on celestial bodies can be
tentatively subdivided into the following classes3.

1. Robotic exploration missions

2. Robotic exploitation missions

3G. Genta, M. A. Perino, Teleoperation Support for Early Human Planetary Missions,
New Trends in Astrodynamics and Applications II, Princeton, June 2005.
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3. Human exploration missions with robotic rovers to help humans in explo-
ration duties

4. Human exploration missions with vehicles to enhance human mobility

5. Human exploration-exploitation missions requiring construction-
excavation devices.

Vehicle for unmanned missions (1 and 2) are usually very small and slow,
more similar to moving robots than to vehicles, while those for missions 2 and 5
are more similar to earth moving and construction machinery. Even if a good
knowledge of vehicle dynamics is needed to design them properly, these are ma-
chines having little in common with automotive technology. Missions of type 3
require small machines, more similar to robots than to vehicles.

Missions of type 4 require true vehicles that may differ from those used
on our planet due to the different environmental conditions in which they must
operate. But because the goal is essentially the same, namely to transport per-
sonnel and goods from one place to the other, with the required velocity and
safety and in an economical and energetically efficient way, there will be many
points in common.

The first essential difference is that of operating in an environment in which
human life is impossible without suitable protection. The designer has to chose
between two alternatives: A simple mobility device, without any life-support
capability, whose task is to carry humans protected by their own space suit, and
a vehicle providing a true shirt-sleeve environment.

The first solution, like the LRV, allows the us of small and very light vehi-
cles, the minimum size being that of a city car. Vehicles of the second type, which
are true mobile habitats, are larger and more complex machines. A modular ap-
proach may be followed, with a chassis containing all devices offering the required
mobility, on which a habitat may be mounted. Current vehicles similar to this
solution are military vehicles in which the inner space is completely insulated
from the outside to provide some protection from chemical or bacteriological
attacks. The smallest size for vehicles of this type is that of a small van.

C.3 ENVIRONMENTAL CONDITIONS

The first difference between Earth and other celestial bodies is gravitational ac-
celeration. All celestial bodies to be explored (with the exception of Venus, where
g = 8, 87 m/s2, but whose environment is so difficult in terms of temperature,
atmospheric density and pressure that no operation on its surface is planned in
the foreseeable future) are characterized by a gravitational acceleration much
lower than that of Earth. (Table C.1).

All asteroids except the largest have a very low gravitational acceleration,
and their irregular form causes the gravitational acceleration to be variable from
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TABLE C.1. Values of the gravitational acceleration, in m/s2, on the surface of the
Moon, some rocky planets, satellites of giant planets and asteroids.

Planets Mars 3,77 Mercury 3,59

Satellites Moon 1,62
Io 1,80 Europa 1,32
Ganimedes 1,43 Callisto 1,24
Titan 1,35 Triton 0,78

Asteroids Pallas 0,31 Vesta 0,28
Ceres 0,26 Juno 0,09

place to place and not perpendicular to the ground. For instance, the gravita-
tional acceleration on Eros varies between 0.0023 and 0.0055 m/s2.

A low gravitational acceleration g has some advantages, from the possibility
of human explorers carrying very bulky life support equipment to reduced struc-
tural stresses and to reduced power requirements for motion. Another important
advantage is that the weight the vehicle-ground contact must carry is low, mak-
ing floating possible. But performance of vehicles whose mobility is produced by
friction forces is drastically reduced.

Although this does not limit mobility in a strict sense, i.e. the possibility
for the vehicle to move, it does lower the longitudinal and lateral acceleration
of the vehicle and the top speed it can travel. The maximum longitudinal and
lateral accelerations of the vehicle can be assumed to be proportional to the
gravitational acceleration, if the ideal braking and steering approach is used.

The second point is the thin atmosphere. On the Moon there is no at-
mosphere at all, as is true of all asteroids, comets and most satellites of the
outer planets. The atmosphere on Mars is so thin that it can be neglected when
dealing with ground locomotion, although thick enough to support aerodynamic
vehicles or balloons. The only body among those mentioned in Table C.1 having
an atmosphere comparable in density to Earth is Titan.

The lack of an atmosphere with a non-negligible density means no aero-
dynamic drag and thus no constraint to the outer shape of the vehicle. This
may, however, be a negligible advantage if the speed of the vehicle is low due to
poor traction. Moreover, the lack of an atmosphere makes it impossible to use
aerodynamic forces to increase the forces on the ground and thus traction.

A third point is the absence of humidity. The Moon, Mars and asteroid
surfaces are completely of from water. Because the presence of mud produces the
most difficult mobility for wheeled vehicles, this is without any doubt a positive
feature. The surfaces of comets and outer planets’ satellites are rich in ice but
conditions are such that the ice is far from its melting point and the pressure of
the vehicle on the ground is low. The surface of the ice does not melt under the
wheels, offering good traction in these conditions. The soil of Titan may contain
liquid hydrocarbons, but it is unknown whether these produce conditions similar
to muddy ground on Earth.
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A final point is the absence of products of biological origin, important in
giving the peculiar characteristics to the wide variety of soils that can be found
on Earth. Celestial bodies likely to be explored first are covered with regolith,
pulverized rock and gravel, with characteristics that are less variable than those
of soils encountered on Earth.

The Moon, for instance, is covered with a layer of regolith about 2 or 3 m
thick on the so-called maria and 3 to 16 m thick on the highlands. The mean size
of grains varies between 40 and 270 μm, with a preponderance of the smallest
size. The porosity of the soil is high at the surface (40 ÷ 43%), leading to a
density as low as about 1000 kg/m3. Porosity reduces with depth and only 200
mm below the surface the density doubles to about 2000 kg/m3.

The most important parameter for locomotion is the cohesive bearing
strength, which is about 300 Pa on the surface, increasing about ten fold at
200 mm depth4.

Maria are fairly flat, offering few obstacles and a good mobility, as demon-
strated by the last Apollo missions. On the highlands, on the other hand, there
are many craters and mountains with high slopes and obstacles. To travel through
them expeditiously it will be necessary to prepare tracks as soon as the first out-
posts are built.

The surface of Mars is also covered with regolith, with even thinner grains
owing to a more complex geological history, with erosion due to water (present
in very ancient times) and wind. The types of obstacles are much more varied
than on the Moon, and mobility may be quite difficult above all in the zones that
are more scientifically interesting, owing to ravines, canyons, cliffs and boulders
of all sizes.

C.4 MOBILITY

The low value of the pressure on the ground and the lack of water, and thus of
mud, make the use of tracks less convenient than on Earth. The choice of wheeled
vehicles is also suggested by their lower mass (until it is possible to build vehicles
there, vehicles will be carried from Earth), complexity and energy consumption,
along with their greater reliability. Other solutions, such as legged vehicles, were
often considered for robots, but never for transportation vehicles.

The experience gained with the LRV confirms these considerations: That
vehicle never experienced mobility problems and showed no tendency to sink
into the regolith. All the pictures taken on the Moon show that the wheels of
the vehicle, even when fully loaded, ride lightly on the surface (Fig. C.2a).

The sinking of a wheel with a contact area 100 mm in width is plotted
versus the pressure on the ground for 3 different values of the friction angle in
Fig. C.2b. The ratio between tractive and normal force Ft/Fn, in conditions of

4A. Ellery, An Introduction to Space Robotics, Springer Praxis, Chichester, 2000.
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FIGURE C.2. a) Image of the Lunar Rover (LRV) with astronaut Eugene Cernan on
board taken during the third extra-vehicular activity (EVA) in the Apollo 17 mission
(NASA image). b): Sinking z and ratio between tractive and normal force Ft/Fn as
functions of the normal pressure on the ground for 3 different values of the friction
angle for a wheel 100 mm wide

no sinking5 is also reported versus pressure in the same figure. The values of the
friction angle here considered are reasonable, owing to the lack of humidity.

The carrying capacity of the ground seems to be low, but it is more than
enough to support quite a massive vehicle owing to low gravity. Moreover, the
density and the cohesive strength of regolith increase with depth. Thus the car-
rying capacity increases quickly with small values of sinking, much more than
that shown in the figure. The figure was plotted assuming that the properties of
the ground are constant, equal to those characterizing the surface layer.

Finally, rolling resistance is expected to be quite low, owing to the limited
sinking. Its order of magnitude should be similar to that found on roads with a
natural surface on Earth and thus, for a pneumatic wheel, f0 should be about
0,05.

Similar considerations should also hold for Mars, where the soil is also com-
posed of dry regolith.

In terms of obstacle management, wheels can manage at low speed obstacles
whose height is on the order of magnitude of their radius or more if particular
types of suspensions are used, and can traverse ditches whose width is no more
than 70% of their diameter, unless the vehicle layout allows operation with some
wheels off the ground.

5G. Genta, Design of Planetary Exploration Vehicles, ESDA 2006, Torino, Luglio 2006.
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C.5 BEHAVIOR OF VEHICLES IN LOW GRAVITY

As previously stated, the primary difference between operating a ground vehicle
on Earth and on the Moon or Mars or the other bodies to be explored is low
gravity. In vehicles using friction forces to propel and brake the vehicle or control
its trajectory, performance depends upon the forces exerted on the ground and,
if no aerodynamic force is present, on weight. In the following sections only ideal
conditions will be considered; i.e. it is assumed that all wheels work with the
same longitudinal or side force coefficient.

C.5.1 Longitudinal performance

The deceleration that a vehicle may develop in ideal braking conditions is

dV

dt
= μxg . (C.1)

It follows that if the longitudinal force coefficient μx is equal to 0.5, a rea-
sonable value on non-prepared ground, the maximum deceleration that may be
obtained on the Moon (g = 1, 62 m/s2) is 0,8 m/s2. Obviously the deceleration
the vehicle may actually reach is lower, and may be computed in the usual way.

Load transfer does not depend upon the gravitational acceleration, but only
upon the longitudinal force coefficient: If a vehicle brakes with a certain value
of μx, it has the same load shift (obviously in a relative sense) on Earth and on
the Moon. The curve ηf (μx) is then the same, for a given braking system. Note
that the variability of μx may be lower on the Moon than on Earth, because
it is influenced by the presence of water or ice on the ground (possible only on
Earth). A good knowledge of the lunar ground thus makes it possible to design
braking system operating at higher efficiency than usual.

The distance needed to stop the vehicle, computed assuming uniformly de-
celerated motion for values of the deceleration included between 0,2 and 1 m/s2,
is shown in Fig. C.3.

The same holds for acceleration: On Earth the limitations in acceleration
are set primarily by the available power, except for very powerful vehicles or
extremely poor road conditions; on the Moon it is likely that the limitations
come from the power that can be transferred to the ground. A layout with all
wheel drive is advisable to ensure reasonable performance in acceleration.

The low traction available and the simultaneous presence of longitudinal
load transfer makes the use of ABS and traction control devices necessary, even
more so than on Earth, although the lessened variability of ground characteristics
make these systems less useful.

Reduced gravitational acceleration has no effect on the ability to manage
slopes, but does reduce the required power. The steepest slope that can be man-
aged by a 4WD vehicle, assuming ideal driving conditions (i.e. that all wheels
work with the same longitudinal force coefficient) is given by the usual formula

tan(αmax) = imax = μxp
. (C.2)
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FIGURE C.3. Distance needed to stop the vehicle at constant deceleration versus the
speed for values of the deceleration included between 0,2 and 1 m/s2.

Assuming a value of the force coefficients μx = 0.5, a maximum slope
αmax = 27◦, i.e. a 46% grade, is obtained. This can, however, be obtained only
in ideal conditions, and only when using accurate slip control of the wheels.

Taking the difference of the force coefficient at the front and rear wheels
into account, if the height of the center of mass on the ground is hG = a/2,
the values αmax = 22◦, corresponding to imax = 38%, are obtained for a 4WD
vehicle. These values are fairly good, particularly if the low value of the force
coefficient used is considered.

The specific power in W/kg (kW/ton) needed to travel on a slope on the
Moon is reported in Fig. C.4 as a function of the slope. A power of just 2 kW
allows a 1 ton vehicle to travel on level road at more than 50 km/h and to
overcome a 40 % grade at 10 km/h.

C.5.2 Handling

Referring to the concept of ideal steering, if there are no aerodynamic forces and
the road is level, the maximum centrifugal acceleration is

V 2

R
= gμy , (C.3)

where the value of μy is that of the whole vehicle. The relationship between the
minimum radius of the trajectory and the speed in the lunar environment for
various values of μy is shown in Fig. C.5. It has been assumed in plotting the
figure that the value of μy for the vehicle is 70% of that referred to the tires.

Again, in spite of the poor performance, the transversal load transfer is not
less than on Earth, with higher centrifugal accelerations but the same value of



740 Appendix C. VEHICLES FOR EXTRATERRESTRIAL ENVIRONMENTS

FIGURE C.4. Specific power in W/kg (kW/ton) needed to travel on a slope on the
Moon at various speeds, with f0 = 0, 05 and ηt = 0, 9.

FIGURE C.5. Relationship between the radius of the trajectory and the maximum
speed for a vehicle on the Moon with different values of the cornering force coefficient
μy. The sliding factor is assumed to be 70% of the cornering force coefficient of the
wheel

the force coefficient μy. The only point is that the tires are likely to be oversized
owing to the low load (see below), and may work in the part of the C (Fz)
(cornering stiffness-load) curve where load transfer is less important, at least
using linearized models.

In spite of the low speed, the very low cornering forces available may make
the use of modern stability enhancement (ESP, VDC, etc.) systems worthwhile.
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C.5.3 Comfort

Comfort is little influenced by the gravitational acceleration of the planet on
which the vehicle moves: The criteria for bounce and pitch motions, suspension
damping and other suspension characteristics developed for vehicles on Earth
hold on other worlds. There is even an advantage: One limitation to spring
softness in vehicular suspensions comes from the need to limit suspension travel
with changing load. In low gravity, if the springs are designed with dynamic
considerations in mind, the static deflection under load is small presenting no
constraints upon suspension softness. The only limit in this area is the need to
avoid bounce and pitch frequencies that are too low. These may cause motion
sickness.

The human side is another matter. We know little about how a human body
accustomed to no gravity after a few days of space travel will react to vibration
under low gravity conditions. The usual guidelines may not apply as they do on
Earth. The LRV, for example, had a bounce frequency in full loaded conditions
that was too low for comfort, but it is not known that any astronaut suffered
from motion sickness while driving on the Moon. Further studies are needed,
but they must be conducted on site, because low gravity cannot be properly
simulated on Earth.

However, low gravity does cause an unwanted effect on bounce and pitch
motion: The wheels tend to lift from the ground, as is apparent in the movies
taken in the Apollo missions6. It is obvious that at reduced gravitational acceler-
ation, inertia forces become more important with respect to weight, causing the
difficulty in maintaining a good wheel-ground contact when travelling on uneven
ground to increase. This effect can be evidenced by plotting the ratio between
the minimum vertical force (static value minus amplitude of the dynamic force)
and the static force as a function of the frequency when driving on a road with
a harmonic profile of a given amplitude.

A plot of this type for a quarter car with two degrees of freedom with
a sprung mass of 240 kg, unsprung mass of 38 kg, tire stiffness 135 kN/m,
suspension stiffness 15,7 kN/m and optimum damping (1,52 kNs/m) is shown in
Fig. C.6. The results for the lunar environment are compared with those obtained
for Earth.

From the figure it is clear that while on Earth the suspension maintains
contact with the ground even at an amplitude of 10 mm, on the Moon an ampli-
tude as small as 2 mm causes the wheel to bounce at a frequency of about 9 Hz.
For larger amplitudes, the contact of the wheel on the ground is quite uncertain,
with ensuing reduction of the already poor traction and cornering forces. This
problem may be lessened by increasing the damping of the shock absorber or
decreasing the stiffness of the spring, but this would in turn lessen comfort.

6If a further clue were needed, those moves demonstrate that the astronauts were actu-
ally on the Moon. At the speed reached by the LRV, the dynamic behavior of the vehicle is
inconsistent with conditions on Earth.
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FIGURE C.6. Ratio between the minimum vertical force on the ground and the static
force for a quarter car model as a function of the frequency when driving on Earth
(dashed lines) and on the Moon (full lines) on a road with harmonic profile at a given
amplitude h0.

The ground contact problem could suggest the use of at least semi-active
suspensions, or even fully active ones. An interesting possibility is the use of
electromagnetic damping because of the difficulties of cooling standard shock
absorbers in the vacuum of space (Moon) or in a very thin atmosphere (Mars).

C.6 POWER SYSTEM

Travelling in low gravity conditions requires much less power than on our planet:
Rolling resistance is much lower, aerodynamic drag is absent (and at low speeds
like those that can be reached in these conditions it would be negligible even
in an Earth-like atmosphere). Low traction prevents accelerations requiring high
power from being obtained.

The low top speed, linked to the difficulties in acceleration, braking and
cornering, reduces the power requirements in unstationary conditions. In these
conditions electric drive powered by batteries seems to be a good solution, es-
pecially because the cost problems that prevent the use of high performance
batteries on normal vehicles are much less important. If the vehicle must be
used for prolonged periods of time, rechargeable batteries will be used instead
of the primary batteries used on the LRV. They will be charged by the solar (or
better nuclear) power system of the outpost.

An alternative may be fuel cells, using locally produced oxidizer and fuel.
Other more conventional solutions, such as internal combustion engines of

a more or less traditional type fed by locally produced fuel are also viable. On
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Mars, for instance, production of oxygen and methane from ice, surely present in
many places on the planet, and from the abundant atmospheric carbon dioxide
seems a good choice.

Radioisotope thermoelectric generators (RTG) may be a good choice for
small vehicles, while larger ones may use, at least in principle, a small nuclear
reactor directly, even if the use of batteries recharged from a stationary reactor
seems more convenient.

Some power is also needed for thermal control. On the Moon, for instance,
thermal excursions are extreme and the vehicle, even if not operating, must be
protected from the cold during a night that lasts 14 days. The thermal control
systems are not different from those used on space vehicles, and will not be dealt
with here. The same is true of life support systems, although these may not be
a part of the vehicle, but may be a part of the habitat carried on board.

C.7 CONCLUSIONS

The examples above dealt mostly with the Moon, the body where the most likely
need for ground transportation will first arise. On Mars the effects will be less
severe, but the situation will be more or less similar.

When vehicles for the exploration and the exploitation of asteroids are de-
signed, significantly different problems will be encountered, because of the low
gravitational acceleration and the small size of these bodies. The first feature
makes it necessary to proceed with extreme caution to ensure that inertial forces
do not make the vehicle lift off and become lost in space. The second makes it
useless to move at speeds above a low value. It is likely that vehicles used on
asteroids and comets will have little in common with automotive technology and
will be small space vehicles.

On the other hand, the vehicles that will carry explorers and then colonists
on the surface of the Moon and then on Mars will be essentially similar to motor
vehicles and their designers will need a good knowledge of automotive technology.
Unlike of what was feared in 1960, lunar and martian soil is not at all difficult
and, at least in the flatter zones, offers good carrying capacity and fair traction
because of the lack of humidity. There is no problem in moving at moderate
speed, even without building permanent infrastructures.

