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PREFACE

When Jerry Lieberman and I started working on the first edition of this book 45 years
ago, our goal was to develop a pathbreaking textbook that would help establish the

future direction of education in what was then the emerging field of operations research.
Following publication, it was unclear how well this particular goal was met, but what did
become clear was that the demand for the book was far larger than either of us had an-
ticipated. Neither of us could have imagined that this extensive worldwide demand would
continue at such a high level for such an extended period of time.

The enthusiastic response to our first eight editions has been most gratifying. It was a
particular pleasure to have the field’s leading professional society, the international Institute
for Operations Research and the Management Sciences (INFORMS), award the 6th edition
honorable mention for the 1995 INFORMS Lanchester Prize (the prize awarded for the year’s
most outstanding English-language publication of any kind in the field of operations research). 

Then, just after the publication of the eighth edition, it was especially gratifying to
be the recipient of the prestigious 2004 INFORMS Expository Writing Award for this
book, including receiving the following citation:

Over 37 years, successive editions of this book have introduced more than one-half million
students to the field and have attracted many people to enter the field for academic activity
and professional practice. Many leaders in the field and many current instructors first learned
about the field via an edition of this book. The extensive use of international student edi-
tions and translations into 15 other languages has contributed to spreading the field around
the world. The book remains preeminent even after 37 years. Although the eighth edition
just appeared, the seventh edition had 46 percent of the market for books of its kind, and it
ranked second in international sales among all McGraw-Hill publications in engineering.

Two features account for this success. First, the editions have been outstanding from
students’ points of view due to excellent motivation, clear and intuitive explanations,
good examples of professional practice, excellent organization of material, very useful
supporting software, and appropriate but not excessive mathematics. Second, the editions
have been attractive from instructors’ points of view because they repeatedly infuse state-
of-the-art material with remarkable lucidity and plain language. For example, a wonderful
chapter on metaheuristics was created for the eighth edition.

When we began work on the book 45 years ago, Jerry already was a prominent mem-
ber of the field, a successful textbook writer, and the chairman of a renowned operations
research program at Stanford University. I was a very young assistant professor just start-
ing my career. It was a wonderful opportunity for me to work with and to learn from the
master. I will be forever indebted to Jerry for giving me this opportunity.

Now, sadly, Jerry is no longer with us. During the progressive illness that led to his
death nine years ago, I resolved that I would pick up the torch and devote myself to subse-
quent editions of this book, maintaining a standard that would fully honor Jerry. Therefore,
I took early retirement from my faculty responsibilities at Stanford in order to work full time
on textbook writing for the foreseeable future. This has enabled me to spend far more than
the usual amount of time in preparing each new edition. It also has enabled me to closely
monitor new trends and developments in the field in order to bring this edition completely
up to date. This monitoring has led to the choice of the major revisions outlined below.

xviii
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■ THE MAJOR REVISIONS

• A Greatly Increased Emphasis on Real Applications. Unbeknownst to the general
public, the field of operations research is continuing to have an increasingly dramatic
impact on the success of numerous companies and organizations around the world.
Therefore, a special goal of this edition has been to tell this story much more forcefully,
thereby exciting students about the great relevance of the material they are studying. We
have pursued this goal in four ways. One is the addition of 29 application vignettes sep-
arated from the regular textual material that describe in a few paragraphs how an actual
application of operations research had a powerful impact on a company or organization
by using techniques like those being studied in that portion of the book. A second is the
addition of 71 selected references of award winning OR applications given at the end
of various chapters. A third is the addition of a link to the journal articles that fully
describe these 100 applications, through a special arrangement with INFORMS. The final
way is the addition of many problems that require reading one or more of these arti-
cles. Thus, the instructor now can motivate his or her lectures by having the students
delve into real applications that dramatically demonstrate the relevance of the material
being covered in the lectures.

We are particularly excited about our new partnership with INFORMS, our field’s
preeminent professional society, to provide a link to these 100 articles describing dra-
matic OR applications. The Institute for Operations Research and the Management
Sciences (INFORMS®) is a learned professional society for students, academics, and
practitioners in quantitative and analytical fields. Information about INFORMS®
journals, meetings, job bank, scholarships, awards, and teaching materials is at
www.informs.org.

• Approximately 200 New or Revised Problems. The new problems include the ones
involving real applications mentioned above. Other new problems also have been added,
including a considerable number that support the new or revised topics mentioned later.
Two new cases have been added for the chapter on decision analysis that are less com-
plex than the two that already were there. In addition, many of the problems from the
eighth edition have been revised. Therefore, an instructor who does not wish to assign
problems that were assigned in previous classes has a substantial number from which
to choose.

• An Updating of the Software Accompanying the Book. The next section will out-
line the wealth of software options that are provided with this new edition. The main
difference from the eighth edition is that new, improved versions of several of the soft-
ware packages now are available. For example, Excel 2007 represents by far the most
major revision of Excel and its user interface in many, many years, so this new ver-
sion of Excel and its Solver has been fully integrated into the book (while pointing
out differences for those still using old versions). Another important example is that,
for the first time in 10 years, new versions of TreePlan and SensIt have just now
become available and have been fully integrated into the decision analysis chapter.
The latest versions of all the other software packages also are being provided with
this new edition.

• A New Section on Revenue Management. A hallmark of new editions of this book
has been the addition of substantial coverage of dramatic, recent developments that are
beginning to revolutionize how certain areas of operations research are being practiced.
For example, the eighth edition added a new chapter on metaheuristics, a new section
on the incorporation of constraint programming, and a new section on multiechelon in-
ventory models for supply chain management. This edition is adding another key new
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topic with the addition of a complete section on revenue management in the chapter on
inventory theory. This is a timely addition because of the dramatic impact that revenue
management has been having in the airline industry and now is beginning to have in
several other industries.

• A Reorganization of the Chapter on the Theory of the Simplex Method. Some in-
structors do not wish to take the time to cover the revised simplex method but may still
want to introduce the matrix form of the simplex method and may still want to cover
what we call the “fundamental insight” regarding the simplex method. Therefore, rather
than covering the revised simplex method in Section 5.2 before turning to the funda-
mental insight in Section 5.3—as in the eighth edition—we now simply introduce the
matrix form of the simplex method in Section 5.2, which flows directly into the funda-
mental insight in Section 5.3, after which we focus on the revised simplex method as
an optional topic in Section 5.4.

• A Simplified Method for Determining Utilities. Among the various other smaller re-
visions throughout the book, perhaps the most noteworthy is a simplified presentation
in Section 15.6 of how to determine utilities. This is done through outlining a simple
“equivalent lottery method.”

• A Reorganization to Reduce the Size of the Book. An unfortunate trend with early
editions of this book was that each new edition was significantly larger than the pre-
vious one. This continued until the seventh edition had become considerably larger than
is desirable for an introductory survey textbook. Therefore, I worked hard to substan-
tially reduce the size of the eighth edition and adopted the goal of avoiding any growth
in subsequent editions. The goal has been achieved for the current edition. This was
accomplished through a variety of means. One was being careful not to add too much
new material. Another was deleting two sections on real applications that had been in
the eighth edition but no longer were needed because of the addition of application vi-
gnettes. Another was moving both the long Appendix 3.1 on the LINGO modeling lan-
guage and the section on optimizing with OptQuest to the supplements on the book’s
website. (This decision regarding OptQuest was made easy by the fact that a new ver-
sion is due out momentarily, but not in time for this edition, so it will be added later
as a supplement.) Finally, a considerable number of sections were shortened. Other-
wise, I have stuck closely to what I hope has become the familiar organization of the
eighth edition after having made major changes for that edition.

• Updating to Reflect the Current State of the Art. A special effort has been made to
keep the book completely up to date. This has included carefully updating both the se-
lected references at the end of each chapter and the various footnotes referencing the
latest research on the topics being covered.

A wealth of software options is being provided on the book’s website www.mhhe
.com/hillier as outlined below.

• Excel spreadsheets: state-of-the-art spreadsheet formulations are displayed in Excel
files for all relevant examples throughout the book.

• Several Excel add-ins, including Premium Solver for Education (an enhancement of
the basic Excel Solver), TreePlan (for decision analysis), SensIt (for probabilistic sen-
sitivity analysis), RiskSim (for simulation), and Solver Table (for sensitivity analysis).

• A number of Excel templates for solving basic models.
• Student versions of LINDO (a traditional optimizer) and LINGO (a popular algebraic

modeling language), along with formulations and solutions for all relevant examples
throughout the book.
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• Student versions of MPL (a leading algebraic modeling language) and its prime solver
CPLEX (the most widely used state-of-the-art optimizer), along with an MPL Tutorial and
MPL/CPLEX formulations and solutions for all relevant examples throughout the book.

• Student versions of several additional MPL solvers, including CONOPT (for convex
programming), LGO (for global optimization), LINDO (for mathematical program-
ming), CoinMP (for linear and integer programming), and  BendX (for some stochas-
tic models).

• Queueing Simulator (for the simulation of queueing systems).
• OR Tutor for illustrating various algorithms in action.
• Interactive Operations Research (IOR) Tutorial for efficiently learning and executing

algorithms interactively, implemented in Java 2 in order to be platform independent. 

Numerous students have found OR Tutor and IOR Tutorial very helpful for learn-
ing algorithms of operations research. When moving to the next stage of solving OR
models automatically, surveys have found instructors almost equally split in preferring
one of the following options for their students’ use: (1) Excel spreadsheets, including the
Excel Solver and other add-ins, (2) convenient traditional software (LINDO and LINGO),
and (3) state-of-the-art OR software (MPL and CPLEX). For this edition, therefore, I
have retained the philosophy of the last couple of editions of providing enough intro-
duction in the book to enable the basic use of any of the three options without distract-
ing those using another, while also providing ample supporting material for each option
on the book’s website.

We have elected to no longer include the Crystal Ball software package that was bun-
dled with the eighth edition. Fortunately, many universities now have a site license for Crys-
tal Ball and the package currently can also be downloaded for a free 30-day trial period,
so it still is feasible to have students use this software, at least for a limited time. There-
fore, this edition continues to use Crystal Ball in Section 20.6 and certain supplements to
illustrate the exciting functionality that is now available for analyzing simulation models.

Additional Online Resources

• Several examples for nearly every book chapter are included in a Worked Examples
section of the book’s website to provide additional help to occasional students who
need it without disrupting the flow of the text and adding unneeded pages for others.
(The book uses boldface to highlight whenever an additional example on the current
topic is available.)

• A glossary for every book chapter.
• Data files for various cases are included to enable students to focus on analysis rather

than inputting large data sets.
• An abundance of supplementary textual material (including eight complete chapters). 
• A test bank featuring moderately difficult questions that require students to show their

work is being provided to instructors. Most of the questions in this test bank have pre-
viously been used successfully as test questions by the authors.

• Also available to instructors are a solutions manual and image files.

Electronic Textbook Option

This text is offered through CourseSmart for both instructors and students. CourseSmart
is an online resource where students can purchase access to this and other McGraw-Hill
textbooks in a digital format. Through their browser, students can access the complete text
online at almost half the cost of a traditional text. Purchasing the eTextbook also allows
students to take advantage of CourseSmart’s web tools for learning, which include full
text search, notes and highlighting, and e-mail tools for sharing notes between classmates.
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■ THE USE OF THE BOOK

The overall thrust of all the revision efforts has been to build upon the strengths of pre-
vious editions to more fully meet the needs of today’s students. These revisions make
the book even more suitable for use in a modern course that reflects contemporary prac-
tice in the field. The use of software is integral to the practice of operations research, so
the wealth of software options accompanying the book provides great flexibility to the
instructor in choosing the preferred types of software for student use. All the educational
resources accompanying the book further enhance the learning experience. Therefore,
the book and its website should fit a course where the instructor wants the students to
have a single self-contained textbook that complements and supports what happens in
the classroom.

The McGraw-Hill editorial team and I think that the net effect of the revision has been
to make this edition even more of a “student’s book”—clear, interesting, and well-organized
with lots of helpful examples and illustrations, good motivation and perspective, easy-to-find
important material, and enjoyable homework, without too much notation, terminology, and
dense mathematics. We believe and trust that the numerous instructors who have used previ-
ous editions will agree that this is the best edition yet.

The prerequisites for a course using this book can be relatively modest. As with pre-
vious editions, the mathematics has been kept at a relatively elementary level. Most of
Chaps. 1 to 14 (introduction, linear programming, and mathematical programming) require
no mathematics beyond high school algebra. Calculus is used only in Chaps. 12 (Nonlin-
ear Programming) and in one example in Chap. 10 (Dynamic Programming). Matrix no-
tation is used in Chap. 5 (The Theory of the Simplex Method), Chap. 6 (Duality Theory
and Sensitivity Analysis), Sec. 7.4 (An Interior-Point Algorithm), and Chap. 12, but the
only background needed for this is presented in Appendix 4. For Chaps. 15 to 20 (proba-
bilistic models), a previous introduction to probability theory is assumed, and calculus is
used in a few places. In general terms, the mathematical maturity that a student achieves
through taking an elementary calculus course is useful throughout Chaps. 15 to 20 and for
the more advanced material in the preceding chapters.

The content of the book is aimed largely at the upper-division undergraduate level
(including well-prepared sophomores) and at first-year (master’s level) graduate stu-
dents. Because of the book’s great flexibility, there are many ways to package the ma-
terial into a course. Chapters 1 and 2 give an introduction to the subject of operations
research. Chapters 3 to 14 (on linear programming and on mathematical programming)
may essentially be covered independently of Chaps. 15 to 20 (on probabilistic models),
and vice-versa. Furthermore, the individual chapters among Chaps. 3 to 14 are almost
independent, except that they all use basic material presented in Chap. 3 and perhaps
in Chap. 4. Chapter 6 and Sec. 7.2 also draw upon Chap. 5. Sections 7.1 and 7.2 use
parts of Chap. 6. Section 9.6 assumes an acquaintance with the problem formulations
in Secs. 8.1 and 8.3, while prior exposure to Secs. 7.3 and 8.2 is helpful (but not es-
sential) in Sec. 9.7. Within Chaps. 15 to 20, there is considerable flexibility of cover-
age, although some integration of the material is available.

An elementary survey course covering linear programming, mathematical program-
ming, and some probabilistic models can be presented in a quarter (40 hours) or semester
by selectively drawing from material throughout the book. For example, a good survey of
the field can be obtained from Chaps. 1, 2, 3, 4, 15, 17, 18, and 20, along with parts of

To learn more about CourseSmart options, contact your sales representative or visit
www.CourseSmart.com.
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Chaps. 9 to 13. A more extensive elementary survey course can be completed in two quar-
ters (60 to 80 hours) by excluding just a few chapters, for example, Chaps. 7, 14, and 19.
Chapters 1 to 8 (and perhaps part of Chap. 9) form an excellent basis for a (one-quarter)
course in linear programming. The material in Chaps. 9 to 14 covers topics for another
(one-quarter) course in other deterministic models. Finally, the material in Chaps. 15 to 20
covers the probabilistic (stochastic) models of operations research suitable for presentation
in a (one-quarter) course. In fact, these latter three courses (the material in the entire text)
can be viewed as a basic one-year sequence in the techniques of operations research, form-
ing the core of a master’s degree program. Each course outlined has been presented at ei-
ther the undergraduate or graduate level at Stanford University, and this text has been used
in the manner suggested.

The book’s website will provide updates about the book, including an errata. To ac-
cess this site, visit www.mhhe.com/hillier.

I am indebted to an excellent group of reviewers who provided sage advice for the revision
process. This group included

Chun-Hung Chen, George Mason University
Mary Court, University of Oklahoma
Todd Easton, Kansas State University
Samuel H. Huang, University of Cincinnati
Ronald Giachetti, Florida International University
Mary E. Kurz, Clemson University
Wooseung Jang, University of Missouri-Columbia
Shafiu Jibrin, Northern Arizona University
Roger Johnson, South Dakota School of Mines & Technology
Emanuel Melachrinoudis, Northeastern University
Clark A. Mount-Campbell, The Ohio State University
Jose A. Ventura, Pennsylvania State University
John Wu, Kansas State University

I also am grateful to Garrett Van Ryzin for his expert advice regarding the new section
on revenue management, to Charles McCallum, Jr., for providing lists of typos in the
8th edition three times, and to Bjarni Kristjansson for providing up-to-date information
on the sizes of problems being solved successfully by the latest optimization software. In
addition, thanks go to those instructors and students who sent email messages to provide
their feedback on the 8th edition.

This edition was very much of a team effort. Our case writers, Karl Schmedders
and Molly Stephens (both graduates of our department), wrote 24 elaborate cases for
the 7th edition, and all of these cases continue to accompany this new edition. One of
our department’s current PhD students, Pelin Canbolat, did an excellent job in prepar-
ing the solutions manual. She went above and beyond the call of duty by typing nearly
all of the solutions that had been handwritten for preceding editions, as well as provid-
ing helpful input for this edition. One of our former PhD students, Michael O’Sullivan,
developed OR Tutor for the 7th edition (and continued here), based on part of the soft-
ware that my son Mark Hillier had developed for the 5th and 6th editions. Mark (who
was born the same year as the first edition, earned his PhD at Stanford, and now is a
tenured Associate Professor of Quantitative Methods at the University of Washington)
provided both the spreadsheets and the Excel files (including many Excel templates) for

■ ACKNOWLEDGMENTS
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this edition, as well as the Solver Table and Queueing Simulator. He also gave helpful
advice on both the textual material and software for this edition, and contributed greatly
to Chapters 21 and 28 on the book’s website. Another Stanford PhD graduate, William
Sun (CEO of the software company Accelet Corporation), and his team did a brilliant
job of starting with much of Mark’s earlier software and implementing it anew in Java
2 as IOR Tutorial for the 7th edition. They again did a masterful job of further enhancing
IOR Tutorial for the 8th and subsequent editions. Linus Schrage of the University of
Chicago and LINDO Systems (and who took an introductory operations research course
from me 45 years ago) provided LINGO and LINDO for the book’s website. He also
supervised the further development of LINGO/LINDO files for the various chapters as
well as providing tutorial material for the book’s website. Another long-time friend,
Bjarni Kristjansson (who heads Maximal Software), did the same thing for the
MPL/CPLEX files and MPL tutorial material, as well as arranging to provide student
versions of MPL, CPLEX, and various other solvers for the book’s website. My wife,
Ann Hillier, devoted numerous long days and nights to sitting with a Macintosh, doing
word processing and constructing many figures and tables. They all were vital mem-
bers of the team.

In addition to Accelet Corporation, LINDO Systems, and Maximal Software, we are
deeply indebted to several other companies for providing software to accompany this edi-
tion. These include Frontline Systems (for providing Premium Solver for Education),
ILOG (for providing the CPLEX solver used with the MPL Student Edition), ARKI Cor-
poration (for providing the CONOPT convex programming solver used with the MPL Stu-
dent Edition), and PCS Inc. (for providing the LGO global optimization solver used with
the MPL Student Edition). We also are grateful to Professor Michael Middleton for pro-
viding newly improved versions of TreePlan and SensIt, as well as RiskSim. Finally, we
appreciate the cooperation of INFORMS in providing a link to the articles in Interfaces
that describe the applications of OR that are summarized in the application vignettes and
other selected references of award winning OR applications provided in the book.

It was a real pleasure working with McGraw-Hill’s thoroughly professional editorial
and production staff, including Debra Hash (Sponsoring Editor) and Lora Kalb-Neyens
(Developmental Editor).

Just as so many individuals made important contributions to this edition, I would like
to invite each of you to start contributing to the next edition by using my email address
below to send me your comments, suggestions, and errata to help me improve the book
in the future. In giving my email address, let me also assure instructors that I will con-
tinue to follow the policy of not providing solutions to problems and cases in the book to
anybody (including your students) who contacts me.

Enjoy the book.

Frederick S. Hillier
Stanford University (fhillier@stanford.edu)

May 2008
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1C H A P T E R

Introduction

■ 1.1 THE ORIGINS OF OPERATIONS RESEARCH

Since the advent of the industrial revolution, the world has seen a remarkable growth in the
size and complexity of organizations. The artisans’ small shops of an earlier era have
evolved into the billion-dollar corporations of today. An integral part of this revolutionary
change has been a tremendous increase in the division of labor and segmentation of man-
agement responsibilities in these organizations. The results have been spectacular. How-
ever, along with its blessings, this increasing specialization has created new problems,
problems that are still occurring in many organizations. One problem is a tendency for the
many components of an organization to grow into relatively autonomous empires with
their own goals and value systems, thereby losing sight of how their activities and objec-
tives mesh with those of the overall organization. What is best for one component fre-
quently is detrimental to another, so the components may end up working at cross
purposes. A related problem is that as the complexity and specialization in an organization
increase, it becomes more and more difficult to allocate the available resources to the vari-
ous activities in a way that is most effective for the organization as a whole. These kinds of
problems and the need to find a better way to solve them provided the environment for the
emergence of operations research (commonly referred to as OR).

The roots of OR can be traced back many decades,1 when early attempts were made to
use a scientific approach in the management of organizations. However, the beginning of
the activity called operations research has generally been attributed to the military services
early in World War II. Because of the war effort, there was an urgent need to allocate scarce
resources to the various military operations and to the activities within each operation in an
effective manner. Therefore, the British and then the U.S. military management called
upon a large number of scientists to apply a scientific approach to dealing with this and
other strategic and tactical problems. In effect, they were asked to do research on (military)
operations. These teams of scientists were the first OR teams. By developing effective
methods of using the new tool of radar, these teams were instrumental in winning the Air Bat-
tle of Britain. Through their research on how to better manage convoy and antisubmarine

1Selected Reference 2 provides an entertaining history of operations research that traces its roots as far back as
1564 by describing a considerable number of scientific contributions from 1564 to 1935 that influenced the sub-
sequent development of OR.
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■ 1.2 THE NATURE OF OPERATIONS RESEARCH

As its name implies, operations research involves “research on operations.” Thus, opera-
tions research is applied to problems that concern how to conduct and coordinate the
operations (i.e., the activities) within an organization. The nature of the organization is
essentially immaterial, and, in fact, OR has been applied extensively in such diverse areas
as manufacturing, transportation, construction, telecommunications, financial planning,
health care, the military, and public services, to name just a few. Therefore, the breadth of
application is unusually wide.

The research part of the name means that operations research uses an approach that
resembles the way research is conducted in established scientific fields. To a considerable
extent, the scientific method is used to investigate the problem of concern. (In fact, the term
management science sometimes is used as a synonym for operations research.) In particu-
lar, the process begins by carefully observing and formulating the problem, including gath-
ering all relevant data. The next step is to construct a scientific (typically mathematical)
model that attempts to abstract the essence of the real problem. It is then hypothesized that
this model is a sufficiently precise representation of the essential features of the situation

operations, they also played a major role in winning the Battle of the North Atlantic. Sim-
ilar efforts assisted the Island Campaign in the Pacific.

When the war ended, the success of OR in the war effort spurred interest in applying
OR outside the military as well. As the industrial boom following the war was running its
course, the problems caused by the increasing complexity and specialization in organiza-
tions were again coming to the forefront. It was becoming apparent to a growing number of
people, including business consultants who had served on or with the OR teams during the
war, that these were basically the same problems that had been faced by the military but in
a different context. By the early 1950s, these individuals had introduced the use of OR to a
variety of organizations in business, industry, and government. The rapid spread of OR
soon followed.

At least two other factors that played a key role in the rapid growth of OR during this
period can be identified. One was the substantial progress that was made early in improv-
ing the techniques of OR. After the war, many of the scientists who had participated on OR
teams or who had heard about this work were motivated to pursue research relevant to the
field; important advancements in the state of the art resulted. A prime example is the
simplex method for solving linear programming problems, developed by George Dantzig
in 1947. Many of the standard tools of OR, such as linear programming, dynamic pro-
gramming, queueing theory, and inventory theory, were relatively well developed before
the end of the 1950s.

A second factor that gave great impetus to the growth of the field was the onslaught of
the computer revolution. A large amount of computation is usually required to deal most
effectively with the complex problems typically considered by OR. Doing this by hand
would often be out of the question. Therefore, the development of electronic digital com-
puters, with their ability to perform arithmetic calculations millions of times faster than a
human being can, was a tremendous boon to OR. A further boost came in the 1980s with
the development of increasingly powerful personal computers accompanied by good soft-
ware packages for doing OR. This brought the use of OR within the easy reach of much
larger numbers of people, and this progress further accelerated in the 1990s and into the
21st century. Today, literally millions of individuals have ready access to OR software.
Consequently, a whole range of computers from mainframes to laptops now are being rou-
tinely used to solve OR problems, including some of enormous size.
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that the conclusions (solutions) obtained from the model are also valid for the real prob-
lem. Next, suitable experiments are conducted to test this hypothesis, modify it as needed,
and eventually verify some form of the hypothesis. (This step is frequently referred to as
model validation.) Thus, in a certain sense, operations research involves creative scientific
research into the fundamental properties of operations. However, there is more to it than
this. Specifically, OR is also concerned with the practical management of the organization.
Therefore, to be successful, OR must also provide positive, understandable conclusions to
the decision maker(s) when they are needed.

Still another characteristic of OR is its broad viewpoint. As implied in the preceding
section, OR adopts an organizational point of view. Thus, it attempts to resolve the con-
flicts of interest among the components of the organization in a way that is best for the
organization as a whole. This does not imply that the study of each problem must give
explicit consideration to all aspects of the organization; rather, the objectives being sought
must be consistent with those of the overall organization.

An additional characteristic is that OR frequently attempts to search for a best solution
(referred to as an optimal solution) for the model that represents the problem under con-
sideration. (We say a best instead of the best solution because there may be multiple solu-
tions tied as best.) Rather than simply improving the status quo, the goal is to identify a
best possible course of action. Although it must be interpreted carefully in terms of the
practical needs of management, this “search for optimality” is an important theme in OR.

All these characteristics lead quite naturally to still another one. It is evident that no
single individual should be expected to be an expert on all the many aspects of OR work or
the problems typically considered; this would require a group of individuals having diverse
backgrounds and skills. Therefore, when a full-fledged OR study of a new problem is
undertaken, it is usually necessary to use a team approach. Such an OR team typically
needs to include individuals who collectively are highly trained in mathematics, statistics
and probability theory, economics, business administration, computer science, engineering
and the physical sciences, the behavioral sciences, and the special techniques of OR. The
team also needs to have the necessary experience and variety of skills to give appropriate
consideration to the many ramifications of the problem throughout the organization.

■ 1.3 THE IMPACT OF OPERATIONS RESEARCH

Operations research has had an impressive impact on improving the efficiency of numer-
ous organizations around the world. In the process, OR has made a significant contribution
to increasing the productivity of the economies of various countries. There now are a few
dozen member countries in the International Federation of Operational Research Societies
(IFORS), with each country having a national OR society. Both Europe and Asia have fed-
erations of OR societies to coordinate holding international conferences and publishing
international journals in those continents. In addition, the Institute for Operations Research
and the Management Sciences (INFORMS) is an international OR society. Among its var-
ious journals is one called Interfaces that regularly publishes articles describing major OR
studies and the impact they had on their organizations.

To give you a better notion of the wide applicability of OR, we list some actual appli-
cations in Table 1.1. Note the diversity of organizations and applications in the first two
columns. The third column identifies the section where an “application vignette” devotes
several paragraphs to describing the application and also references an article that provides
full details. (You can see the first of these application vignettes in this section.) The last
column indicates that these applications typically resulted in annual savings in the
many millions of dollars. Furthermore, additional benefits not recorded in the table
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■ TABLE 1.1 Applications of operations research to be described in application vignettes

Organization Area of Application Section Annual Savings

Federal Express Logistical planning of shipments 1.3 Not estimated
Continental Airlines Reassign crews to flights when schedule 2.2 $40 million

disruptions occur
Swift & Company Improve sales and manufacturing 3.1 $12 million

performance
Memorial Sloan-Kettering Design of radiation therapy 3.4 $459 million
Cancer Center
United Airlines Plan employee work schedules at airports 3.4 $6 million

and reservations offices
Welch’s Optimize use and movement of raw materials 3.6 $150,000
Samsung Electronics Reduce manufacturing times and inventory levels 4.3 $200 million more revenue
Pacific Lumber Company Long-term forest ecosystem management 6.7 $398 million NPV
Procter & Gamble Redesign the production and distribution system 8.1 $200 million
Canadian Pacific Railway Plan routing of rail freight 9.3 $100 million
United Airlines Reassign airplanes to flights when disruptions occur 9.6 Not estimated
U.S. Military Logistical planning of Operations Desert Storm 10.3 Not estimated
Air New Zealand Airline crew scheduling 11.2 $6.7 million
Taco Bell Plan employee work schedules at restaurants 11.5 $13 million
Waste Management Develop a route-management system for trash 11.7 $100 million

collection and disposal
Bank Hapoalim Group Develop a decision-support system for 12.1 $31 million more revenue

investment advisors
Sears Vehicle routing and scheduling for home 13.2 $42 million

services and deliveries
Conoco-Phillips Evaluate petroleum exploration projects 15.2 Not estimated
Workers’ Compensation Manage high-risk disability claims and rehabilitation 15.3 $4 million
Board
Westinghouse Evaluate research-and-development projects 15.4 Not estimated
Merrill Lynch Manage liquidity risk for revolving credit lines 16.2 $4 billion more liquidity
PSA Peugeot Citroën Guide the design process for efficient car 16.8 $130 million more profit

assembly plants
KeyCorp Improve efficiency of bank teller service 17.6 $20 million
General Motors Improve efficiency of production lines 17.9 $90 million
Deere & Company Management of inventories throughout a 18.5 $1 billion less inventory

supply chain
Time Inc. Management of distribution channels for 18.7 $3.5 million more profit

magazines
Bank One Corporation Management of credit lines and interest rates 19.2 $75 million more profit

for credit cards
Merrill Lynch Pricing analysis for providing financial services 20.2 $50 million more revenue
AT&T Design and operation of call centers 20.5 $750 million more profit

(e.g., improved service to customers and better managerial control) sometimes were con-
sidered to be even more important than these financial benefits. (You will have an opportu-
nity to investigate these less tangible benefits further in Probs. 1.3-1, 1.3-2, and 1.3-3.)
A link to the articles that describe these applications in detail is included on our website,
www.mhhe.com/hillier.

Although most routine OR studies provide considerably more modest benefits than
the applications summarized in Table 1.1, the figures in the rightmost column of this table
do accurately reflect the dramatic impact that large, well-designed OR studies occasionally
can have.
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■ 1.4 ALGORITHMS AND OR COURSEWARE

An important part of this book is the presentation of the major algorithms (systematic solu-
tion procedures) of OR for solving certain types of problems. Some of these algorithms are
amazingly efficient and are routinely used on problems involving hundreds or thousands of
variables. You will be introduced to how these algorithms work and what makes them so
efficient. You then will use these algorithms to solve a variety of problems on a computer.
The OR Courseware contained on the book’s website (www.mhhe.com/hillier) will be a
key tool for doing all this.

One special feature in your OR Courseware is a program called OR Tutor. This pro-
gram is intended to be your personal tutor to help you learn the algorithms. It consists of
many demonstration examples that display and explain the algorithms in action. These
“demos” supplement the examples in the book.

In addition, your OR Courseware includes a special software package called
Interactive Operations Research Tutorial, or IOR Tutorial for short. Implemented in
Java, this innovative package is designed specifically to enhance the learning experience of
students using this book. IOR Tutorial includes many interactive procedures for executing
the algorithms interactively in a convenient format. The computer does all the routine cal-
culations while you focus on learning and executing the logic of the algorithm. You should
find these interactive procedures a very efficient and enlightening way of doing many of
your homework problems. IOR Tutorial also includes a number of other helpful proce-
dures, including some automatic procedures for executing algorithms automatically and
several procedures that provide graphical displays of how the solution provided by an algo-
rithm varies with the data of the problem.

In practice, the algorithms normally are executed by commercial software packages.
We feel that it is important to acquaint students with the nature of these packages that they
will be using after graduation. Therefore, your OR Courseware includes a wealth of mate-
rial to introduce you to three particularly popular software packages described next.

Federal Express (FedEx) is the world’s largest express
transportation company. Every working day, it delivers
more than 6.5 million documents, packages, and other
items throughout the United States and more than 220
countries and territories around the world. In some cases,
these shipments can be guaranteed overnight delivery by
10:30 A.M. the next morning.

The logistical challenges involved in providing this
service are staggering. These millions of daily shipments
must be individually sorted and routed to the correct gen-
eral location (usually by aircraft) and then delivered to
the exact destination (usually by motorized vehicle) in an
amazingly short period of time. How is all this possible?

Operations research (OR) is the technological engine
that drives this company. Ever since its founding in 1973,
OR has helped make its major business decisions, includ-
ing equipment investment, route structure, scheduling,
finances, and location of facilities. After OR was credited

with literally saving the company during its early years, it
became the custom to have OR represented at the weekly
senior management meetings and, indeed, several of the
senior corporate vice presidents have come up from the
outstanding FedEx OR group.

FedEx has come to be acknowledged as a world-class
company. It routinely ranks among the top companies on
Fortune Magazine’s annual listing of the “World’s Most
Admired Companies.” It also was the first winner (in 1991)
of the prestigious prize now known as the INFORMS Prize,
which is awarded annually for the effective and repeated
integration of OR into organizational decision making in
pioneering, varied, novel, and lasting ways.

Source: R. O. Mason, J. L. McKenney, W. Carlson, and 
D. Copeland, “Absolutely, Positively Operations Research: The
Federal Express Story,” Interfaces, 27(2): 17–36, March-April
1997. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette
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6 CHAPTER 1 INTRODUCTION

Together, these packages will enable you to solve nearly all the OR models encountered in
this book very efficiently. We have added our own automatic procedures to IOR Tutorial in
a few cases where these packages are not applicable.

A very popular approach now is to use today’s premier spreadsheet package,
Microsoft Excel, to formulate small OR models in a spreadsheet format. The Excel Solver
(or an enhanced version of this add-in, such as Premium Solver for Education included
in your OR Courseware) then is used to solve the models. Your OR Courseware includes
separate Excel files, based on the relatively new Excel 2007, for nearly every chapter in
this book. Each time a chapter presents an example that can be solved using Excel, the
complete spreadsheet formulation and solution is given in that chapter’s Excel files. For
many of the models in the book, an Excel template also is provided that already includes all
the equations necessary to solve the model. Some Excel add-ins also are included on the
book’s website.

After many years, LINDO (and its companion modeling language LINGO) continues
to be a popular OR software package. Student versions of LINDO and LINGO now can be
downloaded free from the Web. This student version also is provided in your OR Course-
ware. As for Excel, each time an example can be solved with this package, all the details
are given in a LINGO/LINDO file for that chapter in your OR Courseware.

CPLEX is an elite state-of-the-art software package that is widely used for solving
large and challenging OR problems. When dealing with such problems, it is common to
also use a modeling system to efficiently formulate the mathematical model and enter it
into the computer. MPL is a user-friendly modeling system that uses CPLEX as its main
solver, but also has several other solvers, including LINDO, CoinMP (introduced in
Sec. 4.8), CONOPT (introduced in Sec. 12.9), LGO (introduced in Sec. 12.10), and
BendX (useful for solving some stochastic models). A student version of MPL, along with
the latest student version of CPLEX and its other solvers, is available free by downloading
it from the Web. For your convenience, we also have included this student version (includ-
ing all the solvers just mentioned) in your OR Courseware. Once again, all the examples
that can be solved with this package are detailed in MPL/CPLEX files for the correspond-
ing chapters in your OR Courseware.

We will further describe these three software packages and how to use them later
(especially near the end of Chaps. 3 and 4). Appendix 1 also provides documentation for
the OR Courseware, including OR Tutor and IOR Tutorial.

To alert you to relevant material in OR Courseware, the end of each chapter from
Chap. 3 onward has a list entitled Learning Aids for This Chapter on our Website. As
explained at the beginning of the problem section for each of these chapters, symbols also
are placed to the left of each problem number or part where any of this material (including
demonstration examples and interactive procedures) can be helpful.

Another learning aid provided on our website is a set of Worked Examples for each
chapter (from Chap. 3 onward). These complete examples supplement the examples in the
book for your use as needed, but without interrupting the flow of the material on those
many occasions when you don’t need to see an additional example. You also might find
these supplementary examples helpful when preparing for an examination. We always will
mention whenever a supplementary example on the current topic is included in the Worked
Examples section of the book’s website. To make sure you don’t overlook this mention, we
will boldface the words additional example (or something similar) each time.

The website also includes a glossary for each chapter.
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■ PROBLEMS

1.3-1. Select one of the applications of operations research
listed in Table 1.1. Read the article that is referenced in the
application vignette presented in the section shown in the third
column. (A link to all these articles is provided on our website,
www.mhhe.com/hillier.) Write a two-page summary of the
application and the benefits (including nonfinancial benefits) it
provided.
1.3-2. Select three of the applications of operations research listed
in Table 1.1. For each one, read the article that is referenced in the

application vignette presented in the section shown in the third col-
umn. (A link to all these articles is provided on our website,
www.mhhe.com/hillier.) For each one, write a one-page sum-
mary of the application and the benefits (including nonfinancial
benefits) it provided.
1.3-3. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 1.3. List
the various financial and nonfinancial benefits that resulted from
this study.
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The bulk of this book is devoted to the mathematical methods of operations research
(OR). This is quite appropriate because these quantitative techniques form the main part

of what is known about OR. However, it does not imply that practical OR studies are pri-
marily mathematical exercises. As a matter of fact, the mathematical analysis often repre-
sents only a relatively small part of the total effort required. The purpose of this chapter is to
place things into better perspective by describing all the major phases of a typical OR study.

One way of summarizing the usual (overlapping) phases of an OR study is the following:

1. Define the problem of interest and gather relevant data.
2. Formulate a mathematical model to represent the problem.
3. Develop a computer-based procedure for deriving solutions to the problem from the

model.
4. Test the model and refine it as needed.
5. Prepare for the ongoing application of the model as prescribed by management.
6. Implement.

Each of these phases will be discussed in turn in the following sections.
The selected references at the end of the chapter include some award-winning OR

studies that provide excellent examples of how to execute these phases well. We will inter-
sperse snippets from some of these examples throughout the chapter. If you decide that you
would like to learn more about these award-winning applications of operations research, a
link to the articles that describe these OR studies in detail is included on the book’s web-
site, www.mhhe.com/hillier.

Overview of the Operations 
Research Modeling Approach

2C H A P T E R

■ 2.1 DEFINING THE PROBLEM AND GATHERING DATA

In contrast to textbook examples, most practical problems encountered by OR teams are
initially described to them in a vague, imprecise way. Therefore, the first order of business
is to study the relevant system and develop a well-defined statement of the problem to be
considered. This includes determining such things as the appropriate objectives, con-
straints on what can be done, interrelationships between the area to be studied and other
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areas of the organization, possible alternative courses of action, time limits for making a
decision, and so on. This process of problem definition is a crucial one because it greatly
affects how relevant the conclusions of the study will be. It is difficult to extract a “right”
answer from the “wrong” problem!

The first thing to recognize is that an OR team normally works in an advisory capac-
ity. The team members are not just given a problem and told to solve it however they see fit.
Instead, they advise management (often one key decision maker). The team performs a
detailed technical analysis of the problem and then presents recommendations to manage-
ment. Frequently, the report to management will identify a number of alternatives that are
particularly attractive under different assumptions or over a different range of values of
some policy parameter that can be evaluated only by management (e.g., the trade-off
between cost and benefits). Management evaluates the study and its recommendations,
takes into account a variety of intangible factors, and makes the final decision based on its
best judgment. Consequently, it is vital for the OR team to get on the same wavelength as
management, including identifying the “right” problem from management’s viewpoint,
and to build the support of management for the course that the study is taking.

Ascertaining the appropriate objectives is a very important aspect of problem defini-
tion. To do this, it is necessary first to identify the member (or members) of management
who actually will be making the decisions concerning the system under study and then to
probe into this individual’s thinking regarding the pertinent objectives. (Involving the deci-
sion maker from the outset also is essential to build her or his support for the implementa-
tion of the study.)

By its nature, OR is concerned with the welfare of the entire organization rather than
that of only certain of its components. An OR study seeks solutions that are optimal for the
overall organization rather than suboptimal solutions that are best for only one component.
Therefore, the objectives that are formulated ideally should be those of the entire organiza-
tion. However, this is not always convenient. Many problems primarily concern only a por-
tion of the organization, so the analysis would become unwieldy if the stated objectives
were too general and if explicit consideration were given to all side effects on the rest of
the organization. Instead, the objectives used in the study should be as specific as they can
be while still encompassing the main goals of the decision maker and maintaining a rea-
sonable degree of consistency with the higher-level objectives of the organization.

For profit-making organizations, one possible approach to circumventing the problem
of suboptimization is to use long-run profit maximization (considering the time value of
money) as the sole objective. The adjective long-run indicates that this objective provides
the flexibility to consider activities that do not translate into profits immediately (e.g.,
research and development projects) but need to do so eventually in order to be worthwhile.
This approach has considerable merit. This objective is specific enough to be used conve-
niently, and yet it seems to be broad enough to encompass the basic goal of profit-making
organizations. In fact, some people believe that all other legitimate objectives can be trans-
lated into this one.

However, in actual practice, many profit-making organizations do not use this
approach. A number of studies of U.S. corporations have found that management tends to
adopt the goal of satisfactory profits, combined with other objectives, instead of focusing
on long-run profit maximization. Typically, some of these other objectives might be to
maintain stable profits, increase (or maintain) one’s share of the market, provide for prod-
uct diversification, maintain stable prices, improve worker morale, maintain family control
of the business, and increase company prestige. Fulfilling these objectives might achieve
long-run profit maximization, but the relationship may be sufficiently obscure that it may
not be convenient to incorporate them all into this one objective.
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Furthermore, there are additional considerations involving social responsibilities that
are distinct from the profit motive. The five parties generally affected by a business firm
located in a single country are (1) the owners (stockholders, etc.), who desire profits (divi-
dends, stock appreciation, and so on); (2) the employees, who desire steady employment at
reasonable wages; (3) the customers, who desire a reliable product at a reasonable price;
(4) the suppliers, who desire integrity and a reasonable selling price for their goods; and
(5) the government and hence the nation, which desire payment of fair taxes and consider-
ation of the national interest. All five parties make essential contributions to the firm, and
the firm should not be viewed as the exclusive servant of any one party for the exploitation
of others. By the same token, international corporations acquire additional obligations to
follow socially responsible practices. Therefore, while granting that management’s prime
responsibility is to make profits (which ultimately benefits all five parties), we note that its
broader social responsibilities also must be recognized.

OR teams typically spend a surprisingly large amount of time gathering relevant data
about the problem. Much data usually are needed both to gain an accurate understanding of
the problem and to provide the needed input for the mathematical model being formulated
in the next phase of study. Frequently, much of the needed data will not be available when
the study begins, either because the information never has been kept or because what was
kept is outdated or in the wrong form. Therefore, it often is necessary to install a new
computer-based management information system to collect the necessary data on an ongo-
ing basis and in the needed form. The OR team normally needs to enlist the assistance of
various other key individuals in the organization, including information technology (IT)
specialists, to track down all the vital data. Even with this effort, much of the data may be
quite “soft,” i.e., rough estimates based only on educated guesses. Typically, an OR team
will spend considerable time trying to improve the precision of the data and then will make
do with the best that can be obtained.

With the widespread use of databases and the explosive growth in their sizes in recent
years, OR teams now frequently find that their biggest data problem is not that too little is
available but that there is too much data. There may be thousands of sources of data, and
the total amount of data may be measured in gigabytes or even terabytes. In this environ-
ment, locating the particularly relevant data and identifying the interesting patterns in
these data can become an overwhelming task. One of the newer tools of OR teams is a
technique called data mining that addresses this problem. Data mining methods search
large databases for interesting patterns that may lead to useful decisions. (Selected Refer-
ence 2 at the end of the chapter provides further background about data mining.)

Example. In the late 1990s, full-service financial services firms came under assault
from electronic brokerage firms offering extremely low trading costs. Merrill Lynch
responded by conducting a major OR study that led to a complete overhaul in how it
charged for its services, ranging from a full-service asset-based option (charge a fixed
percentage of the value of the assets held rather than for individual trades) to a low-cost
option for clients wishing to invest online directly. Data collection and processing played
a key role in the study. To analyze the impact of individual client behavior in response to
different options, the team needed to assemble a comprehensive 200 gigabyte client
database involving 5 million clients, 10 million accounts, 100 million trade records, and
250 million ledger records. This required merging, reconciling, filtering, and cleaning data
from numerous production databases. The adoption of the recommendations of the study
led to a one-year increase of nearly $50 billion in client assets held and nearly $80 million
more revenue. (Selected Reference A2 describes this study in detail.)
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■ 2.2 FORMULATING A MATHEMATICAL MODEL

After the decision maker’s problem is defined, the next phase is to reformulate this prob-
lem in a form that is convenient for analysis. The conventional OR approach for doing this
is to construct a mathematical model that represents the essence of the problem. Before
discussing how to formulate such a model, we first explore the nature of models in general
and of mathematical models in particular.

Models, or idealized representations, are an integral part of everyday life. Common
examples include model airplanes, portraits, globes, and so on. Similarly, models play an
important role in science and business, as illustrated by models of the atom, models of
genetic structure, mathematical equations describing physical laws of motion or chemical
reactions, graphs, organizational charts, and industrial accounting systems. Such models
are invaluable for abstracting the essence of the subject of inquiry, showing interrelation-
ships, and facilitating analysis.

Mathematical models are also idealized representations, but they are expressed in terms
of mathematical symbols and expressions. Such laws of physics as F = ma and E = mc2 are
familiar examples. Similarly, the mathematical model of a business problem is the system of
equations and related mathematical expressions that describe the essence of the problem.
Thus, if there are n related quantifiable decisions to be made, they are represented as
decision variables (say, x1, x2, . . . , xn) whose respective values are to be determined. The
appropriate measure of performance (e.g., profit) is then expressed as a mathematical func-
tion of these decision variables (for example, P = 3x1 + 2x2 + . . . + 5xn). This function is
called the objective function. Any restrictions on the values that can be assigned to these
decision variables are also expressed mathematically, typically by means of inequalities or
equations (for example, x1 + 3x1x2 + 2x2 � 10). Such mathematical expressions for the
restrictions often are called constraints. The constants (namely, the coefficients and right-
hand sides) in the constraints and the objective function are called the parameters of the
model. The mathematical model might then say that the problem is to choose the values of
the decision variables so as to maximize the objective function, subject to the specified con-
straints. Such a model, and minor variations of it, typifies the models used in OR.

Determining the appropriate values to assign to the parameters of the model (one
value per parameter) is both a critical and a challenging part of the model-building process.
In contrast to textbook problems where the numbers are given to you, determining para-
meter values for real problems requires gathering relevant data. As discussed in the pre-
ceding section, gathering accurate data frequently is difficult. Therefore, the value
assigned to a parameter often is, of necessity, only a rough estimate. Because of the uncer-
tainty about the true value of the parameter, it is important to analyze how the solution
derived from the model would change (if at all) if the value assigned to the parameter were
changed to other plausible values. This process is referred to as sensitivity analysis, as
discussed further in the next section (and much of Chap. 6).

Although we refer to “the” mathematical model of a business problem, real problems
normally don’t have just a single “right” model. Section 2.4 will describe how the process
of testing a model typically leads to a succession of models that provide better and better
representations of the problem. It is even possible that two or more completely different
types of models may be developed to help analyze the same problem.

You will see numerous examples of mathematical models throughout the remainder of
this book. One particularly important type that is studied in the next several chapters is the
linear programming model, where the mathematical functions appearing in both the
objective function and the constraints are all linear functions. In Chap. 3, specific linear
programming models are constructed to fit such diverse problems as determining (1) the
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mix of products that maximizes profit, (2) the design of radiation therapy that effectively
attacks a tumor while minimizing the damage to nearby healthy tissue, (3) the allocation of
acreage to crops that maximizes total net return, and (4) the combination of pollution
abatement methods that achieves air quality standards at minimum cost.

Mathematical models have many advantages over a verbal description of the problem.
One advantage is that a mathematical model describes a problem much more concisely.
This tends to make the overall structure of the problem more comprehensible, and it helps to
reveal important cause-and-effect relationships. In this way, it indicates more clearly what
additional data are relevant to the analysis. It also facilitates dealing with the problem in its
entirety and considering all its interrelationships simultaneously. Finally, a mathematical
model forms a bridge to the use of high-powered mathematical techniques and computers to
analyze the problem. Indeed, packaged software for both personal computers and main-
frame computers has become widely available for solving many mathematical models.

However, there are pitfalls to be avoided when you use mathematical models. Such a
model is necessarily an abstract idealization of the problem, so approximations and sim-
plifying assumptions generally are required if the model is to be tractable (capable of
being solved). Therefore, care must be taken to ensure that the model remains a valid rep-
resentation of the problem. The proper criterion for judging the validity of a model is
whether the model predicts the relative effects of the alternative courses of action with
sufficient accuracy to permit a sound decision. Consequently, it is not necessary to
include unimportant details or factors that have approximately the same effect for all the
alternative courses of action considered. It is not even necessary that the absolute magni-
tude of the measure of performance be approximately correct for the various alternatives,
provided that their relative values (i.e., the differences between their values) are suffi-
ciently precise. Thus, all that is required is that there be a high correlation between the
prediction by the model and what would actually happen in the real world. To ascertain
whether this requirement is satisfied, it is important to do considerable testing and conse-
quent modifying of the model, which will be the subject of Sec. 2.4. Although this testing
phase is placed later in the chapter, much of this model validation work actually is con-
ducted during the model-building phase of the study to help guide the construction of the
mathematical model.

In developing the model, a good approach is to begin with a very simple version and
then move in evolutionary fashion toward more elaborate models that more nearly reflect
the complexity of the real problem. This process of model enrichment continues only as
long as the model remains tractable. The basic trade-off under constant consideration is
between the precision and the tractability of the model. (See Selected Reference 8 for a
detailed description of this process.)

A crucial step in formulating an OR model is the construction of the objective func-
tion. This requires developing a quantitative measure of performance relative to each of the
decision maker’s ultimate objectives that were identified while the problem was being
defined. If there are multiple objectives, their respective measures commonly are then
transformed and combined into a composite measure, called the overall measure of per-
formance. This overall measure might be something tangible (e.g., profit) corresponding
to a higher goal of the organization, or it might be abstract (e.g., utility). In the latter case,
the task of developing this measure tends to be a complex one requiring a careful compar-
ison of the objectives and their relative importance. After the overall measure of perfor-
mance is developed, the objective function is then obtained by expressing this measure as
a mathematical function of the decision variables. Alternatively, there also are methods for
explicitly considering multiple objectives simultaneously, and one of these (goal program-
ming) is discussed in the supplement to Chap. 7.
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Example. The Netherlands government agency responsible for water control and public
works, the Rijkswaterstaat, commissioned a major OR study to guide the development of
a new national water management policy. The new policy saved hundreds of millions of
dollars in investment expenditures and reduced agricultural damage by about $15 million
per year, while decreasing thermal and algae pollution. Rather than formulating one
mathematical model, this OR study developed a comprehensive, integrated system of 50
models! Furthermore, for some of the models, both simple and complex versions were
developed. The simple version was used to gain basic insights, including trade-off
analyses. The complex version then was used in the final rounds of the analysis or
whenever greater accuracy or more detailed outputs were desired. The overall OR study
directly involved over 125 person-years of effort (more than one-third in data gathering),
created several dozen computer programs, and structured an enormous amount of data.
(Selected Reference A7 describes this study in detail.)

■ 2.3 DERIVING SOLUTIONS FROM THE MODEL

After a mathematical model is formulated for the problem under consideration, the next
phase in an OR study is to develop a procedure (usually a computer-based procedure) for
deriving solutions to the problem from this model. You might think that this must be the
major part of the study, but actually it is not in most cases. Sometimes, in fact, it is a relatively
simple step, in which one of the standard algorithms (systematic solution procedures) of OR
is applied on a computer by using one of a number of readily available software packages.
For experienced OR practitioners, finding a solution is the fun part, whereas the real work
comes in the preceding and following steps, including the postoptimality analysis discussed
later in this section.

Continental Airlines is a major U.S. air carrier that trans-
ports passengers, cargo, and mail. It operates more than
2,000 daily departures to well over 100 domestic destina-
tions and nearly 100 foreign destinations.

Airlines like Continental face schedule disruptions
daily because of unexpected events, including inclement
weather, aircraft mechanical problems, and crew unavail-
ability. These disruptions can cause flight delays and can-
cellations. As a result, crews may not be in position to
service their remaining scheduled flights. Airlines must
reassign crews quickly to cover open flights and to return
them to their original schedules in a cost-effective man-
ner while honoring all government regulations, contrac-
tual obligations, and quality-of-life requirements.

To address such problems, an OR team at Continental
Airlines developed a detailed mathematical model for reas-
signing crews to flights as soon as such emergencies arise.
Because the airline has thousands of crews and daily flights,
the model needed to be huge to consider all possible pair-
ings of crews with flights. Therefore, the model has millions
of decision variables and many thousands of constraints. In

its first year of use (mainly in 2001), the model was applied
four times to recover from major schedule disruptions (two
snowstorms, a flood, and the September 11 terrorist attacks).
This led to savings of approximately $40 million. Subse-
quent applications extended to many daily minor disruptions
as well.

Although other airlines subsequently scrambled to
apply operations research in a similar way, this initial
advantage over other airlines in being able to recover
more quickly from schedule disruptions with fewer
delays and cancelled flights left Continental Airlines in a
relatively strong position as the airline industry struggled
through a difficult period during the initial years of the
21st century. This initiative led to Continental winning
the prestigious First Prize in the 2002 international com-
petition for the Franz Edelman Award for Achievement in
Operations Research and the Management Sciences.

Source: G. Yu, M. Argüello, C. Song, S. M. McGowan, and 
A. White, “A New Era for Crew Recovery at Continental Air-
lines,” Interfaces, 33(1): 5–22, Jan.–Feb. 2003. (A link to this
article is provided on our website, www.mhhe.com/hillier.)

An Application Vignette
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14 CHAPTER 2 OVERVIEW OF THE OPERATIONS RESEARCH MODELING APPROACH

Since much of this book is devoted to the subject of how to obtain solutions for vari-
ous important types of mathematical models, little needs to be said about it here. However,
we do need to discuss the nature of such solutions.

A common theme in OR is the search for an optimal, or best, solution. Indeed,
many procedures have been developed, and are presented in this book, for finding such
solutions for certain kinds of problems. However, it needs to be recognized that these
solutions are optimal only with respect to the model being used. Since the model neces-
sarily is an idealized rather than an exact representation of the real problem, there cannot
be any utopian guarantee that the optimal solution for the model will prove to be the best
possible solution that could have been implemented for the real problem. There just are
too many imponderables and uncertainties associated with real problems. However, if
the model is well formulated and tested, the resulting solution should tend to be a good
approximation to an ideal course of action for the real problem. Therefore, rather than be
deluded into demanding the impossible, you should make the test of the practical suc-
cess of an OR study hinge on whether it provides a better guide for action than can be
obtained by other means.

Eminent management scientist and Nobel Laureate in economics Herbert Simon
points out that satisficing is much more prevalent than optimizing in actual practice. In
coining the term satisficing as a combination of the words satisfactory and optimizing,
Simon is describing the tendency of managers to seek a solution that is “good enough”
for the problem at hand. Rather than trying to develop an overall measure of perfor-
mance to optimally reconcile conflicts between various desirable objectives (including
well-established criteria for judging the performance of different segments of the organi-
zation), a more pragmatic approach may be used. Goals may be set to establish mini-
mum satisfactory levels of performance in various areas, based perhaps on past levels of
performance or on what the competition is achieving. If a solution is found that enables
all these goals to be met, it is likely to be adopted without further ado. Such is the nature
of satisficing.

The distinction between optimizing and satisficing reflects the difference between the-
ory and the realities frequently faced in trying to implement that theory in practice. In the
words of one of England’s pioneering OR leaders, Samuel Eilon, “Optimizing is the sci-
ence of the ultimate; satisficing is the art of the feasible.”1

OR teams attempt to bring as much of the “science of the ultimate” as possible to the
decision-making process. However, the successful team does so in full recognition of the
overriding need of the decision maker to obtain a satisfactory guide for action in a rea-
sonable period of time. Therefore, the goal of an OR study should be to conduct the study
in an optimal manner, regardless of whether this involves finding an optimal solution for
the model. Thus, in addition to pursuing the science of the ultimate, the team should also
consider the cost of the study and the disadvantages of delaying its completion, and then
attempt to maximize the net benefits resulting from the study. In recognition of this con-
cept, OR teams occasionally use only heuristic procedures (i.e., intuitively designed
procedures that do not guarantee an optimal solution) to find a good suboptimal solu-
tion. This is most often the case when the time or cost required to find an optimal solution
for an adequate model of the problem would be very large. In recent years, great progress
has been made in developing efficient and effective metaheuristics that provide both a
general structure and strategy guidelines for designing a specific heuristic procedure to fit
a particular kind of problem. The use of metaheuristics (the subject of Chap. 13) is con-
tinuing to grow.

1S. Eilon, “Goals and Constraints in Decision-making,” Operational Research Quarterly, 23: 3–15, 1972.
Address given at the 1971 annual conference of the Canadian Operational Research Society.
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The discussion thus far has implied that an OR study seeks to find only one solution,
which may or may not be required to be optimal. In fact, this usually is not the case. An
optimal solution for the original model may be far from ideal for the real problem, so addi-
tional analysis is needed. Therefore, postoptimality analysis (analysis done after finding
an optimal solution) is a very important part of most OR studies. This analysis also is
sometimes referred to as what-if analysis because it involves addressing some questions
about what would happen to the optimal solution if different assumptions are made about
future conditions. These questions often are raised by the managers who will be making
the ultimate decisions rather than by the OR team.

The advent of powerful spreadsheet software now has frequently given spreadsheets a
central role in conducting postoptimality analysis. One of the great strengths of a spread-
sheet is the ease with which it can be used interactively by anyone, including managers, to
see what happens to the optimal solution when changes are made to the model. This
process of experimenting with changes in the model also can be very helpful in providing
understanding of the behavior of the model and increasing confidence in its validity.

In part, postoptimality analysis involves conducting sensitivity analysis to determine
which parameters of the model are most critical (the “sensitive parameters”) in determin-
ing the solution. A common definition of sensitive parameter (used throughout this book)
is the following.

For a mathematical model with specified values for all its parameters, the model’s
sensitive parameters are the parameters whose value cannot be changed without changing
the optimal solution.

Identifying the sensitive parameters is important, because this identifies the parameters
whose value must be assigned with special care to avoid distorting the output of the model.

The value assigned to a parameter commonly is just an estimate of some quantity
(e.g., unit profit) whose exact value will become known only after the solution has been
implemented. Therefore, after the sensitive parameters are identified, special attention is
given to estimating each one more closely, or at least its range of likely values. One then
seeks a solution that remains a particularly good one for all the various combinations of
likely values of the sensitive parameters.

If the solution is implemented on an ongoing basis, any later change in the value of a
sensitive parameter immediately signals a need to change the solution.

In some cases, certain parameters of the model represent policy decisions (e.g.,
resource allocations). If so, there frequently is some flexibility in the values assigned to
these parameters. Perhaps some can be increased by decreasing others. Postoptimality
analysis includes the investigation of such trade-offs.

In conjunction with the study phase discussed in Sec. 2.4 (testing the model), postopti-
mality analysis also involves obtaining a sequence of solutions that comprises a series of
improving approximations to the ideal course of action. Thus, the apparent weaknesses in
the initial solution are used to suggest improvements in the model, its input data, and per-
haps the solution procedure. A new solution is then obtained, and the cycle is repeated. This
process continues until the improvements in the succeeding solutions become too small to
warrant continuation. Even then, a number of alternative solutions (perhaps solutions that
are optimal for one of several plausible versions of the model and its input data) may be pre-
sented to management for the final selection. As suggested in Sec. 2.1, this presentation of
alternative solutions would normally be done whenever the final choice among these alter-
natives should be based on considerations that are best left to the judgment of management.

Example. Consider again the Rijkswaterstaat OR study of national water management
policy for the Netherlands, introduced at the end of Sec. 2.2. This study did not conclude

2.3 DERIVING SOLUTIONS FROM THE MODEL 15
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16 CHAPTER 2 OVERVIEW OF THE OPERATIONS RESEARCH MODELING APPROACH

by recommending just a single solution. Instead, a number of attractive alternatives were
identified, analyzed, and compared. The final choice was left to the Dutch political
process, culminating with approval by Parliament. Sensitivity analysis played a major role
in this study. For example, certain parameters of the models represented environmental
standards. Sensitivity analysis included assessing the impact on water management
problems if the values of these parameters were changed from the current environmental
standards to other reasonable values. Sensitivity analysis also was used to assess the
impact of changing the assumptions of the models, e.g., the assumption on the effect of
future international treaties on the amount of pollution entering the Netherlands. A variety
of scenarios (e.g., an extremely dry year and an extremely wet year) also were analyzed,
with appropriate probabilities assigned.

■ 2.4 TESTING THE MODEL

Developing a large mathematical model is analogous in some ways to developing a large
computer program. When the first version of the computer program is completed, it
inevitably contains many bugs. The program must be thoroughly tested to try to find and
correct as many bugs as possible. Eventually, after a long succession of improved pro-
grams, the programmer (or programming team) concludes that the current program now is
generally giving reasonably valid results. Although some minor bugs undoubtedly remain
hidden in the program (and may never be detected), the major bugs have been sufficiently
eliminated that the program now can be reliably used.

Similarly, the first version of a large mathematical model inevitably contains many
flaws. Some relevant factors or interrelationships undoubtedly have not been incorporated
into the model, and some parameters undoubtedly have not been estimated correctly. This is
inevitable, given the difficulty of communicating and understanding all the aspects and sub-
tleties of a complex operational problem as well as the difficulty of collecting reliable data.
Therefore, before you use the model, it must be thoroughly tested to try to identify and cor-
rect as many flaws as possible. Eventually, after a long succession of improved models, the
OR team concludes that the current model now is giving reasonably valid results. Although
some minor flaws undoubtedly remain hidden in the model (and may never be detected), the
major flaws have been sufficiently eliminated so that the model now can be reliably used.

This process of testing and improving a model to increase its validity is commonly
referred to as model validation.

It is difficult to describe how model validation is done, because the process depends
greatly on the nature of the problem being considered and the model being used. However,
we make a few general comments, and then we give an example. (See Selected Reference 3
for a detailed discussion.)

Since the OR team may spend months developing all the detailed pieces of the model,
it is easy to “lose the forest for the trees.” Therefore, after the details (“the trees”) of the ini-
tial version of the model are completed, a good way to begin model validation is to take a
fresh look at the overall model (“the forest”) to check for obvious errors or oversights. The
group doing this review preferably should include at least one individual who did not par-
ticipate in the formulation of the model. Reexamining the definition of the problem and
comparing it with the model may help to reveal mistakes. It is also useful to make sure that
all the mathematical expressions are dimensionally consistent in the units used. Additional
insight into the validity of the model can sometimes be obtained by varying the values of
the parameters and/or the decision variables and checking to see whether the output from
the model behaves in a plausible manner. This is often especially revealing when the para-
meters or variables are assigned extreme values near their maxima or minima.
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2.5 PREPARING TO APPLY THE MODEL 17

A more systematic approach to testing the model is to use a retrospective test. When
it is applicable, this test involves using historical data to reconstruct the past and then
determining how well the model and the resulting solution would have performed if they
had been used. Comparing the effectiveness of this hypothetical performance with what
actually happened then indicates whether using this model tends to yield a significant
improvement over current practice. It may also indicate areas where the model has short-
comings and requires modifications. Furthermore, by using alternative solutions from the
model and estimating their hypothetical historical performances, considerable evidence
can be gathered regarding how well the model predicts the relative effects of alternative
courses of actions.

On the other hand, a disadvantage of retrospective testing is that it uses the same data
that guided the formulation of the model. The crucial question is whether the past is truly
representative of the future. If it is not, then the model might perform quite differently in
the future than it would have in the past.

To circumvent this disadvantage of retrospective testing, it is sometimes useful to con-
tinue the status quo temporarily. This provides new data that were not available when the
model was constructed. These data are then used in the same ways as those described here
to evaluate the model.

Documenting the process used for model validation is important. This helps to
increase confidence in the model for subsequent users. Furthermore, if concerns arise in
the future about the model, this documentation will be helpful in diagnosing where prob-
lems may lie.

Example. Consider an OR study done for IBM to integrate its national network of spare-
parts inventories to improve service support for IBM’s customers. This study resulted in a
new inventory system that improved customer service while reducing the value of IBM’s
inventories by over $250 million and saving an additional $20 million per year through
improved operational efficiency. A particularly interesting aspect of the model validation
phase of this study was the way that future users of the inventory system were incorporated
into the testing process. Because these future users (IBM managers in functional areas
responsible for implementation of the inventory system) were skeptical about the system
being developed, representatives were appointed to a user team to serve as advisers to the
OR team. After a preliminary version of the new system had been developed (based on a
multiechelon inventory model), a preimplementation test of the system was conducted.
Extensive feedback from the user team led to major improvements in the proposed system.
(Selected Reference A5 describes this study in detail.)

What happens after the testing phase has been completed and an acceptable model has been
developed? If the model is to be used repeatedly, the next step is to install a well-documented
system for applying the model as prescribed by management. This system will include the
model, solution procedure (including postoptimality analysis), and operating procedures
for implementation. Then, even as personnel changes, the system can be called on at regu-
lar intervals to provide a specific numerical solution.

This system usually is computer-based. In fact, a considerable number of computer
programs often need to be used and integrated. Databases and management information
systems may provide up-to-date input for the model each time it is used, in which case
interface programs are needed. After a solution procedure (another program) is applied to
the model, additional computer programs may trigger the implementation of the results

■ 2.5 PREPARING TO APPLY THE MODEL
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automatically. In other cases, an interactive computer-based system called a decision sup-
port system is installed to help managers use data and models to support (rather than
replace) their decision making as needed. Another program may generate managerial
reports (in the language of management) that interpret the output of the model and its impli-
cations for application.

In major OR studies, several months (or longer) may be required to develop, test, and
install this computer system. Part of this effort involves developing and implementing a
process for maintaining the system throughout its future use. As conditions change over
time, this process should modify the computer system (including the model) accordingly.

Example. The application vignette in Sec. 2.2 described an OR study done for Continental
Airlines that led to the formulation of a huge mathematical model for reassigning crews to
flights when schedule disruptions occur. Because the model needs to be applied immediately
when a disruption occurs, a decision support system called CrewSolver was developed to
incorporate both the model and a huge in-memory data store representing current operations.
CrewSolver enables a crew coordinator to input data about the schedule disruption and then to
use a graphical user interface to request an immediate solution for how to reassign crews to
flights.

18 CHAPTER 2 OVERVIEW OF THE OPERATIONS RESEARCH MODELING APPROACH

■ 2.6 IMPLEMENTATION

After a system is developed for applying the model, the last phase of an OR study is to
implement this system as prescribed by management. This phase is a critical one because
it is here, and only here, that the benefits of the study are reaped. Therefore, it is important
for the OR team to participate in launching this phase, both to make sure that model solu-
tions are accurately translated to an operating procedure and to rectify any flaws in the
solutions that are then uncovered.

The success of the implementation phase depends a great deal upon the support of both
top management and operating management. The OR team is much more likely to gain this
support if it has kept management well informed and encouraged management’s active
guidance throughout the course of the study. Good communications help to ensure that the
study accomplishes what management wanted, and also give management a greater sense of
ownership of the study, which encourages their support for implementation.

The implementation phase involves several steps. First, the OR team gives operating
management a careful explanation of the new system to be adopted and how it relates to
operating realities. Next, these two parties share the responsibility for developing the pro-
cedures required to put this system into operation. Operating management then sees that a
detailed indoctrination is given to the personnel involved, and the new course of action is
initiated. If successful, the new system may be used for years to come. With this in mind,
the OR team monitors the initial experience with the course of action taken and seeks to
identify any modifications that should be made in the future.

Throughout the entire period during which the new system is being used, it is impor-
tant to continue to obtain feedback on how well the system is working and whether the
assumptions of the model continue to be satisfied. When significant deviations from the
original assumptions occur, the model should be revisited to determine if any modifica-
tions should be made in the system. The postoptimality analysis done earlier (as described
in Sec. 2.3) can be helpful in guiding this review process.

Upon culmination of a study, it is appropriate for the OR team to document its
methodology clearly and accurately enough so that the work is reproducible. Replicability
should be part of the professional ethical code of the operations researcher. This condition
is especially crucial when controversial public policy issues are being studied.
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Example. This example illustrates how a successful implementation phase might need to
involve thousands of employees before undertaking the new procedures. Samsung Electronics
Corp. initiated a major OR study in March 1996 to develop new methodologies and
scheduling applications that would streamline the entire semiconductor manufacturing process
and reduce work-in-progress inventories. The study continued for over five years, culminating
in June 2001, largely because of the extensive effort required for the implementation phase.
The OR team needed to gain the support of numerous managers, manufacturing staff, and
engineering staff by training them in the principles and logic of the new manufacturing
procedures. Ultimately, more than 3,000 people attended training sessions. The new procedures
then were phased in gradually to build confidence. However, this patient implementation
process paid huge dividends. The new procedures transformed the company from being the
least efficient manufacturer in the semiconductor industry to becoming the most efficient. This
resulted in increased revenues of over $1 billion by the time the implementation of the OR
study was completed. (Selected Reference A11 describes this study in detail.)

■ 2.7 CONCLUSIONS
Although the remainder of this book focuses primarily on constructing and solving mathe-
matical models, in this chapter we have tried to emphasize that this constitutes only a por-
tion of the overall process involved in conducting a typical OR study. The other phases
described here also are very important to the success of the study. Try to keep in perspec-
tive the role of the model and the solution procedure in the overall process as you move
through the subsequent chapters. Then, after gaining a deeper understanding of mathemat-
ical models, we suggest that you plan to return to review this chapter again in order to fur-
ther sharpen this perspective.

OR is closely intertwined with the use of computers. In the early years, these generally
were mainframe computers, but now personal computers and workstations are being
widely used to solve OR models.

In concluding this discussion of the major phases of an OR study, it should be empha-
sized that there are many exceptions to the “rules” prescribed in this chapter. By its very
nature, OR requires considerable ingenuity and innovation, so it is impossible to write
down any standard procedure that should always be followed by OR teams. Rather, the
preceding description may be viewed as a model that roughly represents how successful
OR studies are conducted.
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■ PROBLEMS

2.1-1. The example in Sec. 2.1 summarizes an award-winning OR
study done for Merrill Lynch. Read Selected Reference A2 that
describes this study in detail.
(a) Summarize the background that led to undertaking this study.
(b) Quote the one-sentence statement of the general mission of the

OR group (called the management science group) that con-
ducted this study.

(c) Identify the type of data that the management science group
obtained for each client.

(d) Identify the new pricing options that were provided to the com-
pany’s clients as a result of this study.