It will be harder to reach places in more difficult areas, which on Mars are
the most interesting from a scientific viewpoint, and it is likely that it will be
necessary to build, at the least, dirt roads or tracks.

Worse problems will be encountered when mobility at higher speed is neces-
sary. Here the worst problems will come from the low gravitational acceleration.
Roads with a good surface and large radii may be a partial solution, but it is
likely that other approaches will be followed, such as hopping vehicles (perform-
ing parabolic flights is not energetically infeasible, owing to low gravity), and
above all guided vehicles on rails or, more likely, maglev vehicles. The latter may
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be particularly suitable to low gravity conditions, but these are solutions for a
more distant future, when traffic density will justify building costly infrastruc-
tures.

In the short and medium term robotic and manned vehicles will be based on
more or less standard automotive technology, benefiting from the recent advances
of the latter. Drive and brake by wire may allow performance satisfying the needs
of planetary exploration with the required safety, while semi-active and active
suspensions will increase comfort to acceptable levels.



Appendix D
PROBLEMS RELATED TO ROAD
ACCIDENTS

As discussed in Part III, the cost of accidents due to the use of motor vehicles,
both in terms of human lives and economic losses, is quite high. the goal of
increasing the safety of motor vehicles is generally considered a technical and
social priority.

The actions taken to reduce both the number and severity of accidents are
both technical and legal and involve many disciplines. Automotive engineers are
involved both in the design of the vehicle and, as a consultant of courts or law
makers, in the reconstruction of accidents. Their aim is to ascertain responsi-
bilities and introduce into the standards and rules those provisions necessary to
prevent accidents or reduce their consequences.

It must be noted that the reconstruction of an accident is often a difficult
task. The expert, who usually acts as a consultant of the court or of one of the
persons involved, may have only a partial knowledge of the situation. The only
known data are in many cases the positions of the vehicles after the accident
plus any marks that may remain on the road, and sometimes even these are
uncertain and affected by large errors. A road accident, occurring in a very short
time and usually in an unexpected way, can have a large psychological impact on
witnesses and protagonists. This, together with the limited technical knowledge
of the persons involved and the economic interests at stake, may make the reports
of witnesses difficult to interpret and weigh correctly, particularly when they lead
to conflicting reconstructions.

The traditional methods used in the reconstruction of accidents are based
on rough approximations, which are, however, justified by the uncertainties and
sometimes the quick variations of the parameters of the problem. Only the use
of more elaborated numerical models, implemented on computers, can produce
higher accuracy.
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D.1 VEHICLE COLLISION: IMPULSIVE MODEL

A frequent scenario in the reconstruction of accidents is a collision between ve-
hicles or between a vehicle and an obstacle. The simplest model deals with the
collision as an impulsive phenomenon, i.e., it assumes that the time during which
the vehicles remain in contact (typically on the order of 0.1 s) is vanishingly short
and that the forces they exchange are infinitely large. Mathematically the forces
may be represented by a Dirac impulse function. Their study is based on the
momentum theorem, stating that the variation of the momenta of the vehicles
is equal to the impulse of the forces they exchange.

Because the forces the vehicles exchange during the collision are larger by
orders of magnitude than the other forces acting on them, this approach is quite
correct, even if it has the disadvantage of not allowing us to study what happens
during the impact but only how the motion changes between instant t1 preceding
the collision and instant t2 following it.

Remark D.1 It is meaningless to ask what happens during a phenomenon whose
duration is zero by definition.

D.1.1 Central head-on collision

The simplest case is that of a head-on collision in which the velocities of the cen-
tres of mass of the vehicles lie along the same straight line (Fig. D.1a). Actually,
if the velocities ẋA and ẋB have the same sign a rear collision occurs while a
head-on collision is characterized by opposite signs of the velocities.

The relative velocity
VR = ẋB − ẋA (D.1)

must be negative; otherwise the vehicles do not approach each other.
During the collision the absolute value of the relative velocity decreases

between times t1 and time ti, when the centres of mass are at their minimum
distance. In the rebound phase, between times ti and t2, the relative velocity

FIGURE D.1. Central head-on collision. (a) Situations before the collision and at time
t1; (b) relative velocity and distance between the centres of gravity as functions of time.
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becomes positive (Fig. D.1b). The distance between the centres of mass is plotted
in the same figure. The final crush s of the vehicles is the difference between d1

and d2.
As already said, however, the impulsive model does not show what happens

between t1 and t2. The conservation of momentum allows the relationship to be
written as

mAẋA1 + mBẋB1 = mAẋA2 + mBẋB2 . (D.2)

Because the collision is generally inelastic, the kinetic energy is not conserved

1
2
mAẋ2

A1
+

1
2
mBẋ2

B1
≥ 1

2
mAẋ2

A2
+

1
2
mBẋ2

B2
; (D.3)

the two sides being equal in the case of a perfect elastic collision.
The position and the velocity of the centre of mass of the system made by

the two vehicles are simply

xG =
mAxA + mBxB

mA + mB
, (D.4)

ẋG =
mAẋA + mBẋB

mA + mB
. (D.5)

A consequence of the conservation of the momentum is the conservation of
the velocity of the centre of mass of the system:

ẋG1 = ẋG2 .

The velocities of the vehicles can thus be expressed as functions of the
velocity of the centre of mass, which remains constant, and of the relative velocity,
a function of time

ẋA = ẋG − VR
mB

mA + mB
, ẋB = ẋG + VR

mA

mA + mB
. (D.6)

The kinetic energy of the system can thus be written in the form

T =
1
2

[
ẋ2

G(mA + mB) + V 2
R

mAmB

mA + mB

]
. (D.7)

As the velocity of the centre of mass is constant, the maximum energy
dissipation occurs when the relative velocity vanishes. It is therefore possible to
state a lower and an upper bound to the kinetic energy after the collision

1
2
ẋ2

G(mA + mB) ≤ T2 ≤ 1
2

[
ẋ2

G(mA + mB) + V 2
R1

mAmB

mA + mB

]
. (D.8)

The minimum kinetic energy (expression on the left) occurs when the col-
lision is perfectly inelastic and the two vehicles remain attached to each other.
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In the case of a perfectly elastic collision, the absolute value of the relative ve-
locity after the impact is equal to that at time t1:

VR2 = −VR1 .

A restitution coefficient e∗ is usually defined as1

e∗ = −VR2

VR1

. (D.9)

In case of a perfectly elastic collision e∗ = 1, while e∗ = 0 for inelastic
impacts. In all actual impacts 0 < e∗ < 1.

The energy dissipated during the collision is then

T2 − T1 =
1
2

mAmB

mA + mB

(
V 2

R1
− V 2

R2

)
=

1
2

mAmB

mA + mB
V 2

R1

(
1 − e∗

2
)

. (D.10)

In the first part of the collision, from time t1 to time ti, the relative velocity
decreases to zero and the kinetic energy reduces to a minimum, given by the
expression on the left side of Eq. (D.8). The energy related to velocity VR1

transforms partly into elastic deformation energy, with part of it dissipated as
heat. In the second part of the collision, from time ti to time t2, a fraction of
this energy is transformed back to kinetic energy. The ratio between the energy
restituted in the second phase and that subtracted from the kinetic energy in
the first is e∗2.

In motor vehicle collisions the value of e∗ is low, typically in the range of
0.05 ÷ 0.2 for impacts with large permanent deformations. It depends, however,
on the relative velocity and may be higher in low speed collisions, tending to
unity when no permanent deformations are left.

The velocities of the vehicles after the impact are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋA2 = ẋA1 + mBVR1

1 + e∗

mA + mB

ẋB2 = ẋB1 − mAVR1

1 + e∗

mA + mB
.

(D.11)

D.1.2 Oblique collision

Seldom is the situation as described in Fig. D.1; usually the velocity vectors of
each of the two vehicles do not pass through the centre of mass of the other
as in Fig. D.2. If the collision is considered as an impulsive phenomenon, the
conservation of momentum still holds⎧⎨

⎩
mAẋA1 + mBẋB1 = mAẋA2 + mBẋB2

mAẏA1 + mB ẏB1 = mAẏA2 + mB ẏB2 ,
(D.12)

1Symbol e∗ will be used for the restitution coefficient instead of e to avoid confusion with
the base of natural logarithms.
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FIGURE D.2. Oblique collision.

but does not allow us to solve the problem of projecting the situation after
the collision from that preceding it. Nor does the assessment of a coefficient of
restitution allow us to obtain a solution, because the conditions to be stated are
two and not one (Eq. (D.12) contains two conditions and 4 unknowns).

Assume that the contact surface at the moment of maximum deformation
is flat and state a reference frame Oxy centred at point O in which the resultant
of the contact forces is applied, with the x-axis perpendicular to the contact
area. Note that the components of velocities Vi of the vehicles are plotted in the
figure in the direction of the positive axes: Practically speaking, some of them
are negative. The vehicles may also have an angular velocity Ω; if not at time
t1, then surely at time t2.

The impulsive model implies that the duration of the impact is zero: It may
thus be thought of as the collision between two rigid bodies, predeformed as
shown in the figure.

The velocity of point O, considered as belonging alternatively to vehicle A
and vehicle B, is

�VAO
=

⎧⎨
⎩

ẋGA
− ΩAyA

ẏGA
+ ΩAxA

⎫⎬
⎭ , �VBO

=

⎧⎨
⎩

ẋGB
− ΩByB

ẏGB
+ ΩBxB

⎫⎬
⎭ , (D.13)

where xA, yA, etc. are the coordinates of the centres of mass in the Oxy frame.
Note that both xA and yA are negative in the figure.

The relative velocity of vehicle B with respect to vehicle A at point O is

�VR = �VBO
− �VAO

=

⎧⎨
⎩

ẋGB
− ẋGA

− ΩByB + ΩAyA

ẏGB
− ẏGA

+ ΩBxB − ΩAxA

⎫⎬
⎭ . (D.14)

The x component of the relative velocity, hereafter written as VR⊥ is the
velocity at which the two surfaces approach each other, or better, move away
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from each other, as a positive value means that the distance between the surfaces
increases. The y component VR‖ is the velocity at which the surfaces slide over
each other and can be either positive or negative.

As in the case of the central impact, it is possible to define a restitution
coefficient

e∗ = −
VR⊥2

VR⊥1

.

Each vehicle receives an impulse from the other that is equal to its change
of momentum. Indicating with �I the impulse received by vehicle A from vehicle
B (the impulse received by vehicle B from vehicle A is then −�I), the momentum
theorem applied to the two vehicles may be written in the form

{
Ix = mA (ẋA2 − ẋA1)
Iy = mA (ẏA2 − ẏA1)

{
−Ix = mB (ẋB2 − ẋB1)
−Iy = mB (ẏB2 − ẏB1) .

(D.15)

Similarly the conservation of the angular momentum can be written in the
form ⎧⎨

⎩
IxyA − IyxA = JA (ΩA2 − ΩA1)

IxyB − IyxB = −JB (ΩB2 − ΩB1) .
(D.16)

A single relationship is still needed. It is possible to relate the components of
the impulse in a direction perpendicular to the impact surface Ix to the tangential
component Iy using a simple relationship

Iy = λIx , (D.17)

where λ is a kind of friction coefficient in the zone where the two vehicles are
in contact. Because the vehicles usually interlock with each other, its value may
be far higher than that of an actual coefficient of friction. Moreover, its value
changes in time and only an average value is required. Its sign is the same as
that of ratio VR⊥/VR‖ .

By introducing equations (D.15) and (D.16) into Eq. (D.14), it follows that

VR⊥2
= VR⊥1

− Ix (a − λb) , (D.18)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a =
1

mA
+

1
mB

+
y2

A

JA
+

y2
B

JB

b =
xAyA

JA
+

xByB

JB
.

The value of the x component of the impulse is then

Ix = VR⊥1

1 + e∗

a − λb
. (D.19)
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The direct problem, i.e. that of finding the conditions after the collision
(time t2) from those at time t1 is now easily solved. Once the components VR⊥1

and VR‖1
are computed, the sign of λ is known and the impulse can be computed

from equations (D.19) and (D.17). The velocities after the collision are thus
computed through equations (D.15) and (D.16).

For the inverse problem, i.e. that of finding the conditions before the collision
(time t1) from those at time t2, Eq. (D.19) can be modified as

Ix = −VR⊥2

1 + e∗

e∗ (a − λb)
(D.20)

and a procedure similar to the previous one can be followed.
The problem is the assessment of the values of coefficients λ and e∗ and

of the positions of the centres of mass of the vehicles with respect to point O,
because the position of the latter cannot usually be evaluated with precision.
It is possible to repeat the computation with different values of the uncertain
parameters in order to define zones in the parameter space where the solutions
must lie and to rule out possible reconstructions of the accident. Some solutions
can be ruled out by remembering that a − λb must be positive, as both Ix and
Vi1 are negative, if vehicle A is in the half plane with negative x.

D.1.3 Collision against a fixed obstacle

A particular case is that of the collision against a fixed obstacle (Fig. D.3). The
equations seen above still apply, provided that

1
mB

=
1

JB
= ẋB = ẏB = 0 ,

i.e. the fixed obstacle is considered as a vehicle with infinite mass travelling at
zero speed.

FIGURE D.3. Collision against a fixed obstacle.
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It then follows that

�VR =

⎧⎨
⎩

−V cos(α) − ΩyG

−V sin(α) + ΩxG

⎫⎬
⎭ , (D.21)

I =
mr2(1 + e∗)[−V1 cos(α) − Ω1yG]

r2 + yG(yG − λxG)
, (D.22)

where

r =

√
J

m

is the radius of gyration of the vehicle.
If the angular velocity Ω1 is negligible, the expressions for the velocity after

the impact are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ2 = ẋ1
yG(yG − λxG) − r2e∗

yG(yG − λxG) + r2

ẏ2 = ẏ1 − ẋ1
λr2(1 + e∗)

yG(yG − λxG) + r2

Ω2 = ẋ1
(yG − λxG)(1 + e∗)
yG(yG − λxG) + r2

.

(D.23)

If ẋ2 > 0 or Ω2 > 0 the vehicle has a second collision with the obstacle
with the rear part of the body or, in practice, it undergoes a deformation that
displaces the point of contact rearward, with a change in the values of xG and
yG: It is impossible that ẋ2 > 0 after a collision. In case of a perfectly inelastic
impact the vehicle finally slides along the obstacle. The deformations are such
that

yG − λxG ≈ 0 , ẋ2 = Ω2 = 0 , ẏ2 = ẏ1 − λẋ1.

If the obstacle is a flat surface, λ is the coefficient of friction.

D.1.4 Non-central head-on collision

Consider a head-on collision in which the velocities of the centres of mass of the
vehicles do not lie along the same straight line (Fig. D.4).

If the vehicles have no angular velocity before the collision, it follows that

ẏA1 = ẏB1 = ΩA = ΩB = 0 , ẋA1 = VA , ẋB1 = VB .

The components of the relative velocity are then

VR⊥1
= VB − VA , VR‖1

= 0

and, because the slip velocity is nil, λ can be assumed to vanish.
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FIGURE D.4. Non-central head-on collision.

FIGURE D.5. Lateral collision.

The expressions for the velocities after the impact are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋA2 = VA + (VB − VA)
1 + e∗

amA

ẋB2 = VB − (VB − VA)
1 + e∗

amB

ΩA2 = (VB − VA)
yA(1 + e∗)

aJA

ΩB2 = − (VB − VA)
yB(1 + e∗)

aJB
.

(D.24)

D.1.5 Lateral collision

Consider a lateral collision in which the velocities of the centres of mass of the
vehicles are perpendicular to each other (Fig. D.5).

If the angular velocities of the vehicles are vanishingly small before the
collision

ẏA1 = ẋB1 = ΩA = ΩB = 0 , ẋA1 = VA , ẏB1 = VB ,



754 Appendix D. PROBLEMS RELATED TO ROAD ACCIDENTS

it follows that
VR⊥1

= −VA , VR‖1
= VB

and then
Ix = −VA

1 + e∗

a − λb
, (D.25)

where λ is negative if both VA and VB are positive.
The expressions for the velocities after the impact are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋA2 = VA

[
1 − 1 + e∗

mA(a − λb)

]

ẏA2 = −VAλ
1 + e∗

mA(a − λb)

ΩA2 = − (yA − λxA)
(1 + e∗)

JA(a − λb)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋB2 = VA
1 + e∗

mB(a − λb)

ẏB2 = VB + VAλ
1 + e∗

mA(a − λb)

ΩB2 = (yB − λxB)
(1 + e∗)

JA(a − λb)
.

(D.26)

D.1.6 Simplified approach

The problem is often simpler. If the directions of the velocity vectors of the
vehicles before and after the impact can be estimated independently, there is no
need to assume the values of e∗ and λ. With reference to Fig. D.6, Eq. (D.12)
can be written as⎧⎨
⎩

mAVA1 cos(θA1) + mBVB1 cos(θB1) = mAVA2 cos(θA2) + mBVB2 cos(θB2)

mAVA1 sin(θA1) + mBVB1 sin(θB1) = mAVA2 sin(θA2) + mBVB2 sin(θB2) .
(D.27)

If all angles θi at times t1 and t2 are known or can be assumed, both the
direct or the inverse problem are easily solved. Once the velocities have been
computed it is possible to obtain the angular velocities, the components of the
impulse, e∗ and λ.

In the inverse problem, the velocity after the impact is usually obtained
from the distance travelled by the two vehicles between time t2 and the instant
t3 in which all motion ceases. The wheels are often assumed to be blocked, which
is correct only if the deformations due to the collision are sufficiently large, or if
the sideslip angles are sizeable enough to cause the wheels to slide on the ground.
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FIGURE D.6. Simplified approach: velocities at times t1 and t2.

If the vehicle slides for a distance d before coming to a stop without hitting any
other obstacle, the velocity V2 can be computed by equating the kinetic energy
of the vehicle after the collision with the energy dissipated by friction, that is
the product of the friction force mgf by the distance travelled d:

V2 =
√

2gdf , (D.28)

where f is the coefficient of friction between the tires and the road.
If at time t3 the vehicle hits an obstacle with a speed V3 after sliding for a

distance d, it follows that

V2 =
√

2gdf + V 2
3 . (D.29)

Velocity V3 may be assessed only from the damage suffered by the vehicle
during the secondary collision, a difficult and process that is affected by large
uncertainties and errors.

Remark D.2 The larger the value of the friction coefficient f or the distance
d, the less significant are the errors in the estimate of V3.

Another source of uncertainties is the evaluation of f , which is affected not
only by road conditions and the possibility that some of the wheels are rolling
instead of slipping but also by the actual motion of the vehicle.

The motion of the vehicle on the road after the collision is actually not
a simple translational motion but a combination of translation and rotation.
As already seen, the angular velocity of the vehicle after the collision may be
computed even if only approximately for the position of the point of application
of the shock load can only be guessed. At first glance it would seem that the
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rotation ψ3 −ψ2 of the vehicle during the time from t2 to t3 could be computed
the same way as the translational motion

ψ3 − ψ2 =
JzΩ2

2

2mgdf
, (D.30)

where d is the average distance between the centre of mass and the centres of
the contact areas of the wheels.

This is, however, incorrect as the coefficient of friction cannot be applied
to translational and rotational motions separately. But as it will be shown in
Section D.3.1, it is possible to approximate the correct results by studying the
two motions separately with two “equivalent” friction coefficients, both of which
are smaller in magnitude than the actual coefficient f .

Example D.1 Two cars collided at the intersection of two urban three-lanes streets.

Evaluate the speed of the vehicles at the instant of the collision, knowing only the final

positions at which they stopped and their directions at time t1. Vehicle A stopped without

any secondary collision while vehicle B ended up against a wall. From the deformations

caused by the secondary impact, a value V3 ≈ 11 m/s ≈ 40 km/h is assumed.

With reference to the xy frame shown in Fig. D.7, the coordinates of the centres

of mass of the vehicles at time t3 are xA3 = 9.2 m, yA3 = 12.8 m, xB3 = 13.2 m and

yB3 = 12.0 m. The masses of the vehicles are mA = 850 kg and mB = 870 kg.

Because the exact position of the vehicles at time t1 is unknown, each of them will

be assumed to have traveled in the centre of the right, centre and left lane. As a result,

nine possible positions of the impact point will be considered. With simple geometrical

computations, the values of yA1 and yB1 as functions of the position of vehicle A and

those of xA1 and xB1 as functions of the position of vehicle B are

Vehicle A Vehicle B

Lane yA1 yB1 xA1 xB1

Right −9.8 10.2 6.0 8.6
centre −6.3 −6.7 2.6 5.2
Left −2.8 −3.2 −0.8 1.8

It is straightforward to compute the distances dA and dB for the nine cases under

study. Vehicle A stops without hitting any obstacle. As its velocity was almost perpen-

dicular to its longitudinal axis and some rotation occurred, owing to the fact that the

front wheels were blocked as a consequence of the impact, a fairly high value of the

friction coefficient can be assumed, namely fA = 0, 45.
Vehicle B had only one wheel locked and moved in a direction less inclined with

respect to its longitudinal axis; an average value of the friction coefficient, fB = 0, 30
is then assumed. In all nine cases the values of VA2 and VB2 can be easily obtained

VA2 =
√

2gdAfA , VB2 =
√

2gdBfB + V 2
B3

.
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FIGURE D.7. Example D.1; positions of the vehicles.

Angles θA1 and θB1 are respectively θA1 = 0 and θB1 = 90◦. Angles θA2 and θB2

can be computed as

θA2 = arcsin

(
yA3 − yA1

dA

)
, θB2 = arcsin

(
yB3 − yB1

dB

)
.

By solving Eq. (D.27) in VA1 and VB1 , the following values of the velocities are

obtained:

Velocity VA1 (in km/h)

Vehicle A

Lane Right centre Left

Left 49.3 53.3 59.0

Vehicle B centre 34.9 38.5 42.8

Left 19.1 21.2 24.1
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Velocity VB1 (in km/h)

Vehicle A

Lane Right centre Left

Left 99.7 91.4 81.7
Vehicle B centre 103.3 95.7 86.8

Left 105.5 98.6 90.7

It is very unlikely that vehicle B was in the left lane, as this would yield too low

a value for the velocity of vehicle A. However, its position has little effect on the value

of the velocity of vehicle B, which, in this case, is the most important parameter to be

determined. Some uncertainty in this result remains, because values between 81.7 and

105.5 km/h are possible.

This approach, which may be defined as traditional, still carries a wide uncertainty

margin, primarily linked to the evaluation of the friction coefficients and the velocities

after the impact, in case a vehicle stops by hitting an obstacle. Its simplicity allows

one to perform the computations several times and to obtain upper and lower bounds of

the results. The values of the initial velocities can then be used to perform more accurate

numerical simulations.

Example D.2 Two cars collided at the intersection of two urban streets (Fig. D.8).

Both the collision point and the final positions at which they stopped (both vehicles

stopped without hitting any obstacle) are known. Compute the speeds at which the two

vehicles reached the intersection and the positions taken by the vehicles after the impact.

The inertial properties of the vehicles, the coordinates of their centre of mass and

their yaw angles at times t2 and t3 with reference to the frame xy shown in the figure

are mA = 1130 kg, mB = 890 kg, JA = 1780 kg m2, JB = 1400 kg m2, xA1 = 0.3 m,

yA1 = 0.6 m, xB1 = 0.7 m, yB1 = 1.4 m, xA3 = −4.4 m, yA3 = 8.5 m, xB3 = 1.7 m,

yB3 = 4.9 m, ψA1
= 90◦, ψB1

= 180◦, ψA3
= 120◦ and ψB3

= 20◦.

The positions of the centres of mass of the vehicle with reference to frame x′y′

centred on the impact zone are x′
GA

= −0.825 m, y′
GA

= −0.80 m, x′
GB

= 1.575 m and

y′
GB

= 0.

For the computation of the velocities after the impact a value fA = 0.15 was

assumed for the first vehicle (after the impact it travelled with little sideslip) and fB =

0.50 was assumed for the second. As the distances travelled after the collision are dA =

9.123 m and dB = 3.640 m, the velocities at time t2, computed through Eq. (D.28), are

VA2 = 18.7 m/s = 67.3 km/h and VB2 = 5.98 m/s = 21.5 km/h.
The velocity vectors are then

�VA2 =

{
−9.65
16.22

}
m/s , �VB2 =

{
−1.64

5.75

}
m/s .

The velocities before the collision are easily obtained from Eq. (D.27)

�VA1 =

{
0

20.75

}
m/s , �VB1 =

{
−13.89

0

}
m/s .
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FIGURE D.8. Example D.2; positions of the vehicles at times t1 and t3 and reconstruc-
tion of the accident; computed positions at times 0.05, 0.1, 0.15, 0.2, 0.3 and 0.5 s from
time t2.

The two cars were then travelling at 74.7 km/h and 50.0 km/h.
This result was obtained using a much simplified model. A more detailed approach

can be used to confirm the results, using equations (D.25) and following, the only dif-
ference being that in this case vehicle B hits vehicle A. Because VR⊥1

= VB1 = 13.89
m/s and VR‖1

= −VA1 = −20.75 m/s, it follows that

Ix = VB
1 + e∗

a − λb
= −13, 890(1 + e∗)

2.368 − 0.371λ
.

The components of the impulse can be easily computed from the velocities before

and after the impact: Ix = −10, 905 Ns and Iy = −5, 119 Ns. The value λ = 0.469 is

easily obtained, a high but realistic value owing to the possibility of the vehicles becoming

interlocked.

By equating the two values of Ix the value e∗ = 0.723 for the restitution coeffi-

cient is obtained. It is also quite high, but is again justified by the small permanent

deformations found on the vehicles.
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The angular velocities after the impact are then obtained

ΩA2 =
Ixy′

A − Iyx′
A

JA
= 2.52 rad/s ,

ΩB2 =
−Ixy′

B + Iyx′
B

JB
= −5.75 rad/s .

To compute the rotations of the vehicles during the accident Eq. (D.30) can be used. The

value f = 0.7 can be used for both vehicles (see Sec. D.3.1). The geometrical parameters

are dA = 1.45 m and dB = 1.35 m. The results are

|ψA3
−ψA2

| = 0, 502 rad= 29◦ ,

|ψB3
−ψB2

| = 2, 813 rad= 161◦ .

which are close to those measured on the road. The positions of the vehicle at times

between t2 and t3 are reported in Fig. D.8.

D.2 VEHICLE COLLISION: SECOND
APPROXIMATION MODEL

D.2.1 Head on collision against a fixed obstacle

The model studied in the previous sections was based on the assumption that
the collision is an impulsive phenomenon. Consequently, it was impossible to
assess what might happen during the impact. The shock, however, has a short
but finite duration, making it possible to study how the displacement, velocity
and acceleration change between t1 and t2.

Consider first a head-on collision against a fixed obstacle, like that occur-
ring during a crash test (Fig. D.9). The force that the vehicle receives from the
obstacle has a time history of the type shown in Fig. D.10a. The curve is not
smooth because the compliance of the front of the vehicle changes strongly as
it is crushed, owing to geometric nonlinearities, buckling and other phenomena.
The experimental law may, however, be approximated by a smooth curve F (t)
while retaining the most important features of the actual behavior of the vehicle
(dashed curve in the figure).

The linkage of force and acceleration is complex, as the vehicle’s configura-
tion changes in time, with each point of the vehicle having its own acceleration.
However, with the exception of the front part, which is crushed, the vehicle may
be considered as a rigid body.

The position of the centre of mass may be considered as fixed to the un-
deformed part of the vehicle. The acceleration can thus be obtained directly
from the force F (t); in an actual crash test the acceleration is usually measured
by accelerometers located on the vehicle and the force is obtained from these
readings.
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FIGURE D.9. Numerical simulation of a crash test against a rigid barrier: Deformation
of the vehicle at various instants (fuinite element method).

FIGURE D.10. (a) Force the vehicle receives from the obstacle during a crash test
as a function of time. Experimental curve and mathematical empirical law. (b) Time
histories V (t), a(t) and s(t) obtained from the empirical law F (t).

From the acceleration it is straightforward to compute the velocity and the
deformation of the vehicle.
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A law approximating the acceleration is2

a = τ(1 − τ)β cV1

t2
, (D.31)

where t2 is the duration of the impact,

τ =
t

t2
(0 ≤ τ ≤ 1)

is the nondimensional time and c and β are nondimensional constants.
Such a law has a vanishing derivative (jerk equal to zero) at the end of the

collision (t = t2) while the jerk at the beginning of the collision (t = 0) is other
than zero; both these features comply with the intuitive physical interpretation
of the phenomenon.

The velocity may be obtained by integrating Eq. (D.31):

V = −cV1

[
(1 − τ)β+1

β + 1
− (1 − τ)β+2

β + 2

]
+ K . (D.32)

The constant of integration K can be computed because at time t = 0 the
speed is V = V1

K = V1

[
1 +

c

(β + 1)(β + 2)

]
. (D.33)

By remembering the definition of the restitution coefficient

e∗ = −V2

V1
,

it is possible to compute the value of constant c. By computing the velocities
at times t2 and t1, i.e. for τ = 0 and τ = 1, and equating their ratio to −e∗, it
follows that

c = −(1 + e∗)(β + 1)(β + 2) . (D.34)

The final expression of the velocity is thus

V = V1

{
(1 + e∗) [1 + τ(β + 1)] (1 − τ)β+1 − e∗

}
. (D.35)

A further integration gives the distance travelled s

s = V1t2

{
−(1 + e∗)

[
(1 − τ)β+2 − β + 1

β + 3
(1 − τ)β+3

]
− e∗τ + K1

}
. (D.36)

If at time t = 0 the distance is assumed to be nil, s describes the crushing of
the front part of the vehicle. This statement allows the value of the integration
constant K1 to be computed

K1 =
2(1 + e∗)

β + 3
. (D.37)

2R.H. Macmillan, Dynamic of Vehicle Collisions, Inderscience Enterprises, Jersey 1983.
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The final expression of the displacement is thus

s = V1t2

(
1 + e∗

β + 3
{
2 − (1 − τ)β+2 [2 + (β + 1)τ ]

}
− e∗τ

)
. (D.38)

At time τ = 1, the displacement directly yields the residual crushing of the
vehicle s2

s2 = V1t2

[
2(1 + e∗)

β + 3
− e∗

]
. (D.39)

In case of an elastic collision, the residual crushing must vanish: If e∗ = 1
then s2 = 0. From this statement a first relationship between β and e∗ can be
stated: β = 1 if e∗ = 1.

Parameters β and e∗ characterizing the impact depend on many factors,
beginning with the structural characteristics of the vehicle and including the
type of impact and, in the case of head-on collision against a fixed obstacle, the
impact velocity V1 and time t2.

A primary characteristic of the vehicle is its stiffness at the instant it enters
into contact with the obstacle, namely its crushing modulus (Fig. D.11). With
simple kinematic considerations it follows that

K = m

(
da

ds

)
τ=0

= m

(
da

dt

)
τ=0

(
ds

dt

)−1

τ=0

=
m

V1

(
da

dt

)
τ=0

. (D.40)

By introducing the expression (D.31) of the acceleration into Eq. (D.40), it
follows that

K = m
(1 + e∗)(β + 1)(β + 2)

t22
. (D.41)

FIGURE D.11. Force received by the vehicle during a head-on collision against the
obstacle as a function of the crushing s.
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The value of K can be obtained from crash tests. Values between 1 and 2
MN/m are found in the literature.

The crushing process is far from linear. A qualitative plot of force F against
the displacement s is reported in Fig. D.11: The inelastic behavior of the vehicle
and the hysteresis cycle are clearly shown. The area below the line from point A
to point B is the energy absorbed by the vehicle from time t1 to the instant ti
at which the maximum displacement is reached. In the case of collision against
a fixed rigid obstacle it is equal to the kinetic energy of the vehicle.

The area below the line from point B to point C is the energy that is
transformed back into kinetic energy during the rebound phase from time ti
to t2. If e∗ = 0 such an area vanishes and s2 = smax. If, on the contrary
e∗ = 1 line BC is superimposed to line AB and the area of the hysteresis cycle
vanishes.

The plot is usually obtained from a crash test, either performed on an ac-
tual vehicle or simulated by computer. The numerical simulation is a complex
task, owing to the complex geometry of the front part of the vehicle and the
nonlinearities of all types involved. A large and fast computer is thus required.
Some results obtained through the finite element method, which at present is the
only method allowing problems of this complexity to be tackled, are reported in
Fig. D.9. The computation has been performed through step by step integration
in time of the equations of motion; the deformed mesh at four different time
values has been reported in the figure.

The law F (s), obtained through the empirical law F (t) defined above, is
often assumed to be independent of the deformation rate ds/dt. Such an assump-
tion has no theoretical background but is justified by the fact that it is substan-
tiated by experimental evidence, at least when the deformation rate is low.

The mean value of the force received by the vehicle

F =
1
t2

∫ t2

0

Fdt (D.42)

can be easily computed by remembering that the total impulse received by the
vehicle is equal to the change of the momentum

F = m
V2 − V1

t2
= −m

V1

t2
(1 + e∗) . (D.43)

If the mean value of force F is small, the permanent deformations are usually
negligible and the impact is close to being elastic, i.e. e∗ ≈ 1. With increasing F
the collision becomes more and more inelastic, i.e. e∗ decreases with increasing
F . It is possible to approximate the dependence of the restitution coefficient e∗

on the average force F with an exponential law (Fig. D.12)

e∗ = e−F/Kr , (D.44)
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FIGURE D.12. Law e∗(F ) approximated by Eq. (D.44).

where Kr, usually referred to as the impact resistance modulus, is the value of
−F at which the coefficient of restitution takes the value

e∗ =
1
e

= 0.368 .

Kr can also be obtained from a crash test. From Equations. (D.41) and
(D.44), it follows that

Kr = m
V1(1 + e∗)
t2 ln(1/e∗)

, (D.45)

which allows Kr to be calculated from quantities that can be measured or com-
puted. Values between 40 and 100 kN have been reported for Kr in the literature.

As seen above, constant β depends on e∗: It takes a unit value when e∗ = 1
and increases when e∗ decreases. Assume that, at least in the case of strongly
inelastic impacts, i.e. near the condition e∗ = 0, the law β(e∗) may be approxi-
mated as

β = β0 − (β0 − 1)e∗ , (D.46)

which, although assumed for e∗ ≈ 0, gives the correct result also for e∗ = 1.
Because β > 1, β0 is always larger than unity. Also β0, which is nondimen-

sional, may be considered as a characteristic of the vehicle, and will be referred
to as the structural index . A large value of β0 characterizes vehicles with a very
stiff front section, while a compliant front section is typical of vehicles with low
β0. Its values are usually close to 2.

Parameters K, Kr and β0 completely characterize a vehicle in terms of
head-on collision against a rigid obstacle. Once they have been measured, it is
possible to compute the laws F (t), a(t) and s(t) from the collision conditions,
namely the velocity V1 and the mass of the vehicle m.
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TABLE D.1. Parameters obtained from crash tests on some European passenger
vehicles.

BMC BMC Ford BMC
Mini 1100 Anglia 1800

m [kg] 720 950 1000 1250
V1[m/s] 14 11,5 14 14

e∗ 0,10 0,08 0,5 0,11
t2[ms] 92 102 103 97

β0 2,35 2,79 2,89 2,16
K [MN/m] 1,27 1,67 1,81 1,80

Kr [kN] 52,3 45,8 47,6 90,7

TABLE D.2. Parameters obtained from crash tests on some American passenger
vehicles.

Sub Compact Interm. Standard Standard
compact 71/72 73/74

m [kg] 1135 1545 1820 2045 2045
V1[m/s] 12 12 10,5 10 10,3

e∗ 0,01 0,01 0,20 0,20 0,20
t2[ms] 102 102 151 147 143

β0 2,50 2,50 2,00 2,00 2,00
K [MN/m] 1,60 2,17 1,03 1,09 1,16

Kr [kN] 28,6 38,8 96,7 93,6 108,8

The values reported in Tables D.1 and D.2 have been obtained from crash
tests published by manufacturers3. The values in the first table are not exactly
comparable with the others because they have been computed from well docu-
mented tests, while not all the parameters were known for the others and the
values of β0 and s2 had to be assumed.

To solve the direct problem, i.e. to obtain the conditions after the collision,
mainly s2 and V2, from V1, it is possible to compute t2 from Eq. (D.45) and to
introduce it into Eq. (D.41), obtaining

KmV 2
1 = K2

r

[
ln

(
1
e∗

)]
(β + 1)(β + 2)

1 + e∗
. (D.47)

Substituting Eq. (D.46) into Eq. (D.47) the latter yields

KmV 2
1

K2
r

=
[
ln

(
1
e∗

)]
(β0 + 1)(β0 + 2) − e∗(β0 − 1)(2β0 + 3) + e∗

2
(β0 − 1)2

1 + e∗
,

(D.48)
which can be solved numerically in e∗ and then allows the direct problem to be
solved.

3R.H. Macmillan, Dynamic of Vehicle Collisions, Inderscience Enterprises, Jersey 1983.
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The inverse problem, i.e. obtaining the conditions before the collision, pri-
marily V1, from the crushing s2, is also easily solved. From Equations. (D.37),
(D.41) and (D.45) it follows that

s2
K

Kr
= ln

(
1
e∗

)
(β + 1)(β + 2) [2(1 + e∗) − (β + 3)e∗]

β + 3
. (D.49)

Substituting Eq. (D.46) into Eq. (D.49) the latter yields

s2
K

Kr
= ln

(
1
e∗

)[
e∗

2
(β0 − 1)2 − e∗(2β2

0 + β0 − 3) + 3β0 + β0 + 2
]

×e∗(e∗ − 1)(β0 − 1) + 2
−e∗(β0 − 1) + β0 + 3

, (D.50)

which may be solved numerically in e∗ and allowing the inverse problem to be
solved.