(e) What was the resulting impact on Merrill Lynch’s competitive
position?

2.1-2. Read Selected Reference A1 that describes an award-
winning OR study done for General Motors.
(a) Summarize the background that led to undertaking this study.
(b) What was the goal of this study?

Some Award-Winning Applications of the OR Modeling Approach:

(A link to all these articles is provided on our website, www.mhhe.com/hillier.)
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Throughput,” Interfaces, 36(1): 6–25, January–February 2006.
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147–172, January–February 1992.
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(c) Describe how software was used to automate the collection of
the needed data.

(d) The improved production throughput that resulted from this
study yielded how much in documented savings and increased
revenue?

2.1-3. Read Selected Reference A12 that describes an OR study
done for the San Francisco Police Department.
(a) Summarize the background that led to undertaking this study.
(b) Define part of the problem being addressed by identifying the

six directives for the scheduling system to be developed.
(c) Describe how the needed data were gathered.
(d) List the various tangible and intangible benefits that resulted

from the study.

2.1-4. Read Selected Reference A9 that describes an OR study
done for the Health Department of New Haven, Connecticut.
(a) Summarize the background that led to undertaking this study.
(b) Outline the system developed to track and test each needle and

syringe in order to gather the needed data.
(c) Summarize the initial results from this tracking and testing

system.
(d) Describe the impact and potential impact of this study on pub-

lic policy.

2.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 2.2. List
the various financial and nonfinancial benefits that resulted from
this study.

2.2-2. Read Selected Reference A3 that describes an OR study
done for Swift & Company.
(a) Summarize the background that led to undertaking this study.
(b) Describe the purpose of each of the three general types of mod-

els formulated during this study.
(c) How many specific models does the company now use as a re-

sult of this study?
(d) List the various financial and nonfinancial benefits that resulted

from this study.

2.2-3. Read Selected Reference A7 that describes an OR study
done for the Rijkswaterstaat of the Netherlands. (Focus especially
on pp. 3–20 and 30–32.)
(a) Summarize the background that led to undertaking this study.
(b) Summarize the purpose of each of the five mathematical mod-

els described on pp. 10–18.
(c) Summarize the “impact measures” (measures of performance)

for comparing policies that are described on pp. 6–7 of this
article.

(d) List the various tangible and intangible benefits that resulted
from the study.

2.2-4. Read Selected Reference 5.
(a) Identify the author’s example of a model in the natural sci-

ences and of a model in OR.
(b) Describe the author’s viewpoint about how basic precepts of

using models to do research in the natural sciences can also be
used to guide research on operations (OR).

2.3-1. Read Selected Reference A10 that describes an OR study
done for Philips Electronics.
(a) Summarize the background that led to undertaking this study.
(b) What was the purpose of this study?
(c) What were the benefits of developing software to support prob-

lem solving speedily?
(d) List the four steps in the collaborative-planning process that

resulted from this study.
(e) List the various financial and nonfinancial benefits that resulted

from this study.

2.3-2. Refer to Selected Reference 5.
(a) Describe the author’s viewpoint about whether the sole goal in

using a model should be to find its optimal solution.
(b) Summarize the author’s viewpoint about the complementary

roles of modeling, evaluating information from the model, and
then applying the decision maker’s judgment when deciding
on a course of action.

2.4-1. Refer to pp. 18–20 of Selected Reference A7 that describes an
OR study done for the Rijkswaterstaat of the Netherlands. Describe an
important lesson that was gained from model validation in this study.

2.4-2. Read Selected Reference 7. Summarize the author’s view-
point about the roles of observation and experimentation in the
model validation process.

2.4-3. Read pp. 603–617 of Selected Reference 3.
(a) What does the author say about whether a model can be com-

pletely validated?
(b) Summarize the distinctions made between model validity, data

validity, logical/mathematical validity, predictive validity, opera-
tional validity, and dynamic validity.

(c) Describe the role of sensitivity analysis in testing the operational
validity of a model.

(d) What does the author say about whether there is a validation
methodology that is appropriate for all models?

(e) Cite the page in the article that lists basic validation steps.

2.5-1. Read Selected Reference A6 that describes an OR study
done for Texaco.
(a) Summarize the background that led to undertaking this study.
(b) Briefly describe the user interface with the decision support

system OMEGA that was developed as a result of this study.
(c) OMEGA is constantly being updated and extended to reflect

changes in the operating environment. Briefly describe the var-
ious kinds of changes involved.

(d) Summarize how OMEGA is used.
(e) List the various tangible and intangible benefits that resulted

from the study.

2.5-2. Refer to Selected Reference A4 that describes an OR study
done for Yellow Freight System, Inc.
(a) Referring to pp. 147–149 of this article, summarize the back-

ground that led to undertaking this study.
(b) Referring to p. 150, briefly describe the computer system SYS-

NET that was developed as a result of this study. Also sum-
marize the applications of SYSNET.
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(c) Referring to pp. 162–163, describe why the interactive aspects
of SYSNET proved important.

(d) Referring to p. 163, summarize the outputs from SYSNET.
(e) Referring to pp. 168–172, summarize the various benefits that

have resulted from using SYSNET.

2.6-1. Refer to pp. 163–167 of Selected Reference A4 that describes
an OR study done for Yellow Freight System, Inc., and the resulting
computer system SYSNET.
(a) Briefly describe how the OR team gained the support of up-

per management for implementing SYSNET.
(b) Briefly describe the implementation strategy that was developed.
(c) Briefly describe the field implementation.
(d) Briefly describe how management incentives and enforcement

were used in implementing SYSNET.

2.6-2. Read Selected Reference A5 that describes an OR study
done for IBM and the resulting computer system Optimizer.
(a) Summarize the background that led to undertaking this study.
(b) List the complicating factors that the OR team members

faced when they started developing a model and a solution
algorithm.

(c) Briefly describe the preimplementation test of Optimizer.

(d) Briefly describe the field implementation test.
(e) Briefly describe national implementation.
(f) List the various tangible and intangible benefits that resulted

from the study.

2.7-1. From the bottom part of the selected references given at the
end of the chapter, select one of these award-winning applications
of the OR modeling approach (excluding any that have been
assigned for other problems). Read this article and then write a
two-page summary of the application and the benefits (including
nonfinancial benefits) it provided.

2.7-2. From the bottom part of the selected references given at the
end of the chapter, select three of these award-winning applications
of the OR modeling approach (excluding any that have been
assigned for other problems). For each one, read this article and
write a one-page summary of the application and the benefits
(including nonfinancial benefits) it provided.

2.7-3. Read Selected Reference 4. The author describes 13 detailed
phases of any OR study that develops and applies a computer-
based model, whereas this chapter describes six broader phases.
For each of these broader phases, list the detailed phases that fall
partially or primarily within the broader phase.
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The development of linear programming has been ranked among the most important
scientific advances of the mid-20th century, and we must agree with this assessment.

Its impact since just 1950 has been extraordinary. Today it is a standard tool that has saved
many thousands or millions of dollars for many companies or businesses of even moder-
ate size in the various industrialized countries of the world, and its use in other sectors of
society has been spreading rapidly. A major proportion of all scientific computation on
computers is devoted to the use of linear programming. Dozens of textbooks have been
written about linear programming, and published articles describing important applica-
tions now number in the hundreds.

What is the nature of this remarkable tool, and what kinds of problems does it
address? You will gain insight into this topic as you work through subsequent examples.
However, a verbal summary may help provide perspective. Briefly, the most common type
of application involves the general problem of allocating limited resources among
competing activities in a best possible (i.e., optimal) way. More precisely, this problem
involves selecting the level of certain activities that compete for scarce resources that are
necessary to perform those activities. The choice of activity levels then dictates how much
of each resource will be consumed by each activity. The variety of situations to which this
description applies is diverse, indeed, ranging from the allocation of production facilities to
products to the allocation of national resources to domestic needs, from portfolio selection
to the selection of shipping patterns, from agricultural planning to the design of radiation
therapy, and so on. However, the one common ingredient in each of these situations is the
necessity for allocating resources to activities by choosing the levels of those activities.

Linear programming uses a mathematical model to describe the problem of concern.
The adjective linear means that all the mathematical functions in this model are required to
be linear functions. The word programming does not refer here to computer programming;
rather, it is essentially a synonym for planning. Thus, linear programming involves the
planning of activities to obtain an optimal result, i.e., a result that reaches the specified
goal best (according to the mathematical model) among all feasible alternatives.

Although allocating resources to activities is the most common type of application,
linear programming has numerous other important applications as well. In fact, any prob-
lem whose mathematical model fits the very general format for the linear programming
model is a linear programming problem. (For this reason, a linear programming problem
and its model often are referred to interchangeably as simply a linear program, or even as

23

3C H A P T E R

Introduction to Linear Programming
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just an LP.) Furthermore, a remarkably efficient solution procedure, called the simplex
method, is available for solving linear programming problems of even enormous size.
These are some of the reasons for the tremendous impact of linear programming in recent
decades.

Because of its great importance, we devote this and the next six chapters specifically to
linear programming. After this chapter introduces the general features of linear program-
ming, Chaps. 4 and 5 focus on the simplex method. Chapter 6 discusses the further analysis
of linear programming problems after the simplex method has been initially applied. Chap-
ter 7 presents several widely used extensions of the simplex method and introduces an
interior-point algorithm that sometimes can be used to solve even larger linear program-
ming problems than the simplex method can handle. Chapters 8 and 9 consider some special
types of linear programming problems whose importance warrants individual study.

You also can look forward to seeing applications of linear programming to other areas
of operations research (OR) in several later chapters.

We begin this chapter by developing a miniature prototype example of a linear pro-
gramming problem. This example is small enough to be solved graphically in a straight-
forward way. Sections 3.2 and 3.3 present the general linear programming model and its
basic assumptions. Section 3.4 gives some additional examples of linear programming
applications. Section 3.5 describes how linear programming models of modest size can be
conveniently displayed and solved on a spreadsheet. However, some linear programming
problems encountered in practice require truly massive models. Section 3.6 illustrates how
a massive model can arise and how it can still be formulated successfully with the help of
a special modeling language such as MPL (its formulation is described in this section) or
LINGO (its formulation of this model is presented in Supplement 2 to this chapter on the
book’s website).

The WYNDOR GLASS CO. produces high-quality glass products, including windows and
glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood
frames are made in Plant 2, and Plant 3 produces the glass and assembles the products.

Because of declining earnings, top management has decided to revamp the company’s
product line. Unprofitable products are being discontinued, releasing production capacity
to launch two new products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing
Product 2: A 4 � 6 foot double-hung wood-framed window

Product 1 requires some of the production capacity in Plants 1 and 3, but none in Plant 2.
Product 2 needs only Plants 2 and 3. The marketing division has concluded that the com-
pany could sell as much of either product as could be produced by these plants. However,
because both products would be competing for the same production capacity in Plant 3, it
is not clear which mix of the two products would be most profitable. Therefore, an OR
team has been formed to study this question.

The OR team began by having discussions with upper management to identify man-
agement’s objectives for the study. These discussions led to developing the following defi-
nition of the problem:

Determine what the production rates should be for the two products in order to maximize
their total profit, subject to the restrictions imposed by the limited production capacities
available in the three plants. (Each product will be produced in batches of 20, so the
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production rate is defined as the number of batches produced per week.) Any combination
of production rates that satisfies these restrictions is permitted, including producing none
of one product and as much as possible of the other.

The OR team also identified the data that needed to be gathered:

1. Number of hours of production time available per week in each plant for these new
products. (Most of the time in these plants already is committed to current products, so
the available capacity for the new products is quite limited.)

2. Number of hours of production time used in each plant for each batch produced of each
new product.

3. Profit per batch produced of each new product. (Profit per batch produced was cho-
sen as an appropriate measure after the team concluded that the incremental profit
from each additional batch produced would be roughly constant regardless of the
total number of batches produced. Because no substantial costs will be incurred to
initiate the production and marketing of these new products, the total profit from each
one is approximately this profit per batch produced times the number of batches
produced.)

Obtaining reasonable estimates of these quantities required enlisting the help of key
personnel in various units of the company. Staff in the manufacturing division provided the
data in the first category above. Developing estimates for the second category of data
required some analysis by the manufacturing engineers involved in designing the produc-
tion processes for the new products. By analyzing cost data from these same engineers and
the marketing division, along with a pricing decision from the marketing division, the
accounting department developed estimates for the third category.

Table 3.1 summarizes the data gathered.
The OR team immediately recognized that this was a linear programming problem of

the classic product mix type, and the team next undertook the formulation of the corre-
sponding mathematical model.

Swift & Company is a diversified protein-producing
business based in Greeley, Colorado. With annual sales of
over $8 billion, beef and related products are by far the
largest portion of the company’s business.

To improve the company’s sales and manufacturing
performance, upper management concluded that it needed
to achieve three major objectives. One was to enable the
company’s customer service representatives to talk to
their more than 8,000 customers with accurate informa-
tion about the availability of current and future inven-
tory while considering requested delivery dates and
maximum product age upon delivery. A second was to
produce an efficient shift-level schedule for each plant
over a 28-day horizon. A third was to accurately deter-
mine whether a plant can ship a requested order-line-item
quantity on the requested date and time given the

availability of cattle and constraints on the plant’s
capacity.

To meet these three challenges, an OR team devel-
oped an integrated system of 45 linear programming
models based on three model formulations to dynami-
cally schedule its beef-fabrication operations at five
plants in real time as it receives orders. The total audited
benefits realized in the first year of operation of this sys-
tem were $12.74 million, including $12 million due to
optimizing the product mix. Other benefits include a
reduction in orders lost, a reduction in price discounting,
and better on-time delivery.

Source: A. Bixby, B. Downs, and M. Self, “A Scheduling and
Capable-to-Promise Application for Swift & Company,” Inter-
faces, 36(1): 39–50, Jan.–Feb. 2006. (A link to this article is
provided on our website, www.mhhe.com/hillier.)

An Application Vignette
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■ TABLE 3.1 Data for the Wyndor Glass Co. problem

Production Time 
per Batch, Hours

Product
Production Time

Plant 1 2 Available per Week, Hours

1 1 0 4
2 0 2 12
3 3 2 18

Profit per batch $3,000 $5,000

26 CHAPTER 3 INTRODUCTION TO LINEAR PROGRAMMING

Formulation as a Linear Programming Problem

The definition of the problem given above indicates that the decisions to be made are the
number of batches of the respective products to be produced per week so as to maximize
their total profit. Therefore, to formulate the mathematical (linear programming) model for
this problem, let

Thus, x1 and x2 are the decision variables for the model. Using the bottom row of
Table 3.1, we obtain

Z � 3x1 � 5x2.

The objective is to choose the values of x1 and x2 so as to maximize Z � 3x1 � 5x2, subject
to the restrictions imposed on their values by the limited production capacities available in
the three plants. Table 3.1 indicates that each batch of product 1 produced per week uses
1 hour of production time per week in Plant 1, whereas only 4 hours per week are available.
This restriction is expressed mathematically by the inequality x1 � 4. Similarly, Plant 2
imposes the restriction that 2x2 � 12. The number of hours of production time used per
week in Plant 3 by choosing x1 and x2 as the new products’ production rates would be
3x1 � 2x2. Therefore, the mathematical statement of the Plant 3 restriction is 3x1 � 2x2 � 18.
Finally, since production rates cannot be negative, it is necessary to restrict the decision vari-
ables to be nonnegative: x1 � 0 and x2 � 0.

To summarize, in the mathematical language of linear programming, the problem is to
choose values of x1 and x2 so as to

subject to the restrictions

and

x1 � 0,   x2 � 0.

 3x1 � 2x2 � 18

 2x2 � 12

 x1 � 4

Maximize   Z � 3x1 � 5x2 ,

two products

Z � total profit per week 1in thousands of dollars 2  from producing these

 x2 � number of batches of product 2 produced per week

 x1 � number of batches of product 1 produced per week

hil76299_ch03_023-088.qxd  11/19/08  01:30 PM  Page 26



Rev.Confirming Pages

3.1 PROTOTYPE EXAMPLE 27
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x2

1
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5

■ FIGURE 3.1
Shaded area shows values of
(x1, x2) allowed by x1 � 0,
x2 � 0, x1 � 4.

(Notice how the layout of the coefficients of x1 and x2 in this linear programming model
essentially duplicates the information summarized in Table 3.1.)

Graphical Solution

This very small problem has only two decision variables and therefore only two dimen-
sions, so a graphical procedure can be used to solve it. This procedure involves construct-
ing a two-dimensional graph with x1 and x2 as the axes. The first step is to identify the
values of (x1, x2) that are permitted by the restrictions. This is done by drawing each line
that borders the range of permissible values for one restriction. To begin, note that the non-
negativity restrictions x1 � 0 and x2 � 0 require (x1, x2) to lie on the positive side of the
axes (including actually on either axis), i.e., in the first quadrant. Next, observe that the
restriction x1 � 4 means that (x1, x2) cannot lie to the right of the line x1 � 4. These results
are shown in Fig. 3.1, where the shaded area contains the only values of (x1, x2) that are
still allowed.

In a similar fashion, the restriction 2x2 � 12 (or, equivalently, x2 � 6) implies that the
line 2x2 � 12 should be added to the boundary of the permissible region. The final restric-
tion, 3x1 � 2x2 � 18, requires plotting the points (x1, x2) such that 3x1 � 2x2 � 18 (another
line) to complete the boundary. (Note that the points such that 3x1 � 2x2 � 18 are those
that lie either underneath or on the line 3x1 � 2x2 � 18, so this is the limiting line above
which points do not satisfy the inequality.) The resulting region of permissible values of
(x1, x2), called the feasible region, is shown in Fig. 3.2. (The demo called Graphical
Method in your OR Tutor provides a more detailed example of constructing a feasible
region.)

The final step is to pick out the point in this feasible region that maximizes the value
of Z � 3x1 � 5x2. To discover how to perform this step efficiently, begin by trial and error.
Try, for example, Z � 10 � 3x1 � 5x2 to see if there are in the permissible region any val-
ues of (x1, x2) that yield a value of Z as large as 10. By drawing the line 3x1 � 5x2 � 10
(see Fig. 3.3), you can see that there are many points on this line that lie within the region.
Having gained perspective by trying this arbitrarily chosen value of Z � 10, you should
next try a larger arbitrary value of Z, say, Z � 20 � 3x1 � 5x2. Again, Fig. 3.3 reveals that
a segment of the line 3x1 � 5x2 � 20 lies within the region, so that the maximum permis-
sible value of Z must be at least 20.
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3x1 � 2x2 � 18

2x2 � 12

x1 � 4

0

Feasible
region

■ FIGURE 3.2
Shaded area shows the set of
permissible values of (x1, x2),
called the feasible region.
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Z � 36 � 3x1 � 5x2

Z � 20 � 3x1 � 5x2

Z � 10 � 3x1 � 5x2

2 4 x1

(2, 6)

■ FIGURE 3.3
The value of (x1, x2) that
maximizes 3x1 � 5x2 is (2, 6).

Now notice in Fig. 3.3 that the two lines just constructed are parallel. This is no coin-
cidence, since any line constructed in this way has the form Z � 3x1 � 5x2 for the chosen
value of Z, which implies that 5x2 � �3x1 � Z or, equivalently,

x2 � � 

3

5
 x1 �

1

5
 Z
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This last equation, called the slope-intercept form of the objective function, demonstrates
that the slope of the line is ��

3
5

� (since each unit increase in x1 changes x2 by ��
3
5

�), whereas
the intercept of the line with the x2 axis is �

1
5

� Z (since x2 � �
1
5

� Z when x1 � 0). The fact that the
slope is fixed at ��

3
5

� means that all lines constructed in this way are parallel.
Again, comparing the 10 � 3x1 � 5x2 and 20 � 3x1 � 5x2 lines in Fig. 3.3, we note

that the line giving a larger value of Z (Z � 20) is farther up and away from the origin than
the other line (Z � 10). This fact also is implied by the slope-intercept form of the objec-
tive function, which indicates that the intercept with the x1 axis increases when the
value chosen for Z is increased.

These observations imply that our trial-and-error procedure for constructing lines in
Fig. 3.3 involves nothing more than drawing a family of parallel lines containing at least one
point in the feasible region and selecting the line that corresponds to the largest value of Z.
Figure 3.3 shows that this line passes through the point (2, 6), indicating that the optimal
solution is x1 � 2 and x2 � 6. The equation of this line is 3x1 � 5x2 � 3(2) � 5(6) � 36 � Z,
indicating that the optimal value of Z is Z � 36. The point (2, 6) lies at the intersection of the
two lines 2x2 � 12 and 3x1 � 2x2 � 18, shown in Fig. 3.2, so that this point can be calculated
algebraically as the simultaneous solution of these two equations.

Having seen the trial-and-error procedure for finding the optimal point (2, 6), you now
can streamline this approach for other problems. Rather than draw several parallel lines, it
is sufficient to form a single line with a ruler to establish the slope. Then move the ruler
with fixed slope through the feasible region in the direction of improving Z. (When the
objective is to minimize Z, move the ruler in the direction that decreases Z.) Stop moving
the ruler at the last instant that it still passes through a point in this region. This point is the
desired optimal solution.

This procedure often is referred to as the graphical method for linear programming.
It can be used to solve any linear programming problem with two decision variables. With
considerable difficulty, it is possible to extend the method to three decision variables but
not more than three. (The next chapter will focus on the simplex method for solving larger
problems.)

Conclusions

The OR team used this approach to find that the optimal solution is x1 � 2, x2 � 6, with
Z � 36. This solution indicates that the Wyndor Glass Co. should produce products 1 and 2
at the rate of 2 batches per week and 6 batches per week, respectively, with a resulting total
profit of $36,000 per week. No other mix of the two products would be so profitable—
according to the model.

However, we emphasized in Chap. 2 that well-conducted OR studies do not simply
find one solution for the initial model formulated and then stop. All six phases described in
Chap. 2 are important, including thorough testing of the model (see Sec. 2.4) and postopti-
mality analysis (see Sec. 2.3).

In full recognition of these practical realities, the OR team now is ready to evaluate the
validity of the model more critically (to be continued in Sec. 3.3) and to perform sensitiv-
ity analysis on the effect of the estimates in Table 3.1 being different because of inaccurate
estimation, changes of circumstances, etc. (to be continued in Sec. 6.7).

Continuing the Learning Process with Your OR Courseware

This is the first of many points in the book where you may find it helpful to use your OR
Courseware on the book’s website. A key part of this courseware is a program called OR
Tutor. This program includes a complete demonstration example of the graphical method
introduced in this section. To provide you with another example of a model formulation

115 Z 2
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30 CHAPTER 3 INTRODUCTION TO LINEAR PROGRAMMING

as well, this demonstration begins by introducing a problem and formulating a linear pro-
gramming model for the problem before then applying the graphical method step by step to
solve the model. Like the many other demonstration examples accompanying other sections
of the book, this computer demonstration highlights concepts that are difficult to convey on
the printed page. You may refer to Appendix 1 for documentation of the software.

If you would like to see still more examples, you can go to the Worked Examples
section of the book’s website. This section includes a few examples with complete solu-
tions for almost every chapter as a supplement to the examples in the book and in OR
Tutor. The examples for the current chapter begin with a relatively straightforward prob-
lem that involves formulating a small linear programming model and applying the graphi-
cal method. The subsequent examples become progressively more challenging.

Another key part of your OR Courseware is a program called IOR Tutorial. This pro-
gram features many interactive procedures for interactively executing various solution
methods presented in the book, which enables you to focus on learning and executing the
logic of the method efficiently while the computer does the number crunching. Included is
an interactive procedure for applying the graphical method for linear programming. Once
you get the hang of it, a second procedure enables you to quickly apply the graphical
method for performing sensitivity analysis on the effect of revising the data of the problem.
You then can print out your work and results for your homework. Like the other procedures
in IOR Tutorial, these procedures are designed specifically to provide you with an effi-
cient, enjoyable, and enlightening learning experience while you do your homework.

When you formulate a linear programming model with more than two decision vari-
ables (so the graphical method cannot be used), the simplex method described in Chap. 4
enables you to still find an optimal solution immediately. Doing so also is helpful for
model validation, since finding a nonsensical optimal solution signals that you have made
a mistake in formulating the model.

We mentioned in Sec. 1.4 that your OR Courseware introduces you to three particu-
larly popular commercial software packages—the Excel Solver, LINGO/LINDO, and
MPL/CPLEX—for solving a variety of OR models. All three packages include the simplex
method for solving linear programming models. Section 3.5 describes how to use Excel to
formulate and solve linear programming models in a spreadsheet format. Descriptions of
the other packages are provided in Sec. 3.6 (MPL and LINGO), Supplements 1 and 2 to
this chapter on the book’s website (LINGO), Sec. 4.8 (CPLEX and LINDO), and Appen-
dix 4.1 (LINGO and LINDO). MPL, LINGO, and LINDO tutorials also are provided on
the book’s website. In addition, your OR Courseware includes a file for each of the three
packages showing how it can be used to solve each of the examples in this chapter.

■ 3.2 THE LINEAR PROGRAMMING MODEL
The Wyndor Glass Co. problem is intended to illustrate a typical linear programming prob-
lem (miniature version). However, linear programming is too versatile to be completely
characterized by a single example. In this section we discuss the general characteristics of
linear programming problems, including the various legitimate forms of the mathematical
model for linear programming.

Let us begin with some basic terminology and notation. The first column of Table 3.2
summarizes the components of the Wyndor Glass Co. problem. The second column then
introduces more general terms for these same components that will fit many linear pro-
gramming problems. The key terms are resources and activities, where m denotes the num-
ber of different kinds of resources that can be used and n denotes the number of activities
being considered. Some typical resources are money and particular kinds of machines,
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3.2 THE LINEAR PROGRAMMING MODEL 31

■ TABLE 3.2 Common terminology for linear programming

Prototype Example General Problem

Production capacities of plants Resources
3 plants m resources

Production of products Activities
2 products n activities
Production rate of product j, xj Level of activity j, xj

Profit Z Overall measure of performance Z

equipment, vehicles, and personnel. Examples of activities include investing in particular
projects, advertising in particular media, and shipping goods from a particular source to a
particular destination. In any application of linear programming, all the activities may be
of one general kind (such as any one of these three examples), and then the individual
activities would be particular alternatives within this general category.

As described in the introduction to this chapter, the most common type of application
of linear programming involves allocating resources to activities. The amount available of
each resource is limited, so a careful allocation of resources to activities must be made.
Determining this allocation involves choosing the levels of the activities that achieve the
best possible value of the overall measure of performance.

Certain symbols are commonly used to denote the various components of a linear pro-
gramming model. These symbols are listed below, along with their interpretation for the
general problem of allocating resources to activities.

The model poses the problem in terms of making decisions about the levels of the activi-
ties, so x1, x2, . . . , xn are called the decision variables. As summarized in Table 3.3, the

 aij � amount of resource i consumed by each unit of activity j.
1, 2, p , m 2 .

 bi � amount of resource i that is available for allocation to activities 1for i �

 cj � increase in Z that would result from each unit increase in level of activity j.

 xj � level of activity j 1for j � 1, 2, p , n 2 .
 Z � value of overall measure of performance.

■ TABLE 3.3 Data needed for a linear programming model involving 
the allocation of resources to activities

Resource Usage per Unit of Activity

Activity
Amount of 

Resource 1 2 . . . n Resource Available

1 a11 a12 . . . a1n b1

2 a21 a22 . . . a2n b2

. .

. . . . . . . . . . . . . .

. .
m am1 am2 . . . amn bm

Contribution to Z per c1 c2 . . . cn

unit of activity
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1This is called our standard form rather than the standard form because some textbooks adopt other forms.

values of cj, bi, and aij (for i � 1, 2, . . . , m and j � 1, 2, . . . , n) are the input constants for
the model. The cj, bi, and aij are also referred to as the parameters of the model.

Notice the correspondence between Table 3.3 and Table 3.1.

A Standard Form of the Model

Proceeding as for the Wyndor Glass Co. problem, we can now formulate the mathematical
model for this general problem of allocating resources to activities. In particular, this
model is to select the values for x1, x2, . . . , xn so as to

subject to the restrictions

and

We call this our standard form1 for the linear programming problem. Any situation whose
mathematical formulation fits this model is a linear programming problem.

Notice that the model for the Wyndor Glass Co. problem fits our standard form, with
m � 3 and n � 2.

Common terminology for the linear programming model can now be summarized.
The function being maximized, c1x1 � c2x2 � · · · � cnxn, is called the objective function.
The restrictions normally are referred to as constraints. The first m constraints (those with
a function of all the variables ai1x1 � ai2x2 � · · · � ainxn on the left-hand side) are some-
times called functional constraints (or structural constraints). Similarly, the xj � 0
restrictions are called nonnegativity constraints (or nonnegativity conditions).

Other Forms

We now hasten to add that the preceding model does not actually fit the natural form of
some linear programming problems. The other legitimate forms are the following:

1. Minimizing rather than maximizing the objective function:

2. Some functional constraints with a greater-than-or-equal-to inequality:

3. Some functional constraints in equation form:

4. Deleting the nonnegativity constraints for some decision variables:

Any problem that mixes some of or all these forms with the remaining parts of the preced-
ing model is still a linear programming problem. Our interpretation of the words allocating

xj unrestricted in sign   for some values of j.

ai1x1 � ai2x2 � . . . � ainxn � bi   for some values of i.

ai1x1 � ai2x2 � . . . � ainxn � bi   for some values of i.

Minimize   Z � c1x1 � c2x2 � . . . � cnxn.

x1 � 0,  x2 � 0,  . . . , xn � 0.

a11x1 � a12x2 � . . . � a1nxn � b1

a21x1 � a22x2 � . . . � a2nxn � b2

o
am1x1 � am2x2 � . . . � amnxn � bm,

Maximize   Z � c1x1 � c2x2 � . . . � cnxn,
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limited resources among competing activities may no longer apply very well, if at all; but
regardless of the interpretation or context, all that is required is that the mathematical state-
ment of the problem fit the allowable forms. Thus, the concise definition of a linear pro-
gramming problem is that each component of its model fits either the standard form or one
of the other legitimate forms listed above.

Terminology for Solutions of the Model

You may be used to having the term solution mean the final answer to a problem, but the
convention in linear programming (and its extensions) is quite different. Here, any specifi-
cation of values for the decision variables (x1, x2, . . . , xn) is called a solution, regardless of
whether it is a desirable or even an allowable choice. Different types of solutions are then
identified by using an appropriate adjective.

A feasible solution is a solution for which all the constraints are satisfied.
An infeasible solution is a solution for which at least one constraint is violated.

In the example, the points (2, 3) and (4, 1) in Fig. 3.2 are feasible solutions, while the
points ( �1, 3) and (4, 4) are infeasible solutions.

The feasible region is the collection of all feasible solutions.

The feasible region in the example is the entire shaded area in Fig. 3.2.
It is possible for a problem to have no feasible solutions. This would have happened

in the example if the new products had been required to return a net profit of at least
$50,000 per week to justify discontinuing part of the current product line. The correspond-
ing constraint, 3x1 � 5x2 � 50, would eliminate the entire feasible region, so no mix of
new products would be superior to the status quo. This case is illustrated in Fig. 3.4.

Given that there are feasible solutions, the goal of linear programming is to find a best
feasible solution, as measured by the value of the objective function in the model.

2

4

6

8

x2

2 4 6 8 x10 10

10

3x1 � 5x2 � 50

2x2 � 12

3x1 � 2x2 � 18

x1 � 0

x2 � 0

x1 � 4

Maximize Z � 3x1 � 5x2,
subject to x1 � 4

� 12
� 18
� 50

2x2
2x2
5x2

3x1 �
3x1 �

x1 � 0,       x2  � 0and

■ FIGURE 3.4
The Wyndor Glass Co.
problem would have no
feasible solutions if the
constraint 3x1 � 5x2 � 50
were added to the problem.
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■ FIGURE 3.5
The Wyndor Glass Co.
problem would have multiple
optimal solutions if the
objective function were
changed to Z � 3x1 � 2x2.

An optimal solution is a feasible solution that has the most favorable value of the
objective function.

The most favorable value is the largest value if the objective function is to be maximized,
whereas it is the smallest value if the objective function is to be minimized.

Most problems will have just one optimal solution. However, it is possible to have
more than one. This would occur in the example if the profit per batch produced of prod-
uct 2 were changed to $2,000. This changes the objective function to Z � 3x1 � 2x2, so
that all the points on the line segment connecting (2, 6) and (4, 3) would be optimal. This
case is illustrated in Fig. 3.5. As in this case, any problem having multiple optimal solu-
tions will have an infinite number of them, each with the same optimal value of the objec-
tive function.

Another possibility is that a problem has no optimal solutions. This occurs only if
(1) it has no feasible solutions or (2) the constraints do not prevent improving the value of
the objective function (Z) indefinitely in the favorable direction (positive or negative).
The latter case is referred to as having an unbounded Z or an unbounded objective. To
illustrate, this case would result if the last two functional constraints were mistakenly
deleted in the example, as illustrated in Fig. 3.6.

We next introduce a special type of feasible solution that plays the key role when the
simplex method searches for an optimal solution.

A corner-point feasible (CPF) solution is a solution that lies at a corner of the
feasible region.

(CPF solutions also are commonly referred to as extreme points or vertices, but we prefer
the more suggestive corner-point terminology.) Figure 3.7 highlights the five CPF solu-
tions for the example.
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■ FIGURE 3.6
The Wyndor Glass Co.
problem would have no
optimal solutions if the only
functional constraint were
x1 ≤ 4, because x2 then could
be increased indefinitely in
the feasible region without
ever reaching the maximum
value of Z � 3x1 � 5x2.

2

4

6

8

x2

2 4 6 8 x10 10

Maximize Z � 3x1 � 5x2,
subject to
and

x1 � 4
x1 � 0,      x2 � 0

10

(4, 2), Z � 22

(4, 4), Z � 32

(4, 6), Z � 42

(4, 8), Z � 52

(4, 10), Z � 62

(4, �), Z � �

Feasible
region

(0, 6) (2, 6)

x2

(4, 0)

(4, 3)

x1

Feasible
region

(0, 0)

■ FIGURE 3.7
The five dots are the five CPF
solutions for the Wyndor
Glass Co. problem.

Sections 4.1 and 5.1 will delve into the various useful properties of CPF solutions for
problems of any size, including the following relationship with optimal solutions.

Relationship between optimal solutions and CPF solutions: Consider any lin-
ear programming problem with feasible solutions and a bounded feasible region.
The problem must possess CPF solutions and at least one optimal solution. Fur-
thermore, the best CPF solution must be an optimal solution. Thus, if a problem
has exactly one optimal solution, it must be a CPF solution. If the problem has
multiple optimal solutions, at least two must be CPF solutions.
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■ 3.3 ASSUMPTIONS OF LINEAR PROGRAMMING

The example has exactly one optimal solution, (x1, x2) � (2, 6), which is a CPF solu-
tion. (Think about how the graphical method leads to the one optimal solution being a CPF
solution.) When the example is modified to yield multiple optimal solutions, as shown in
Fig. 3.5, two of these optimal solutions—(2, 6) and (4, 3)—are CPF solutions.

All the assumptions of linear programming actually are implicit in the model formulation
given in Sec. 3.2. In particular, from a mathematical viewpoint, the assumptions simply are
that the model must have a linear objective function subject to linear constraints. However,
from a modeling viewpoint, these mathematical properties of a linear programming model
imply that certain assumptions must hold about the activities and data of the problem being
modeled, including assumptions about the effect of varying the levels of the activities. It is
good to highlight these assumptions so you can more easily evaluate how well linear pro-
gramming applies to any given problem. Furthermore, we still need to see why the OR
team for the Wyndor Glass Co. concluded that a linear programming formulation provided
a satisfactory representation of the problem.

Proportionality

Proportionality is an assumption about both the objective function and the functional con-
straints, as summarized below.

Proportionality assumption: The contribution of each activity to the value of the
objective function Z is proportional to the level of the activity xj, as represented by
the cjxj term in the objective function. Similarly, the contribution of each activity
to the left-hand side of each functional constraint is proportional to the level of
the activity xj, as represented by the aijxj term in the constraint. Consequently, this
assumption rules out any exponent other than 1 for any variable in any term of
any function (whether the objective function or the function on the left-hand side
of a functional constraint) in a linear programming model.2

To illustrate this assumption, consider the first term (3x1) in the objective function
(Z � 3x1 � 5x2) for the Wyndor Glass Co. problem. This term represents the profit gener-
ated per week (in thousands of dollars) by producing product 1 at the rate of x1 batches per
week. The proportionality satisfied column of Table 3.4 shows the case that was assumed
in Sec. 3.1, namely, that this profit is indeed proportional to x1 so that 3x1 is the appropri-
ate term for the objective function. By contrast, the next three columns show different
hypothetical cases where the proportionality assumption would be violated.

Refer first to the Case 1 column in Table 3.4. This case would arise if there were start-up
costs associated with initiating the production of product 1. For example, there might be costs
involved with setting up the production facilities. There might also be costs associated with
arranging the distribution of the new product. Because these are one-time costs, they would
need to be amortized on a per-week basis to be commensurable with Z (profit in thousands of
dollars per week). Suppose that this amortization were done and that the total start-up cost
amounted to reducing Z by 1, but that the profit without considering the start-up cost would be
3x1. This would mean that the contribution from product 1 to Z should be 3x1 � 1 for x1 > 0,

2When the function includes any cross-product terms, proportionality should be interpreted to mean that changes
in the function value are proportional to changes in each variable (xj) individually, given any fixed values for all
the other variables. Therefore, a cross-product term satisfies proportionality as long as each variable in the term
has an exponent of 1 (However, any cross-product term violates the additivity assumption, discussed next.)
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■ TABLE 3.4 Examples of satisfying or violating proportionality

Profit from Product 1 ($000 per Week)

Proportionality Violated

Proportionality 
x1 Satisfied Case 1 Case 2 Case 3

0 0 0 0 0
1 3 2 3 3
2 6 5 7 5
3 9 8 12 6
4 12 11 18 6

3If the contribution from product 1 to Z were 3x1 � 1 for all x1 � 0, including x1 � 0, then the fixed constant,
�1, could be deleted from the objective function without changing the optimal solution and proportionality
would be restored. However, this “fix” does not work here because the �1 constant does not apply when x1 � 0.

whereas the contribution would be 3x1 � 0 when x1 � 0 (no start-up cost). This profit func-
tion,3 which is given by the solid curve in Fig. 3.8, certainly is not proportional to x1.

At first glance, it might appear that Case 2 in Table 3.4 is quite similar to Case 1.
However, Case 2 actually arises in a very different way. There no longer is a start-up cost,
and the profit from the first unit of product 1 per week is indeed 3, as originally assumed.
However, there now is an increasing marginal return; i.e., the slope of the profit function
for product 1 (see the solid curve in Fig. 3.9) keeps increasing as x1 is increased. This vio-
lation of proportionality might occur because of economies of scale that can sometimes be
achieved at higher levels of production, e.g., through the use of more efficient high-volume
machinery, longer production runs, quantity discounts for large purchases of raw materials,
and the learning-curve effect whereby workers become more efficient as they gain experi-
ence with a particular mode of production. As the incremental cost goes down, the incre-
mental profit will go up (assuming constant marginal revenue).

x1

 0
1 2 3 4

Start-up cost

�3

3

6

9
Satisfies
proportionality
assumption

Violates
proportionality
assumption

12

Contribution
of x1 to Z 

■ FIGURE 3.8
The solid curve violates the
proportionality assumption
because of the start-up cost
that is incurred when x1 is
increased from 0. The values
at the dots are given by the
Case 1 column of Table 3.4.
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0 1 2 3 4 x1

3

6

9

12

15

18

Contribution
of x1 to Z

Violates
proportionality
assumption

Satisfies
proportionality
assumption

■ FIGURE 3.9
The solid curve violates the
proportionality assumption
because its slope (the
marginal return from
product 1) keeps increasing
as x1 is increased. The values
at the dots are given by the
Case 2 column of Table 3.4.

0 1 2 3 4 x1

3

6

9

12

Contribution
of x1 to Z

Violates
proportionality
assumption

Satisfies
proportionality
assumption

■ FIGURE 3.10
The solid curve violates the
proportionality assumption
because its slope (the marginal
return from product 1) keeps
decreasing as x1 is increased.
The values at the dots are
given by the Case 3 column
in Table 3.4.

Referring again to Table 3.4, the reverse of Case 2 is Case 3, where there is a
decreasing marginal return. In this case, the slope of the profit function for product 1
(given by the solid curve in Fig. 3.10) keeps decreasing as x1 is increased. This violation of
proportionality might occur because the marketing costs need to go up more than propor-
tionally to attain increases in the level of sales. For example, it might be possible to sell
product 1 at the rate of 1 per week (x1 � 1) with no advertising, whereas attaining sales to
sustain a production rate of x1 � 2 might require a moderate amount of advertising, x1 � 3
might necessitate an extensive advertising campaign, and x1 � 4 might require also lower-
ing the price.

All three cases are hypothetical examples of ways in which the proportionality assump-
tion could be violated. What is the actual situation? The actual profit from producing prod-
uct 1 (or any other product) is derived from the sales revenue minus various direct and
indirect costs. Inevitably, some of these cost components are not strictly proportional to the
production rate, perhaps for one of the reasons illustrated above. However, the real question

hil76299_ch03_023-088.qxd  11/19/08  01:30 PM  Page 38



Rev.Confirming Pages

3.3 ASSUMPTIONS OF LINEAR PROGRAMMING 39

is whether, after all the components of profit have been accumulated, proportionality is a
reasonable approximation for practical modeling purposes. For the Wyndor Glass Co. prob-
lem, the OR team checked both the objective function and the functional constraints. The
conclusion was that proportionality could indeed be assumed without serious distortion.

For other problems, what happens when the proportionality assumption does not hold
even as a reasonable approximation? In most cases, this means you must use nonlinear
programming instead (presented in Chap. 12). However, we do point out in Sec. 12.8 that
a certain important kind of nonproportionality can still be handled by linear programming
by reformulating the problem appropriately. Furthermore, if the assumption is violated
only because of start-up costs, there is an extension of linear programming (mixed integer
programming) that can be used, as discussed in Sec. 11.3 (the fixed-charge problem).

Additivity

Although the proportionality assumption rules out exponents other than 1, it does not pro-
hibit cross-product terms (terms involving the product of two or more variables). The addi-
tivity assumption does rule out this latter possibility, as summarized below.

Additivity assumption: Every function in a linear programming model (whether
the objective function or the function on the left-hand side of a functional con-
straint) is the sum of the individual contributions of the respective activities.

To make this definition more concrete and clarify why we need to worry about this
assumption, let us look at some examples. Table 3.5 shows some possible cases for the
objective function for the Wyndor Glass Co. problem. In each case, the individual contri-
butions from the products are just as assumed in Sec. 3.1, namely, 3x1 for product 1 and 5x2

for product 2. The difference lies in the last row, which gives the function value for Z when
the two products are produced jointly. The additivity satisfied column shows the case
where this function value is obtained simply by adding the first two rows (3 � 5 � 8), so
that Z � 3x1 � 5x2 as previously assumed. By contrast, the next two columns show hypo-
thetical cases where the additivity assumption would be violated (but not the proportional-
ity assumption).

Referring to the Case 1 column of Table 3.5, this case corresponds to an objective
function of Z � 3x1 � 5x2 � x1x2, so that Z � 3 � 5 � 1 � 9 for (x1, x2) � (1, 1), thereby
violating the additivity assumption that Z � 3 � 5. (The proportionality assumption still
is satisfied since after the value of one variable is fixed, the increment in Z from the other
variable is proportional to the value of that variable.) This case would arise if the two
products were complementary in some way that increases profit. For example, suppose
that a major advertising campaign would be required to market either new product pro-
duced by itself, but that the same single campaign can effectively promote both products
if the decision is made to produce both. Because a major cost is saved for the second

■ TABLE 3.5 Examples of satisfying or violating additivity for the objective function

Value of Z

Additivity Violated

(x1, x2) Additivity Satisfied Case 1 Case 2

(1, 0) 3 3 3
(0, 1) 5 5 5

(1, 1) 8 9 7
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■ TABLE 3.6 Examples of satisfying or violating additivity for a functional constraint

Amount of Resource Used

Additivity Violated

(x1, x2) Additivity Satisfied Case 3 Case 4

(2, 0) 6 6 6
(0, 3) 6 6 6

(2, 3) 12 15 10.8

product, their joint profit is somewhat more than the sum of their individual profits when
each is produced by itself.

Case 2 in Table 3.5 also violates the additivity assumption because of the extra term in
the corresponding objective function, Z � 3x1 � 5x2 � x1x2, so that Z � 3 � 5 � 1 � 7 for
(x1, x2) � (1, 1). As the reverse of the first case, Case 2 would arise if the two products
were competitive in some way that decreased their joint profit. For example, suppose that
both products need to use the same machinery and equipment. If either product were pro-
duced by itself, this machinery and equipment would be dedicated to this one use. How-
ever, producing both products would require switching the production processes back
and forth, with substantial time and cost involved in temporarily shutting down the pro-
duction of one product and setting up for the other. Because of this major extra cost,
their joint profit is somewhat less than the sum of their individual profits when each is
produced by itself.

The same kinds of interaction between activities can affect the additivity of the con-
straint functions. For example, consider the third functional constraint of the Wyndor Glass
Co. problem: 3x1 � 2x2 � 18. (This is the only constraint involving both products.) This
constraint concerns the production capacity of Plant 3, where 18 hours of production time
per week is available for the two new products, and the function on the left-hand side
(3x1 � 2x2) represents the number of hours of production time per week that would be
used by these products. The additivity satisfied column of Table 3.6 shows this case as is,
whereas the next two columns display cases where the function has an extra cross-product
term that violates additivity. For all three columns, the individual contributions from the
products toward using the capacity of Plant 3 are just as assumed previously, namely, 3x1

for product 1 and 2x2 for product 2, or 3(2) � 6 for x1 � 2 and 2(3) � 6 for x2 � 3. As was
true for Table 3.5, the difference lies in the last row, which now gives the total function
value for production time used when the two products are produced jointly.

For Case 3 (see Table 3.6), the production time used by the two products is given by
the function 3x1 � 2x2 � 0.5x1x2, so the total function value is 6 � 6 � 3 � 15 when
(x1, x2) � (2, 3), which violates the additivity assumption that the value is just 6 � 6 � 12.
This case can arise in exactly the same way as described for Case 2 in Table 3.5; namely,
extra time is wasted switching the production processes back and forth between the two
products. The extra cross-product term (0.5x1x2) would give the production time wasted
in this way. (Note that wasting time switching between products leads to a positive
cross-product term here, where the total function is measuring production time used,
whereas it led to a negative cross-product term for Case 2 because the total function
there measures profit.)

For Case 4 in Table 3.6, the function for production time used is 3x1 � 2x2 � 0.1x1
2x2,

so the function value for (x1, x2) � (2, 3) is 6 � 6 � 1.2 � 10.8. This case could arise in the
following way. As in Case 3, suppose that the two products require the same type of
machinery and equipment. But suppose now that the time required to switch from one
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product to the other would be relatively small. Because each product goes through a
sequence of production operations, individual production facilities normally dedicated to
that product would incur occasional idle periods. During these otherwise idle periods, these
facilities can be used by the other product. Consequently, the total production time used
(including idle periods) when the two products are produced jointly would be less than the
sum of the production times used by the individual products when each is produced by
itself.

After analyzing the possible kinds of interaction between the two products illustrated
by these four cases, the OR team concluded that none played a major role in the actual
Wyndor Glass Co. problem. Therefore, the additivity assumption was adopted as a reason-
able approximation.

For other problems, if additivity is not a reasonable assumption, so that some of or all
the mathematical functions of the model need to be nonlinear (because of the cross-product
terms), you definitely enter the realm of nonlinear programming (Chap. 12).

Divisibility

Our next assumption concerns the values allowed for the decision variables.

Divisibility assumption: Decision variables in a linear programming model are
allowed to have any values, including noninteger values, that satisfy the func-
tional and nonnegativity constraints. Thus, these variables are not restricted to
just integer values. Since each decision variable represents the level of some
activity, it is being assumed that the activities can be run at fractional levels.

For the Wyndor Glass Co. problem, the decision variables represent production rates
(the number of batches of a product produced per week). Since these production rates can
have any fractional values within the feasible region, the divisibility assumption does hold.

In certain situations, the divisibility assumption does not hold because some of or
all the decision variables must be restricted to integer values. Mathematical models
with this restriction are called integer programming models, and they are discussed in
Chap. 11.

Certainty

Our last assumption concerns the parameters of the model, namely, the coefficients in the
objective function cj, the coefficients in the functional constraints aij, and the right-hand
sides of the functional constraints bi.

Certainty assumption: The value assigned to each parameter of a linear program-
ming model is assumed to be a known constant.

In real applications, the certainty assumption is seldom satisfied precisely. Linear pro-
gramming models usually are formulated to select some future course of action. Therefore,
the parameter values used would be based on a prediction of future conditions, which
inevitably introduces some degree of uncertainty.

For this reason it is usually important to conduct sensitivity analysis after a solution
is found that is optimal under the assumed parameter values. As discussed in Sec. 2.3, one
purpose is to identify the sensitive parameters (those whose value cannot be changed with-
out changing the optimal solution), since any later change in the value of a sensitive para-
meter immediately signals a need to change the solution being used.

Sensitivity analysis plays an important role in the analysis of the Wyndor Glass Co.
problem, as you will see in Sec. 6.7. However, it is necessary to acquire some more back-
ground before we finish that story.
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Occasionally, the degree of uncertainty in the parameters is too great to be amenable to
sensitivity analysis. In this case, it is necessary to treat the parameters explicitly as random
variables. Formulations of this kind have been developed, as discussed in Secs. 23.6 and
23.7 on the book’s website.

The Assumptions in Perspective

We emphasized in Sec. 2.2 that a mathematical model is intended to be only an idealized
representation of the real problem. Approximations and simplifying assumptions generally
are required in order for the model to be tractable. Adding too much detail and precision
can make the model too unwieldy for useful analysis of the problem. All that is really
needed is that there be a reasonably high correlation between the prediction of the model
and what would actually happen in the real problem.

This advice certainly is applicable to linear programming. It is very common in real
applications of linear programming that almost none of the four assumptions hold com-
pletely. Except perhaps for the divisibility assumption, minor disparities are to be expected.
This is especially true for the certainty assumption, so sensitivity analysis normally is a
must to compensate for the violation of this assumption.

However, it is important for the OR team to examine the four assumptions for the
problem under study and to analyze just how large the disparities are. If any of the assump-
tions are violated in a major way, then a number of useful alternative models are available,
as presented in later chapters of the book. A disadvantage of these other models is that the
algorithms available for solving them are not nearly as powerful as those for linear pro-
gramming, but this gap has been closing in some cases. For some applications, the power-
ful linear programming approach is used for the initial analysis, and then a more
complicated model is used to refine this analysis.

As you work through the examples in Sec. 3.4, you will find it good practice to ana-
lyze how well each of the four assumptions of linear programming applies.

■ 3.4 ADDITIONAL EXAMPLES

The Wyndor Glass Co. problem is a prototype example of linear programming in several
respects: It involves allocating limited resources among competing activities, its model fits
our standard form, and its context is the traditional one of improved business planning.
However, the applicability of linear programming is much wider. In this section we begin
broadening our horizons. As you study the following examples, note that it is their under-
lying mathematical model rather than their context that characterizes them as linear pro-
gramming problems. Then give some thought to how the same mathematical model could
arise in many other contexts by merely changing the names of the activities and so forth.

These examples are scaled-down versions of actual applications. Like the Wyndor
problem and the demonstration example for the graphical method in OR Tutor, the first of
these examples has only two decision variables and so can be solved by the graphical
method. The new features are that it is a minimization problem and has a mixture of forms
for the functional constraints. (This example considerably simplifies the real situation
when designing radiation therapy, but the first application vignette in this section describes
the exciting impact that OR actually is having in this area.) The subsequent examples have
considerably more than two decision variables and so are more challenging to formulate.
Although we will mention their optimal solutions that are obtained by the simplex method,
the focus here is on how to formulate the linear programming model for these larger prob-
lems. Subsequent sections and the next chapter will turn to the question of the software
tools and the algorithm (the simplex method) that are used to solve such problems.
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If you find that you need additional examples of formulating small and relatively
straightforward linear programming models before dealing with these more challenging
formulation examples, we suggest that you go back to the demonstration example for the
graphical method in OR Tutor and to the examples in the Worked Examples section for this
chapter on the book’s website.

Design of Radiation Therapy

MARY has just been diagnosed as having a cancer at a fairly advanced stage. Specifically,
she has a large malignant tumor in the bladder area (a “whole bladder lesion”).

Mary is to receive the most advanced medical care available to give her every possible
chance for survival. This care will include extensive radiation therapy.

Radiation therapy involves using an external beam treatment machine to pass ionizing
radiation through the patient’s body, damaging both cancerous and healthy tissues. Nor-
mally, several beams are precisely administered from different angles in a two-dimensional
plane. Due to attenuation, each beam delivers more radiation to the tissue near the entry
point than to the tissue near the exit point. Scatter also causes some delivery of radiation to
tissue outside the direct path of the beam. Because tumor cells are typically microscopi-
cally interspersed among healthy cells, the radiation dosage throughout the tumor region
must be large enough to kill the malignant cells, which are slightly more radiosensitive, yet
small enough to spare the healthy cells. At the same time, the aggregate dose to critical tis-
sues must not exceed established tolerance levels, in order to prevent complications that
can be more serious than the disease itself. For the same reason, the total dose to the entire
healthy anatomy must be minimized.

Because of the need to carefully balance all these factors, the design of radiation ther-
apy is a very delicate process. The goal of the design is to select the combination of beams
to be used, and the intensity of each one, to generate the best possible dose distribution.
(The dose strength at any point in the body is measured in units called kilorads.) Once the
treatment design has been developed, it is administered in many installments, spread over
several weeks.

In Mary’s case, the size and location of her tumor make the design of her treatment an
even more delicate process than usual. Figure 3.11 shows a diagram of a cross section of
the tumor viewed from above, as well as nearby critical tissues to avoid. These tissues
include critical organs (e.g., the rectum) as well as bony structures (e.g., the femurs and
pelvis) that will attenuate the radiation. Also shown are the entry point and direction for the
only two beams that can be used with any modicum of safety in this case. (Actually, we are
simplifying the example at this point, because normally dozens of possible beams must be
considered.)

For any proposed beam of given intensity, the analysis of what the resulting radiation
absorption by various parts of the body would be requires a complicated process. In brief,
based on careful anatomical analysis, the energy distribution within the two-dimensional
cross section of the tissue can be plotted on an isodose map, where the contour lines repre-
sent the dose strength as a percentage of the dose strength at the entry point. A fine grid
then is placed over the isodose map. By summing the radiation absorbed in the squares
containing each type of tissue, the average dose that is absorbed by the tumor, healthy
anatomy, and critical tissues can be calculated. With more than one beam (administered
sequentially), the radiation absorption is additive.

After thorough analysis of this type, the medical team has carefully estimated the
data needed to design Mary’s treatment, as summarized in Table 3.7. The first column
lists the areas of the body that must be considered, and then the next two columns give
the fraction of the radiation dose at the entry point for each beam that is absorbed by the

Beam 2

Beam 1

1

2
3 3

1. Bladder and
 tumor
2. Rectum, coccyx,
 etc.
3. Femur, part of
 pelvis, etc.

■ FIGURE 3.11
Cross section of Mary’s 
tumor (viewed from above),
nearby critical tissues, and 
the radiation beams being 
used.

hil76299_ch03_023-088.qxd  11/19/08  01:30 PM  Page 43



Rev.Confirming Pages

Prostate cancer is the most common form of cancer diag-
nosed in men. There were an estimated 220,000 new
cases in just the United States alone in 2007. Like many
other forms of cancer, radiation therapy is a common
method of treatment for prostate cancer, where the goal is
to have a sufficiently high radiation dosage in the tumor
region to kill the malignant cells while minimizing the
radiation exposure to critical healthy structures near the
tumor. This treatment can be applied through either
external beam radiation therapy (as illustrated by the first
example in this section) or brachytherapy, which involves
placing approximately 100 radioactive “seeds” within the
tumor region. The challenge is to determine the most
effective three-dimensional geometric pattern for placing
these seeds.

Memorial Sloan-Kettering Cancer Center (MSKCC)
in New York City is the world’s oldest private cancer cen-
ter. An OR team from the Center for Operations Research
in Medicine and HealthCare at Georgia Institute of Tech-
nology worked with physicians at MSKCC to develop a
highly sophisticated next-generation method of optimiz-
ing the application of brachytherapy to prostrate cancer.
The underlying model fits the structure for linear pro-
gramming with one exception. In addition to having
the usual continuous variables that fit linear program-
ming, the model also has some binary variables (vari-
ables whose only possible values are 0 and 1). (This
kind of extension of linear programming to what is
called mixed-integer programming will be discussed in

Chap. 11.) The optimization is done in a matter of
minutes by an automated computerized planning sys-
tem that can be operated readily by medical personnel
when beginning the procedure of inserting the seeds
into the patient’s prostrate.

This breakthrough in optimizing the application of
brachytherapy to prostrate cancer is having a profound
impact on both health care costs and quality of life for
treated patients because of its much greater effectiveness
and the substantial reduction in side effects. When all
U.S. clinics adopt this procedure, it is estimated that the
annual cost savings will approximate $500 million due to
eliminating the need for a pretreatment planning meeting
and a postoperation CT scan, as well as providing a more
efficient surgical procedure and reducing the need to treat
subsequent side effects. It also is anticipated that this
approach can be extended to other forms of brachyther-
apy, such as treatment of breast, cervix, esophagus, bil-
iary tract, pancreas, head and neck, and eye.

This application of linear programming and its
extensions led to the OR team winning the prestigious
First Prize in the 2007 international competition for the
Franz Edelman Award for Achievement in Operations
Research and the Management Sciences.

Source: E. K. Lee and M. Zaider, “Operations Research
Advances Cancer Therapeutics,” Interfaces, 38(1): 5–25,
Jan.–Feb. 2008. (A link to this article is provided on our web-
site, www.mhhe.com/hillier.)

An Application Vignette

respective areas on average. For example, if the dose level at the entry point for beam 1
is 1 kilorad, then an average of 0.4 kilorad will be absorbed by the entire healthy
anatomy in the two-dimensional plane, an average of 0.3 kilorad will be absorbed by
nearby critical tissues, an average of 0.5 kilorad will be absorbed by the various parts of
the tumor, and 0.6 kilorad will be absorbed by the center of the tumor. The last column
gives the restrictions on the total dosage from both beams that is absorbed on average by
the respective areas of the body. In particular, the average dosage absorption for the

■ TABLE 3.7 Data for the design of Mary’s radiation therapy

Fraction of Entry Dose 
Absorbed by 

Area (Average)

Area Beam 1 Beam 2 Restriction on Total Average 
Dosage, Kilorads

Healthy anatomy 0.4 0.5 Minimize
Critical tissues 0.3 0.1 � 2.7
Tumor region 0.5 0.5 � 6
Center of tumor 0.6 0.4 � 6
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healthy anatomy must be as small as possible, the critical tissues must not exceed 2.7
kilorads, the average over the entire tumor must equal 6 kilorads, and the center of the
tumor must be at least 6 kilorads.

Formulation as a Linear Programming Problem. The decisions that need to
be made are the dosages of radiation at the two entry points. Therefore, the two decision
variables x1 and x2 represent the dose (in kilorads) at the entry point for beam 1 and
beam 2, respectively. Because the total dosage reaching the healthy anatomy is to be min-
imized, let Z denote this quantity. The data from Table 3.7 can then be used directly to for-
mulate the following linear programming model.4

subject to

and

Notice the differences between this model and the one in Sec. 3.1 for the Wyndor
Glass Co. problem. The latter model involved maximizing Z, and all the functional con-
straints were in � form. This new model does not fit this same standard form, but it does
incorporate three other legitimate forms described in Sec. 3.2, namely, minimizing Z, func-
tional constraints in � form, and functional constraints in � form.

However, both models have only two variables, so this new problem also can be solved
by the graphical method illustrated in Sec. 3.1. Figure 3.12 shows the graphical solution. The
feasible region consists of just the dark line segment between (6, 6) and (7.5, 4.5), because
the points on this segment are the only ones that simultaneously satisfy all the constraints.
(Note that the equality constraint limits the feasible region to the line containing this line seg-
ment, and then the other two functional constraints determine the two endpoints of the line
segment.) The dashed line is the objective function line that passes through the optimal
solution (x1, x2) � (7.5, 4.5) with Z � 5.25. This solution is optimal rather than the point
(6, 6) because decreasing Z (for positive values of Z) pushes the objective function line
toward the origin (where Z � 0). And Z � 5.25 for (7.5, 4.5) is less than Z � 5.4 for (6, 6).

Thus, the optimal design is to use a total dose at the entry point of 7.5 kilorads for
beam 1 and 4.5 kilorads for beam 2.

Regional Planning

The SOUTHERN CONFEDERATION OF KIBBUTZIM is a group of three kibbutzim
(communal farming communities) in Israel. Overall planning for this group is done in its
Coordinating Technical Office. This office currently is planning agricultural production for
the coming year.

x1 � 0,   x2 � 0.

 0.6x1 � 0.4x2 � 6

 0.5x1 � 0.5x2 � 6

 0.3x1 � 0.1x2 � 2.7

Minimize   Z � 0.4x1 � 0.5x2 ,

4This model is much smaller than normally would be needed for actual applications. For the best results, a realistic
model might even need many tens of thousands of decision variables and constraints. For example, see H. E. Romeijn,
R. K. Ahuja, J. F. Dempsey, and A. Kumar, “A New Linear Programming Approach to Radiation Therapy Treatment
Planning Problems,” Operations Research, 54(2): 201–216, March–April 2006. For alternative approaches that
combine linear programming with other OR techniques (like the first application vignette in this section), also see
G. J. Lim, M. C. Ferris, S. J. Wright, D. M. Shepard, and M. A. Earl, “An Optimization Framework for Conformal
Radiation Treatment Planning,” INFORMS Journal on Computing, 19(3): 366–380, Summer 2007.
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0

5

10

15

5 10 x1

x2

0.3x1 � 0.1x2 � 2.7

0.6x1 � 0.4x2 � 6

(6, 6)

(7.5, 4.5)

Z � 5.25 � 0.4x1 � 0.5x2

0.5x1 � 0.5x2 � 6■ FIGURE 3.12
Graphical solution for the
design of Mary’s radiation
therapy.

The agricultural output of each kibbutz is limited by both the amount of available irri-
gable land and the quantity of water allocated for irrigation by the Water Commissioner (a
national government official). These data are given in Table 3.8.

The crops suited for this region include sugar beets, cotton, and sorghum, and these
are the three being considered for the upcoming season. These crops differ primarily in
their expected net return per acre and their consumption of water. In addition, the Ministry
of Agriculture has set a maximum quota for the total acreage that can be devoted to each of
these crops by the Southern Confederation of Kibbutzim, as shown in Table 3.9.

■ TABLE 3.8 Resource data for the Southern Confederation of Kibbutzim

Kibbutz Usable Land (Acres) Water Allocation (Acre Feet)

1 400 600
2 600 800
3 300 375
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Because of the limited water available for irrigation, the Southern Confederation of
Kibbutzim will not be able to use all its irrigable land for planting crops in the upcoming
season. To ensure equity between the three kibbutzim, it has been agreed that every kibbutz
will plant the same proportion of its available irrigable land. For example, if kibbutz 1 plants
200 of its available 400 acres, then kibbutz 2 must plant 300 of its 600 acres, while kib-
butz 3 plants 150 acres of its 300 acres. However, any combination of the crops may be
grown at any of the kibbutzim. The job facing the Coordinating Technical Office is to plan
how many acres to devote to each crop at the respective kibbutzim while satisfying the
given restrictions. The objective is to maximize the total net return to the Southern Con-
federation of Kibbutzim as a whole.

Formulation as a Linear Programming Problem. The quantities to be decided upon
are the number of acres to devote to each of the three crops at each of the three kibbutzim.
The decision variables xj (j � 1, 2, . . . , 9) represent these nine quantities, as shown in
Table 3.10.

Since the measure of effectiveness Z is the total net return, the resulting linear pro-
gramming model for this problem is

subject to the following constraints:

1. Usable land for each kibbutz:

2. Water allocation for each kibbutz:

 3x3 � 2x6 � x9 � 375

 3x2 � 2x5 � x8 � 800

 3x1 � 2x4 � x7 � 600

 x3 � x6 � x9 � 300

 x2 � x5 � x8 � 600

 x1 � x4 � x7 � 400

Maximize   Z � 1,0001x1 � x2 � x3 2 � 7501x4 � x5 � x6 2 � 2501x7 � x8 � x9 2 ,

■ TABLE 3.9 Crop data for the Southern Confederation of Kibbutzim

Maximum Water Consumption Net Return
Crop Quota (Acres) (Acre Feet/Acre) ($/Acre)

Sugar beets 600 3 1,000
Cotton 500 2 750
Sorghum 325 1 250

■ TABLE 3.10 Decision variables for the Southern Confederation 
of Kibbutzim problem

Allocation (Acres)

Kibbutz

Crop 1 2 3

Sugar beets x1 x2 x3

Cotton x4 x5 x6

Sorghum x7 x8 x9
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3. Total acreage for each crop:

4. Equal proportion of land planted:

5. Nonnegativity:

This completes the model, except that the equality constraints are not yet in an appropriate
form for a linear programming model because some of the variables are on the right-hand
side. Hence, their final form5 is

The Coordinating Technical Office formulated this model and then applied the sim-
plex method (developed in Chap. 4) to find an optimal solution

as shown in Table 3.11. The resulting optimal value of the objective function is Z=633,

that is, a total net return of $633,333.33.

333 
1
3,

1x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 2 � a133 

1

3
, 100, 25, 100, 250, 150, 0, 0, 0b ,

 41x3 � x6 � x9 2 � 31x1 � x4 � x7 2 � 0

   1x2 � x5 � x8 2 � 21x3 � x6 � x9 2 � 0

 31x1 � x4 � x7 2 � 21x2 � x5 � x8 2 � 0

xj � 0,   for j � 1, 2, p , 9.

 
x3 � x6 � x9

300
�

x1 � x4 � x7

400

 
x2 � x5 � x8

600
�

x3 � x6 � x9

300

 
x1 � x4 � x7

400
�

x2 � x5 � x8

600

 x7 � x8 � x9 � 325
 x4 � x5 � x6 � 500
 x1 � x2 � x3 � 600

5Actually, any one of these equations is redundant and can be deleted if desired. Also, because of these equations,
any two of the usable land constraints also could be deleted because they automatically would be satisfied when
both the remaining usable land constraint and these equations are satisfied. However, no harm is done (except a
little more computational effort) by including unnecessary constraints, so you don’t need to worry about identify-
ing and deleting them in models you formulate.

■ TABLE 3.11 Optimal solution for the Southern Confederation 
of Kibbutzim problem

Best Allocation (Acres)

Kibbutz

Crop 1 2 3

Sugar beets 133�
1
3

� 100 25
Cotton 100 250 150
Sorghum 0 0 0
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Controlling Air Pollution

The NORI & LEETS CO., one of the major producers of steel in its part of the world, is
located in the city of Steeltown and is the only large employer there. Steeltown has grown
and prospered along with the company, which now employs nearly 50,000 residents.
Therefore, the attitude of the townspeople always has been, What’s good for Nori & Leets
is good for the town. However, this attitude is now changing; uncontrolled air pollution
from the company’s furnaces is ruining the appearance of the city and endangering the
health of its residents.

A recent stockholders’ revolt resulted in the election of a new enlightened board of
directors for the company. These directors are determined to follow socially responsible
policies, and they have been discussing with Steeltown city officials and citizens’ groups
what to do about the air pollution problem. Together they have worked out stringent air
quality standards for the Steeltown airshed.

The three main types of pollutants in this airshed are particulate matter, sulfur oxides,
and hydrocarbons. The new standards require that the company reduce its annual emission of
these pollutants by the amounts shown in Table 3.12. The board of directors has instructed
management to have the engineering staff determine how to achieve these reductions in the
most economical way.

The steelworks has two primary sources of pollution, namely, the blast furnaces for
making pig iron and the open-hearth furnaces for changing iron into steel. In both cases the
engineers have decided that the most effective types of abatement methods are (1) increas-
ing the height of the smokestacks,6 (2) using filter devices (including gas traps) in the
smokestacks, and (3) including cleaner, high-grade materials among the fuels for the fur-
naces. Each of these methods has a technological limit on how heavily it can be used (e.g.,
a maximum feasible increase in the height of the smokestacks), but there also is consider-
able flexibility for using the method at a fraction of its technological limit.

Table 3.13 shows how much emission (in millions of pounds per year) can be elimi-
nated from each type of furnace by fully using any abatement method to its technological
limit. For purposes of analysis, it is assumed that each method also can be used less fully
to achieve any fraction of the emission-rate reductions shown in this table. Furthermore,
the fractions can be different for blast furnaces and for open-hearth furnaces. For either
type of furnace, the emission reduction achieved by each method is not substantially
affected by whether the other methods also are used.

After these data were developed, it became clear that no single method by itself could
achieve all the required reductions. On the other hand, combining all three methods at full
capacity on both types of furnaces (which would be prohibitively expensive if the company’s

■ TABLE 3.12 Clean air standards for the Nori & Leets Co.

Pollutant Required Reduction in Annual Emission Rate 
(Million Pounds)

Particulates 60
Sulfur oxides 150
Hydrocarbons 125

6Subsequent to this study, this particular abatement method has become a controversial one. Because its effect is
to reduce ground-level pollution by spreading emissions over a greater distance, environmental groups contend
that this creates more acid rain by keeping sulfur oxides in the air longer. Consequently, the U.S. Environmental
Protection Agency adopted new rules in 1985 to remove incentives for using tall smokestacks.
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■ TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the
maximum feasible use of an abatement method for Nori & Leets Co.

Taller Smokestacks Filters Better Fuels

Blast Open-Hearth Blast Open-Hearth Blast Open-Hearth
Pollutant Furnaces Furnaces Furnaces Furnaces Furnaces Furnaces

Particulates 12 9 25 20 17 13
Sulfur oxides 35 42 18 31 56 49
Hydrocarbons 37 53 28 24 29 20

products are to remain competitively priced) is much more than adequate. Therefore, the
engineers concluded that they would have to use some combination of the methods, per-
haps with fractional capacities, based upon the relative costs. Furthermore, because of the
differences between the blast and the open-hearth furnaces, the two types probably should
not use the same combination.

An analysis was conducted to estimate the total annual cost that would be incurred by
each abatement method. A method’s annual cost includes increased operating and mainte-
nance expenses as well as reduced revenue due to any loss in the efficiency of the produc-
tion process caused by using the method. The other major cost is the start-up cost (the
initial capital outlay) required to install the method. To make this one-time cost commen-
surable with the ongoing annual costs, the time value of money was used to calculate the
annual expenditure (over the expected life of the method) that would be equivalent in value
to this start-up cost.