Example D.3 Consider a car with β0 = 2, K = 1.2 MN/m, Kr = 65 kN and m =

1000 kg impacting an obstacle at 20 m/s. Compute the parameters of the impact and

laws F (t), a(t) V (t) and s(t).

The numerical solution of Eq. (D.48) yields e∗ = 0.0416 and then β = 1.958, t2
= 0.1 s. The laws F (t), a(t) V (t) and s(t) for this case are plotted in Fig. D.13; the

residual crush is s2 = 757 mm.

D.2.2 Head-on collision between vehicles

The head-on collision between vehicles may be studied using the same model seen
in the previous section, provided the contact surface is assumed to remain planar

FIGURE D.13. Laws F (t), a(t), V (t) and s(t) for Example D.3.



768 Appendix D. PROBLEMS RELATED TO ROAD ACCIDENTS

and the characteristics of the impact, and particularly law F (s), are independent
of the deformation rate. Each vehicle can thus be assumed to impact against a
moving massless obstacle (Fig. D.13a). Each vehicle is modelled as a point mass,
provided with a nonlinear spring, whose characteristics (K, Kr and β0) are those
seen for the collision against a fixed obstacle.

The deformation rates
⎧⎨
⎩

ṡA = ẋb − ẋA

ṡB = −ẋb + ẋB

(D.51)

are positive when the springs are compressed.
The relative velocity VR is then

VR = ẋB − ẋA = −(ṡA + ṡB) . (D.52)

If the curves F (s) for the two vehicles are known, a plot of the type shown
in Fig. D.14b can be drawn. As the total force acting on the virtual obstacle
must vanish,

|FA| = |FB |

for each value of time. The intersections of the curves |FA(sA)| and |FB(sB)|
with any line F = constant thus yield the deformations sA and sB in the same
instant. A third curve in which the force is plotted as a function of the total
deformation s = sA + sB , i.e. of the change of distance between the centres of
mass, can be plotted.

FIGURE D.14. Head-on collision between vehicles. (a) model; (b) forces as functions
of the crush of the vehicles.
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The maximum values of the deformations need not be reached at the same
time: In the figure the maximum deformation is reached at time tA and tB for the
two vehicles, while the distance between the centres of mass is at its minimum
at time tC .

Because the forces acting on the vehicles are simply

FA = mAẍA , FB = mBẍB,

it follows that
FA = −FB = V̇R

mAmB

mA + mB
. (D.53)

If the derivative of the relative velocity has a time history which is of the
same type as that assumed for the acceleration in Eq. (D.31),

V̇R = −cVR1

t2
τ(1 − τ)β , (D.54)

where, as usual,

τ =
t

t2
,

the same model used for the collision against an obstacle is sufficient for the
present case as well.

Instead of m, K, V and s, the relevant equations now contain

mC =
mAmB

mA + mB
, KC =

KAKB

KA + KB
, VR , sC = sA + sB .

Assume that the characteristics of the vehicles and the residual deformation
of one of them, say sA2 , are known. Because curve F (s) has been assumed to
be the same as that characterizing the impact against the barrier, from sA2 it is
possible to compute e∗A directly from Eq. (D.50) and then velocity V ′

A1
4 which

causes the same residual deformation sA2 in an impact with a rigid obstacle.
The maximum value FmaxA

of the force received by the first vehicle is

FmaxA
= KrA

β
βA

A ln
(

1
e∗A

)
(βA + 1)(βA + 2)

(βA + 1)βA+1
. (D.55)

The absolute value of such force is equal to the maximum force acting on
vehicle B. It is thus possible to write an equation identical to Eq. (D.55) with
the characteristics of the second vehicle. Because

βB = β0B
− (β0B

− 1)e∗B ,

it is possible to obtain e∗B and then tB2 , VB1 and sB2 .

4V ′ is the velocity in the equivalent collision against a rigid obstacle.
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The two equivalent collisions against a rigid obstacle are thus completely
characterized. As the curves F (s) are the same in the actual collision and its
equivalents, the energy dissipated in the former is equal to that dissipated in the
latter

ΔE = ΔEA + ΔEB =
1
2
mAV 2

A1

(
1 − e∗

2

A

)
+

1
2
mBV 2

B1

(
1 − e∗

2

B

)
. (D.56)

It is thus possible to consider the actual collision, described by curve C in
Fig. D.14b, by using the same equations seen in the previous chapter with the
mentioned substitutions. The maximum force, already expressed by Eq. (D.55),
and the energy dissipated take the values

Fmax =
sC2KCβ

βC

C (βC + 3)
(βC + 1)βC+1 [2 − e∗C(βC + 1)]

, (D.57)

ΔE =
1
2
mCV 2

C1

(
1 − e∗

2

C

)
. (D.58)

Equations (D.57) and (D.58) contain 3 unknowns βC , e∗C and VR (or VC1 ,
which is the same). A third equation may be obtained considering that force
Fmax can also be expressed as

Fmax = KCVRt2
β

βC

C

(βC + 1)βC+1
. (D.59)

Because
t22 =

mC

KC
(1 + e∗C)(βC + 1)(βC + 2) , (D.60)

computing VR from Eq. (D.58) and substituting the value so obtained into
Equations. (D.59) and (D.60), it follows that

F 2
max = KC

2ΔEβ2β(β + 2)
(1 − e∗)(β + 1)2β+1

. (D.61)

The last equation can be solved in e∗, obtaining

e∗ = 1 − KC
2ΔEβ2β(β + 2)
F 2

max(β + 1)2β+1
. (D.62)

Finally, introducing Eq. (D.62) into Eq. (D.57), the equation

Fmax = sCKC
ββ(β + 3)
(β + 1)β+1

[
1 − β +

2ΔEKC

F 2
max

(β + 2)
(

β

β + 1

)2β
]−1

, (D.63)

is obtained, which may be easily solved numerically in β. It is thus possible to
obtain the values of e∗ and VR, solving the problem.
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The inverse problem, consisting in obtaining the parameters characterizing
the collision once the relative velocity VR is known, is more difficult as it must
be solved in an iterative way. A value of the final crushing s∗2 of one of the two
vehicles is assumed and from it the relative velocity V ∗

R can be computed as seen
above. A new value of the residual crushing, for example obtained as

s∗∗2 = s∗2
VR

V ∗
R

,

can then be computed and a new relative velocity, which is closer to the correct
one, is obtained. The procedure should converge quickly to the required result.
The velocities of the vehicle after the collisions can then be obtained without
further problems.

Example D.4 Consider the head-on collision between two cars whose characteris-

tics are known from crash tests, e.g. the vehicles of the first and fourth columns of

Table D.1.

The characteristics are then mA = 720 kg, mB = 1250 kg, β0A
= 2.35, β0B

= 2.16,

KA = 1.27 MN/m, KB = 1.80 MN/m, KrA = 52.3 kN and KrB = 90.7 kN. The

residual crush of the first vehicle is sA2 = 400 mm. Compute the parameters of the

impact and the relative velocity at time t1.

The parameters characterizing the collision are mC = 456.85 kg and KC = 0.745

MN/m. The coefficient of restitution for the first vehicle is easily computed from the

residual crush by numerically solving Eq. (D.50): e∗A = 0.105. The values of βA, tA2

and VA1 are then βA = 2.208, tA2 = 0.092 s and VA1 = 13.63 m/s.

Equations (D.55), (D.46), (D.41) and (D.45) yield Fmax = 218 kN, e∗B = 0.252,

βB = 1.87, tB2 = 0.098 s, VB1 = 7.85 m/s and sB2 = 202 mm.

The energy dissipated and the total crush are then ΔE = 102 kJ and sC =

602 mm.

Solving Eq. (D.63) in β and using Equations (D.58) and (D.62), the final results

are obtained:

β = 2, 037 , e∗= 0, 159 , VR= 21, 43 m/s .

Example D.5 Consider the vehicles of the previous examples colliding head-on with

velocities VA1 = 26.7 m/s = 96 km/h and VB1 = −13.1 m/s = −47 km/h. Compute

the velocities after the impact.

The relative velocity is VR = 39.8 m/s. By assuming a residual crush of the first

vehicle sA2 = 400 mm in the previous example a relative velocity VR = 21.43 m/s has

been obtained.

Correcting the assumed residual crush linearly, a new trial value sA2 = 743 mm

is obtained, which yields a relative velocity VR = 36.16 m/s that is already close to the

correct values.

With two further iterations a crush sA2 = 823 mm is obtained, together with

e∗ = 0.048, Fmax = 378 kN and ΔE = 360 kJ.
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FIGURE D.15. Polar diagram K(θ) approximated by two arcs of ellipse.

As final results, the velocities after the collision are obtained:

VA2 = 0, 234 m/s = 0, 84 km/h ,

VB2 = 2, 144 m/s = 7, 72 km/h .

D.2.3 Oblique collision between vehicles

The first issue in the study of oblique collisions is the evaluation of the character-
istics of the vehicle: If it is already difficult to obtain the values of K, Kr and β0

for head-on collisions, it is almost impossible to obtain them for a generic impact
direction. If it is possible to find the relevant values for side or rear impacts, the
dependence of the characteristics upon angle θ (Fig. D.15) may be approximated
by two arcs of ellipse, one for the front and one for the rear.

Following the notation of the figure, function K(θ) may be expressed as

KfKl√
K2

f sin2 (θ) + K2
l cos2 (θ)

for 0 ≤ θ ≤ 90◦,

KpKl√
K2

p sin2 (θ) + K2
l cos2 (θ)

for 90◦ ≤ θ ≤ 180◦ .

(D.64)

Similar relationships may be written to approximate the other characteris-
tics of the vehicle.

If the collision, albeit oblique, were central, i.e. the two velocities were
aligned, and the two angular velocities were equal to zero (Fig. D.16a), the
procedure seen above for the head-on collision would still hold, provided that
the correct characteristics of the vehicles were used.

In case of non-central oblique collisions the vehicles are subject also to an-
gular accelerations about the yaw axis z. An approximated but simple way to
take this into account is to substitute the mass of the vehicle against which each
vehicle collides with an effective mass, lower than the actual one. It is question-
able whether it is worthwhile to attempt to refine this model further, because
the assumptions on which the present models are based and the uncertainties in
the data do not allow high precision to be obtained.
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FIGURE D.16. (a) Central oblique collision. (b) Oblique collision in which vehicle A
hits the front part of vehicle B.

Consider the situation of Fig. D.16b: Vehicle A hits the front part of vehicle
B. Neglecting the friction in the contact area (λ = 0), the x component of the
momentum of the second vehicle does not change and the impulse reduces to
its y component. Vehicle B undergoes an acceleration in the y direction and an
angular acceleration

ÿGB
=

F

mB
, θ̈B =

Fd

JzB

. (D.65)

The acceleration of point P, seen as belonging to vehicle B, is then

ÿPB
= ÿGB

+ dθ̈B =
F

mB

(
1 − d2

r2
B

)
, (D.66)

where rB is the radius of gyration. The acceleration of the contact point is thus
equal to the acceleration of the centre of mass of a vehicle having a reduced mass

mrB
= mB

r2
B

r2
B + d2

.

If neither vehicle collides head-on with the other, reference must be made
to the surface in collision, as seen in Section D.1.2. If no allowance is taken for
the friction between the vehicles, the reduced masses of the two vehicles can be
computed with reference to the perpendicular to these surfaces (Fig. D.17a). If
friction is taken into account, reference must be made to a direction inclined
at an angle arctan(λ) with respect to the perpendicular to the collision surface
(Fig. D.17b).
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FIGURE D.17. Oblique collision; definition of distances dA and dB for the computation
of the reduced mass. (a) No friction (λ = 0) and (b) λ 	= 0.

D.3 MOTION AFTER THE COLLISION

D.3.1 Vehicle with locked wheels

If, after the collision, the motion of the vehicle is simply translational, the dis-
tance travelled may be easily computed as seen in Section D.1.6. This, however,
is seldom the case: After the impact a certain yaw velocity Ω = ψ̇ is usually
present. It is thus incorrect to take translational and rotational motion into ac-
count independently.

Consider a vehicle that, after the collision, moves with the wheels completely
locked, as if the brakes were fully applied or the deformations of the body were
sufficient to prevent the wheels from rotating. With reference to Fig. D.18a, the
components of the velocity of the centre of contact Pi of the ith wheel ui and vi

in the directions of axes x and y fixed to the vehicle are

⎧⎨
⎩

ui = V cos(β) − Ωri sin(χi)

vi = V sin(β) + Ωri cos(χi) ,
(D.67)

where ri and χi are linked to the coordinates xi and yi of point Pi by the obvious
relationships

ri =
√

x2
i + y2

i , χi = arctan
(

yi

xi

)
.

The absolute value of force Fi exchanged by the ith locked wheel is simply

|Fi| = fZi
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FIGURE D.18. (a) Velocity of the centre of contact of the i-th wheel; (b) inertial
reference frame and variables of motion.

and its direction is equal to that of the velocity Vi, with opposite sign. The
components of force Fi are then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fxi
= −fZi

ui

|Vi|
= fZi

−V cos(β) + Ωri sin(χi)
|Vi|

Fyi
= −fZi

vi

|Vi|
= −fZi

V sin(β) + Ωri cos(χi)
|Vi|

,

(D.68)

where

|Vi| =
√

V 2 + Ω2r2
i + 2V Ωri sin(β − χi) . (D.69)

The moment of force Fi about the yaw axis z is

Mi = Fyi
ri cos(χi) − FXi

ri sin(χi) = fZiri
Ωri + V sin(β − χi)

|Vi|
. (D.70)

The trajectory can thus be easily computed by numerical integration of the
equations of motion. No linearization is possible in this case, because the slip
angle of the vehicle β may be quite large. The equations of motion are Eq. (25.65),
where the forces acting on the wheels are those expressed by Eq. (D.68) rotated
in the inertial reference frame by multiplying them by a suitable rotation matrix.
The model here used is essentially a three-degrees of freedom, rigid body model
in which all forces except those due to tire-road interaction have been neglected.
It would in any case be difficult to take aerodynamic forces into account when
angle βa is large and rapidly varying.
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At time t = 0, coinciding with time t2 immediately after the collision, the
position and the velocity of the vehicle and also angle

β = arctan
(

ẋ′

ẏ′ − ψ

)

are known and the numerical integration can be started.
Owing to the impossibility of linearizing the equations of motion, it is im-

possible to work in terms of axles. The wheels must therefore be considered one
by one; in particular velocity Vi is different for the wheels of the same axle. It is
difficult to take load transfer between the wheels of the same axle into account
with a model based on the assumption of a rigid body. The load transfer can be
strongly influenced in these conditions by roll rotations so that a more complete
model is required if this effect is to be included. Forces Fxi

and Fyi
and moment

Mi change continuously during motion. The total forces and moments acting on
the vehicle also change, but to a lesser extent.

A simple approach that can be used to study the motion of the vehicle
without having to perform a numerical simulation is to substitute the actual
contact area between the vehicle and the ground with a circle having a radius
r equal to the average distance of the centres of the contact areas of the wheels
and the centre of mass (Fig. D.19a).

The force and the moment exerted on an arc of amplitude dθ of such a
circumference may be expressed by equations of the same type as equations
(D.68) and (D.70). Assuming that the vertical load mg exerted on the contact
area is evenly distributed on the circumference, the components of the force and
the yawing momentare

FIGURE D.19. (a) Simplified model for the study of the trajectory of a vehicle moving
with locked wheels. Circular contact area that is substituted for the actual contact
area. (b) Functions F (a) and F (1/a) for a spanning between 0 and 3.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dFx = f
mg

2π

−V cos(β) + Ωr sin(θ)√
V 2 + Ω2r2 + 2V Ωr sin(β − θ)

dθ

dFy = −f
mg

2π

V sin(β) + Ωr cos(θ)√
V 2 + Ω2r2 + 2V Ωr sin(β − θ)

dθ

dM = −f
mgr

2π

V sin(β − θ) + Ωr√
V 2 + Ω2r2 + 2V Ωr sin(β − θ)

dθ .

(D.71)

Force dF may be decomposed along directions parallel and perpendicular
to the velocity V . The first component, which is tangential to the trajectory, is

dF‖ = dFx cos(β) + dFy sin(β) = −f
mg

2π

V + Ωr sin(β − θ)√
V 2 + Ω2r2 + 2V Ωr sin(β − θ)

dθ .

(D.72)
Its effect is to reduce the speed of the vehicle. The second component, acting

in a direction perpendicular to the trajectory and thus bending the path of the
vehicle, is

dF⊥ = −dFx sin(β) + dFy cos(β) = −f
mg

2π

Ωr cos(β − θ)√
V 2 + Ω2r2 + 2V Ωr sin(β − θ)

dθ .

(D.73)
By integrating the expression of the forces and moments, it follows that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F‖ = −f
mg

2π

∫ 2π

0

1 + a sin(ζ)√
1 + a2 + 2a sin(ζ)

dζ

F⊥ = −f
mg

2π

∫ 2π

0

a cos(ζ)√
1 + a2 + 2a sin(ζ)

dζ = 0

M = −f
mgr

2π

∫ 2π

0

1 + 1
a sin(ζ)√

1 +
(

1
a

)2 + 2
a sin(ζ)

dζ ,

(D.74)

where
ζ = β − θ

(because β does not depend on θ, dζ = dθ) and the nondimensional parameter a
is the ratio between the component of the velocity due to rotation and velocity V

a =
Ωr

V
.

The component of force F perpendicular to the trajectory is equal to zero:
This means that the trajectory is straight, at least within the assumptions used
in the present model. If a more accurate model were used the trajectory would
bend, although only slightly.
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TABLE D.3. Values of functions F (a) and F (1/a) for some values of a.

a F (a) F (1/a) a F (a) F (1/a)

0 1 0 1,4 0,3860 0,8566
0,2 0,9899 0,1005 1,6 0,3306 0,8936
0,4 0,9587 0,2043 1,8 0,2900 0,9177
0,6 0,9028 0,3158 2,0 0,2587 0,9342
0,8 0,8125 0,4441 2,5 0,2043 0,9587
1,0 0,6366 0,6366 3,0 0,1691 0,9716
1,2 0,4685 0,7926 ∞ 0 1

The integrals which appear in the expressions of the forces and the moments
are functions of parameter a only. By introducing the function F (a) defined as

F (a) =
1
2π

∫ 2π

0

1 + a sin(ζ)√
1 + a2 + 2a sin(ζ)

dζ , (D.75)

the expressions of F‖ and M are simply
⎧⎨
⎩

F‖ = −fmgF (a)

M = −fmgrF
(

1
a

)
.

(D.76)

Function F (a) must be obtained numerically. Its plot is reported in Fig.
D.19b and some values are reported in Table D.3.

The equations governing the motion of the vehicle are two differential
equations ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dV

dt
= −fgF

(
rΩ
V

)

dΩ
dt

= −fgr
m

Jz
F

(
V

rΩ

)
.

(D.77)

These must be integrated numerically, because parameter a changes con-
tinuously during motion and function F (V/rΩ) cannot be expressed in closed
form. Once laws V (t) and Ω(t) are known, the yaw angle and the position on
the trajectory can be obtained by further integration

ψ =
∫ t

0

Ω(u)du , s =
∫ t

0

V (u)du . (D.78)

Example D.6 Consider a vehicle with m = 1000 kg, Jz = 2000 kg m2, a = 1.4 m,

b = 1.4 m and t = 1.08 m. After the collision, the vehicle moves with a speed V =

7.36 m/s, angular velocity Ω = −5.19 rad/s and angle β equal to 53◦. Compute the

trajectory and the positions taken by the vehicle until it stops.

The results obtained by numerically integrating the equations of motion are re-

ported in Fig. D.20a, curves A. A value of 0.7 for the friction coefficient has been
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FIGURE D.20. Motion of a vehicle with locked wheels after a collision. (a) Time histo-
ries V (t) and Ω(t) computed through numerical integration of the equations of motion
(curves A), numerical integration of Eq. (D.77) (B) and by considering translations and
rotations (C) separately. (b) Trajectory corresponding to curve (A).

assumed. The integration was performed using a time step Δt = 0.01 s. The trajectory

is reported in Fig. D.20b. The vehicle stops in a time of 1.70 s, after a displacement of

6.33 m and a rotation of 4.19 rad (240◦).

Similar results are obtained by integrating Eq. (D.77) (curves B). The values of

function F (a) used for the integration were taken from Table D.3 and interpolated

linearly. The time needed to extinguish the motion, the displacement and the rotation

are respectively 1.62 s, 6.11 m and 4.06 rad (233◦).

Incorrect results would have been obtained by considering translational and rota-

tional motion (curves C) separately. The time needed to extinguish the motion, the

displacement and the rotation would have been respectively 1.01 s, 3.94 m and 2.62

rad (150◦).

Laws V (t) and Ω(t) are almost linear. If they were exactly linear the value of

a would remain constant during the motion and no numerical integration would be

required: A constant rate deceleration with the values of dV/dt and dΩ/dt given by Eq.

(D.77) would occur. Note that this is equivalent to studying the motion as a translation

and a rotation occurring separately, with “reduced” coefficients of friction equal to fF (a)

and fF (1/a) respectively. In the example, immediately after the collision the value of

a is 1.05, F (a) = 0.62 and F (1/a) = 0.66. By multiplying the friction coefficient by

these values and considering the two motions separately, a time of 1.7 s for coming to a

standstill is obtained. This value is close to that obtained through more complex models.

D.3.2 Vehicle with free wheels

In most cases the wheels of the vehicle, or at least some of them, remain free
to rotate after the collision. There is little difficulty in numerically integrating
the equations of motion, obviously written without any linearization. Equation
(25.65) can be used, together with Eq. (25.94) yielding the sideslip angles of the
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FIGURE D.21. Cornering force of the tire as a function of the sideslip angle. Simplified
model in which the curve Fy(α) is approximated by two straight lines.

wheels. A model of the tire which can be used for all values of α from 0 to 360◦

is needed. The “magic formula” is at present probably the best and most precise
choice.

The only difference from the nonlinear model is that some of the wheels
may be locked. However, if the angular velocity of the vehicle is high, the sideslip
angles remain at high values for a long time and the importance of accurately
modelling the behavior of the tires at low sideslip angle is not great. In this
situation a simple model for the cornering force of the tire as the one shown in
Fig. D.21 may be used. With reference to the figure, the force the tire receives
from the road is⎧⎪⎪⎨

⎪⎪⎩

Fxi
= Fzi

μi

|μi|
[−fr cos (δi) − f sin (δi)]

if α > α1

Fyi
= Fzi

μi

|μi|
[−fr sin (δi) + f cos (δi)]

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fxi
= Fzi

μi

|μi|

[
−fr cos (δi) −

αi

Ci
f sin (δi)

]

if α ≤ α1

Fyi
= Fzi

μi

|μi|

[
−fr sin (δi) +

αi

Ci
f cos (δi)

] ,

(D.79)

where fr is the rolling coefficient.
The moment about the z-axis is expressed by the first part of Eq. (D.70).

The rolling drag is usually small compared to the other forces and might be
neglected but, because the equation must in any case be integrated numerically,
there is no need to do so.

Example D.7 Repeat the study of Example D.6 assuming that the wheels are free

and all steer angles δi are equal to zero.

By assuming a law Fy(α) of the type shown in Fig. D.21 with α1 = 8◦ and fr

= 0.02 the results shown in Fig. D.22 are obtained through numerical integration. The
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FIGURE D.22. Motion of a vehicle with free wheels after a collision. (a) Time histories
V (t) and Ω(t) computed through numerical integration of the equations of motion and
(b) trajectories of the centre of mass and of the points of contact of the wheels.

computations were repeated with different values of angle α1, obtaining practically the

same results in all cases. With α1 = 0 the laws V (t) and Ω(t) do not change, except

for some oscillations due to numerical problems.

The vehicle at the end of the simulation is aligned with its velocity and rolls forward

freely. In other cases the simulation may end with the vehicle rolling away in reverse.

D.4 ROLLOVER

D.4.1 Quasi-static rollover

As discussed in Part IV, rollover of a rigid vehicle in static or quasi-static condi-
tions is usually impossible, except in the case of vehicles with particularly narrow
track or high centre of mass: The conditions for slipping are reached well before
those needed for rollover.

Rollover on a flat surface is controlled by parameter

t

2hG
,

which is sometimes referred to as the rollover threshold: This constitutes the limit
to the ratio between the lateral acceleration and the gravitational acceleration
ay/g. If the road has a transversal slope

it = tan(αt)

the threshold becomes
t

2hG
− it .

The threshold increases linearly with the slope if the external part of the
curve is raised and decreases otherwise.
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FIGURE D.23. Quasi-static rollover of a vehicle on elastic suspensions.

FIGURE D.24. Roll inertia torques causing rollover: In B the conditions for rollover
are reached.

If
it =

t

2hG

the vehicle overturns naturally without the application of external forces, but
this can occur only in case of off-road motion, because the adverse slope must
be quite large.

To release the assumption of a rigid vehicle, the roll of the vehicle body must
be accounted for. With reference to Fig. D.24, the forces acting in the direction
parallel and perpendicular to the road surface are⎧⎪⎪⎪⎨

⎪⎪⎪⎩

F‖ =
mV 2

R
cos(αt) − mg sin(αt)

F⊥ =
mV 2

R
sin(αt) + mg cos(αt) − Zaer .

(D.80)
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If the inertia of the unsprung masses and the compliance of the tires are
neglected and the roll angle is small enough, its value is

φ ≈
F‖h

Kt
, (D.81)

where h is the height of the centre of mass over the roll axis and KT is the
torsional stiffness of the vehicle.

The vehicle rolls over if

F‖
F⊥

>
t − 2hφ

2hG
. (D.82)

Neglecting aerodynamic lift and assuming that the road surface is flat, the
above equations may be solved in the lateral acceleration, yielding

V 2

Rg
>

t

2hG

1

1 +
mgh2

KthG

. (D.83)

The fraction on the right hand side is a factor smaller than one expressing the
reduction of resistance to rollover due to the presence of suspensions. The rollover
threshold decreases with increasing roll compliance 1/Kt of the suspensions and
distance h between the centre of mass and the roll centre. A stiff suspension with
high roll centre can substantially reduce rollover danger and bring the rollover
conditions close to those characterizing the rigid vehicle.

The rollover threshold can be reduced, owing to roll compliance, by a few
percent (typically 5%) in passenger vehicles, with lower reductions in sports cars
and greater in large luxury saloon cars.

The compliance of the tires increases this effect slightly, and some effects
may be due to the exact geometry of the suspensions, particularly in terms of
their lateral deflection, the lateral deflection of the tires and the inclination of the
roll axis due to the differences between front and rear suspensions. To account
for all these factors, a detailed mathematical model of the vehicle must be built
and analyzed on a computer.

Alternatively, the whole vehicle can be put on a “tilt-table”, i.e. on a plat-
form that can be inclined laterally, and the lateral slope can be increased until
the load on the less loaded wheels reduces almost to zero, denoting that the
threshold of rollover has been reached. Note that the tilt-table arrangement ex-
actly simulates rollover due to the lateral slope of the road, as may occur in
off-road driving, but does not exactly reproduce conditions on flat road. The
difference may be small if the vehicle rolls over on a lateral slope that is not
too steep, i.e. about 20◦ ÷ 25◦, while the errors build up when the lateral slope
reaches values as high as 45◦, where errors of about 30% may be present. To
avoid this problem, a “cable-pull” test can be devised, in which the lateral forces
are applied by cables directly to the vehicle at the location of the centre of mass.
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In spite of these effects, static rollover remains a rare occurrence for all
vehicles but those with very high centre of mass and narrow track, because the
available lateral forces on the tires are not high enough to prevent lateral slipping
before rollover.

D.4.2 Dynamic rollover

Dynamic conditions linked to roll oscillations, on the other hand, can lead to
rollover if the external rolling moment adds to an inertia torque due to roll
accelerations.

If a step roll input is applied to the vehicle, the response is a damped roll
oscillation about the static equilibrium position that would have been reached if
the same input had been applied slowly. Note that an input is applied slowly if
its characteristic times are larger than the period of the lowest natural frequency
involved; because the roll period is usually on the order of one second, most roll
inputs, being faster than that, have the characteristics of a dynamic load.

Remark D.3 If the vehicle were critically damped in roll no oscillations would
take place. The roll angle would increase monotonically, reaching the static value
asymptotically.

Because all vehicles are underdamped in roll, the roll angle overshoots and
then oscillates; the lower the damping ratio of the system the higher the over-
shoot and thus the danger of rollover. The presence of anti-roll bars makes things
worse from this viewpoint. When anti-roll bars are added to an existing suspen-
sion the roll stiffness is increased but roll damping is usually unchanged, because
the damping of shock absorbers is optimized for bounce and pitch behavior. The
effect is an increase of the natural frequency and the underdamped behavior of
the system. While the static roll angle is decreased by the added stiffness, both
the overshoot and the natural frequency of roll oscillations are increased, the
latter effect increasing roll inertia torques.

Consider a vehicle undergoing roll oscillations (Fig. D.24). The inertia torque
Jxφ̈ due to roll oscillations is sketched as a function of time in the figure. It is
always lower than mgt/2, the restoring moment due to weight on level road, and
hence no danger of rollover is present. However, if an external force causing the
rolling moment Mxe

is applied, the conditions for incipient rollover occur in B.
From this point on the wheels at one side lose contact with the ground.

The weight stabilizes, until a large enough roll rotation to bring the weight force
outside point A in Fig. D.24 is completed, but the vehicle continues the roll over
motion. Note that this simple model is inadequate to predict what happens when
some of the wheels are no longer in contact with the ground and the roll angle
is magnified.

A fast-reacting driver may prevent rollover even in these conditions by giving
appropriate steering inputs, as testified by stunt drivers who can proceed with
the car on two wheels, without either rolling over or rolling back onto four wheels,
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but it is most unlikely that a normal driver in normal conditions would perform
stunts of this type. In most cases, once rollover starts it proceeds to its inevitable
consequences.

Roll dynamics is closely coupled with yaw dynamics and rollover is no excep-
tion. During a sinusoidal steering input the lateral tire forces on the rear wheels
are delayed with respect to those on the front wheels; this delay is larger in longer
vehicles and the effect is even more pronounced in articulated vehicles. The com-
bined roll-yaw dynamics with its resonances may facilitate rollover, particularly
when selected frequencies are present in the excitation.

Tractor-trailer combinations are particularly subject to rollover due to sud-
den steering inputs: The roll of the trailer is delayed with respect to that of the
tractor and can be large enough to cause the former to rollover. A hitch provid-
ing roll coupling between trailer and tractor helps in this case, because the latter
collaborates in resisting the tendency of the former to overturn.

D.4.3 Lateral collision with the curb

Consider a vehicle modelled as a rigid body and assume that its velocity V is not
contained in the plane of symmetry (Fig. D.25). Both wheels on one side enter
into contact at time t1 with the curb. At time t1 the components of the velocity
are5

u = u1 , v = v1 , w = p = q = r = 0 ,

i.e. the velocity of the vehicle is contained in a plane parallel to the road and the
angular velocity is nil.

FIGURE D.25. Side impact against the curb. (a) Sketch; (b) determination of the
centre of rotation at time t2.

5The components Ωx, Ωy and Ωz of the angular velocity are here indicated as p, q and r,
and the component Vz of the velocity is indicated with w.
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If friction between the vehicle and the curb is neglected, the component u
of the velocity along the x-axis remains constant and the components q and r of
the angular velocity along the y and z axes remain vanishingly small. The other
components of the velocity after the impact, i.e. at time t2, are

v = v2 , w = w2 , p = p2 .

The component of the velocity in a direction perpendicular to the impact
surface in P at time t1 is

V⊥1 = v1 .

Assuming a partially inelastic impact with coefficient of restitution e∗, at time
t2 the same velocity is

V⊥2 = −e∗v1 .

If the condition that the motion of point P between time t1 and t2 occurs
in a plane parallel to the ground is added, the position of the centre of rotation
at time t2 can be easily found and a relationship linking w2 and p2 to v1 can be
obtained.

With reference to Fig. D.25b it follows that

⎧⎪⎪⎨
⎪⎪⎩

p2 = −v2 + e∗v1

h

w2 = −p2
t

2
= (v2 + e∗v1)

t

2h
,

(D.84)

The components of the impulse the vehicle receives during the impact can
be related to the variations of the momentum and the angular momentum

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Iy = m(v1 − v2)

Iz = −mw2

Iyh − Iz
t

2
= −Jxp2 .

(D.85)

By introducing Eq. (D.84) into Eq. (D.85) it follows that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v2 = −v1
A2 − e∗(1 + B2)

1 + A2 + B2

p2 = −v1
A2(1 + e∗)

h(1 + A2 + B2)
,

(D.86)

where

A =
2h

t
, B =

2
t

√
Jx

m
.
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Rollover motion starts at time t2. If the component of the velocity of point
P in the y direction vanishes rapidly owing to the friction of the road, rollover
actually occurs if the centre of mass crosses a line perpendicular to the road in
P. This means that the vehicle rolls over only if its centre of mass moves above
a distance Δh equal to

Δh =

√
t2

4
+ h2 − h = h

(√
1 +

1
A2

− 1

)
. (D.87)

This can occur only if the kinetic energy associated with velocities v2, w2

and p2 is at least equal to the potential energy mgΔh. With simple computations
it can be shown that the condition for completing rollover is

v2
2 + w2

2 +
Jx

m
p2
2 ≥ 2hg

(√
1 +

1
A2

− 1

)
. (D.88)

Because

v2
2 + w2

2 = p2
2

(
t2

4
+ h2

)
,

the condition for rollover becomes

v2
1

A2(1 + e∗)2

1 + A2 + B2
≥ 2hg

(√
1 +

1
A2

− 1

)
. (D.89)

Consider for instance a vehicle with A = 0.6 and B = 0.7 hitting a curb in a
perfectly elastic way (e∗ =1), which is the most dangerous condition. From Eq.
(D.89) the rollover condition is

v2
1 ≥ 2.42gh .

Equation (D.89) may be written explicitly in terms of forward velocity V
and impact angle θ

V 2 sin2(θ) ≥ 2hg
1 + A2 + B2

A2(1 + e∗)2

(√
1 +

1
A2

− 1

)
. (D.90)

If h = 0.36 m and the impact angle is θ = 15◦, the vehicle in question will
roll over for forward velocities greater than 11 m/s (40 km/h). Note that this
result depends strongly on the value of e∗: The ratio between the velocities V
needed for rollover when e∗ = 0 and e∗ = 1 is equal to

√
2. It makes sense that

in this case the restitution coefficient e∗ is greater than in the case of impacts
between vehicles, but in general it depends upon the impact conditions.

It must also be noted that if the height of the curb is low, and consequently
the value of h is large, the vehicle tends not to engage against the curb but
to drive over it, making the whole study inapplicable. The assumption of a
rigid body is also questionable: The impact usually occurs between the curb and
the unsprung mass and the latter can undergo plastic and elastic deformations,
accompanied by deformations of the tires.
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D.4.4 Effect of the transversal slope and the curvature of the road

The above model is based upon the assumptions that the road is flat and that
the curb is straight. To account for the transversal slope of the road it is sufficient
to assume that the y-axis is inclined. The only difference is that of changing the
expression of the potential energy due to the vertical displacement of the centre
of mass of the vehicle, because a vertical line passing through point P is no longer
perpendicular to the road.

If the curb is not straight the motion is more complex and it is not possible
to study the motion in the yz plane independently of that in the x direction.
However, if the curb follows a circular path with a radius far greater than the
length of the vehicle and of the displacements in the y direction involved in the
rollover motions, it is possible to simplify the problem.

Consider the situation shown in Fig. D.26a. The motion in the yz plane can
be studied with reference to the non-inertial xyz frame, rotating about line CC′

with angular velocity

FIGURE D.26. Side impact against a curb following a circular path. (a) Sketch at time
t2; (b) accelerations broken into vertical and horizontal directions and (c) in directions
parallel and perpendicular to the road.
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V cos(θ)
R

.

Both centrifugal and Coriolis acceleration must be introduced in the study
of the motion starting from time t2.

Centrifugal acceleration is directed radially while Coriolis acceleration acts
in the x direction. Their values are, respectively,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ac =
u2

R′ =
V 2

R′ cos2(θ)

acor = −2
V

R′ cos(θ) [v2 cos(αt) + w2 sin(αt)] .

(D.91)

Only centrifugal acceleration needs to be considered in the study of the mo-
tion in the yz plane. It can be considered constant, neglecting the fact that R′

and u change during the rollover motion. The method used in the previous case
may be repeated by simply introducing the resultant of centrifugal and gravi-
tational accelerations (here broken into directions parallel and perpendicular to
the road surface) ⎧⎨

⎩
a⊥ = g cos(αt) − ac sin(αt)

a‖ = g sin(αt) + ac cos(αt) .
(D.92)

for the gravitational acceleration (Fig. D.26a,b). The vehicle will roll over if its
centre of mass goes beyond line PQ, whose direction is that of the resultant of
the two accelerations. The coordinates of point Q are then linked to each other
by the relationship

y∗

z∗
=

a‖
a⊥

.

Point Q lies on a circle centred in P passing through point G. It then follows
that

y∗2
+ z∗

2
= h2 +

t2

4
. (D.93)

By intersecting the circle with line PQ it follows that

y∗ = h

√
1 + 1

A2√
1 +

(
a⊥
a‖

)2
, z∗ = h

√
1 + 1

A2√
1 +

(
a‖
a⊥

)2
, (D.94)

where
A =

2h

t
.