This analysis led to the total annual cost estimates (in millions of dollars) given in
Table 3.14 for using the methods at their full abatement capacities. It also was determined
that the cost of a method being used at a lower level is roughly proportional to the fraction
of the abatement capacity given in Table 3.13 that is achieved. Thus, for any given fraction
achieved, the total annual cost would be roughly that fraction of the corresponding quan-
tity in Table 3.14.

The stage now was set to develop the general framework of the company’s plan for
pollution abatement. This plan specifies which types of abatement methods will be used
and at what fractions of their abatement capacities for (1) the blast furnaces and (2) the
open-hearth furnaces. Because of the combinatorial nature of the problem of finding a plan
that satisfies the requirements with the smallest possible cost, an OR team was formed to
solve the problem. The team adopted a linear programming approach, formulating the
model summarized next.

Formulation as a Linear Programming Problem. This problem has six decision
variables xj, j = 1, 2, . . . , 6, each representing the use of one of the three abatement meth-
ods for one of the two types of furnaces, expressed as a fraction of the abatement capacity
(so xj cannot exceed 1). The ordering of these variables is shown in Table 3.15. Because the

■ TABLE 3.14 Total annual cost from the maximum feasible use of an abatement
method for Nori & Leets Co. ($ millions)

Abatement Method Blast Furnaces Open-Hearth Furnaces

Taller smokestacks 8 10
Filters 7 6
Better fuels 11 9
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objective is to minimize total cost while satisfying the emission reduction requirements,
the data in Tables 3.12, 3.13, and 3.14 yield the following model:

subject to the following constraints:

1. Emission reduction:

2. Technological limit:

3. Nonnegativity:

The OR team used this model7 to find a minimum-cost plan

with Z � 32.16 (total annual cost of $32.16 million). Sensitivity analysis then was conducted
to explore the effect of making possible adjustments in the air standards given in Table 3.12,
as well as to check on the effect of any inaccuracies in the cost data given in Table 3.14. (This
story is continued in Case 6.1 at the end of Chap. 6.) Next came detailed planning and man-
agerial review. Soon after, this program for controlling air pollution was fully implemented
by the company, and the citizens of Steeltown breathed deep (cleaner) sighs of relief.

Reclaiming Solid Wastes

The SAVE-IT COMPANY operates a reclamation center that collects four types of solid
waste materials and treats them so that they can be amalgamated into a salable product.
(Treating and amalgamating are separate processes.) Three different grades of this product
can be made (see the first column of Table 3.16), depending upon the mix of the materials
used. Although there is some flexibility in the mix for each grade, quality standards may
specify the minimum or maximum amount allowed for the proportion of a material in the
product grade. (This proportion is the weight of the material expressed as a percentage of
the total weight for the product grade.) For each of the two higher grades, a fixed percentage

1x1 , x2 , x3 , x4 , x5 , x6 2 � 11, 0.623, 0.343, 1, 0.048, 1 2 ,

xj � 0,   for j � 1, 2, . . . , 6.

xj � 1,   for j � 1, 2, . . . , 6

 37x1 � 53x2 � 28x3 � 24x4 � 29x5 � 20x6 � 125
 35x1 � 42x2 � 18x3 � 31x4 � 56x5 � 49x6 � 150
 12x1 � 9x2 � 25x3 � 20x4 � 17x5 � 13x6 � 60

Minimize   Z � 8x1 � 10x2 � 7x3 � 6x4 � 11x5 � 9x6 ,

■ TABLE 3.15 Decision variables (fraction of the maximum feasible use of an
abatement method) for Nori & Leets Co.

Abatement Method Blast Furnaces Open-Hearth Furnaces

Taller smokestacks x1 x2

Filters x3 x4

Better fuels x5 x6

7An equivalent formulation can express each decision variable in natural units for its abatement method; for
example, x1 and x2 could represent the number of feet that the heights of the smokestacks are increased.
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■ TABLE 3.16 Product data for Save-It Co.

Amalgamation Selling Price 
Grade Specification Cost per Pound ($) per Pound ($)

Material 1: Not more than 30% of total
A Material 2: Not less than 40% of total 3.00 8.50

Material 3: Not more than 50% of total
Material 4: Exactly 20% of total

Material 1: Not more than 50% of total
B Material 2: Not less than 10% of total 2.50 7.00

Material 4: Exactly 10% of total

C Material 1: Not more than 70% of total 2.00 5.50

is specified for one of the materials. These specifications are given in Table 3.16 along with
the cost of amalgamation and the selling price for each grade.

The reclamation center collects its solid waste materials from regular sources and so is
normally able to maintain a steady rate for treating them. Table 3.17 gives the quantities
available for collection and treatment each week, as well as the cost of treatment, for each
type of material.

The Save-It Co. is solely owned by Green Earth, an organization devoted to dealing
with environmental issues, so Save-It’s profits are used to help support Green Earth’s
activities. Green Earth has raised contributions and grants, amounting to $30,000 per
week, to be used exclusively to cover the entire treatment cost for the solid waste materi-
als. The board of directors of Green Earth has instructed the management of Save-It to
divide this money among the materials in such a way that at least half of the amount
available of each material is actually collected and treated. These additional restrictions
are listed in Table 3.17.

Within the restrictions specified in Tables 3.16 and 3.17, management wants to deter-
mine the amount of each product grade to produce and the exact mix of materials to be
used for each grade. The objective is to maximize the net weekly profit (total sales income
minus total amalgamation cost), exclusive of the fixed treatment cost of $30,000 per week
that is being covered by gifts and grants.

Formulation as a Linear Programming Problem. Before attempting to construct a
linear programming model, we must give careful consideration to the proper definition of
the decision variables. Although this definition is often obvious, it sometimes becomes the
crux of the entire formulation. After clearly identifying what information is really desired
and the most convenient form for conveying this information by means of decision vari-
ables, we can develop the objective function and the constraints on the values of these
decision variables.

■ TABLE 3.17 Solid waste materials data for the Save-It Co.

Pounds per Treatment Cost 
Material Week Available per Pound ($) Additional Restrictions

1 3,000 3.00 1. For each material, at least half of the 
2 2,000 6.00 pounds per week available should be 
3 4,000 4.00 collected and treated.
4 1,000 5.00 2. $30,000 per week should be used 

to treat these materials.
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In this particular problem, the decisions to be made are well defined, but the appropri-
ate means of conveying this information may require some thought. (Try it and see if you
first obtain the following inappropriate choice of decision variables.)

Because one set of decisions is the amount of each product grade to produce, it would
seem natural to define one set of decision variables accordingly. Proceeding tentatively
along this line, we define

The other set of decisions is the mix of materials for each product grade. This mix is iden-
tified by the proportion of each material in the product grade, which would suggest defin-
ing the other set of decision variables as

However, Table 3.17 gives both the treatment cost and the availability of the materials by
quantity (pounds) rather than proportion, so it is this quantity information that needs to be
recorded in some of the constraints. For material j ( j � 1, 2, 3, 4),

For example, since Table 3.17 indicates that 3,000 pounds of material 1 is available per
week, one constraint in the model would be

Unfortunately, this is not a legitimate linear programming constraint. The expression on
the left-hand side is not a linear function because it involves products of variables. There-
fore, a linear programming model cannot be constructed with these decision variables.

Fortunately, there is another way of defining the decision variables that will fit the lin-
ear programming format. (Do you see how to do it?) It is accomplished by merely replac-
ing each product of the old decision variables by a single variable! In other words, define

and then we let the xij be the decision variables. Combining the xij in different ways yields
the following quantities needed in the model (for i = A, B, C; j = 1, 2, 3, 4).

The fact that this last expression is a nonlinear function does not cause a complication.
For example, consider the first specification for product grade A in Table 3.16 (the proportion
of material 1 should not exceed 30 percent). This restriction gives the nonlinear constraint

However, multiplying through both sides of this inequality by the denominator yields an
equivalent constraint

xA1 � 0.31xA1 � xA2 � xA3 � xA4 2 ,

xA1

xA1 � xA2 � xA3 � xA4
� 0.3.

 
xij

xi1 � xi2 � xi3 � xi4
� proportion of material j in product grade i.

 xAj � xBj � xCj � number of pounds of material j used per week.

 xi1 � xi2 � xi3 � xi4 � number of pounds of product grade i produced per week.

 � number of pounds of material j allocated to product grade i per week,

 xij � zijyi   1for i � A, B, C; j � 1, 2, 3, 4 2

zA1yA � zB1yB � zC1yC � 3,000.

Number of pounds of material j used per week � zAjyA � zBjyB � zCjyC .

zij � proportion of material j in product grade i   1i � A, B, C; j � 1, 2, 3, 4 2 .

yi � number of pounds of product grade i produced per week   1i � A, B, C 2 .
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so

which is a legitimate linear programming constraint.
With this adjustment, the three quantities given above lead directly to all the func-

tional constraints of the model. The objective function is based on management’s objective
of maximizing net weekly profit (total sales income minus total amalgamation cost) from
the three product grades. Thus, for each product grade, the profit per pound is obtained by
subtracting the amalgamation cost given in the third column of Table 3.16 from the selling
price in the fourth column. These differences provide the coefficients for the objective
function.

Therefore, the complete linear programming model is

subject to the following constraints:

1. Mixture specifications (second column of Table 3.16):

2. Availability of materials (second column of Table 3.17):

3. Restrictions on amounts treated (right side of Table 3.17):

4. Restriction on treatment cost (right side of Table 3.17):

5. Nonnegativity constraints:

xA1 � 0,   xA2 � 0,   . . . ,   xC4 � 0.

 � 51xA4 � xB4 � xC4 2 � 30,000.

 31xA1 � xB1 � xC1 2 � 61xA2 � xB2 � xC2 2 � 41xA3 � xB3 � xC3 2

 xA4 � xB4 � xC4 � 500   1material 4 2 .
 xA3 � xB3 � xC3 � 2,000   1material 3 2
 xA2 � xB2 � xC2 � 1,000   1material 2 2
 xA1 � xB1 � xC1 � 1,500   1material 1 2

 xA4 � xB4 � xC4 � 1,000   1material 4 2 .
 xA3 � xB3 � xC3 � 4,000   1material 3 2
 xA2 � xB2 � xC2 � 2,000   1material 2 2
 xA1 � xB1 � xC1 � 3,000   1material 1 2

 xC1 � 0.71xC1 � xC2 � xC3 � xC4 2    1grade C, material 1 2 .
 xB4 � 0.11xB1 � xB2 � xB3 � xB4 2    1grade B, material 4 2
 xB2 � 0.11xB1 � xB2 � xB3 � xB4 2    1grade B, material 2 2
 xB1 � 0.51xB1 � xB2 � xB3 � xB4 2    1grade B, material 1 2
 xA4 � 0.21xA1 � xA2 � xA3 � xA4 2    1grade A, material 4 2
 xA3 � 0.51xA1 � xA2 � xA3 � xA4 2    1grade A, material 3 2
 xA2 � 0.41xA1 � xA2 � xA3 � xA4 2    1grade A, material 2 2
 xA1 � 0.31xA1 � xA2 � xA3 � xA4 2    1grade A, material 1 2

 � 3.51xC1 � xC2 � xC3 � xC4 2 ,
 Maximize  Z � 5.51xA1 � xA2 � xA3 � xA4 2 � 4.51xB1 � xB2 � xB3 � xB4 2

0.7xA1 � 0.3xA2 � 0.3xA3 � 0.3xA4 � 0,
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This formulation completes the model, except that the constraints for the mixture
specifications need to be rewritten in the proper form for a linear programming model by
bringing all variables to the left-hand side and combining terms, as follows:

Mixture specifications:

An optimal solution for this model is shown in Table 3.18, and then these xij values are
used to calculate the other quantities of interest given in the table. The resulting optimal
value of the objective function is Z � 35,109.65 (a total weekly profit of $35,109.65).

The Save-It Co. problem is an example of a blending problem. The objective for a
blending problem is to find the best blend of ingredients into final products to meet certain
specifications. Some of the earliest applications of linear programming were for gasoline
blending, where petroleum ingredients were blended to obtain various grades of gasoline.
Other blending problems involve such final products as steel, fertilizer, and animal feed.

Personnel Scheduling

UNION AIRWAYS is adding more flights to and from its hub airport, and so it needs to
hire additional customer service agents. However, it is not clear just how many more
should be hired. Management recognizes the need for cost control while also consistently
providing a satisfactory level of service to customers. Therefore, an OR team is studying
how to schedule the agents to provide satisfactory service with the smallest personnel cost.

Based on the new schedule of flights, an analysis has been made of the minimum num-
ber of customer service agents that need to be on duty at different times of the day to pro-
vide a satisfactory level of service. The rightmost column of Table 3.19 shows the number
of agents needed for the time periods given in the first column. The other entries in this
table reflect one of the provisions in the company’s current contract with the union that

 0.3xC1 � 0.7xC2 � 0.7xC3 � 0.7xC4 � 0   1grade C, material 1 2 .
 �0.1xB1 � 0.1xB2 � 0.1xB3 � 0.9xB4 � 0   1grade B, material 4 2
 �0.1xB1 � 0.9xB2 � 0.1xB3 � 0.1xB4 � 0   1grade B, material 2 2

 0.5xB1 � 0.5xB2 � 0.5xB3 � 0.5xB4 � 0   1grade B, material 1 2
 �0.2xA1 � 0.2xA2 � 0.2xA3 � 0.8xA4 � 0   1grade A, material 4 2
 �0.5xA1 � 0.5xA2 � 0.5xA3 � 0.5xA4 � 0   1grade A, material 3 2
 �0.4xA1 � 0.6xA2 � 0.4xA3 � 0.4xA4 � 0   1grade A, material 2 2

 0.7xA1 � 0.3xA2 � 0.3xA3 � 0.3xA4 � 0   1grade A, material 1 2

■ TABLE 3.18 Optimal solution for the Save-It Co. problem

Pounds Used per Week

Material
Number of Pounds 

Grade 1 2 3 4 Produced per Week

A 412.3 859.6 447.4 429.8 2149
(19.2%) (40%) (20.8%) (20%)

B 2587.7 517.5 1552.6 517.5 5175
(50%) (10%) (30%) (10%)

C 0 0 0 0 0

Total 3000 1377 2000 947
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represents the customer service agents. The provision is that each agent work an 8-hour
shift 5 days per week, and the authorized shifts are

Shift 1: 6:00 A.M. to 2:00 P.M.
Shift 2: 8:00 A.M. to 4:00 P.M.
Shift 3: Noon to 8:00 P.M.
Shift 4: 4:00 P.M. to midnight
Shift 5: 10:00 P.M. to 6:00 A.M.

Checkmarks in the main body of Table 3.19 show the hours covered by the respective
shifts. Because some shifts are less desirable than others, the wages specified in the con-
tract differ by shift. For each shift, the daily compensation (including benefits) for each
agent is shown in the bottom row. The problem is to determine how many agents should be

Cost control is essential for survival in the airline industry.
Therefore, upper management of United Airlines initiated
an operations research study to improve the utilization of
personnel at the airline’s reservations offices and airports
by matching work schedules to customer needs more
closely. The number of employees needed at each location
to provide the required level of service varies greatly dur-
ing the 24-hour day and might fluctuate considerably from
one half-hour to the next.

Trying to design the work schedules for all the empl-
oyees at a given location to meet these service require-
ments most efficiently is a nightmare of combinatorial
considerations. Once an employee arrives, he or she will
be there continuously for the entire shift (2 to 10 hours,
depending on the employee), except for either a meal
break or short rest breaks every two hours. Given the
minimum number of employees needed on duty for each
half-hour interval over a 24-hour day (this minimum

changes from day to day over a seven-day week), how
many employees of each shift length should begin work
at what start time over each 24-hour day of a seven-day
week? Fortunately, linear programming thrives on such
combinatorial nightmares. The linear programming
model for some of the locations scheduled involves over
20,000 decisions!

This application of linear programming was credited
with saving United Airlines more than $6 million annually
in just direct salary and benefit costs. Other benefits
included improved customer service and reduced work-
loads for support staff.

Source: T. J. Holloran and J. E. Bryne, “United Airlines Station
Manpower Planning System,” Interfaces, 16(1): 39–50,
Jan.–Feb. 1986. (A link to this article is provided on our web-
site, www.mhhe.com/hillier.)

An Application Vignette

■ TABLE 3.19 Data for the Union Airways personnel scheduling problem

Time Periods Covered

Shift
Minimum Number of 

Time Period 1 2 3 4 5 Agents Needed

6:00 A.M. to 8:00 A.M. ✔ 48
8:00 A.M. to 10:00 A.M. ✔ ✔ 79
10:00 A.M. to noon ✔ ✔ 65
Noon to 2:00 P.M. ✔ ✔ ✔ 87
2:00 P.M. to 4:00 P.M. ✔ ✔ 64
4:00 P.M. to 6:00 P.M. ✔ ✔ 73
6:00 P.M. to 8:00 P.M. ✔ ✔ 82
8:00 P.M. to 10:00 P.M. ✔ 43
10:00 P.M. to midnight ✔ ✔ 52
Midnight to 6:00 A.M. ✔ 15

Daily cost per agent $170 $160 $175 $180 $195
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assigned to the respective shifts each day to minimize the total personnel cost for agents,
based on this bottom row, while meeting (or surpassing) the service requirements given in
the rightmost column.

Formulation as a Linear Programming Problem. Linear programming problems
always involve finding the best mix of activity levels. The key to formulating this particular
problem is to recognize the nature of the activities.

Activities correspond to shifts, where the level of each activity is the number of
agents assigned to that shift. Thus, this problem involves finding the best mix of shift
sizes. Since the decision variables always are the levels of the activities, the five decision
variables here are

The main restrictions on the values of these decision variables are that the number of
agents working during each time period must satisfy the minimum requirement given in
the rightmost column of Table 3.19. For example, for 2:00 P.M. to 4:00 P.M., the total num-
ber of agents assigned to the shifts that cover this time period (shifts 2 and 3) must be at
least 64, so

is the functional constraint for this time period.
Because the objective is to minimize the total cost of the agents assigned to the five

shifts, the coefficients in the objective function are given by the last row of Table 3.19.
Therefore, the complete linear programming model is

subject to

(6–8 A.M.)

(8–10 A.M.)

(10 A.M. to noon)
(Noon–2 P.M.)
(2–4 P.M.)
(4–6 P.M.)
(6–8 P.M.)
(8–10 P.M.)
(10 P.M.–midnight)
(Midnight–6 A.M.)

and

With a keen eye, you might have noticed that the third constraint, x1 � x2 � 65, actu-
ally is not necessary because the second constraint, x1 � x2 � 79, ensures that x1 � x2

will be larger than 65. Thus, x1 � x2 � 65 is a redundant constraint that can be deleted.
Similarly, the sixth constraint, x3 � x4 � 73, also is a redundant constraint because the
seventh constraint is x3 � x4 � 82. (In fact, three of the nonnegativity constraints—
x1 � 0, x4 � 0, x5 � 0—also are redundant constraints because of the first, eighth, and
tenth functional constraints: x1 � 48, x4 � 43, and x5 � 15. However, no computational
advantage is gained by deleting these three nonnegativity constraints.)

xj � 0,   for j � 1, 2, 3, 4, 5.

 x5 � 15
 x4 � x5 � 52
 x4 � 43

 x3 � x4 � 82
 x3 � x4 � 73

 x2 � x3 � 64
 x1 � x2 � x3 � 87
 x1 � x2 � 65

 x1 � x2 � 79

 x1 � 48

Minimize   Z � 170x1 � 160x2 � 175x3 � 180x4 � 195x5 ,

x2 � x3 � 64

xj � number of agents assigned to shift j,   for j � 1, 2, 3, 4, 5.
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The optimal solution for this model is (x1, x2, x3, x4, x5) � (48, 31, 39, 43, 15). This
yields Z � 30,610, that is, a total daily personnel cost of $30,610.

This problem is an example where the divisibility assumption of linear programming
actually is not satisfied. The number of agents assigned to each shift needs to be an integer.
Strictly speaking, the model should have an additional constraint for each decision variable
specifying that the variable must have an integer value. Adding these constraints would
convert the linear programming model to an integer programming model (the topic of
Chap. 11).

Without these constraints, the optimal solution given above turned out to have integer
values anyway, so no harm was done by not including the constraints. (The form of the
functional constraints made this outcome a likely one.) If some of the variables had turned
out to be noninteger, the easiest approach would have been to round up to integer values.
(Rounding up is feasible for this example because all the functional constraints are in �
form with nonnegative coefficients.) Rounding up does not ensure obtaining an optimal
solution for the integer programming model, but the error introduced by rounding up such
large numbers would be negligible for most practical situations. Alternatively, integer pro-
gramming techniques described in Chap. 11 could be used to solve exactly for an optimal
solution with integer values.

The second application vignette in this section describes how United Airlines used lin-
ear programming to develop a personnel scheduling system on a vastly larger scale than
this example.

Distributing Goods through a Distribution Network

The Problem. The DISTRIBUTION UNLIMITED CO. will be producing the same new
product at two different factories, and then the product must be shipped to two warehouses,
where either factory can supply either warehouse. The distribution network available for
shipping this product is shown in Fig. 3.13, where F1 and F2 are the two factories, W1 and
W2 are the two warehouses, and DC is a distribution center. The amounts to be shipped
from F1 and F2 are shown to their left, and the amounts to be received at W1 and W2 are
shown to their right. Each arrow represents a feasible shipping lane. Thus, F1 can ship
directly to W1 and has three possible routes (F1 � DC � W2, F1 � F2 � DC � W2, and
F1 � W1 � W2) for shipping to W2. Factory F2 has just one route to W2 (F2 � DC � W2)
and one to W1 (F2 � DC � W2 � W1). The cost per unit shipped through each shipping
lane is shown next to the arrow. Also shown next to F1 � F2 and DC � W2 are the maxi-
mum amounts that can be shipped through these lanes. The other lanes have sufficient ship-
ping capacity to handle everything these factories can send.

The decision to be made concerns how much to ship through each shipping lane. The
objective is to minimize the total shipping cost.

Formulation as a Linear Programming Problem. With seven shipping lanes, we
need seven decision variables (xF1-F2, xF1-DC, xF1-W1, xF2-DC, xDC-W2, xW1-W2, xW2-W1) to
represent the amounts shipped through the respective lanes.

There are several restrictions on the values of these variables. In addition to the
usual nonnegativity constraints, there are two upper-bound constraints, xF1-F2 ≤ 10 and
xDC-W2 ≤ 80, imposed by the limited shipping capacities for the two lanes, F1 � F2 and
DC � W2. All the other restrictions arise from five net flow constraints, one for each of
the five locations. These constraints have the following form.

Net flow constraint for each location:

Amount shipped out � amount shipped in � required amount.
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As indicated in Fig. 3.13, these required amounts are 50 for F1, 40 for F2, �30 for W1,
and �60 for W2.

What is the required amount for DC? All the units produced at the factories are ulti-
mately needed at the warehouses, so any units shipped from the factories to the distribution
center should be forwarded to the warehouses. Therefore, the total amount shipped from
the distribution center to the warehouses should equal the total amount shipped from the
factories to the distribution center. In other words, the difference of these two shipping
amounts (the required amount for the net flow constraint) should be zero.

Since the objective is to minimize the total shipping cost, the coefficients for the
objective function come directly from the unit shipping costs given in Fig. 3.13. Therefore,
by using money units of hundreds of dollars in this objective function, the complete linear
programming model is

subject to the following constraints:

1. Net flow constraints:

 � xDC-W2 � xW1-W2 � xW2-W1 � �60 1warehouse 2 2
 � xF1-W1 � xW1-W2 � xW2-W1 � �30 1warehouse 1 2

center 2
 � xF1-DC � xF2-DC � xDC-W2 � 0 1distribution

 �xF1-F2 � xF2-DC � 40 1factory 2 2
 xF1-F2 � xF1-DC � xF1-W1 � 50 1factory 1 2

� 3xW1-W2 � 2xW2-W1 ,

Minimize   Z � 2xF1-F2 � 4xF1-DC � 9xF1-W1 � 3xF2-DC � xDC-W2

F1

F2

DC

W1

W2

50 units
produced

$900/unit 30 units
needed

$400/unit

$200/unit

40 units
produced

$100/unit

80 units max.

$200/unit $300/unit

$3
00

/un
it

60 units
needed

10 units max.

■ FIGURE 3.13
The distribution network for
Distribution Unlimited Co.
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2. Upper-bound constraints:

3. Nonnegativity constraints:

You will see this problem again in Sec. 9.6, where we focus on linear programming
problems of this type (called the minimum cost flow problem). In Sec. 9.7, we will solve for
its optimal solution:

The resulting total shipping cost is $49,000.

xW1-W2 � 0,  xW2-W1 � 20.

xF1-F2 � 0,  xF1-DC � 40,  xF1-W1 � 10,  xF2-DC � 40,  xDC-W2 � 80,

xW1-W2 � 0,   xW2-W1 � 0.

xF1-F2 � 0,   xF1-DC � 0,   xF1-W1 � 0,   xF2-DC � 0,   xDC-W2 � 0,

xF1-F2 � 10,   xDC-W2 � 80

■ 3.5 FORMULATING AND SOLVING LINEAR PROGRAMMING 
MODELS ON A SPREADSHEET

Spreadsheet software, such as Excel, is a popular tool for analyzing and solving small lin-
ear programming problems. The main features of a linear programming model, including
all its parameters, can be easily entered onto a spreadsheet. However, spreadsheet software
can do much more than just display data. If we include some additional information, the
spreadsheet can be used to quickly analyze potential solutions. For example, a potential
solution can be checked to see if it is feasible and what Z value (profit or cost) it achieves.
Much of the power of the spreadsheet lies in its ability to immediately reveal the results of
any changes made in the solution.

In addition, the Excel Solver can quickly apply the simplex method to find an optimal
solution for the model. We will describe how this is done in the latter part of this section.

To illustrate this process of formulating and solving linear programming models on a
spreadsheet, we now return to the Wyndor example introduced in Sec. 3.1.

Formulating the Model on a Spreadsheet

Figure 3.14 displays the Wyndor problem by transferring the data from Table 3.1 onto a
spreadsheet. (Columns E and F are being reserved for later entries described below.) We
will refer to the cells showing the data as data cells. These cells are lightly shaded to dis-
tinguish them from other cells in the spreadsheet.8

You will see later that the spreadsheet is made easier to interpret by using range
names. A range name is a descriptive name given to a block of cells that immediately
identifies what is there. Thus, the data cells in the Wyndor problem are given the range
names UnitProfit (C4:D4), HoursUsedPerBatchProduced (C7:D9), and HoursAvailable
(G7:G9). Note that no spaces are allowed in a range name so each new word begins with a
capital letter. Although optional, the range of cells being given each range name can be
specified in parentheses following the name. (For example, the range C7:D9 is Excel
shorthand for the range from C7 to D9; that is, the entire block of cells in column C or D
and in row 7, 8, or 9.) To enter a range name, first select the range of cells, then choose

8Borders and cell shading can be added either by using the borders button and the fill color button on the format-
ting toolbar or by choosing Cells from the Format menu and then selecting the Borders tab and/or the Patterns tab.
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Name\Define from the Insert menu and type a range name (or click in the name box on the
left of the formula bar above the spreadsheet and type a name).

Three questions need to be answered to begin the process of using the spreadsheet to
formulate a linear programming model for the problem.

1. What are the decisions to be made? For this problem, the necessary decisions are the
production rates (number of batches produced per week) for the two new products.

2. What are the constraints on these decisions? The constraints here are that the number of
hours of production time used per week by the two products in the respective plants
cannot exceed the number of hours available.

3. What is the overall measure of performance for these decisions? Wyndor’s overall mea-
sure of performance is the total profit per week from the two products, so the objective
is to maximize this quantity.

Figure 3.15 shows how these answers can be incorporated into the spreadsheet. Based
on the first answer, the production rates of the two products are placed in cells C12 and

Welch’s, Inc., is the world’s largest processor of Con-
cord and Niagara grapes, with annual sales surpassing
$550 million per year. Such products as Welch’s grape
jelly and Welch’s grape juice have been enjoyed by gen-
erations of American consumers.

Every September, growers begin delivering grapes to
processing plants that then press the raw grapes into juice.
Time must pass before the grape juice is ready for conver-
sion into finished jams, jellies, juices, and concentrates.

Deciding how to use the grape crop is a complex task
given changing demand and uncertain crop quality and
quantity. Typical decisions include what recipes to use
for major product groups, the transfer of grape juice
between plants, and the mode of transportation for these
transfers.

Because Welch’s lacked a formal system for opti-
mizing raw material movement and the recipes used for
production, an OR team developed a preliminary linear
programming model. This was a large model with 8,000
decision variables that focused on the component level of
detail. Small-scale testing proved that the model worked.

To make the model more useful, the team then
revised it by aggregating demand by product group rather
than by component. This reduced its size to 324 decision
variables and 361 functional constraints. The model then
was incorporated into a spreadsheet.

The company has run the continually updated version
of this spreadsheet model each month since 1994 to provide
senior management with information on the optimal logis-
tics plan generated by the Solver. The savings from using
and optimizing this model were approximately $150,000 in
the first year alone. A major advantage of incorporating the
linear programming model into a spreadsheet has been the
ease of explaining the model to managers with differ-
ing levels of mathematical understanding. This has led
to a widespread appreciation of the operations research
approach for both this application and others.

Source: E. W. Schuster and S. J. Allen, “Raw Material Manage-
ment at Welch’s, Inc.,” Interfaces, 28(5): 13–24, Sept.–Oct.
1998. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette

1

2

3

4

5

6

7

8

9

A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $3,000 $5,000

Hours
Available

Plant 1 1 0 4
Plant 2 0 2 12
Plant 3 3 2 18

Hours Used Per Batch Produced

■ FIGURE 3.14
The initial spreadsheet for the
Wyndor problem after
transferring the data from
Table 3.1 into data cells.
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D12 to locate them in the columns for these products just under the data cells. Since we
don’t know yet what these production rates should be, they are just entered as zeroes at this
point. (Actually, any trial solution can be entered, although negative production rates
should be excluded since they are impossible.) Later, these numbers will be changed while
seeking the best mix of production rates. Therefore, these cells containing the decisions to
be made are called changing cells (or adjustable cells). To highlight the changing cells,
they are shaded and have a border. (In the spreadsheet files contained in OR Courseware,
the changing cells appear in bright yellow on a color monitor.) The changing cells are
given the range name BatchesProduced (C12:D12).

Using the answer to question 2, the total number of hours of production time used per
week by the two products in the respective plants is entered in cells E7, E8, and E9, just to
the right of the corresponding data cells. The Excel equations for these three cells are

where each asterisk denotes multiplication. Since each of these cells provides output that
depends on the changing cells (C12 and D12), they are called output cells.

Notice that each of the equations for the output cells involves the sum of two products.
There is a function in Excel called SUMPRODUCT that will sum up the product of each of
the individual terms in two different ranges of cells when the two ranges have the same
number of rows and the same number of columns. Each product being summed is the
product of a term in the first range and the term in the corresponding location in the second
range. For example, consider the two ranges, C7:D7 and C12:D12, so that each range has
one row and two columns. In this case, SUMPRODUCT (C7:D7, C12:D12) takes each of
the individual terms in the range C7:D7, multiplies them by the corresponding term in the
range C12:D12, and then sums up these individual products, as shown in the first equation
above. Using the range name BatchesProduced (C12:D12), the formula becomes
SUMPRODUCT (C7:D7, BatchesProduced). Although optional with such short equations,
this function is especially handy as a shortcut for entering longer equations.

Next, ≤ signs are entered in cells F7, F8, and F9 to indicate that each total value to
their left cannot be allowed to exceed the corresponding number in column G. The spread-
sheet still will allow you to enter trial solutions that violate the ≤ signs. However, these ≤
signs serve as a reminder that such trial solutions need to be rejected if no changes are
made in the numbers in column G.

 E9 � C9*C12 � D9*D12

 E8 � C8*C12 � D8*D12

 E7 � C7*C12 � D7*D12

1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $3,000 $5,000

Hours Hours
Used Available

Plant 1 1 0 0 4
Plant 2 0 2 0 12
Plant 3 3 2 0 18

Doors Windows Total Profit
Batches Produced 0 0 $0

Hours Used Per Batch Produced
<=
<=
<=

■ FIGURE 3.15
The complete spreadsheet
for the Wyndor problem with
an initial trial solution (both
production rates equal to
zero) entered into the
changing cells (C12 and
D12).
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Finally, since the answer to the third question is that the overall measure of perfor-
mance is the total profit from the two products, this profit (per week) is entered in cell G12.
Much like the numbers in column E, it is the sum of products,

Utilizing range names of TotalProfit (G12), ProfitPerBatch (C4:D4), and BatchesProduced
(C12:D12), this equation becomes

This is a good example of the benefit of using range names for making the resulting equa-
tion easier to interpret. Rather than needing to refer to the spreadsheet to see what is in
cells G12, C4:D4, and C12:D12, the range names immediately reveal what the equation is
doing.

TotalProfit (G12) is a special kind of output cell. It is the particular cell that is being
targeted to be made as large as possible when making decisions regarding production rates.
Therefore, TotalProfit (G12) is referred to as the target cell (or objective cell). The target
cell is shaded darker than the changing cells and is further distinguished by having a heavy
border. (In the spreadsheet files contained in OR Courseware, this cell appears in orange
on a color monitor.)

The bottom of Fig. 3.16 summarizes all the formulas that need to be entered in the
Hours Used column and in the Total Profit cell. Also shown is a summary of the range
names (in alphabetical order) and the corresponding cell addresses.

This completes the formulation of the spreadsheet model for the Wyndor problem.
With this formulation, it becomes easy to analyze any trial solution for the production

rates. Each time production rates are entered in cells C12 and D12, Excel immediately

TotalProfit � SUMPRODUCT 1ProfitPerBatch, BatchesProduced 2

G12 � SUMPRODUCT 1C4:D4, C12:D12 2

1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $3,000 $5,000

Hours Hours
Used Available

Plant 1 1 0 0 <= 4
Plant 2 0 2 0 <= 12
Plant 3 3 2 0 <= 18

Doors Windows Total Profit
Batches Produced 0 0 $0

Hours Used Per Batch Produced

 
Range Name Cells
BatchesProduced C12:D12
HoursAvailable G7:G9
HoursUsed E7:E9
HoursUsedPerBatchProduced C7:D9
ProfitPerBatch C4:D4
TotalProfit G12  

5
6
7
8
9

E
Hours
Used

=SUMPRODUCT(C7:D7,BatchesProduced)
=SUMPRODUCT(C8:D8,BatchesProduced)
=SUMPRODUCT(C9:D9,BatchesProduced)  

11
12

G
Total Profit

=SUMPRODUCT(ProfitPerBatch,BatchesProduced)

■ FIGURE 3.16
The spreadsheet model 
for the Wyndor problem,
including the formulas for 
the target cell TotalProfit
(G12) and the other output
cells in column E, where the
objective is to maximize the
target cell.
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calculates the output cells for hours used and total profit. However, it is not necessary to
use trial and error. We shall describe next how the Excel Solver can be used to quickly find
the optimal solution.

Using the Excel Solver to Solve the Model

Excel includes a tool called Solver that uses the simplex method to find an optimal solu-
tion. (A more powerful version of Solver, called Premium Solver for Education, also is
available in your OR Courseware.)

To access Solver the first time, you need to install it by going to Excel’s Add-in menu
and adding Solver, after which you will find it on the Data tab (for Excel 2007) or in the
Tools menu (for earlier versions of Excel).

To get started, an arbitrary trial solution has been entered in Fig. 3.16 by placing
zeroes in the changing cells. The Solver will then change these to the optimal values after
solving the problem.

This procedure is started by choosing Solver. The Solver dialogue box is shown in
Fig. 3.17.

Before the Solver can start its work, it needs to know exactly where each component
of the model is located on the spreadsheet. The Solver dialogue box is used to enter this
information. You have the choice of typing the range names, typing in the cell addresses, or
clicking on the cells in the spreadsheet.9 Figure 3.17 shows the result of using the first
choice, so TotalProfit (rather than G12) has been entered for the target cell and Batches-
Produced (rather than the range C12:D12) has been entered for the changing cells. Since
the goal is to maximize the target cell, Max also has been selected.

Next, the cells containing the functional constraints need to be specified. This is done
by clicking on the Add button on the Solver dialogue box. This brings up the Add Con-
straint dialogue box shown in Fig. 3.18. The ≤ signs in cells F7, F8, and F9 of Fig. 3.16
are a reminder that the cells in HoursUsed (E7:E9) all need to be less than or equal to the

■ FIGURE 3.17
This Solver dialogue box
specifies which cells in
Fig. 3.16 are the target cell
and the changing cells. It also
indicates that the target cell 
is to be maximized.

9If you select cells by clicking on them, they will first appear in the dialogue box with their cell addresses and
with dollar signs (e.g., $C$9:$D$9). You can ignore the dollar signs. Solver will eventually replace both the cell
addresses and the dollar signs with the corresponding range name (if a range name has been defined for the given
cell addresses), but only after either adding a constraint or closing and reopening the Solver dialogue box.
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corresponding cells in HoursAvailable (G7:G9). These constraints are specified for the
Solver by entering HoursUsed (or E7:E9) on the left-hand side of the Add Constraint dia-
logue box and HoursAvailable (or G7:G9) on the right-hand side. For the sign between
these two sides, there is a menu to choose between <� (less than or equal), �, or
>� (greater than or equal), so <� has been chosen. This choice is needed even
though ≤ signs were previously entered in column F of the spreadsheet because the Solver
only uses the functional constraints that are specified with the Add Constraint dialogue box.

If there were more functional constraints to add, you would click on Add to bring up a
new Add Constraint dialogue box. However, since there are no more in this example, the
next step is to click on OK to go back to the Solver dialogue box.

The Solver dialogue box now summarizes the complete model (see Fig. 3.19) in terms
of the spreadsheet in Fig. 3.16. However, before asking Solver to solve the model, one more
step should be taken. Clicking on the Options button brings up the dialogue box shown in
Fig. 3.20. This box allows you to specify a number of options about how the problem will
be solved. The most important of these are the Assume Linear Model option and the
Assume Non-Negative option. Be sure that both options are checked as shown in the figure.
This tells Solver that the problem is a linear programming problem and that nonnegativity
constraints are needed for the changing cells to reject negative production rates. Regarding
the other options, accepting the default values shown in the figure usually is fine for small
problems. Clicking on the OK button then returns you to the Solver dialogue box.

■ FIGURE 3.18
The Add Constraint dialogue
box after entering the set of
constraints, HoursUsed
(E7:E9) ≤ HoursAvailable
(G7:G9), which specifies that
cells E7, E8, and E9 in
Fig. 3.16 are required to be
less than or equal to cells G7,
G8, and G9, respectively.

■ FIGURE 3.19
The Solver dialogue box after
specifying the entire model in
terms of the spreadsheet.
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Now you are ready to click on Solve in the Solver dialogue box, which will start the
process of solving the problem in the background. After a few seconds (for a small prob-
lem), Solver will then indicate the outcome. Typically, it will indicate that it has found an
optimal solution, as specified in the Solver Results dialogue box shown in Fig. 3.21. If the
model has no feasible solutions or no optimal solution, the dialogue box will indicate that
instead by stating that “Solver could not find a feasible solution” or that “The Set Cell
values do not converge.” The dialogue box also presents the option of generating various
reports. One of these (the Sensitivity Report) will be discussed later in Secs. 4.7 and 6.8.

■ FIGURE 3.20
The Solver Options dialogue
box after checking the
Assume Linear Model and
Assume Non-Negative
options to indicate that we
wish to solve a linear
programming model that has
nonnegativity constraints.

■ FIGURE 3.21
The Solver Results dialogue
box that indicates that an
optimal solution has been
found.
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After solving the model, the Solver replaces the original numbers in the changing cells
with the optimal numbers, as shown in Fig. 3.22. Thus, the optimal solution is to produce
two batches of doors per week and six batches of windows per week, just as was found by
the graphical method in Sec. 3.1. The spreadsheet also indicates the corresponding number
in the target cell (a total profit of $36,000 per week), as well as the numbers in the output
cells HoursUsed (E7:E9).

At this point, you might want to check what would happen to the optimal solution if
any of the numbers in the data cells were changed to other possible values. This is easy to
do because Solver saves all the addresses for the target cell, changing cells, constraints,
and so on when you save the file. All you need to do is make the changes you want in the
data cells and then click on Solve in the Solver dialogue box again. (Sections 4.7 and 6.8
will focus on this kind of sensitivity analysis, including how to use the Solver’s Sensitivity
Report to expedite this type of what-if analysis.)

To assist you with experimenting with these kinds of changes, your OR Courseware
includes Excel files for this chapter (as for others) that provide a complete formulation and
solution of the examples here (the Wyndor problem and the ones in Sec. 3.4) in a spread-
sheet format. We encourage you to “play” with these examples to see what happens with
different data, different solutions, and so forth. You might also find these spreadsheets use-
ful as templates for solving homework problems.

In addition, we suggest that you use this chapter’s Excel files to take a careful look at
the spreadsheet formulations for some of the examples in Sec. 3.4. This will demonstrate

5
6
7
8
9

E
Hours
Used

=SUMPRODUCT(C7:D7,BatchesProduced)
=SUMPRODUCT(C8:D8,BatchesProduced)
=SUMPRODUCT(C9:D9,BatchesProduced)

11
12

G
Total Profit

=SUMPRODUCT(ProfitPerBatch,BatchesProduced)

Range Name Cells
BatchesProduced C12:D12
HoursAvailable G7:G9
HoursUsed E7:E9
HoursUsedPerBatchProduced C7:D9
ProfitPerBatch C4:D4
TotalProfit G12

1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $3,000 $5,000

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12
Plant 3 3 2 18 <= 18

Doors Windows Total Profit
Batches Produced 2 6 $36,000

Hours Used Per Batch Produced

■ FIGURE 3.22
The spreadsheet obtained
after solving the Wyndor
problem.
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how to formulate linear programming models in a spreadsheet that are larger and more
complicated than for the Wyndor problem.

You will see other examples of how to formulate and solve various kinds of OR mod-
els in a spreadsheet in later chapters. The supplementary chapters on the book’s website
also include a complete chapter (Chap. 21) that is devoted to the art of modeling in spread-
sheets. That chapter describes in detail both the general process and the basic guidelines
for building a spreadsheet model. It also presents some techniques for debugging such
models.

■ 3.6 FORMULATING VERY LARGE LINEAR PROGRAMMING MODELS

Linear programming models come in many different sizes. For the examples in Secs. 3.1
and 3.4, the model sizes range from three functional constraints and two decision vari-
ables (for the Wyndor and radiation therapy problems) up to 17 functional constraints and
12 decision variables (for the Save-It Company problem). The latter case may seem like a
rather large model. After all, it does take a substantial amount of time just to write down
a model of this size. However, by contrast, the models for the application vignettes pre-
sented in this chapter are much, much larger. For example, the model for the United Air-
lines application in Sec. 3.4 often has over 20,000 decision variables.

Such model sizes are not at all unusual. Linear programming models in practice com-
monly have many hundreds or thousands of functional constraints. In fact, they occasion-
ally will have even millions of functional constraints. The number of decision variables
frequently is even larger than the number of functional constraints, and occasionally will
range well into the millions.

Formulating such monstrously large models can be a daunting task. Even a “medium-
sized” model with a thousand functional constraints and a thousand decision variables has
over a million parameters (including the million coefficients in these constraints). It simply
is not practical to write out the algebraic formulation, or even to fill in the parameters on a
spreadsheet, for such a model.

So how are these very large models formulated in practice? It requires the use of a
modeling language.

Modeling Languages

A mathematical modeling language is software that has been specifically designed for effi-
ciently formulating large mathematical models, including linear programming models.
Even with millions of functional constraints, they typically are of a relatively few types.
Similarly, the decision variables will fall into a small number of categories. Therefore,
using large blocks of data in databases, a modeling language will use a single expression to
simultaneously formulate all the constraints of the same type in terms of the variables of
each type. We will illustrate this process soon.

In addition to efficiently formulating large models, a modeling language will expedite
a number of model management tasks, including accessing data, transforming data into
model parameters, modifying the model whenever desired, and analyzing solutions from
the model. It also may produce summary reports in the vernacular of the decision makers,
as well as document the model’s contents.

Several excellent modeling languages have been developed over the last couple of
decades. These include AMPL, MPL, OPL, GAMS, and LINGO.

The student version of one of these, MPL (short for Mathematical Programming Lan-
guage), is provided for you on the book’s website along with extensive tutorial material. As
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subsequent versions are released in future years, the latest student version also can be
downloaded from the website, maximalsoftware.com. MPL is a product of Maximal Soft-
ware, Inc. One feature is extensive support for Excel in MPL. This includes both importing
and exporting Excel ranges from MPL. Full support also is provided for the Excel VBA
macro language through OptiMax 2000. (The student version of OptiMax 2000 is on the
book’s website as well.) This product allows the user to fully integrate MPL models into
Excel and solve with any of the powerful solvers that MPL supports, including CPLEX
(described in Sec. 4.8).

LINGO is a product of LINDO Systems, Inc., which also markets a spreadsheet-add-
in optimizer called What’sBest! that is designed for large industrial problems, as well as a
callable subroutine library called the LINDO API. The LINGO software includes as a sub-
set the LINDO interface that has been a popular introduction to linear programming for
many people. The student version of LINGO with the LINDO interface is part of the soft-
ware included on the book’s website. All of the LINDO Systems products can also be
downloaded from www.lindo.com. Like MPL, LINGO is a powerful general-purpose
modeling language. A notable feature of LINGO is its great flexibility for dealing with a
wide variety of OR problems in addition to linear programming. For example, when deal-
ing with highly nonlinear models, it contains a global optimizer that will find a globally
optimal solution. (More about this in Sec. 12.10.) New to the current edition of this book,
the latest LINGO also has a built-in compatible programming language so that you can do
things like solve several different optimization problems as part of one run, which is par-
ticularly useful when doing parametric analysis.

The book’s website includes MPL, LINGO and LINDO formulations for essentially
every example in this book to which these modeling languages and optimizers can be applied.

Now let us look at a simplified example that illustrates how a very large linear pro-
gramming model can arise.

An Example of a Problem with a Huge Model

Management of the WORLDWIDE CORPORATION needs to address a product-mix
problem, but one that is vastly more complex than the Wyndor product-mix problem intro-
duced in Sec. 3.1. This corporation has 10 plants in various parts of the world. Each of
these plants produces the same 10 products and then sells them within its region. The
demand (sales potential) for each of these products from each plant is known for each of
the next 10 months. Although the amount of a product sold by a plant in a given month
cannot exceed the demand, the amount produced can be larger, where the excess amount
would be stored in inventory (at some unit cost per month) for sale in a later month. Each
unit of each product takes the same amount of space in inventory, and each plant has some
upper limit on the total number of units that can be stored (the inventory capacity).

Each plant has the same 10 production processes (we’ll refer to them as machines),
each of which can be used to produce any of the 10 products. Both the production cost per
unit of a product and the production rate of the product (number of units produced per day
devoted to that product) depend on the combination of plant and machine involved (but not
the month). The number of working days (production days available) varies somewhat
from month to month.

Since some plants and machines can produce a particular product either less expen-
sively or at a faster rate than other plants and machines, it is sometimes worthwhile to ship
some units of the product from one plant to another for sale by the latter plant. For each
combination of a plant being shipped from (the fromplant) and a plant being shipped to
(the toplant), there is a certain cost per unit shipped of any product, where this unit ship-
ping cost is the same for all the products.
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Management now needs to determine how much of each product should be pro-
duced by each machine in each plant during each month, as well as how much each plant
should sell of each product in each month and how much each plant should ship of each
product in each month to each of the other plants. Considering the worldwide price for
each product, the objective is to find the feasible plan that maximizes the total profit
(total sales revenue minus the sum of the total production costs, inventory costs, and
shipping costs).

We should note again that this is a simplified example in a number of ways. We have
assumed that the number of plants, machines, products, and months are exactly the same
(10). In most real situations, the number of products probably will be far larger and the
planning horizon is likely to be considerably longer than 10 months, whereas the number
of “machines” (types of production processes) may be less than 10. We also have assumed
that every plant has all the same types of machines (production processes) and every
machine type can produce every product. In reality, the plants may have some differences
in terms of their machine types and the products they are capable of producing. The net
result is that the corresponding model for some corporations may be smaller than the one
for this example, but the model for other corporations may be considerably larger (perhaps
even vastly larger) than this one.

The Structure of the Resulting Model

Because of the inventory costs and the limited inventory capacities, it is necessary to keep
track of the amount of each product kept in inventory in each plant during each month.
Consequently, the linear programming model has four types of decision variables: produc-
tion quantities, inventory quantities, sales quantities, and shipping quantities. With 10
plants, 10 machines, 10 products, and 10 months, this gives a total of 21,000 decision vari-
ables, as outlined below.

Decision Variables.

10,000 production variables: one for each combination of a plant, machine, product, and
month 

1,000 inventory variables: one for each combination of a plant, product, and month
1,000 sales variables: one for each combination of a plant, product, and month 
9,000 shipping variables: one for each combination of a product, month, plant (the fromplant),

and another plant (the toplant)

Multiplying each of these decision variables by the corresponding unit cost or unit
revenue, and then summing over each type, the following objective function can be
calculated:

Objective Function.

where

When maximizing this objective function, the 21,000 decision variables need to sat-
isfy nonnegativity constraints as well as four types of functional constraints—production
capacity constraints, plant balance constraints (equality constraints that provide appropri-
ate values to the inventory variables), maximum inventory constraints, and maximum sales
constraints. As enumerated below, there are a total of 3,100 functional constraints, but all
the constraints of each type follow the same pattern.

Total cost � total production cost � total inventory cost � total shipping cost.

Maximize     profit � total sales revenue � total cost,
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Functional Constraints.

1,000 production capacity constraints (one for each combination of a plant, machine, and
month):

where the left-hand side is the sum of 10 fractions, one for each product, where each
fraction is that product’s production quantity (a decision variable) divided by the prod-
uct’s production rate (a given constant).

1,000 plant balance constraints (one for each combination of a plant, product, and month):

where the amount produced is the sum of the decision variables representing the pro-
duction quantities at the machines, the amount shipped in is the sum of the decision
variables representing the shipping quantities in from the other plants, and the amount
shipped out is the sum of the decision variables representing the shipping quantities
out to the other plants.

100 maximum inventory constraints (one for each combination of a plant and month):

where the left-hand side is the sum of the decision variables representing the inventory
quantities for the individual products.

1,000 maximum sales constraints (one for each combination of a plant, product, and
month):

Now let us see how the MPL Modeling Language can formulate this huge model very
compactly.

Formulation of the Model in MPL

The modeler begins by assigning a title to the model and listing an index for each of the
entities of the problem, as illustrated below.

TITLE
Production_Planning;

INDEX
product :� (A1, A2, A3, A4, A5, A6, A7, A8, A9, A10);
month :� (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct);
plant :� (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10);
fromplant :� plant;
toplant :� plant;
machine :� (m1, m2, m3, m4, m5, m6, m7, m8, m9, m10);

Except for the months, the entries on the right-hand side are arbitrary labels for the respec-
tive products, plants, and machines, where these same labels are used in the data files. Note
that a colon is placed after the name of each entry and a semicolon is placed at the end of
each statement (but a statement is allowed to extend over more than one line).

A big job with any large model is collecting and organizing the various types of data
into data files. A data file can be in either dense format or sparse format. In dense format,

Sales � demand.

Total inventory � inventory capacity,

inventory � amount shipped out,

Amount produced � inventory last month � amount shipped in � sales � current

Production days used � production days available,
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the file will contain an entry for every combination of all possible values of the respective
indexes. For example, suppose that the data file contains the production rates for producing
the various products with the various machines (production processes) in the various
plants. In dense format, the file will contain an entry for every combination of a plant, a
machine, and a product. However, the entry may need to be zero for most of the combina-
tions because that particular plant may not have that particular machine or, even if it does,
that particular machine may not be capable of producing that particular product in that par-
ticular plant. The percentage of the entries in dense format that are nonzero is referred to as
the density of the data set. In practice, it is common for large data sets to have a density
under 5 percent, and it frequently is under 1 percent. Data sets with such a low density are
referred to as being sparse. In such situations, it is more efficient to use a data file in sparse
format. In this format, only the nonzero values (and an identification of the index values
they refer to) are entered into the data file. Generally, data are entered in sparse format
either from a text file or from corporate databases. The ability to handle sparse data sets
efficiently is one key for successfully formulating and solving large-scale optimization
models. MPL can readily work with data in either dense format or sparse format.

In the Worldwide Corp. example, eight data files are needed to hold the product prices,
demands, production costs, production rates, production days available, inventory costs,
inventory capacities, and shipping costs. We assume that these data files are available in
sparse format. The next step is to give a brief suggestive name to each one and to identify
(inside square brackets) the index or indexes for that type of data, as shown below.

DATA
Price[product]      := SPARSEFILE(“Price.dat”);
Demand[plant,   product,   month] := SPARSEFILE(“Demand.dat”);
ProdCost[plant, machine, product] := SPARSEFILE(“Produce.dat”, 4);
ProdRate[plant, machine, product] := SPARSEFILE(“Produce.dat”, 5);
ProdDaysAvail[month]     := SPARSEFILE(“ProdDays.dat”);
InvtCost[plant, product] := SPARSEFILE(“InvtCost.dat”);
InvtCapacity[plant]      := SPARSEFILE(“InvtCap.dat”);
ShipCost[fromplant, toplant]     := SPARSEFILE (“ShipCost.dat”);

To illustrate the contents of these data files, consider the one that provides produc-
tion costs and production rates. Here is a sample of the first few entries of SPARSEFILE
produce.dat:

!
! Produce.dat - Production Cost and Rate
!
! ProdCost[plant, machine, product]:
! ProdRate[plant, machine, product]:
!

p1, m11, A1, 73.30, 500,
p1, m11, A2, 52.90, 450,
p1, m12, A3, 65.40, 550,
p1, m13, A3, 47.60, 350,

Next, the modeler gives a short name to each type of decision variable. Following the
name, inside square brackets, is the index or indexes over which the subscripts run.

VARIABLES
Produce[plant, machine, product, month] -> Prod;
Inventory[plant, product, month] -> Invt;
Sales[plant, product, month] -> Sale;
Ship[product, month, fromplant, toplant]

WHERE (fromplant 	
 toplant);
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In the case of the decision variables with names longer than four letters, the arrows on the right
point to four-letter abbreviations to fit the size limitations of many solvers. The last line indi-
cates that the fromplant subscript and toplant subscript are not allowed to have the same value.

There is one more step before writing down the model. To make the model easier to read,
it is useful first to introduce macros to represent the summations in the objective function.

MACROS
Total Revenue   := SUM(plant, product, month: Price*Sales);
TotalProdCost   := SUM(plant, machine, product, month:

ProdCost*Produce);
TotalInvtCost   := SUM(plant, product, month: 

InvtCost*Inventory);
TotalShipCost   := SUM(product, month, fromplant, toplant: 

ShipCost*Ship);
TotalCost       := TotalProdCost + TotalInvtCost + TotalShipCost;

The first four macros use the MPL keyword SUM to execute the summation involved. Fol-
lowing each SUM keyword (inside the parentheses) is, first, the index or indexes over
which the summation runs. Next (after the colon) is the vector product of a data vector (one
of the data files) times a variable vector (one of the four types of decision variables).

Now this model with 3,100 functional constraints and 21,000 decision variables can
be written down in the following compact form.

MODEL

MAX Profit = TotalRevenue – TotalCost;

SUBJECT TO
ProdCapacity[plant, machine, month] -> PCap:

SUM(product: Produce/ProdRate) <= ProdDaysAvail;
PlantBal[plant, product, month] -> PBal:

SUM(machine: Produce) + Inventory [month – 1]
+ SUM(fromplant: Ship[fromplant, toplant:= plant])

=
Sales + Inventory

+ SUM(toplant: Ship[fromplant:= plant, toplant]);

MaxInventory [plant, month] -> MaxI:
SUM(product: Inventory) <= InvtCapacity;

BOUNDS
Sales <= Demand;

END

For each of the four types of constraints, the first line gives the name for this type.
There is one constraint of this type for each combination of values for the indexes inside
the square brackets following the name. To the right of the brackets, the arrow points to a
four-letter abbreviation of the name that a solver can use. Below the first line, the general
form of constraints of this type is shown by using the SUM operator.

For each production capacity constraint, each term in the summation consists of a
decision variable (the production quantity of that product on that machine in that plant dur-
ing that month) divided by the corresponding production rate, which gives the number of
production days being used. Summing over the products then gives the total number of
production days being used on that machine in that plant during that month, so this number
must not exceed the number of production days available.

The purpose of the plant balance constraint for each plant, product, and month is to
give the correct value to the current inventory variable, given the values of all the other
decision variables including the inventory level for the preceding month. Each of the SUM
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operators in these constraints involves simply a sum of decision variables rather than a vec-
tor product. This is the case also for the SUM operator in the maximum inventory con-
straints. By contrast, the left-hand side of the maximum sales constraints is just a single
decision variable for each of the 1,000 combinations of a plant, product, and month. (Sep-
arating these upper-bound constraints on individual variables from the regular functional
constraints is advantageous because of the computational efficiencies that can be obtained
by using the upper bound technique described in Sec. 7.3.) No lower-bound constraints are
shown here because MPL automatically assumes that all 21,000 decision variables have
nonnegativity constraints unless nonzero lower bounds are specified. For each of the 3,100
functional constraints, note that the left-hand side is a linear function of the decision vari-
ables and the right-hand side is a constant taken from the appropriate data file. Since the
objective function also is a linear function of the decision variables, this model is a legiti-
mate linear programming model.

To solve the model, MPL supports various leading solvers (software packages for
solving linear programming models and related models) that can be installed into MPL. As
discussed in Sec. 4.8, CPLEX is a particularly prominent and powerful solver. The version
of MPL in your OR Courseware already has installed the student version of CPLEX, which
uses the simplex method to solve linear programming models. Therefore, to solve such a
model formulated with MPL, all you have to do is choose Solve CPLEX from the Run
menu or press the Run Solve button in the Toolbar. You then can display the solution file in
a view window by pressing the View button at the bottom of the Status Window.

This brief introduction to MPL illustrates the ease with which modelers can use mod-
eling languages to formulate huge linear programming models in a clear, concise way. To
assist you in using MPL, an MPL Tutorial is included on the book’s website. This tutorial
goes through all the details of formulating smaller versions of the production planning
example considered here. You also can see elsewhere on the book’s website how all the
other linear programming examples in this chapter and subsequent chapters would be for-
mulated with MPL and solved by CPLEX.

The LINGO Modeling Language

LINGO is another popular modeling language featured in this book. The company, LINDO
Systems, that produces LINGO first became known for the easy-to-use optimizer, LINDO,
which is a subset of the LINGO software. LINDO Systems also produces a spreadsheet
solver, What’sBest!, and a callable solver library, the LINDO API. The student version of
LINGO is provided to you on the book’s website. (The latest trial versions of all of the
above can be downloaded from www.lindo.com.) Both LINDO and What’sBest! share the
LINDO API as the solver engine. The LINDO API has solvers based on the simplex
method and interior-point/barrier solvers (such as discussed in Secs. 4.9 and 7.4), plus a
global solver for solving nonlinear models.

Like MPL, LINGO enables a modeler to efficiently formulate a huge model in a clear
compact fashion that separates the data from the model formulation. This separation means
that as changes occur in the data describing the problem that needs to be solved from day
to day (or even minute to minute), the user needs to change only the data and not be con-
cerned with the model formulation. You can develop a model on a small data set and then
when you supply the model with a large data set, the model formulation adjusts automati-
cally to the new data set.

LINGO uses sets as a fundamental concept. For example, in the Worldwide Corp. pro-
duction planning problem, the simple or “primitive” sets of interest are products, plants,
machines, and months. Each member of a set may have one or more attributes associated
with it, such as the price of a product, the inventory capacity of a plant, the production rate
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of a machine, and the number of production days available in a month. Some of these
attributes are input data, while others, such as production and shipping quantities, are deci-
sion variables for the model. One can also define derived sets that are built from combina-
tions of other sets. As with MPL, the SUM operator is commonly used to write the
objective function and constraints in a compact form.

There is a hard copy manual available for LINGO. This entire manual also is
available directly in LINGO via the Help command and can be searched in a variety of
ways.

A supplement to this chapter on the book’s website describes LINGO further and
illustrates its use on a couple of small examples. A second supplement shows how
LINGO can be used to formulate the model for the Worldwide Corp. production planning
example. A LINGO tutorial on the website provides the details needed for doing basic
modeling with this modeling language. The LINGO formulations and solutions for the
various examples in both this chapter and many other chapters also are included on the
website.

■ 3.7 CONCLUSIONS

Linear programming is a powerful technique for dealing with the problem of allocating
limited resources among competing activities as well as other problems having a similar
mathematical formulation. It has become a standard tool of great importance for numerous
business and industrial organizations. Furthermore, almost any social organization is con-
cerned with allocating resources in some context, and there is a growing recognition of the
extremely wide applicability of this technique.

However, not all problems of allocating limited resources can be formulated to fit a
linear programming model, even as a reasonable approximation. When one or more of the
assumptions of linear programming is violated seriously, it may then be possible to apply
another mathematical programming model instead, e.g., the models of integer program-
ming (Chap. 11) or nonlinear programming (Chap. 12).
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Examples for Chapter 3
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Graphical Method
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Interactive Graphical Method
Graphical Method and Sensitivity Analysis

An Excel Add-In:

Premium Solver for Education

“Ch. 3—Intro to LP” Files for Solving the Examples:

Excel Files
LINGO/LINDO File
MPL/CPLEX File

Glossary for Chapter 3

Supplements to This Chapter:

The LINGO Modeling Language
More About LINGO.

See Appendix 1 for documentation of the software.
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■ PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: You may find it helpful to use the corresponding proce-

dure in IOR Tutorial (the printout records your work).
C: Use the computer to solve the problem by applying the

simplex method. The available software options for doing
this include the Excel Solver or Premium Solver (Sec. 3.5),
MPL/CPLEX (Sec. 3.6), LINGO (Supplements 1 and 2 to
this chapter on the book’s website and Appendix 4.1), and
LINDO (Appendix 4.1), but follow any instructions given
by your instructor regarding the option to use.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

3.1-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 3.1.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that
resulted from this study.

D 3.1-2.* For each of the following constraints, draw a separate
graph to show the nonnegative solutions that satisfy this constraint.
(a) x1 � 3x2 � 6
(b) 4x1 � 3x2 � 12
(c) 4x1 � x2 � 8
(d) Now combine these constraints into a single graph to show the

feasible region for the entire set of functional constraints plus
nonnegativity constraints.

D 3.1-3. Consider the following objective function for a linear
programming model:

(a) Draw a graph that shows the corresponding objective function
lines for Z � 6, Z � 12, and Z � 18.

(b) Find the slope-intercept form of the equation for each of these
three objective function lines. Compare the slope for these three
lines. Also compare the intercept with the x2 axis.

3.1-4. Consider the following equation of a line:

(a) Find the slope-intercept form of this equation.
(b) Use this form to identify the slope and the intercept with the

x2 axis for this line.
(c) Use the information from part (b) to draw a graph of this line.

D,I 3.1-5.* Use the graphical method to solve the problem:

subject to

 x2 � 10

Maximize   Z � 2x1 � x2 ,

60x1 � 40x2 � 600

Maximize Z � 2x1 � 3x2

and

D,I 3.1-6. Use the graphical method to solve the problem:

subject to

and

3.1-7. The Whitt Window Company is a company with only three
employees which makes two different kinds of hand-crafted win-
dows: a wood-framed and an aluminum-framed window. They earn
$180 profit for each wood-framed window and $90 profit for each
aluminum-framed window. Doug makes the wood frames, and can
make 6 per day. Linda makes the aluminum frames, and can make
4 per day. Bob forms and cuts the glass, and can make 48 square
feet of glass per day. Each wood-framed window uses 6 square feet
of glass and each aluminum-framed window uses 8 square feet of
glass.

The company wishes to determine how many windows of each
type to produce per day to maximize total profit.
(a) Describe the analogy between this problem and the Wyndor

Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources.

(b) Formulate a linear programming model for this problem.
D,I (c) Use the graphical method to solve this model.
I (d) A new competitor in town has started making wood-framed

windows as well. This may force the company to lower the
price they charge and so lower the profit made for each wood-
framed window. How would the optimal solution change (if at
all) if the profit per wood-framed window decreases from $180
to $120? From $180 to $60? (You may find it helpful to use
the Graphical Analysis and Sensitivity Analysis procedure in
IOR Tutorial.)

I (e) Doug is considering lowering his working hours, which would
decrease the number of wood frames he makes per day. How
would the optimal solution change if he makes only 5 wood
frames per day? (You may find it helpful to use the Graphical
Analysis and Sensitivity Analysis procedure in IOR Tutorial.)

3.1-8. The WorldLight Company produces two light fixtures
(products 1 and 2) that require both metal frame parts and electrical

x1 � 0, x2 � 0.

  5x1 � 3x2 � 45
    x1 � x2 � 12
 �x1 � 2x2 � 15

Maximize   Z � 10x1 � 20x2 ,

x1 � 0,   x2 � 0.

 3x1 � x2 � 44
 x1 � x2 � 18

 2x1 � 5x2 � 60
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Productivity coefficient (in machine hours per unit)

Machine Type Product 1 Product 2 Product 3

Milling machine 9 3 5
Lathe 5 4 0
Grinder 3 0 2
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Work-Hours per Unit
Work-Hours 

Department Special Risk Mortgage Available

Underwriting 3 2 2400
Administration 0 1 800
Claims 2 0 1200

Available Time 
Machine Type (Machine Hours per Week)

Milling machine 500
Lathe 350
Grinder 150

components. Management wants to determine how many units of
each product to produce so as to maximize profit. For each unit of
product 1, 1 unit of frame parts and 2 units of electrical compo-
nents are required. For each unit of product 2, 3 units of frame parts
and 2 units of electrical components are required. The company has
200 units of frame parts and 300 units of electrical components.
Each unit of product 1 gives a profit of $1, and each unit of product
2, up to 60 units, gives a profit of $2. Any excess over 60 units of
product 2 brings no profit, so such an excess has been ruled out.
(a) Formulate a linear programming model for this problem.
D,I (b) Use the graphical method to solve this model. What is the

resulting total profit?

3.1-9. The Primo Insurance Company is introducing two new prod-
uct lines: special risk insurance and mortgages. The expected profit
is $5 per unit on special risk insurance and $2 per unit on mortgages.

Management wishes to establish sales quotas for the new
product lines to maximize total expected profit. The work require-
ments are as follows:

created considerable excess production capacity. Management is
considering devoting this excess capacity to one or more of three
products; call them products 1, 2, and 3. The available capacity
on the machines that might limit output is summarized in the fol-
lowing table:

(a) Formulate a linear programming model for this problem.
D,I (b) Use the graphical method to solve this model.
(c) Verify the exact value of your optimal solution from part (b)

by solving algebraically for the simultaneous solution of the
relevant two equations.

3.1-10. Weenies and Buns is a food processing plant which manu-
factures hot dogs and hot dog buns. They grind their own flour for
the hot dog buns at a maximum rate of 200 pounds per week. Each
hot dog bun requires 0.1 pound of flour. They currently have a con-
tract with Pigland, Inc., which specifies that a delivery of 800
pounds of pork product is delivered every Monday. Each hot dog
requires pound of pork product. All the other ingredients in the
hot dogs and hot dog buns are in plentiful supply. Finally, the labor
force at Weenies and Buns consists of 5 employees working full
time (40 hours per week each). Each hot dog requires 3 minutes of
labor, and each hot dog bun requires 2 minutes of labor. Each hot
dog yields a profit of $0.80, and each bun yields a profit of $0.30.

Weenies and Buns would like to know how many hot dogs
and how many hot dog buns they should produce each week so as
to achieve the highest possible profit.
(a) Formulate a linear programming model for this problem.
D,I (b) Use the graphical method to solve this model.

3.1-11.* The Omega Manufacturing Company has discontinued
the production of a certain unprofitable product line. This act

1
4

The number of machine hours required for each unit of the re-
spective products is

The sales department indicates that the sales potential for
products 1 and 2 exceeds the maximum production rate and that
the sales potential for product 3 is 20 units per week. The unit
profit would be $50, $20, and $25, respectively, on products 1, 2,
and 3. The objective is to determine how much of each product
Omega should produce to maximize profit.
(a) Formulate a linear programming model for this problem.
C (b) Use a computer to solve this model by the simplex

method.

D 3.1-12. Consider the following problem, where the value of c1

has not yet been ascertained.

subject to

and

Use graphical analysis to determine the optimal solution(s) for
(x1, x2) for the various possible values of c1(�� 	 c1 	 �).

D 3.1-13. Consider the following problem, where the value of k
has not yet been ascertained.

Maximize   Z � x1 � 2x2 ,

x1 � 0,   x2 � 0.

 x1 � 2x2 � 10
 x1 � x2 � 6

Maximize   Z � c1x1 � x2 ,
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subject to

and

The solution currently being used is x1 � 2, x2 � 3. Use graphi-
cal analysis to determine the values of k such that this solution ac-
tually is optimal.

D 3.1-14. Consider the following problem, where the values of c1

and c2 have not yet been ascertained.

subject to

and

Use graphical analysis to determine the optimal solution(s) for
(x1, x2) for the various possible values of c1 and c2. (Hint: Sepa-
rate the cases where c2 � 0, c2 
 0, and c2 	 0. For the latter two
cases, focus on the ratio of c1 to c2.)

3.2-1. The following table summarizes the key facts about two
products, A and B, and the resources, Q, R, and S, required to
produce them.

x1 � 0,   x2 � 0.

 �x1 � 2x2 � 2
 2x1  � x2 � 11

Maximize   Z � c1x1 � c2x2 ,

x1 � 0,   x2 � 0.

 kx1 � x2 � 2k � 3,  where k � 0
 x2 � 3

 �x1 � x2 � 2

Label each of the following statements as True or False, and
then justify your answer based on the graphical method. In each
case, give an example of an objective function that illustrates
your answer.
(a) If (3, 3) produces a larger value of the objective function than

(0, 2) and (6, 3), then (3, 3) must be an optimal solution.
(b) If (3, 3) is an optimal solution and multiple optimal solu-

tions exist, then either (0, 2) or (6, 3) must also be an opti-
mal solution.

(c) The point (0, 0) cannot be an optimal solution.

3.2-3.* This is your lucky day. You have just won a $10,000
prize. You are setting aside $4,000 for taxes and partying
expenses, but you have decided to invest the other $6,000. Upon
hearing this news, two different friends have offered you an
opportunity to become a partner in two different entrepreneurial
ventures, one planned by each friend. In both cases, this invest-
ment would involve expending some of your time next summer
as well as putting up cash. Becoming a full partner in the first
friend’s venture would require an investment of $5,000 and 400
hours, and your estimated profit (ignoring the value of your
time) would be $4,500. The corresponding figures for the second
friend’s venture are $4,000 and 500 hours, with an estimated
profit to you of $4,500. However, both friends are flexible and
would allow you to come in at any fraction of a full partnership
you would like. If you choose a fraction of a full partnership, all
the above figures given for a full partnership (money investment,
time investment, and your profit) would be multiplied by this
same fraction.

Because you were looking for an interesting summer job any-
way (maximum of 600 hours), you have decided to participate in
one or both friends’ ventures in whichever combination would
maximize your total estimated profit. You now need to solve the
problem of finding the best combination.
(a) Describe the analogy between this problem and the Wyndor

Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources.

(b) Formulate a linear programming model for this problem.
D,I (c) Use the graphical method to solve this model. What is your

total estimated profit?

Resource Usage 
per Unit Produced

Amount of Resource
Resource Product A Product B Available

Q 2 1 2
R 1 2 2
S 3 3 4

Profit per unit 3 2

All the assumptions of linear programming hold.
(a) Formulate a linear programming model for this problem.
D,I (b) Solve this model graphically.
(c) Verify the exact value of your optimal solution from part (b)

by solving algebraically for the simultaneous solution of the
relevant two equations.

3.2-2. The shaded area in the following graph represents the feasi-
ble region of a linear programming problem whose objective func-
tion is to be maximized.

(6, 0) x1

(0, 2)

(0, 0)

x2
(6, 3)

(3, 3)
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D,I 3.2-4. Use the graphical method to find all optimal solutions
for the following model:

subject to

and

D 3.2-5. Use the graphical method to demonstrate that the follow-
ing model has no feasible solutions.

subject to

and

D 3.2-6. Suppose that the following constraints have been pro-
vided for a linear programming model.

and

(a) Demonstrate that the feasible region is unbounded.
(b) If the objective is to maximize Z � � x1 � x2, does the model

have an optimal solution? If so, find it. If not, explain why not.
(c) Repeat part (b) when the objective is to maximize Z � x1 � x2.
(d) For objective functions where this model has no optimal solu-

tion, does this mean that there are no good solutions accord-
ing to the model? Explain. What probably went wrong when
formulating the model?

3.3-1. Reconsider Prob. 3.2-3. Indicate why each of the four
assumptions of linear programming (Sec. 3.3) appears to be reason-
ably satisfied for this problem. Is one assumption more doubtful
than the others? If so, what should be done to take this into account?

3.3-2. Consider a problem with two decision variables, x1 and x2,
which represent the levels of activities 1 and 2, respectively. For
each variable, the permissible values are 0, 1, and 2, where the fea-
sible combinations of these values for the two variables are deter-
mined from a variety of constraints. The objective is to maximize a
certain measure of performance denoted by Z. The values of Z for
the possibly feasible values of (x1, x2) are estimated to be those
given in the following table:

x1 � 0,   x2 � 0.

�2x1  � x2 � 50
  �x1  � 2x2 � 50

x1 � 0,   x2 � 0.

 �x1  � 2x2 � �1
 2x1  � x2 � �1

Maximize   Z � 5x1 � 7x2 ,

x1 � 0,   x2 � 0.

 8x1 � 12x2 � 450
 10x1 � 6x2 � 240
 15x1 � 5x2 � 300

Maximize   Z � 500x1 � 300x2 ,

Based on this information, indicate whether this problem com-
pletely satisfies each of the four assumptions of linear program-
ming. Justify your answers.

3.4-1. Read the referenced article that fully describes the OR study
summarized in the first application vignette presented in Sec. 3.4.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that
resulted from this study.

3.4-2. Read the referenced article that fully describes the OR study
summarized in the second application vignette presented in Sec. 3.4.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

3.4-3.* For each of the four assumptions of linear programming dis-
cussed in Sec. 3.3, write a one-paragraph analysis of how well you
feel it applies to each of the following examples given in Sec. 3.4:
(a) Design of radiation therapy (Mary).
(b) Regional planning (Southern Confederation of Kibbutzim).
(c) Controlling air pollution (Nori & Leets Co.).

3.4-4. For each of the four assumptions of linear programming dis-
cussed in Sec. 3.3, write a one-paragraph analysis of how well it
applies to each of the following examples given in Sec. 3.4.
(a) Reclaiming solid wastes (Save-It Co.).
(b) Personnel scheduling (Union Airways).
(c) Distributing goods through a distribution network (Distribu-

tion Unlimited Co.).

D,I 3.4-5. Use the graphical method to solve this problem:

subject to

and

D,I 3.4-6. Use the graphical method to solve this problem:

subject to

 x1 � 2x2 � 12

Minimize   Z � 3x1 � 2x2 ,

x1 � 0,   x2 � 0.

 x1 � x2 � 6
 2x1 � 3x2 � 6

 x1 � 2x2 � 10

Minimize   Z � 15x1 � 20x2 ,

x2

x1 0 1 2

0 0 4 8
1 3 8 13
2 6 12 18
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Minimum Number of Consultants 
Time of Day Required to Be on Duty

8 A.M.–noon 4
Noon–4 P.M. 8
4 P.M.–8 P.M. 10
8 P.M.–midnight 6
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and

D 3.4-7. Consider the following problem, where the value of c1

has not yet been ascertained.

subject to

and

Use graphical analysis to determine the optimal solution(s) for
(x1, x2) for the various possible values of c1.

D,I 3.4-8. Consider the following model:

subject to

and

(a) Use the graphical method to solve this model.
(b) How does the optimal solution change if the objective function

is changed to Z � 40x1 � 70x2? (You may find it helpful to
use the Graphical Analysis and Sensitivity Analysis procedure
in IOR Tutorial.)

(c) How does the optimal solution change if the third functional
constraint is changed to 2x1 � x2 � 15? (You may find it help-
ful to use the Graphical Analysis and Sensitivity Analysis pro-
cedure in IOR Tutorial.)

3.4-9. Ralph Edmund loves steaks and potatoes. Therefore, he has
decided to go on a steady diet of only these two foods (plus some
liquids and vitamin supplements) for all his meals. Ralph realizes
that this isn’t the healthiest diet, so he wants to make sure that he
eats the right quantities of the two foods to satisfy some key nutri-
tional requirements. He has obtained the nutritional and cost infor-
mation shown at the top of the next column. 

Ralph wishes to determine the number of daily servings (may
be fractional) of steak and potatoes that will meet these require-
ments at a minimum cost.
(a) Formulate a linear programming model for this problem.
D,I (b) Use the graphical method to solve this model.
C (c) Use a computer to solve this model by the simplex method.

x1 � 0,   x2 � 0.

 2x1 � x2 � 20
 x1 � x2 � 12

 2x1 � 3x2 � 30

Minimize   Z � 40x1 � 50x2 ,

x1 � 0,   x2 � 0.

 x1 � x2 � 2
 4x1 � x2 � 12

Maximize   Z � c1x1 � 2x2 ,

x1 � 0,   x2 � 0.

 2x1 � x2 � 8
 2x1 � 3x2 � 12

3.4-10. Web Mercantile sells many household products through an
online catalog. The company needs substantial warehouse space for
storing its goods. Plans now are being made for leasing warehouse
storage space over the next 5 months. Just how much space will be
required in each of these months is known. However, since these space
requirements are quite different, it may be most economical to lease
only the amount needed each month on a month-by-month basis. On
the other hand, the additional cost for leasing space for additional
months is much less than for the first month, so it may be less expen-
sive to lease the maximum amount needed for the entire 5 months.
Another option is the intermediate approach of changing the total
amount of space leased (by adding a new lease and/or having an old
lease expire) at least once but not every month.

The space requirement and the leasing costs for the various
leasing periods are as follows:

Grams of Ingredient 
per Serving

Daily Requirement
Ingredient Steak Potatoes (Grams)

Carbohydrates 5 15 � 50
Protein 20 5 � 40
Fat 15 2 � 60

Cost per serving $4 $2

Required Leasing Period Cost per Sq. Ft. 
Month Space (Sq. Ft.) (Months) Leased

1 30,000 1 $ 65
2 20,000 2 $100
3 40,000 3 $135
4 10,000 4 $160
5 50,000 5 $190

The objective is to minimize the total leasing cost for meeting the
space requirements.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-11. Larry Edison is the director of the Computer Center for
Buckly College. He now needs to schedule the staffing of the cen-
ter. It is open from 8 A.M. until midnight. Larry has monitored the
usage of the center at various times of the day, and determined that
the following number of computer consultants are required:
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Two types of computer consultants can be hired: full-time and
part-time. The full-time consultants work for 8 consecutive hours
in any of the following shifts: morning (8 A.M.–4 P.M.), afternoon
(noon–8 P.M.), and evening (4 P.M.–midnight). Full-time consultants
are paid $40 per hour.

Part-time consultants can be hired to work any of the four
shifts listed in the above table. Part-time consultants are paid
$30 per hour.

An additional requirement is that during every time period,
there must be at least 2 full-time consultants on duty for every part-
time consultant on duty.

Larry would like to determine how many full-time and how
many part-time workers should work each shift to meet the above
requirements at the minimum possible cost.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-12.* The Medequip Company produces precision medical
diagnostic equipment at two factories. Three medical centers have
placed orders for this month’s production output. The table below
shows what the cost would be for shipping each unit from each fac-
tory to each of these customers. Also shown are the number of units
that will be produced at each factory and the number of units
ordered by each customer.

Al wishes to know which investment plan maximizes the
amount of money that can be accumulated by the beginning of
year 6.
(a) All the functional constraints for this problem can be expressed

as equality constraints. To do this, let At, Bt, Ct, and Dt be the
amount invested in investment A, B, C, and D, respectively, at
the beginning of year t for each t where the investment is avail-
able and will mature by the end of year 5. Also let Rt be the
number of available dollars not invested at the beginning of
year t (and so available for investment in a later year). Thus,
the amount invested at the beginning of year t plus Rt must
equal the number of dollars available for investment at that
time. Write such an equation in terms of the relevant variables
above for the beginning of each of the 5 years to obtain the
five functional constraints for this problem.

(b) Formulate a complete linear programming model for this
problem.

C (c) Solve this model by the simplex model.

3.4-14. The Metalco Company desires to blend a new alloy of 40
percent tin, 35 percent zinc, and 25 percent lead from several avail-
able alloys having the following properties:

Unit Shipping Cost
To 

From Customer 1 Customer 2 Customer 3 Output

Factory 1 $600 $800 $700 400 units
Factory 2 $400 $900 $600 500 units

Order size 300 units 200 units 400 units

A decision now needs to be made about the shipping plan for
how many units to ship from each factory to each customer.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-13.* Al Ferris has $60,000 that he wishes to invest now in
order to use the accumulation for purchasing a retirement annuity
in 5 years. After consulting with his financial adviser, he has been
offered four types of fixed-income investments, which we will
label as investments A, B, C, D.

Investments A and B are available at the beginning of each
of the next 5 years (call them years 1 to 5). Each dollar invested
in A at the beginning of a year returns $1.40 (a profit of $0.40)
2 years later (in time for immediate reinvestment). Each dollar
invested in B at the beginning of a year returns $1.70 three years
later.

Investments C and D will each be available at one time in the
future. Each dollar invested in C at the beginning of year 2 returns
$1.90 at the end of year 5. Each dollar invested in D at the begin-
ning of year 5 returns $1.30 at the end of year 5.

Weight Space 
Capacity Capacity 

Compartment (Tons) (Cubic Feet)

Front 12 7,000
Center 18 9,000
Back 10 5,000

The objective is to determine the proportions of these alloys that
should be blended to produce the new alloy at a minimum cost.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-15* A cargo plane has three compartments for storing cargo:
front, center, and back. These compartments have capacity limits
on both weight and space, as summarized below:

Alloy

Property 1 2 3 4 5

Percentage of tin 60 25 45 20 50
Percentage of zinc 10 15 45 50 40
Percentage of lead 30 60 10 30 10

Cost ($/lb) 77 70 88 84 94

Furthermore, the weight of the cargo in the respective compart-
ments must be the same proportion of that compartment’s weight
capacity to maintain the balance of the airplane.
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The following four cargoes have been offered for shipment
on an upcoming flight as space is available:

The computer facility is to be open for operation from 8 A.M.
to 10 P.M. Monday through Friday with exactly one operator on
duty during these hours. On Saturdays and Sundays, the computer
is to be operated by other staff.

Because of a tight budget, Beryl has to minimize cost. She
wishes to determine the number of hours she should assign to each
operator on each day.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-17. Joyce and Marvin run a day care for preschoolers. They
are trying to decide what to feed the children for lunches. They
would like to keep their costs down, but also need to meet the
nutritional requirements of the children. They have already
decided to go with peanut butter and jelly sandwiches, and some
combination of graham crackers, milk, and orange juice. The
nutritional content of each food choice and its cost are given in the
table below.

Cargo Weight Volume Profit 
(Tons) (Cubic Feet/Ton) ($/Ton)

1 20 500 320
2 16 700 400
3 25 600 360
4 13 400 290

Any portion of these cargoes can be accepted. The objective is to
determine how much (if any) of each cargo should be accepted and
how to distribute each among the compartments to maximize the
total profit for the flight.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method to find one of its

multiple optimal solutions.

3.4-16. Oxbridge University maintains a powerful mainframe
computer for research use by its faculty, Ph.D. students, and
research associates. During all working hours, an operator must be
available to operate and maintain the computer, as well as to per-
form some programming services. Beryl Ingram, the director of the
computer facility, oversees the operation.

It is now the beginning of the fall semester, and Beryl is con-
fronted with the problem of assigning different working hours to
her operators. Because all the operators are currently enrolled in
the university, they are available to work only a limited number of
hours each day, as shown in the following table.

Maximum Hours of Availability

Operators Wage Rate Mon. Tue. Wed. Thurs. Fri.

K. C. $25/hour 6 0 6 0 6
D. H. $26/hour 0 6 0 6 0
H. B. $24/hour 4 8 4 0 4
S. C. $23/hour 5 5 5 0 5
K. S. $28/hour 3 0 3 8 0
N. K. $30/hour 0 0 0 6 2

There are six operators (four undergraduate students and two
graduate students). They all have different wage rates because of
differences in their experience with computers and in their pro-
gramming ability. The above table shows their wage rates, along
with the maximum number of hours that each can work each day.

Each operator is guaranteed a certain minimum number of
hours per week that will maintain an adequate knowledge of the
operation. This level is set arbitrarily at 8 hours per week for the
undergraduate students (K. C., D. H., H. B., and S. C.) and 7 hours
per week for the graduate students (K. S. and N. K.).

Calories Total Vitamin C Protein Cost
Food Item from Fat Calories (mg) (g) (¢)

Bread (1 slice) 10 70 0 3 5
Peanut butter 
(1 tbsp) 75 100 0 4 4

Strawberry jelly 
(1 tbsp) 0 50 3 0 7

Graham cracker 
(1 cracker) 20 60 0 1 8

Milk (1 cup) 70 150 2 8 15
Juice (1 cup) 0 100 120 1 35

The nutritional requirements are as follows. Each child should
receive between 400 and 600 calories. No more than 30 percent of
the total calories should come from fat. Each child should consume
at least 60 milligrams (mg) of vitamin C and 12 grams (g) of pro-
tein. Furthermore, for practical reasons, each child needs exactly
2 slices of bread (to make the sandwich), at least twice as much
peanut butter as jelly, and at least 1 cup of liquid (milk and/or
juice).

Joyce and Marvin would like to select the food choices for each
child which minimize cost while meeting the above requirements.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.5-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 3.5.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that
resulted from this study

3.5-2.* You are given the following data for a linear programming
problem where the objective is to maximize the profit from allocat-
ing three resources to two nonnegative activities.
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Which feasible guess has the best objective function value?
(d) Use the Excel Solver to solve the model by the simplex method.

3.5-4. You are given the following data for a linear programming
problem where the objective is to minimize the cost of conducting
two nonnegative activities so as to achieve three benefits that do
not fall below their minimum levels.

Resource Usage per 
Unit of Each Activity

Amount of Resource 
Resource Activity 1 Activity 2 Available

1 2 1 10
2 3 3 20
3 2 4 20

Contribution $20 $30
per unit

Contribution per unit � profit per unit of the activity.

(a) Formulate a linear programming model for this problem.
D,I (b) Use the graphical method to solve this model.
(c) Display the model on an Excel spreadsheet.
(d) Use the spreadsheet to check the following solutions:

(x1, x2) � (2, 2), (3, 3), (2, 4), (4, 2), (3, 4), (4, 3). Which of
these solutions are feasible? Which of these feasible solutions
has the best value of the objective function?

C (e) Use the Excel Solver to solve the model by the simplex
method.

3.5-3. Ed Butler is the production manager for the Bilco Corpora-
tion, which produces three types of spare parts for automobiles.
The manufacture of each part requires processing on each of two
machines, with the following processing times (in hours):

Part

Machine A B C

1 0.02 0.03 0.05
2 0.05 0.02 0.04

Each machine is available 40 hours per month. Each part manufac-
tured will yield a unit profit as follows:

Part

A B C

Profit $300 $250 $200

Ed wants to determine the mix of spare parts to produce in order
to maximize total profit.
(a) Formulate a linear programming model for this problem.
(b) Display the model on an Excel spreadsheet.
(c) Make three guesses of your own choosing for the optimal so-

lution. Use the spreadsheet to check each one for feasibility
and, if feasible, to find the value of the objective function.

Benefit Contribution per
Unit of Each Activity Minimum 

Acceptable 
Benefit Activity 1 Activity 2 Level

1 5 3 60
2 2 2 30
3 7 9 126

Unit cost $60 $50

(a) Formulate a linear programming model for this problem.
D,J (b) Use the graphical method to solve this model.

(c) Display the model on an Excel spreadsheet.
(d) Use the spreadsheet to check the following solutions:

(x1, x2) � (7, 7), (7, 8), (8, 7), (8, 8), (8, 9), (9, 8). Which of
these solutions are feasible? Which of these feasible solutions
has the best value of the objective function?

C (e) Use the Excel Solver to solve this model by the simplex
method.

3.5-5.* Fred Jonasson manages a family-owned farm. To supple-
ment several food products grown on the farm, Fred also raises
pigs for market. He now wishes to determine the quantities of the
available types of feed (corn, tankage, and alfalfa) that should be
given to each pig. Since pigs will eat any mix of these feed types,
the objective is to determine which mix will meet certain nutri-
tional requirements at a minimum cost. The number of units of each
type of basic nutritional ingredient contained within a kilogram of
each feed type is given in the following table, along with the daily
nutritional requirements and feed costs:

Kilogram Kilogram Kilogram Minimum
Nutritional of of of Daily
Ingredient Corn Tankage Alfalfa Requirement

Carbohydrates 90 20 40 200
Protein 30 80 60 180
Vitamins 10 20 60 150

Cost (¢) 84 72 60

(a) Formulate a linear programming model for this problem.
(b) Display the model on an Excel spreadsheet.
(c) Use the spreadsheet to check if (x1, x2, x3) � (1, 2, 2) is a fea-

sible solution and, if so, what the daily cost would be for this
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Maureen wishes to determine the mix of investments in these as-
sets that will cover the cash-flow requirements while minimizing
the total amount invested.
(a) Formulate a linear programming model for this problem.
(b) Display the model on a spreadsheet.
(c) Use the spreadsheet to check the possibility of purchasing

100 units of Asset 1, 100 units of Asset 2, and 200 units of
Asset 3. How much cash flow would this mix of investments
generate 5, 10, and 20 years from now? What would be the
total amount invested?

(d) Take a few minutes to use a trial-and-error approach with the
spreadsheet to develop your best guess for the optimal solu-
tion. What is the total amount invested for your solution?

C (e) Use the Excel Solver to solve the model by the simplex method.

3.6-1. The Philbrick Company has two plants on opposite sides of
the United States. Each of these plants produces the same two
products and then sells them to wholesalers within its half of the
country. The orders from wholesalers have already been received

diet. How many units of each nutritional ingredient would this
diet provide daily?

(d) Take a few minutes to use a trial-and-error approach with the
spreadsheet to develop your best guess for the optimal solu-
tion. What is the daily cost for your solution?

C (e) Use the Excel Solver to solve the model by the simplex
method.

3.5-6. Maureen Laird is the chief financial officer for the Alva
Electric Co., a major public utility in the midwest. The company
has scheduled the construction of new hydroelectric plants 5, 10,
and 20 years from now to meet the needs of the growing population
in the region served by the company. To cover at least the construc-
tion costs, Maureen needs to invest some of the company’s money
now to meet these future cash-flow needs. Maureen may purchase
only three kinds of financial assets, each of which costs $1 million
per unit. Fractional units may be purchased. The assets produce
income 5, 10, and 20 years from now, and that income is needed to
cover at least minimum cash-flow requirements in those years.
(Any excess income above the minimum requirement for each time
period will be used to increase dividend payments to shareholders
rather than saving it to help meet the minimum cash-flow require-
ment in the next time period.) The following table shows both the
amount of income generated by each unit of each asset and the
minimum amount of income needed for each of the future time
periods when a new hydroelectric plant will be constructed.

for the next 2 months (February and March), where the number of
units requested are shown below. (The company is not obligated to
completely fill these orders but will do so if it can without decreas-
ing its profits.)

Plant 1 Plant 2

Product February March February March

1 3,600 6,300 4,900 4,200
2 4,500 5,400 5,100 6,000

Each plant has 20 production days available in February and 23
production days available in March to produce and ship these prod-
ucts. Inventories are depleted at the end of January, but each plant
has enough inventory capacity to hold 1,000 units total of the two
products if an excess amount is produced in February for sale in
March. In either plant, the cost of holding inventory in this way is
$3 per unit of product 1 and $4 per unit of product 2.

Each plant has the same two production processes, each of
which can be used to produce either of the two products. The pro-
duction cost per unit produced of each product is shown below for
each process in each plant.

Plant 1 Plant 2

Product Process 1 Process 2 Process 1 Process 2

1 $62 $59 $61 $65
2 $78 $85 $89 $86

The production rate for each product (number of units produced
per day devoted to that product) also is given for each process in
each plant below.

Plant 1 Plant 2

Product Process 1 Process 2 Process 1 Process 2

1 100 140 130 110
2 120 150 160 130

The net sales revenue (selling price minus normal shipping
costs) the company receives when a plant sells the products to its
own customers (the wholesalers in its half of the country) is $83 per
unit of product 1 and $112 per unit of product 2. However, it also
is possible (and occasionally desirable) for a plant to make a ship-
ment to the other half of the country to help fill the sales of the other
plant. When this happens, an extra shipping cost of $9 per unit of
product 1 and $7 per unit of product 2 is incurred.

Income per Unit of Asset
Minimum Cash

Year Asset 1 Asset 2 Asset 3 Flow Required

5 $2 million $1 million $0.5 million $400 million
10 $0.5 million $0.5 million $1 million $100 million
20 0 $1.5 million $2 million $300 million
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Management now needs to determine how much of each prod-
uct should be produced by each production process in each plant
during each month, as well as how much each plant should sell of
each product in each month and how much each plant should ship
of each product in each month to the other plant’s customers. The
objective is to determine which feasible plan would maximize the
total profit (total net sales revenue minus the sum of the produc-
tion costs, inventory costs, and extra shipping costs).
(a) Formulate a complete linear programming model in algebraic

form that shows the individual constraints and decision vari-
ables for this problem.

C (b) Formulate this same model on an Excel spreadsheet instead.
Then use the Excel Solver to solve the model.

C (c) Use MPL to formulate this model in a compact form. Then
use the MPL solver CPLEX to solve the model.

C (d) Use LINGO to formulate this model in a compact form. Then
use the LINGO solver to solve the model.

C 3.6-2. Reconsider Prob. 3.1-11.
(a) Use MPL/CPLEX to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.6-3. Reconsider Prob. 3.4-12.
(a) Use MPL/CPLEX to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.6-4. Reconsider Prob. 3.4-16.
(a) Use MPL/CPLEX to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.6-5. Reconsider Prob. 3.5-5.
(a) Use MPL/CPLEX to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

C 3.6-6. Reconsider Prob. 3.5-6.
(a) Use MPL/CPLEX to formulate and solve the model for this

problem.
(b) Use LINGO to formulate and solve this model.

3.6-7. A large paper manufacturing company, the Quality Paper
Corporation, has 10 paper mills from which it needs to supply

1,000 customers. It uses three alternative types of machines and
four types of raw materials to make five different types of paper.
Therefore, the company needs to develop a detailed production dis-
tribution plan on a monthly basis, with an objective of minimizing
the total cost of producing and distributing the paper during the
month. Specifically, it is necessary to determine jointly the amount
of each type of paper to be made at each paper mill on each type of
machine and the amount of each type of paper to be shipped from
each paper mill to each customer.

The relevant data can be expressed symbolically as follows:

Djk � number of units of paper type k demanded by customer
j,

rklm � number of units of raw material m needed to produce
1 unit of paper type k on machine type l,

Rim � number of units of raw material m available at paper
mill i,

ckl � number of capacity units of machine type l that will
produce 1 unit of paper type k,

Cil � number of capacity units of machine type l available at
paper mill i,

Pikl � production cost for each unit of paper type k produced
on machine type l at paper mill i,

Tijk � transportation cost for each unit of paper type k shipped
from paper mill i to customer j.

(a) Using these symbols, formulate a linear programming model
for this problem by hand.

(b) How many functional constraints and decision variables does
this model have?

C (c) Use MPL to formulate this problem.
C (d) Use LINGO to formulate this problem.

3.7-1. From the bottom part of the selected references given at the
end of the chapter, select one of these award-winning applications
of linear programming. Read this article and then write a two-page
summary of the application and the benefits (including nonfinan-
cial benefits) it provided.

3.7-2. From the bottom part of the selected references given at the
end of the chapter, select three of these award-winning applications
of linear programming. For each one, read the article and then
write a one-page summary of the application and the benefits
(including nonfinancial benefits) it provided.

■ CASES

Automobile Alliance, a large automobile manufacturing
company, organizes the vehicles it manufactures into three
families: a family of trucks, a family of small cars, and a
family of midsized and luxury cars. One plant outside De-
troit, MI, assembles two models from the family of midsized

CASE 3.1 Auto Assembly
and luxury cars. The first model, the Family Thrillseeker, is
a four-door sedan with vinyl seats, plastic interior, standard
features, and excellent gas mileage. It is marketed as a smart
buy for middle-class families with tight budgets, and each
Family Thrillseeker sold generates a modest profit of $3,600
for the company. The second model, the Classy Cruiser, is a
two-door luxury sedan with leather seats, wooden interior,
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custom features, and navigational capabilities. It is mar-
keted as a privilege of affluence for upper-middle-class fam-
ilies, and each Classy Cruiser sold generates a healthy profit
of $5,400 for the company.

Rachel Rosencrantz, the manager of the assembly plant,
is currently deciding the production schedule for the next
month. Specifically, she must decide how many Family
Thrillseekers and how many Classy Cruisers to assemble in
the plant to maximize profit for the company. She knows
that the plant possesses a capacity of 48,000 labor-hours dur-
ing the month. She also knows that it takes 6 labor-hours to
assemble one Family Thrillseeker and 10.5 labor-hours to
assemble one Classy Cruiser.

Because the plant is simply an assembly plant, the parts
required to assemble the two models are not produced at the
plant. They are instead shipped from other plants around the
Michigan area to the assembly plant. For example, tires,
steering wheels, windows, seats, and doors all arrive from
various supplier plants. For the next month, Rachel knows
that she will be able to obtain only 20,000 doors (10,000
left-hand doors and 10,000 right-hand doors) from the door
supplier. A recent labor strike forced the shutdown of that
particular supplier plant for several days, and that plant will
not be able to meet its production schedule for the next
month. Both the Family Thrillseeker and the Classy Cruiser
use the same door part.

In addition, a recent company forecast of the monthly
demands for different automobile models suggests that the
demand for the Classy Cruiser is limited to 3,500 cars.
There is no limit on the demand for the Family Thrillseeker
within the capacity limits of the assembly plant.

(a) Formulate and solve a linear programming problem to deter-
mine the number of Family Thrillseekers and the number of
Classy Cruisers that should be assembled.

Before she makes her final production decisions, Rachel
plans to explore the following questions independently ex-
cept where otherwise indicated.

(b) The marketing department knows that it can pursue a targeted
$500,000 advertising campaign that will raise the demand for
the Classy Cruiser next month by 20 percent. Should the cam-
paign be undertaken?

(c) Rachel knows that she can increase next month’s plant capacity
by using overtime labor. She can increase the plant’s labor-hour
capacity by 25 percent. With the new assembly plant capacity,
how many Family Thrillseekers and how many Classy Cruisers
should be assembled?

(d) Rachel knows that overtime labor does not come without an ex-
tra cost. What is the maximum amount she should be willing to

pay for all overtime labor beyond the cost of this labor at reg-
ular time rates? Express your answer as a lump sum.

(e) Rachel explores the option of using both the targeted advertis-
ing campaign and the overtime labor-hours. The advertising
campaign raises the demand for the Classy Cruiser by 20 per-
cent, and the overtime labor increases the plant’s labor-hour ca-
pacity by 25 percent. How many Family Thrillseekers and how
many Classy Cruisers should be assembled using the advertis-
ing campaign and overtime labor-hours if the profit from each
Classy Cruiser sold continues to be 50 percent more than for
each Family Thrillseeker sold?

(f) Knowing that the advertising campaign costs $500,000 and the
maximum usage of overtime labor-hours costs $1,600,000 be-
yond regular time rates, is the solution found in part (e) a wise
decision compared to the solution found in part (a)?

(g) Automobile Alliance has determined that dealerships are actu-
ally heavily discounting the price of the Family Thrillseekers
to move them off the lot. Because of a profit-sharing agreement
with its dealers, the company is therefore not making a profit
of $3,600 on the Family Thrillseeker but is instead making a
profit of $2,800. Determine the number of Family Thrillseek-
ers and the number of Classy Cruisers that should be assem-
bled given this new discounted price.

(h) The company has discovered quality problems with the Fam-
ily Thrillseeker by randomly testing Thrillseekers at the end
of the assembly line. Inspectors have discovered that in over
60 percent of the cases, two of the four doors on a Thrillseeker
do not seal properly. Because the percentage of defective
Thrillseekers determined by the random testing is so high, the
floor supervisor has decided to perform quality control tests
on every Thrillseeker at the end of the line. Because of the
added tests, the time it takes to assemble one Family
Thrillseeker has increased from 6 to 7.5 hours. Determine the
number of units of each model that should be assembled given
the new assembly time for the Family Thrillseeker.

(i) The board of directors of Automobile Alliance wishes to cap-
ture a larger share of the luxury sedan market and therefore
would like to meet the full demand for Classy Cruisers. They
ask Rachel to determine by how much the profit of her as-
sembly plant would decrease as compared to the profit found
in part (a). They then ask her to meet the full demand for
Classy Cruisers if the decrease in profit is not more than
$2,000,000.

(j) Rachel now makes her final decision by combining all the new
considerations described in parts (f), (g), and (h). What are her
final decisions on whether to undertake the advertising cam-
paign, whether to use overtime labor, the number of Family
Thrillseekers to assemble, and the number of Classy Cruisers
to assemble?
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88 CHAPTER 3 INTRODUCTION TO LINEAR PROGRAMMING

■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 3.2 Cutting Cafeteria Costs

This case focuses on a subject that is dear to the heart of
many students. How should the manager of a college cafe-
teria choose the ingredients of a casserole dish to make it
sufficiently tasty for the students while also minimizing
costs? In this case, linear programming models with only
two decision variables can be used to address seven specific
issues being faced by the manager.

CASE 3.3 Staffing a Call Center

California Children’s Hospital currently uses a confusing,
decentralized appointment and registration process for its
patients. Therefore, the decision has been made to central-
ize the process by establishing one call center devoted ex-
clusively to appointments and registration. The hospital
manager now needs to develop a plan for how many em-
ployees of each kind (full-time or part-time, English speak-
ing, Spanish speaking, or bilingual) should be hired for each
of several possible work shifts. Linear programming is
needed to find a plan that minimizes the total cost of pro-
viding a satisfactory level of service throughout the 14 hours
that the call center will be open each weekday. The model
requires more than two decision variables, so a software

package such as described in Sec. 3.5 or Sec. 3.6 will be
needed to solve the two versions of the model.

CASE 3.4 Promoting a Breakfast
Cereal

The vice president for marketing of the Super Grain Corpo-
ration needs to develop a promotional campaign for the com-
pany’s new breakfast cereal. Three advertising media have
been chosen for the campaign, but decisions now need to be
made regarding how much of each medium should be used.
Constraints include a limited advertising budget, a limited
planning budget, and a limited number of TV commercial
spots available, as well as requirements for effectively reach-
ing two special target audiences (young children and parents
of young children) and for making full use of a rebate pro-
gram. The corresponding linear programming model requires
more than two decision variables, so a software package such
as described in Sec. 3.5 or Sec. 3.6 will be needed to solve
the model. This case also asks for an analysis of how well
the four assumptions of linear programming are satisfied for
this problem. Does linear programming actually provide a
reasonable basis for managerial decision making in this sit-
uation? (Case 12.3 will provide a continuation of this case.)
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89

4C H A P T E R

Solving Linear Programming
Problems: The Simplex Method

We now are ready to begin studying the simplex method, a general procedure for
solving linear programming problems. Developed by the brilliant George Dantzig1

in 1947, it has proved to be a remarkably efficient method that is used routinely to solve
huge problems on today’s computers. Except for its use on tiny problems, this method is
always executed on a computer, and sophisticated software packages are widely available.
Extensions and variations of the simplex method also are used to perform postoptimality
analysis (including sensitivity analysis) on the model.

This chapter describes and illustrates the main features of the simplex method. The
first section introduces its general nature, including its geometric interpretation. The fol-
lowing three sections then develop the procedure for solving any linear programming
model that is in our standard form (maximization, all functional constraints in � form,
and nonnegativity constraints on all variables) and has only nonnegative right-hand sides
bi in the functional constraints. Certain details on resolving ties are deferred to Sec. 4.5,
and Sec. 4.6 describes how to adapt the simplex method to other model forms. Next we
discuss postoptimality analysis (Sec. 4.7), and describe the computer implementation of
the simplex method (Sec. 4.8). Section 4.9 then introduces an alternative to the simplex
method (the interior-point approach) for solving large linear programming problems.

■ 4.1 THE ESSENCE OF THE SIMPLEX METHOD

The simplex method is an algebraic procedure. However, its underlying concepts are
geometric. Understanding these geometric concepts provides a strong intuitive feeling
for how the simplex method operates and what makes it so efficient. Therefore, before
delving into algebraic details, we focus in this section on the big picture from a geo-
metric viewpoint.

1Widely revered as perhaps the most important pioneer of operations research, George Dantzig is commonly re-
ferred to as the father of linear programming because of the development of the simplex method and many key
subsequent contributions. The authors had the privilege of being his faculty colleagues in the Department of Op-
erations Research at Stanford University for nearly 30 years. Dr. Dantzig remained professionally active right
up until he passed away in 2005 at the age of 90.
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To illustrate the general geometric concepts, we shall use the Wyndor Glass Co. ex-
ample presented in Sec. 3.1. (Sections 4.2 and 4.3 use the algebra of the simplex method
to solve this same example.) Section 5.1 will elaborate further on these geometric con-
cepts for larger problems.

To refresh your memory, the model and graph for this example are repeated in 
Fig. 4.1. The five constraint boundaries and their points of intersection are highlighted in
this figure because they are the keys to the analysis. Here, each constraint boundary is
a line that forms the boundary of what is permitted by the corresponding constraint. The
points of intersection are the corner-point solutions of the problem. The five that lie on
the corners of the feasible region—(0, 0), (0, 6), (2, 6), (4, 3), and (4, 0)—are the corner-
point feasible solutions (CPF solutions). [The other three—(0, 9), (4, 6), and (6, 0)—are
called corner-point infeasible solutions.]

In this example, each corner-point solution lies at the intersection of two constraint
boundaries. (For a linear programming problem with n decision variables, each of its corner-
point solutions lies at the intersection of n constraint boundaries.2) Certain pairs of the CPF
solutions in Fig. 4.1 share a constraint boundary, and other pairs do not. It will be impor-
tant to distinguish between these cases by using the following general definitions.

For any linear programming problem with n decision variables, two CPF solutions are 
adjacent to each other if they share n � 1 constraint boundaries. The two adjacent CPF
solutions are connected by a line segment that lies on these same shared constraint bound-
aries. Such a line segment is referred to as an edge of the feasible region.

Since n � 2 in the example, two of its CPF solutions are adjacent if they share one con-
straint boundary; for example, (0, 0) and (0, 6) are adjacent because they share the 
x1 � 0 constraint boundary. The feasible region in Fig. 4.1 has five edges, consisting of the
five line segments forming the boundary of this region. Note that two edges emanate from
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(6, 0)(4, 0)

(0, 6)

(0, 9)

(2, 6)

(4, 3)

(4, 6)

(0, 0)

Feasible
region

x1 � 0

3x1 � 2x2 � 18

x2 � 0

x1 � 4

2x2 � 12

Maximize Z � 3x1 � 5x2,
subject to

x1 �   4
� 12
� 18

2x2
2x23x1 �

and
x1 � 0, x2 � 0

x2

x1

■ FIGURE 4.1
Constraint boundaries and
corner-point solutions for the
Wyndor Glass Co. problem.

2Although a corner-point solution is defined in terms of n constraint boundaries whose intersection gives this
solution, it also is possible that one or more additional constraint boundaries pass through this same point.
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each CPF solution. Thus, each CPF solution has two adjacent CPF solutions (each lying at
the other end of one of the two edges), as enumerated in Table 4.1. (In each row of this table,
the CPF solution in the first column is adjacent to each of the two CPF solutions in the sec-
ond column, but the two CPF solutions in the second column are not adjacent to each other.)

One reason for our interest in adjacent CPF solutions is the following general prop-
erty about such solutions, which provides a very useful way of checking whether a CPF
solution is an optimal solution.

Optimality test: Consider any linear programming problem that possesses at
least one optimal solution. If a CPF solution has no adjacent CPF solutions that
are better (as measured by Z ), then it must be an optimal solution.

Thus, for the example, (2, 6) must be optimal simply because its Z � 36 is larger than 
Z � 30 for (0, 6) and Z � 27 for (4, 3). (We will delve further into why this property
holds in Sec. 5.1.) This optimality test is the one used by the simplex method for deter-
mining when an optimal solution has been reached.

Now we are ready to apply the simplex method to the example.

Solving the Example

Here is an outline of what the simplex method does (from a geometric viewpoint) to solve
the Wyndor Glass Co. problem. At each step, first the conclusion is stated and then the
reason is given in parentheses. (Refer to Fig. 4.1 for a visualization.)

Initialization: Choose (0, 0) as the initial CPF solution to examine. (This is a conve-
nient choice because no calculations are required to identify this CPF solution.)

Optimality Test: Conclude that (0, 0) is not an optimal solution. (Adjacent CPF so-
lutions are better.)

Iteration 1: Move to a better adjacent CPF solution, (0, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 0), choose to move
along the edge that leads up the x2 axis. (With an objective function of Z � 3x1 � 5x2,
moving up the x2 axis increases Z at a faster rate than moving along the x1 axis.)

2. Stop at the first new constraint boundary: 2x2 � 12. [Moving farther in the direction
selected in step 1 leaves the feasible region; e.g., moving to the second new constraint
boundary hit when moving in that direction gives (0, 9), which is a corner-point in-
feasible solution.]

3. Solve for the intersection of the new set of constraint boundaries: (0, 6). (The equations
for these constraint boundaries, x1 � 0 and 2x2 � 12, immediately yield this solution.)

Optimality Test: Conclude that (0, 6) is not an optimal solution. (An adjacent CPF
solution is better.)

4.1 THE ESSENCE OF THE SIMPLEX METHOD 91

■ TABLE 4.1 Adjacent CPF solutions for each CPF 
solution of the Wyndor Glass Co. problem

CPF Solution Its Adjacent CPF Solutions

(0, 0) (0, 6) and (4, 0)
(0, 6) (2, 6) and (0, 0)
(2, 6) (4, 3) and (0, 6)
(4, 3) (4, 0) and (2, 6)
(4, 0) (0, 0) and (4, 3)
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Iteration 2: Move to a better adjacent CPF solution, (2, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 6), choose to
move along the edge that leads to the right. (Moving along this edge increases Z,
whereas backtracking to move back down the x2 axis decreases Z.)

2. Stop at the first new constraint boundary encountered when moving in that direction:
3x1 � 2x2 � 12. (Moving farther in the direction selected in step 1 leaves the feasible
region.)

3. Solve for the intersection of the new set of constraint boundaries: (2, 6). (The equa-
tions for these constraint boundaries, 3x1 � 2x2 � 18 and 2x2 � 12, immediately yield
this solution.)

Optimality Test: Conclude that (2, 6) is an optimal solution, so stop. (None of the
adjacent CPF solutions are better.)

This sequence of CPF solutions examined is shown in Fig. 4.2, where each circled num-
ber identifies which iteration obtained that solution. (See the Worked Examples section
on the book’s website for another example of how the simplex method marches through
a sequence of CPF solutions to reach the optimal solution.)

Now let us look at the six key solution concepts of the simplex method that provide
the rationale behind the above steps. (Keep in mind that these concepts also apply for
solving problems with more than two decision variables where a graph like Fig. 4.2 is not
available to help quickly find an optimal solution.)

The Key Solution Concepts

The first solution concept is based directly on the relationship between optimal solutions
and CPF solutions given at the end of Sec. 3.2.

Solution concept 1: The simplex method focuses solely on CPF solutions. For
any problem with at least one optimal solution, finding one requires only find-
ing a best CPF solution.3
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(4, 0)

(0, 6)
(2, 6)

(4, 3)

(0, 0)

Feasible
region

x1 

x2

Z � 30

Z � 36

Z � 27

Z � 12

Z � 0

21

0

■ FIGURE 4.2
This graph shows the
sequence of CPF solutions
(�, �, �) examined by the
simplex method for the
Wyndor Glass Co. problem.
The optimal solution (2, 6) is
found after just three
solutions are examined.

3The only restriction is that the problem must possess CPF solutions. This is ensured if the feasible region is
bounded.
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Since the number of feasible solutions generally is infinite, reducing the number of solu-
tions that need to be examined to a small finite number ( just three in Fig. 4.2) is a tremen-
dous simplification.

The next solution concept defines the flow of the simplex method.

Solution concept 2: The simplex method is an iterative algorithm (a systematic
solution procedure that keeps repeating a fixed series of steps, called an iteration,
until a desired result has been obtained) with the following structure.

Initialization: Set up to start iterations, including finding an initial
CPF solution.

Optimality test: Is the current CPF solution optimal?

If no If yes → Stop.

Iteration: Perform an iteration to find a better CPF solution.

When the example was solved, note how this flow diagram was followed through two
iterations until an optimal solution was found.

We next focus on how to get started.

Solution concept 3: Whenever possible, the initialization of the simplex method
chooses the origin (all decision variables equal to zero) to be the initial CPF so-
lution. When there are too many decision variables to find an initial CPF solu-
tion graphically, this choice eliminates the need to use algebraic procedures to
find and solve for an initial CPF solution.

Choosing the origin commonly is possible when all the decision variables have nonneg-
ativity constraints, because the intersection of these constraint boundaries yields the ori-
gin as a corner-point solution. This solution then is a CPF solution unless it is infeasible
because it violates one or more of the functional constraints. If it is infeasible, special pro-
cedures described in Sec. 4.6 are needed to find the initial CPF solution.

The next solution concept concerns the choice of a better CPF solution at each iteration.

Solution concept 4: Given a CPF solution, it is much quicker computationally
to gather information about its adjacent CPF solutions than about other CPF so-
lutions. Therefore, each time the simplex method performs an iteration to move
from the current CPF solution to a better one, it always chooses a CPF solution
that is adjacent to the current one. No other CPF solutions are considered. Con-
sequently, the entire path followed to eventually reach an optimal solution is along
the edges of the feasible region.

The next focus is on which adjacent CPF solution to choose at each iteration.

Solution concept 5: After the current CPF solution is identified, the simplex
method examines each of the edges of the feasible region that emanate from this
CPF solution. Each of these edges leads to an adjacent CPF solution at the other
end, but the simplex method does not even take the time to solve for the adjacent
CPF solution. Instead, it simply identifies the rate of improvement in Z that would
be obtained by moving along the edge. Among the edges with a positive rate of
improvement in Z, it then chooses to move along the one with the largest rate of
improvement in Z. The iteration is completed by first solving for the adjacent
CPF solution at the other end of this one edge and then relabeling this adjacent
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CPF solution as the current CPF solution for the optimality test and (if needed)
the next iteration.

At the first iteration of the example, moving from (0, 0) along the edge on the x1 axis
would give a rate of improvement in Z of 3 (Z increases by 3 per unit increase in x1),
whereas moving along the edge on the x2 axis would give a rate of improvement in Z of
5 (Z increases by 5 per unit increase in x2), so the decision is made to move along the lat-
ter edge. At the second iteration, the only edge emanating from (0, 6) that would yield a
positive rate of improvement in Z is the edge leading to (2, 6), so the decision is made to
move next along this edge.

The final solution concept clarifies how the optimality test is performed efficiently.

Solution concept 6: Solution concept 5 describes how the simplex method ex-
amines each of the edges of the feasible region that emanate from the current
CPF solution. This examination of an edge leads to quickly identifying the rate
of improvement in Z that would be obtained by moving along the edge toward
the adjacent CPF solution at the other end. A positive rate of improvement in Z
implies that the adjacent CPF solution is better than the current CPF solution,
whereas a negative rate of improvement in Z implies that the adjacent CPF so-
lution is worse. Therefore, the optimality test consists simply of checking whether
any of the edges give a positive rate of improvement in Z. If none do, then the
current CPF solution is optimal.

In the example, moving along either edge from (2, 6) decreases Z. Since we want to max-
imize Z, this fact immediately gives the conclusion that (2, 6) is optimal.
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Section 4.1 stressed the geometric concepts that underlie the simplex method. How-
ever, this algorithm normally is run on a computer, which can follow only algebraic
instructions. Therefore, it is necessary to translate the conceptually geometric proce-
dure just described into a usable algebraic procedure. In this section, we introduce the
algebraic language of the simplex method and relate it to the concepts of the pre-
ceding section.

The algebraic procedure is based on solving systems of equations. Therefore, the first
step in setting up the simplex method is to convert the functional inequality constraints
to equivalent equality constraints. (The nonnegativity constraints are left as inequalities
because they are treated separately.) This conversion is accomplished by introducing slack
variables. To illustrate, consider the first functional constraint in the Wyndor Glass Co.
example of Sec. 3.1

x1 � 4.

The slack variable for this constraint is defined to be

x3 � 4 � x1,

which is the amount of slack in the left-hand side of the inequality. Thus,

x1 � x3 � 4.

Given this equation, x1 � 4 if and only if 4 � x1 � x3 � 0. Therefore, the original con-
straint x1 � 4 is entirely equivalent to the pair of constraints

x1 � x3 � 4 and x3 � 0.

■ 4.2 SETTING UP THE SIMPLEX METHOD
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Although both forms of the model represent exactly the same problem, the new form is
much more convenient for algebraic manipulation and for identification of CPF solutions.
We call this the augmented form of the problem because the original form has been aug-
mented by some supplementary variables needed to apply the simplex method.

If a slack variable equals 0 in the current solution, then this solution lies on the con-
straint boundary for the corresponding functional constraint. A value greater than 0 means
that the solution lies on the feasible side of this constraint boundary, whereas a value less
than 0 means that the solution lies on the infeasible side of this constraint boundary. A
demonstration of these properties is provided by the demonstration example in your OR
Tutor entitled Interpretation of the Slack Variables.

The terminology used in Section 4.1 (corner-point solutions, etc.) applies to the orig-
inal form of the problem. We now introduce the corresponding terminology for the aug-
mented form.

An augmented solution is a solution for the original variables (the decision vari-
ables) that has been augmented by the corresponding values of the slack variables.

For example, augmenting the solution (3, 2) in the example yields the augmented solu-
tion (3, 2, 1, 8, 5) because the corresponding values of the slack variables are x3 � 1,
x4 � 8, and x5 � 5.

A basic solution is an augmented corner-point solution.

To illustrate, consider the corner-point infeasible solution (4, 6) in Fig. 4.1. Augmenting
it with the resulting values of the slack variables x3 � 0, x4 � 0, and x5 � �6 yields the
corresponding basic solution (4, 6, 0, 0, �6).

The fact that corner-point solutions (and so basic solutions) can be either feasible or
infeasible implies the following definition:

A basic feasible (BF) solution is an augmented CPF solution.

Thus, the CPF solution (0, 6) in the example is equivalent to the BF solution (0, 6, 4,
0, 6) for the problem in augmented form.

The only difference between basic solutions and corner-point solutions (or between
BF solutions and CPF solutions) is whether the values of the slack variables are included.
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Maximize Z � 3x1 � 5x2,

subject to

x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and

x1 � 0, x2 � 0.

Maximize Z � 3x1 � 5x2,

subject to

(1) x1 � x3 � 4

(2) 2x2 � x4 � 12

(3) 3x1 � 2x2 � x5 � 18

and

xj � 0, for j � 1, 2, 3, 4, 5.

4The slack variables are not shown in the objective function because the coefficients there are 0.

Upon the introduction of slack variables for the other functional constraints, the
original linear programming model for the example (shown below on the left) can now
be replaced by the equivalent model (called the augmented form of the model) shown
below on the right:

Original Form of the Model Augmented Form of the Model4
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For any basic solution, the corresponding corner-point solution is obtained simply by delet-
ing the slack variables. Therefore, the geometric and algebraic relationships between these
two solutions are very close, as described in Sec. 5.1.

Because the terms basic solution and basic feasible solution are very important parts
of the standard vocabulary of linear programming, we now need to clarify their algebraic
properties. For the augmented form of the example, notice that the system of functional
constraints has 5 variables and 3 equations, so

Number of variables � number of equations � 5 � 3 � 2.

This fact gives us 2 degrees of freedom in solving the system, since any two variables can be
chosen to be set equal to any arbitrary value in order to solve the three equations in terms of
the remaining three variables.5 The simplex method uses zero for this arbitrary value. Thus,
two of the variables (called the nonbasic variables) are set equal to zero, and then the si-
multaneous solution of the three equations for the other three variables (called the basic vari-
ables) is a basic solution. These properties are described in the following general definitions.

A basic solution has the following properties:

1. Each variable is designated as either a nonbasic variable or a basic variable.
2. The number of basic variables equals the number of functional constraints (now equa-

tions). Therefore, the number of nonbasic variables equals the total number of vari-
ables minus the number of functional constraints.

3. The nonbasic variables are set equal to zero.
4. The values of the basic variables are obtained as the simultaneous solution of the sys-

tem of equations (functional constraints in augmented form). (The set of basic vari-
ables is often referred to as the basis.)

5. If the basic variables satisfy the nonnegativity constraints, the basic solution is a BF
solution.

To illustrate these definitions, consider again the BF solution (0, 6, 4, 0, 6). This so-
lution was obtained before by augmenting the CPF solution (0, 6). However, another way
to obtain this same solution is to choose x1 and x4 to be the two nonbasic variables, and
so the two variables are set equal to zero. The three equations then yield, respectively,
x3 � 4, x2 � 6, and x5 � 6 as the solution for the three basic variables, as shown below
(with the basic variables in bold type):

x1 � 0 and x4 � 0 so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x2 � 6
(3) 3x1 � 2x2 � x5 � 18 x5 � 6

Because all three of these basic variables are nonnegative, this basic solution (0, 6, 4,
0, 6) is indeed a BF solution. The Worked Examples section of the book’s website includes
another example of the relationship between CPF solutions and BF solutions.

Just as certain pairs of CPF solutions are adjacent, the corresponding pairs of BF so-
lutions also are said to be adjacent. Here is an easy way to tell when two BF solutions
are adjacent.

Two BF solutions are adjacent if all but one of their nonbasic variables are the same.
This implies that all but one of their basic variables also are the same, although perhaps
with different numerical values.
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5This method of determining the number of degrees of freedom for a system of equations is valid as long as the
system does not include any redundant equations. This condition always holds for the system of equations formed
from the functional constraints in the augmented form of a linear programming model.
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Consequently, moving from the current BF solution to an adjacent one involves switch-
ing one variable from nonbasic to basic and vice versa for one other variable (and
then adjusting the values of the basic variables to continue satisfying the system of
equations).

To illustrate adjacent BF solutions, consider one pair of adjacent CPF solutions in
Fig. 4.1: (0, 0) and (0, 6). Their augmented solutions, (0, 0, 4, 12, 18) and (0, 6, 4, 0, 6),
automatically are adjacent BF solutions. However, you do not need to look at Fig. 4.1 to
draw this conclusion. Another signpost is that their nonbasic variables, (x1, x2) and 
(x1, x4), are the same with just the one exception—x2 has been replaced by x4. Conse-
quently, moving from (0, 0, 4, 12, 18) to (0, 6, 4, 0, 6) involves switching x2 from non-
basic to basic and vice versa for x4.

When we deal with the problem in augmented form, it is convenient to consider and
manipulate the objective function equation at the same time as the new constraint equa-
tions. Therefore, before we start the simplex method, the problem needs to be rewritten
once again in an equivalent way:

Maximize Z,

subject to

(0) Z � 3x1 � 5x2 � 0
(1) x1 � x3 � 4
(2) 2x2 � x4 � 12
(3) 3x1 � 2x2 � x5 � 18

and

xj � 0, for j � 1, 2, . . . , 5.

It is just as if Eq. (0) actually were one of the original constraints; but because it already
is in equality form, no slack variable is needed. While adding one more equation, we also
have added one more unknown (Z ) to the system of equations. Therefore, when using
Eqs. (1) to (3) to obtain a basic solution as described above, we use Eq. (0) to solve for
Z at the same time.

Somewhat fortuitously, the model for the Wyndor Glass Co. problem fits our stan-
dard form, and all its functional constraints have nonnegative right-hand sides bi. If this
had not been the case, then additional adjustments would have been needed at this point
before the simplex method was applied. These details are deferred to Sec. 4.6, and we
now focus on the simplex method itself.
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■ 4.3 THE ALGEBRA OF THE SIMPLEX METHOD
We continue to use the prototype example of Sec. 3.1, as rewritten at the end of Sec. 4.2,
for illustrative purposes. To start connecting the geometric and algebraic concepts of the
simplex method, we begin by outlining side by side in Table 4.2 how the simplex method
solves this example from both a geometric and an algebraic viewpoint. The geometric view-
point (first presented in Sec. 4.1) is based on the original form of the model (no slack vari-
ables), so again refer to Fig. 4.1 for a visualization when you examine the second column
of the table. Refer to the augmented form of the model presented at the end of Sec. 4.2
when you examine the third column of the table.

We now fill in the details for each step of the third column of Table 4.2.
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Initialization

The choice of x1 and x2 to be the nonbasic variables (the variables set equal to zero) for the
initial BF solution is based on solution concept 3 in Sec. 4.1. This choice eliminates the
work required to solve for the basic variables (x3, x4, x5) from the following system of
equations (where the basic variables are shown in bold type):

x1 � 0 and x2 � 0 so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x4 � 12
(3) 3x1 � 2x2 � x5 � 18 x5 � 18

Thus, the initial BF solution is (0, 0, 4, 12, 18).
Notice that this solution can be read immediately because each equation has just one

basic variable, which has a coefficient of 1, and this basic variable does not appear in any
other equation. You will soon see that when the set of basic variables changes, the sim-
plex method uses an algebraic procedure (Gaussian elimination) to convert the equations
to this same convenient form for reading every subsequent BF solution as well. This form
is called proper form from Gaussian elimination.
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■ TABLE 4.2 Geometric and algebraic interpretations of how the simplex method
solves the Wyndor Glass Co. problem

Method
Sequence Geometric Interpretation Algebraic Interpretation

Initialization Choose (0, 0) to be the initial CPF Choose x1 and x2 to be the nonbasic 
solution. variables (� 0) for the initial BF 

solution: (0, 0, 4, 12, 18).
Optimality Not optimal, because moving along Not optimal, because increasing either 
test either edge from (0, 0) increases Z. nonbasic variable (x1 or x2) increases Z.

Iteration 1
Step 1 Move up the edge lying on the Increase x2 while adjusting other 

x2 axis. variable values to satisfy the system 
of equations.

Step 2 Stop when the first new constraint Stop when the first basic variable 
boundary (2x2 � 12) is reached. (x3, x4, or x5) drops to zero (x4).

Step 3 Find the intersection of the new pair With x2 now a basic variable and x4

of constraint boundaries: (0, 6) is the now a nonbasic variable, solve the 
new CPF solution. system of equations: (0, 6, 4, 0, 6) is 

the new BF solution.
Optimality Not optimal, because moving along the Not optimal, because increasing one 
test edge from (0, 6) to the right increases Z. nonbasic variable (x1) increases Z.

Iteration 2
Step 1 Move along this edge to the right. Increase x1 while adjusting other 

variable values to satisfy the system 
of equations.

Step 2 Stop when the first new constraint Stop when the first basic variable 
boundary (3x1 � 2x2 � 18) is reached. (x2, x3, or x5) drops to zero (x5).

Step 3 Find the intersection of the new pair With x1 now a basic variable and x5

of constraint boundaries: (2, 6) is the now a nonbasic variable, solve the 
new CPF solution. system of equations: (2, 6, 2, 0, 0) is 

the new BF solution.
Optimality (2, 6) is optimal, because moving (2, 6, 2, 0, 0) is optimal, because 
test along either edge from (2, 6) decreases Z. increasing either nonbasic variable 

(x4 or x5) decreases Z.
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Optimality Test

The objective function is

Z � 3x1 � 5x2,

so Z � 0 for the initial BF solution. Because none of the basic variables (x3, x4, x5) have
a nonzero coefficient in this objective function, the coefficient of each nonbasic variable
(x1, x2) gives the rate of improvement in Z if that variable were to be increased from zero
(while the values of the basic variables are adjusted to continue satisfying the system of
equations).6 These rates of improvement (3 and 5) are positive. Therefore, based on so-
lution concept 6 in Sec. 4.1, we conclude that (0, 0, 4, 12, 18) is not optimal.

For each BF solution examined after subsequent iterations, at least one basic variable
has a nonzero coefficient in the objective function. Therefore, the optimality test then will
use the new Eq. (0) to rewrite the objective function in terms of just the nonbasic variables,
as you will see later.

Determining the Direction of Movement (Step 1 of an Iteration)

Increasing one nonbasic variable from zero (while adjusting the values of the basic vari-
ables to continue satisfying the system of equations) corresponds to moving along one
edge emanating from the current CPF solution. Based on solution concepts 4 and 5 in
Sec. 4.1, the choice of which nonbasic variable to increase is made as follows:

6Note that this interpretation of the coefficients of the xj variables is based on these variables being on the right-
hand side, Z � 3x1 � 5x2. When these variables are brought to the left-hand side for Eq. (0), Z � 3x1 � 5x2 � 0,
the nonzero coefficients change their signs.

Samsung Electronics Corp., Ltd. (SEC) is a leading mer-
chant of dynamic and static random access memory devices
and other advanced digital integrated circuits. Its site at
Kiheung, South Korea (probably the largest semiconductor
fabrication site in the world) fabricates more than 300,000
silicon wafers per month and employs over 10,000 people.

Cycle time is the industry’s term for the elapsed time
from the release of a batch of blank silicon wafers into
the fabrication process until completion of the devices
that are fabricated on those wafers. Reducing cycle times
is an ongoing goal since it both decreases costs and en-
ables offering shorter lead times to potential customers,
a real key to maintaining or increasing market share in a
very competitive industry.

Three factors present particularly major challenges
when striving to reduce cycle times. One is that the prod-
uct mix changes continually. Another is that the company
often needs to make substantial changes in the fab-out
schedule inside the target cycle time as it revises forecasts
of customer demand. The third is that the machines of a
general type are not homogenous so only a small number
of machines are qualified to perform each device-step.

An OR team developed a huge linear programming
model with tens of thousands of decision variables and
functional constraints to cope with these challenges. The
objective function involved minimizing back-orders and
finished-goods inventory. Despite the huge size of this
model, it was readily solved in minutes whenever needed
by using a highly sophisticated implementation of the
simplex method (and related techniques) in the CPLEX
optimization software. (CPLEX will be discussed further
in Sec. 4.8.)

The ongoing implementation of this model enabled
the company to reduce manufacturing cycle times to
fabricate dynamic random access memory devices from
more than 80 days to less than 30 days. This tremen-
dous improvement and the resulting reduction in both
manufacturing costs and sale prices enabled Samsung
to capture an additional $200 million in annual sales
revenue.

Source: R. C. Leachman, J. Kang, and Y. Lin: “SLIM: Short
Cycle Time and Low Inventory in Manufacturing at Samsung
Electronics,” Interfaces, 32(1): 61–77, Jan.–Feb. 2002. (A link to
this article is provided on our website, www.mhhe.com/hillier.)

An Application Vignette
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Z � 3x1 � 5x2

Increase x1? Rate of improvement in Z � 3.
Increase x2? Rate of improvement in Z � 5.
5 � 3, so choose x2 to increase.

As indicated next, we call x2 the entering basic variable for iteration 1.

At any iteration of the simplex method, the purpose of step 1 is to choose one nonbasic
variable to increase from zero (while the values of the basic variables are adjusted to con-
tinue satisfying the system of equations). Increasing this nonbasic variable from zero will
convert it to a basic variable for the next BF solution. Therefore, this variable is called
the entering basic variable for the current iteration (because it is entering the basis).

Determining Where to Stop (Step 2 of an Iteration)

Step 2 addresses the question of how far to increase the entering basic variable x2 before
stopping. Increasing x2 increases Z, so we want to go as far as possible without leaving
the feasible region. The requirement to satisfy the functional constraints in augmented
form (shown below) means that increasing x2 (while keeping the nonbasic variable x1 � 0)
changes the values of some of the basic variables as shown on the right.

x1 � 0, so
(1) x1 � x3 � 4 x3 � 4
(2) 2x2 � x4 � 12 x4 � 12 � 2x2

(3) 3x1 � 2x2 � x5 � 18 x5 � 18 � 2x2.

The other requirement for feasibility is that all the variables be nonnegative. The non-
basic variables (including the entering basic variable) are nonnegative, but we need to check
how far x2 can be increased without violating the nonnegativity constraints for the basic
variables.

x3 � 4 � 0 ⇒ no upper bound on x2.

x4 � 12 � 2x2 � 0 ⇒ x2 � �
1
2
2
� � 6 � minimum.

x5 � 18 � 2x2 � 0 ⇒ x2 � �
1
2
8
� � 9.

Thus, x2 can be increased just to 6, at which point x4 has dropped to 0. Increasing x2 be-
yond 6 would cause x4 to become negative, which would violate feasibility.

These calculations are referred to as the minimum ratio test. The objective of this
test is to determine which basic variable drops to zero first as the entering basic variable
is increased. We can immediately rule out the basic variable in any equation where the
coefficient of the entering basic variable is zero or negative, since such a basic variable
would not decrease as the entering basic variable is increased. [This is what happened
with x3 in Eq. (1) of the example.] However, for each equation where the coefficient of
the entering basic variable is strictly positive (� 0), this test calculates the ratio of the
right-hand side to the coefficient of the entering basic variable. The basic variable in the
equation with the minimum ratio is the one that drops to zero first as the entering basic
variable is increased.

At any iteration of the simplex method, step 2 uses the minimum ratio test to determine
which basic variable drops to zero first as the entering basic variable is increased. De-
creasing this basic variable to zero will convert it to a nonbasic variable for the next BF
solution. Therefore, this variable is called the leaving basic variable for the current iter-
ation (because it is leaving the basis).

Thus, x4 is the leaving basic variable for iteration 1 of the example.
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Solving for the New BF Solution (Step 3 of an Iteration)

Increasing x2 � 0 to x2 � 6 moves us from the initial BF solution on the left to the new
BF solution on the right.

Initial BF solution New BF solution
Nonbasic variables: x1 � 0, x2 � 0 x1 � 0, x4 � 0
Basic variables: x3 � 4, x4 � 12, x5 � 18 x3 � ?, x2 � 6, x5 � ?

The purpose of step 3 is to convert the system of equations to a more convenient form
(proper form from Gaussian elimination) for conducting the optimality test and (if needed)
the next iteration with this new BF solution. In the process, this form also will identify
the values of x3 and x5 for the new solution.

Here again is the complete original system of equations, where the new basic vari-
ables are shown in bold type (with Z playing the role of the basic variable in the objec-
tive function equation):

(0) Z � 3x1 � 5x2 � 0.
(1) x1 � x3 � 4.
(2) 2x2 � x4 � 12.
(3) 3x1 � 2x2 � x5 � 18.

Thus, x2 has replaced x4 as the basic variable in Eq. (2). To solve this system of equations
for Z, x2, x3, and x5, we need to perform some elementary algebraic operations to re-
produce the current pattern of coefficients of x4 (0, 0, 1, 0) as the new coefficients of x2.
We can use either of two types of elementary algebraic operations:

1. Multiply (or divide) an equation by a nonzero constant.
2. Add (or subtract) a multiple of one equation to (or from) another equation.

To prepare for performing these operations, note that the coefficients of x2 in the
above system of equations are �5, 0, 2, and 2, respectively, whereas we want these co-
efficients to become 0, 0, 1, and 0, respectively. To turn the coefficient of 2 in Eq. (2)
into 1, we use the first type of elementary algebraic operation by dividing Eq. (2) by 2
to obtain

(2) x2 � �
1
2

�x4 � 6.

To turn the coefficients of �5 and 2 into zeros, we need to use the second type of ele-
mentary algebraic operation. In particular, we add 5 times this new Eq. (2) to Eq. (0), and
subtract 2 times this new Eq. (2) from Eq. (3). The resulting complete new system of
equations is

(0) Z � 3x1 � �
5
2

�x4 � 30

(1) x1 � x3 � 4

(2) x2 � �
1
2

�x4 � 6

(3) 3x1 � x4 � x5 � 6.

Since x1 � 0 and x4 � 0, the equations in this form immediately yield the new BF solu-
tion, (x1, x2, x3, x4, x5) � (0, 6, 4, 0, 6), which yields Z � 30.

This procedure for obtaining the simultaneous solution of a system of linear equa-
tions is called the Gauss-Jordan method of elimination, or Gaussian elimination for
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short.7 The key concept for this method is the use of elementary algebraic operations to
reduce the original system of equations to proper form from Gaussian elimination, where
each basic variable has been eliminated from all but one equation (its equation) and has
a coefficient of �1 in that equation.

Optimality Test for the New BF Solution

The current Eq. (0) gives the value of the objective function in terms of just the current
nonbasic variables

Z � 30 � 3x1 � �
5
2

�x4.

Increasing either of these nonbasic variables from zero (while adjusting the values of the
basic variables to continue satisfying the system of equations) would result in moving
toward one of the two adjacent BF solutions. Because x1 has a positive coefficient, in-
creasing x1 would lead to an adjacent BF solution that is better than the current BF solu-
tion, so the current solution is not optimal.

Iteration 2 and the Resulting Optimal Solution

Since Z � 30 � 3x1 � �
5
2

�x4, Z can be increased by increasing x1, but not x4. Therefore, step
1 chooses x1 to be the entering basic variable.

For step 2, the current system of equations yields the following conclusions about
how far x1 can be increased (with x4 � 0):

x3 � 4 � x1 � 0 ⇒ x1 � �
4
1

� � 4.

x2 � 6 � 0 ⇒ no upper bound on x1.

x5 � 6 � 3x1 � 0 ⇒ x1 � �
6
3

� � 2 � minimum.

Therefore, the minimum ratio test indicates that x5 is the leaving basic variable.
For step 3, with x1 replacing x5 as a basic variable, we perform elementary algebraic

operations on the current system of equations to reproduce the current pattern of coeffi-
cients of x5 (0, 0, 0, 1) as the new coefficients of x1. This yields the following new sys-
tem of equations:

(0) Z � �
3
2

�x4 � x5 � 36

(1) x3 � �
1
3

�x4 � �
1
3

�x5 � 2

(2) x2 � �
1
2

�x4 � 6

(3) x1 � �
1
3

�x4 � �
1
3

�x5 � 2.

Therefore, the next BF solution is (x1, x2, x3, x4, x5) � (2, 6, 2, 0, 0), yielding Z � 36. To
apply the optimality test to this new BF solution, we use the current Eq. (0) to express Z
in terms of just the current nonbasic variables,
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7Actually, there are some technical differences between the Gauss-Jordan method of elimination and Gaussian
elimination, but we shall not make this distinction.
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Z � 36 � �
3
2

�x4 � x5.

Increasing either x4 or x5 would decrease Z, so neither adjacent BF solution is as good as
the current one. Therefore, based on solution concept 6 in Sec. 4.1, the current BF solu-
tion must be optimal.

In terms of the original form of the problem (no slack variables), the optimal solu-
tion is x1 � 2, x2 � 6, which yields Z � 3x1 � 5x2 � 36.

To see another example of applying the simplex method, we recommend that you
now view the demonstration entitled Simplex Method—Algebraic Form in your OR Tutor.
This vivid demonstration simultaneously displays both the algebra and the geometry of the 
simplex method as it dynamically evolves step by step. Like the many other demonstration
examples accompanying other sections of the book (including the next section), this com-
puter demonstration highlights concepts that are difficult to convey on the printed page. In
addition, the Worked Examples section of the book’s website includes another example
of applying the simplex method.

To further help you learn the simplex method efficiently, the IOR Tutorial in your OR
Courseware includes a procedure entitled Solve Interactively by the Simplex Method.
This routine performs nearly all the calculations while you make the decisions step by
step, thereby enabling you to focus on concepts rather than get bogged down in a lot of
number crunching. Therefore, you probably will want to use this routine for your home-
work on this section. The software will help you get started by letting you know when-
ever you make a mistake on the first iteration of a problem.

After you learn the simplex method, you will want to simply apply an automatic com-
puter implementation of it to obtain optimal solutions of linear programming problems
immediately. For your convenience, we also have included an automatic procedure called
Solve Automatically by the Simplex Method in IOR Tutorial. This procedure is designed
for dealing with only textbook-sized problems, including checking the answer you got
with the interactive procedure. Section 4.8 will describe more powerful software options
for linear programming that also are provided on the book’s website.

The next section includes a summary of the simplex method for a more convenient
tabular form.
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8A form more convenient for automatic execution on a computer is presented in Sec. 5.2.

The algebraic form of the simplex method presented in Sec. 4.3 may be the best one for
learning the underlying logic of the algorithm. However, it is not the most convenient form
for performing the required calculations. When you need to solve a problem by hand (or
interactively with your IOR Tutorial), we recommend the tabular form described in this
section.8

The tabular form of the simplex method records only the essential information, namely,
(1) the coefficients of the variables, (2) the constants on the right-hand sides of the equa-
tions, and (3) the basic variable appearing in each equation. This saves writing the sym-
bols for the variables in each of the equations, but what is even more important is the fact
that it permits highlighting the numbers involved in arithmetic calculations and recording
the computations compactly.