The total increase of potential energy in the motion from G to Q to be
substituted for mgΔh in the rollover condition is

ΔU = mha⊥

⎧⎨
⎩
√√√√(

1 +
1

A2

)[
1 +

(
a⊥
a‖

)2
]
− 1 −

a‖
Aa⊥

⎫⎬
⎭ , (D.95)
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The final form of the rollover condition is thus

v2
1

A2(1 + e∗)2

1 + A2 + B2
≥ 2ha⊥

⎧⎨
⎩
√√√√(

1 +
1

A2

)[
1 +

(
a⊥
a‖

)2
]
− 1 −

a‖
Aa⊥

⎫⎬
⎭ . (D.96)

Clearly if

a⊥
a‖

= A,

the vehicle rolls over even for v1 = 0: Points G and Q coincide and the system
is statically on the verge of instability. If the curb is along a straight line ratio
a‖/a⊥ is equal to tan(αt) = it, transversal slope of the road.

If on the contrary the road is flat but curved,

a‖
a⊥

=
ac

g
= V 2 cos2(θ)

Rg
.

The nondimensional velocity v1/
√

a⊥h needed for rollover is plotted against
ratio a‖/a⊥ for various values of e∗ in Fig. D.27. The plot has been obtained for
A = 0.6 and B = 0.7.

FIGURE D.27. Nondimensional velocity v1/
√

a⊥h needed for rollover as a function of
a‖/a⊥ for various values of e∗. Vehicle with A = 0.6 and B = 0.7.
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D.5 MOTION OF TRANSPORTED OBJECTS
DURING THE IMPACT

D.5.1 Free objects

The study of the motion of objects onboard vehicles during a collision is impor-
tant both for understanding their effects on passengers and for devising suitable
restraint systems for people and packaging for objects.

If the object is simply supported on a surface parallel to the road, when
the vehicle stops abruptly because of a collision (which in the following will be
considered as a central impact against a fixed object) it will continue its motion
until it collides with the front wall of the load compartment. This first part of
the collision process is easily studied under the assumption that the mass of the
object is negligible with respect to that of the vehicle. The motion of the former
does not influence that of the latter.

Consider the situation sketched in Fig. D.28, in which the elastic and damp-
ing properties of the transported object are modelled by a spring-damper system.
The motion of the vehicle is assumed to follow the model described in Section
D.2.1 and the motion of the object will be studied with reference to the xz frame
centred in the position of point P, belonging to the front part of the object, at
time t1, when the vehicle hits the obstacle.

Neglecting friction, the motion of point P immediately after the collision is
described by the law

xP = V1t = V1t2τ , (D.97)

where V1 is the velocity of the vehicle before the collision and the nondimensional
time

τ =
t

t2

is defined with respect to the duration of the collision t2.

FIGURE D.28. Motion of the object O free to move on a vehicle hitting a rigid barrier.
The elastic and damping properties of the object are modelled by a spring-damper
system. (a) Situation at time t1. (b) Situation at time t∗, when the object hits the
front wall of the load compartment.
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Assuming the model of Section D.2.1 to describe the motion of the vehicle,
the x coordinate of point Q is

xQ = d + V1t2

(
1 + e∗

β + 3
{
2 − [2 + (β + 1)τ ] (1 − τ)β+2

}
− e∗τ

)
. (D.98)

The object hits the front wall of the load compartment at time t∗, when the
distance between points P and Q vanishes, i.e. when

τ∗ − 2 − [2 + (β + 1)τ∗] (1 − τ∗)β+2

β + 3
=

d

V1t2(1 + e∗)
. (D.99)

Equation (D.99) can be easily solved in τ∗; however this solution holds only
if τ∗ ≤ 1, i.e. if the object collides before time t2. If this condition does not hold
the secondary collision inside the vehicle occurs when the latter has started its
motion backward after rebounding from the obstacle and Eq. (D.98) does not
apply. The condition for which Eq. (D.99) holds, i.e. for which τ∗ ≤ 1, is simply

d ≤ V1t2(1 + e∗)
β + 1
β + 3

. (D.100)

If condition (D.100) is satisfied, the relative velocity is easily computed by
considering that at time τ∗ the velocities of the object and the vehicle are both
known

VR = V1(1 + e∗)
{
1 − [1 + (β + 1)τ∗] (1 − τ∗)β+1

}
. (D.101)

If, on the contrary, condition (D.100) is not satisfied, the computation is
even simpler. If the rebound velocity is considered constant,

V2 = −e∗V1 ,

after time t2, the relative velocity is simply

VR = V1(1 + e∗) .

The time at which the secondary collision takes place can be assumed to be

t∗ = t2 + t3 ,

where t3 is the time needed to travel at the velocity VR defined above for a
distance d2 that still separates the object and the vehicle at time t2. d2 can be
computed stating τ = 1 into Eq. (D.98), i.e. by Eq. (D.100) with ‘=’. Operating
in this way, it follows that

t3 =
d

V1(1 + e∗)
− t2

β + 1
β + 3

. (D.102)

The motion of the object after it hits the wall of the load compartment may
be analyzed in different ways.
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It is possible to resort to a semi-empirical time history, as was done for the
vehicle colliding against an obstacle, or to model the mechanical properties of
the object and to use that model to obtain the equation of motion.

By assuming that the object and the wall are rigid bodies with an interposed
linear spring-damper system, as sketched in Fig. D.28, the equation of motion
of point O for t > t∗ is

mẍO + c(ẋO − ẋQ) + k(xO + l − xQ) = 0 , (D.103)

with the initial conditions

xO = xQ − l and ẋO = V1 for t = t∗ . (D.104)

By introducing the nondimensional coordinate

χ =
xO + l − xQ

V1t2

and the nondimensional time τ , the equation of motion reduces to

d2χ

dτ2
+

ct2
m

dχ

dτ
+

kt22
m

χ =
d2χQ

dτ2
, (D.105)

with the initial conditions

χ = 0 and
dχ

dτ
= 1 −

(
dχQ

dτ

)
τ=τ∗

for t = t∗.

The expressions of d2χQ/dτ2 and of dχQ/dτ can be easily computed from
t∗ to t2 (0 ≤ τ ≤ 1) from Equations. (D.31) and (D.35) while for t > t2 (τ > 1)
they are simply

d2χQ

dτ2
= 0 ,

dχQ

dτ
= −e∗ .

If the secondary collision occurs before time t2 the equation of motion of
the object is

d2χ

dτ2
+

ct2
m

dχ

dτ
+

kt22
m

χ = (β + 1) (β + 2) (1 + e∗) τ (1 − τ)β for τ∗ < τ < 1,

d2χ

dτ2
+

ct2
m

dχ

dτ
+

kt22
m

χ = 0 for τ > 1,

(D.106)
with the initial conditions χ = 0 and

dχ

dτ
= (1 + e∗)

{
1 − [1 + (β + 1)τ∗] (1 − τ)β+1

}

for t = t∗.
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If the secondary shock occurs during the rebound phase, after the vehicle has
lost contact with the obstacle, the equation of motion is the second of Equations.
(D.106) and the initial condition on dχ/dτ reduces to

dχ

dτ
= (1 + e∗) .

These equations of motion hold only up to the time in which the object
rebounds, losing contact with the wall of the load compartment. This instant
can be easily computed by looking for the time at which the acceleration of the
object vanishes, because the force acting between points P and Q reduces to zero.

The acceleration may can be computed as

d2χ0

dτ2
=

V1

t2

[
d2χ

dτ2
− (β + 1) (β + 2) (1 + e∗) τ (1 − τ)β

]
if τ∗ < τ < 1,

d2χ0

dτ2
=

V1

t2

d2χ

dτ2
if τ > 1.

(D.107)
This expression of the acceleration is one of the most interesting results of

this study, because the aim of the elastic system with stiffness k and damping c
is to allow the object to survive the shock of the collision, which means reducing
its acceleration within allowable limits.

Another important result is the value of the maximum displacement χ, i.e.
the maximum compression of the spring. This value cannot be higher than a
given allowable limit, beyond which the elastic system is crushed or, at least,
shows nonlinear characteristics with increasing stiffness. In practice, to limit the
acceleration the spring must be soft but the decrease of the value of k is limited
by the available space because it causes the maximum travel to increase.

The whole process is governed by five nondimensional parameters: β and
e∗, linked to the way the vehicle collides with the obstacle, ratio

d

V1t2
,

linked to the clearance between the object and the wall, and

kt22
m

and
ct2
m

,

related to the elastic and damping characteristics of the object.
Parameter kt22/m can be written in the form

kt22
m

= (ωnt2)2 = 4π2

(
t2
Tn

)2

, (D.108)

where ωn and Tn are the circular frequency and the period of the undamped
free oscillations of a spring-mass system with mass m and stiffness k. If this
parameter has a value equal to π2 the half-period of the undamped oscillations
is equal to t2.
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FIGURE D.29. Time history of the acceleration for the vehicle studied in Fig. D.13
hitting a fixed obstacle at 20 m/s and for an object carried by it.

Parameter ct2/m is linked to kt22/m and to the damping ratio ζ by the
relationship

ct2
m

= ζ
√

2

√
kt22
m

. (D.109)

The absolute value of the acceleration of an object onboard the vehicle
studied in Fig. D.13 hitting a fixed obstacle at 20 m/s is plotted against time in
Fig. D.29. The value of kt22/m has been assumed to be equal to π2; the various
curves correspond to different values of ct2/m. In the case studied, the lowest
maximum acceleration is obtained for

ct2
m

= π/
√

2 ,

i.e. for ζ = 0.5.
This value of the damping ratio coincides with the “optimum value” defined

in Section 6.8.1 for the quarter car model with a single degree of freedom. As the
two models are different, such instances cannot be generalized and the values of
ζ minimizing the acceleration must be obtained for each case, as can be verified
by plotting the same figure with different values of the parameters.

The maximum values of the acceleration and the displacement are plotted
versus parameter kt22/m in Fig. D.30. The plot has been obtained with the same
values of β and e∗ used for Fig. D.29, with the added assumption of a damping
ratio equal to 0.5. From the figure it is clear that the distance d must be kept
to a minimum to provide low values for the acceleration. From the maximum
allowable value of the displacement χ it is possible to obtain the minimum value
of k and then the value of the peak acceleration occurring during the impact.
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FIGURE D.30. Peak values of the acceleration and of the displacement as a function
of the stiffness of the spring for various values of the clearance d. Same vehicle as in
Fig.D.29; damping equal to half of the critical damping (ζ =0.5).

The results shown in Figs. D.29 and D.30 were obtained by numerical integration
of the equation of motion in time.

The simple models here shown allow basic and straightforward qualitative
assessments, with a limited number of parameters involved. There is, however,
no difficulty in building more complete models that result in good quantitative
predictions of the actual behavior of the system.

D.5.2 Constrained objects

The behavior of an object constrained onboard a vehicle is not qualitatively
different from that seen for free objects. In the case of constrained objects the
distance d, i.e. the clearance of the restraining device, is smaller and may even
be equal to zero.

The motion of a constrained object can be studied in four distinct phases
(Fig. D.31).

1. The first phase begins in the instant the vehicle encounters the obstacle
starting its deceleration and ends at time t∗ when the object contacts the
restraining system. Usually, if the clearance is not too large, time t∗ occurs
before time t2.

2. The second phase extends between time t∗ and time t2. The collision of
the vehicle against the obstacle is completed and the object is retained by
the constraining device. At the end the vehicle rebounds freely.
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FIGURE D.31. Time history of velocity of the motion of the vehicle and of an object
constrained on board.

FIGURE D.32. Force exerted by the restraining system as a function of the defor-
mation x; the energy dissipated is the area under the curve. (a) Perfectly plastic, (b)
elasto-plastic and (c) actual behaviour.

3. The third phase is between time t2 and time t3. The object rebounds
backward and, at the end, loses contact with the restraining system. The
vehicle moves backward, with a speed that is low if the collision is strongly
inelastic.

4. The fourth phase goes from time t3 to time t4 when the object, moving
backward at a speed higher than that of the vehicle, hits the back wall of
the load compartment.

The study may then continue, because at this point there may be a further
rebound, which can be particularly dangerous.

A case of particular importance that can be studied, at least as a first
approximation, with the present technique, is that of the motion of a person
wearing a seat belt. The collision with the seat at time t4 can be the most
dangerous event under these circumstances.
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To increase the adequacy of the model to supply quantitative information
as well it is possible to factor in the nonlinearities that are always present in
actual cases. A nonlinear law stating the dependence of the force provided by
the restraint as a function of the displacement x and of the velocity ẋ may be
introduced without adding greatly to the complexity of the numerical simulation.

The restraining system should have a perfectly plastic behavior to reduce
the acceleration peak to a minimum, as in this case the energy dissipation is
maximum for a given value of applied force and displacement (Fig. D.32a).

A more realistic behavior is an elasto-plastic law (Fig. D.32b) while actual
systems show a more complex force-displacement characteristic (Fig. D.32c).



Appendix E
DATA ON VARIOUS VEHICLES

This appendix contains fairly complete data on different vehicles: The small cars
of the A, B, C and D sections, two sports cars, a van, an articulated truck and
a racing motorcycle

Some of the data here reported were used throughout the text in the ex-
amples and may be used by the reader to repeat the computations shown for
different kinds of motor vehicles.

Although not an exact description of any actual vehicle, the characteristics
shown here are typical.

E.1 Small car (a)

The vehicle is a typical late model small car with five seats and a 1.2 liter spark
ignition engine.

The primarygeometrical data and inertial properties of the vehicle are:

length = 3,540 mm width = 1,580 mm height = 1,540 mm
a = 923 mm b = 1, 376 mm l = 2, 299 mm
m = 860÷1,0201 kg t1 = 1,370 mm t2 = 1,360 mm
Jx = 500 kg m2 Jy = 1,000 kg m2 Jz = 1,225 kg m2

hG = 600 mm
Jr(each) = 0.59 kg m2 Jm = 0.088 kg m2 Jt = 0.05 kg m2

1The first value is the mass of the empty vehicle; the second includes two passengers and
is consistent with the values of the moments of inertia the height of the center of mass.
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FIGURE E.1. Maximum power and torque curves of the engine.
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FIGURE E.2. Map of the specific fuel consumption of the engine; the consumption at
idle (700 rpm) is 340 g/h.

The maximum engine power and torque are
Pmax = 43 kW at 5000 rpm; Tmax = 103 Nm at 3000 rpm.
The performance curves of the engine are reported in Fig. E.1; the map of

specific fuel consumption is shown in Fig. E.2.
The data for the computation of rolling resistance and for the computation of

longitudinal and lateral forces (equations (2.34, 2.35, 2.36, 2.37)) for the 155/70
R 13 tires used on this car are reported in the following table:
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Re = 279 mm
f0 = 0.011 K = 2.6 · 10−8 s2/m2

pCx1 = 1.62 pCy1 = 1.711
pDx1 = 0.941 pDy1 = 0.900
pDx2 = 5.84 · 10−2 pDy2 = −0.273
pDx3 = −2.45 · 10−5 pDy3 = 5.45 · 10−4

pEx1 = 0.804 pEy1 = 5.84 · 10−2

pEx2 = −0.312 pEy2 = −0.616
pEx3 = −0.416 pEy3 = −1.49 · 10−5

pEx4 = −3.79 · 10−6 pEy4 = 2.59 · 10−5

pKx1 = 41.3 pKy1 = −12.4
pKx2 = 15.5 pKy2 = 1.08
pKx3 = −5.44 · 10−3 pKy3 = 0.767
pHx1 = −5.27 · 10−8 pHy1 = −2.26 · 10−8

pHx2 = 5.60 · 10−8 pHy2 = 2.07 · 10−7

pHx3 = −5.36 · 10−7

pV x1 = −8.54 · 10−8 pV y1 = 6.37 · 10−8

pV x2 = 3.48 · 10−7 pV y2 = 8.13 · 10−7

pV y3 = −1.40 · 10−6

pV y4 = 7.80 · 10−7

Aerodynamic data:

S = 2.04 m2 Cx = 0.33

Gear ratios (front wheel drive):

τ I = 3.909 τ II = 2.157 τ III = 1.48 ηt = 0.93
τ IV = 1.121 τV = 0.897 τf = 3.438

E.2 Small car (b)

The vehicle is a typical 1990s small car with five seats and a 1 liter spark ignition
engine of the 1990s. The performance curves of the engine and map of specific
fuel consumption are shown in Fig. E.3.

The primary geometrical data and the inertial properties of the vehicle,
wheels and driveline are:

length = 3,640 mm width = 1,560 mm height = 1,410 mm
a = 870 mm b = 1, 290 mm l = 2, 160 mm
m = 830 kg t1 = 1,284 mm t2 = 1,277 mm
Jx = 290 kg m2 Jy = 1,094 kg m2 Jz = 1,210 kg m2

Jxz = −84 kg m2

Jr(each) = 0.4 kg m2 Jm = 0.085 kg m2 Jt = 0.05 kg m2
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FIGURE E.3. Maximum torque and power curves and map of the specific fuel con-
sumption of the engine; the consumption at idle (700 rpm) is 27 g/h.

The maximum engine power and torque are
Pmax = 38.3 kW at 5200 rpm; Tmax = 87 Nm at 3,000 rpm.
The data for the computation of rolling resistance and longitudinal and

lateral forces (equations (2.23, 2.28, 2.29)) for the 145 R 13 tires used on this
car are reported in the following table:

f0 = 0.013 K = 6.5 · 10−6 s2/m2 Re = 257 mm
a0 = 1.30 a1 = −53.3 a2 = 1, 190
a3 = 588 a4 = 2.52 a5 = 0
a6 = −0.519 a7 = 1.00 a8 = 0
a9 = 0 a10 = 0 a111 = 0
a112 = 0 a12 = 0 a13 = 0
c0 = 2.40 c1 = −4.40 c2 = −1.36
c3 = −4.10 c4 = −3.28 c5 = 0.245
c6 = 0 c7 = −0.0792 c8 = 0
c9 = 1.00 c10 = 0 c11 = 0
c12 = 0 c13 = 0 c14 = 0
c15 = 0 c16 = 0 c17 = 0

A = 1.12 C = 0.625 D = 1
n = 0.6 k = 46 d = 5

Aerodynamic data:

S = 1.7 m2 Cx = 0.32 Cz = −0.21
CMy

= −0.09 (Cy),β = −2.2 1/rad (CMz
),β = −0.6 1/rad
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Driveline (front wheels drive):

τ I = 4.64 τ II = 2.74 τ III = 1.62
τ IV = 1.05 τf = 3.47 ηt = 0.91

E.3 Small car (c)

The vehicle is a typical late-model small car with five seats and a 1.3 liter direct
injection diesel engine.