Table 4.3 compares the initial system of equations for the Wyndor Glass Co. problem
in algebraic form (on the left) and in tabular form (on the right), where the table on the
right is called a simplex tableau. The basic variable for each equation is shown in bold type

■ 4.4 THE SIMPLEX METHOD IN TABULAR FORM
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■ TABLE 4.3 Initial system of equations for the Wyndor Glass Co. problem

(a) Algebraic Form (b) Tabular Form

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

(0) Z � 3x1 � 5x2 � x3 � x4 � x5 � 0 Z (0) 1 �3 �5 0 0 0 0
(1) Z � 3x1 � 5x2 � x3 � x4 � x � 4 x3 (1) 0 �1 �0 1 0 0 4
(2) Z � 3x1 � 2x2 � x3 � x4 � x5 � 12 x4 (2) 0 �0 �2 0 1 0 12
(3) Z � 3x1 � 2x2 � x3 � x4 � x5 � 18 x5 (3) 0 �3 �2 0 0 1 18

on the left and in the first column of the simplex tableau on the right. [Although only the
xj variables are basic or nonbasic, Z plays the role of the basic variable for Eq. (0).] All
variables not listed in this basic variable column (x1, x2) automatically are nonbasic
variables. After we set x1 � 0, x2 � 0, the right side column gives the resulting solution for
the basic variables, so that the initial BF solution is (x1, x2, x3, x4, x5) � (0, 0, 4, 12, 18)
which yields Z � 0.

The tabular form of the simplex method uses a simplex tableau to compactly display the
system of equations yielding the current BF solution. For this solution, each variable in
the leftmost column equals the corresponding number in the rightmost column (and vari-
ables not listed equal zero). When the optimality test or an iteration is performed, the only
relevant numbers are those to the right of the Z column.9 The term row refers to just a
row of numbers to the right of the Z column (including the right side number), where row
i corresponds to Eq. (i).

We summarize the tabular form of the simplex method below and, at the same time,
briefly describe its application to the Wyndor Glass Co. problem. Keep in mind that the logic
is identical to that for the algebraic form presented in the preceding section. Only the form
for displaying both the current system of equations and the subsequent iteration has changed
(plus we shall no longer bother to bring variables to the right-hand side of an equation be-
fore drawing our conclusions in the optimality test or in steps 1 and 2 of an iteration).

Summary of the Simplex Method (and Iteration 1 for the Example)

Initialization. Introduce slack variables. Select the decision variables to be the initial
nonbasic variables (set equal to zero) and the slack variables to be the initial basic vari-
ables. (See Sec. 4.6 for the necessary adjustments if the model is not in our standard
form—maximization, only � functional constraints, and all nonnegativity constraints—
or if any bi values are negative.)

For the Example: This selection yields the initial simplex tableau shown in column (b)
of Table 4.3, so the initial BF solution is (0, 0, 4, 12, 18).

Optimality Test. The current BF solution is optimal if and only if every coefficient in
row 0 is nonnegative (� 0). If it is, stop; otherwise, go to an iteration to obtain the next
BF solution, which involves changing one nonbasic variable to a basic variable (step 1)
and vice versa (step 2) and then solving for the new solution (step 3).

For the Example: Just as Z � 3x1 � 5x2 indicates that increasing either x1 or x2 will
increase Z, so the current BF solution is not optimal, the same conclusion is drawn from

9For this reason, it is permissible to delete the Eq. and Z columns to reduce the size of the simplex tableau. We
prefer to retain these columns as a reminder that the simplex tableau is displaying the current system of equa-
tions and that Z is one of the variables in Eq. (0).
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the equation Z � 3x1 � 5x2 � 0. These coefficients of �3 and �5 are shown in row 0 in
column (b) of Table 4.3.

Iteration. Step 1: Determine the entering basic variable by selecting the variable
(automatically a nonbasic variable) with the negative coefficient having the largest ab-
solute value (i.e., the “most negative” coefficient) in Eq. (0). Put a box around the col-
umn below this coefficient, and call this the pivot column.

For the Example: The most negative coefficient is �5 for x2 (5 � 3), so x2 is to be
changed to a basic variable. (This change is indicated in Table 4.4 by the box around the
x2 column below �5.)

Step 2: Determine the leaving basic variable by applying the minimum ratio test.

Minimum Ratio Test

1. Pick out each coefficient in the pivot column that is strictly positive (� 0).
2. Divide each of these coefficients into the right side entry for the same row.
3. Identify the row that has the smallest of these ratios.
4. The basic variable for that row is the leaving basic variable, so replace that vari-

able by the entering basic variable in the basic variable column of the next simplex
tableau.

Put a box around this row and call it the pivot row. Also call the number that is in both
boxes the pivot number.

For the Example: The calculations for the minimum ratio test are shown to the right
of Table 4.4. Thus, row 2 is the pivot row (see the box around this row in the first sim-
plex tableau of Table 4.5), and x4 is the leaving basic variable. In the next simplex tableau
(see the bottom of Table 4.5), x2 replaces x4 as the basic variable for row 2.

Step 3: Solve for the new BF solution by using elementary row operations (multi-
ply or divide a row by a nonzero constant; add or subtract a multiple of one row to an-
other row) to construct a new simplex tableau in proper form from Gaussian elimination
below the current one, and then return to the optimality test. The specific elementary row
operations that need to be performed are listed below.

1. Divide the pivot row by the pivot number. Use this new pivot row in steps 2 and 3.
2. For each other row (including row 0) that has a negative coefficient in the pivot column,

add to this row the product of the absolute value of this coefficient and the new pivot row.
3. For each other row that has a positive coefficient in the pivot column, subtract from

this row the product of this coefficient and the new pivot row.

4.4 THE SIMPLEX METHOD IN TABULAR FORM 105

■ TABLE 4.4 Applying the minimum ratio test to determine the first leaving basic
variable for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side Ratio

Z (0) 1 �3 �5 0 0 0 0
x3 (1) 0 �1 �0 1 0 0 4

x4 (2) 0 �0 �2 0 1 0 12 � � 6 � minimum

x5 (3) 0 �3 �2 0 0 1 18 � � 9
18
�
2

12
�
2
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■ TABLE 4.6 First two simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 �0 0 0
x3 (1) 0 �1 �0 1 �0 0 4

0
x4 (2) 0 �0 �2 0 �1 0 12
x5 (3) 0 �3 �2 0 �0 1 18

Z (0) 1 �3 �0 0 ��
5
2

� 0 30

x3 (1) 0 �1 �0 1 �0 0 4
1

x2 (2) 0 �0 �1 0 ��
1
2

� 0 6

x5 (3) 0 �3 �0 0 �1 1 6

For the Example: Since x2 is replacing x4 as a basic variable, we need to reproduce
the first tableau’s pattern of coefficients in the column of x4 (0, 0, 1, 0) in the second
tableau’s column of x2. To start, divide the pivot row (row 2) by the pivot number (2),
which gives the new row 2 shown in Table 4.5. Next, we add to row 0 the product, 5 times
the new row 2. Then we subtract from row 3 the product, 2 times the new row 2 (or equiv-
alently, subtract from row 3 the old row 2). These calculations yield the new tableau shown
in Table 4.6 for iteration 1. Thus, the new BF solution is (0, 6, 4, 0, 6), with Z � 30. We
next return to the optimality test to check if the new BF solution is optimal. Since the new
row 0 still has a negative coefficient (�3 for x1), the solution is not optimal, and so at
least one more iteration is needed.

Iteration 2 for the Example and the Resulting Optimal Solution

The second iteration starts anew from the second tableau of Table 4.6 to find the next BF
solution. Following the instructions for steps 1 and 2, we find x1 as the entering basic vari-
able and x5 as the leaving basic variable, as shown in Table 4.7.

For step 3, we start by dividing the pivot row (row 3) in Table 4.7 by the pivot num-
ber (3). Next, we add to row 0 the product, 3 times the new row 3. Then we subtract the
new row 3 from row 1.

We now have the set of tableaux shown in Table 4.8. Therefore, the new BF solution
is (2, 6, 2, 0, 0), with Z � 36. Going to the optimality test, we find that this solution is

■ TABLE 4.5 Simplex tableaux for the Wyndor Glass Co. problem after the 
first pivot row is divided by the first pivot number

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 0 0 0
x3 (1) 0 �1 �0 1 0 0 4

0
x4 (2) 0 �0 �2 0 1 0 12
x5 (3) 0 �3 �2 0 0 1 18

Z (0) 1
x3 (1) 0

1
x2 (2) 0 �0 �1 0 �

1
2

� 0 6
x5 (3) 0
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■ TABLE 4.7 Steps 1 and 2 of iteration 2 for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side Ratio

Z (0) 1 �3 0 0 ��
5
2

� 0 30

x3 (1) 0 �1 0 1 �0 0 4 �
4
1

� � 4
1

x2 (2) 0 �0 1 0 ��
1
2

� 0 6

x5 (3) 0 �3 0 0 �1 1 6 �
6
3

� � 2 � minimum

■ TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �3 �5 0 �0 �0 0
x3 (1) 0 �1 �0 1 �0 �0 4

0
x4 (2) 0 �0 �2 0 �1 �0 12
x5 (3) 0 �3 �2 0 �0 �1 18

Z (0) 1 �3 �0 0 ��
5
2

� �0 30

x3 (1) 0 �1 �0 1 �0 �0 4
1

x2 (2) 0 �0 �1 0 ��
1
2

� �0 6

x5 (3) 0 �3 �0 0 �1 �1 6

Z (0) 1 �0 �0 0 ��
3
2

� �1 36

x3 (1) 0 �0 �0 1 ��
1
3

� ��
1
3

� 2
2

x2 (2) 0 �0 �1 0 ��
1
2

� �0 6

x1 (3) 0 �1 �0 0 ��
1
3

� ��
1
3

� 2

optimal because none of the coefficients in row 0 is negative, so the algorithm is finished.
Consequently, the optimal solution for the Wyndor Glass Co. problem (before slack vari-
ables are introduced) is x1 � 2, x2 � 6.

Now compare Table 4.8 with the work done in Sec. 4.3 to verify that these two forms
of the simplex method really are equivalent. Then note how the algebraic form is supe-
rior for learning the logic behind the simplex method, but the tabular form organizes the
work being done in a considerably more convenient and compact form. We generally use
the tabular form from now on.

An additional example of applying the simplex method in tabular form is available
to you in the OR Tutor. See the demonstration entitled Simplex Method—Tabular Form.
Another example also is included in the Worked Examples section of the book’s website.
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■ 4.5 TIE BREAKING IN THE SIMPLEX METHOD

You may have noticed in the preceding two sections that we never said what to do if the
various choice rules of the simplex method do not lead to a clear-cut decision, because of
either ties or other similar ambiguities. We discuss these details now.

Tie for the Entering Basic Variable

Step 1 of each iteration chooses the nonbasic variable having the negative coefficient with
the largest absolute value in the current Eq. (0) as the entering basic variable. Now suppose
that two or more nonbasic variables are tied for having the largest negative coefficient (in
absolute terms). For example, this would occur in the first iteration for the Wyndor Glass
Co. problem if its objective function were changed to Z � 3x1� 3x2, so that the initial
Eq. (0) became Z � 3x1 � 3x2 � 0. How should this tie be broken?

The answer is that the selection between these contenders may be made arbitrarily.
The optimal solution will be reached eventually, regardless of the tied variable chosen,
and there is no convenient method for predicting in advance which choice will lead there
sooner. In this example, the simplex method happens to reach the optimal solution (2, 6)
in three iterations with x1 as the initial entering basic variable, versus two iterations if x2

is chosen.

Tie for the Leaving Basic Variable—Degeneracy

Now suppose that two or more basic variables tie for being the leaving basic variable
in step 2 of an iteration. Does it matter which one is chosen? Theoretically it does, and
in a very critical way, because of the following sequence of events that could occur.
First, all the tied basic variables reach zero simultaneously as the entering basic vari-
able is increased. Therefore, the one or ones not chosen to be the leaving basic variable
also will have a value of zero in the new BF solution. (Note that basic variables with a
value of zero are called degenerate, and the same term is applied to the corresponding
BF solution.) Second, if one of these degenerate basic variables retains its value of zero
until it is chosen at a subsequent iteration to be a leaving basic variable, the corre-
sponding entering basic variable also must remain zero (since it cannot be increased
without making the leaving basic variable negative), so the value of Z must remain un-
changed. Third, if Z may remain the same rather than increase at each iteration, the sim-
plex method may then go around in a loop, repeating the same sequence of solutions
periodically rather than eventually increasing Z toward an optimal solution. In fact, ex-
amples have been artificially constructed so that they do become entrapped in just such
a perpetual loop.10

Fortunately, although a perpetual loop is theoretically possible, it has rarely been
known to occur in practical problems. If a loop were to occur, one could always get out
of it by changing the choice of the leaving basic variable. Furthermore, special rules11

have been constructed for breaking ties so that such loops are always avoided. However,
these rules frequently are ignored in actual application, and they will not be repeated here.
For your purposes, just break this kind of tie arbitrarily and proceed without worrying
about the degenerate basic variables that result.

10For further information about cycling around a perpetual loop, see J. A. J. Hall and K. I. M. McKinnon: “The
Simplest Examples Where the Simplex Method Cycles and Conditions Where EXPAND Fails to Prevent Cy-
cling,” Mathematical Programming, Series B, 100(1): 135–150, May 2004.
11See R. Bland: “New Finite Pivoting Rules for the Simplex Method,” Mathematics of Operations Research,
2: 103–107, 1977.
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No Leaving Basic Variable—Unbounded Z

In step 2 of an iteration, there is one other possible outcome that we have not yet dis-
cussed, namely, that no variable qualifies to be the leaving basic variable.12 This 
outcome would occur if the entering basic variable could be increased indefinitely with-
out giving negative values to any of the current basic variables. In tabular form, this
means that every coefficient in the pivot column (excluding row 0) is either negative
or zero.

As illustrated in Table 4.9, this situation arises in the example displayed in 
Fig. 3.6. In this example, the last two functional constraints of the Wyndor Glass Co.
problem have been overlooked and so are not included in the model. Note in Fig. 3.6
how x2 can be increased indefinitely (thereby increasing Z indefinitely) without ever
leaving the feasible region. Then note in Table 4.9 that x2 is the entering basic vari-
able but the only coefficient in the pivot column is zero. Because the minimum ratio
test uses only coefficients that are greater than zero, there is no ratio to provide a leav-
ing basic variable.

The interpretation of a tableau like the one shown in Table 4.9 is that the constraints
do not prevent the value of the objective function Z from increasing indefinitely, so the
simplex method would stop with the message that Z is unbounded. Because even linear
programming has not discovered a way of making infinite profits, the real message for
practical problems is that a mistake has been made! The model probably has been misfor-
mulated, either by omitting relevant constraints or by stating them incorrectly. Alternatively,
a computational mistake may have occurred.

Multiple Optimal Solutions

We mentioned in Sec. 3.2 (under the definition of optimal solution) that a problem can
have more than one optimal solution. This fact was illustrated in Fig. 3.5 by changing the
objective function in the Wyndor Glass Co. problem to Z � 3x1 � 2x2, so that every point
on the line segment between (2, 6) and (4, 3) is optimal. Thus, all optimal solutions are
a weighted average of these two optimal CPF solutions

(x1, x2) � w1(2, 6) � w2(4, 3),

where the weights w1 and w2 are numbers that satisfy the relationships

w1 � w2 � 1 and w1 � 0, w2 � 0.

For example, w1 � �
1
3

� and w2 � �
2
3

� give
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■ TABLE 4.9 Initial simplex tableau for the Wyndor Glass Co. problem 
without the last two functional constraints

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 Side Ratio

Z (0) 1 �3 �5 0 0 With x1 � 0 and x2 increasing,
x3 (1) 0 �1 �0 1 4 None x3 � 4 � 1x1 � 0x2 � 4 � 0.

12Note that the analogous case (no entering basic variable) cannot occur in step 1 of an iteration, because the
optimality test would stop the algorithm first by indicating that an optimal solution had been reached.
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(x1, x2) � �
1
3

�(2, 6) � �
2
3

�(4, 3) � ��
2
3

� � �
8
3

�, �
6
3

� � �
6
3

�� � ��
1
3
0
�, 4�

as one optimal solution.
In general, any weighted average of two or more solutions (vectors) where the

weights are nonnegative and sum to 1 is called a convex combination of these solu-
tions. Thus, every optimal solution in the example is a convex combination of (2, 6)
and (4, 3).

This example is typical of problems with multiple optimal solutions.

As indicated at the end of Sec. 3.2, any linear programming problem with multiple opti-
mal solutions (and a bounded feasible region) has at least two CPF solutions that are op-
timal. Every optimal solution is a convex combination of these optimal CPF solutions.
Consequently, in augmented form, every optimal solution is a convex combination of the
optimal BF solutions.

(Problems 4.5-5 and 4.5-6 guide you through the reasoning behind this conclusion.)
The simplex method automatically stops after one optimal BF solution is found.

However, for many applications of linear programming, there are intangible factors
not incorporated into the model that can be used to make meaningful choices between
alternative optimal solutions. In such cases, these other optimal solutions should be
identified as well. As indicated above, this requires finding all the other optimal BF
solutions, and then every optimal solution is a convex combination of the optimal BF
solutions.

After the simplex method finds one optimal BF solution, you can detect if there are
any others and, if so, find them as follows:

Whenever a problem has more than one optimal BF solution, at least one of the non-
basic variables has a coefficient of zero in the final row 0, so increasing any such vari-
able will not change the value of Z. Therefore, these other optimal BF solutions can
be identified (if desired) by performing additional iterations of the simplex method,
each time choosing a nonbasic variable with a zero coefficient as the entering basic
variable.13

To illustrate, consider again the case just mentioned, where the objective function in
the Wyndor Glass Co. problem is changed to Z � 3x1 � 2x2. The simplex method obtains
the first three tableaux shown in Table 4.10 and stops with an optimal BF solution. How-
ever, because a nonbasic variable (x3) then has a zero coefficient in row 0, we perform
one more iteration in Table 4.10 to identify the other optimal BF solution. Thus, the two
optimal BF solutions are (4, 3, 0, 6, 0) and (2, 6, 2, 0, 0), each yielding Z � 18. Notice
that the last tableau also has a nonbasic variable (x4) with a zero coefficient in row 0. This
situation is inevitable because the extra iteration does not change row 0, so this leaving
basic variable necessarily retains its zero coefficient. Making x4 an entering basic variable
now would only lead back to the third tableau. (Check this.) Therefore, these two are the
only BF solutions that are optimal, and all other optimal solutions are a convex combi-
nation of these two.

(x1, x2, x3, x4, x5) � w1(2, 6, 2, 0, 0) � w2(4, 3, 0, 6, 0),
w1 � w2 � 1, w1 � 0, w2 � 0.

13If such an iteration has no leaving basic variable, this indicates that the feasible region is unbounded and the
entering basic variable can be increased indefinitely without changing the value of Z.
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Thus far we have presented the details of the simplex method under the assumptions that
the problem is in our standard form (maximize Z subject to functional constraints in � form
and nonnegativity constraints on all variables) and that bi � 0 for all i � 1, 2, . . . , m.
In this section we point out how to make the adjustments required for other legitimate
forms of the linear programming model. You will see that all these adjustments can be
made during the initialization, so the rest of the simplex method can then be applied just
as you have learned it already.

The only serious problem introduced by the other forms for functional constraints
(the � or � forms, or having a negative right-hand side) lies in identifying an initial
BF solution. Before, this initial solution was found very conveniently by letting the
slack variables be the initial basic variables, so that each one just equals the nonneg-
ative right-hand side of its equation. Now, something else must be done. The standard
approach that is used for all these cases is the artificial-variable technique. This tech-
nique constructs a more convenient artificial problem by introducing a dummy variable
(called an artificial variable) into each constraint that needs one. This new variable is
introduced just for the purpose of being the initial basic variable for that equation. The
usual nonnegativity constraints are placed on these variables, and the objective func-
tion also is modified to impose an exorbitant penalty on their having values larger than
zero. The iterations of the simplex method then automatically force the artificial vari-
ables to disappear (become zero), one at a time, until they are all gone, after which the
real problem is solved.

4.6 ADAPTING TO OTHER MODEL FORMS 111

■ TABLE 4.10 Complete set of simplex tableaux to obtain all optimal BF solutions
for the Wyndor Glass Co. problem with c2 = 2

Coefficient of:
Basic Right Solution

Iteration Variable Eq. Z x1 x2 x3 x4 x5 Side Optimal?

Z (0) 1 �3 �2 �0 �0 �0 0 No
x3 (1) 0 �1 �0 �1 �0 �0 4

0
x4 (2) 0 �0 �2 �0 �1 �0 12
x5 (3) 0 �3 �2 �0 �0 �1 18

Z (0) 1 �0 �2 �3 �0 �0 12 No
x1 (1) 0 �1 �0 �1 �0 �0 4

1
x4 (2) 0 �0 �2 �0 �1 �0 12
x5 (3) 0 �0 �2 �3 �0 �1 6

Z (0) 1 �0 �0 �0 �0 �1 18 Yes
x1 (1) 0 �1 �0 �1 �0 �0 4

2
x4 (2) 0 �0 �0 �3 �1 �1 6

x2 (3) 0 �0 �1 ��
3
2

� �0 ��
1
2

� 3

Z (0) 1 �0 �0 �0 �0 �1 18 Yes

x1 (1) 0 �1 �0 �0 ��
1
3

� ��
1
3

� 2
Extra

x3 (2) 0 �0 �0 �1 ��
1
3

� ��
1
3

� 2

x2 (3) 0 �0 �1 �0 ��
1
2

� �0 6

■ 4.6 ADAPTING TO OTHER MODEL FORMS
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To illustrate the artificial-variable technique, first we consider the case where the only
nonstandard form in the problem is the presence of one or more equality constraints.

Equality Constraints

Any equality constraint

ai1x1 � ai2x2 � � � � � ainxn � bi

actually is equivalent to a pair of inequality constraints:

ai1x1 � ai2x2 � � � � � ainxn � bi

ai1x1 � ai2x2 � � � � � ainxn � bi.

However, rather than making this substitution and thereby increasing the number of con-
straints, it is more convenient to use the artificial-variable technique. We shall illustrate
this technique with the following example.

Example. Suppose that the Wyndor Glass Co. problem in Sec. 3.1 is modified to require
that Plant 3 be used at full capacity. The only resulting change in the linear programming
model is that the third constraint, 3x1 � 2x2 � 18, instead becomes an equality constraint

3x1 � 2x2 � 18,

so that the complete model becomes the one shown in the upper right-hand corner of
Fig. 4.3. This figure also shows in darker ink the feasible region which now consists of
just the line segment connecting (2, 6) and (4, 3).

After the slack variables still needed for the inequality constraints are introduced, the
system of equations for the augmented form of the problem becomes

(2, 6)

(4, 3)

x2

x1

Maximize Z � 3x1 � 5x2,
subject to x1 � 4

� 12
� 18

2x2
2x23x1 �

x1 �0, x2 �0and

0 2 4 6 8

2

4

6

8

10

■ FIGURE 4.3
When the third functional
constraint becomes an
equality constraint, the
feasible region for the
Wyndor Glass Co. problem
becomes the line segment
between (2, 6) and (4, 3).
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(0) Z � 3x1 � 5x2 � 0.
(1) x1 � x3 � 4.
(2) 2x2 � x4 � 12.
(3) 3x1 � 2x2 � 18.

Unfortunately, these equations do not have an obvious initial BF solution because there
is no longer a slack variable to use as the initial basic variable for Eq. (3). It is necessary
to find an initial BF solution to start the simplex method.

This difficulty can be circumvented in the following way.

Obtaining an Initial BF Solution. The procedure is to construct an artificial prob-
lem that has the same optimal solution as the real problem by making two modifications
of the real problem.

1. Apply the artificial-variable technique by introducing a nonnegative artificial vari-
able (call it xx�5)14 into Eq. (3), just as if it were a slack variable

(3) 3x1 � 2x2 � x�5 � 18.

2. Assign an overwhelming penalty to having xx�5 � 0 by changing the objective function
Z � 3x1 � 5x2 to

Z � 3x1 � 5x2 � Mx�5,

where M symbolically represents a huge positive number. (This method of forcing xx�5

to be xx�5 � 0 in the optimal solution is called the Big M method.)

Now find the optimal solution for the real problem by applying the simplex method to the
artificial problem, starting with the following initial BF solution:

Initial BF Solution
Nonbasic variables: x1 � 0, x2 � 0
Basic variables: x3 � 4, x4 � 12, xx�5 � 18.

Because xx�5 plays the role of the slack variable for the third constraint in the artificial
problem, this constraint is equivalent to 3x1 � 2x2 � 18 ( just as for the original Wyndor
Glass Co. problem in Sec. 3.1). We show below the resulting artificial problem (before
augmenting) next to the real problem.

The Real Problem The Artificial Problem

4.6 ADAPTING TO OTHER MODEL FORMS 113

Maximize Z � 3x1 � 5x2,

subject to

x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and

x1 � 0, x2 � 0.

Define xx�5 � 18 � 3x1 � 2x2.

Maximize Z � 3x1 � 5x2 � Mxx�5,

subject to

(so 3x1 � 2x2 � x�5 � 4

(so 3x1 � 2x2 � x�5 � 12

(so 3x1 � 2x2 � x�5 � 18

(so 3x1 � 2x2 � x�5 � 18)

and

x1 � 0, x2 � 0, xx�5 � 0.

14We shall always label the artificial variables by putting a bar over them.

Therefore, just as in Sec. 3.1, the feasible region for (x1, x2) for the artificial problem is
the one shown in Fig. 4.4. The only portion of this feasible region that coincides with the
feasible region for the real problem is where x�5 � 0 (so 3x1 � 2x2 � 18).
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Figure 4.4 also shows the order in which the simplex method examines the CPF so-
lutions (or BF solutions after augmenting), where each circled number identifies which
iteration obtained that solution. Note that the simplex method moves counterclockwise here
whereas it moved clockwise for the original Wyndor Glass Co. problem (see Fig. 4.2). The
reason for this difference is the extra term �Mxx�5 in the objective function for the artificial
problem.

Before applying the simplex method and demonstrating that it follows the path shown
in Fig. 4.4, the following preparatory step is needed.

Converting Equation (0) to Proper Form. The system of equations after the arti-
ficial problem is augmented is

(0) Z � 3x1 � 5x2 � Mx�5 � 0
(1) x1 � x3 � 4
(2) 2x2 � x4 � 12
(3) 3x1 � 2x2 � x�5 � 18

where the initial basic variables (x3, x4, x�5) are shown in bold type. However, this system
is not yet in proper form from Gaussian elimination because a basic variable x�5 has a
nonzero coefficient in Eq. (0). Recall that all basic variables must be algebraically elimi-
nated from Eq. (0) before the simplex method can either apply the optimality test or find
the entering basic variable. This elimination is necessary so that the negative of the coef-
ficient of each nonbasic variable will give the rate at which Z would increase if that non-
basic variable were to be increased from 0 while adjusting the values of the basic variables
accordingly.

To algebraically eliminate x�5 from Eq. (0), we need to subtract from Eq. (0) the prod-
uct, M times Eq. (3).

New (0)

Z � 3x1 � 5x2 � Mx�5 � 0
�M(3x1� 2x2 �Mxx�5 � 18)

Z � (3M � 3)x1 � (2M � 5)x2 � �18M.
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(4, 0)

(0, 6)
(2, 6)

(4, 3)

(0, 0)

Feasible
region

x1

x2

Z � 30 � 6M

Z � 36

Z � 27

Z � 12 � 6M

Z � 0 � 18M

3

2

10

Maximize Z � 3x1 � 5x2 � Mx5,
subject to x1 � 4

� 12
� 18

2x2
2x23x1 �

x1 �0, x2 �0,and

Define x5 � 18 � 3x1 � 2x2.

x5 �0

■ FIGURE 4.4
This graph shows the feasible
region and the sequence of
CPF solutions (�, �, �, �)
examined by the simplex
method for the artificial
problem that corresponds to
the real problem of Fig. 4.3.
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Application of the Simplex Method. This new Eq. (0) gives Z in terms of just the
nonbasic variables (x1, x2),

Z � �18M � (3M � 3)x1 � (2M � 5)x2.

Since 3M � 3 � 2M � 5 (remember that M represents a huge number), increasing x1 in-
creases Z at a faster rate than increasing x2 does, so x1 is chosen as the entering basic vari-
able. This leads to the move from (0, 0) to (4, 0) at iteration 1, shown in Fig. 4.4, thereby
increasing Z by 4(3M � 3).

The quantities involving M never appear in the system of equations except for
Eq. (0), so they need to be taken into account only in the optimality test and when an en-
tering basic variable is determined. One way of dealing with these quantities is to assign
some particular (huge) numerical value to M and use the resulting coefficients in Eq. (0)
in the usual way. However, this approach may result in significant rounding errors that in-
validate the optimality test. Therefore, it is better to do what we have just shown, namely,
to express each coefficient in Eq. (0) as a linear function aM � b of the symbolic quan-
tity M by separately recording and updating the current numerical value of (1) the multi-
plicative factor a and (2) the additive term b. Because M is assumed to be so large that b
always is negligible compared with M when a 	 0, the decisions in the optimality test
and the choice of the entering basic variable are made by using just the multiplicative fac-
tors in the usual way, except for breaking ties with the additive factors.

Using this approach on the example yields the simplex tableaux shown in Table 4.11.
Note that the artificial variable x�5 is a basic variable (xx�5 � 0) in the first two tableaux
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■ TABLE 4.11 Complete set of simplex tableaux for the problem shown in Fig. 4.4

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x�5 Side

Z (0) 1 �3M � 3 �2M � 5 �0 0 �0 �18M
x3 (1) 0 1 0 �1 0 �0 4

0
x4 (2) 0 0 2 �0 1 �0 12
x�5 (3) 0 3 2 �0 0 �1 18

Z (0) 1 0 �2M � 5 3M � 3 0 �0 �6M � 12
x1 (1) 0 1 0 �1 0 �0 4

1
x4 (2) 0 0 2 �0 1 �0 12
x�5 (3) 0 0 2 �3 0 �1 6

Z (0) 1 0 0 � 0 M � 27

x1 (1) 0 1 0 �1 0 �0 4
2

x4 (2) 0 0 0 �3 1 �1 6

x2 (3) 0 0 1 � 0 � 3

Z (0) 1 0 0 �0 ��
3
2

� M � 1 36

x1 (1) 0 1 0 �0 � � 2
3

x3 (2) 0 0 0 �1 � � 2

x2 (3) 0 0 1 �0 � �0 6
1
�
2

1
�
3

1
�
3

1
�
3

1
�
3

1
�
2

3
�
2

5
�
2

9
�
2
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and a nonbasic variable (xx�5 � 0) in the last two. Therefore, the first two BF solutions for
this artificial problem are infeasible for the real problem whereas the last two also are BF
solutions for the real problem.

This example involved only one equality constraint. If a linear programming model
has more than one, each is handled in just the same way. (If the right-hand side is nega-
tive, multiply through both sides by �1 first.)

Negative Right-Hand Sides

The technique mentioned in the preceding sentence for dealing with an equality constraint
with a negative right-hand side (namely, multiply through both sides by �1) also works
for any inequality constraint with a negative right-hand side. Multiplying through both
sides of an inequality by �1 also reverses the direction of the inequality; i.e., � changes
to � or vice versa. For example, doing this to the constraint

x1 � x2 � �1 (that is, x1 � x2 � 1)

gives the equivalent constraint

�x1 � x2 � 1 (that is, x2 � 1 � x1)

but now the right-hand side is positive. Having nonnegative right-hand sides for all the
functional constraints enables the simplex method to begin, because (after augmenting)
these right-hand sides become the respective values of the initial basic variables, which
must satisfy nonnegativity constraints.

We next focus on how to augment � constraints, such as �x1 � x2 � 1, with the help
of the artificial-variable technique.

Functional Constraints in ≥ Form

To illustrate how the artificial-variable technique deals with functional constraints in �
form, we will use the model for designing Mary’s radiation therapy, as presented in Sec. 3.4.
For your convenience, this model is repeated below, where we have placed a box around the
constraint of special interest here.

Radiation Therapy Example

Minimize Z � 0.4x1 � 0.5x2,

subject to

0.3x1 � 0.1x2 � 2.7

0.5x1 � 0.5x2 � 6

0.6x1 � 0.4x2 � 6

and

x1 � 0, x2 � 0.

The graphical solution for this example (originally presented in Fig. 3.12) is repeated
here in a slightly different form in Fig. 4.5. The three lines in the figure, along with the
two axes, constitute the five constraint boundaries of the problem. The dots lying at the
intersection of a pair of constraint boundaries are the corner-point solutions. The only two
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5

10

0 5 10 x1

0.6x1 � 0.4x2 � 6

(6, 6)

(7.5, 4.5)

(8, 3)

0.3x1 � 0.1x2 � 2.7
0.5x1 � 0.5x2 � 6

                                        Dots � corner-point solutions
       Dark line segment � feasible region 

Optimal solution � (7.5, 4.5)

15

x2

27

■ FIGURE 4.5
Graphical display of the
radiation therapy example
and its corner-point
solutions.

corner-point feasible solutions are (6, 6) and (7.5, 4.5), and the feasible region is the line
segment connecting these two points. The optimal solution is (x1, x2) � (7.5, 4.5), with 
Z � 5.25.

We soon will show how the simplex method solves this problem by directly solving
the corresponding artificial problem. However, first we must describe how to deal with
the third constraint.

Our approach involves introducing both a surplus variable x5 (defined as x5 �
0.6x1 � 0.4x2 � 6) and an artificial variable x�6, as shown next.

0.6x1 � 0.4x2 � 6
� 0.6x1 � 0.4x2 � x5 � 6 (x5 � 0)
� 0.6x1 � 0.4x2 � x5 � x�6 � 6 (x5 � 0, xx�6 � 0).

Here x5 is called a surplus variable because it subtracts the surplus of the left-hand side
over the right-hand side to convert the inequality constraint to an equivalent equality 
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constraint. Once this conversion is accomplished, the artificial variable is introduced just
as for any equality constraint.

After a slack variable x3 is introduced into the first constraint, an artificial variable
x�4 is introduced into the second constraint, and the Big M method is applied, so the com-
plete artificial problem (in augmented form) is

Minimize Z � 0.4x1 � 0.5x2 � Mxx�4 � Mxx�6,

subject to 0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � x�4 � 6
0.6x1 � 0.4x2 � xxx5 � x�6 � 6

and x1 � 0, x2 � 0, x3 � 0, x�4 � 0, x5 � 0, x�6 � 0.

Note that the coefficients of the artificial variables in the objective function are �M, in-
stead of �M, because we now are minimizing Z. Thus, even though xx�4 � 0 and/or x�6 � 0
is possible for a feasible solution for the artificial problem, the huge unit penalty of �M
prevents this from occurring in an optimal solution.

As usual, introducing artificial variables enlarges the feasible region. Compare below
the original constraints for the real problem with the corresponding constraints on (x1, x2)
for the artificial problem.

Constraints on (x1, x2) Constraints on (x1, x2)
for the Real Problem for the Artificial Problem

0.3x1 � 0.1x2 � 2.7 0.3x1 � 0.1x2 � 2.7
0.5x1 � 0.5x2 � 6 0.5x1 � 0.5x2 � 6 (� holds when xx�4 � 0)
0.6x1 � 0.4x2 � 6 No such constraint (except when xx�6 � 0)

x1 � 0, x2 � 0 x1 � 0, x2 � 0

Introducing the artificial variable xx�4 to play the role of a slack variable in the second con-
straint allows values of (x1, x2) below the 0.5x1 � 0.5x2 � 6 line in Fig. 4.5. Introducing
x5 and xx�6 into the third constraint of the real problem (and moving these variables to the
right-hand side) yields the equation

0.6x1 � 0.4x2 � 6 � x5 � xx�6.

Because both x5 and xx�6 are constrained only to be nonnegative, their difference x5 � xx�6

can be any positive or negative number. Therefore, 0.6x1 � 0.4x2 can have any value,
which has the effect of eliminating the third constraint from the artificial problem and al-
lowing points on either side of the 0.6x1 � 0.4x2 � 6 line in Fig. 4.5. (We keep the third
constraint in the system of equations only because it will become relevant again later, af-
ter the Big M method forces x�6 to be zero.) Consequently, the feasible region for the ar-
tificial problem is the entire polyhedron in Fig. 4.5 whose vertices are (0, 0), (9, 0),
(7.5, 4.5), and (0, 12).

Since the origin now is feasible for the artificial problem, the simplex method starts with
(0, 0) as the initial CPF solution, i.e., with (x1, x2, x3, xx�4, x5, x�6) � (0, 0, 2.7, 6, 0, 6) as the
initial BF solution. (Making the origin feasible as a convenient starting point for the simplex
method is the whole point of creating the artificial problem.) We soon will trace the entire
path followed by the simplex method from the origin to the optimal solution for both the ar-
tificial and real problems. But, first, how does the simplex method handle minimization?

Minimization

One straightforward way of minimizing Z with the simplex method is to exchange the
roles of the positive and negative coefficients in row 0 for both the optimality test and
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step 1 of an iteration. However, rather than changing our instructions for the simplex
method for this case, we present the following simple way of converting any minimiza-
tion problem to an equivalent maximization problem:

Minimizing Z � �
n

j�1
cjxj

is equivalent to

maximizing �Z � �
n

j�1
(�cj)xj;

i.e., the two formulations yield the same optimal solution(s).
The two formulations are equivalent because the smaller Z is, the larger �Z is, so the

solution that gives the smallest value of Z in the entire feasible region must also give the
largest value of �Z in this region.

Therefore, in the radiation therapy example, we make the following change in the
formulation:

� Minimize �Z � �0.4x1 � 0.5x2

� Maximize �Z � �0.4x1 � 0.5x2.

After artificial variables xx�4 and xx�6 are introduced and then the Big M method is applied,
the corresponding conversion is

� Minimize �Z � �0.4x1 � 0.5x2 � Mxx�4 � Mxxx�6

� Maximize �Z � �0.4x1 � 0.5x2 � Mxx�4 � Mxxx�6.

Solving the Radiation Therapy Example

We now are nearly ready to apply the simplex method to the radiation therapy example.
By using the maximization form just obtained, the entire system of equations is now

(0) �Z � 0.4x1 � 0.5x2 � Mx�4 � Mx�6 � 0
(1) 0.3x1 � 0.1x2 � x3 � 2.7
(2) 0.5x1 � 0.5x2 � x�4 � 6
(3) 0.6x1 � 0.4x2 � x5 � x�6 � 6.

The basic variables (x3, x�4, x�6) for the initial BF solution (for this artificial problem) are
shown in bold type.

Note that this system of equations is not yet in proper form from Gaussian elimina-
tion, as required by the simplex method, since the basic variables x�4 and x�6 still need to
be algebraically eliminated from Eq. (0). Because x�4 and x�6 both have a coefficient of M,
Eq. (0) needs to have subtracted from it both M times Eq. (2) and M times Eq. (3). The
calculations for all the coefficients (and the right-hand sides) are summarized below, where
the vectors are the relevant rows of the simplex tableau corresponding to the above sys-
tem of equations.

Row 0:
�M[0.4, 0.5, 0, M, 0, M, 0]
�M[0.5, 0.5, 0, 1, 0, 0, 6]
�M[0.6, 0.4, 0, 0, �1, 1, 6]

New row 0 � [�1.1M � 0.4, �0.9M � 0.5, 0, 0, M, 0, �12M]

The resulting initial simplex tableau, ready to begin the simplex method, is shown at
the top of Table 4.12. Applying the simplex method in just the usual way then yields the
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sequence of simplex tableaux shown in the rest of Table 4.12. For the optimality test and
the selection of the entering basic variable at each iteration, the quantities involving M
are treated just as discussed in connection with Table 4.11. Specifically, whenever M is
present, only its multiplicative factor is used, unless there is a tie, in which case the tie is
broken by using the corresponding additive terms. Just such a tie occurs in the last se-
lection of an entering basic variable (see the next-to-last tableau), where the coefficients
of x3 and x5 in row 0 both have the same multiplicative factor of ��

5
3

�. Comparing the ad-
ditive terms, �

1
6
1
� 
 �

7
3

� leads to choosing x5 as the entering basic variable.
Note in Table 4.12 the progression of values of the artificial variables x�4 and x�6 and

of Z. We start with large values, x�4 � 6 and x�6 � 6, with Z � 12M (�Z � �12M). The
first iteration greatly reduces these values. The Big M method succeeds in driving x�6 to
zero (as a new nonbasic variable) at the second iteration and then in doing the same to xx�4

at the next iteration. With both x�4 � 0 and x�6 � 0, the basic solution given in the last
tableau is guaranteed to be feasible for the real problem. Since it passes the optimality
test, it also is optimal.

Now see what the Big M method has done graphically in Fig. 4.6. The feasible re-
gion for the artificial problem initially has four CPF solutions—(0, 0), (9, 0), (0, 12), and
(7.5, 4.5)—and then replaces the first three with two new CPF solutions—(8, 3), (6, 6)—
after x�6 decreases to x�6 � 0 so that 0.6x1 � 0.4x2 � 6 becomes an additional constraint.
(Note that the three replaced CPF solutions—(0, 0), (9, 0), and (0, 12)—actually were
corner-point infeasible solutions for the real problem shown in Fig. 4.5.) Starting with the
origin as the convenient initial CPF solution for the artificial problem, we move around
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■ TABLE 4.12 The Big M method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1M � 0.4 �0.9M � 0.5 �0.0 �0.0 M �0 �12M1
x3 (1) �0 0.3 0.1 �1.0 �0.0 �0 �0 �2.7

0
x�4 (2) �0 0.5 0.5 �0.0 �1.0 �0 �0 �6.0
x�6 (3) �0 0.6 0.4 �0.0 �0.0 �1 �1 �6.0

Z (0) �1 0.0 ��
1
3
6
0
�M � �

1
3

1
0
� �

1
3
1
�M � �

4
3

� �0.0 M �0 �2.1M � 3.6

x1 (1) �0 1.0 �
1
3

� ��
1
3
0
� �0.0 �0 �0 �9.0

1
x�4 (2) �0 0.0 �

1
3

� ��
5
3

� �1.0 �0 �0 �1.5

x�6 (3) �0 0.0 0.2 �2 �0.0 �1 �1 �0.6

Z (0) �1 0.0 0.0 ��
5
3

�M � �
7
3

� �0.0 ��
5
3

�M � �
1
6
1
� �

8
3

�M � �
1
6
1
� �0.5M � 4.7

x1 (1) �0 1.0 0.0 ��
2
3
0
� �0.0 ��

5
3

� ��
5
3

� �8.0
2

x�4 (2) �0 0.0 0.0 ��
5
3

� �1.0 ��
5
3

� ��
5
3

� �0.5

x2 (3) �0 0.0 1.0 �10.0 �0.0 �5 �5 �3.0

Z (0) �1 0.0 0.0 � 0.5 M � 1.1 �0 M �5.25
x1 (1) �0 1.0 0.0 � 5.0 �1.0 �0 �0 �7.51

3
x5 (2) �0 0.0 0.0 � 1.0 1 0.6 �1 �1 �0.31
x2 (3) �0 0.0 1.0 �5.0 �3.0 �0 �0 �4.51
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the boundary to three other CPF solutions—(9, 0), (8, 3), and (7.5, 4.5). The last of these
is the first one that also is feasible for the real problem. Fortuitously, this first feasible so-
lution also is optimal, so no additional iterations are needed.

For other problems with artificial variables, it may be necessary to perform additional
iterations to reach an optimal solution after the first feasible solution is obtained for the
real problem. (This was the case for the example solved in Table 4.11.) Thus, the Big M
method can be thought of as having two phases. In the first phase, all the artificial vari-
ables are driven to zero (because of the penalty of M per unit for being greater than zero)
in order to reach an initial BF solution for the real problem. In the second phase, all the
artificial variables are kept at zero (because of this same penalty) while the simplex method
generates a sequence of BF solutions for the real problem that leads to an optimal solu-
tion. The two-phase method described next is a streamlined procedure for performing these
two phases directly, without even introducing M explicitly.

The Two-Phase Method

For the radiation therapy example just solved in Table 4.12, recall its real objective 
function

Real problem: Minimize Z � 0.4x1 � 0.5x2.
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x2

(0, 0)
(9, 0) x1

(6, 6)

(7.5, 4.5) optimal

(8, 3)

(0, 12)
Z � 6 � 1.2M

Z � 0 � 12M

Z � 4.7 � 0.5M

Z � 3.6 � 2.1M

Z � 5.25

Z � 5.4

Feasible region for the artificial problem

This dark line segment is the feasible
region for the real problem
(x4 � 0, x6 � 0).

Constraints for the artificial problem:

 0.3x1 � 0.1x2 � 2.7
 0.5x1 � 0.5x2 � 6 (� holds when x4 � 0)
(0.6x1 � 0.4x2 � 6 when x6 � 0)

x1 � 0,  x2 � 0  (x4 � 0,  x6 � 0)

10

2

3

■ FIGURE 4.6
This graph shows the feasible
region and the sequence of
CPF solutions (�, �, �, �)
examined by the simplex
method (with the Big M
method) for the artificial
problem that corresponds to
the real problem of Fig. 4.5.
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However, the Big M method uses the following objective function (or its equivalent in
maximization form) throughout the entire procedure:

Big M method: Minimize Z � 0.4x1 � 0.5x2 � Mx�4 � Mx�6.

Since the first two coefficients are negligible compared to M, the two-phase method is
able to drop M by using the following two objective functions with completely different
definitions of Z in turn.

Two-phase method:

Phase 1: Minimize Z � x�4 � xx�6 (until x�4 � 0, x�6 � 0).
Phase 2: Minimize Z � 0.4x1 � 0.5x2 (with x�4 � 0, x�6 � 0).

The phase 1 objective function is obtained by dividing the Big M method objective func-
tion by M and then dropping the negligible terms. Since phase 1 concludes by obtaining
a BF solution for the real problem (one where x�4 � 0 and x�6 � 0), this solution is then
used as the initial BF solution for applying the simplex method to the real problem (with
its real objective function) in phase 2.

Before solving the example in this way, we summarize the general method.

Summary of the Two-Phase Method. Initialization: Revise the constraints of the
original problem by introducing artificial variables as needed to obtain an obvious initial
BF solution for the artificial problem.

Phase 1: The objective for this phase is to find a BF solution for the real problem.
To do this,

Minimize Z � � artificial variables, subject to revised constraints.

The optimal solution obtained for this problem (with Z � 0) will be a BF solution for the
real problem.

Phase 2: The objective for this phase is to find an optimal solution for the real prob-
lem. Since the artificial variables are not part of the real problem, these variables can now
be dropped (they are all zero now anyway).15 Starting from the BF solution obtained at
the end of phase 1, use the simplex method to solve the real problem.

For the example, the problems to be solved by the simplex method in the respective
phases are summarized below.

Phase 1 Problem (Radiation Therapy Example):

Minimize Z � x�4 � x�6,

subject to

0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � x�4 � 6
0.6x1 � 0.4x2 � xx5 � xx�6 � 6

and

x1 � 0, x2 � 0, x3 � 0, xx�4 � 0, x5 � 0, xx�6 � 0. 

Phase 2 Problem (Radiation Therapy Example):

Minimize Z � 0.4x1 � 0.5x2,

122 CHAPTER 4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

15We are skipping over three other possibilities here: (1) artificial variables � 0 (discussed in the next subsec-
tion), (2) artificial variables that are degenerate basic variables, and (3) retaining the artificial variables as nonbasic
variables in phase 2 (and not allowing them to become basic) as an aid to subsequent postoptimality analysis.
Your IOR Tutorial allows you to explore these possibilities.
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subject to

0.3x1 � 0.1x2 � x3 � 2.7
0.5x1 � 0.5x2 � 6
0.6x1 � 0.4x2 � x5 � 6

and

x1 � 0, x2 � 0, x3 � 0, x5 � 0.

The only differences between these two problems are in the objective function and in the
inclusion (phase 1) or exclusion (phase 2) of the artificial variables x�4 and x�6. Without
the artificial variables, the phase 2 problem does not have an obvious initial BF solution.
The sole purpose of solving the phase 1 problem is to obtain a BF solution with xx�4 � 0
and x�6 � 0 so that this solution (without the artificial variables) can be used as the initial
BF solution for phase 2.

Table 4.13 shows the result of applying the simplex method to this phase 1 problem.
[Row 0 in the initial tableau is obtained by converting Minimize Z � x�4 � xx�6 to Maxi-
mize (�Z) � �x�4 � x�6 and then using elementary row operations to eliminate the basic
variables x�4 and x�6 from �Z � x�4 � x�6 � 0.] In the next-to-last tableau, there is a tie for
the entering basic variable between x3 and x5, which is broken arbitrarily in favor of x3.
The solution obtained at the end of phase 1, then, is (x1, x2, x3, x�4, x5, x�6) � (6, 6, 0.3, 0,
0, 0) or, after x�4 and x�6 are dropped, (x1, x2, x3, x5) � (6, 6, 0.3, 0).

■ TABLE 4.13 Phase 1 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1 �0.9 �00 �0 �1 �0 �12
x3 (1) �0 �0.3 �0.1 �01 �0 �0 �0 �2.7

0
x�4 (2) �0 �0.5 �0.5 �00 �1 �0 �0 �6.0
x�6 (3) �0 �0.6 �0.4 �00 �0 �1 �1 �6.0

Z (0) �1 �0.0 ��
1
3

6
0
� ��

1
3
1
� �0 �1 �0 �2.1

x1 (1) �0 �1.0 ��
1
3

� ��
1
3
0
� �0 �0 �0 �9.0

1
x�4 (2) �0 �0.0 ��

1
3

� ��
5
3

� �1 �0 �0 �1.5

x�6 (3) �0 �0.0 �0.2 �2 �0 �1 �1 �0.6

Z (0) �1 �0.0 �0.0 ��
5
3

� �0 ��
5
3

� ��
8
3

� �0.5

x1 (1) �0 �1.0 �0.0 ��
2
3
0
� �0 ��

5
3

� ��
5
3

� �8.0
2

x�4 (2) �0 �0.0 �0.0 ��
5
3

� �1 ��
5
3

� ��
5
3

� �0.5

x2 (3) �0 �0.0 �1.0 �10 �0 �5 �5 �3.0

Z (0) �1 �0.0 �0.0 �00 �1 �0 �1 �0.0
x1 (1) �0 �1.0 �0.0 �00 �4 �5 �5 �6.0

3
x3 (2) �0 �0.0 �0.0 �01 ��

3
5

� �1 �1 �0.3

x2 (3) �0 �0.0 �1.0 �00 �6 �5 �5 �6.0
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As claimed in the summary, this solution from phase 1 is indeed a BF solution for the
real problem (the phase 2 problem) because it is the solution (after you set x5 � 0) to the
system of equations consisting of the three functional constraints for the phase 2 problem.
In fact, after deleting the x�4 and xx�6 columns as well as row 0 for each iteration, Table 4.13
shows one way of using Gaussian elimination to solve this system of equations by reduc-
ing the system to the form displayed in the final tableau.

Table 4.14 shows the preparations for beginning phase 2 after phase 1 is completed.
Starting from the final tableau in Table 4.13, we drop the artificial variables (x�4 and xx�6),
substitute the phase 2 objective function (�Z � �0.4x1 � 0.5x2 in maximization form)
into row 0, and then restore the proper form from Gaussian elimination (by algebraically
eliminating the basic variables x1 and x2 from row 0). Thus, row 0 in the last tableau is
obtained by performing the following elementary row operations in the next-to-last
tableau: from row 0 subtract both the product, 0.4 times row 1, and the product, 0.5 times
row 3. Except for the deletion of the two columns, note that rows 1 to 3 never change.
The only adjustments occur in row 0 in order to replace the phase 1 objective function by
the phase 2 objective function.

The last tableau in Table 4.14 is the initial tableau for applying the simplex method
to the phase 2 problem, as shown at the top of Table 4.15. Just one iteration then leads to
the optimal solution shown in the second tableau: (x1, x2, x3, x5) � (7.5, 4.5, 0, 0.3). This
solution is the desired optimal solution for the real problem of interest rather than the ar-
tificial problem constructed for phase 1.

Now we see what the two-phase method has done graphically in Fig. 4.7. Starting at
the origin, phase 1 examines a total of four CPF solutions for the artificial problem. The
first three actually were corner-point infeasible solutions for the real problem shown in
Fig. 4.5. The fourth CPF solution, at (6, 6), is the first one that also is feasible for the real
problem, so it becomes the initial CPF solution for phase 2. One iteration in phase 2 leads
to the optimal CPF solution at (7.5, 4.5).
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■ TABLE 4.14 Preparing to begin phase 2 for the radiation therapy example

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 00. 0.0 0 �1 �0.0 �1 �0.0

Final Phase 1 x1 (1) �0 10. 0.0 0 �4 �5.0 �5 �6.0

tableau x3 (2) �0 00. 0.0 1 ��
3
5

� �1.0 �1 �0.3

x2 (3) �0 00. 1.0 0 �6 �5.0 �5 �6.0

Z (0) �1 00. 0.0 0 �0.0 �0.0
x1 (1) �0 10. 0.0 0 �5.0 �6.0Drop x�4 and xx�6 x3 (2) �0 00. 0.0 1 �1.0 �0.3
x2 (3) �0 00. 1.0 0 �5.0 �6.0

Z (0) �1 0.4 0.5 0 �0.0 �0.0
Substitute phase 2 x1 (1) �0 10. 0.0 0 �5.0 �6.0
objective function x3 (2) �0 00. 0.0 1 �1.0 �0.3

x2 (3) �0 00. 1.0 0 �5.0 �6.0

Z (0) �1 00. 0.0 0 �0.5 �5.4
Restore proper form x1 (1) �0 10. 0.0 0 �5.0 �6.0
from Gaussian elimination x3 (2) �0 00. 0.0 1 �1.0 �0.3

x2 (3) �0 00. 1.0 0 �5.0 �6.0

hil76299_ch04_089-160.qxd  11/19/08  08:28 AM  Page 124



Rev.Confirming Pages

If the tie for the entering basic variable in the next-to-last tableau of Table 4.13 had
been broken in the other way, then phase 1 would have gone directly from (8, 3) to (7.5,
4.5). After (7.5, 4.5) was used to set up the initial simplex tableau for phase 2, the optimality
test would have revealed that this solution was optimal, so no iterations would be done.

It is interesting to compare the Big M and two-phase methods. Begin with their ob-
jective functions.
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■ TABLE 4.15 Phase 2 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x5 Side

Z (0) �1 0 0 �0.0 �0.5 �5.40
x1 (1) �0 1 0 �0.0 �5.0 �6.00

0
x3 (2) �0 0 0 �1.0 �1.0 �0.30
x2 (3) �0 0 1 �0.0 �5.0 �6.00

Z (0) �1 0 0 �0.5 �0.0 �5.25
x1 (1) �0 1 0 �5.0 �0.0 �7.50

1
x5 (2) �0 0 0 �1.0 �1.0 �0.30
x2 (3) �0 0 1 �5.0 �0.0 �4.50

x2

(0, 0)
(9, 0) x1

(6, 6)

(7.5, 4.5) optimal

(8, 3)

(0, 12)

Feasible region
for the artificial
problem (phase 1)

This dark line segment is the
feasible region for the real problem
(phase 2).

10

2

3
0

1

■ FIGURE 4.7
This graph shows the
sequence of CPF solutions for
phase 1 (�, �, �, �) and
then for phase 2 ( , )
when the two-phase method
is applied to the radiation
therapy example.

10
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Big M Method:

Minimize Z � 0.4x1 � 0.5x2 � Mx�4 � Mxx�6.

Two-Phase Method:

Phase 1: Minimize Z � xx�4 � x�6.
Phase 2: Minimize Z � 0.4x1 � 0.5x2.

Because the Mx�4 and Mx�6 terms dominate the 0.4x1 and 0.5x2 terms in the objective func-
tion for the Big M method, this objective function is essentially equivalent to the phase 1
objective function as long as x�4 and/or xx�6 is greater than zero. Then, when both x�4 � 0
and x�6 � 0, the objective function for the Big M method becomes completely equivalent
to the phase 2 objective function.

Because of these virtual equivalencies in objective functions, the Big M and two-
phase methods generally have the same sequence of BF solutions. The one possible
exception occurs when there is a tie for the entering basic variable in phase 1 of the
two-phase method, as happened in the third tableau of Table 4.13. Notice that the first
three tableaux of Tables 4.12 and 4.13 are almost identical, with the only difference
being that the multiplicative factors of M in Table 4.12 become the sole quantities in
the corresponding spots in Table 4.13. Consequently, the additive terms that broke the
tie for the entering basic variable in the third tableau of Table 4.12 were not present
to break this same tie in Table 4.13. The result for this example was an extra iteration
for the two-phase method. Generally, however, the advantage of having the additive
factors is minimal.

The two-phase method streamlines the Big M method by using only the multiplica-
tive factors in phase 1 and by dropping the artificial variables in phase 2. (The Big M
method could combine the multiplicative and additive factors by assigning an actual huge
number to M, but this might create numerical instability problems.) For these reasons, the
two-phase method is commonly used in computer codes.

The Worked Examples section on the book’s website provides another example of
applying both the Big M method and the two-phase method to the same problem.

No Feasible Solutions

So far in this section we have been concerned primarily with the fundamental problem
of identifying an initial BF solution when an obvious one is not available. You have
seen how the artificial-variable technique can be used to construct an artificial problem
and obtain an initial BF solution for this artificial problem instead. Use of either the
Big M method or the two-phase method then enables the simplex method to begin its
pilgrimage toward the BF solutions, and ultimately toward the optimal solution, for the
real problem.

However, you should be wary of a certain pitfall with this approach. There may be
no obvious choice for the initial BF solution for the very good reason that there are no
feasible solutions at all! Nevertheless, by constructing an artificial feasible solution, there
is nothing to prevent the simplex method from proceeding as usual and ultimately re-
porting a supposedly optimal solution.

Fortunately, the artificial-variable technique provides the following signpost to indi-
cate when this has happened:

If the original problem has no feasible solutions, then either the Big M method or phase 1
of the two-phase method yields a final solution that has at least one artificial variable greater
than zero. Otherwise, they all equal zero.
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To illustrate, let us change the first constraint in the radiation therapy example (see
Fig. 4.5) as follows:

0.3x1 � 0.1x2 � 2.7 � 0.3x1 � 0.1x2 � 1.8,

so that the problem no longer has any feasible solutions. Applying the Big M method just
as before (see Table 4.12) yields the tableaux shown in Table 4.16. (Phase 1 of the two-
phase method yields the same tableaux except that each expression involving M is re-
placed by just the multiplicative factor.) Hence, the Big M method normally would be
indicating that the optimal solution is (3, 9, 0, 0, 0, 0.6). However, since an artificial vari-
able x�6 � 0.6 � 0, the real message here is that the problem has no feasible solutions.16

Variables Allowed to Be Negative

In most practical problems, negative values for the decision variables would have no phys-
ical meaning, so it is necessary to include nonnegativity constraints in the formulations
of their linear programming models. However, this is not always the case. To illustrate,
suppose that the Wyndor Glass Co. problem is changed so that product 1 already is in
production, and the first decision variable x1 represents the increase in its production rate.
Therefore, a negative value of x1 would indicate that product 1 is to be cut back by that
amount. Such reductions might be desirable to allow a larger production rate for the new,
more profitable product 2, so negative values should be allowed for x1 in the model.

Since the procedure for determining the leaving basic variable requires that all the
variables have nonnegativity constraints, any problem containing variables allowed to be
negative must be converted to an equivalent problem involving only nonnegative vari-
ables before the simplex method is applied. Fortunately, this conversion can be done. The
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■ TABLE 4.16 The Big M method for the revision of the radiation therapy example that has no feasible solutions

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x�4 x5 x�6 Side

Z (0) �1 �1.1M � 0.4 �0.9M � 0.5 �0 �0.0 M 0 �12M
x3 (1) �0 0.3 0.1 �1 �0.0 �0 0 1.8

0
x�4 (2) �0 0.5 0.5 �0 �1.0 �0 0 6.0
x�6 (3) �0 0.6 0.4 �0 �0.0 �1 1 6.0

Z (0) �1 0.0 ��
1
3
6
0
�M � �

1
3

1
0
� �

1
3
1
�M � �

4
3

� �0.0 M 0 �5.4M � 2.4

x1 (1) �0 1.0 �
1
3

� ��
1
3
0
� �0.0 �0 0 6.0

1
x�4 (2) �0 0.0 �

1
3

� ��
5
3

� �1.0 �0 0 3.0

x�6 (3) �0 0.0 0.2 �2 �0.0 �1 1 2.4

Z (0) �1 0.0 0.0 M � 0.5 1.6M � 1.1 M 0 �0.6M � 5.7
x1 (1) �0 1.0 0.0 �5 �1.0 �0 0 3.0

2
x2 (2) �0 0.0 1.0 �5 �3.0 �0 0 9.0
x�6 (3) �0 0.0 0.0 �1 �0.6 �1 1 0.6

16Techniques have been developed (and incorporated into linear programming software) to analyze what causes
a large linear programming problem to have no feasible solutions so that any errors in the formulation can be
corrected. For example, see J. W. Chinneck: Feasibility and Infeasibility in Optimization: Algorithms and Com-
putational Methods, Springer Science + Business Media, New York, 2008.
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modification required for each variable depends upon whether it has a (negative) lower
bound on the values allowed. Each of these two cases is now discussed.

Variables with a Bound on the Negative Values Allowed. Consider any decision
variable xj that is allowed to have negative values which satisfy a constraint of the form

xj � Lj,

where Lj is some negative constant. This constraint can be converted to a nonnegativity
constraint by making the change of variables

x�j � xj � Lj, so x�j � 0.

Thus, x�j � Lj would be substituted for xj throughout the model, so that the redefined de-
cision variable x�j cannot be negative. (This same technique can be used when Lj is posi-
tive to convert a functional constraint xj � Lj to a nonnegativity constraint x�j � 0.)

To illustrate, suppose that the current production rate for product 1 in the Wyndor
Glass Co. problem is 10. With the definition of x1 just given, the complete model at this
point is the same as that given in Sec. 3.1 except that the nonnegativity constraint x1 � 0
is replaced by

x1 � �10.

To obtain the equivalent model needed for the simplex method, this decision variable
would be redefined as the total production rate of product 1

x�j � x1 � 10,

which yields the changes in the objective function and constraints as shown:

� �

Variables with No Bound on the Negative Values Allowed. In the case where
xj does not have a lower-bound constraint in the model formulated, another approach is
required: xj is replaced throughout the model by the difference of two new nonnegative
variables

xj � xj
� � xj

�, where xj
� � 0, xj

� � 0.

Since xj
� and xj

� can have any nonnegative values, this difference xj
� � xj

� can have any
value (positive or negative), so it is a legitimate substitute for xj in the model. But after
such substitutions, the simplex method can proceed with just nonnegative variables.

The new variables xj
� and xj

� have a simple interpretation. As explained in the next
paragraph, each BF solution for the new form of the model necessarily has the property
that either xj

� � 0 or xj
� � 0 (or both). Therefore, at the optimal solution obtained by the

simplex method (a BF solution),

xj
� � �

xj
� � �

so that xj
� represents the positive part of the decision variable xj and xj

� its negative part
(as suggested by the superscripts).

if xj � 0,
otherwise;

xj
0

if xj � 0,
otherwise;

xj

0

Z � �30 � 3x�1 � 5x2

2x�1 � 2x2 � 14
3x�1 � 2x2 � 12
3x�1 � 2x2 � 48
x�1 � 0, x2 � 0

Z � 3(x�1 � 10) � 5x2

3(x�1 � 10) � 2x2 � 4
3(x�1 � 10) � 2x2 � 12
3(x�1 � 10) � 2x2 � 18
x�1 � 10 � �10, x2 � 0

Z � 3x1 � 5x2

3x1 � 2x2 � 4
3x1 � 2x2 � 12
3x1 � 2x2 � 18
x1 � �10, x2 � 0
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For example, if xj � 10, the above expressions give xj
� � 10 and xj

� � 0. This same
value of xj � xj

� � xj
� � 10 also would occur with larger values of xj

� and xj
� such that

xj
� � xj

� � 10. Plotting these values of xj
� and xj

� on a two-dimensional graph gives a
line with an endpoint at xj

� � 10, xj
� � 0 to avoid violating the nonnegativity constraints.

This endpoint is the only corner-point solution on the line. Therefore, only this endpoint
can be part of an overall CPF solution or BF solution involving all the variables of the
model. This illustrates why each BF solution necessarily has either xj

� � 0 or xj
� � 0 

(or both).
To illustrate the use of the xj

� and xj
�, let us return to the example on the preceding

page where x1 is redefined as the increase over the current production rate of 10 for prod-
uct 1 in the Wyndor Glass Co. problem.

However, now suppose that the x1 � �10 constraint was not included in the original
model because it clearly would not change the optimal solution. (In some problems, cer-
tain variables do not need explicit lower-bound constraints because the functional con-
straints already prevent lower values.) Therefore, before the simplex method is applied,
x1 would be replaced by the difference

x1 � x1
� � x1

�, where x1
� � 0, x1

� � 0,

as shown:

�

From a computational viewpoint, this approach has the disadvantage that the new
equivalent model to be used has more variables than the original model. In fact, if all the
original variables lack lower-bound constraints, the new model will have twice as many
variables. Fortunately, the approach can be modified slightly so that the number of vari-
ables is increased by only one, regardless of how many original variables need to be re-
placed. This modification is done by replacing each such variable xj by

xj � x�j � x
, where x�j � 0, x
 � 0,

instead, where x
 is the same variable for all relevant j. The interpretation of x
 in this
case is that �x
 is the current value of the largest (in absolute terms) negative original
variable, so that x�j is the amount by which xj exceeds this value. Thus, the simplex method
now can make some of the x�j variables larger than zero even when x
 � 0.

Maximize Z � 3x1
� � 3x1

� � 5x2,
subject to Z � 3x1

� � 3x1
� � 5x2 � 4

2x2 � 12
3x1

� � 3x1
� � 2x2 � 18

x1
� � 0, x1

� � 0, x2 � 0

Maximize Z � 3x1 � 5x2,
subject to Z � 3x1 � 5x2 � 4

2x2 � 12
3x1 � 2x2 � 18

x2 � 0 (only)
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■ 4.7 POSTOPTIMALITY ANALYSIS

We stressed in Secs. 2.3, 2.4, and 2.5 that postoptimality analysis—the analysis done 
after an optimal solution is obtained for the initial version of the model—constitutes a
very major and very important part of most operations research studies. The fact that
postoptimality analysis is very important is particularly true for typical linear program-
ming applications. In this section, we focus on the role of the simplex method in per-
forming this analysis.

Table 4.17 summarizes the typical steps in postoptimality analysis for linear pro-
gramming studies. The rightmost column identifies some algorithmic techniques that
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involve the simplex method. These techniques are introduced briefly here with the tech-
nical details deferred to later chapters.

Reoptimization

As discussed in Sec. 3.6, linear programming models that arise in practice commonly are
very large, with hundreds, thousands, or even millions of functional constraints and deci-
sion variables. In such cases, many variations of the basic model may be of interest for
considering different scenarios. Therefore, after having found an optimal solution for one
version of a linear programming model, we frequently must solve again (often many times)
for the solution of a slightly different version of the model. We nearly always have to solve
again several times during the model debugging stage (described in Secs. 2.3 and 2.4), and
we usually have to do so a large number of times during the later stages of postoptimal-
ity analysis as well.

One approach is simply to reapply the simplex method from scratch for each new
version of the model, even though each run may require hundreds or even thousands of
iterations for large problems. However, a much more efficient approach is to reoptimize.
Reoptimization involves deducing how changes in the model get carried along to the final
simplex tableau (as described in Secs. 5.3 and 6.6). This revised tableau and the optimal
solution for the prior model are then used as the initial tableau and the initial basic
solution for solving the new model. If this solution is feasible for the new model, then
the simplex method is applied in the usual way, starting from this initial BF solution. If
the solution is not feasible, a related algorithm called the dual simplex method (described
in Sec. 7.1) probably can be applied to find the new optimal solution,17 starting from this
initial basic solution.

The big advantage of this reoptimization technique over re-solving from scratch is
that an optimal solution for the revised model probably is going to be much closer to the
prior optimal solution than to an initial BF solution constructed in the usual way for the
simplex method. Therefore, assuming that the model revisions were modest, only a few
iterations should be required to reoptimize instead of the hundreds or thousands that may
be required when you start from scratch. In fact, the optimal solutions for the prior and
revised models are frequently the same, in which case the reoptimization technique requires
only one application of the optimality test and no iterations.

130 CHAPTER 4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

17The one requirement for using the dual simplex method here is that the optimality test is still passed when ap-
plied to row 0 of the revised final tableau. If not, then still another algorithm called the primal-dual method can
be used instead.

■ TABLE 4.17 Postoptimality analysis for linear programming

Task Purpose Technique

Model debugging Find errors and weaknesses in model Reoptimization
Model validation Demonstrate validity of final model See Sec. 2.4
Final managerial Make appropriate division of organizational Shadow prices
decisions on resource resources between activities under study
allocations (the bi values) and other important activities

Evaluate estimates of Determine crucial estimates that may affect Sensitivity analysis
model parameters optimal solution for further study

Evaluate trade-offs Determine best trade-off Parametric linear
between model programming
parameters
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Shadow Prices

Recall that linear programming problems often can be interpreted as allocating resources
to activities. In particular, when the functional constraints are in � form, we interpreted
the bi (the right-hand sides) as the amounts of the respective resources being made 
available for the activities under consideration. In many cases, there may be some lat-
itude in the amounts that will be made available. If so, the bi values used in the initial
(validated) model actually may represent management’s tentative initial decision on how
much of the organization’s resources will be provided to the activities considered in the
model instead of to other important activities under the purview of management. From
this broader perspective, some of the bi values can be increased in a revised model, but
only if a sufficiently strong case can be made to management that this revision would
be beneficial.

Consequently, information on the economic contribution of the resources to the mea-
sure of performance (Z ) for the current study often would be extremely useful. The sim-
plex method provides this information in the form of shadow prices for the respective
resources.

The shadow price for resource i (denoted by yi*) measures the marginal value of this re-
source, i.e., the rate at which Z could be increased by (slightly) increasing the amount of
this resource (bi) being made available.18,19 The simplex method identifies this shadow
price by yi* � coefficient of the ith slack variable in row 0 of the final simplex tableau.

To illustrate, for the Wyndor Glass Co. problem,

Resource i � production capacity of Plant i (i � 1, 2, 3) being made available to the
two new products under consideration,

bi � hours of production time per week being made available in Plant i for
these new products.

Providing a substantial amount of production time for the new products would require 
adjusting production times for the current products, so choosing the bi value is a difficult
managerial decision. The tentative initial decision has been

b1 � 4, b2 � 12, b3 � 18,

as reflected in the basic model considered in Sec. 3.1 and in this chapter. However, man-
agement now wishes to evaluate the effect of changing any of the bi values.