The main geometrical data and inertial properties of the vehicle, wheels and
engine are:

length = 4,030 mm width = 1,690 mm height = 1,490 mm
a = 958 mm b = 1, 552 mm l = 2, 510 mm
m = 1,090÷1,2502 kg t1 = 1,440 mm t2 = 1,420 mm
Jx = 960 kg m2 Jy = 2,058 kg m2 Jz = 2,663 kg m2

hG = 550 mm
Jr(each) = 0.77 kg m2 Jm = 0.16 kg m2 Jt = 0.06 kg m2

The maximum engine power and torque are
Pmax = 51 kW at 4,000 rpm; Tmax = 180 Nm at 1,800 rpm.
The performance curves of the engine are reported in Fig. E.4; the map of

specific fuel consumption is shown in Fig. E.5.
The data for the computation of rolling resistance and longitudinal and

lateral forces (equations (2.34, 2.35, 2.36, 2.37)) for the 175/65 R 15 tires used
on this car are reported in the following table:

FIGURE E.4. Maximum power and torque curves of the engine.

2The first value is the mass of the empty vehicle; the second includes two passengers and
is consistent with the values of the moments of inertia and height of the center of mass.
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FIGURE E.5. Map of the specific fuel consumption of the engine; the consumption at
idle (800 rpm) is 300 g/h.

Re = 296 mm
f0 = 0.0096 K = 2.7 · 10−8 s2/m2

pCx1 = 1.45 pCy1 = 1.11
pDx1 = 1.00 pDy1 = 0.982
pDx2 = 0.0 pDy2 = −0.16
pDx3 = 0.0 pDy3 = −2.47
pEx1 = 8.58 · 10−7 pEy1 = 0.571
pEx2 = −7.60 · 10−6 pEy2 = −0.261
pEx3 = −2.24 · 10−5 pEy3 = −0.323
pEx4 = −202 pEy4 = −22.66
pKx1 = 25.1 pKy1 = −20.22
pKx2 = −5.11 · 10−6 pKy2 = 2.72
pKx3 = 0.399 pKy3 = 0.0811
pHx1 = −8.71 · 10−6 pHy1 = 3.39 · 10−3

pHx2 = −1.0 · 10−5 pHy2 = 1.58 · 10−3

pHy3 = 9.83 · 10−2

pV x1 = 1.42 · 10−5 pV y1 = 4.51 · 10−4

pV x2 = 8.62 · 10−5 pV y2 = 0.0161
pV y3 = 0.438
pV y4 = −0.378

Aerodynamic data:

S = 2.14 m2 Cx = 0.35
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Driveline (front wheels drive):

τ I = 3.909 τ II = 2.238 τ III = 1.444 ηt = 0.93
τ IV = 1.029 τV = 0.767 τf = 3.563

E.4 Medium size saloon car (a)

The vehicle is a typical late-model saloon car with five seats and a 1.9 liter direct
injection diesel engine.

The main geometrical data and inertial properties of the vehicle, wheels and
engine are:

length = 4,250 mm width = 1,760 mm height = 1,530 mm
a = 1, 108 mm b = 1, 492 mm l = 2, 600 mm
m = 1,320÷1,4003 kg t1 = 1,506 mm t2 = 1,498 mm
Jx = 545 kg m2 Jy = 1,936 kg m2 Jz = 2,038 kg m2

hG = 565 mm
Jr(each) = 0.86 kg m2 Jm = 0.27 kg m2 Jt = 0.08 kg m2

The maximum engine power and torque are
Pmax = 85 kW at 4,000 rpm; Tmax = 280 Nm at 2,000 rpm.
The performance curves of the engine are reported in Fig. E.6; the map of

specific fuel consumption is shown in Fig. E.7.
The data for the computation of rolling resistance and longitudinal and

lateral forces (equations (2.34, 2.35, 2.36, 2.37)) for the 195/65 R 15 tires used
on this car are reported in the following table:

FIGURE E.6. Maximum power and torque curves of the engine.

3The first value is the mass of the empty vehicle; the second includes two passengers and
is consistent with the values of the moments of inertia and height of the center of mass.
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FIGURE E.7. Map of the specific fuel consumption of the engine; the consumption at
idle (850 rpm) is 520 g/h

Re = 307 mm
f0 = 0.0124 K = 0.23 · 10−8 s2/m2

pCx1 = 1.53 pCy1 = 0.0486
pDx1 = 1.20 pDy1 = 18.1
pDx2 = −0.129 pDy2 = −2.21
pDx3 = 0.0 pDy3 = 1.71
pEx1 = 0.456 pEy1 = 0.106
pEx2 = 0.420 pEy2 = 0.0767
pEx3 = 0.024 pEy3 = −1.57
pEx4 = 0.174 pEy4 = 28.9
pKx1 = 60.9 pKy1 = −24.03
pKx2 = 0.0807 pKy2 = 1.70
pKx3 = 0.567 pKy3 = 0.388
pHx1 = −5.99 · 10−5 pHy1 = 3.07 · 10−3

pHx2 = 5.76 · 10−4 pHy2 = −3.55 · 10−3

pHx3 = 0.0796
pV x1 = 0.0347 pV y1 = −0.0153
pV x2 = 0.0221 pV y2 = −0.0468

pV y3 = −0.0522
pV y4 = 0.217

Aerodynamic data:

S = 2.15 m2 Cx = 0.34
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Driveline (front wheels drive):

τ I = 3.58 τ II = 1.89 τ III = 1.19 ηt = 0.93
τ IV = 0.85 τV = 0.69 τf = 3.63

E.5 Medium size saloon car (b)

The vehicle is a typical saloon car with a 2 liter spark ignition supercharged
engine from the late 1980s.

The performance curves of the engine are reported in Fig. E.8.
The main geometrical data and inertial properties of the vehicle, wheels and

driveline are:

length = 4,690 mm width = 1,830 mm height = 1,450 mm
a = 1, 064 mm b = 1, 596 mm l = 2, 660 mm
m = 1,150 kg t1 = 1,490 mm t2 = 1,482 mm
Jx = 530 kg m2 Jy = 1,630 kg m2 Jz = 1,850 kg m2

hG = 570 mm
Jxz = −120 kg m2

Jr(each) = 0.6 kg m2 Jm = 0.19 kg m2 Jt = 0.07 kg m2

The maximum engine power and torque are
Pmax = 122 kW at 5,500 rpm; Tmax = 255 Nm at 2,500 rpm, with the

possibility of short surges up to 284 Nm at 2,750 rpm (overboost ).
The data for the computation of rolling resistance and longitudinal and

lateral forces (equations (2.23, 2.28, 2.29)) for the 195 R 14 tires used on this
car are reported in the following table:

FIGURE E.8. Maximum power and torque curves of the engine
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f0 = 0.013 K = 6.5 × 10−6 s2/m2 Re = 287 mm
a0 = 1.69 a1 = −55.2 a2 = 1, 270
a3 = 1.600 a4 = 6.49 a5 = 4.80 · 10−3

a6 = −0.388 a7 = 1.00 a8 = −4.54 · 10−2

a9 = 4.28 · 10−3 a10 = 8.65 · 10−2 a111 = −7.97
a112 = −0.223 a12 = 7.61 a13 = 45.9
b0 = 1.65 b1 = −7.61 b2 = 1, 122
b3 = −7.36 · 10−3 b4 = 145 b5 = −7.66 · 10−2

b6 = −3.86 · 10−3 b7 = 8.50 · 10−2 b8 = 7.57 · 10−2

b9 = 2.36 · 10−2 b10 = 2.36 · 10−2

c0 = 2.22 c1 = −3.04 c2 = −9.23
c3 = 0.500 c4 = −5.57 c5 = −0.260

c6 = −1.30 · 10−3 c7 = −0.358 c8 = 3.74
c9 = −15.2 c10 = 2.11 · 10−3 c11 = 3.46 · 10−4

c12 = 9.14 · 10−3 c13 = −0.244 c14 = 0.101
c15 = −1.40 c16 = 0.444 c17 = −0.999

Aerodynamic data:

S = 2.06 m2 Cx = 0.36 Cz = −0.12
CMy

= −0.05 (Cy),β = −1.8 1/rad (CMz
),β = −0.5 1/rad

Driveline (front wheel drive)

τ I = 3.750 τ II = 2.235 τ III = 1.518 ηt = 0.91
τ IV = 1.132 τV = 0.82 τf = 2.95

E.6 Sports car (a)

The vehicle is a recent two-seater sports car with a 4.2 liter spark ignition engine.
The main geometrical data and inertial properties of the vehicle, wheels,

engine and transmission are
length = 4,510 mm width = 1,920 mm height = 1,210 mm
a = 1, 461 mm b = 1, 199 mm l = 2, 660 mm
m = 1,590÷1,6904 kg t1 = 1,670 mm t2 = 1,600 mm
Jx = 626 kg m2 Jy = 2,165 kg m2 Jz = 2,220 kg m2

hG = 470 mm
Jr (total) = 2.2 kg m2 Jm = 0.28 kg m2 Jt = 0.07 kg m2

The maximum engine power and torque are
Pmax = 290 kW at 7,000 rpm; Tmax = 460 Nm at 4,400 rpm.
The performance curves of the engine are reported in Fig. E.9; the map of

specific fuel consumption is shown in Fig. E.10.

4The first value is the mass of the empty vehicle; the second includes two passengers and
is consistent with the values of the moments of inertia and height of the center of mass.
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FIGURE E.9. Maximum power and torque curves of the engine.

FIGURE E.10. Map of the specific fuel consumption of the engine; the consumption at
idle (850 rpm) is 520 g/h

The data for the computation of rolling resistance and longitudinal and
lateral forces (equations (2.34, 2.35, 2.36, 2.37)) for the front 245/40 R 18 and
rear 285/40 R 18 tires used on this car are reported in the following table:
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f0 = 0.014 K = 0.5 · 10−7 s2/m2

pCx1 = 1.44 pCy1 = 1.84
pDx1 = 1.27 pDy1 = 1.19
pDx2 = −0.0824 pDy2 = −0.181
pDx3 = 0.0 pDy3 = 3.85
pEx1 = −2.37 · 10−5 pEy1 = −1.89 · 10−4

pEx2 = −3.93 · 10−5 pEy2 = 5.17 · 10−5

pEx3 = 8.57 · 10−6 pEy3 = 1060
pEx4 = −201 pEy4 = 1490
pKx1 = 35.8 pKy1 = −3050
pKx2 = 4.73 · 10−4 pKy2 = 299
pKx3 = 0.143 pKy3 = 0.224
pHx1 = −7.69 · 10−5 pHy1 = −4.70 · 10−4

pHx2 = 1.35 · 10−4 pHy2 = −1.24 · 10−4

pHy3 = −8.04 · 10−3

pV x1 = 3.32 · 10−4 pV y1 = −0.0153
pV x2 = 5.72 · 10−4 pV y2 = −0.00210

pV y3 = −0.857
pV y4 = −0.380

Re = 333 mm
f0 = 0.0124 K = 0.23 · 10−8 s2/m2

pCx1 = 1.52 pCy1 = 1.41
pDx1 = 1.49 pDy1 = 1.18
pDx2 = −0.102 pDy2 = −0.158
pDx3 = 0.0 pDy3 = 1.87
pEx1 = −0.277 pEy1 = 0.358
pEx2 = −0.422 pEy2 = −0.691
pEx3 = 0.251 pEy3 = 0.196
pEx4 = −1.04 pEy4 = −6.03
pKx1 = 27.6 pKy1 = −60.1
pKx2 = −10.1 pKy2 = 3.51
pKx3 = 0.432 pKy3 = 0.271
pHx1 = −6.34 · 10−4 pHy1 = 2.74 · 10−3

pHx2 = −3.87 · 10−4 pHy2 = −2.29 · 10−4

pHy3 = 0.0197
pV x1 = 0.0127 pV y1 = 0.0369
pV x2 = 0.0214 pV y2 = −0.0262

pV y3 = −0.47
pV y4 = −0.565

Aerodynamic data:

S = 2.21 m2 Cx = 0.35
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Driveline (rear wheel drive):

τ I = 3.29 τ II = 2.16 τ III = 1.61 τ IV = 1.27 ηt = 0.91
τV = 1.04 τV I = 0.88 τf = 4.19

E.7 Sports car (b)

The vehicle is a mid-engine two-seater sports car with a 3.5 liter spark ignition
supercharged engine.

The performance curves of the engine and the map of specific fuel consump-
tion are shown in Fig. E.11.

The main geometrical data and inertial properties of the vehicle, wheels,
engine and transmission are

length = 4,250 mm width = 1,900 mm height = 1,160 mm
m = 1,480 kg t1 = 1,502 mm t2 = 1,578 mm
Jx = 590 kg m2 Jy = 1,730 kg m2 Jz = 1,950 kg m2

Jxz = −50 kg m2 Jr1 (each) = 7 kg m2 Jr2 (each) = 7 kg m2

Jm = 0.7 kg m2 Jt = 0.08 kg m2

Pmax = 235 kW at 7,200 rpm; Tmax = 324 Nm at 5,000 rpm.
Data for rolling coefficient and for the “magic formula” for lateral forces,

longitudinal forces and aligning torque of tires:

FIGURE E.11. Maximum torque and power curves and map of the specific fuel con-
sumption of the engine.
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f0 = 0.013 K = 6.5 × 10−6 s2/m2 Re1 = 310 mm
Re2= 315 mm
a0 = 1.7990 a1 = 0 a2 = 1688.0000
a3 = 4140.0000 a4 = 6.0260 a5 = 0
a6 = −0.3589 a7 = 1.0000 a8 = 0
a9 = −6.1110 × 10−3 a10 = −3.2240 × 10−2 a111 = 0
a112 = 0 a12 = 0 a13 = 0
b0 = 1.65 b1 = 0 b2 = 1688
b3 = 0 b4 = 229 b5 = 0
b6 = 0 b7 = 0 b8 = −10
b9 = 0 b10 = 0
c0 = 2.0680 c1 = −6.4900 c2 = −21.850
c3 = 0.4160 c4 = −21.3100 c5 = 2.9420 × 10−2

c6 = 0 c7 = −1.1970 c8 = 5.2280
c9 = −14.8400 c10 = 0 c11 = 0
c12 = −3.7360 × 10−3 c13 = 3.8910 × 10−2 c14 = 0
c15 = 0 c16 = 0.6390 c17 = 1.6930

Aerodynamic data:

S = 1.824 m2 Cx = 0.335 Cz = −0.34
CMy

= 0 (Cy),β = −2.3 1/rad (CN ),β = −0.3 1/rad

Transmission (rear wheel drive) (the value of τf is inclusive of the reduction
gears located between engine and gearbox):

τ I = 1/3.214 τ II = 1/2.105 τ III = 1/1.458
τ IV = 1/1.094 τV = 1/0.861 τf = 1/4.051
ηt = 0.87

E.8 Van

The vehicle is a van with a carrying capacity of 1.4 t (fully loaded mass 3,500
kg) with a 2.3 l direct injection diesel engine.

The main geometrical data and inertial properties of the vehicle, wheels,
engine and transmission are

length = 5,400 mm width = 2,050 mm height = 2,500 mm
a = 1, 204 mm b = 2, 246 mm l = 3, 450 mm
m = 2,020÷2,1005 kg t1 = 1,810 mm t2 = 1,790 mm
Jx = 1,400 kg m2 Jy = 6,000 kg m2 Jz = 6,230 kg m2

hG = 679 mm
Jr(each) = 1.07 kg m2 Jm = 0.335 kg m2 Jt = 0.32 kg m2

5The first value is the mass of the empty vehicle; the second includes one passenger and
luggage and is consistent with the values of the moments of inertia and height of the center of
mass. The effect of the payload must then be added.



E.8 Van 813

FIGURE E.12. Maximum power and torque curves of the engine.

FIGURE E.13. Map of the specific fuel consumption of the engine; the consumption at
idle (800 rpm) is 500 g/h.

The maximum engine power and torque are
Pmax = 103 kW at 3,750 rpm; Tmax = 330 Nm at 2,500 rpm.
The performance curves of the engine are reported in Fig. E.12; the map of

specific fuel consumption is shown in Fig. E.13.
Aerodynamic data:

S = 4.4 m2 Cx = 0.37
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Driveline (rear wheels drive):

τ I = 4.99 τ II = 2.6 τ III = 1.52 ηt = 0.93
τ IV = 1.00 τV = 0.777 τf = 3.72

The data for the computation of rolling resistance and longitudinal and
lateral forces (equations (2.34, 2.35, 2.36, 2.37)) for the 225/65 R 16 tires used
on this vehicle are reported in the following table:

Re = 339 mm
f0 = 0.0094 K = 0.43 · 10−8 s2/m2

pCx1 = 1.76 pCy1 = 1.3
pDx1 = 1.09 pDy1 = −0.857
pDx2 = −0.0312 pDy2 = −0.0702
pDx3 = 0.0 pDy3 = 0.0
pEx1 = 0.552 pEy1 = 0.00117
pEx2 = 0.370 pEy2 = −0.0106
pEx3 = −0.170 pEy3 = −8.68 · 10−5

pEx4 = 0.0 pEy4 = 0.0
pKx1 = 19.1 pKy1 = −15.3
pKx2 = −0.466 pKy2 = 2.93
pKx3 = 0.483 pKy3 = 0.0
pHx1 = −5.45 · 10−4 pHy1 = 0.00571
pHx2 = 2.09 · 10−4 pHy2 = 0.00283

pHy3 = 0.0
pV x1 = 0.0 pV y1 = 0.0207
pV x2 = 0.0 pV y2 = 0.00421

pV y3 = 0.0
pV y4 = 0.0

E.9 Heavy articulated truck

The vehicle is an articulated truck with a two-axle tractor and a three-axle
trailer. The geometrical data regarding the positions of the axles and centers of
mass in the xz plane are reported in Fig. E.14.

E.9.1 Tractor

The main geometrical data and inertial properties of the vehicle, wheels, engine
and transmission are:

m = 7,150 kg t1 = 2,100 mm t2 = 1,835 mm
Jx = 4,500 kg m2 Jy = 25,800 kg m2 Jz = 27,000 kg m2

Jxz = −3, 800 kg m2 Jr = 2.5 kg m2 (each)
Jm = 2.55 kg m2 Jt = 1.1 kg m2
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FIGURE E.14. Sketch of an articulated truck with 5 axles.

FIGURE E.15. Maximum torque and power curves and map of the specific fuel con-
sumption of the engine.