The shadow prices for these three resources provide just the information that man-
agement needs. The final tableau in Table 4.8 yields

y1* � 0 � shadow price for resource 1,

y2* � � shadow price for resource 2,

y3* � 1 � shadow price for resource 3.

With just two decision variables, these numbers can be verified by checking graphically
that individually increasing any bi by 1 indeed would increase the optimal value of Z by
yi*. For example, Fig. 4.8 demonstrates this increase for resource 2 by reapplying the

3
�
2
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18The increase in bi must be sufficiently small that the current set of basic variables remains optimal since this
rate (marginal value) changes if the set of basic variables changes.
19In the case of a functional constraint in � or � form, its shadow price is again defined as the rate at which Z
could be increased by (slightly) increasing the value of bi, although the interpretation of bi now would normally
be something other than the amount of a resource being made available.
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graphical method presented in Sec. 3.1. The optimal solution, (2, 6) with Z � 36, changes
to (�

5
3

�, �
1
2
3
�) with Z � 37�

1
2

� when b2 is increased by 1 (from 12 to 13), so that

y2* � �Z � 37�
1
2

� � 36 � �
3
2

�.

Since Z is expressed in thousands of dollars of profit per week, y2* � �
3
2

� indicates that
adding 1 more hour of production time per week in Plant 2 for these two new products
would increase their total profit by $1,500 per week. Should this actually be done? It de-
pends on the marginal profitability of other products currently using this production time.
If there is a current product that contributes less than $1,500 of weekly profit per hour of
weekly production time in Plant 2, then some shift of production time to the new prod-
ucts would be worthwhile.

We shall continue this story in Sec. 6.7, where the Wyndor OR team uses shadow
prices as part of its sensitivity analysis of the model.

Figure 4.8 demonstrates that y2* � �
3
2

� is the rate at which Z could be increased by
increasing b2 slightly. However, it also demonstrates the common phenomenon that this
interpretation holds only for a small increase in b2. Once b2 is increased beyond 18, the
optimal solution stays at (0, 9) with no further increase in Z. (At that point, the set of basic
variables in the optimal solution has changed, so a new final simplex tableau will be
obtained with new shadow prices, including y2* � 0.)

Now note in Fig. 4.8 why y1* � 0. Because the constraint on resource 1, x1 � 4, is
not binding on the optimal solution (2, 6), there is a surplus of this resource. Therefore,
increasing b1 beyond 4 cannot yield a new optimal solution with a larger value of Z.

By contrast, the constraints on resources 2 and 3, 2x2 � 12 and 3x1 � 2x2 � 18, are
binding constraints (constraints that hold with equality at the optimal solution). Because
the limited supply of these resources (b2 � 12, b3 � 18) binds Z from being increased fur-
ther, they have positive shadow prices. Economists refer to such resources as scarce goods,
whereas resources available in surplus (such as resource 1) are free goods (resources with
a zero shadow price).
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■ FIGURE 4.8
This graph shows that the
shadow price is y2* � �

3
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� for
resource 2 for the Wyndor
Glass Co. problem. The two
dots are the optimal
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The kind of information provided by shadow prices clearly is valuable to management
when it considers reallocations of resources within the organization. It also is very helpful
when an increase in bi can be achieved only by going outside the organization to purchase
more of the resource in the marketplace. For example, suppose that Z represents profit and
that the unit profits of the activities (the cj values) include the costs (at regular prices)
of all the resources consumed. Then a positive shadow price of yi* for resource i means
that the total profit Z can be increased by yi* by purchasing 1 more unit of this resource
at its regular price. Alternatively, if a premium price must be paid for the resource in the
marketplace, then yi* represents the maximum premium (excess over the regular price) that
would be worth paying.20

The theoretical foundation for shadow prices is provided by the duality theory de-
scribed in Chap. 6.

Sensitivity Analysis

When discussing the certainty assumption for linear programming at the end of Sec. 3.3,
we pointed out that the values used for the model parameters (the aij, bi, and cj identified
in Table 3.3) generally are just estimates of quantities whose true values will not become
known until the linear programming study is implemented at some time in the future. A
main purpose of sensitivity analysis is to identify the sensitive parameters (i.e., those
that cannot be changed without changing the optimal solution). The sensitive parameters
are the parameters that need to be estimated with special care to minimize the risk of ob-
taining an erroneous optimal solution. They also will need to be monitored particularly
closely as the study is implemented. If it is discovered that the true value of a sensitive
parameter differs from its estimated value in the model, this immediately signals a need
to change the solution.

How are the sensitive parameters identified? In the case of the bi, you have just seen
that this information is given by the shadow prices provided by the simplex method. In
particular, if yi* � 0, then the optimal solution changes if bi is changed, so bi is a sensitive
parameter. However, yi* � 0 implies that the optimal solution is not sensitive to at least
small changes in bi. Consequently, if the value used for bi is an estimate of the amount of
the resource that will be available (rather than a managerial decision), then the bi values
that need to be monitored more closely are those with positive shadow prices—especially
those with large shadow prices.

When there are just two variables, the sensitivity of the various parameters can be
analyzed graphically. For example, in Fig. 4.9, c1 � 3 can be changed to any other value
from 0 to 7.5 without the optimal solution changing from (2, 6). (The reason is that any
value of c1 within this range keeps the slope of Z � c1x1 � 5x2 between the slopes of the
lines 2x2 � 12 and 3x1 � 2x2 � 18.) Similarly, if c2 � 5 is the only parameter changed,
it can have any value greater than 2 without affecting the optimal solution. Hence, nei-
ther c1 nor c2 is a sensitive parameter. (The procedure called Graphical Method and Sen-
sitivity Analysis in IOR Tutorial enables you to perform this kind of graphical analysis
very efficiently.)

The easiest way to analyze the sensitivity of each of the aij parameters graphically is
to check whether the corresponding constraint is binding at the optimal solution. Because
x1 � 4 is not a binding constraint, any sufficiently small change in its coefficients 
(a11 � 1, a12 � 0) is not going to change the optimal solution, so these are not sensitive
parameters. On the other hand, both 2x2 � 12 and 3x1 � 2x2 � 18 are binding constraints,
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20If the unit profits do not include the costs of the resources consumed, then yi* represents the maximum total
unit price that would be worth paying to increase bi.
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so changing any one of their coefficients (a21 � 0, a22 � 2, a31 � 3, a32 � 2) is going to
change the optimal solution, and therefore these are sensitive parameters.

Typically, greater attention is given to performing sensitivity analysis on the bi and
cj parameters than on the aij parameters. On real problems with hundreds or thousands of
constraints and variables, the effect of changing one aij value is usually negligible, but
changing one bi or cj value can have real impact. Furthermore, in many cases, the aij

values are determined by the technology being used (the aij values are sometimes called
technological coefficients), so there may be relatively little (or no) uncertainty about their
final values. This is fortunate, because there are far more aij parameters than bi and cj pa-
rameters for large problems.

For problems with more than two (or possibly three) decision variables, you cannot
analyze the sensitivity of the parameters graphically as was just done for the Wyndor Glass
Co. problem. However, you can extract the same kind of information from the simplex
method. Getting this information requires using the fundamental insight described in
Sec. 5.3 to deduce the changes that get carried along to the final simplex tableau as a re-
sult of changing the value of a parameter in the original model. The rest of the procedure
is described and illustrated in Secs. 6.6 and 6.7.

Using Excel to Generate Sensitivity Analysis Information

Sensitivity analysis normally is incorporated into software packages based on the simplex
method. For example, the Excel Solver will generate sensitivity analysis information upon
request. As was shown in Fig. 3.21, when the Solver gives the message that it has found
a solution, it also gives on the right a list of three reports that can be provided. By se-
lecting the second one (labeled “Sensitivity”) after solving the Wyndor Glass Co. problem,
you will obtain the sensitivity report shown in Fig. 4.10. The upper table in this report
provides sensitivity analysis information about the decision variables and their coefficients
in the objective function. The lower table does the same for the functional constraints and
their right-hand sides.
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■ FIGURE 4.9
This graph demonstrates the
sensitivity analysis of c1 and
c2 for the Wyndor Glass Co.
problem. Starting with the
original objective function
line [where c1 � 3, c2 � 5,
and the optimal solution is
(2, 6)], the other two lines
show the extremes of how
much the slope of the
objective function line can
change and still retain (2, 6)
as an optimal solution. Thus,
with c2 � 5, the allowable
range for c1 is 0 � c1 � 7.5.
With c1 � 3, the allowable
range for c2 is c2 � 2.
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Look first at the upper table in this figure. The “Final Value” column indicates the
optimal solution. The next column gives the reduced costs. (We will not discuss these re-
duced costs now because the information they provide can also be gleaned from the rest
of the upper table.) The next three columns provide the information needed to identify the
allowable range for each coefficient cj in the objective function.

For any cj, its allowable range is the range of values for this coefficient over which the
current optimal solution remains optimal, assuming no change in the other coefficients.

The “Objective Coefficient” column gives the current value of each coefficient, and
then the next two columns give the allowable increase and the allowable decrease from
this value to remain within the allowable range. The spreadsheet model (Fig. 3.22) ex-
presses the profits per batch in units of dollars, whereas the cj in the algebraic version
of the linear programming model uses units of thousands of dollars, so the quantities
in all three of these columns need to be divided by 1000 to use the same units as the
cj. Therefore,

�
3,000

1,
�

000
3,000
�� c1 � �

3,000
1,

�

000
4,500
�, so 0 � c1 � 7.5

is the allowable range for c1 over which the current optimal solution will stay optimal (as-
suming c2 � 5), just as was found graphically in Fig. 4.9. Similarly, since Excel uses 
1E � 30 (1030) to represent infinity,

�
5,000

1,
�

000
3,000
� � c2 � �

5,0
1
0
,
0
00

�

0
�

�, so 2 � c2

is the allowable range for c2.
The fact that both the allowable increase and the allowable decrease are greater than

zero for the coefficient of both decision variables provides another useful piece of infor-
mation, as described below.

When the upper table in the sensitivity report generated by the Excel Solver indicates that
both the allowable increase and the allowable decrease are greater than zero for every ob-
jective coefficient, this is a signpost that the optimal solution in the “Final Value” column
is the only optimal solution. Conversely, having any allowable increase or allowable de-
crease equal to zero is a signpost that there are multiple optimal solutions. Changing the
corresponding coefficient a tiny amount beyond the zero allowed and re-solving provides
another optimal CPF solution for the original model.
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■ FIGURE 4.10
The sensitivity report
provided by the Excel Solver
for the Wyndor Glass Co.
problem.

Adjustable Cells

Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease

$C$12 Batches Produced Doors 2 0 3,000 4,500 3,000
$D$12 Batches Produced Windows 6 0 5,000 1E+30 3,000

Constraints

Final Shadow Constraint Allowable Allowable
Cell Name Value Price R.H. Side Increase Decrease

$E$7 Plant 1 Used 2 0 4 1E+30 2
$E$8 Plant 2 Used 12 1,500 12 6 6
$E$9 Plant 3 Used 18 1,000 18 6 6
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Now consider the lower table in Fig. 4.10 that focuses on sensitivity analysis for the
three functional constraints. The “Final Value” column gives the value of each constraint’s
left-hand side for the optimal solution. The next two columns give the shadow price and
the current value of the right-hand side (bi) for each constraint. (These shadow prices from
the spreadsheet model use units of dollars, so they need to be divided by 1000 to use the
same units of thousands of dollars as Z in the algebraic version of the linear program-
ming model.) When just one bi value is then changed, the last two columns give the al-
lowable increase or allowable decrease in order to remain within its allowable range.

For any bi, its allowable range is the range of values for this right-hand side over which
the current optimal BF solution (with adjusted values21 for the basic variables) remains
feasible, assuming no change in the other right-hand sides. A key property of this range
of values is that the current shadow price for bi remains valid for evaluating the effect on
Z of changing bi only as long as bi remains within this allowable range.

Thus, using the lower table in Fig. 4.10, combining the last two columns with the current
values of the right-hand sides gives the following allowable ranges:

2 � b1

6 � b2 � 18
12 � b3 � 24.

This sensitivity report generated by the Excel Solver is typical of the sensitivity
analysis information provided by linear programming software packages. You will see in
Appendix 4.1 that LINDO and LINGO provide essentially the same report. MPL/CPLEX
does also when it is requested with the Solution File dialogue box. Once again, this informa-
tion obtained algebraically also can be derived from graphical analysis for this two-variable
problem. (See Prob. 4.7-1.) For example, when b2 is increased from 12 in Fig. 4.8, the orig-
inally optimal CPF solution at the intersection of two constraint boundaries 2x2 � b2 and
3x1 � 2x2 � 18 will remain feasible (including x1 � 0) only for b2 � 18.

The Worked Examples section of the book’s website includes another example of
applying sensitivity analysis (using both graphical analysis and the sensitivity report). The
latter part of Chap. 6 also will delve into this type of analysis more deeply.

Parametric Linear Programming

Sensitivity analysis involves changing one parameter at a time in the original model to check
its effect on the optimal solution. By contrast, parametric linear programming (or para-
metric programming for short) involves the systematic study of how the optimal solution
changes as many of the parameters change simultaneously over some range. This study can
provide a very useful extension of sensitivity analysis, e.g., to check the effect of “corre-
lated” parameters that change together due to exogenous factors such as the state of the
economy. However, a more important application is the investigation of trade-offs in param-
eter values. For example, if the cj values represent the unit profits of the respective activi-
ties, it may be possible to increase some of the cj values at the expense of decreasing others
by an appropriate shifting of personnel and equipment among activities. Similarly, if the

21Since the values of the basic variables are obtained as the simultaneous solution of a system of equations (the
functional constraints in augmented form), at least some of these values change if one of the right-hand sides
changes. However, the adjusted values of the current set of basic variables still will satisfy the nonnegativity
constraints, and so still will be feasible, as long as the new value of this right-hand side remains within its
allowable range. If the adjusted basic solution is still feasible, it also will still be optimal. We shall elaborate
further in Sec. 6.7.
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bi values represent the amounts of the respective resources being made available, it may be
possible to increase some of the bi values by agreeing to accept decreases in some of the
others. The analysis of such possibilities is discussed and illustrated at the end of Sec. 6.7.

In some applications, the main purpose of the study is to determine the most appro-
priate trade-off between two basic factors, such as costs and benefits. The usual approach
is to express one of these factors in the objective function (e.g., minimize total cost) and
incorporate the other into the constraints (e.g., benefits � minimum acceptable level), as
was done for the Nori & Leets Co. air pollution problem in Sec. 3.4. Parametric linear
programming then enables systematic investigation of what happens when the initial ten-
tative decision on the trade-off (e.g., the minimum acceptable level for the benefits) is
changed by improving one factor at the expense of the other.

The algorithmic technique for parametric linear programming is a natural extension
of that for sensitivity analysis, so it, too, is based on the simplex method. The procedure
is described in Sec. 7.2.
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22Do not try this at home. Attacking such a massive problem requires an especially sophisticated linear pro-
gramming system that uses the latest techniques for exploiting sparcity in the coefficient matrix as well as other
special techniques (e.g., crashing techniques for quickly finding an advanced initial BF solution). When prob-
lems are re-solved periodically after minor updating of the data, much time often is saved by using (or modi-
fying) the last optimal solution to provide the initial BF solution for the new run.

If the electronic computer had never been invented, you probably would have never heard
of linear programming and the simplex method. Even though it is possible to apply the
simplex method by hand (perhaps with the aid of a calculator) to solve tiny linear pro-
gramming problems, the calculations involved are just too tedious to do this on a routine
basis. However, the simplex method is ideally suited for execution on a computer. It is
the computer revolution that has made possible the widespread application of linear pro-
gramming in recent decades.

Implementation of the Simplex Method

Computer codes for the simplex method now are widely available for essentially all
modern computer systems. These codes commonly are part of a sophisticated software
package for mathematical programming that includes many of the procedures described
in subsequent chapters (including those used for postoptimality analysis).

These production computer codes do not closely follow either the algebraic form or
the tabular form of the simplex method presented in Secs. 4.3 and 4.4. These forms can
be streamlined considerably for computer implementation. Therefore, the codes use in-
stead a matrix form (usually called the revised simplex method ) that is especially well
suited for the computer. This form accomplishes exactly the same things as the algebraic
or tabular form, but it does this while computing and storing only the numbers that are
actually needed for the current iteration; and then it carries along the essential data in a
more compact form. The revised simplex method is described in Secs. 5.2 and 5.4.

The simplex method is used routinely to solve surprisingly large linear programming
problems. For example, powerful desktop computers (including workstations) commonly
are used to solve problems with hundreds of thousands, or even millions, of functional
constraints and a larger number of decision variables. Occasionally, successfully solved
problems have even tens of millions of functional constraints and decision variables.22

For certain special types of linear programming problems (such as the transportation,
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assignment, and minimum cost flow problems to be described later in the book), even
larger problems now can be solved by specialized versions of the simplex method.

Several factors affect how long it will take to solve a linear programming problem by
the general simplex method. The most important one is the number of ordinary functional
constraints. In fact, computation time tends to be roughly proportional to the cube of this
number, so that doubling this number may multiply the computation time by a factor of
approximately 8. By contrast, the number of variables is a relatively minor factor.23 Thus,
doubling the number of variables probably will not even double the computation time. 
A third factor of some importance is the density of the table of constraint coefficients (i.e.,
the proportion of the coefficients that are not zero), because this affects the computation
time per iteration. (For large problems encountered in practice, it is common for the den-
sity to be under 5 percent, or even under 1 percent, and this much “sparcity” tends to
greatly accelerate the simplex method.) One common rule of thumb for the number of it-
erations is that it tends to be roughly twice the number of functional constraints.

With large linear programming problems, it is inevitable that some mistakes and faulty
decisions will be made initially in formulating the model and inputting it into the com-
puter. Therefore, as discussed in Sec. 2.4, a thorough process of testing and refining the
model (model validation) is needed. The usual end product is not a single static model
that is solved once by the simplex method. Instead, the OR team and management typi-
cally consider a long series of variations on a basic model (sometimes even thousands of
variations) to examine different scenarios as part of postoptimality analysis. This entire
process is greatly accelerated when it can be carried out interactively on a desktop com-
puter. And, with the help of both mathematical programming modeling languages and im-
proving computer technology, this now is becoming common practice.

Until the mid-1980s, linear programming problems were solved almost exclusively
on mainframe computers. Since then, there has been an explosion in the capability of do-
ing linear programming on desktop computers, including personal computers as well as
workstations. Workstations, including some with parallel processing capabilities, now are
commonly used instead of mainframe computers to solve massive linear programming
models. The fastest personal computers are not lagging far behind, although solving huge
models usually requires additional memory.

Linear Programming Software Featured in This Book

A considerable number of excellent software packages for linear programming and its ex-
tensions now are available to fill a variety of needs. One leading package of this type is
Express-MP, a product of Dash Optimization (which now has joined Fair Isaac). Another
that is widely regarded to be a particularly powerful package for solving massive prob-
lems is CPLEX, a product of ILOG, Inc., located in Silicon Valley. Since 1988, CPLEX
has helped to lead the way in solving larger and larger linear programming problems. An
extensive research and development effort has enabled a series of upgrades with dramatic
increases in efficiency. CPLEX 11 released in 2007 provided another major improvement.
This software package frequently is capable of solving real linear programming problems
arising in industry with tens of millions of functional constraints and decision variables!
CPLEX often uses the simplex method and its variants (such as the dual simplex method
presented in Sec. 7.1) to solve these massive problems. In addition to the simplex method,
CPLEX also features some other powerful weapons for attacking linear programming
problems. One is a lightning-fast algorithm (referred to as the barrier algorithm) that uses
the interior-point approach introduced in Section 4.9. This algorithm can solve some huge

138 CHAPTER 4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

23This statement assumes that the revised simplex method described in Secs. 5.2 and 5.4 is being used.
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general linear programming problems that the simplex method cannot (and vice versa).
Another feature is the network simplex method (described in Sec. 9.7) that can solve
even larger special types of linear programming problems. CPLEX 11 also extends be-
yond linear programming by including state-of-the-art algorithms for integer program-
ming (Chap. 11) and quadratic programming (Sec. 12.7), as well as integer quadratic
programming.

We anticipate that these major improvements in the state-of-the-art optimization
software packages such as CPLEX will continue in the future as well. Continuing rapid
improvements in the speed of computers also will further accelerate the speedup of these
future software packages.

Because it often is used to solve really large problems, CPLEX normally is used in
conjunction with a mathematical programming modeling language. As described in 
Sec. 3.7, modeling languages are designed for efficiently formulating large linear pro-
gramming models (and related models) in a compact way, after which a solver is called
upon to solve the model. Several of the prominent modeling languages support CPLEX as
a solver. ILOG also has introduced its own modeling language, called the Optimization
Programming Language (OPL), that can be used with CPLEX to form the OPL-CPLEX
Development System. (A trial version of that product is available at ILOG’s website,
www.ilog.com.)

As we mentioned in Sec. 3.7, the student version of CPLEX is included in your OR
Courseware as the main solver for the MPL modeling language. This version features the
simplex method for solving linear programming problems.

The student version of MPL in your OR Courseware also includes two other solvers
that are an alternative to CPLEX for solving both linear programming problems and in-
teger programming problems (discussed in Chap. 11). One is CoinMP, an open source
solver that can solve larger problems than the student version of CPLEX (which is lim-
ited to 300 constraints and variables). The other is LINDO.

LINDO (short for Linear, Interactive, and Discrete Optimizer) has an even longer
history than CPLEX in the realm of applications of linear programming and its exten-
sions. The easy-to-use LINDO interface is available as a subset of the LINGO optimiza-
tion modeling package from LINDO Systems, www.lindo.com. The long-time popularity
of LINDO is partially due to its ease of use. For “textbook-sized” problems, the model
can be entered and solved in an intuitive, straightforward manner, so the LINDO interface
provides a convenient tool for students to use. Although easy to use for small models,
LINDO/LINGO can also solve large models, e.g., the largest version has solved real prob-
lems with 4 million variables and 2 million constraints.

The OR Courseware provided on this book’s website contains a student version
of LINDO/LINGO, accompanied by an extensive tutorial.  Appendix 4.1 provides a
quick introduction. Additionally, the software contains extensive online help. The OR
Courseware also contains LINGO/LINDO formulations for the major examples used
in the book.

Spreadsheet-based solvers are becoming increasingly popular for linear program-
ming and its extensions. Leading the way are the solvers produced by Frontline Systems
for Microsoft Excel and other spreadsheet packages. In addition to the basic solver
shipped with these packages, more powerful Premium Solver products also are available.
Because of the widespread use of spreadsheet packages such as Microsoft Excel today,
these solvers are introducing large numbers of people to the potential of linear pro-
gramming for the first time. For textbook-sized linear programming problems (and con-
siderably larger problems as well), spreadsheets provide a convenient way to formulate
and solve the model, as described in Sec. 3.5. The more powerful spreadsheet solvers
can solve fairly large models with many thousand decision variables. However, when the
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spreadsheet grows to an unwieldy size, a good modeling language and its solver may
provide a more efficient approach to formulating and solving the model.

Spreadsheets provide an excellent communication tool, especially when dealing
with typical managers who are very comfortable with this format but not with the al-
gebraic formulations of OR models. Therefore, optimization software packages and
modeling languages now can commonly import and export data and results in a spread-
sheet format. For example, the MPL modeling language now includes an enhancement
(called the OptiMax 2000 Component Library) that enables the modeler to create the
feel of a spreadsheet model for the user of the model while still using MPL to formu-
late the model very efficiently. (The student version of OptiMax 2000 is included in
your OR Courseware.)

Premium Solver for Education is one of the Excel add-ins included on the book’s
website. You can install this add-in to obtain more functionality than with the standard
Excel Solver.

Consequently, all the software, tutorials, and examples packed on the book’s website
are providing you with several attractive software options for linear programming.

Available Software Options for Linear Programming

1. Demonstration examples (in OR Tutor) and both interactive and automatic procedures
in IOR Tutorial for efficiently learning the simplex method.

2. Excel and its Premium Solver for formulating and solving linear programming mod-
els in a spreadsheet format.

3. MPL/CPLEX for efficiently formulating and solving large linear programming models.
4. LINGO and its solver (shared with LINDO) for an alternative way of efficiently for-

mulating and solving large linear programming models.

Your instructor may specify which software to use. Whatever the choice, you will be gain-
ing experience with the kind of state-of-the-art software that is used by OR professionals.

The most dramatic new development in operations research during the 1980s was the
discovery of the interior-point approach to solving linear programming problems. This
discovery was made in 1984 by a young mathematician at AT&T Bell Laboratories,
Narendra Karmarkar, when he successfully developed a new algorithm for linear pro-
gramming with this kind of approach. Although this particular algorithm experienced
only mixed success in competing with the simplex method, the key solution concept de-
scribed below appeared to have great potential for solving huge linear programming prob-
lems beyond the reach of the simplex method. Many top researchers subsequently worked
on modifying Karmarkar’s algorithm to fully tap this potential. Much progress has been
made (and continues to be made), and a number of powerful algorithms using the interior-
point approach have been developed. Today, the more powerful software packages that are
designed for solving really large linear programming problems (such as CPLEX) include
at least one algorithm using the interior-point approach along with the simplex method and
its variants. As research continues on these algorithms, their computer implementations
continue to improve. This has spurred renewed research on the simplex method, and its
computer implementations continue to improve as well. The competition between the two
approaches for supremacy in solving huge problems is continuing.

Now let us look at the key idea behind Karmarkar’s algorithm and its subsequent vari-
ants that use the interior-point approach.

■ 4.9 THE INTERIOR-POINT APPROACH TO SOLVING
LINEAR PROGRAMMING PROBLEMS
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The Key Solution Concept

Although radically different from the simplex method, Karmarkar’s algorithm does share
a few of the same characteristics. It is an iterative algorithm. It gets started by identify-
ing a feasible trial solution. At each iteration, it moves from the current trial solution to
a better trial solution in the feasible region. It then continues this process until it reaches
a trial solution that is (essentially) optimal.

The big difference lies in the nature of these trial solutions. For the simplex method,
the trial solutions are CPF solutions (or BF solutions after augmenting), so all movement
is along edges on the boundary of the feasible region. For Karmarkar’s algorithm, the trial
solutions are interior points, i.e., points inside the boundary of the feasible region. For this
reason, Karmarkar’s algorithm and its variants are referred to as interior-point algorithms.

However, because of an early patent obtained on an early version of an interior-point
algorithm, such an algorithm also is commonly referred to as a barrier algorithm (or
barrier method). The term barrier is used because, from the perspective of a search whose
trial solutions are interior points, each constraint boundary is treated as a barrier. Most
optimization software packages now use the barrier terminology when referring to their
solver option that is based on the interior-point approach. Both CPLEX and LINDO API
include a “barrier algorithm” that can be used to solve either linear programming prob-
lems or quadratic programming problems (discussed in Sec. 12.7).

To illustrate the interior-point approach, Fig. 4.11 shows the path followed by the
interior-point algorithm in your OR Courseware when it is applied to the Wyndor Glass Co.
problem, starting from the initial trial solution (1, 2). Note how all the trial solutions (dots)
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4

6

x2

2 4 x10

(2, 6) optimal

(1.56, 5.5)

(1.38, 5)

(1.27, 4)

(1, 2)

■ FIGURE 4.11
The curve from (1, 2) to 
(2, 6) shows a typical path
followed by an interior-point
algorithm, right through the
interior of the feasible region
for the Wyndor Glass Co.
problem.
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shown on this path are inside the boundary of the feasible region as the path approaches the
optimal solution (2, 6). (All the subsequent trial solutions not shown also are inside the
boundary of the feasible region.) Contrast this path with the path followed by the simplex
method around the boundary of the feasible region from (0, 0) to (0, 6) to (2, 6).

Table 4.18 shows the actual output from IOR Tutorial for this problem.24 (Try it your-
self.) Note how the successive trial solutions keep getting closer and closer to the 
optimal solution, but never literally get there. However, the deviation becomes so infini-
tesimally small that the final trial solution can be taken to be the optimal solution for all
practical purposes. (The Worked Examples section on the book’s website shows the out-
put from IOR Tutorial for another example as well.)

Section 7.4 presents the details of the specific interior-point algorithm that is imple-
mented in IOR Tutorial.

Comparison with the Simplex Method

One meaningful way of comparing interior-point algorithms with the simplex method is
to examine their theoretical properties regarding computational complexity. Karmarkar
has proved that the original version of his algorithm is a polynomial time algorithm; i.e.,
the time required to solve any linear programming problem can be bounded above by a
polynomial function of the size of the problem. Pathological counterexamples have been
constructed to demonstrate that the simplex method does not possess this property, so it
is an exponential time algorithm (i.e., the required time can be bounded above only by
an exponential function of the problem size). This difference in worst-case performance
is noteworthy. However, it tells us nothing about their comparison in average performance
on real problems, which is the more crucial issue.

The two basic factors that determine the performance of an algorithm on a real prob-
lem are the average computer time per iteration and the number of iterations. Our next
comparisons concern these factors.
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■ TABLE 4.18 Output of interior-point algorithm in OR Courseware 
for Wyndor Glass Co. problem

Iteration x1 x2 Z

0 1 2 13
1 1.27298 4 23.8189
2 1.37744 5 29.1323
3 1.56291 5.5 32.1887
4 1.80268 5.71816 33.9989
5 1.92134 5.82908 34.9094
6 1.96639 5.90595 35.429
7 1.98385 5.95199 35.7115
8 1.99197 5.97594 35.8556
9 1.99599 5.98796 35.9278

10 1.99799 5.99398 35.9639
11 1.999 5.99699 35.9819
12 1.9995 5.9985 35.991
13 1.99975 5.99925 35.9955
14 1.99987 5.99962 35.9977
15 1.99994 5.99981 35.9989

24The procedure is called Solve Automatically by the Interior-Point Algorithm. The option menu provides two
choices for a certain parameter of the algorithm � (defined in Sec. 7.4). The choice used here is the default value
of � � 0.5.
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Interior-point algorithms are far more complicated than the simplex method. Con-
siderably more extensive computations are required for each iteration to find the next trial
solution. Therefore, the computer time per iteration for an interior-point algorithm is many
times longer than that for the simplex method.

For fairly small problems, the numbers of iterations needed by an interior-point al-
gorithm and by the simplex method tend to be somewhat comparable. For example, on a
problem with 10 functional constraints, roughly 20 iterations would be typical for either
kind of algorithm. Consequently, on problems of similar size, the total computer time for
an interior-point algorithm will tend to be many times longer than that for the simplex
method.

On the other hand, a key advantage of interior-point algorithms is that large problems
do not require many more iterations than small problems. For example, a problem with
10,000 functional constraints probably will require well under 100 iterations. Even con-
sidering the very substantial computer time per iteration needed for a problem of this size,
such a small number of iterations makes the problem quite tractable. By contrast, the sim-
plex method might need 20,000 iterations and so might not finish within a reasonable
amount of computer time. Therefore, interior-point algorithms often are faster than the
simplex method for such huge problems.

The reason for this very large difference in the number of iterations on huge prob-
lems is the difference in the paths followed. At each iteration, the simplex method moves
from the current CPF solution to an adjacent CPF solution along an edge on the bound-
ary of the feasible region. Huge problems have an astronomical number of CPF solutions.
The path from the initial CPF solution to an optimal solution may be a very circuitous
one around the boundary, taking only a small step each time to the next adjacent CPF so-
lution, so a huge number of steps may be required to reach an optimal solution. By con-
trast, an interior-point algorithm bypasses all this by shooting through the interior of the
feasible region toward an optimal solution. Adding more functional constraints adds more
constraint boundaries to the feasible region, but has little effect on the number of trial so-
lutions needed on this path through the interior. This makes it possible for interior-point
algorithms to solve problems with a huge number of functional constraints.

A final key comparison concerns the ability to perform the various kinds of postop-
timality analysis described in Sec. 4.7. The simplex method and its extensions are very
well suited to and are widely used for this kind of analysis. For example, an ILOG prod-
uct called Optimization Decision Manager makes full use of the simplex method in CPLEX
to perform a wide variety of postoptimality analysis tasks in convenient ways. Unfortu-
nately, the interior-point approach currently has limited capability in this area.25 Given
the great importance of postoptimality analysis, this is a crucial drawback of interior-point
algorithms. However, we point out next how the simplex method can be combined with
the interior-point approach to overcome this drawback.

The Complementary Roles of the Simplex Method 
and the Interior-Point Approach

Ongoing research is continuing to provide substantial improvements in computer imple-
mentations of both the simplex method (including its variants) and interior-point algorithms.
Therefore, any predictions about their future roles are risky. However, we do summarize
below our current assessment of their complementary roles.
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25However, research aimed at increasing this capability continues to make progress. For example, see E. A. Yildirim
and M. J. Todd: “Sensitivity Analysis in Linear Programming and Semidefinite Programming Using Interior-Point
Methods,” Mathematical Programming, Series A, 90(2): 229–261, April 2001.
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The simplex method (and its variants) continues to be the standard algorithm for the
routine use of linear programming. It continues to be the most efficient algorithm for prob-
lems with less than, say, 10,000 functional constraints. It also is the most efficient for
some (but not all) problems with up to, say, 100,000 functional constraints and nearly an
unlimited number of decision variables, so most users are continuing to use the simplex
method for such problems. However, as the number of functional constraints increases
even further, it becomes increasingly likely that an interior-point approach will be the most
efficient, so it often is now used instead. As the size grows into the hundreds of thou-
sands, or even millions, of functional constraints, the interior-point approach may be the
only one capable of solving the problem. However, this certainly is not always the case.
As mentioned in the preceding section, the latest state-of-the-art software is successfully
using the simplex method and its variants to solve some truly massive problems with mil-
lions, or even tens of millions of functional constraints and decision variables.

These generalizations about how the interior-point approach and the simplex method
should compare for various problem sizes will not hold across the board. The specific
software packages and computer equipment being used have a major impact. The com-
parison also is affected considerably by the specific type of linear programming problem
being solved. As time goes on, we should learn much more about how to identify specific
types which are better suited for one kind of algorithm.

One of the by-products of the emergence of the interior-point approach has been a
major renewal of efforts to improve the efficiency of computer implementations of the
simplex method. As we indicated, impressive progress has been made in recent years, and
more lies ahead. At the same time, ongoing research and development of the interior-point
approach will further increase its power, and perhaps at a faster rate than for the simplex
method.

Improving computer technology, such as massive parallel processing (a huge number
of computer units operating in parallel on different parts of the same problem), also will
substantially increase the size of problem that either kind of algorithm can solve. How-
ever, it now appears that the interior-point approach has much greater potential to take ad-
vantage of parallel processing than the simplex method does.

As discussed earlier, a key disadvantage of the interior-point approach is its limited ca-
pability for performing postoptimality analysis. To overcome this drawback, researchers have
been developing procedures for switching over to the simplex method after an interior-point
algorithm has finished. Recall that the trial solutions obtained by an interior-point algo-
rithm keep getting closer and closer to an optimal solution (the best CPF solution), but
never quite get there. Therefore, a switching procedure requires identifying a CPF solution
(or BF solution after augmenting) that is very close to the final trial solution.

For example, by looking at Fig. 4.11, it is easy to see that the final trial solution in
Table 4.18 is very near the CPF solution (2, 6). Unfortunately, on problems with thou-
sands of decision variables (so no graph is available), identifying a nearby CPF (or BF)
solution is a very challenging and time-consuming task. However, good progress has been
made in developing procedures to do this. For example, the full-fledged professional ver-
sion of CPLEX includes a crossover algorithm which converts the solutions obtained by
its “barrier algorithm” into a BF solution.

Once this nearby BF solution has been found, the optimality test for the simplex
method is applied to check whether this actually is the optimal BF solution. If it is not
optimal, some iterations of the simplex method are conducted to move from this BF so-
lution to an optimal solution. Generally, only a very few iterations (perhaps one) are needed
because the interior-point algorithm has brought us so close to an optimal solution. There-
fore, these iterations should be done quite quickly, even on problems that are too huge to
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be solved from scratch. After an optimal solution is actually reached, the simplex method
and its variants are applied to help perform postoptimality analysis.

Because of the difficulties involved in applying a switching procedure (including the
extra computer time), some practitioners prefer to just use the simplex method from the
outset. This makes good sense when you only occasionally encounter problems that are
large enough for an interior-point algorithm to be modestly faster (before switching) than
the simplex method. This modest speed-up would not justify both the extra computer time
for a switching procedure and the high cost of acquiring (and learning to use) a software
package based on the interior-point approach. However, for organizations which frequently
must deal with extremely large linear programming problems, acquiring a state-of-the-art
software package of this kind (including a switching procedure) probably is worthwhile.
For sufficiently huge problems, the only available way of solving them may be with such
a package.

Applications of huge linear programming models sometimes lead to savings of mil-
lions of dollars. Just one such application can pay many times over for a state-of-the-art
software package based on the interior-point approach plus switching over to the simplex
method at the end.
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■ 4.10 CONCLUSIONS

The simplex method is an efficient and reliable algorithm for solving linear programming
problems. It also provides the basis for performing the various parts of postoptimality
analysis very efficiently.

Although it has a useful geometric interpretation, the simplex method is an algebraic
procedure. At each iteration, it moves from the current BF solution to a better, adjacent
BF solution by choosing both an entering basic variable and a leaving basic variable and
then using Gaussian elimination to solve a system of linear equations. When the current
solution has no adjacent BF solution that is better, the current solution is optimal and the
algorithm stops.

We presented the full algebraic form of the simplex method to convey its logic, and
then we streamlined the method to a more convenient tabular form. To set up for starting
the simplex method, it is sometimes necessary to use artificial variables to obtain an ini-
tial BF solution for an artificial problem. If so, either the Big M method or the two-phase
method is used to ensure that the simplex method obtains an optimal solution for the real
problem.

Computer implementations of the simplex method and its variants have become so
powerful that they now are frequently used to solve linear programming problems with
many hundreds of thousands of functional constraints and decision variables, and occa-
sionally vastly larger problems. Interior-point algorithms also provide a powerful tool for
solving very large problems.

■ APPENDIX 4.1 AN INTRODUCTION TO USING LINDO AND LINGO
The LINGO software can accept optimization models in either of two styles or syntax: (a) LINDO
syntax or (b) LINGO syntax. We will first describe LINDO syntax. The relative advantages of
LINDO syntax are that it is very easy and natural for simple linear and integer programming prob-
lems. It has been in wide use since 1981.

The LINDO syntax allows you to enter a model in a natural form, essentially as presented in
a textbook. For example, here is how the Wyndor Glass Co. example introduced in Sec. 3.1. is
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entered. Presuming you have installed LINGO, you click on the LINGO icon to start up LINGO
and then immediately type the following:

! Wyndor Glass Co. Problem. LINDO model
! X1 = batches of product 1 per week
! X2 = batches of product 2 per week
! Profit, in 1000 of dollars,

MAX  Profit) 3 X1 + 5 X2

Subject to 

! Production time
Plant1) X1 <= 4
Plant2) 2 X2 <= 12
Plant3) 3 X1 + 2 X2 <= 18
END

The first four lines, each starting with an exclamation point at the beginning, are simply com-
ments. The comment on the fourth line further clarifies that the objective function is expressed in
units of thousands of dollars. The number 1000 in this comment does not have the usual comma in
front of the last three digits because LINDO/LINGO does not accept commas. (LINDO syntax also
does not accept parentheses in algebraic expressions.) Lines five onward specify the model. The de-
cision variables can be either lowercase or uppercase. Uppercase usually is used so the variables
won’t be dwarfed by the following “subscripts.” Instead of X1 or X2, you may use more sugges-
tive names, such as the name of the product being produced; e.g., DOORS and WINDOWS, to rep-
resent the decision variable throughout the model.

The fifth line of the LINDO formulation indicates that the objective of the model is to maxi-
mize the objective function, 3x1 � 5x2. The word Profit followed by a parenthesis is optional. It
clarifies that the quantity being maximized is to be called Profit on the solution report.

The comment on the seventh line points out that the following constraints are on the produc-
tion times being used. The next three lines start by giving a name (again, optional, followed by a
parenthesis) for each of the functional constraints. These constraints are written in the usual way
except for the inequality signs.  Because most keyboards do not include � and � signs, LINDO
interprets either 
 or 
� as � and either � or �� as �. (On keyboards that include � and �
signs, LINDO will not recognize them.)

The end of the constraints is signified by the word END. No nonnegativity constraints are stated
because LINDO automatically assumes that all variables are � 0. If, say, x1 had not had a non-
negativity constraint, this would be indicated by typing FREE X1 on the next line below END.

To solve this model in LINGO/LINDO, click on the red Bull’s Eye solve button at the top of
the LINGO window. Figure A4.1 shows the resulting “solution report.” The top lines indicate that
the best overall, or “global,” solution has been found, with an objective function value of 36, in two
iterations. Next come the values for x1 and x2 for the optimal solution.
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Global optimal solution found.

Objective value:                     36.00000

Total solver iterations:                             2

Variable Value Reduced Cost
X1 2.000000 0.000000
X2 6.000000 0.000000

Row Slack or Surplus Dual Price
PROFIT 36.00000 1.000000
PLANT1 2.000000 0.000000
PLANT2 0.000000 1.500000
PLANT3 0.000000 1.000000

■ FIGURE A4.1
The solution report provided
by LINDO syntax for the
Wyndor Glass Co. problem.
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The column to the right of the Values column gives the reduced costs. We have not discussed
reduced costs in this chapter because the information they provide can also be gleaned from the al-
lowable range for the coefficients in the objective function. These allowable ranges are readily
available (as you will see in the next figure). When the variable is a basic variable in the optimal
solution (as for both variables in the Wyndor problem), its reduced cost automatically is 0. When the
variable is a nonbasic variable, its reduced cost provides some interesting information. A variable
whose objective coefficient is “too small” in a maximizing model or “too large” in a minimizing
model will have a value of 0 in an optimal solution. The reduced cost indicates how much this co-
efficient needs to be increased (when maximizing) or decreased (when minimizing) before the op-
timal solution would change and this variable would become a basic variable. However, recall that
this same information already is available from the allowable range for the coefficient of this vari-
able in the objective function. The reduced cost (for a nonbasic variable) is just the allowable in-
crease (when maximizing) from the current value of this coefficient to remain within its allowable
range or the allowable decrease (when minimizing).

The bottom portion of Fig. A.4.1 provides information about the three functional constraints.
The Slack or Surplus column gives the difference between the two sides of each constraint.  The
Dual Price column gives, by another name, the shadow prices discussed in Sec. 4.7 for these con-
straints. (This alternate name comes from the fact found in Sec. 6.1 that these shadow prices are
just the optimal values of the dual variables introduced in Chap. 6.) Be aware, however, that LINDO
uses a different sign convention from the common one adopted elsewhere in this text (see footnote 19
regarding the definition of shadow price in Sec. 4.7). In particular, for minimization problems,
LINGO/LINDO shadow prices (dual prices) are the negative of ours.

After LINDO provides you with the solution report, you also have the option to do range (sen-
sitivity) analysis. Fig. A4.2 shows the range report, which is generated by clicking on: LINGO | Range.

Except for using units of thousand of dollars instead of dollars for the coefficients in the ob-
jective function, this report is identical to the last three columns of the table in the sensitivity re-
port generated by the Excel Solver, as shown earlier in Fig. 4.10.  Thus, as already discussed in
Sec. 4.7, the first two rows of numbers in this range report indicate that the allowable range for each
coefficient in the objective function (assuming no other change in the model) is

0 � c1 � 7.5
2 � c2

Similarly, the last three rows indicate that the allowable range for each right-hand side (assuming
no other change in the model) is

2 � b1

6 � b2 � 18
12 � b3 � 24

You can print the results in standard Windows fashion by clicking on Files | Print.

■ FIGURE A4.2
Range report provided by
LINDO for the Wyndor Glass
Co. problem.

Ranges in which the basis is unchanged:

Objective Coefficient Ranges
Current Allowable Allowable

Variable Coefficient Increase Decrease
X1 3.000000 4.500000 3.000000
X2 5.000000 INFINITY 3.000000

Righthand Side Ranges
Row Current Allowable Allowable

RHS Increase Decrease
PLANT1 4.000000 INFINITY 2.000000
PLANT2 12.000000 6.000000 6.000000
PLANT3 18.000000 6.000000 6.000000
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These are the basics for getting started with LINGO/LINDO.  You can turn on or turn off
the generation of reports. For example, if the automatic generation of the standard solution re-
port has been turned off (Terse mode), you can turn it back on by clicking on: LINGO | Options |
Interface | Output level | Verbose | Apply. The ability to generate range reports can be turned on
or off by clicking on: LINGO | Options | General solver | Dual computations | Prices & Ranges |
Apply.

The second input style that LINGO supports is LINGO syntax.  LINGO syntax is dramatically
more powerful than LINDO syntax.  The advantages to using LINGO syntax are: (a) it allows ar-
bitrary mathematical expressions, including parentheses and all familiar mathematical operators such
as division, multiplication, log, sin, etc., (b) the ability to solve not just linear programming prob-
lems but also nonlinear programming problems, (c) scalability to large applications using subscripted
variables and sets, (d) the ability to read input data from a spreadsheet or database and send solu-
tion information back into a spreadsheet or database, (e) the ability to naturally represent sparse
relationships, (f) programming ability so that you can solve a series of models automatically as
when doing parametric analysis. A formulation of the Wyndor problem in LINGO, using the
subscript/sets feature is:

! Wyndor Glass Co. Problem;

SETS:
PRODUCT: PPB, X; ! Each product has a profit/batch 

and amount;
RESOURCE: HOURSAVAILABLE; ! Each resource has a capacity;

! Each resource product combination has an hours/batch;
RXP(RESOURCE,PRODUCT): HPB; 

ENDSETS
DATA:
PRODUCT = DOORS  WINDOWS;    ! The products;

PPB =   3      5;      ! Profit per batch;

RESOURCE = PLANT1 PLANT2 PLANT3; 
HOURSAVAILABLE =   4      12    18;

HPB =   1  0   ! Hours per batch;
0  2
3  2;

ENDDATA
! Sum over all products j the profit per batch times batches 

produced;
MAX = @SUM( PRODUCT(j): PPB(j)*X(j));

@FOR( RESOURCE(i)): ! For each resource i...;
! Sum over all products j of hours per batch time batches 

produced...;
@SUM(RXP(i,j): HPB(i,j)*X(j)) <= HOURSAVAILABLE(i);

);

The original Wyndor problem has two products and three resources. If Wyndor expands to hav-
ing four products and five resources, it is a trivial change to insert the appropriate new data into the
DATA section.  The formulation of the model adjusts automatically.  The subscript/sets capability
also allows one to naturally represent three dimensional or higher models.  The large problem de-
scribed in Sec. 3.6 has five dimensions: plants, machines, products, regions/customers, and time pe-
riods. This would be hard to fit into a two-dimensional spreadsheet but is easy to represent in a
modeling language with sets and subscripts. In practice, for problems like that in Sec. 3.6, many of
the 10(10)(10)(10)(10) = 100,000 possible combinations of relationships do not exist; e.g., not all
plants can make all products, and not all customers demand all products. The subscript/sets capa-
bility in modeling languages make it easy to represent such sparse relationships.
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For most models that you enter, LINGO will be able to detect automatically whether you are us-
ing LINDO syntax or LINGO syntax. You may choose your default syntax by clicking on: LINGO |
Options | Interface | File format | lng (for LINGO) or ltx (for LINDO).

LINGO includes an extensive online Help menu to give more details and examples. Supple-
ments 1 and 2 to Chapter 3 (shown on the book’s website) provide a relatively complete introduc-
tion to LINGO. The LINGO tutorial on the website also provides additional details. The
LINGO/LINDO files on the website for various chapters show LINDO/LINGO formulations for nu-
merous examples from most of the chapters.
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Worked Examples:

Examples for Chapter 4

Demonstration Examples in OR Tutor:

Interpretation of the Slack Variables
Simplex Method—Algebraic Form
Simplex Method—Tabular Form

Interactive Procedures in IOR Tutorial:

Enter or Revise a General Linear Programming Model
Set Up for the Simplex Method—Interactive Only
Solve Interactively by the Simplex Method
Interactive Graphical Method

Automatic Procedures in IOR Tutorial:

Solve Automatically by the Simplex Method
Solve Automatically by the Interior-Point Algorithm
Graphical Method and Sensitivity Analysis

An Excel Add-In:

Premium Solver for Education
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Files (Chapter 3) for Solving the Wyndor 
and Radiation Therapy Examples:

Excel Files
LINGO/LINDO File
MPL/CPLEX File

Glossary for Chapter 4

See Appendix 1 for documentation of the software.

■ PROBLEMS
The symbols to the left of some of the problems (or their parts)
have the following meaning:
D: The corresponding demonstration example listed on the preced-

ing page may be helpful.
I: We suggest that you use the corresponding interactive procedure

listed on the preceding page (the printout records your work).
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve the problem
automatically. (See Sec. 4.8 for a listing of the options featured
in this book and on the book's website.)

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

4.1-1. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � 5
x2 � 6

x1 � x2 � 8

and

x1 � 0, x2 � 0.

(a) Plot the feasible region and circle all the CPF solutions.
(b) For each CPF solution, identify the pair of constraint bound-

ary equations that it satisfies.
(c) For each CPF solution, use this pair of constraint boundary

equations to solve algebraically for the values of x1 and x2 at
the corner point.

(d) For each CPF solution, identify its adjacent CPF solutions.
(e) For each pair of adjacent CPF solutions, identify the constraint

boundary they share by giving its equation.

4.1-2. Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � x2 � 6
x1 � 2x2 � 6

and

x1 � 0, x2 � 0.

D,I (a) Use the graphical method to solve this problem. Circle all
the corner points on the graph.

(b) For each CPF solution, identify the pair of constraint bound-
ary equations it satisfies.

(c) For each CPF solution, identify its adjacent CPF solutions.
(d) Calculate Z for each CPF solution. Use this information to

identify an optimal solution.
(e) Describe graphically what the simplex method does step by

step to solve the problem.

4.1-3. A certain linear programming model involving two activi-
ties has the feasible region shown below.
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The objective is to maximize the total profit from the two activi-
ties. The unit profit for activity 1 is $1,000 and the unit profit for
activity 2 is $2,000.
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(a) Calculate the total profit for each CPF solution. Use this in-
formation to find an optimal solution.

(b) Use the solution concepts of the simplex method given in
Sec. 4.1 to identify the sequence of CPF solutions that would
be examined by the simplex method to reach an optimal
solution.

4.1-4.* Consider the linear programming model (given in the back
of the book) that was formulated for Prob. 3.2-3.
(a) Use graphical analysis to identify all the corner-point solutions

for this model. Label each as either feasible or infeasible.
(b) Calculate the value of the objective function for each of the

CPF solutions. Use this information to identify an optimal
solution.

(c) Use the solution concepts of the simplex method given in Sec. 4.1
to identify which sequence of CPF solutions might be examined
by the simplex method to reach an optimal solution. (Hint: There
are two alternative sequences to be identified for this particular
model.)

4.1-5. Repeat Prob. 4.1-4 for the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � 3x2 � 8
x1 � x2 � 4

and

x1 � 0, x2 � 0.

4.1-6. Describe graphically what the simplex method does step by
step to solve the following problem.

Maximize Z � 2x1 � 3x2,

subject to

�3x1 � x2 � 1
�4x1 � 2x2 � 20
�4x1 � x2 � 10
�x1 � 2x2 � 5

and

x1 � 0, x2 � 0.

4.1-7. Describe graphically what the simplex method does step by
step to solve the following problem.

Minimize Z � 5x1 � 7x2,

subject to

2x1 � 3x2 � 147
3x1 � 4x2 � 210
x1 � x2 � 63

and

x1 � 0, x2 � 0.

4.1-8. Label each of the following statements about linear pro-
gramming problems as true or false, and then justify your answer.

(a) For minimization problems, if the objective function evaluated
at a CPF solution is no larger than its value at every adjacent
CPF solution, then that solution is optimal.

(b) Only CPF solutions can be optimal, so the number of optimal
solutions cannot exceed the number of CPF solutions.

(c) If multiple optimal solutions exist, then an optimal CPF solu-
tion may have an adjacent CPF solution that also is optimal
(the same value of Z ).

4.1-9. The following statements give inaccurate paraphrases of the
six solution concepts presented in Sec. 4.1. In each case, explain
what is wrong with the statement.
(a) The best CPF solution always is an optimal solution.
(b) An iteration of the simplex method checks whether the current

CPF solution is optimal and, if not, moves to a new CPF 
solution.

(c) Although any CPF solution can be chosen to be the initial CPF
solution, the simplex method always chooses the origin.

(d) When the simplex method is ready to choose a new CPF so-
lution to move to from the current CPF solution, it only con-
siders adjacent CPF solutions because one of them is likely to
be an optimal solution.

(e) To choose the new CPF solution to move to from the current
CPF solution, the simplex method identifies all the adjacent
CPF solutions and determines which one gives the largest rate
of improvement in the value of the objective function.

4.2-1. Reconsider the model in Prob. 4.1-4.
(a) Introduce slack variables in order to write the functional con-

straints in augmented form.
(b) For each CPF solution, identify the corresponding BF solution

by calculating the values of the slack variables. For each BF
solution, use the values of the variables to identify the non-
basic variables and the basic variables.

(c) For each BF solution, demonstrate (by plugging in the solu-
tion) that, after the nonbasic variables are set equal to zero,
this BF solution also is the simultaneous solution of the sys-
tem of equations obtained in part (a).

4.2-2. Reconsider the model in Prob. 4.1-5. Follow the instructions
of Prob. 4.2-1 for parts (a), (b), and (c).
(d) Repeat part (b) for the corner-point infeasible solutions and the

corresponding basic infeasible solutions.
(e) Repeat part (c) for the basic infeasible solutions.

4.3-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 4.3.
Briefly describe the application of the simplex method in this study.
Then list the various financial and nonfinancial benefits that re-
sulted from this study.

D,I 4.3-2. Work through the simplex method (in algebraic form)
step by step to solve the model in Prob. 4.1-4.

4.3-3. Reconsider the model in Prob. 4.1-5.
(a) Work through the simplex method (in algebraic form) by hand

to solve this model.
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D,I (b) Repeat part (a) with the corresponding interactive routine
in your IOR Tutorial.

C (c) Verify the optimal solution you obtained by using a software
package based on the simplex method.

D,I 4.3-4.* Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z � 4x1 � 3x2 � 6x3,

subject to

3x1 � x2 � 3x3 � 30
2x1 � 2x2 � 3x3 � 40

and

x1 � 0, x2 � 0, x3 � 0.

D,I 4.3-5. Work through the simplex method (in algebraic form)
step by step to solve the following problem.

Maximize Z � 3x1 � 4x2 � 5x3,

subject to

3x1 � x2 � 5x3 � 150
x1 � 4x2 � x3 � 120

2x1 � 4x2 � 2x3 � 105

and

x1 � 0, x2 � 0, x3 � 0.

4.3-6. Consider the following problem.

Maximize Z � 5x1 � 3x2 � 4x3,

subject to

2x1 � x2 � x3 � 20
3x1 � x2 � 2x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

You are given the information that the nonzero variables in the op-
timal solution are x2 and x3.
(a) Describe how you can use this information to adapt the sim-

plex method to solve this problem in the minimum possible
number of iterations (when you start from the usual initial BF
solution). Do not actually perform any iterations.

(b) Use the procedure developed in part (a) to solve this problem
by hand. (Do not use your OR Courseware.)

4.3-7. Consider the following problem.

Maximize Z � 2x1 � 4x2 � 3x3,

subject to

x1 � 3x2 � 2x3 � 30
x1 � x2 � x3 � 24

3x1 � 5x2 � 3x3 � 60

and

x1 � 0, x2 � 0, x3 � 0.

You are given the information that x1 � 0, x2 � 0, and x3 � 0 in
the optimal solution.
(a) Describe how you can use this information to adapt the sim-

plex method to solve this problem in the minimum possible
number of iterations (when you start from the usual initial BF
solution). Do not actually perform any iterations.

(b) Use the procedure developed in part (a) to solve this problem
by hand. (Do not use your OR Courseware.)

4.3-8. Label each of the following statements as true or false, and
then justify your answer by referring to specific statements in the
chapter.
(a) The simplex method’s rule for choosing the entering basic vari-

able is used because it always leads to the best adjacent BF
solution (largest Z ).

(b) The simplex method’s minimum ratio rule for choosing the
leaving basic variable is used because making another choice
with a larger ratio would yield a basic solution that is not
feasible.

(c) When the simplex method solves for the next BF solution, el-
ementary algebraic operations are used to eliminate each non-
basic variable from all but one equation (its equation) and to
give it a coefficient of �1 in that one equation.

D,I 4.4-1. Repeat Prob. 4.3-2, using the tabular form of the sim-
plex method.

D,I,C 4.4-2. Repeat Prob. 4.3-3, using the tabular form of the sim-
plex method.

4.4-3. Consider the following problem.

Maximize Z � 2x1 � x2,

subject to

x1 � x2 � 40
4x1 � x2 � 100

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically in a freehand manner. Also
identify all the CPF solutions.

D,I (b) Now use IOR Tutorial to solve the problem graphically.
D (c) Use hand calculations to solve this problem by the simplex

method in algebraic form.
D,I (d) Now use IOR Tutorial to solve this problem interactively

by the simplex method in algebraic form.
D (e) Use hand calculations to solve this problem by the simplex

method in tabular form.
D,I (f) Now use IOR Tutorial to solve this problem interactively

by the simplex method in tabular form.
C (g) Use a software package based on the simplex method to

solve the problem.
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4.4-4. Repeat Prob. 4.4-3 for the following problem.

Maximize Z � 2x1 � 3x2,

subject to

x1 � 2x2 � 30
x1 � x2 � 20

and

x1 � 0, x2 � 0.

4.4-5. Consider the following problem.

Maximize Z � 5x1 � 9x2 � 7x3,

subject to

x1 � 3x2 � 2x3 � 10
3x1 � 4x2 � 2x3 � 12
2x1 � x2 � 2x3 � 8

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step in algebraic
form.

D,I (b) Work through the simplex method step by step in tabular
form.

C (c) Use a software package based on the simplex method to
solve the problem.

4.4-6. Consider the following problem.

Maximize Z � 3x1 � 5x2 � 6x3,

subject to

2x1 � x2 � x3 � 4
x1 � 2x2 � x3 � 4
x1 � x2 � 2x3 � 4
x1 � x2 � x3 � 3

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step in algebraic
form.

D,I (b) Work through the simplex method in tabular form.
C (c) Use a computer package based on the simplex method to

solve the problem.

D,I 4.4-7. Work through the simplex method step by step (in tab-
ular form) to solve the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � x2 � x3 � 6
x1 � x2 � 2x3 � 1
x1 � x2 � x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

D,I 4.4-8. Work through the simplex method step by step to solve
the following problem.

Maximize Z � �x1 � x2 � 2x3,

subject to

� x1 � 2x2 � x3 � 20
�2x1 � 4x2 � 2x3 � 60
�2x1 � 3x2 � x3 � 50

and

x1 � 0, x2 � 0, x3 � 0.

4.5-1. Consider the following statements about linear program-
ming and the simplex method. Label each statement as true or false,
and then justify your answer.
(a) In a particular iteration of the simplex method, if there is a tie for

which variable should be the leaving basic variable, then the next
BF solution must have at least one basic variable equal to zero.

(b) If there is no leaving basic variable at some iteration, then the
problem has no feasible solutions.

(c) If at least one of the basic variables has a coefficient of zero
in row 0 of the final tableau, then the problem has multiple op-
timal solutions.

(d) If the problem has multiple optimal solutions, then the prob-
lem must have a bounded feasible region.

4.5-2. Suppose that the following constraints have been provided
for a linear programming model with decision variables x1 and x2.

�2x1 � 3x2 � 12
�3x1 � 2x2 � 12

and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that the feasible region is unbounded.
(b) If the objective is to maximize Z � �x1 � x2, does the model

have an optimal solution? If so, find it. If not, explain why not.
(c) Repeat part (b) when the objective is to maximize Z � x1 � x2.
(d) For objective functions where this model has no optimal solu-

tion, does this mean that there are no good solutions accord-
ing to the model? Explain. What probably went wrong when
formulating the model?

D,I (e) Select an objective function for which this model has no
optimal solution. Then work through the simplex method
step by step to demonstrate that Z is unbounded.

C (f) For the objective function selected in part (e), use a software
package based on the simplex method to determine that Z is
unbounded.

4.5-3. Follow the instructions of Prob. 4.5-2 when the constraints
are the following:

2x1 � x2 � 20
x1 � 2x2 � 20
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and

x1 � 0, x2 � 0.

D,I 4.5-4. Consider the following problem.

Maximize Z � 5x1 � x2 � 3x3 � 4x4,

subject to

� x1 � 2x2 � 4x3 � 3x4 � 20
�4x1 � 6x2 � 5x3 � 4x4 � 40
�2x1 � 3x2 � 3x3 � 8x4 � 50

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

Work through the simplex method step by step to demonstrate that
Z is unbounded.

4.5-5. A basic property of any linear programming problem with
a bounded feasible region is that every feasible solution can be ex-
pressed as a convex combination of the CPF solutions (perhaps in
more than one way). Similarly, for the augmented form of the prob-
lem, every feasible solution can be expressed as a convex combi-
nation of the BF solutions.
(a) Show that any convex combination of any set of feasible so-

lutions must be a feasible solution (so that any convex combi-
nation of CPF solutions must be feasible).

(b) Use the result quoted in part (a) to show that any convex com-
bination of BF solutions must be a feasible solution.

4.5-6. Using the facts given in Prob. 4.5-5, show that the follow-
ing statements must be true for any linear programming problem
that has a bounded feasible region and multiple optimal solutions:
(a) Every convex combination of the optimal BF solutions must

be optimal.
(b) No other feasible solution can be optimal.

4.5-7. Consider a two-variable linear programming problem whose
CPF solutions are (0, 0), (6, 0), (6, 3), (3, 3), and (0, 2). (See Prob.
3.2-2 for a graph of the feasible region.)
(a) Use the graph of the feasible region to identify all the con-

straints for the model.
(b) For each pair of adjacent CPF solutions, give an example of an

objective function such that all the points on the line segment
between these two corner points are multiple optimal solutions.

(c) Now suppose that the objective function is Z � �x1 � 2x2. Use
the graphical method to find all the optimal solutions.

D,I (d) For the objective function in part (c), work through the sim-
plex method step by step to find all the optimal BF solu-
tions. Then write an algebraic expression that identifies all
the optimal solutions.

D,I 4.5-8. Consider the following problem.

Maximize Z � 50x1 � 25x2 � 20x3 � 40x4,

subject to

2x1 � x2 � 30
x3 � 2x4 � 20

and

xj � 0, for j � 1, 2, 3, 4.

Work through the simplex method step by step to find all the op-
timal BF solutions.

4.6-1.* Consider the following problem.

Maximize Z � 2x1 � 3x2,

subject to

x1 � 2x2 � 4
x1 � x2 � 3

and

x1 � 0, x2 � 0.

D,I (a) Solve this problem graphically.
(b) Using the Big M method, construct the complete first simplex

tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (c) Continue from part (b) to work through the simplex method
step by step to solve the problem.

4.6-2. Consider the following problem.

Maximize Z � 4x1 � 2x2 � 3x3 � 5x4,

subject to

2x1 � 3x2 � 4x3 � 2x4 � 300
8x1 � x2 � x3 � 5x4 � 300

and

xj � 0, for j � 1, 2, 3, 4.

(a) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (b) Work through the simplex method step by step to solve the
problem.

(c) Using the two-phase method, construct the complete first sim-
plex tableau for phase 1 and identify the corresponding initial
(artificial) BF solution. Also identify the initial entering basic
variable and the leaving basic variable.

I (d) Work through phase 1 step by step.
(e) Construct the complete first simplex tableau for phase 2.
I (f) Work through phase 2 step by step to solve the problem.
(g) Compare the sequence of BF solutions obtained in part (b) with

that in parts (d) and ( f ). Which of these solutions are feasible
only for the artificial problem obtained by introducing artificial
variables and which are actually feasible for the real problem?

C (h) Use a software package based on the simplex method to
solve the problem.

4.6-3.* Consider the following problem.

Minimize Z � 2x1 � 3x2 � x3,
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subject to

x1 � 4x2 � 2x3 � 8
3x1 � 2x2 � 2x3 � 6

and

x1 � 0, x2 � 0, x3 � 0.

(a) Reformulate this problem to fit our standard form for a linear
programming model presented in Sec. 3.2.

I (b) Using the Big M method, work through the simplex method
step by step to solve the problem.

I (c) Using the two-phase method, work through the simplex
method step by step to solve the problem.

(d) Compare the sequence of BF solutions obtained in parts (b)
and (c). Which of these solutions are feasible only for the ar-
tificial problem obtained by introducing artificial variables and
which are actually feasible for the real problem?

C (e) Use a software package based on the simplex method to
solve the problem.

4.6-4. For the Big M method, explain why the simplex method
never would choose an artificial variable to be an entering basic
variable once all the artificial variables are nonbasic.

4.6-5. Consider the following problem.

Maximize Z � 5x1 � 4x2,

subject to

3x1 � 2x2 � 6
2x1 � x2 � 6

and

x1 � 0, x2 � 0.

(a) Demonstrate graphically that this problem has no feasible
solutions.

C (b) Use a computer package based on the simplex method to
determine that the problem has no feasible solutions.

I (c) Using the Big M method, work through the simplex method
step by step to demonstrate that the problem has no feasible
solutions.

I (d) Repeat part (c) when using phase 1 of the two-phase method.

4.6-6. Follow the instructions of Prob. 4.6-5 for the following 
problem.

Minimize Z � 5,000x1 � 7,000x2,

subject to

�2x1 � x2 � 1
� x1 � 2x2 � 1

and

x1 � 0, x2 � 0.

4.6-7. Consider the following problem.

Maximize Z � 2x1 � 5x2 � 3x3,

subject to

x1 � 2x2 � x3 � 20
2x1 � 4x2 � x3 � 50

and

x1 � 0, x2 � 0, x3 � 0.

(a) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

I (b) Work through the simplex method step by step to solve the
problem.

I (c) Using the two-phase method, construct the complete first
simplex tableau for phase 1 and identify the corresponding
initial (artificial) BF solution. Also identify the initial enter-
ing basic variable and the leaving basic variable.

I (d) Work through phase 1 step by step.
(e) Construct the complete first simplex tableau for phase 2.
I (f) Work through phase 2 step by step to solve the problem.
(g) Compare the sequence of BF solutions obtained in part (b) with

that in parts (d) and ( f ). Which of these solutions are feasible
only for the artificial problem obtained by introducing artificial
variables and which are actually feasible for the real problem?

C (h) Use a software package based on the simplex method to solve
the problem.

4.6-8. Consider the following problem.

Minimize Z � 2x1 � x2 � 3x3,

subject to

5x1 � 2x2 � 7x3 � 420
3x1 � 2x2 � 5x3 � 280

and

x1 � 0, x2 � 0, x3 � 0.

I (a) Using the two-phase method, work through phase 1 step by
step.

C (b) Use a software package based on the simplex method to
formulate and solve the phase 1 problem.

I (c) Work through phase 2 step by step to solve the original 
problem.

C (d) Use a computer code based on the simplex method to solve
the original problem.

4.6-9.* Consider the following problem.

Minimize Z � 3x1 � 2x2 � 4x3,

subject to

2x1 � x2 � 3x3 � 60
3x1 � 3x2 � 5x3 � 120

and

x1 � 0, x2 � 0, x3 � 0.
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I (a) Using the Big M method, work through the simplex method
step by step to solve the problem.

I (b) Using the two-phase method, work through the simplex
method step by step to solve the problem.

(c) Compare the sequence of BF solutions obtained in parts (a)
and (b). Which of these solutions are feasible only for the ar-
tificial problem obtained by introducing artificial variables and
which are actually feasible for the real problem?

C (d) Use a software package based on the simplex method to
solve the problem.

4.6-10. Follow the instructions of Prob. 4.6-9 for the following
problem.

Minimize Z � 3x1 � 2x2 � 7x3,

subject to

�x1 � x2 � x3 � 10
2x1 � x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

4.6-11. Label each of the following statements as true or false, and
then justify your answer.
(a) When a linear programming model has an equality constraint,

an artificial variable is introduced into this constraint in order
to start the simplex method with an obvious initial basic solu-
tion that is feasible for the original model.

(b) When an artificial problem is created by introducing artificial
variables and using the Big M method, if all artificial variables
in an optimal solution for the artificial problem are equal to
zero, then the real problem has no feasible solutions.

(c) The two-phase method is commonly used in practice because
it usually requires fewer iterations to reach an optimal solution
than the Big M method does.

4.6-12. Consider the following problem.

Maximize Z � 3x1 � 7x2 � 5x3,

subject to

3x1 � x2 � 2x3 � 9
�2x1 � x2 � 3x3 � 12

and

x2 � 0, x3 � 0

(no nonnegativity constraint for x1).
(a) Reformulate this problem so all variables have nonnegativity

constraints.
D,I (b) Work through the simplex method step by step to solve the

problem.
C (c) Use a software package based on the simplex method to

solve the problem.

4.6-13.* Consider the following problem.

Maximize Z � �x1 � 4x2,

subject to

�3x1 � x2 � �6

� x1 � 2x2 � �4
� x1 � 2x2 � �3

(no lower bound constraint for x1).
D,I (a) Solve this problem graphically.
(b) Reformulate this problem so that it has only two functional

constraints and all variables have nonnegativity constraints.
D,I (c) Work through the simplex method step by step to solve the

problem.

4.6-14. Consider the following problem.

Maximize Z � �x1 � 2x2 � x3,

subject to

3x2 � x3 � 120
x1 � x2 � 4x3 � 80

�3x1 � x2 � 2x3 � 100

(no nonnegativity constraints).
(a) Reformulate this problem so that all variables have nonnega-

tivity constraints.
D,I (b) Work through the simplex method step by step to solve the

problem.
C (c) Use a computer package based on the simplex method to

solve the problem.

4.6-15. This chapter has described the simplex method as applied to
linear programming problems where the objective function is to be
maximized. Section 4.6 then described how to convert a minimiza-
tion problem to an equivalent maximization problem for applying the
simplex method. Another option with minimization problems is to
make a few modifications in the instructions for the simplex method
given in the chapter in order to apply the algorithm directly.
(a) Describe what these modifications would need to be.
(b) Using the Big M method, apply the modified algorithm devel-

oped in part (a) to solve the following problem directly by
hand. (Do not use your OR Courseware.)

Minimize Z � 3x1 � 8x2 � 5x3,

subject to

3x1 � 3x2 � 4x3 � 70
3x1 � 5x2 � 2x3 � 70

and

x1 � 0, x2 � 0, x3 � 0.

4.6-16. Consider the following problem.

Maximize Z � �2x1 � x2 � 4x3 � 3x4,

subject to

x1 � x2 � 3x3 � 2x4 � �4
x1 � x2 � x3 � x4 � �1

2x1 � x2 � x3 � x4 � �2
x1 � 2x2 � x3 � 2x4 � �2

and

x2 � 0, x3 � 0, x4 � 0

(no nonnegativity constraint for x1).
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(a) Reformulate this problem to fit our standard form for a linear
programming model presented in Sec. 3.2.

(b) Using the Big M method, construct the complete first simplex
tableau for the simplex method and identify the corresponding
initial (artificial) BF solution. Also identify the initial entering
basic variable and the leaving basic variable.

(c) Using the two-phase method, construct row 0 of the first sim-
plex tableau for phase 1.

C (d) Use a computer package based on the simplex method to
solve the problem.

I 4.6-17. Consider the following problem.

Maximize Z � 4x1 � 5x2 � 3x3,

subject to

x1 � x2 � 2x3 � 20
15x1 � 6x2 � 5x3 � 50

x1 � 3x2 � 5x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

Work through the simplex method step by step to demonstrate that
this problem does not possess any feasible solutions.

4.7-1. Refer to Fig. 4.10 and the resulting allowable range for the
respective right-hand sides of the Wyndor Glass Co. problem given
in Sec. 3.1. Use graphical analysis to demonstrate that each given
allowable range is correct.

4.7-2. Reconsider the model in Prob. 4.1-5. Interpret the right-hand
side of the respective functional constraints as the amount avail-
able of the respective resources.
I (a) Use graphical analysis as in Fig. 4.8 to determine the shadow

prices for the respective resources.
I (b) Use graphical analysis to perform sensitivity analysis on this

model. In particular, check each parameter of the model to de-
termine whether it is a sensitive parameter (a parameter whose
value cannot be changed without changing the optimal solution)
by examining the graph that identifies the optimal solution.

I (c) Use graphical analysis as in Fig. 4.9 to determine the allow-
able range for each cj value (coefficient of xj in the objective
function) over which the current optimal solution will remain
optimal.

I (d) Changing just one bi value (the right-hand side of functional
constraint i) will shift the corresponding constraint boundary.
If the current optimal CPF solution lies on this constraint
boundary, this CPF solution also will shift. Use graphical analy-
sis to determine the allowable range for each bi value over
which this CPF solution will remain feasible.

C (e) Verify your answers in parts (a), (c), and (d) by using a com-
puter package based on the simplex method to solve the prob-
lem and then to generate sensitivity analysis information.

4.7-3. You are given the following linear programming problem.

Maximize Z � 3x1 � 2x2,

subject to

3x1 � 3x2 � 60 (resource 1)

2x1 � 3x2 � 75 (resource 2)
x1 � 2x2 � 40 (resource 3)

and

x1 � 0, x2 � 0.

D,I (a) Solve this problem graphically.
(b) Use graphical analysis to find the shadow prices for the resources.
(c) Determine how many additional units of resource 1 would be

needed to increase the optimal value of Z by 15.

4.7-4. Consider the following problem.

Maximize Z � x1 � 7x2 � 3x3,

subject to

�2x1 � x2 � x3 � 4 (resource 1)
�4x1 � 3x2 � x3 � 2 (resource 2)
�3x1 � 2x2 � x3 � 3 (resource 3)

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the three resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity infor-
mation. Use this information to identify the shadow price
for each resource, the allowable range for each objective
function coefficient, and the allowable range for each right-
hand side.

4.7-5.* Consider the following problem.

Maximize Z � 2x1 � 2x2 � 3x3,

subject to

�x1 � x2 � x3 � 4 (resource 1)
2x1 � x2 � x3 � 2 (resource 2)

x1 � x2 � 3x3 � 12 (resource 3)

and

x1 � 0, x2 � 0, x3 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the three resources and describe
their significance.

C (c) Use a software package based on the simplex method to
solve the problem and then to generate sensitivity infor-
mation. Use this information to identify the shadow price
for each resource, the allowable range for each objective
function coefficient and the allowable range for each right-
hand side.

4.7-6. Consider the following problem.

Maximize Z � 5x1 � 4x2 � x3 � 3x4,

hil76299_ch04_089-160.qxd  11/19/08  08:28 AM  Page 157



Rev.Confirming Pages

158 CHAPTER 4 SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

subject to

3x1 � 2x2 � 3x3 � x4 � 24 (resource 1)
3x1 � 3x2 � x3 � 3x4 � 36 (resource 2)

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

D,I (a) Work through the simplex method step by step to solve the
problem.

(b) Identify the shadow prices for the two resources and describe
their significance.

C (c) Use a software package based on the simplex method to solve
the problem and then to generate sensitivity information. Use

this information to identify the shadow price for each re-
source, the allowable range for each objective function
coefficient, and the allowable range for each right-hand
side.

4.9.1. Use the interior-point algorithm in your IOR Tutorial 
to solve the model in Prob. 4.1-4. Choose � � 0.5 from the Op-
tion menu, use (x1, x2) � (0.1, 0.4) as the initial trial solution, and
run 15 iterations. Draw a graph of the feasible region, and then
plot the trajectory of the trial solutions through this feasible region.

4.9-2. Repeat Prob. 4.9-1 for the model in Prob. 4.1-5.

Labor and
Clothing Item Materials Requirements Price Machine Cost

Tailored wool slacks 3 yards of wool $300 $160
2 yards of acetate for lining

Cashmere sweater 1.5 yards of cashmere $450 $150
Silk blouse 1.5 yards of silk $180 $100
Silk camisole 0.5 yard of silk $120 $ 60
Tailored skirt 2 yards of rayon $270 $120

1.5 yards of acetate for lining
Wool blazer 2.5 yards of wool $320 $140

1.5 yards of acetate for lining

■ CASES

CASE 4.1 Fabrics and Fall Fashions
From the tenth floor of her office building, Katherine Rally
watches the swarms of New Yorkers fight their way through
the streets infested with yellow cabs and the sidewalks lit-
tered with hot dog stands. On this sweltering July day, she
pays particular attention to the fashions worn by the various
women and wonders what they will choose to wear in the
fall. Her thoughts are not simply random musings; they are
critical to her work since she owns and manages TrendLines,
an elite women’s clothing company.

Today is an especially important day because she must
meet with Ted Lawson, the production manager, to decide
upon next month’s production plan for the fall line. Specif-
ically, she must determine the quantity of each clothing
item she should produce given the plant’s production ca-
pacity, limited resources, and demand forecasts. Accurate
planning for next month’s production is critical to fall
sales since the items produced next month will appear in
stores during September, and women generally buy the
majority of the fall fashions when they first appear in 
September.

She turns back to her sprawling glass desk and looks at
the numerous papers covering it. Her eyes roam across the
clothing patterns designed almost six months ago, the lists
of materials requirements for each pattern, and the lists of
demand forecasts for each pattern determined by customer
surveys at fashion shows. She remembers the hectic and
sometimes nightmarish days of designing the fall line and
presenting it at fashion shows in New York, Milan, and Paris.
Ultimately, she paid her team of six designers a total of
$860,000 for their work on her fall line. With the cost of hir-
ing runway models, hair stylists, and makeup artists, sewing
and fitting clothes, building the set, choreographing and re-
hearsing the show, and renting the conference hall, each of
the three fashion shows cost her an additional $2,700,000.

She studies the clothing patterns and material require-
ments. Her fall line consists of both professional and casual
fashions. She determined the prices for each clothing item
by taking into account the quality and cost of material, the
cost of labor and machining, the demand for the item, and
the prestige of the TrendLines brand name.

The fall professional fashions include:
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Labor and
Clothing Item Materials Requirements Price Machine Cost

Velvet pants 3 yards of velvet $350 $175
2 yards of acetate for lining

Cotton sweater 1.5 yards of cotton $130 $ 60
Cotton miniskirt 0.5 yard of cotton $ 75 $ 40
Velvet shirt 1.5 yards of velvet $200 $160
Button-down blouse 1.5 yards of rayon $120 $ 90

Material Price per yard

Wool $ 9.00
Acetate $ 1.50
Cashmere $60.00
Silk $13.00
Rayon $ 2.25
Velvet $12.00
Cotton $ 2.50

The fall casual fashions include:

She knows that for the next month, she has ordered
45,000 yards of wool, 28,000 yards of acetate, 9,000 yards
of cashmere, 18,000 yards of silk, 30,000 yards of rayon,
20,000 yards of velvet, and 30,000 yards of cotton for pro-
duction. The prices of the materials are as follows:

shirts. TrendLines does not want to produce more than the
forecasted demand because once the pants and shirts go out
of style, the company cannot sell them. TrendLines can pro-
duce less than the forecasted demand, however, since the
company is not required to meet the demand. The cashmere
sweater also has limited demand because it is quite expen-
sive, and TrendLines knows it can sell at most 4,000 cash-
mere sweaters. The silk blouses and camisoles have limited
demand because many women think silk is too hard to care
for, and TrendLines projects that it can sell at most 12,000
silk blouses and 15,000 silk camisoles.

The demand forecasts also indicate that the wool
slacks, tailored skirts, and wool blazers have a great demand
because they are basic items needed in every professional
wardrobe. Specifically, the demand for wool slacks is 7,000
pairs of slacks, and the demand for wool blazers is 5,000
blazers. Katherine wants to meet at least 60 percent of the
demand for these two items in order to maintain her loyal
customer base and not lose business in the future. Although
the demand for tailored skirts could not be estimated,
Katherine feels she should make at least 2,800 of them.

(a) Ted is trying to convince Katherine not to produce any velvet
shirts since the demand for this fashion fad is quite low. He
argues that this fashion fad alone accounts for $500,000 of the
fixed design and other costs. The net contribution (price of
clothing item � materials cost � labor cost) from selling the
fashion fad should cover these fixed costs. Each velvet shirt
generates a net contribution of $22. He argues that given the
net contribution, even satisfying the maximum demand will not
yield a profit. What do you think of Ted’s argument?

(b) Formulate and solve a linear programming problem to maximize
profit given the production, resource, and demand constraints.

Before she makes her final decision, Katherine plans to ex-
plore the following questions independently except where
otherwise indicated.

(c) The textile wholesaler informs Katherine that the velvet can-
not be sent back because the demand forecasts show that the

Any material that is not used in production can be sent back
to the textile wholesaler for a full refund, although scrap ma-
terial cannot be sent back to the wholesaler.

She knows that the production of both the silk blouse
and cotton sweater leaves leftover scraps of material. Specif-
ically, for the production of one silk blouse or one cotton
sweater, 2 yards of silk and cotton, respectively, are needed.
From these 2 yards, 1.5 yards are used for the silk blouse
or the cotton sweater and 0.5 yard is left as scrap material.
She does not want to waste the material, so she plans to use
the rectangular scrap of silk or cotton to produce a silk
camisole or cotton miniskirt, respectively. Therefore, when-
ever a silk blouse is produced, a silk camisole is also pro-
duced. Likewise, whenever a cotton sweater is produced, a
cotton miniskirt is also produced. Note that it is possible to
produce a silk camisole without producing a silk blouse and
a cotton miniskirt without producing a cotton sweater.

The demand forecasts indicate that some items have
limited demand. Specifically, because the velvet pants and
velvet shirts are fashion fads, TrendLines has forecasted that
it can sell only 5,500 pairs of velvet pants and 6,000 velvet
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demand for velvet will decrease in the future. Katherine can
therefore get no refund for the velvet. How does this fact change
the production plan?

(d) What is an intuitive economic explanation for the difference be-
tween the solutions found in parts (b) and (c)?

(e) The sewing staff encounters difficulties sewing the arms and
lining into the wool blazers since the blazer pattern has an awk-
ward shape and the heavy wool material is difficult to cut and
sew. The increased labor time to sew a wool blazer increases
the labor and machine cost for each blazer by $80. Given this
new cost, how many of each clothing item should TrendLines
produce to maximize profit?

(f) The textile wholesaler informs Katherine that since another tex-
tile customer canceled his order, she can obtain an extra 10,000
yards of acetate. How many of each clothing item should Trend-
Lines now produce to maximize profit?

(g) TrendLines assumes that it can sell every item that was not sold
during September and October in a big sale in November at 60
percent of the original price. Therefore, it can sell all items in
unlimited quantity during the November sale. (The previously
mentioned upper limits on demand concern only the sales dur-
ing September and October.) What should the new production
plan be to maximize profit?

■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 4.2 New Frontiers
AmeriBank will soon begin offering Web banking to its cus-
tomers. To guide its planning for the services to provide over
the Internet, a survey will be conducted with four different
age groups in three types of communities. AmeriBank is im-
posing a number of constraints on how extensively each age
group and each community should be surveyed. Linear pro-
gramming is needed to develop a plan for the survey that
will minimize its total cost while meeting all the survey con-
straints under several different scenarios.

CASE 4.3 Assigning Students to Schools
After deciding to close one of its middle schools, the Spring-
field school board needs to reassign all of next year’s middle
school students to the three remaining middle schools. Many

of the students will be bussed, so minimizing the total
bussing cost is one objective. Another is to minimize the in-
convenience and safety concerns for the students who will
walk or bicycle to school. Given the capacities of the three
schools, as well as the need to roughly balance the number
of students in the three grades at each school, how can lin-
ear programming be used to determine how many students
from each of the city’s six residential areas should be as-
signed to each school? What would happen if each entire
residential area must be assigned to the same school? (This
case will be continued in Cases 6.3 and 11.4.)
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5C H A P T E R

The Theory of the Simplex Method

Chapter 4 introduced the basic mechanics of the simplex method. Now we shall delve a
little more deeply into this algorithm by examining some of its underlying theory. The

first section further develops the general geometric and algebraic properties that form the
foundation of the simplex method. We then describe the matrix form of the simplex method,
which streamlines the procedure considerably for computer implementation. Next we use
this matrix form to present a fundamental insight about a property of the simplex method
that enables us to deduce how changes that are made in the original model get carried along
to the final simplex tableau. This insight will provide the key to the important topics of
Chap. 6 (duality theory and sensitivity analysis). The chapter then concludes by present-
ing the revised simplex method, which further streamlines the matrix form of the simplex
method. Commercial computer codes of the simplex method normally are based on the
revised simplex method.

■ 5.1 FOUNDATIONS OF THE SIMPLEX METHOD
Section 4.1 introduced corner-point feasible (CPF) solutions and the key role they play
in the simplex method. These geometric concepts were related to the algebra of the simplex
method in Secs. 4.2 and 4.3. However, all this was done in the context of the Wyndor
Glass Co. problem, which has only two decision variables and so has a straightforward
geometric interpretation. How do these concepts generalize to higher dimensions when
we deal with larger problems? We address this question in this section.

We begin by introducing some basic terminology for any linear programming prob-
lem with n decision variables. While we are doing this, you may find it helpful to refer to
Fig. 5.1 (which repeats Fig. 4.1) to interpret these definitions in two dimensions (n � 2).

Terminology

It may seem intuitively clear that optimal solutions for any linear programming problem
must lie on the boundary of the feasible region, and in fact this is a general property.
Because boundary is a geometric concept, our initial definitions clarify how the bound-
ary of the feasible region is identified algebraically.

The constraint boundary equation for any constraint is obtained by replacing
its �, �, or � sign with an � sign.
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Consequently, the form of a constraint boundary equation is ai1x1 � ai2x2 � � � � �
ainxn � bi for functional constraints and xj � 0 for nonnegativity constraints. Each such
equation defines a “flat” geometric shape (called a hyperplane) in n-dimensional space,
analogous to the line in two-dimensional space and the plane in three-dimensional space.
This hyperplane forms the constraint boundary for the corresponding constraint. When
the constraint has either a � or a � sign, this constraint boundary separates the points
that satisfy the constraint (all the points on one side up to and including the constraint
boundary) from the points that violate the constraint (all those on the other side of the
constraint boundary). When the constraint has an � sign, only the points on the constraint
boundary satisfy the constraint.

For example, the Wyndor Glass Co. problem has five constraints (three functional
constraints and two nonnegativity constraints), so it has the five constraint boundary equa-
tions shown in Fig. 5.1. Because n � 2, the hyperplanes defined by these constraint bound-
ary equations are simply lines. Therefore, the constraint boundaries for the five constraints
are the five lines shown in Fig. 5.1.

The boundary of the feasible region contains just those feasible solutions that satisfy one
or more of the constraint boundary equations.

Geometrically, any point on the boundary of the feasible region lies on one or more of
the hyperplanes defined by the respective constraint boundary equations. Thus, in Fig. 5.1,
the boundary consists of the five darker line segments.

Next, we give a general definition of CPF solution in n-dimensional space.

A corner-point feasible (CPF) solution is a feasible solution that does not lie
on any line segment1 connecting two other feasible solutions.

As this definition implies, a feasible solution that does lie on a line segment connecting two
other feasible solutions is not a CPF solution. To illustrate when n � 2, consider Fig. 5.1.

162 CHAPTER 5 THE THEORY OF THE SIMPLEX METHOD

(6, 0)(4, 0)

(0, 6)

(0, 9)

(2, 6)

(4, 3)

(0, 0)

Feasible
region

x1 � 0

3x1 � 2x2 � 18

x2 � 0

x1 � 4

2x2 � 12

Maximize Z � 3x1 � 5x2,
subject to

x1 �   4
� 12
� 18

2x2
2x23x1 �

x1 � 0, 0    x2      �
and

(4, 6)

■ FIGURE 5.1
Constraint boundaries,
constraint boundary
equations, and corner-point
solutions for the Wyndor
Glass Co. problem.

1An algebraic expression for a line segment is given in Appendix 2.
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The point (2, 3) is not a CPF solution, because it lies on various such line segments, e.g.,
the line segment connecting (0, 3) and (4, 3). Similarly, (0, 3) is not a CPF solution, be-
cause it lies on the line segment connecting (0, 0) and (0, 6). However, (0, 0) is a CPF so-
lution, because it is impossible to find two other feasible solutions that lie on completely
opposite sides of (0, 0). (Try it.)

When the number of decision variables n is greater than 2 or 3, this definition for
CPF solution is not a very convenient one for identifying such solutions. Therefore, it will
prove most helpful to interpret these solutions algebraically. For the Wyndor Glass Co.
example, each CPF solution in Fig. 5.1 lies at the intersection of two (n � 2) constraint
lines; i.e., it is the simultaneous solution of a system of two constraint boundary equa-
tions. This situation is summarized in Table 5.1, where defining equations refer to the
constraint boundary equations that yield (define) the indicated CPF solution.

For any linear programming problem with n decision variables, each CPF solu-
tion lies at the intersection of n constraint boundaries; i.e., it is the simultaneous
solution of a system of n constraint boundary equations.

However, this is not to say that every set of n constraint boundary equations chosen
from the n � m constraints (n nonnegativity and m functional constraints) yields a CPF
solution. In particular, the simultaneous solution of such a system of equations might vi-
olate one or more of the other m constraints not chosen, in which case it is a corner-point
infeasible solution. The example has three such solutions, as summarized in Table 5.2.
(Check to see why they are infeasible.)

5.1 FOUNDATIONS OF THE SIMPLEX METHOD 163

■ TABLE 5.1 Defining equations for each 
CPF solution for the 
Wyndor Glass Co. problem

CPF Solution Defining Equations

(0, 0) x1 � 0
x2 � 0

(0, 6) x1 � 0
2x2 � 12

(2, 6) 2x2 � 12
3x1 � 2x2 � 18

(4, 3) 3x1 � 2x2 � 18
x1 � 4

(4, 0) x1 � 4
x2 � 0

■ TABLE 5.2 Defining equations for each 
corner-point infeasible 
solution for the Wyndor 
Glass Co. problem

Corner-Point Defining
Infeasible Solution Equations

(0, 9) x1 � 0
3x1 � 2x2 � 18

(4, 6) 2x2 � 12
x1 � 4

(6, 0) 3x1 � 2x2 � 18
x2 � 0
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Furthermore, a system of n constraint boundary equations might have no solution at
all. This occurs twice in the example, with the pairs of equations (1) x1 � 0 and x1 � 4
and (2) x2 � 0 and 2x2 � 12. Such systems are of no interest to us.

The final possibility (which never occurs in the example) is that a system of n constraint
boundary equations has multiple solutions because of redundant equations. You need not be
concerned with this case either, because the simplex method circumvents its difficulties.

We also should mention that it is possible for more than one system of n constraint
boundary equations to yield the same CP solution. For example, if the x1 � 4 constraint in
the Wyndor Glass Co. problem were to be replaced by x1 � 2, note in Fig. 5.1 how the CPF
solution (2, 6) can be derived from any one of three pairs of constraint boundary equations.
(This is an example of the degeneracy discussed in a different context in Sec. 4.5.)

To summarize for the example, with five constraints and two variables, there are
10 pairs of constraint boundary equations. Five of these pairs became defining equa-
tions for CPF solutions (Table 5.1), three became defining equations for corner-point
infeasible solutions (Table 5.2), and each of the final two pairs had no solution.

Adjacent CPF Solutions

Section 4.1 introduced adjacent CPF solutions and their role in solving linear program-
ming problems. We now elaborate.

Recall from Chap. 4 that (when we ignore slack, surplus, and artificial variables) each
iteration of the simplex method moves from the current CPF solution to an adjacent one.
What is the path followed in this process? What really is meant by adjacent CPF solu-
tion? First we address these questions from a geometric viewpoint, and then we turn to
algebraic interpretations.

These questions are easy to answer when n � 2. In this case, the boundary of the fea-
sible region consists of several connected line segments forming a polygon, as shown in
Fig. 5.1 by the five darker line segments. These line segments are the edges of the feasi-
ble region. Emanating from each CPF solution are two such edges leading to an adjacent
CPF solution at the other end. (Note in Fig. 5.1 how each CPF solution has two adjacent
ones.) The path followed in an iteration is to move along one of these edges from one end
to the other. In Fig. 5.1, the first iteration involves moving along the edge from (0, 0) to
(0, 6), and then the next iteration moves along the edge from (0, 6) to (2, 6). As Table 5.1
illustrates, each of these moves to an adjacent CPF solution involves just one change in
the set of defining equations (constraint boundaries on which the solution lies).

When n � 3, the answers are slightly more complicated. To help you visualize what
is going on, Fig. 5.2 shows a three-dimensional drawing of a typical feasible region when
n � 3, where the dots are the CPF solutions. This feasible region is a polyhedron rather than
the polygon we had with n � 2 (Fig. 5.1), because the constraint boundaries now are planes
rather than lines. The faces of the polyhedron form the boundary of the feasible region, where
each face is the portion of a constraint boundary that satisfies the other constraints as well.
Note that each CPF solution lies at the intersection of three constraint boundaries (sometimes
including some of the x1 � 0, x2 � 0, and x3 � 0 constraint boundaries for the nonnegativity
constraints), and the solution also satisfies the other constraints. Such intersections that do not
satisfy one or more of the other constraints yield corner-point infeasible solutions instead.

The darker line segment in Fig. 5.2 depicts the path of the simplex method on a typ-
ical iteration. The point (2, 4, 3) is the current CPF solution to begin the iteration, and
the point (4, 2, 4) will be the new CPF solution at the end of the iteration. The point 
(2, 4, 3) lies at the intersection of the x2 � 4, x1 � x2 � 6, and �x1 � 2x3 � 4 constraint
boundaries, so these three equations are the defining equations for this CPF solution. If
the x2 � 4 defining equation were removed, the intersection of the other two constraint
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boundaries (planes) would form a line. One segment of this line, shown as the dark line
segment from (2, 4, 3) to (4, 2, 4) in Fig. 5.2, lies on the boundary of the feasible region,
whereas the rest of the line is infeasible. This line segment is an edge of the feasible
region, and its endpoints (2, 4, 3) and (4, 2, 4) are adjacent CPF solutions.

For n � 3, all the edges of the feasible region are formed in this way as the feasible
segment of the line lying at the intersection of two constraint boundaries, and the two
endpoints of an edge are adjacent CPF solutions. In Fig. 5.2 there are 15 edges of the fea-
sible region, and so there are 15 pairs of adjacent CPF solutions. For the current CPF so-
lution (2, 4, 3), there are three ways to remove one of its three defining equations to obtain
an intersection of the other two constraint boundaries, so there are three edges emanating
from (2, 4, 3). These edges lead to (4, 2, 4), (0, 4, 2), and (2, 4, 0), so these are the CPF
solutions that are adjacent to (2, 4, 3).

For the next iteration, the simplex method chooses one of these three edges, say, the
darker line segment in Fig. 5.2, and then moves along this edge away from (2, 4, 3) un-
til it reaches the first new constraint boundary, x1 � 4, at its other endpoint. [We cannot
continue farther along this line to the next constraint boundary, x2 � 0, because this leads
to a corner-point infeasible solution—(6, 0, 5).] The intersection of this first new con-
straint boundary with the two constraint boundaries forming the edge yields the new CPF
solution (4, 2, 4).

When n � 3, these same concepts generalize to higher dimensions, except the con-
straint boundaries now are hyperplanes instead of planes. Let us summarize.

Consider any linear programming problem with n decision variables and a bounded feasible
region. A CPF solution lies at the intersection of n constraint boundaries (and satisfies the
other constraints as well). An edge of the feasible region is a feasible line segment that
lies at the intersection of n � 1 constraint boundaries, where each endpoint lies on one
additional constraint boundary (so that these endpoints are CPF solutions). Two CPF so-
lutions are adjacent if the line segment connecting them is an edge of the feasible region.
Emanating from each CPF solution are n such edges, each one leading to one of the n ad-
jacent CPF solutions. Each iteration of the simplex method moves from the current CPF
solution to an adjacent one by moving along one of these n edges.
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(4, 0, 4)

(4, 2, 4)

(4, 0, 0)

(4, 2, 0)

(2, 4, 0)(0, 4, 0)
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x1 

x3

(0, 4, 2)

(0, 0, 2)

(0, 0, 0)

Constraints

x1 � 4
x2 � 4

x1 � x2 � 6
�x1 � 2x3 � 4

x1 � 0,  x2 � 0,  x3 � 0

(2, 4, 3)

■ FIGURE 5.2
Feasible region and CPF
solutions for a three-variable
linear programming
problem.
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When you shift from a geometric viewpoint to an algebraic one, intersection of con-
straint boundaries changes to simultaneous solution of constraint boundary equations.
The n constraint boundary equations yielding (defining) a CPF solution are its defining
equations, where deleting one of these equations yields a line whose feasible segment is
an edge of the feasible region.

We next analyze some key properties of CPF solutions and then describe the implica-
tions of all these concepts for interpreting the simplex method. However, while the summary
on the previous page is fresh in your mind, let us give you a preview of its implications.
When the simplex method chooses an entering basic variable, the geometric interpretation is
that it is choosing one of the edges emanating from the current CPF solution to move along.
Increasing this variable from zero (and simultaneously changing the values of the other ba-
sic variables accordingly) corresponds to moving along this edge. Having one of the basic
variables (the leaving basic variable) decrease so far that it reaches zero corresponds to reach-
ing the first new constraint boundary at the other end of this edge of the feasible region.

Properties of CPF Solutions

We now focus on three key properties of CPF solutions that hold for any linear pro-
gramming problem that has feasible solutions and a bounded feasible region.

Property 1: (a) If there is exactly one optimal solution, then it must be a CPF
solution. (b) If there are multiple optimal solutions (and a bounded feasible re-
gion), then at least two must be adjacent CPF solutions.

Property 1 is a rather intuitive one from a geometric viewpoint. First consider Case (a),
which is illustrated by the Wyndor Glass Co. problem (see Fig. 5.1) where the one opti-
mal solution (2, 6) is indeed a CPF solution. Note that there is nothing special about this
example that led to this result. For any problem having just one optimal solution, it al-
ways is possible to keep raising the objective function line (hyperplane) until it just touches
one point (the optimal solution) at a corner of the feasible region.

We now give an algebraic proof for this case.

Proof of Case (a) of Property 1: We set up a proof by contradiction by assum-
ing that there is exactly one optimal solution and that it is not a CPF solution.
We then show below that this assumption leads to a contradiction and so cannot
be true. (The solution assumed to be optimal will be denoted by x*, and its ob-
jective function value by Z*.)

Recall the definition of CPF solution (a feasible solution that does not lie
on any line segment connecting two other feasible solutions). Since we have as-
sumed that the optimal solution x* is not a CPF solution, this implies that there
must be two other feasible solutions such that the line segment connecting them
contains the optimal solution. Let the vectors x� and x	 denote these two other
feasible solutions, and let Z1 and Z2 denote their respective objective function
values. Like each other point on the line segment connecting x� and x	,

x* � �x	 � (1 � �)x�

for some value of � such that 0 
 � 
 1. Thus, since the coefficients of the vari-
ables are identical for Z*, Z1, and Z2, it follows that

Z* � �Z2 � (1 � �)Z1.

Since the weights � and 1 � � add to 1, the only possibilities for how Z*, Z1, and
Z2 compare are (1) Z* � Z1 � Z2, (2) Z1 
 Z* 
 Z2, and (3) Z1 � Z* � Z2. The first
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possibility implies that x� and x	 also are optimal, which contradicts the assumption
that there is exactly one optimal solution. Both the latter possibilities contradict the
assumption that x* (not a CPF solution) is optimal. The resulting conclusion is that
it is impossible to have a single optimal solution that is not a CPF solution.

Now consider Case (b), which was demonstrated in Sec. 3.2 under the definition of
optimal solution by changing the objective function in the example to Z � 3x1 � 2x2 (see
Fig. 3.5 in Sec. 3.2). What then happens when you are solving graphically is that the
objective function line keeps getting raised until it contains the line segment connecting
the two CPF solutions (2, 6) and (4, 3). The same thing would happen in higher di-
mensions except that an objective function hyperplane would keep getting raised until
it contained the line segment(s) connecting two (or more) adjacent CPF solutions. As a
consequence, all optimal solutions can be obtained as weighted averages of optimal CPF
solutions. (This situation is described further in Probs. 4.5-5 and 4.5-6.)

The real significance of Property 1 is that it greatly simplifies the search for an op-
timal solution because now only CPF solutions need to be considered. The magnitude of
this simplification is emphasized in Property 2.

Property 2: There are only a finite number of CPF solutions.

This property certainly holds in Figs. 5.1 and 5.2, where there are just 5 and 10 CPF
solutions, respectively. To see why the number is finite in general, recall that each CPF so-
lution is the simultaneous solution of a system of n out of the m � n constraint boundary
equations. The number of different combinations of m � n equations taken n at a time is

� � � ,

which is a finite number. This number, in turn, in an upper bound on the number of CPF
solutions. In Fig. 5.1, m � 3 and n � 2, so there are 10 different systems of two equa-
tions, but only half of them yield CPF solutions. In Fig. 5.2, m � 4 and n � 3, which
gives 35 different systems of three equations, but only 10 yield CPF solutions.

Property 2 suggests that, in principle, an optimal solution can be obtained by exhaus-
tive enumeration; i.e., find and compare all the finite number of CPF solutions. Unfortu-
nately, there are finite numbers, and then there are finite numbers that (for all practical
purposes) might as well be infinite. For example, a rather small linear programming prob-
lem with only m � 50 and n � 50 would have 100!/(50!)2 � 1029 systems of equations to
be solved! By contrast, the simplex method would need to examine only approximately
100 CPF solutions for a problem of this size. This tremendous savings can be obtained be-
cause of the optimality test given in Sec. 4.1 and restated here as Property 3.

Property 3: If a CPF solution has no adjacent CPF solutions that are better (as
measured by Z ), then there are no better CPF solutions anywhere. Therefore,
such a CPF solution is guaranteed to be an optimal solution (by Property 1), as-
suming only that the problem possesses at least one optimal solution (guaranteed
if the problem possesses feasible solutions and a bounded feasible region).

To illustrate Property 3, consider Fig. 5.1 for the Wyndor Glass Co. example. For the
CPF solution (2, 6), its adjacent CPF solutions are (0, 6) and (4, 3), and neither has a bet-
ter value of Z than (2, 6) does. This outcome implies that none of the other CPF solutions—
(0, 0) and (4, 0)—can be better than (2, 6), so (2, 6) must be optimal.

By contrast, Fig. 5.3 shows a feasible region that can never occur for a linear pro-
gramming problem (since the continuation of the constraint boundary lines that pass

(m � n)!
�

m!n!
m � n
�

n
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through ( �
8
3

�, 5) would chop off part of this region) but that does violate Property 3. The prob-
lem shown is identical to the Wyndor Glass Co. example (including the same objective
function) except for the enlargement of the feasible region to the right of ( �

8
3

�, 5).
Consequently, the adjacent CPF solutions for (2, 6) now are (0, 6) and (�

8
3

�, 5), and again
neither is better than (2, 6). However, another CPF solution (4, 5) now is better than (2, 6),
thereby violating Property 3. The reason is that the boundary of the feasible region goes
down from (2, 6) to ( �

8
3

�, 5) and then “bends outward” to (4, 5), beyond the objective func-
tion line passing through (2, 6).

The key point is that the kind of situation illustrated in Fig. 5.3 can never occur in
linear programming. The feasible region in Fig. 5.3 implies that the 2x2 � 12 and 3x1 �
2x2 � 18 constraints apply for 0 � x1 � �

8
3

�. However, under the condition that �
8
3

� � x1 � 4,
the 3x1 � 2x2 � 18 constraint is dropped and replaced by x2 � 5. Such “conditional con-
straints” just are not allowed in linear programming.

The basic reason that Property 3 holds for any linear programming problem is that the
feasible region always has the property of being a convex set2, as defined in Appendix 2
and illustrated in several figures there. For two-variable linear programming problems,
this convex property means that the angle inside the feasible region at every CPF solu-
tion is less than 180°. This property is illustrated in Fig. 5.1, where the angles at (0, 0),
(0, 6), and (4, 0) are 90° and those at (2, 6) and (4, 3) are between 90° and 180°. By con-
trast, the feasible region in Fig. 5.3 is not a convex set, because the angle at ( �

8
3

�, 5) is more
than 180°. This is the kind of “bending outward” at an angle greater than 180° that can
never occur in linear programming. In higher dimensions, the same intuitive notion of
“never bending outward” (a basic property of a convex set) continues to apply.
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x12 4

2

4

6

x2

(0, 0)

(0, 6) (2, 6)

(4, 5)

(4, 0)

( 8
3 , 5)

Z � 36 � 3x1 � 5x2

Feasible
region

2If you already are familiar with convex sets, note that the set of solutions that satisfy any linear programming
constraint (whether it be an inequality or equality constraint) is a convex set. For any linear programming prob-
lem, its feasible region is the intersection of the sets of solutions that satisfy its individual constraints. Since the
intersection of convex sets is a convex set, this feasible region necessarily is a convex set.

■ FIGURE 5.3
Modification of the Wyndor
Glass Co. problem that
violates both linear
programming and Property 3
for CPF solutions in linear
programming.
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■ TABLE 5.3 Indicating variables for constraint boundary equations*

Constraint
Type of Form of Constraint in Boundary Indicating

Constraint Constraint Augmented Form Equation Variable

Nonnegativity xj � 0 xj � 0 xj � 0 xj

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � xn�i � bi �

n

j�1
aijxj � bi xn�i

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � x�n�i � bi �

n

j�1
aijxj � bi x�n�i

Functional (�) �
n

j�1
aijxj � bi �

n

j�1
aijxj � x�n�i � xsi

� bi �
n

j�1
aijxj � bi x�n�i � xsi

∗Indicating variable � 0 ⇒ constraint boundary equation satisfied; 
indicating variable 
 0 ⇒ constraint boundary equation violated.

To clarify the significance of a convex feasible region, consider the objective function
hyperplane that passes through a CPF solution that has no adjacent CPF solutions that are
better. [In the original Wyndor Glass Co. example, this hyperplane is the objective function
line passing through (2, 6).] All these adjacent solutions [(0, 6) and (4, 3) in the example]
must lie either on the hyperplane or on the unfavorable side (as measured by Z ) of the
hyperplane. The feasible region being convex means that its boundary cannot “bend out-
ward” beyond an adjacent CPF solution to give another CPF solution that lies on the fa-
vorable side of the hyperplane. So Property 3 holds.

Extensions to the Augmented Form of the Problem

For any linear programming problem in our standard form (including functional constraints
in � form), the appearance of the functional constraints after slack variables are intro-
duced is as follows:

(1) a11x1 � a12x2 � � � � � a1nxn � xn�1 � b1

(2) a21x1 � a22x2 � � � � � a2nxn � xn�2 � b2

�����������������������������������������������������������������������
(m) am1x1 � am2x2� � � � � amnxn � xn�m � bm,

where xn�1, xn�2, . . . , xn�m are the slack variables. For other linear programming prob-
lems, Sec. 4.6 described how essentially this same appearance (proper form from Gaussian
elimination) can be obtained by introducing artificial variables, etc. Thus, the original so-
lutions (x1, x2, . . . , xn) now are augmented by the corresponding values of the slack or
artificial variables (xn�1, xn�2, . . . , xn�m) and perhaps some surplus variables as well. This
augmentation led in Sec. 4.2 to defining basic solutions as augmented corner-point solutions
and basic feasible solutions (BF solutions) as augmented CPF solutions. Consequently, the
preceding three properties of CPF solutions also hold for BF solutions.

Now let us clarify the algebraic relationships between basic solutions and corner-point
solutions. Recall that each corner-point solution is the simultaneous solution of a system
of n constraint boundary equations, which we called its defining equations. The key ques-
tion is: How do we tell whether a particular constraint boundary equation is one of the
defining equations when the problem is in augmented form? The answer, fortunately, is
a simple one. Each constraint has an indicating variable that completely indicates (by
whether its value is zero) whether that constraint’s boundary equation is satisfied by the
current solution. A summary appears in Table 5.3. For the type of constraint in each row
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of the table, note that the corresponding constraint boundary equation (fourth column) is
satisfied if and only if this constraint’s indicating variable (fifth column) equals zero. In
the last row (functional constraint in � form), the indicating variable x�n�i � xsi

actually
is the difference between the artificial variable x�n�i and the surplus variable xsi

.
Thus, whenever a constraint boundary equation is one of the defining equations for

a corner-point solution, its indicating variable has a value of zero in the augmented form
of the problem. Each such indicating variable is called a nonbasic variable for the corre-
sponding basic solution. The resulting conclusions and terminology (already introduced
in Sec. 4.2) are summarized next.

Each basic solution has m basic variables, and the rest of the variables are non-
basic variables set equal to zero. (The number of nonbasic variables equals n plus
the number of surplus variables.) The values of the basic variables are given by
the simultaneous solution of the system of m equations for the problem in aug-
mented form (after the nonbasic variables are set to zero). This basic solution is
the augmented corner-point solution whose n defining equations are those indicated
by the nonbasic variables. In particular, whenever an indicating variable in the fifth
column of Table 5.3 is a nonbasic variable, the constraint boundary equation in the
fourth column is a defining equation for the corner-point solution. (For functional
constraints in � form, at least one of the two supplementary variables x�n�i and xsi
always is a nonbasic variable, but the constraint boundary equation becomes a defin-
ing equation only if both of these variables are nonbasic variables.)

Now consider the basic feasible solutions. Note that the only requirements for a so-
lution to be feasible in the augmented form of the problem are that it satisfy the system
of equations and that all the variables be nonnegative.

A BF solution is a basic solution where all m basic variables are nonnegative (� 0).
A BF solution is said to be degenerate if any of these m variables equals zero.

Thus, it is possible for a variable to be zero and still not be a nonbasic variable for the
current BF solution. (This case corresponds to a CPF solution that satisfies another con-
straint boundary equation in addition to its n defining equations.) Therefore, it is neces-
sary to keep track of which is the current set of nonbasic variables (or the current set of
basic variables) rather than to rely upon their zero values.

We noted earlier that not every system of n constraint boundary equations yields a
corner-point solution, because the system may have no solution or it may have multiple
solutions. For analogous reasons, not every set of n nonbasic variables yields a basic solu-
tion. However, these cases are avoided by the simplex method.

To illustrate these definitions, consider the Wyndor Glass Co. example once more. Its
constraint boundary equations and indicating variables are shown in Table 5.4.
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■ TABLE 5.4 Indicating variables for the constraint boundary equations of the
Wyndor Glass Co. problem*

Constraint in Constraint Boundary Indicating
Constraint Augmented Form Equation Variable

x1 � 0 x1 � 0 x1 � 0 x1

x2 � 0 x2 � 0 x2 � 0 x2

x1 � 4 (1) 2x1 � 2x2 � x3x3x3 � 24 x1 � 4 x3

2x2 � 12 (2) 3x1 � 2x2 � x3x4x3 � 12 2x2 � 12 x4

3x1 � 2x2 � 18 (3) 3x1 � 2x2 � x3x3x5 � 18 3x1 � 2x2 � 18 x5

∗Indicating variable � 0 ⇒ constraint boundary equation satisfied; 
indicating variable � 0 ⇒ constraint boundary equation violated.
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Augmenting each of the CPF solutions (see Table 5.1) yields the BF solutions listed
in Table 5.5. This table places adjacent BF solutions next to each other, except for the pair
consisting of the first and last solutions listed. Notice that in each case the nonbasic vari-
ables necessarily are the indicating variables for the defining equations. Thus, adjacent
BF solutions differ by having just one different nonbasic variable. Also notice that each
BF solution is the simultaneous solution of the system of equations for the problem in
augmented form (see Table 5.4) when the nonbasic variables are set equal to zero.

Similarly, the three corner-point infeasible solutions (see Table 5.2) yield the three
basic infeasible solutions shown in Table 5.6.

The other two sets of nonbasic variables, (1) x1 and x3 and (2) x2 and x4, do not yield
a basic solution, because setting either pair of variables equal to zero leads to having no
solution for the system of Eqs. (1) to (3) given in Table 5.4. This conclusion parallels the
observation we made early in this section that the corresponding sets of constraint bound-
ary equations do not yield a solution.

The simplex method starts at a BF solution and then iteratively moves to a better
adjacent BF solution until an optimal solution is reached. At each iteration, how is the
adjacent BF solution reached?

For the original form of the problem, recall that an adjacent CPF solution is reached
from the current one by (1) deleting one constraint boundary (defining equation) from the
set of n constraint boundaries defining the current solution, (2) moving away from the
current solution in the feasible direction along the intersection of the remaining n � 1
constraint boundaries (an edge of the feasible region), and (3) stopping when the first new
constraint boundary (defining equation) is reached.
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■ TABLE 5.5 BF solutions for the Wyndor Glass Co. problem

Defining Nonbasic
CPF Solution Equations BF Solution Variables

(0, 0) x1 � 0 (0, 0, 4, 12, 18) x1

x2 � 0 x2

(0, 6) x1 � 0 (0, 6, 4, 0, 6) x1

2x2 � 12 x4

(2, 6) 2x2 � 12 (2, 6, 2, 0, 0) x4

3x1 � 2x2 � 18 x5

(4, 3) 3x1 � 2x2 � 18 (4, 3, 0, 6, 0) x5

x1 � 4 x3

(4, 0) x1 � 4 (4, 0, 0, 12, 6) x3

x2 � 0 x2

■ TABLE 5.6 Basic infeasible solutions for the Wyndor Glass Co. problem

Corner-Point Defining Basic Infeasible Nonbasic
Infeasible Solution Equations Solution Variables

(0, 9) x1 � 0 (0, 9, 4, �6, 0) x1

3x1 � 2x2 � 18 x5

(4, 6) 2x2 � 12 (4, 6, 0, 0, �6) x4

x1 � 4 x3

(6, 0) 3x1 � 2x2 � 18 (6, 0, �2, 12, 0) x5

x2 � 0 x2
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Equivalently, in our new terminology, the simplex method reaches an adjacent BF so-
lution from the current one by (1) deleting one variable (the entering basic variable) from
the set of n nonbasic variables defining the current solution, (2) moving away from the
current solution by increasing this one variable from zero (and adjusting the other basic
variables to still satisfy the system of equations) while keeping the remaining n � 1
nonbasic variables at zero, and (3) stopping when the first of the basic variables (the leav-
ing basic variable) reaches a value of zero (its constraint boundary). With either interpre-
tation, the choice among the n alternatives in step 1 is made by selecting the one that
would give the best rate of improvement in Z (per unit increase in the entering basic vari-
able) during step 2.

Table 5.7 illustrates the close correspondence between these geometric and alge-
braic interpretations of the simplex method. Using the results already presented in Secs.
4.3 and 4.4, the fourth column summarizes the sequence of BF solutions found for the
Wyndor Glass Co. problem, and the second column shows the corresponding CPF so-
lutions. In the third column, note how each iteration results in deleting one constraint
boundary (defining equation) and substituting a new one to obtain the new CPF solu-
tion. Similarly, note in the fifth column how each iteration results in deleting one non-
basic variable and substituting a new one to obtain the new BF solution. Furthermore,
the nonbasic variables being deleted and added are the indicating variables for the defin-
ing equations being deleted and added in the third column. The last column displays
the initial system of equations [excluding Eq. (0)] for the augmented form of the prob-
lem, with the current basic variables shown in bold type. In each case, note how setting
the nonbasic variables equal to zero and then solving this system of equations for the
basic variables must yield the same solution for (x1, x2) as the corresponding pair of
defining equations in the third column.

The Worked Examples section of the book’s website provides another example of de-
veloping the type of information given in Table 5.7 for a minimization problem.
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■ TABLE 5.7 Sequence of solutions obtained by the simplex method for the 
Wyndor Glass Co. problem

CPF Defining Nonbasic Functional Constraints
Iteration Solution Equations BF Solution Variables in Augmented Form

0 (0, 0) x1 � 0 (0, 0, 4, 12, 18) x1 � 0 x1 � 2x2 � x3 � 4
x2 � 0 x2 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

1 (0, 6) x1 � 0 (0, 6, 4, 0, 6) x1 � 0 x1 � 2x2 � x3 � 4
2x2 � 12 x4 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

2 (2, 6) 2x2 � 12 (2, 6, 2, 0, 0) x4 � 0 x1 � 2x2 � x3 � 4
3x1 � 2x2 � 18 x5 � 0 2x2 � x4 � 12

3x1 � 2x2 � x5 � 18

■ 5.2 THE SIMPLEX METHOD IN MATRIX FORM
Chapter 4 describes the simplex method in both an algebraic form and a tabular form.
Further insight into the theory and power of the simplex method can be obtained by ex-
amining its matrix form. We begin by introducing matrix notation to represent linear pro-
gramming problems. (See Appendix 4 for a review of matrices.).
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To help you distinguish between matrices, vectors, and scalars, we consistently use
BOLDFACE CAPITAL letters to represent matrices, boldface lowercase letters to
represent vectors, and italicized letters in ordinary print to represent scalars. We also use
a boldface zero (0) to denote a null vector (a vector whose elements all are zero) in ei-
ther column or row form (which one should be clear from the context), whereas a zero in
ordinary print (0) continues to represent the number zero.

Using matrices, our standard form for the general linear programming model given
in Sec. 3.2 becomes

where c is the row vector

c � [c1, c2, . . . , cn],

x, b, and 0 are the column vectors such that

x � , b � , 0 � ,

and A is the matrix

A � .

To obtain the augmented form of the problem, introduce the column vector of slack 
variables

xs �

so that the constraints become

[A, I] � � � b and � � � 0,

where I is the m 
 m identity matrix, and the null vector 0 now has n � m elements. (We
comment at the end of the section about how to deal with problems that are not in our
standard form.)

Solving for a Basic Feasible Solution

Recall that the general approach of the simplex method is to obtain a sequence of
improving BF solutions until an optimal solution is reached. One of the key features of
the matrix form of the simplex method involves the way in which it solves for each new

x
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BF solution after identifying its basic and nonbasic variables. Given these variables, the
resulting basic solution is the solution of the m equations

[A, I] � � � b,

in which the n nonbasic variables from the n � m elements of

� �
are set equal to zero. Eliminating these n variables by equating them to zero leaves a 
set of m equations in m unknowns (the basic variables). This set of equations can be de-
noted by

BxB � b,

where the vector of basic variables

xB �

is obtained by eliminating the nonbasic variables from

� � ,

and the basis matrix

B �

is obtained by eliminating the columns corresponding to coefficients of nonbasic variables
from [A, I]. (In addition, the elements of xB and, therefore, the columns of B may be
placed in a different order when the simplex method is executed.)

The simplex method introduces only basic variables such that B is nonsingular, so
that B�1 always will exist. Therefore, to solve BxB � b, both sides are premultiplied 
by B�1:

B�1BxB � B�1b.

Since B�1B � I, the desired solution for the basic variables is

Let cB be the vector whose elements are the objective function coefficients (including
zeros for slack variables) for the corresponding elements of xB. The value of the objec-
tive function for this basic solution is then

Example. To illustrate this method of solving for a BF solution, consider again the
Wyndor Glass Co. problem presented in Sec. 3.1 and solved by the original simplex method
in Table 4.8. In this case,

Z � cBxB � cBB�1b.

xB � B�1b.
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c � [3, 5], [A, I] � , b � , x � � � , xs � .

Referring to Table 4.8, we see that the sequence of BF solutions obtained by the simplex
method is the following:

Iteration 0

xB � , B � � B�1, so � � ,

cB � [0, 0, 0], so Z � [0, 0, 0] � 0.

Iteration 1

xB � , B � , B�1 � ,

so

� � ,

cB � [0, 5, 0], so Z � [0, 5, 0] � 30.

Iteration 2

xB � , B � , B�1 � ,

so

� � ,

cB � [0, 5, 3], so Z � [0, 5, 3] � 36.
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Matrix Form of the Current Set of Equations

The last preliminary before we summarize the matrix form of the simplex method is to
show the matrix form of the set of equations appearing in the simplex tableau for any it-
eration of the original simplex method.

For the original set of equations, the matrix form is

� � � � �.

This set of equations also is exhibited in the first simplex tableau of Table 5.8.
The algebraic operations performed by the simplex method (multiply an equation by

a constant and add a multiple of one equation to another equation) are expressed in ma-
trix form by premultiplying both sides of the original set of equations by the appropriate
matrix. This matrix would have the same elements as the identity matrix, except that each
multiple for an algebraic operation would go into the spot needed to have the matrix mul-
tiplication perform this operation. Even after a series of algebraic operations over several
iterations, we still can deduce what this matrix must be (symbolically) for the entire se-
ries by using what we already know about the right-hand sides of the new set of equa-
tions. In particular, after any iteration, xB � B�1b and Z � cBB�1b, so the right-hand sides
of the new set of equations have become

� � � � �� � � � � .

Because we perform the same series of algebraic operations on both sides of the orig-
inal set of equations, we use this same matrix that premultiplies the original right-hand
side to premultiply the original left-hand side. Consequently, since

� �� � � � � ,
cBB�1
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■ TABLE 5.8 Initial and later simplex tableaux in matrix form

Coefficient of:
Basic Right

Iteration Variable Eq. Z Original Variables Slack Variables Side

0 Z (0) 1 �c 0 0
xB (1, 2, . . . , m) 0 A I b

Any Z (0) 1 cBB
�1A � c cBB

�1 cBB
�1b

xB (1, 2, . . . , m) 0 B�1 A B�1 B�1b
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the desired matrix form of the set of equations after any iteration is

� � � � �.

The second simplex tableau of Table 5.8 also exhibits this same set of equations.

Example. To illustrate this matrix form for the current set of equations, we will show
how it yields the final set of equations resulting from iteration 2 for the Wyndor Glass
Co. problem. Using the B�1 and cB given for iteration 2 at the end of the preceding sub-
section, we have

B�1A � � ,

cBB�1 � [0, 5, 3] � [0, �
3
2

�, 1],

cBB�1A � c � [0, 5, 3] � [3, 5] � [0, 0].

Also, by using the values of xB � B�1b and Z � cBB�1b calculated at the end of the pre-
ceding subsection, these results give the following set of equations:

� ,

as shown in the final simplex tableau in Table 4.8.

The matrix form of the set of equations after any iteration (as shown in the box just be-
fore the above example) provides the key to the execution of the matrix form of the simplex
method.  The matrix expressions shown in these equations (or in the bottom part of Table
5.8) provide a direct way of calculating all the numbers that would appear in the current set
of equations (for the algebraic form of the simplex method) or in the current simplex tableau
(for the tableau form of the simplex method). The three forms of the simplex method make
exactly the same decisions (entering basic variable, leaving basic variable, etc.) step after step
and iteration after iteration. The only difference between these forms is in the methods used








36

2

6

2


















Z

x1

x2

x3

x4

x5


















1

��
1
3

�

0
�
1
3

�

�
3
2

�

�
1
3

�

�
1
2

�

��
1
3

�

0

1

0

0

0

0

1

0

0

0

0

1

1

0

0

0














0

1

0

0

0

1













��
1
3

�

0
�
1
3

�

�
1
3

�

�
1
2

�

��
1
3

�

1

0

0













0

1

0

0

0

1













0

2

2

1

0

3













��
1
3

�

0
�
1
3

�

�
1
3

�

�
1
2

�

��
1
3

�

1

0

0







cBB�1b
B�1b







Z

x
xs







cBB�1

B�1

cBB�1A � c
B�1A

1

0

5.2 THE SIMPLEX METHOD IN MATRIX FORM 177

hil76299_ch05_161-194.qxd  11/19/08  08:29 AM  Page 177



Rev.Confirming Pages

to calculate the numbers needed to make those decisions. As summarized below, the matrix
form provides a convenient and compact way of calculating these numbers without carrying
along a series of systems of equations or a series of simplex tableaux.

Summary of the Matrix Form of the Simplex Method

1. Initialization: Introduce slack variables, etc., to obtain the initial basic variables, as de-
scribed in Chap. 4. This yields the initial xB, cB, B, and B�1 (where B � I � B�1 under
our current assumption that the problem being solved fits our standard form). Then go to
the optimality test.

2. Iteration:
Step 1. Determine the entering basic variable: Refer to the coefficients of the

nonbasic variables in  Eq. (0) that were obtained in the preceding application of
the optimality test below. Then (just as described in Sec. 4.4), select the variable
with the negative coefficient having the largest absolute value as the entering ba-
sic variable.

Step 2. Determine the leaving basic variable: Use the matrix expressions, B�1A
(for the coefficients of the original variables) and B�1 (for the coefficients of the slack
variables), to calculate the coefficients of the entering basic variable in every equation
except Eq. (0). Also use the preceding calculation of xB � B�1b (see Step 3) to iden-
tify the right-hand sides of these equations. Then (just as described in Sec. 4.4), use
the minimum ratio test to select the leaving basic variable.

Step 3. Determine the new BF solution: Update the basis matrix B by replacing
the column for the leaving basic variable by the corresponding column in [A, I] for
the entering basic variable. Also make the corresponding replacements in xB and cB.
Then derive B�1 (as illustrated in Appendix 4) and set xB � B�1b.

3. Optimality test: Use the matrix expressions, cB B�1A � c (for the coefficients of the
original variables) and cB B�1 (for the coefficients of the slack variables), to calculate the
coefficients of the nonbasic variables in Eq. (0). The current BF solution is optimal if and
only if all of these coefficients are nonnegative. If it is optimal, stop. Otherwise, go to an
iteration to obtain the next BF solution.

Example. We already have performed some of the above matrix calculations for the
Wyndor Glass Co. problem earlier in this section. We now will put all the pieces together
in applying the full simplex method in matrix form to this problem. As a starting point,
recall that

c = [3, 5], [A, I] � , b � .

Initialization
The initial basic variables are the slack variables, so (as already noted for Iteration 0 for
the first example in this section)

xB � � , cB � [0, 0, 0], B � � B�1.
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Optimality test
The coefficients of the nonbasic variables (x1 and x2) are

cBB�1A � c � [0, 0] � [3, 5] � [�3, �5]

so these negative coefficients indicate that the initial BF solution (xB = b) is not optimal.

Iteration 1
Since �5 is larger in absolute value than �3, the entering basic variable is x2. Perform-
ing only the relevant portion of a matrix multiplication, the coefficients of x2 in every
equation except Eq. (0) are

B�1A �

and the right-hand side of these equations are given by the value of xB shown in the ini-
tialization step. Therefore, the minimum ratio test indicates that the leaving basic variable
is x4 since 12/2 
 18/2. Iteration 1 for the first example in this section already shows the
resulting updated B, xB, cB, and B�1, namely,

B � , B�1 � , xB � � B�1b � , cB � [0, 5, 0],

so x2 has replaced x4 in xB , in providing an element of cB from [3, 5, 0, 0, 0], and in pro-
viding a column from [A, I] in B.

Optimality test
The nonbasic variables now are x1 and x4 , and their coefficients in Eq. (0) are

For x1: cBB�1A � c � [0, 5, 0]  � [3, 5] = [�3, —, —]

For x4: cBB�1 � [0, 5, 0]  � [—, 5/2, —]

Since x1 has a negative coefficient, the current BF is not optimal, so we go on to the next
iteration.

Iteration 2:
Since x1 is the one nonbasic variable with a negative coefficient in Eq. (0), it now be-
comes the entering basic variable. Its coefficients in the other equations are

B�1A � �
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Also using xB obtained at the end of the preceding iteration, the minimum ratio test indi-
cates that x5 is the leaving basic variable since 6/3 
 4/1. Iteration 2 for the first exam-
ple in this section already shows the resulting updated B, B�1, xB, and cB, namely,

B � , B�1 � , xB � = B�1b � , cB � [0, 5, 3],

so x1 has replaced x5 in xB , in providing an element of cB from [3, 5, 0, 0, 0], and in pro-
viding a column from [A,I] in B.

Optimality test
The nonbasic variables now are x4 and x5. Using the calculations already shown for the
second example in this section, their coefficients in Eq. (0) are 3/2 and 1, respectively.
Since neither of these coefficients are negative, the current BF solution (x1 = 2, x2 = 6,
x3 = 2, x4 = 0, x5 = 0) is optimal and the procedure terminates.

Final Observations

The above example illustrates that the matrix form of the simplex method uses just a few
matrix expressions to perform all the needed calculations. These matrix expressions are
summarized in the bottom part of Table 5.8. A fundamental insight from this table is that
it is only necessary to know the current B�1 and cBB�1, which appear in the slack vari-
ables portion of the current simplex tableau, in order to calculate all the other numbers in
this tableau in terms of the original parameters (A, b, and c) of the model being solved.
When dealing with the final simplex tableau, this insight proves to be a particularly valu-
able one, as will be described in the next section.

A drawback of the matrix form of the simplex method as it has been outlined in this
section is that it is necessary to derive B�1, the inverse of the updated basis matrix, at
the end of each iteration. Although routines are available for inverting small square (non-
singular) matrices (and this can even be done readily by hand for 2 x 2  or perhaps 3 x 3
matrices), the time required to invert matrices grows very rapidly with the size of the ma-
trices. Fortunately, there is a much more efficient procedure available for updating B�1

from one iteration to the next rather than inverting the new basis matrix from scratch.
When this procedure is incorporated into the matrix form of the simplex method, this
improved version of the matrix form is conventionally called the revised simplex method.
This is the version of the simplex method (along with further improvements) that  nor-
mally is used in commercial software for linear programming. We will describe the pro-
cedure for updating B�1 in Sec. 5.4.

The Worked Examples section of the book’s website gives another example of ap-
plying the matrix form of the simplex method. This example also incorporates the effi-
cient procedure for updating B�1 at each iteration instead of inverting the updated basis
matrix from scratch, so the full-fledged revised simplex method is applied.

Finally, we should  remind you that the description of the matrix form of the simplex
method throughout this section has assumed that the problem being solved fits our stan-
dard form for the general linear programming model given in Sec. 3.2. However, the mod-
ifications for other forms of the model are relatively straightforward. The initialization
step would be conducted just as was described in Sec. 4.6 for either the algebraic form
or tabular form of the simplex method. When this step involves introducing artificial vari-
ables to obtain an initial BF solution (and thereby to obtain an identity matrix as the ini-
tial basis matrix), these variables are included among the m elements of xs.
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■ 5.3 A FUNDAMENTAL INSIGHT

5.3 A FUNDAMENTAL INSIGHT 181

We shall now focus on a property of the simplex method (in any form) that has been re-
vealed by the matrix form of the simplex method in Sec. 5.2. This fundamental insight
provides the key to both duality theory and sensitivity analysis (Chap. 6), two very im-
portant parts of linear programming.

We shall first describe this insight when the problem being solved fits our stan-
dard form for linear programming models (Sec. 3.2) and then discuss how to adapt to
other forms later. The insight is based directly on Table 5.8 in Sec. 5.2, as described
below.

The insight provided by Table 5.8: Using matrix notation, Table 5.8 gives the
rows of the initial simplex tableau as [–c, 0, 0] for row 0 and [A, I, b] for the rest
of the rows. After any iteration, the coefficients of the slack variables in the cur-
rent simplex tableau become cBB�1 for row 0 and B�1 for the rest of the rows,
where B is the current basis matrix. Examining the rest of the current simplex
tableau, the insight is that these coefficients of the slack variables immediately
reveal how the entire rows of the current simplex tableau have been obtained
from the rows in the initial simplex tableau. In particular, after any iteration,

Row 0 � [–c, 0, 0] + cBB�1[A, I, b]

Rows 1 to m � B�1[A, I, b]

We shall describe the applications of this insight at the end of this section. These appli-
cations are particularly important only when we are dealing with the final simplex tableau
after the optimal solution has been obtained. Therefore, we will focus hereafter on dis-
cussing the “fundamental insight” just in terms of the optimal solution.

To distinguish between the matrix notation used after any iteration (B�1, etc.) and
the corresponding notation after just the last iteration, we now introduce the following
notation for the latter case.

When B is the basis matrix for the optimal solution found by the simplex method, let

S* � B�1 = coefficients of the slack variables in rows 1 to m

A* � B�1A = coefficients of the original variables in rows 1 to m

y* � cBB�1 = coefficients of the slack variables in row 0

z* � cBB�1A, so z* – c � coefficients of the original variables in row 0

Z* � cBB�1b = optimal value of the objective function

b* � B�1b � optimal right-hand sides of rows 1 to m

The bottom half of Table 5.9 shows where each of these symbols fits in the final simplex
tableau.  To illustrate all the notation, the top half of Table 5.9 includes the initial tableau
for the Wyndor Glass Co. problem  and the bottom half includes the final tableau for this
problem.

Referring to this again, suppose now that you are given the initial tableau, t and T,
and just y* and S* from the final tableau. How can this information alone be used to cal-
culate the rest of the final tableau? The answer is provided by the fundamental insight
summarized below.

Fundamental Insight

(1) t* � t � y*T � [y*A � c y* y*b].
(2) T* � S*T � [S*A S* S*b].
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Thus, by knowing the parameters of the model in the initial tableau (c, A, and b) and only
the coefficients of the slack variables in the final tableau (y* and S*), these equations en-
able calculating all the other numbers in the final tableau.

Now let us summarize the mathematical logic behind the two equations for the fun-
damental insight. To derive Eq. (2), recall that the entire sequence of algebraic operations
performed by the simplex method (excluding those involving row 0) is equivalent to pre-
multiplying T by some matrix, call it M. Therefore,

T* � MT,

but now we need to identify M. By writing out the component parts of T and T*, this
equation becomes

[A* S* b*] � M [A I b]
� [MA M Mb].

Because the middle (or any other) component of these equal matrices must be the same,
it follows that M � S*, so Eq. (2) is a valid equation.

Equation (1) is derived in a similar fashion by noting that the entire sequence of al-
gebraic operations involving row 0 amounts to adding some linear combination of the
rows in T to t, which is equivalent to adding to t some vector times T. Denoting this vec-
tor by v, we thereby have

t* � t � vT,

but v still needs to be identified. Writing out the component parts of t and t* yields

[z* � c y* Z*] � [�c 0 0] � v [A I b]
� [�c � vA v vb].

Equating the middle component of these equal vectors gives v � y*, which validates Eq. (1).
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■ TABLE 5.9 General notation for initial and final
simplex tableaux in matrix form,
illustrated by the Wyndor Glass 
Co. problem

Initial Tableau

Row 0: t � [�3, �5 0, 0, 0 0] � [�c 0 0].

Other rows: T � � [A I b].

Combined: � � � � � .

Final Tableau

Row 0: t* � [0, 0 0, �
3
2

�, 1 36] � [z* � c y* Z*].

Other rows: T* � � [A* S* b*].

Combined: � � � � � .
Z*

b*

y*

S*
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Adapting to Other Model Forms

Thus far, the fundamental insight has been described under the assumption that the orig-
inal model is in our standard form, described in Sec. 3.2. However, the above mathemat-
ical logic now reveals just what adjustments are needed for other forms of the original
model. The key is the identity matrix I in the initial tableau, which turns into S* in the
final tableau. If some artificial variables must be introduced into the initial tableau to serve
as initial basic variables, then it is the set of columns (appropriately ordered) for all the
initial basic variables (both slack and artificial) that forms I in this tableau. (The columns
for any surplus variables are extraneous.) The same columns in the final tableau provide
S* for the T* � S*T equation and y* for the t* � t � y*T equation. If M’s were intro-
duced into the preliminary row 0 as coefficients for artificial variables, then the t for the
t* � t � y*T equation is the row 0 for the initial tableau after these nonzero coefficients
for basic variables are algebraically eliminated. (Alternatively, the preliminary row 0 can
be used for t, but then these M’s must be subtracted from the final row 0 to give y*.) (See
Prob. 5.3-9.)

Applications

The fundamental insight has a variety of important applications in linear programming.
One of these applications involves the revised simplex method, which is based mainly on
the matrix form of the simplex method presented in Sec. 5.2. As described in this pre-
ceding section (see Table 5.8), this method used B�1 and the initial tableau to calculate
all the relevant numbers in the current tableau for every iteration. It goes even further than
the fundamental insight by using B�1 to calculate y* itself as y* � cBB�1.

Another application involves the interpretation of the shadow prices ( y1*, y2*, . . . , y*m)
described in Sec. 4.7. The fundamental insight reveals that Z* (the value of Z for the
optimal solution) is

Z* � y*b � �
m

i�1
yi*bi,

so, e.g.,

Z* � 0b1 � �
3
2

�b2 � b3

for the Wyndor Glass Co. problem. This equation immediately yields the interpretation
for the yi* values given in Sec. 4.7.

Another group of extremely important applications involves various postoptimality
tasks (reoptimization technique, sensitivity analysis, parametric linear programming—
described in Sec. 4.7) that investigate the effect of making one or more changes in the
original model. In particular, suppose that the simplex method already has been applied
to obtain an optimal solution (as well as y* and S*) for the original model, and then
these changes are made. If exactly the same sequence of algebraic operations were to be
applied to the revised initial tableau, what would be the resulting changes in the final
tableau? Because y* and S* don’t change, the fundamental insight reveals the answer
immediately.

One particularly common type of postoptimality analysis involves investigating pos-
sible changes in b. The elements of b often represent managerial decisions about the
amounts of various resources being made available to the activities under consideration
in the linear programming model. Therefore, after the optimal solution has been obtained
by the simplex method, management often wants to explore what would happen if some
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of these managerial decisions on resource allocations were to be changed in various ways.
By using the formulas,

xB � S*b
Z* � y*b,

you can see exactly how the optimal BF solution changes (or whether it becomes infea-
sible because of negative variables), as well as how the optimal value of the objective
function changes, as a function of b. You do not have to reapply the simplex method over
and over for each  new b, because the coefficients of the slack variables tell all!

For example, consider the change from b2 � 12 to b2 � 13 as illustrated in Fig. 4.8
for the Wyndor Glass Co. problem. It is not necessary to solve for the new optimal solu-
tion (x1, x2) � (�

5
3

�, �
1
2
3
�) because the values of the basic variables in the final tableau (b*) are

immediately revealed by the fundamental insight:

� b* � S*b � � .

There is an even easier way to make this calculation. Since the only change is in the sec-
ond component of b (�b2 � 1), which gets premultiplied by only the second column of
S*, the change in b* can be calculated as simply

�b* � �b2 � ,

so the original values of the basic variables in the final tableau (x3 � 2, x2 � 6, x1 � 2)
now become

� � � .

(If any of these new values were negative, and thus infeasible, then the reoptimization
technique described in Sec. 4.7 would be applied, starting from this revised final tableau.)
Applying incremental analysis to the preceding equation for Z* also immediately yields

�Z* � �
3
2

��b2 � �
3
2

�.

The fundamental insight can be applied to investigating other kinds of changes in the
original model in a very similar fashion; it is the crux of the sensitivity analysis proce-
dure described in the latter part of Chap. 6.

You also will see in the next chapter that the fundamental insight plays a key role in
the very useful duality theory for linear programming.
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■ 5.4 THE REVISED SIMPLEX METHOD

The revised simplex method is based directly on the matrix form of the simplex method
presented in Sec. 5.2. However, as mentioned at the end of that section, the difference
is that the revised simplex method incorporates a key improvement into the matrix
form. Instead of needing to invert the new basis matrix B after each iteration, which
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is computationally expensive for large matrices, the revised simplex method uses a much
more efficient procedure that simply updates B�1 from one iteration to the next. We fo-
cus on describing and illustrating this procedure in this section.

This procedure is based on two properties of the simplex method. One is described
in the insight provided by Table 5.8 at the beginning of Sec. 5.3. In particular, after any
iteration, the coefficients of the slack variables for all the rows except row 0 in the cur-
rent simplex tableau become B�1, where B is the current basis matrix. This property al-
ways holds as long as the problem being solved fits our standard form described in
Sec. 3.2 for linear programming models. (For nonstandard forms where artificial variables
need to be introduced, the only difference is that it is the set of appropriately ordered
columns that form an identity matrix I below row 0 in the initial simplex tableau that then
provides B�1 in any subsequent tableau.)

The other relevant property of the simplex method is that step 3 of an iteration
changes the numbers in the simplex tableau, including the numbers giving B�1, only by
performing the elementary algebraic operations (such as dividing an equation by a con-
stant or subtracting a multiple of some equation from another equation) that are needed
to restore proper form from Gaussian elimination. Therefore, all that is needed to update
B�1 from one iteration to the next is to obtain the new B�1 (denote it by B�1

new) from the
old B�1 (denote it by B�1

old) by performing the usual algebraic operations on B�1
old that

the algebraic form of the simplex method would perform on the entire system of equa-
tions (except Eq. (0)) for this iteration. Thus, given the choice of the entering basic vari-
able and leaving basic variable from steps 1 and 2 of an iteration, the procedure is to
apply step 3 of an iteration (as described in Secs. 4.3 and 4.4) to the B�1 portion of the
current simplex tableau or system of equations.

To describe this procedure formally, let

xk � entering basic variable,

a�ik � coefficient of xk in current Eq. (i), for i � 1, 2, . . . , m (identified in step 2 of
an iteration),

r � number of equation containing the leaving basic variable.

Recall that the new set of equations [excluding Eq. (0)] can be obtained from the preceding
set by subtracting a�ik /a�rk times Eq. (r) from Eq. (i), for all i � 1, 2, . . . , m except i � r, and
then dividing Eq. (r) by a�rk. Therefore, the element in row i and column j of B�1

new is

(B�1
old)ij � �

a
a
�r

�ik
k

�(B�1
old)rj if i � r,

(B�1
new)ij � ��

a
1
�rk
�(B�1

old)rj if i � r.