The vertical and torsional stiffnesses of the suspensions are:

K1 = 2,100 N/m K2 = 2,800 N/m Kt1 = 3,790 Nm/rad
Kt2 = 3,790 Nm/rad

Aerodynamic data:

S = 5.14 m2 Cx = 0.45 (tractor) Cx = 0.65 (whole vehicle)
Cz = 0 (Cy),β = −2.2 1/rad (CMz

),β = −1.5 1/rad

The curves of the maximum power and torque of the engine are reported in
Fig. E.15 together with the map of the specific fuel consumption
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Driveline (rear wheels drive):

τ I = 12.5 τ II = 8.35 τ III = 6.12
τ IV = 4.56 τV = 3.38 τV I = 2.47
τV II = 2.14 τV III = 1.81 τ IX = 1.57
τX = 1.35 τXI = 1.17 τXII = 1.00
τXIII = 0.87 τf = 4.263 ηtI = 0.81

ηtII = 0.84 ηtIII = 0.84 ηtIV = 0.84
ηtV = 0.89 ηtV I = 0.87 ηtV II = 0.84
ηtV III = 0.87 ηtIX = 0.84 ηtX = 0.87
ηtXI = 0.84 ηtXII = 0.93 ηtXIII = 0.89

E.9.2 Trailer

Inertial properties of the trailer:

m = 32,0006 kg t3 = 1,835 mm t4 = 1,835 mm
t5 = 2,100 mm Jx = 30,000 kg m2 Jy = 285,000 kg m2

Jz = 285,000 kg m2

Vertical and torsional stiffnesses of the suspensions:
K3 = 2,150 N/m K4 = 2,150 N/m K5 = 1,380 N/m
Kt3 = 3,200 Nm/rad Kt4 = 3,200 Nm/rad Kt5 = 2,800 Nm/rad

Aerodynamic data:

S = 7.5 m2 Cx = 0.25 Cz = 0
(Cy),β = −2.35 1/rad (CMz

),β = −0.6 1/rad (referred a l5)

E.9.3 Tires

Axles 1 and 5 have single tires, axles 2, 3 and 4 have twin tires. Data for rolling
coefficient and basic data for cornering forces and aligning torque using a sim-
plified magic formula (equations (2.23, 2.28, 2.29)):

f0 = 0.008 K = 0 Re = 460 mm
a3 = 5019.3 a4 = 65.515
c3 = −0.6100 c4 = −2.3400 c5 = 0.02727

E.10 Racing motorcycle

The vehicle is a racing motorcycle. The geometrical sketch of the vehicle and the
torque and power curves of the engine are reported in Fig. E.16.

6Fully loaded mass.
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FIGURE E.16. Geometrical sketch of the vehicle and torque and power curves of the
engine.

The main geometrical data and inertial properties of the vehicle (moment
of inertia Jx is referred to an axis lying on the ground), wheels, engine, trans-
mission are:

m1 = 20 kg m2 = 200 kg md = 70 kg (driver)
Jx = 80 kg m2 Jy = 110 kg m2 Jz = 40 kg m2

Jxz = 0 J1z
= 2 kg m2 J1xz

= 1 kg m2

Jp1 = 0.4 Jp2 = 0.4 kg m2 Je = 0.08 kg m2

l = 1320 mm a = 642 mm b = 678 mm
c1 = 561.5 mm c2 = 54.2 mm e = 50 mm
e1 = 95 mm h = 495.6 mm h1 = 432 mm
h2 = 500 mm η = 23◦ cδ = 8 Nms/rad

Pmax = 88 kW a 11.900 rpm; Tmax = 76 Nm a 9.750 rpm.
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Wheels and tires, geometrical and linearized data:

Re1 = 300 mm Re2 = 300 mm rt1 = 70 mm
rt2 = 110 mm rt (average) = 90 mm
f0 = 0.01 K = 4 · 10−6 s2/m2 μxmax

= 1.1
(C1),Z = 27.27 1/rad (C2),Z = 30.0 1/rad
(Mz2),α,Z = 0.228 m/rad (Fy1),γ,Z = −1.177 1/rad
(Mz1),α,Z = 0.210 m/rad (Fy2),γ,Z = −1.367 1/rad

Data for the “magic formula” for lateral forces, longitudinal forces and align-
ing torque, front tire (Equations (2.23, 2.28, 2.29)):

a0 = 1.50 a1 = −27.9 a2 = 1, 280
a3 = −1000 a4 = 4.00 a5 = 0.015
a6 = −0.35 a7 = −1.99 a8 = 0.058
a9 = 0 a10 = 0 a11 = 5
a12 = 0 a13 = 0
b3 = 49.6 b4 = 226 b5 = 0.069
c0 = 2.40 c1 = −2.72 c2 = −2.28
c3 = 1.86 c4 = 2.73 c5 = 0.11
c6 = 0.030 c7 = −0.07 c8 = 0.643
c9 = −4.04 c10 = −0.07 c11 = −0.015
c12 = 0 c13 = 0 c14 = −0.066
c15 = 0.945 c16 = 0 c17 = 0

Data for the “magic formula” for lateral forces, longitudinal forces and align-
ing torque, rear tire (Equations (2.23, 2.28, 2.29)):

a0 = 1.50 a1 = −27.9 a2 = 1, 275
a3 = −1.100 a4 = 4.00 a5 = 0.010
a6 = −0.35 a7 = −1.99 a8 = 0.058
a9 = 0 a10 = 0 a11 = 5
a12 = 0 a13 = 0
b3 = 49.6 b4 = 226 b5 = 0.069
c0 = 2.40 c1 = −2.72 c2 = −2.28
c3 = 1.86 c4 = 2.73 c5 = 0.11
c6 = 0.03 c7 = −0.070 c8 = 0.643
c9 = −4.04 c10 = −0.07 c11 = −0.015
c12 = 0 c13 = 0 c14 = −0.066
c15 = 0.945 c16 = 0 c17 = 0

Aerodynamic data:

S = 1 m2 Cx = 0.23 Cz = 0.10
CMy

= 0 (Cy),β = 0.026 1/rad (CMz
),d = 0.065 1/rad
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Transmission (the values of τ i are inclusive of the reduction gear located
between engine and gearbox):

τ I = 4.91 τ II = 3.84 τ III = 3.22
τ IV = 2.81 τV = 2.5 τV I = 2.29
τf = 3.00 ηt = 0.88
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4WS, 248, 319

ABS, 433, 451, 494
AC motors, 177
acceleration, 220

time, 44
accelerator

by wire, 594
pedal release, 47

ACEA, 8, 17, 22, 27, 28
active suspensions, 434, 469
adjustable braking, 90
aerodynamic

angle of attack, 118
drag, 193
efficiency, 134
forces, 123
lift, 148, 259
moments, 123
simulation, 161

aligning torque, 306
ambient wind velocity, 108
analytical models, 506
ANFIA, 7, 9–11, 14, 20
anti

-collision systems, 447
-dive, 241, 401
-lift, 401
-lock devices, 240
-roll bars, 298, 784
-squat, 401

ARC, 470, 494
articulated vehicles, 191, 249, 322,

572
aspect ratio (wings), 137
ASR, 433, 455
asymptotical stability, 674
Auto-Oil II, 8, 29
automatic braking, 90
available power (at the wheels), 198
average speed, 45

Bernoulli equation, 120
bimodal vehicles, 166
black box models, 506
bound vortices, 138
boundary

elements method, 161
layer, 122
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brake by wire, 434, 456
braking, 231

efficiency, 91, 238
in a turn, 48
in actual conditions, 236
level, 94
power, 242
time, 233

branched systems, 512
brushless motor, 177

camber angle, 525
capsize (motor cycles), 709, 720
carbon

dioxide equivalent, 29
monoxide, 27

caster angle, 306
center of mass, 108

height, 109
certificate

of conformity, 71
of homologation, 71

characteristic
power, 196
speed, 196, 268

choice of the transmission ratios, 210
circulatory

coupling, 677
matrix, 666

closed loop, 46
clutch damper springs, 614
collision

advanced model, 760
head on (central), 746
head on (non central), 752
impulsive model, 746
lateral, 753
oblique, 748
simplified model, 754
with a fixed obstacle, 751
with the curb, 785

comfort model
(5 d.o.f.), 561
deformable vehicle, 570

compliance
of the vehicle body, 300
of tires, 409
on the frame, 427

concept, 3
configuration space, 665
continuous

braking, 90
models, 507

control
delay, 437
gains, 650

corner, 359
cornering

force, 279
force coefficient, 262
stiffness, 279, 295

corrosion, 64
crank mechanism, 581, 589
crash test, 760, 764
critical

damping, 363
speed

of the vehicle, 269, 302
of transmission, 351

crosswind response, 292
crushing modulus, 763

D’Alembert Paradox, 120
damping

matrix, 666
reciprocating engines, 589

DC motors, 177
deformable vehicles, 565
degree of undergearing, 208
degrees of freedom, 512
derivatives of stability, 281, 306, 331
detail optimization method, 142
direct link matrix, 669
directive, 72
discretization, 508
dissipation function, 530, 540, 546,

569, 628, 656, 682
drag (aerodynamic), 134
drive by wire, 432
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driveability, 45
driveline, 577
driver model, 429, 435
driving

quality index, 58
torque, 584

dry friction, 425
dynamic

index, 395
matrix, 558, 668
models of the engine, 580
potential, 682
steering, 255, 265, 271
vibration absorber, 380, 428

EBD, 455
efficiency

of braking, 238
of the brakes, 236
of the clutch, 219
of the driveline, 198
of wind tunnels, 156

elastic accumulators, 178
elastokinematics characteristics of

suspensions, 300
electric

brake, 89
motors, 167, 169
vehicles, 174

electrochemical accumulators, 169
electromagnetic compatibility, 493
elementary maneuvers, 46
emergency brake, 90
endurance, 63
energy

at constant speed, 210
efficiency, 14
storage, 166

engine
brake, 89
control, 594
efficiency, 172, 211
power, 165, 169
suspension, 351, 594

EPS, 434, 493

equations of motion, 547, 553
equivalent

damping, 597
inertia, 597, 599
mass, 221, 542
moment of inertia, 225, 584
stiffness, 588, 597
system, 581, 596

Euler
angles, 689
equations, 695

Euro NCAP, 98
Eurostat, 8, 13, 24, 26, 30

fatigue, 63
feasibility study, 33
finite

differences method, 161
elements method, 111, 161, 509

firing order, 586
flexural

critical speeds, 598
vibration (driveline), 598

flow separation, 123
fluid brake, 89
force on the ground (variable com-

ponent), 371
free controls

dynamics, 304
stability, 309

friction
brake, 89
clutch, 215
drag (aerodynamic), 135

fuel
cells, 168
consumption, 45, 211

function, 36, 41

gas turbine, 167
gear ratios, 198, 207
generalized

force, 552, 638
gas pressure, 585

geometric matrix, 683
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global driving quality index, 58
goods traffic volume, 9
grade force, 194
gradeability, 45
greenhouse

effect, 168
gases, 29

ground simulation, 157
groundhook, 483
gyroscopic

matrix, 666
moments, 263, 264, 308, 573,

701
systems, 676

Hamilton equations, 685
Hamiltonian function, 685
handling

-comfort uncoupling, 556
model (3 dof), 271
model (5 d.o.f.), 557
model (deformable vehicle), 570
tilting vehicles, 644

haptic systems, 432, 494
harshness, 350
head on collision

central, 746
non central, 752

heave motion, 394
heel point, 52
homologation form, 76
horseshoe vortices, 138
hybrid vehicles, 166, 179

ideal
braking, 231, 232
driving, 200
steering, 257

imbalance of rotating machines, 350
impact resistance modulus, 765
inclination

angle, 526, 536
lateral, 306

independent suspension, 530

induced drag (aerodynamic), 135,
137

industrial vehicles (aerodynamics),
145

inertia
brake, 89
tensor, 111

information form, 73
input

gain matrix, 559, 668
vector, 559, 668

internal flows, 133
International Roughness Index, 376
ISO, 46

lane change manoeuvre, 440
standards on vibration, 357

isolated vehicles, 513
ISTAT, 7, 10, 22

J-shape, 140
jerk, 363
jury test, 55

K-shape, 140
kinematic steering, 247
kinetic energy, 273, 324, 343, 519,

524, 527, 537, 540, 566,
582, 632, 635, 655, 681,
692, 694, 700

kingpin axis, 306, 526, 531, 535, 638

Lagrange equations, 273, 681
Lagrangian function, 541, 635, 656,

682
laminar flow, 135
lane change, 49
lateral

acceleration gain, 267, 286, 320
collision, 753
offset, 306
transient, 47

leaf springs - hysteresis, 425
linearization of nonlinear systems,

680
linearized model (isolated vehicles),

515
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load
block, 65
distribution on the ground, 185
transfer

longitudinal, 148
transversal, 204

locked controls
stability, 301, 336
state-space equations, 283

longitudinal
dynamics, 185, 556
force

coefficient, 450
effect on handling, 294

interconnection (suspensions),
411

load shift, 233
offset, 306
slip, 599
traction, 201

low-speed steering, 247, 319
Lunar Roving Vehicle (LRV), 730

Mach number, 124, 160
magic formula, 780
Magnus effect, 130
mass matrix, 666
mass-spring-damper analogy, 284,

290
mathematical models, 504
maximum

acceleration, 222
grade, 201
slope, 208
speed, 44, 201, 206, 260

on a bend, 258
mean effective pressure, 171
MK systems, 671
mobility (extraterrestrial environ-

ments), 736
modal coordinates, 566
model with 10 d.o.f., 541
moments of inertia, 111
monotrack vehicle model, 265, 278,

328

motion
after a collision, 774
in the small, 680

motor cycles, 263
mu-split, 454
multibody

models, 111
models, 511, 615
vehicles, 341

multicylinder machines, 586
multifilar pendulum, 114

natural
frequency, 672
nonconservative systems, 672
system, 684

neural networks, 506
neutral steer, 268, 334, 437, 716

point, 288
nitrogen oxides, 27
noise, 350
non-asymptotical stability, 674
non-circulatory coupling, 677
non-methane hydrocarbons, 28
non-minimum phase systems, 314
nonlinear

springs, 425
systems, 679

numerical
aerodynamics, 117, 161
simulation, 681

objective
requirement, 43
tests, 54

oblique collision, 748
occupation factor, 23
off-tracking distance, 248, 319
onboard objects (motion of), 791
open loop, 46
operating fleet, 17
optimum

damping, 363
torsional dampers, 592

shape method, 144
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output
gain matrix, 669
vector, 669

overgearing, 207
oversteer, 269, 334, 716

panels method, 161
parameter identification, 506
parking brake, 90
particulate, 28
passenger traffic volume, 9
path curvature, 645

gain, 247, 267, 286, 320, 560,
715

performance in longitudinal motion,
185

phase
angle diagrams, 586
space, 684

pick-up time, 44
PID control, 650
pitch

angle, 517, 653, 691
center, 399
motion, 394

pitching moment (aer.), 148
planetary gears, 597
pollution, 168
potential energy, 520, 539, 540, 568,

625, 633, 656, 682, 702
elastic, 529
gravitational, 528

power
of the airstream, 156
required for motion, 195

logarithmic plot, 196
pressure

coefficient, 126
proportioning valve, 240

products of inertia, 111
pseudo-coordinates, 276, 686, 694

quadruple, 669
quarter car model, 359

with 2 degrees of freedom, 357,
369

with 3 d.o.f., 378
with a single d.o.f., 361
with compliant tire, 382
with dynamic vibration ab-

sorber, 381
with guiding elements, 387

radius of the trajectory, 644
rain flow, 65
Raleigh dissipation function, 323,

344
rattle, 580
reciprocating

internal combustion engine,
167, 169

steam engine, 167
reduced

comfort boundary, 358
efficiency boundary, 358

reference
frame (inertial), 106
frame (vehicle), 106
model, 459
surface (aerodynamics), 124
weight, 78

regenerative braking, 166
requirements, 36
response to harmonic excitation, 679
restitution coefficient, 748
resultant wind velocity, 108
retarder brake, 90
Reye hypothesis, 64
Reynolds number, 123, 136, 156, 160
ride, 349, 556

comfort, 561
road

excitation, 354
load, 194, 599

roll
angle, 517, 631, 653, 691, 697

gain, 715
axis, 516, 618, 653
center, 521



INDEX 831

motions, 413
steer, 304, 638

rolling
moment (aerodynamic), 152
resistance, 193

rollover, 781
factor, 261
threshold, 781

rotary engine, 168

self-steering device, 87
semi-active suspensions, 469
semi-continuous braking, 90
separation bubble, 127
service brake, 90
shake, 349
shape drag (aer.), 135, 138
shimmy, 309
shock absorbers, 417
side force (aerodynamic), 152
sideslip

angle, 108, 271, 277, 346, 429,
517, 548, 644, 706, 719

gain, 248, 268, 286, 320, 715
skyhook, 476
slender body, 139
sliding factor, 260
slip

longitudinal, 450
steering, 293
velocity, 450

solid axle suspension, 520
specific

fuel consumption, 171
traction force, 16

spoiler, 150
spring-mass-damper analogy, 302
sprung mass, 516
stability, 301, 560

factor, 267, 288, 334
in the small, 680
locked controls, 301, 336
tilting vehicles, 647

stagnation point, 121, 126, 146
standard atmosphere (ICAO), 121

starting manoeuvre, 215
state

space, 509, 668
vector, 509, 558, 668

static margin, 288
steady-state

motion, 641
response, 285, 560

steering
angle, 526, 535, 541, 553, 634,

644, 699
dampers, 309
of trailers, 250
pad test, 46, 262
response (non-steady-state),

312
wheel

release, 48
torque, 308

stiffness matrix, 666
stopping distance, 50
structural index, 765
subjective

requirement, 43
tests, 54

suburban cycle, 79
symmetry plane, 105
synthetic models, 505
system design, 33, 35

Tait-Bryan angles, 517, 690
take-off, 577
target

deployment, 42
setting, 42

TCS, 295, 455, 494
technical specification, 33, 39
TEP, 12
tilting

body vehicles, 472, 617
control, 622

time
to market, 503
to speed, 223

tip-in, tip-out, 578
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toe in, 299
torque

converter, 215
of the engine, 170

torsional vibration
absorbers, 592
dampers, 351, 589

total pressure, 121
traction limited performances, 200
trailer

angle gain, 334
damper, 337
with steering axles, 250, 337

trailing
arms suspension, 532, 619
vortices, 138

transfer functions, 312
transversal

load shift, 204, 297
quadrilaterals suspension, 531,

620
turbulent flow, 135
two-wheeled vehicles, 263

uncoupling of the equations of mo-
tion, 556, 571

undergearing, 207
understeer, 268, 334, 716

coefficient, 267
factor, 288
gradient, 267

urban cycle, 79

VDC, 434, 461, 494
vehicle

control, 429

for low gravity, 738
with trailer, 249, 341
with two wheels, 617, 697

vibration effects, 357
vibro-acoustic comfort, 349
virtual prototypes, 505
viscosity, 122
vortex

drag (aer.), 138
wake, 137

vorticity, 137

Wöhler, 64
wake, 123, 129, 138
wear, 64
weave (motor cycles), 709, 720
wheel

aerodynamic drag, 130
wells, 82

wheelbase filtering, 405
wind

axes, 117
tunnel, 116, 154

wobble (motor cycles), 720

X by wire, 432

yaw
angle, 107, 517, 631, 653, 690,

697
damping, 281
velocity, 272, 429

gain, 286, 320
yawing moment (aerodynamic), 152

zero-emission vehicle, 180