These formulas are expressed in matrix notation as

B�1
new � EB�1

old,

where matrix E is an identity matrix except that its rth column is replaced by the vector

��
a
a
�r

�ik
k

� if i � r,

� � , where �i � ��
a
1
�rk
� if i � r.

Thus, E � [U1, U2, . . . , Ur�1, �, Ur�1, . . . , Um], where the m elements of each of the
Ui column vectors are 0 except for a 1 in the ith position.
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Example. We shall illustrate this procedure by applying it to the Wyndor Glass Co.
problem. We already have applied the matrix form of the simplex method to this same
problem in Sec. 5.2, so we will refer to the results obtained there for each iteration (the
entering basic variable, leaving basic variable, etc.) for the information needed to apply
the procedure.

Iteration 1
We found in Sec. 5.2 that the initial B�1 � I, the entering basic variable is x2 (so k � 2),
the coefficients of x2 in Eqs. 1, 2, and 3 are a12 � 0, a22 = 2, and a32 � 2, the leaving
basic variable is x4, and the number of the equation containing x4 is r � 2. To obtain the
new B�1,

� � � ,

so

B�1 � � .

Iteration 2
We found in Sec. 5.2 for this iteration that the entering basic variable is x1 (so k = 1), the
coefficients of x1 in the current Eqs. 1, 2, and 3 are a'11 = 1, a'21 = 0, and a'31 = 3, the
leaving basic variable is x5, and the number of the equation containing x5 is r = 3. These
results yield

� � �

Therefore, the new B�1 is

B�1 � � .

No more iterations are needed at this point, so this example is finished.

Since the revised simplex method consists of combining this procedure for updat-
ing B�1 at each iteration with the rest of the matrix form of the simplex method pre-
sented in Sec. 5.2, combining this example with the one in Sec. 5.2 applying the matrix
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form to the same problem provides a complete example of applying the revised simplex
method. As mentioned at the end of Sec. 5.2, the Worked Examples section of the book’s
website also gives another example of applying the revised simplex method.

Let us conclude this section by summarizing the advantages of the revised simplex
method over the algebraic or tabular form of the simplex method. One advantage is that
the number of arithmetic computations may be reduced. This is especially true when the
A matrix contains a large number of zero elements (which is usually the case for the large
problems arising in practice). The amount of information that must be stored at each it-
eration is less, sometimes considerably so. The revised simplex method also permits the
control of the rounding errors inevitably generated by computers. This control can be ex-
ercised by periodically obtaining the current B�1 by directly inverting B. Furthermore,
some of the postoptimality analysis problems discussed in Sec. 4.7 and the end of Sec.5.3
can be handled more conveniently with the revised simplex method. For all these rea-
sons, the revised simplex method is usually the preferable form of the simplex method
for computer execution.
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■ 5.5 CONCLUSIONS

Although the simplex method is an algebraic procedure, it is based on some fairly sim-
ple geometric concepts. These concepts enable one to use the algorithm to examine only
a relatively small number of BF solutions before reaching and identifying an optimal 
solution.

Chapter 4 describes how elementary algebraic operations are used to execute the
algebraic form of the simplex method, and then how the tableau form of the simplex
method uses the equivalent elementary row operations in the same way. Studying the
simplex method in these forms is a good way of getting started in learning its basic con-
cepts. However, these forms of the simplex method do not provide the most efficient
form for execution on a computer. Matrix operations are a faster way of combining and
executing elementary algebraic operations or row operations. Therefore, the matrix form
of the simplex method provides an effective way of adapting the simplex method for
computer implementation. The revised simplex method provides a further improvement
for computer implementation by combining the matrix form of the simplex method with
an efficient procedure for updating the inverse of the current basis matrix from itera-
tion to iteration.

The final simplex tableau includes complete information on how it can be algebraically
reconstructed directly from the initial simplex tableau. This fundamental insight has some
very important applications, especially for postoptimality analysis.
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York, 2003.
3. Luenberger, D., and Y.  Ye: Linear and Nonlinear Programming, 3rd ed., Springer, New York,

2008.
4. Vanderbei, R. J.: Linear Programming: Foundations and Extensions, 3rd ed., Springer, New York,

2008.
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Worked Examples:

Examples for Chapter 5

A Demonstration Example in OR Tutor:

Fundamental Insight

Interactive Procedures in IOR Tutorial:

Interactive Graphical Method
Enter or Revise a General Linear Programming Model
Set Up for the Simplex Method—Interactive Only
Solve Interactively by the Simplex Method

Automatic Procedures in IOR Tutorial:

Solve Automatically by the Simplex Method
Graphical Method and Sensitivity Analysis

Files (Chapter 3) for Solving the Wyndor Example:

Excel Files
LINGO/LINDO File
MPL/CPLEX File

Glossary for Chapter 5

See Appendix 1 for documentation of the software.
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■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)

■ PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: You can check some of your work by using procedures listed

above.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

5.1-1.* Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � x2 � 6
x1 � 2x2 � 6

and

x1 � 0, x2 � 0.

I (a) Solve this problem graphically. Identify the CPF solutions by
circling them on the graph.

(b) Identify all the sets of two defining equations for this problem.
For each set, solve (if a solution exists) for the corresponding
corner-point solution, and classify it as a CPF solution or cor-
ner-point infeasible solution.

(c) Introduce slack variables in order to write the functional
constraints in augmented form. Use these slack variables to
identify the basic solution that corresponds to each corner-point
solution found in part (b).

(d) Do the following for each set of two defining equations from
part (b): Identify the indicating variable for each defining equa-
tion. Display the set of equations from part (c) after deleting
these two indicating (nonbasic) variables. Then use the latter
set of equations to solve for the two remaining variables (the
basic variables). Compare the resulting basic solution to the
corresponding basic solution obtained in part (c).

(e) Without executing the simplex method, use its geometric inter-
pretation (and the objective function) to identify the path
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Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 0 �1 �3 0 �2 0 20
x4 (1) 0 0 �4 �5 1 �3 0 30

1
x1 (2) 0 1 �1 �2 0 �1 0 10
x6 (3) 0 0 �2 �3 0 �1 1 10
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(sequence of CPF solutions) it would follow to reach the
optimal solution. For each of these CPF solutions in turn, iden-
tify the following decisions being made for the next iteration:
(i) which defining equation is being deleted and which is be-
ing added; (ii) which indicating variable is being deleted (the
entering basic variable) and which is being added (the leaving
basic variable).

5.1-2. Repeat Prob. 5.1-1 for the model in Prob. 3.1-6.

5.1-3. Consider the following problem.

Maximize Z � 5x1 � 8x2,

subject to

�4x1 � 2x2 � 80
�3x1 � x2 � 4
�x1 � 2x2 � 20

�4x1 � x2 � 40

and

x1 � 0, x2 � 0.

I (a) Solve this problem graphically. Identify the CPF solutions by
circling them on the graph.

(b) Develop a table giving each of the CPF solutions and the cor-
responding defining equations, BF solution, and nonbasic vari-
ables. Calculate Z for each of these solutions, and use just this
information to identify the optimal solution.

(c) Develop the corresponding table for the corner-point infeasi-
ble solutions, etc. Also identify the sets of defining equations
and nonbasic variables that do not yield a solution.

5.1-4. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � x2 � x3 � 60
x1 � x2 � 2x3 � 10
x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

After slack variables are introduced and then one complete itera-
tion of the simplex method is performed, the following simplex
tableau is obtained.

(a) Identify the CPF solution obtained at iteration 1.
(b) Identify the constraint boundary equations that define this CPF

solution.

5.1-5. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Construct a table like Table 5.1, giving the set of defining equa-

tions for each CPF solution.
(b) What are the defining equations for the corner-point infeasi-

ble solution (6, 0, 5)?
(c) Identify one of the systems of three constraint boundary equa-

tions that yields neither a CPF solution nor a corner-point in-
feasible solution. Explain why this occurs for this system.

5.1-6. Consider the following problem.

Minimize Z � 8x1 � 5x2,

subject to

�3x1 � 2x2 � 30
2x1 � x2 � 50

x1 � x2 � 30

and

x1 � 0, x2 � 0.

(a) Identify the 10 sets of defining equations for this problem. 
For each one, solve (if a solution exists) for the corresponding
corner-point solution, and classify it as a CPF solution or a
corner-point infeasible solution.

(b) For each corner-point solution, give the corresponding basic
solution and its set of nonbasic variables.

5.1-7. Reconsider the model in Prob. 3.1-5.
(a) Identify the 15 sets of defining equations for this problem. For

each one, solve (if a solution exists) for the corresponding
corner-point solution, and classify it as a CPF solution or a
corner-point infeasible solution.

(b) For each corner-point solution, give the corresponding basic
solution and its set of nonbasic variables.

5.1-8. Each of the following statements is true under most cir-
cumstances, but not always. In each case, indicate when the state-
ment will not be true and why.
(a) The best CPF solution is an optimal solution.
(b) An optimal solution is a CPF solution.
(c) A CPF solution is the only optimal solution if none of its ad-

jacent CPF solutions are better (as measured by the value of
the objective function).

5.1-9. Consider the original form (before augmenting) of a linear
programming problem with n decision variables (each with a non-
negativity constraint) and m functional constraints. Label each of
the following statements as true or false, and then justify your an-
swer with specific references (including page citations) to mater-
ial in the chapter.
(a) If a feasible solution is optimal, it must be a CPF solution.
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(b) The number of CPF solutions is at least

�
(m

m
�
!n

n
!
)!

�.

(c) If a CPF solution has adjacent CPF solutions that are better (as
measured by Z ), then one of these adjacent CPF solutions must
be an optimal solution.

5.1-10. Label each of the following statements about linear pro-
gramming problems as true or false, and then justify your answer.
(a) If a feasible solution is optimal but not a CPF solution, then

infinitely many optimal solutions exist.
(b) If the value of the objective function is equal at two different

feasible points x* and x**, then all points on the line segment
connecting x* and x** are feasible and Z has the same value
at all those points.

(c) If the problem has n variables (before augmenting), then the
simultaneous solution of any set of n constraint boundary equa-
tions is a CPF solution.

5.1-11. Consider the augmented form of linear programming prob-
lems that have feasible solutions and a bounded feasible region.
Label each of the following statements as true or false, and then
justify your answer by referring to specific statements (with page
citations) in the chapter.
(a) There must be at least one optimal solution.
(b) An optimal solution must be a BF solution.
(c) The number of BF solutions is finite.

5.1-12.* Reconsider the model in Prob. 4.6-9. Now you are given
the information that the basic variables in the optimal solution are
x2 and x3. Use this information to identify a system of three con-
straint boundary equations whose simultaneous solution must be
this optimal solution. Then solve this system of equations to ob-
tain this solution.

5.1-13. Reconsider Prob. 4.3-6. Now use the given information and
the theory of the simplex method to identify a system of three con-
straint boundary equations (in x1, x2, x3) whose simultaneous solu-
tion must be the optimal solution, without applying the simplex
method. Solve this system of equations to find the optimal solution.

5.1-14. Consider the following problem.

Maximize Z � 2x1 � 2x2 � 3x3,

subject to

2x1 � x2 � 2x3 � 4
x1 � x2 � x3 � 3

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 be the slack variables for the respective functional
constraints. Starting with these two variables as the basic variables
for the initial BF solution, you now are given the information that

the simplex method proceeds as follows to obtain the optimal
solution in two iterations: (1) In iteration 1, the entering basic
variable is x3 and the leaving basic variable is x4; (2) in itera-
tion 2, the entering basic variable is x2 and the leaving basic vari-
able is x5.
(a) Develop a three-dimensional drawing of the feasible region for

this problem, and show the path followed by the simplex
method.

(b) Give a geometric interpretation of why the simplex method fol-
lowed this path.

(c) For each of the two edges of the feasible region traversed
by the simplex method, give the equation of each of the
two constraint boundaries on which it lies, and then give
the equation of the additional constraint boundary at each
endpoint.

(d) Identify the set of defining equations for each of the three CPF
solutions (including the initial one) obtained by the simplex
method. Use the defining equations to solve for these solutions.

(e) For each CPF solution obtained in part (d ), give the corre-
sponding BF solution and its set of nonbasic variables. Explain
how these nonbasic variables identify the defining equations
obtained in part (d ).

5.1-15. Consider the following problem.

Maximize Z � 3x1 � 4x2 � 2x3,

subject to

x1 � x2 � x3 � 20
x1 � 2x2 � x3 � 30

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 be the slack variables for the respective functional
constraints. Starting with these two variables as the basic vari-
ables for the initial BF solution, you now are given the
information that the simplex method proceeds as follows to ob-
tain the optimal solution in two iterations: (1) In iteration 1, the
entering basic variable is x2 and the leaving basic variable is x5;
(2) in iteration 2, the entering basic variable is x1 and the leav-
ing basic variable is x4.

Follow the instructions of Prob. 5.1-14 for this situation.

5.1-16. By inspecting Fig. 5.2, explain why Property 1b for CPF
solutions holds for this problem if it has the following objective
function.
(a) Maximize Z � x3.
(b) Maximize Z � �x1 � 2x3.

5.1-17. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Explain in geometric terms why the set of solutions satisfying

any individual constraint is a convex set, as defined in
Appendix 2.
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(b) Use the conclusion in part (a) to explain why the entire feasi-
ble region (the set of solutions that simultaneously satisfies
every constraint) is a convex set.

5.1-18. Suppose that the three-variable linear programming prob-
lem given in Fig. 5.2 has the objective function

Maximize Z � 3x1 � 4x2 � 3x3.

Without using the algebra of the simplex method, apply just its
geometric reasoning (including choosing the edge giving the max-
imum rate of increase of Z ) to determine and explain the path it
would follow in Fig. 5.2 from the origin to the optimal solution.

5.1-19. Consider the three-variable linear programming problem
shown in Fig. 5.2.
(a) Construct a table like Table 5.4, giving the indicating variable

for each constraint boundary equation and original constraint.
(b) For the CPF solution (2, 4, 3) and its three adjacent CPF so-

lutions (4, 2, 4), (0, 4, 2), and (2, 4, 0), construct a table like
Table 5.5, showing the corresponding defining equations, BF
solution, and nonbasic variables.

(c) Use the sets of defining equations from part (b) to demonstrate
that (4, 2, 4), (0, 4, 2), and (2, 4, 0) are indeed adjacent to 
(2, 4, 3), but that none of these three CPF solutions are adja-
cent to each other. Then use the sets of nonbasic variables from
part (b) to demonstrate the same thing.

5.1-20. The formula for the line passing through (2, 4, 3) and 
(4, 2, 4) in Fig. 5.2 can be written as

(2, 4, 3) � �[(4, 2, 4) � (2, 4, 3)] � (2, 4, 3) � �(2, �2, 1),

where 0 � � � 1 for just the line segment between these points.
After augmenting with the slack variables x4, x5, x6, x7 for the re-
spective functional constraints, this formula becomes

(2, 4, 3, 2, 0, 0, 0) � �(2, �2, 1, �2, 2, 0, 0).

Use this formula directly to answer each of the following questions,
and thereby relate the algebra and geometry of the simplex method as
it goes through one iteration in moving from (2, 4, 3) to (4, 2, 4). (You
are given the information that it is moving along this line segment.)
(a) What is the entering basic variable?
(b) What is the leaving basic variable?
(c) What is the new BF solution?

5.1-21. Consider a two-variable mathematical programming prob-
lem that has the feasible region shown on the graph, where the six
dots correspond to CPF solutions. The problem has a linear ob-
jective function, and the two dashed lines are objective function
lines passing through the optimal solution (4, 5) and the second-
best CPF solution (2, 5). Note that the nonoptimal solution (2, 5)
is better than both of its adjacent CPF solutions, which violates
Property 3 in Sec. 5.1 for CPF solutions in linear programming.
Demonstrate that this problem cannot be a linear programming
problem by constructing the feasible region that would result if the
six line segments on the boundary were constraint boundaries for
linear programming constraints.

5.2-1. Consider the following problem.

Maximize Z � 8x1 � 4x2 � 6x3 � 3x4 � 9x5,

subject to

x1 � 2x2 � 3x3 � 3x4 � x5 � 180 (resource 1)
4x1 � 3x2 � 2x3 � x4 � x5 � 270 (resource 2)
x1 � 3x2 � 2x3 � x4 � 3x5 � 180 (resource 3)

and

xj � 0, j � 1, . . . , 5.

You are given the facts that the basic variables in the optimal so-
lution are x3, x1, and x5 and that

�1

� �
2
1
7
� .

(a) Use the given information to identify the optimal solution.
(b) Use the given information to identify the shadow prices for the

three resources.

I 5.2-2.* Work through the matrix form of the simplex method
step by step to solve the following problem.

Maximize Z � 5x1 � 8x2 � 7x3 � 4x4 � 6x5,

subject to

2x1 � 3x2 � 3x3 � 2x4 � 2x5 � 20
3x1 � 5x2 � 4x3 � 2x4 � 4x5 � 30



1

�3

10

�3

9

�3

11

�6

2





0

1

3

1

4

1

3

2

0



x1

1

0 1 2 3 4

2

3

4

5
(2, 5) (4, 5)

x2
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and

xj � 0, j � 1, 2, 3, 4, 5.

5.2-3. Reconsider Prob. 5.1-1. For the sequence of CPF solutions
identified in part (e), construct the basis matrix B for each of the
corresponding BF solutions. For each one, invert B manually, use
this B�1 to calculate the current solution, and then perform the next
iteration (or demonstrate that the current solution is optimal).

I 5.2-4. Work through the matrix form of the simplex method step
by step to solve the model given in Prob. 4.1-5.

I 5.2-5. Work through the matrix form of the simplex method step
by step to solve the model given in Prob. 4.7-6.

D 5.3-1.* Consider the following problem.

Maximize Z � x1 � x2 � 2x3,

subject to

2x1 � 2x2 � 3x3 � 5
x1 � x2 � x3 � 3
x1 � x2 � x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the fi-
nal simplex tableau is as follows:

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

Let x5 and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the fi-
nal simplex tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 1 1 0

x2 (1) 0 1 3 0
x6 (2) 0 0 1 1
x3 (3) 0 1 2 0

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the final simplex tableau. Show your
calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex tableau.

D 5.3-2. Consider the following problem.

Maximize Z � 4x1 � 3x2 � x3 � 2x4,

subject to

4x1 � 2x2 � x3 � x4 � 5
3x1 � x2 � 2x3 � x4 � 4

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �1 �1

x2 (1) 0 �1 �1
x4 (2) 0 �1 �2

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the final simplex tableau. Show your
calculations.

(b) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.

D 5.3-3. Consider the following problem.

Maximize Z � 6x1 � x2 � 2x3,

subject to

�2x1 � 2x2 � �
1
2

�x3 � 2

�4x1 � 2x2 � �
3
2

�x3 � 3

�2x1 � 2x2 � �
1
2

�x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, and x6 denote the slack variables for the respective con-
straints. After you apply the simplex method, a portion of the final
simplex tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �2 0 �2

x5 (1) 0 �1 1 �2
x3 (2) 0 �2 0 �4
x1 (3) 0 �1 0 �1
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Use the fundamental insight presented in Sec. 5.3 to identify the miss-
ing numbers in the final simplex tableau. Show your calculations.

D 5.3-4. Consider the following problem.

Maximize Z � 20x1 � 6x2 � 8x3,

subject to

8x1 � 2x2 � 3x3 � 200
4x1 � 3x2 � 100
2x1 � x3 � 50
2x1 � 3x2 x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Let x4, x5, x6, and x7 denote the slack variables for the first through
fourth constraints, respectively. Suppose that after some number of
iterations of the simplex method, a portion of the current simplex
tableau is as follows:

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 x7 Side

Z (0) 1 ��
9
4

� ��
1
2

� 0 0

x1 (1) 0 ��
1
3
6
� ��

1
8

� 0 0

x2 (2) 0 ��
1
4

� ��
1
2

� 0 0

x6 (3) 0 ��
3
8

� ��
1
4

� 1 0

x7 (4) 0 �0 �0 0 1

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the missing numbers in the current simplex tableau. Show your
calculations.

(b) Indicate which of these missing numbers would be generated
by the matrix form of the simplex method to perform the next
iteration.

(c) Identify the defining equations of the CPF solution corre-
sponding to the BF solution in the current simplex tableau.

D 5.3-5. Consider the following problem.

Maximize Z � c1x1 � c2x2 � c3x3,

subject to

x1 � 2x2 � x3 � b
2x1 � x2 � 3x3 � 2b

and

x1 � 0, x2 � 0, x3 � 0.

Note that values have not been assigned to the coefficients in the
objective function (c1, c2, c3), and that the only specification for
the right-hand side of the functional constraints is that the second
one (2b) be twice as large as the first (b).

Now suppose that your boss has inserted her best estimate of
the values of c1, c2, c3, and b without informing you and then has
run the simplex method. You are given the resulting final simplex
tableau below (where x4 and x5 are the slack variables for the
respective functional constraints), but you are unable to read the
value of Z*.

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
1
7
0
� 0 0 ��

3
5

� ��
4
5

� Z*

x2 (1) 0 �
1
5

� 1 0 ��
3
5

� ��
1
5

� 1

x3 (2) 0 �
3
5

� 0 1 ��
1
5

� ��
2
5

� 3

(a) Use the fundamental insight presented in Sec. 5.3 to identify
the value of (c1, c2, c3) that was used.

(b) Use the fundamental insight presented in Sec. 5.3 to identify
the value of b that was used.

(c) Calculate the value of Z* in two ways, where one way uses
your results from part (a) and the other way uses your result
from part (b). Show your two methods for finding Z*.

5.3-6. For iteration 2 of the example in Sec. 5.3, the following ex-
pression was shown:

Final row 0 � [�3, �5 0, 0, 0 0]

� [0, �
3
2

�, 1] .

Derive this expression by combining the algebraic operations (in
matrix form) for iterations 1 and 2 that affect row 0.

5.3-7. Most of the description of the fundamental insight presented
in Sec. 5.3 assumes that the problem is in our standard form. Now
consider each of the following other forms, where the additional
adjustments in the initialization step are those presented in Sec. 4.6,
including the use of artificial variables and the Big M method where
appropriate. Describe the resulting adjustments in the fundamen-
tal insight.
(a) Equality constraints
(b) Functional constraints in � form
(c) Negative right-hand sides
(d) Variables allowed to be negative (with no lower bound)



4

12

18

0

0

1

0

1

0

1

0

0

0

2

2

1

0

3



hil76299_ch05_161-194.qxd  11/19/08  08:29 AM  Page 193



194 CHAPTER 5 THE THEORY OF THE SIMPLEX METHOD

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x�5 x6 x�7 Side

Z (0) �1 �4M � 2 �6M � 3 �2M � 2 M 0 M 0 �14M

x�5 (1) �0 1 4 2 �1 1 �0 0 8
x�7 (2) �0 3 2 0 �0 0 �1 1 6

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x�5 x6 x�7 Side

Z (0) �1 M � 0.5 M � 0.5

x2 (1) �0 � 0.3 �0.1
x1 (2) �0 �0.2 �0.4

5.3-8. Reconsider the model in Prob. 4.6-5. Use artificial variables
and the Big M method to construct the complete first simplex
tableau for the simplex method, and then identify the columns that
will contain S* for applying the fundamental insight in the final
tableau. Explain why these are the appropriate columns.

5.3-9. Consider the following problem.

Minimize Z � 2x1 � 3x2 � 2x3,

subject to

x1 � 4x2 � 2x3 � 8
3x1 � 2x2 � 2x3 � 6

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x6 be the surplus variables for the first and second con-
straints, respectively. Let x�5 and x�7 be the corresponding artificial
variables. After you make the adjustments described in Sec. 4.6 for
this model form when using the Big M method, the initial simplex
tableau ready to apply the simplex method is as follows:

initial simplex tableau given above. Derive M and v for this
problem.

(c) When you apply the t* � t � vT equation, another option is
to use t � [2, 3, 2, 0, M, 0, M, 0], which is the preliminary
row 0 before the algebraic elimination of the nonzero coeffi-
cients of the initial basic variables x�5 and x�7. Repeat part (b)
for this equation with this new t. After you derive the new v,
show that this equation yields the same final row 0 for this
problem as the equation derived in part (b).

(d) Identify the defining equations of the CPF solution corre-
sponding to the optimal BF solution in the final simplex
tableau.

5.3-10. Consider the following problem.

Maximize Z � 3x1 � 7x2 � 2x3,

subject to

�2x1 � 2x2 � x3 � 10
�3x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

You are given the fact that the basic variables in the optimal solu-
tion are x1 and x3.
(a) Introduce slack variables, and then use the given information

to find the optimal solution directly by Gaussian elimination.
(b) Extend the work in part (a) to find the shadow prices.
(c) Use the given information to identify the defining equations of

the optimal CPF solution, and then solve these equations to
obtain the optimal solution.

(d) Construct the basis matrix B for the optimal BF solution,
invert B manually, and then use this B�1 to solve for the
optimal solution and the shadow prices y*. Then apply the
optimality test for the matrix form of the simplex method to
verify that this solution is optimal.

(e) Given B�1 and y* from part (d), use the fundamental insight pre-
sented in Sec. 5.3 to construct the complete final simplex tableau.

5.4-1. Consider the model given in Prob. 5.2-2. Let x6 and x7 be the
slack variables for the first and second constraints, respectively. You
are given the information that x2 is the entering basic variable and x7

is the leaving basic variable for the first iteration of the simplex
method and then x4 is the entering basic variable and x6 is the leav-
ing basic variable for the second (final) iteration. Use the procedure
presented in Sec. 5.4 for updating B�1 from one iteration to the  next
to find B�1 after the first iteration and then after the second iteration.

I 5.4-2.* Work through the revised simplex method step by step to
solve the model given in Prob. 4.3-4.

I 5.4-3. Work through the revised simplex method step by step to
solve the model given in Prob. 4.7-5.

I 5.4-4. Work through the revised simplex method step by step to
solve the model given in Prob. 3.1-6.

After you apply the simplex method, a portion of the final simplex
tableau is as follows:

(a) Based on the above tableaux, use the fundamental insight pre-
sented in Sec. 5.3 to identify the missing numbers in the final
simplex tableau. Show your calculations.

(b) Examine the mathematical logic presented in Sec. 5.3 to vali-
date the fundamental insight (see the T* � MT and t* �
t � vT equations and the subsequent derivations of M and v).
This logic assumes that the original model fits our standard
form, whereas the current problem does not fit this form. Show
how, with minor adjustments, this same logic applies to the
current problem when t is row 0 and T is rows 1 and 2 in the
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6C H A P T E R

Duality Theory and 
Sensitivity Analysis

One of the most important discoveries in the early development of linear programming
was the concept of duality and its many important ramifications. This discovery re-

vealed that every linear programming problem has associated with it another linear pro-
gramming problem called the dual. The relationships between the dual problem and the
original problem (called the primal) prove to be extremely useful in a variety of ways.
For example, you soon will see that the shadow prices described in Sec. 4.7 actually are
provided by the optimal solution for the dual problem. We shall describe many other valu-
able applications of duality theory in this chapter as well.

One of the key uses of duality theory lies in the interpretation and implementation of
sensitivity analysis. As we already mentioned in Secs. 2.3, 3.3, and 4.7, sensitivity analy-
sis is a very important part of almost every linear programming study. Because most of
the parameter values used in the original model are just estimates of future conditions,
the effect on the optimal solution if other conditions prevail instead needs to be investi-
gated. Furthermore, certain parameter values (such as resource amounts) may represent
managerial decisions, in which case the choice of the parameter values may be the main
issue to be studied, which can be done through sensitivity analysis.

For greater clarity, the first three sections discuss duality theory under the assump-
tion that the primal linear programming problem is in our standard form (but with no re-
striction that the bi values need to be positive). Other forms are then discussed in Sec. 6.4.
We begin the chapter by introducing the essence of duality theory and its applications.
We then describe the economic interpretation of the dual problem (Sec. 6.2) and delve
deeper into the relationships between the primal and dual problems (Sec. 6.3). Section 6.5
focuses on the role of duality theory in sensitivity analysis. The basic procedure for sen-
sitivity analysis (which is based on the fundamental insight of Sec. 5.3) is summarized in
Sec. 6.6 and illustrated in Sec. 6.7. Section 6.8 focuses on how to use spreadsheets to per-
form sensitivity analysis in a straightforward way. (If you don’t have much time to de-
vote to this chapter, it is feasible to read only Sec. 6.8 by itself to obtain a relatively brief
introduction to sensitivity analysis.)
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Thus, with the primal problem in maximization form, the dual problem is in minimization
form instead. Furthermore, the dual problem uses exactly the same parameters as the pri-
mal problem, but in different locations, as summarized below.

1. The coefficients in the objective function of the primal problem are the right-hand sides
of the functional constraints in the dual problem.

2. The right-hand sides of the functional constraints in the primal problem are the coef-
ficients in the objective function of the dual problem.

3. The coefficients of a variable in the functional constraints of the primal problem are
the coefficients in a functional constraint of the dual problem.

To highlight the comparison, now look at these same two problems in matrix notation (as
introduced at the beginning of Sec. 5.2), where c and y � [y1, y2, . . . , ym] are row vec-
tors but b and x are column vectors.

Primal Problem Dual Problem

196 CHAPTER 6 DUALITY THEORY AND SENSITIVITY ANALYSIS

Maximize Z � �
n

j�1
cjxj,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m

and

xj � 0, for j � 1, 2, . . . , n.

Minimize W � �
m

i�1
biyi,

subject to

�
m

i�1
aijyi � cj, for j � 1, 2, . . . , n

and

yi � 0, for i � 1, 2, . . . , m.

Maximize Z � cx,

subject to

Ax � b

and

x � 0.

Minimize W � yb,

subject to

yA � c

and

y � 0.

Primal Problem Dual Problem

To illustrate, the primal and dual problems for the Wyndor Glass Co. example of Sec. 3.1
are shown in Table 6.1 in both algebraic and matrix form.

The primal-dual table for linear programming (Table 6.2) also helps to highlight
the correspondence between the two problems. It shows all the linear programming pa-
rameters (the aij, bi, and cj) and how they are used to construct the two problems. All the
headings for the primal problem are horizontal, whereas the headings for the dual prob-
lem are read by turning the book sideways. For the primal problem, each column (ex-
cept the Right Side column) gives the coefficients of a single variable in the respective
constraints and then in the objective function, whereas each row (except the bottom one)
gives the parameters for a single contraint. For the dual problem, each row (except the
Right Side row) gives the coefficients of a single variable in the respective constraints
and then in the objective function, whereas each column (except the rightmost one) gives

■ 6.1 THE ESSENCE OF DUALITY THEORY

Given our standard form for the primal problem at the left (perhaps after conversion from
another form), its dual problem has the form shown to the right.
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■ TABLE 6.2 Primal-dual table for linear programming, illustrated by the Wyndor
Glass Co. example

(a) General Case

Primal Problem

Coefficient of:
Right

x1 x2
… xn Side

y1 a11 a12
… a1n � b1

y2 a21 a22
… a2n � b2

� �
ym am1 am2

… amn � bm

VI VI … VI
c1 c2

… cnR
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ts

fo
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O
bj

ec
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e
Fu

nc
tio

n
(M

in
im

iz
e)

Coefficients for 
Objective Function 

(Maximize)

(b) Wyndor Glass Co. Example

x1 x2

y1 1 0 � 4
y2 0 2 � 12
y3 3 2 � 18

VI VI
3 5

■ TABLE 6.1 Primal and dual problems for the Wyndor Glass Co. example

Maximize Z � 3x1 � 5x2,

subject to

3x1 � 2x2 � 4

3x1 � 2x2 � 12

3x1 � 2x2 � 18

and x1 � 0, x2 � 0.

Minimize W � 4y1 � 12y2 � 18y3,

subject to

y12y2 � 3y3 � 3

2y2 � 2y3 � 5

and

y1 � 0, y2 � 0, y3 � 0.

Maximize Z � [3, 5]� �,
subject to

� � �

and

� � � � �.0

0

x1

x2






4

12

18






x1

x2






0

2

2

1

0

3






x1

x2 Minimize W � [y1, y2, y3]

subject to

[y1, y2, y3] � [3, 5]

and

[y1, y2, y3] � [0, 0, 0].






0

2

2

1

0

3











4

12

18






Primal Problem Dual Problem
in Algebraic Form in Algebraic Form

Primal Problem Dual Problem
in Matrix Form in Matrix Form
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the parameters for a single constraint. In addition, the Right Side column gives the right-
hand sides for the primal problem and the objective function coefficients for the dual
problem, whereas the bottom row gives the objective function coefficients for the primal
problem and the right-hand sides for the dual problem.

Consequently, we now have the following general relationships between the primal
and dual problems.

1. The parameters for a (functional) constraint in either problem are the coefficients of a
variable in the other problem.

2. The coefficients in the objective function of either problem are the right-hand sides for
the other problem.

Thus, there is a direct correspondence between these entities in the two problems, as sum-
marized in Table 6.3. These correspondences are a key to some of the applications of du-
ality theory, including sensitivity analysis.

The Worked Examples section of the book’s website provides another example of
using the primal-dual table to construct the dual problem for a linear programming model.

Origin of the Dual Problem

Duality theory is based directly on the fundamental insight (particularly with regard to
row 0) presented in Sec. 5.3. To see why, we continue to use the notation introduced in
Table 5.9 for row 0 of the final tableau, except for replacing Z* by W* and dropping the
asterisks from z* and y* when referring to any tableau. Thus, at any given iteration of the
simplex method for the primal problem, the current numbers in row 0 are denoted as
shown in the (partial) tableau given in Table 6.4. For the coefficients of x1, x2, . . . , xn,
recall that z � (z1, z2, . . . , zn) denotes the vector that the simplex method added to the
vector of initial coefficients, �c, in the process of reaching the current tableau. (Do not
confuse z with the value of the objective function Z.) Similarly, since the initial coeffi-
cients of xn�1, xn�2, . . . , xn�m in row 0 all are 0, y � (y1, y2, . . . , ym) denotes the vec-
tor that the simplex method has added to these coefficients. Also recall [see Eq. (1) in the
statement of the fundamental insight in Sec. 5.3] that the fundamental insight led to the
following relationships between these quantities and the parameters of the original model:

W � yb � �
m

i�1
biyi ,

z � yA, so zj � �
m

i�1
aijyi , for j � 1, 2, . . . , n.
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■ TABLE 6.3 Correspondence between 
entities in primal and 
dual problems

One Problem Other Problem

Constraint i ←→ Variable i
Objective function ←→ Right-hand sides

■ TABLE 6.4 Notation for entries in row 0 of a simplex tableau

Coefficient of:
Basic Right

Iteration Variable Eq. Z x1 x2
… xn xn�1 xn�2

… xn�m Side

Any Z (0) 1 z1 � c1 z2 � c2
… zn � cn y1 y2

… ym W
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To illustrate these relationships with the Wyndor example, the first equation gives 
W � 4y1 � 12y2 � 18y3, which is just the objective function for the dual problem shown
in the upper right-hand box of Table 6.1. The second set of equations give z1 � y1 � 3y3

and z2 � 2y2 � 2y3, which are the left-hand sides of the functional constraints for this
dual problem. Thus, by subtracting the right-hand sides of these � constraints (c1 � 3 and 
c2 � 5), (z1 � c1) and (z2 � c2) can be interpreted as being the surplus variables for these
functional constraints.

The remaining key is to express what the simplex method tries to accomplish (accord-
ing to the optimality test) in terms of these symbols. Specifically, it seeks a set of basic
variables, and the corresponding BF solution, such that all coefficients in row 0 are non-
negative. It then stops with this optimal solution. Using the notation in Table 6.4, this goal
is expressed symbolically as follows:

Condition for Optimality:
zj � cj � 0 for j � 1, 2, . . . , n,

yi � 0 for i � 1, 2, . . . , m.

After we substitute the preceding expression for zj, the condition for optimality says that
the simplex method can be interpreted as seeking values for y1, y2, . . . , ym such that
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W � �
m

i�1
biyi,

subject to

�
m

i�1
aijyi � cj, for j � 1, 2, . . . , n

and

yi � 0, for i � 1, 2, . . . , m.

But, except for lacking an objective for W, this problem is precisely the dual problem! To
complete the formulation, let us now explore what the missing objective should be.

Since W is just the current value of Z, and since the objective for the primal problem
is to maximize Z, a natural first reaction is that W should be maximized also. However,
this is not correct for the following rather subtle reason: The only feasible solutions for this
new problem are those that satisfy the condition for optimality for the primal problem.
Therefore, it is only the optimal solution for the primal problem that corresponds to a
feasible solution for this new problem. As a consequence, the optimal value of Z in the
primal problem is the minimum feasible value of W in the new problem, so W should be
minimized. (The full justification for this conclusion is provided by the relationships we de-
velop in Sec. 6.3.) Adding this objective of minimizing W gives the complete dual problem.

Consequently, the dual problem may be viewed as a restatement in linear program-
ming terms of the goal of the simplex method, namely, to reach a solution for the primal
problem that satisfies the optimality test. Before this goal has been reached, the corre-
sponding y in row 0 (coefficients of slack variables) of the current tableau must be in-
feasible for the dual problem. However, after the goal is reached, the corresponding y must
be an optimal solution (labeled y*) for the dual problem, because it is a feasible solution
that attains the minimum feasible value of W. This optimal solution (y1*, y2*, . . . , ym*)
provides for the primal problem the shadow prices that were described in Sec. 4.7. Fur-
thermore, this optimal W is just the optimal value of Z, so the optimal objective function
values are equal for the two problems. This fact also implies that cx � yb for any x and
y that are feasible for the primal and dual problems, respectively.
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To illustrate, the left-hand side of Table 6.5 shows row 0 for the respective itera-
tions when the simplex method is applied to the Wyndor Glass Co. example. In each
case, row 0 is partitioned into three parts: the coefficients of the decision variables (x1, x2),
the coefficients of the slack variables (x3, x4, x5), and the right-hand side (value of Z). Since
the coefficients of the slack variables give the corresponding values of the dual variables
(y1, y2, y3), each row 0 identifies a corresponding solution for the dual problem, as shown
in the y1, y2, and y3 columns of Table 6.5. To interpret the next two columns, recall that
(z1 � c1) and (z2 � c2) are the surplus variables for the functional constraints in the dual
problem, so the full dual problem after augmenting with these surplus variables is

Minimize W � 4y1 � 12y2 � 18y3,

subject to

y1 � 3y3 � (z1 � c1) � 3
2y2 � 2y3 � (z2 � c2) � 5

and

y1 � 0, y2 � 0, y3 � 0.

Therefore, by using the numbers in the y1, y2, and y3 columns, the values of these surplus
variables can be calculated as

z1 � c1 � y1 � 3y3 � 3,
z2 � c2 � 2y2 � 2y3 � 5.

Thus, a negative value for either surplus variable indicates that the corresponding con-
straint is violated. Also included in the rightmost column of the table is the calculated
value of the dual objective function W � 4y1 � 12y2 � 18y3.

As displayed in Table 6.4, all these quantities to the right of row 0 in Table 6.5 al-
ready are identified by row 0 without requiring any new calculations. In particular, note
in Table 6.5 how each number obtained for the dual problem already appears in row 0 in
the spot indicated by Table 6.4.

For the initial row 0, Table 6.5 shows that the corresponding dual solution 
(y1, y2, y3) � (0, 0, 0) is infeasible because both surplus variables are negative. The first it-
eration succeeds in eliminating one of these negative values, but not the other. After two it-
erations, the optimality test is satisfied for the primal problem because all the dual variables
and surplus variables are nonnegative. This dual solution (y1*, y2*, y3*) � (0, �

3
2

�, 1) is optimal
(as could be verified by applying the simplex method directly to the dual problem), so the
optimal value of Z and W is Z* � 36 � W*.
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■ TABLE 6.5 Row 0 and corresponding dual solution for each iteration 
for the Wyndor Glass Co. example

Primal Problem Dual Problem

Iteration Row 0 y1 y2 y3 z1 � c1 z2 � c2 W

0 [�3, �5 0, 0, 0 0] 0 0 0 �3 �5 0

1 [�3, �0 0, �
5
2

�, 0 30] 0 �
5
2

� 0 �3 �0 30

2 [�0, �0 0, �
3
2

�, 1 36] 0 �
3
2

� 1 �0 �0 36
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Summary of Primal-Dual Relationships

Now let us summarize the newly discovered key relationships between the primal and dual
problems.

Weak duality property: If x is a feasible solution for the primal problem and y
is a feasible solution for the dual problem, then

cx � yb.

For example, for the Wyndor Glass Co. problem, one feasible solution is x1 � 3, x2 � 3,
which yields Z � cx � 24, and one feasible solution for the dual problem is y1 � 1,
y2 � 1, y3 � 2, which yields a larger objective function value W � yb � 52. These are just
sample feasible solutions for the two problems. For any such pair of feasible solutions, this
inequality must hold because the maximum feasible value of Z � cx (36) equals the min-
imum feasible value of the dual objective function W � yb, which is our next property.

Strong duality property: If x* is an optimal solution for the primal problem
and y* is an optimal solution for the dual problem, then

cx* � y*b.

Thus, these two properties imply that cx � yb for feasible solutions if one or both of them
are not optimal for their respective problems, whereas equality holds when both are optimal.

The weak duality property describes the relationship between any pair of solutions
for the primal and dual problems where both solutions are feasible for their respective
problems. At each iteration, the simplex method finds a specific pair of solutions for the
two problems, where the primal solution is feasible but the dual solution is not feasible
(except at the final iteration). Our next property describes this situation and the relation-
ship between this pair of solutions.

Complementary solutions property: At each iteration, the simplex method si-
multaneously identifies a CPF solution x for the primal problem and a comple-
mentary solution y for the dual problem (found in row 0, the coefficients of the
slack variables), where

cx � yb.

If x is not optimal for the primal problem, then y is not feasible for the dual 
problem.

To illustrate, after one iteration for the Wyndor Glass Co. problem, x1 � 0, x2 � 6, and 
y1 � 0, y2 � �

5
2

�, y3 � 0, with cx � 30 � yb. This x is feasible for the primal problem, but
this y is not feasible for the dual problem (since it violates the constraint, y1 � 3y3 � 3).

The complementary solutions property also holds at the final iteration of the simplex
method, where an optimal solution is found for the primal problem. However, more can
be said about the complementary solution y in this case, as presented in the next property.

Complementary optimal solutions property: At the final iteration, the simplex
method simultaneously identifies an optimal solution x* for the primal problem
and a complementary optimal solution y* for the dual problem (found in row
0, the coefficients of the slack variables), where

cx* � y*b.

The yi* are the shadow prices for the primal problem.

For the example, the final iteration yields x1* � 2, x2* � 6, and y1* � 0, y2* � �
3
2

�, y3* � 1,
with cx* � 36 � y*b.
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We shall take a closer look at some of these properties in Sec. 6.3. There you will see
that the complementary solutions property can be extended considerably further. In partic-
ular, after slack and surplus variables are introduced to augment the respective problems,
every basic solution in the primal problem has a complementary basic solution in the dual
problem. We already have noted that the simplex method identifies the values of the sur-
plus variables for the dual problem as zj � cj in Table 6.4. This result then leads to an ad-
ditional complementary slackness property that relates the basic variables in one problem
to the nonbasic variables in the other (Tables 6.7 and 6.8), but more about that later.

In Sec. 6.4, after describing how to construct the dual problem when the primal prob-
lem is not in our standard form, we discuss another very useful property, which is sum-
marized as follows:

Symmetry property: For any primal problem and its dual problem, all relation-
ships between them must be symmetric because the dual of this dual problem is
this primal problem.

Therefore, all the preceding properties hold regardless of which of the two problems is
labeled as the primal problem. (The direction of the inequality for the weak duality prop-
erty does require that the primal problem be expressed or reexpressed in maximization
form and the dual problem in minimization form.) Consequently, the simplex method can
be applied to either problem, and it simultaneously will identify complementary solutions
(ultimately a complementary optimal solution) for the other problem.

So far, we have focused on the relationships between feasible or optimal solutions in
the primal problem and corresponding solutions in the dual problem. However, it is pos-
sible that the primal (or dual) problem either has no feasible solutions or has feasible so-
lutions but no optimal solution (because the objective function is unbounded). Our final
property summarizes the primal-dual relationships under all these possibilities.

Duality theorem: The following are the only possible relationships between the
primal and dual problems.

1. If one problem has feasible solutions and a bounded objective function (and
so has an optimal solution), then so does the other problem, so both the weak
and strong duality properties are applicable.

2. If one problem has feasible solutions and an unbounded objective function
(and so no optimal solution), then the other problem has no feasible solutions.

3. If one problem has no feasible solutions, then the other problem has either no
feasible solutions or an unbounded objective function.

Applications

As we have just implied, one important application of duality theory is that the dual prob-
lem can be solved directly by the simplex method in order to identify an optimal solution
for the primal problem. We discussed in Sec. 4.8 that the number of functional constraints
affects the computational effort of the simplex method far more than the number of vari-
ables does. If m � n, so that the dual problem has fewer functional constraints (n) than
the primal problem (m), then applying the simplex method directly to the dual problem
instead of the primal problem probably will achieve a substantial reduction in computa-
tional effort.

The weak and strong duality properties describe key relationships between the primal
and dual problems. One useful application is for evaluating a proposed solution for the pri-
mal problem. For example, suppose that x is a feasible solution that has been proposed for
implementation and that a feasible solution y has been found by inspection for the dual
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problem such that cx � yb. In this case, x must be optimal without the simplex method
even being applied! Even if cx � yb, then yb still provides an upper bound on the optimal
value of Z, so if yb � cx is small, intangible factors favoring x may lead to its selection
without further ado.

One of the key applications of the complementary solutions property is its use in
the dual simplex method presented in Sec. 7.1. This algorithm operates on the primal
problem exactly as if the simplex method were being applied simultaneously to the dual
problem, which can be done because of this property. Because the roles of row 0 and
the right side in the simplex tableau have been reversed, the dual simplex method re-
quires that row 0 begin and remain nonnegative while the right side begins with some
negative values (subsequent iterations strive to reach a nonnegative right side). Conse-
quently, this algorithm occasionally is used because it is more convenient to set up the
initial tableau in this form than in the form required by the simplex method. Further-
more, it frequently is used for reoptimization (discussed in Sec. 4.7), because changes
in the original model lead to the revised final tableau fitting this form. This situation is
common for certain types of sensitivity analysis, as you will see later in the chapter.

In general terms, duality theory plays a central role in sensitivity analysis. This role
is the topic of Sec. 6.5.

Another important application is its use in the economic interpretation of the dual prob-
lem and the resulting insights for analyzing the primal problem. You already have seen one
example when we discussed shadow prices in Sec. 4.7. Section 6.2 describes how this in-
terpretation extends to the entire dual problem and then to the simplex method.

6.2 ECONOMIC INTERPRETATION OF DUALITY 203

1Actually, several slightly different interpretations have been proposed. The one presented here seems to us to
be the most useful because it also directly interprets what the simplex method does in the primal problem.

■ 6.2 ECONOMIC INTERPRETATION OF DUALITY

The economic interpretation of duality is based directly upon the typical interpretation for
the primal problem (linear programming problem in our standard form) presented in Sec. 3.2.
To refresh your memory, we have summarized this interpretation of the primal problem in
Table 6.6.

Interpretation of the Dual Problem

To see how this interpretation of the primal problem leads to an economic interpretation
for the dual problem,1 note in Table 6.4 that W is the value of Z (total profit) at the cur-
rent iteration. Because

W � b1y1 � b2y2 � . . . � bmym,

■ TABLE 6.6 Economic interpretation of the primal problem

Quantity Interpretation

xj Level of activity j ( j � 1, 2, . . . , n)
cj Unit profit from activity j
Z Total profit from all activities
bi Amount of resource i available (i � 1, 2, . . . , m)
aij Amount of resource i consumed by each unit of activity j
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each biyi can thereby be interpreted as the current contribution to profit by having bi units
of resource i available for the primal problem. Thus,

The dual variable yi is interpreted as the contribution to profit per unit of resource
i (i � 1, 2, . . . , m), when the current set of basic variables is used to obtain the
primal solution.

In other words, the yi values (or yi
* values in the optimal solution) are just the shadow

prices discussed in Sec. 4.7.
For example, when iteration 2 of the simplex method finds the optimal solution for

the Wyndor problem, it also finds the optimal values of the dual variables (as shown in
the bottom row of Table 6.5) to be y1* � 0, y2* � �

3
2

�, and y3* � 1. These are precisely the
shadow prices found in Sec. 4.7 for this problem through graphical analysis. Recall that
the resources for the Wyndor problem are the production capacities of the three plants
being made available to the two new products under consideration, so that bi is the num-
ber of hours of production time per week being made available in Plant i for these
new products, where i � 1, 2, 3. As discussed in Sec. 4.7, the shadow prices indicate
that individually increasing any bi by 1 would increase the optimal value of the ob-
jective function (total weekly profit in units of thousands of dollars) by yi

*. Thus, yi
*

can be interpreted as the contribution to profit per unit of resource i when using the
optimal solution.

This interpretation of the dual variables leads to our interpretation of the overall dual
problem. Specifically, since each unit of activity j in the primal problem consumes aij

units of resource i,

	m
i�1 ai jyi is interpreted as the current contribution to profit of the mix of resources

that would be consumed if 1 unit of activity j were used ( j � 1, 2, . . . , n).

For the Wyndor problem, 1 unit of activity j corresponds to producing 1 batch of product
j per week, where j � 1, 2. The mix of resources consumed by producing 1 batch of prod-
uct 1 is 1 hour of production time in Plant 1 and 3 hours in Plant 3. The corresponding
mix per batch of product 2 is 2 hours each in Plants 2 and 3. Thus, y1 � 3y3 and 2y2 � 2y3

are interpreted as the current contributions to profit (in thousands of dollars per week) of
these respective mixes of resources per batch produced per week of the respective products.

For each activity j, this same mix of resources (and more) probably can be used in
other ways as well, but no alternative use should be considered if it is less profitable than
1 unit of activity j. Since cj is interpreted as the unit profit from activity j, each functional
constraint in the dual problem is interpreted as follows:

	m
i�1 aijyi � cj says that the actual contribution to profit of the above mix of re-

sources must be at least as much as if they were used by 1 unit of activity j; oth-
erwise, we would not be making the best possible use of these resources.

For the Wyndor problem, the unit profits (in thousands of dollars per week) are c1 � 3
and c2 � 5, so the dual functional constraints with this interpretation are y1 � 3y3 � 3 
and 2y2 � 2y3 � 5. Similarly, the interpretation of the nonnegativity constraints is the 
following:

yi � 0 says that the contribution to profit of resource i (i � 1, 2, . . . , m) must
be nonnegative: otherwise, it would be better not to use this resource at all.

The objective

Minimize W � �
m

i�1
biyi
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can be viewed as minimizing the total implicit value of the resources consumed by the
activities. For the Wyndor problem, the total implicit value (in thousands of dollars per
week) of the resources consumed by the two products is W � 4y1 � 12y2 � 18y3.

This interpretation can be sharpened somewhat by differentiating between basic and
nonbasic variables in the primal problem for any given BF solution (x1, x2, . . . , xn�m).
Recall that the basic variables (the only variables whose values can be nonzero) always
have a coefficient of zero in row 0. Therefore, referring again to Table 6.4 and the ac-
companying equation for zj, we see that

�
m

i�1
aijyi � cj, if xj � 0 ( j � 1, 2, . . . , n),

yi � 0, if xn�i � 0 (i � 1, 2, . . . , m).

(This is one version of the complementary slackness property discussed in Sec. 6.3.) The
economic interpretation of the first statement is that whenever an activity j operates at a
strictly positive level (xj � 0), the marginal value of the resources it consumes must equal
(as opposed to exceeding) the unit profit from this activity. The second statement implies
that the marginal value of resource i is zero (yi � 0) whenever the supply of this resource
is not exhausted by the activities (xn�i � 0). In economic terminology, such a resource is
a “free good”; the price of goods that are oversupplied must drop to zero by the law of
supply and demand. This fact is what justifies interpreting the objective for the dual prob-
lem as minimizing the total implicit value of the resources consumed, rather than the re-
sources allocated.

To illustrate these two statements, consider the optimal BF solution (2, 6, 2, 0, 0) for
the Wyndor problem. The basic variables are x1, x2, and x3, so their coefficients in row 0
are zero, as shown in the bottom row of Table 6.5. This bottom row also gives the corre-
sponding dual solution: y1* � 0, y2* � �

3
2

�, y3* � 1, with surplus variables (z1* � c1) � 0 and
(z2* � c2) � 0. Since x1 � 0 and x2 � 0, both these surplus variables and direct calcula-
tions indicate that y1* � 3y3* � c1 � 3 and 2y2* � 2y3* � c2 � 5. Therefore, the value of
the resources consumed per batch of the respective products produced does indeed equal
the respective unit profits. The slack variable for the constraint on the amount of Plant 1
capacity used is x3 � 0, so the marginal value of adding any Plant 1 capacity would be
zero (y1* � 0).

Interpretation of the Simplex Method

The interpretation of the dual problem also provides an economic interpretation of what
the simplex method does in the primal problem. The goal of the simplex method is to
find how to use the available resources in the most profitable feasible way. To attain
this goal, we must reach a BF solution that satisfies all the requirements on profitable
use of the resources (the constraints of the dual problem). These requirements com-
prise the condition for optimality for the algorithm. For any given BF solution, the
requirements (dual constraints) associated with the basic variables are automatically
satisfied (with equality). However, those associated with nonbasic variables may or
may not be satisfied.

In particular, if an original variable xj is nonbasic so that activity j is not used, then
the current contribution to profit of the resources that would be required to undertake each
unit of activity j

�
m

i�1
aijyi
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may be smaller than, larger than, or equal to the unit profit cj obtainable from the activ-
ity. If it is smaller, so that zj � cj � 0 in row 0 of the simplex tableau, then these resources
can be used more profitably by initiating this activity. If it is larger (zj � cj � 0), then
these resources already are being assigned elsewhere in a more profitable way, so they
should not be diverted to activity j. If zj � cj � 0, there would be no change in profitability
by initiating activity j.

Similarly, if a slack variable xn�i is nonbasic so that the total allocation bi of resource
i is being used, then yi is the current contribution to profit of this resource on a marginal
basis. Hence, if yi � 0, profit can be increased by cutting back on the use of this resource
(i.e., increasing xn�i). If yi � 0, it is worthwhile to continue fully using this resource,
whereas this decision does not affect profitability if yi � 0.

Therefore, what the simplex method does is to examine all the nonbasic variables in
the current BF solution to see which ones can provide a more profitable use of the re-
sources by being increased. If none can, so that no feasible shifts or reductions in the
current proposed use of the resources can increase profit, then the current solution must
be optimal. If one or more can, the simplex method selects the variable that, if increased
by 1, would improve the profitability of the use of the resources the most. It then actu-
ally increases this variable (the entering basic variable) as much as it can until the mar-
ginal values of the resources change. This increase results in a new BF solution with a
new row 0 (dual solution), and the whole process is repeated.

The economic interpretation of the dual problem considerably expands our ability to
analyze the primal problem. However, you already have seen in Sec. 6.1 that this inter-
pretation is just one ramification of the relationships between the two problems. In Sec 6.3,
we delve into these relationships more deeply.

2You might wonder why we do not also introduce artificial variables into these constraints as discussed in
Sec. 4.6. The reason is that these variables have no purpose other than to change the feasible region tem-
porarily as a convenience in starting the simplex method. We are not interested now in applying the simplex
method to the dual problem, and we do not want to change its feasible region.

■ 6.3 PRIMAL–DUAL RELATIONSHIPS

Because the dual problem is a linear programming problem, it also has corner-point so-
lutions. Furthermore, by using the augmented form of the problem, we can express these
corner-point solutions as basic solutions. Because the functional constraints have the
� form, this augmented form is obtained by subtracting the surplus (rather than adding
the slack) from the left-hand side of each constraint j ( j � 1, 2, . . . , n).2 This surplus is

zj � cj � �
m

i�1
aijyi � cj , for j � 1, 2, . . . , n.

Thus, zj�cj plays the role of the surplus variable for constraint j (or its slack variable if
the constraint is multiplied through by �1). Therefore, augmenting each corner-point so-
lution (y1, y2, . . . , ym) yields a basic solution (y1, y2, . . . , ym, z1 � c1, z2 � c2, . . . ,
zn � cn) by using this expression for zj � cj. Since the augmented form of the dual
problem has n functional constraints and n � m variables, each basic solution has n basic
variables and m nonbasic variables. (Note how m and n reverse their previous roles
here because, as Table 6.3 indicates, dual constraints correspond to primal variables and
dual variables correspond to primal constraints.)
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Complementary Basic Solutions

One of the important relationships between the primal and dual problems is a direct cor-
respondence between their basic solutions. The key to this correspondence is row 0 of the
simplex tableau for the primal basic solution, such as shown in Table 6.4 or 6.5. Such a
row 0 can be obtained for any primal basic solution, feasible or not, by using the formu-
las given in the bottom part of Table 5.8.

Note again in Tables 6.4 and 6.5 how a complete solution for the dual problem (includ-
ing the surplus variables) can be read directly from row 0. Thus, because of its coefficient in
row 0, each variable in the primal problem has an associated variable in the dual problem,
as summarized in Table 6.7, first for any problem and then for the Wyndor problem.

A key insight here is that the dual solution read from row 0 must also be a basic so-
lution! The reason is that the m basic variables for the primal problem are required to have
a coefficient of zero in row 0, which thereby requires the m associated dual variables to
be zero, i.e., nonbasic variables for the dual problem. The values of the remaining n (ba-
sic) variables then will be the simultaneous solution to the system of equations given at
the beginning of this section. In matrix form, this system of equations is z � c � yA � c,
and the fundamental insight of Sec. 5.3 actually identifies its solution for z � c and y as
being the corresponding entries in row 0.

Because of the symmetry property quoted in Sec. 6.1 (and the direct association be-
tween variables shown in Table 6.7), the correspondence between basic solutions in the
primal and dual problems is a symmetric one. Furthermore, a pair of complementary ba-
sic solutions has the same objective function value, shown as W in Table 6.4.

Let us now summarize our conclusions about the correspondence between primal and
dual basic solutions, where the first property extends the complementary solutions prop-
erty of Sec. 6.1 to the augmented forms of the two problems and then to any basic solu-
tion (feasible or not) in the primal problem.

Complementary basic solutions property: Each basic solution in the primal
problem has a complementary basic solution in the dual problem, where their
respective objective function values (Z and W ) are equal. Given row 0 of the sim-
plex tableau for the primal basic solution, the complementary dual basic solution
(y, z � c) is found as shown in Table 6.4.

The next property shows how to identify the basic and nonbasic variables in this com-
plementary basic solution.

Complementary slackness property: Given the association between variables
in Table 6.7, the variables in the primal basic solution and the complementary
dual basic solution satisfy the complementary slackness relationship shown in
Table 6.8. Furthermore, this relationship is a symmetric one, so that these two
basic solutions are complementary to each other.

6.3 PRIMAL-DUAL RELATIONSHIPS 207

■ TABLE 6.7 Association between variables in primal and dual problems

Primal Variable Associated Dual Variable

Any problem
(Decision variable) xj zj � cj (surplus variable) j � 1, 2, . . . , n
(Slack variable) xn�i yi (decision variable) i � 1, 2, . . . , m

Decision variables: x1 z1 � c1 (surplus variables)
Decision variables: x2 z2 � c2

Wyndor problem Slack variables:    x3 y1 (decision variables)
Decision variables: x4 y2

Decision variables: x5 y3
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■ TABLE 6.8 Complementary slackness 
relationship for complementary 
basic solutions

Primal Associated
Variable Dual Variable

Basic Nonbasic (m variables)
Nonbasic Basic (n variables)

■ TABLE 6.9 Complementary basic solutions for the Wyndor Glass Co. example

Primal Problem Dual Problem

No. Basic Solution Feasible? Z � W Feasible? Basic Solution

1 (0, 0, 4, 12, 18) Yes 0 No (0, 0, 0, �3, �5)
2 (4, 0, 0, 12, 6) Yes 12 No (3, 0, 0, 0, �5)
3 (6, 0, �2, 12, 0) No 18 No (0, 0, 1, 0, �3)

4 (4, 3, 0, 6, 0) Yes 27 No ���
9
2

�, 0, �
5
2

�, 0, 0�
5 (0, 6, 4, 0, 6) Yes 30 No �0, �

5
2

�, 0, �3, 0�
6 (2, 6, 2, 0, 0) Yes 36 Yes �0, �

3
2

�, 1, 0, 0�
7 (4, 6, 0, 0, �6) No 42 Yes �3, �

5
2

�, 0, 0, 0�
8 (0, 9, 4, �6, 0) No 45 Yes �0, 0, �

5
2

�, �
9
2

�, 0�

The reason for using the name complementary slackness for this latter property is that
it says (in part) that for each pair of associated variables, if one of them has slack in its
nonnegativity constraint (a basic variable � 0), then the other one must have no slack (a
nonbasic variable � 0). We mentioned in Sec. 6.2 that this property has a useful economic
interpretation for linear programming problems.

Example. To illustrate these two properties, again consider the Wyndor Glass Co. prob-
lem of Sec. 3.1. All eight of its basic solutions (five feasible and three infeasible) are
shown in Table 6.9. Thus, its dual problem (see Table 6.1) also must have eight basic so-
lutions, each complementary to one of these primal solutions, as shown in Table 6.9.

The three BF solutions obtained by the simplex method for the primal problem are the
first, fifth, and sixth primal solutions shown in Table 6.9. You already saw in Table 6.5 how
the complementary basic solutions for the dual problem can be read directly from row 0,
starting with the coefficients of the slack variables and then the original variables. The other
dual basic solutions also could be identified in this way by constructing row 0 for each of
the other primal basic solutions, using the formulas given in the bottom part of Table 5.8.

Alternatively, for each primal basic solution, the complementary slackness property
can be used to identify the basic and nonbasic variables for the complementary dual ba-
sic solution, so that the system of equations given at the beginning of the section can be
solved directly to obtain this complementary solution. For example, consider the next-to-
last primal basic solution in Table 6.9, (4, 6, 0, 0, �6). Note that x1, x2, and x5 are basic
variables, since these variables are not equal to 0. Table 6.7 indicates that the associated
dual variables are (z1 � c1), (z2 � c2), and y3. Table 6.8 specifies that these associated dual
variables are nonbasic variables in the complementary basic solution, so

z1 � c1 � 0, z2 � c2 � 0, y3 � 0.
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Consequently, the augmented form of the functional constraints in the dual problem,

y1 � 3y3 � (z1 � c1) � 3
2y2 � 2y3 � (z2 � c2) � 5,

reduce to

y1 � 0 � 0 � 3
2y2 � 0 � 0 � 5,

so that y1 � 3 and y2 � �
5
2

�. Combining these values with the values of 0 for the nonbasic
variables gives the basic solution (3, �

5
2

�, 0, 0, 0), shown in the rightmost column and next-
to-last row of Table 6.9. Note that this dual solution is feasible for the dual problem be-
cause all five variables satisfy the nonnegativity constraints.

Finally, notice that Table 6.9 demonstrates that (0, �
3
2

�, 1, 0, 0) is the optimal solution
for the dual problem, because it is the basic feasible solution with minimal W (36).

Relationships between Complementary Basic Solutions

We now turn our attention to the relationships between complementary basic solutions,
beginning with their feasibility relationships. The middle columns in Table 6.9 provide
some valuable clues. For the pairs of complementary solutions, notice how the yes or no
answers on feasibility also satisfy a complementary relationship in most cases. In partic-
ular, with one exception, whenever one solution is feasible, the other is not. (It also is
possible for neither solution to be feasible, as happened with the third pair.) The one ex-
ception is the sixth pair, where the primal solution is known to be optimal. The explana-
tion is suggested by the Z � W column. Because the sixth dual solution also is optimal
(by the complementary optimal solutions property), with W � 36, the first five dual so-
lutions cannot be feasible because W � 36 (remember that the dual problem objective is
to minimize W). By the same token, the last two primal solutions cannot be feasible be-
cause Z � 36.

This explanation is further supported by the strong duality property that optimal pri-
mal and dual solutions have Z � W.

Next, let us state the extension of the complementary optimal solutions property of
Sec. 6.1 for the augmented forms of the two problems.

Complementary optimal basic solutions property: An optimal basic solution
in the primal problem has a complementary optimal basic solution in the dual
problem, where their respective objective function values (Z and W) are equal.
Given row 0 of the simplex tableau for the optimal primal solution, the comple-
mentary optimal dual solution (y*, z* � c) is found as shown in Table 6.4.

To review the reasoning behind this property, note that the dual solution (y*, z* � c)
must be feasible for the dual problem because the condition for optimality for the pri-
mal problem requires that all these dual variables (including surplus variables) be non-
negative. Since this solution is feasible, it must be optimal for the dual problem by the
weak duality property (since W � Z, so y*b � cx* where x* is optimal for the primal
problem).

Basic solutions can be classified according to whether they satisfy each of two con-
ditions. One is the condition for feasibility, namely, whether all the variables (including
slack variables) in the augmented solution are nonnegative. The other is the condition
for optimality, namely, whether all the coefficients in row 0 (i.e., all the variables in the
complementary basic solution) are nonnegative. Our names for the different types of
basic solutions are summarized in Table 6.10. For example, in Table 6.9, primal basic
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solutions 1, 2, 4, and 5 are suboptimal, 6 is optimal, 7 and 8 are superoptimal, and 3 is
neither feasible nor superoptimal.

Given these definitions, the general relationships between complementary basic so-
lutions are summarized in Table 6.11. The resulting range of possible (common) values
for the objective functions (Z � W ) for the first three pairs given in Table 6.11 (the last
pair can have any value) is shown in Fig. 6.1. Thus, while the simplex method is dealing

■ TABLE 6.11 Relationships between complementary basic solutions

Both Basic Solutions
Primal Basic Complementary

Solution Dual Basic Solution Primal Feasible? Dual Feasible?

Suboptimal Superoptimal Yes No
Optimal Optimal Yes Yes
Superoptimal Suboptimal No Yes
Neither feasible Neither feasible No No
nor superoptimal nor superoptimal

■ TABLE 6.10 Classification of basic solutions

Satisfies Condition 
for Optimality?

Yes No

Yes Optimal Suboptimal
Feasible?

No Superoptimal Neither feasible nor superoptimal

Primal problem Dual problem

n

�
j�1

cjxj � Z
m

�
i �1

bi yi W � 

Superoptimal Suboptimal

Suboptimal Superoptimal

(optimal) Z* (optimal) W*

■ FIGURE 6.1
Range of possible values of 
Z � W for certain types of
complementary basic
solutions.
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■ TABLE 6.12 Conversions to standard form for linear programming models

Nonstandard Form Equivalent Standard Form

Minimize Z Maximize (�Z)

�
n

j�1
aijxj � bi ��

n

j�1
aijxj � �bi

�
n

j�1
aijxj � bi �

n

j�1
aijxj � bi and ��

n

j�1
aijxj � �bi

xj unconstrained in sign xj
� � xj

�, xj
� � 0, xj

� � 0

■ 6.4 ADAPTING TO OTHER PRIMAL FORMS

Thus far it has been assumed that the model for the primal problem is in our standard
form. However, we indicated at the beginning of the chapter that any linear programming
problem, whether in our standard form or not, possesses a dual problem. Therefore, this
section focuses on how the dual problem changes for other primal forms.

Each nonstandard form was discussed in Sec. 4.6, and we pointed out how it is pos-
sible to convert each one to an equivalent standard form if so desired. These conversions
are summarized in Table 6.12. Hence, you always have the option of converting any model
to our standard form and then constructing its dual problem in the usual way. To illus-
trate, we do this for our standard dual problem (it must have a dual also) in Table 6.13.
Note that what we end up with is just our standard primal problem! Since any pair of pri-
mal and dual problems can be converted to these forms, this fact implies that the dual of
the dual problem always is the primal problem. Therefore, for any primal problem and its
dual problem, all relationships between them must be symmetric. This is just the sym-
metry property already stated in Sec. 6.1 (without proof), but now Table 6.13 demon-
strates why it holds.

One consequence of the symmetry property is that all the statements made earlier in
the chapter about the relationships of the dual problem to the primal problem also hold
in reverse.

directly with suboptimal basic solutions and working toward optimality in the primal prob-
lem, it is simultaneously dealing indirectly with complementary superoptimal solutions
and working toward feasibility in the dual problem. Conversely, it sometimes is more con-
venient (or necessary) to work directly with superoptimal basic solutions and to move to-
ward feasibility in the primal problem, which is the purpose of the dual simplex method
described in Sec. 7.1.

The third and fourth columns of Table 6.11 introduce two other common terms that
are used to describe a pair of complementary basic solutions. The two solutions are said
to be primal feasible if the primal basic solution is feasible, whereas they are called dual
feasible if the complementary dual basic solution is feasible for the dual problem. Using
this terminology, the simplex method deals with primal feasible solutions and strives to-
ward achieving dual feasibility as well. When this is achieved, the two complementary
basic solutions are optimal for their respective problems.

These relationships prove very useful, particularly in sensitivity analysis, as you will
see later in the chapter.
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Another consequence is that it is immaterial which problem is called the primal and
which is called the dual. In practice, you might see a linear programming problem fit-
ting our standard form being referred to as the dual problem. The convention is that the
model formulated to fit the actual problem is called the primal problem, regardless of
its form.

Our illustration of how to construct the dual problem for a nonstandard primal prob-
lem did not involve either equality constraints or variables unconstrained in sign. Actu-
ally, for these two forms, a shortcut is available. It is possible to show (see Probs. 6.4-7
and 6.4-2a) that an equality constraint in the primal problem should be treated just like
a � constraint in constructing the dual problem except that the nonnegativity constraint
for the corresponding dual variable should be deleted (i.e., this variable is unconstrained
in sign). By the symmetry property, deleting a nonnegativity constraint in the primal prob-
lem affects the dual problem only by changing the corresponding inequality constraint to
an equality constraint.

Another shortcut involves functional constraints in � form for a maximization prob-
lem. The straightforward (but longer) approach would begin by converting each such con-
straint to � form

�
n

j�1
aijxj � bi → � �

n

j�1
aijxj � �bi.

Constructing the dual problem in the usual way then gives �aij as the coefficient of
yi in functional constraint j (which has � form) and a coefficient of �bi in the objec-
tive function (which is to be minimized), where yi also has a nonnegativity constraint
yi � 0. Now suppose we define a new variable yi
 � �yi. The changes caused by ex-
pressing the dual problem in terms of yi
 instead of yi are that (1) the coefficients of
the variable become ai j for functional constraint j and bi for the objective function and
(2) the constraint on the variable becomes yi
 � 0 (a nonpositivity constraint). The
shortcut is to use yi
 instead of yi as a dual variable so that the parameters in the orig-
inal constraint (aij and bi) immediately become the coefficients of this variable in the
dual problem.

212 CHAPTER 6 DUALITY THEORY AND SENSITIVITY ANALYSIS

■ TABLE 6.13 Constructing the dual of the 
dual problem

Minimize W � yb,

subject to

yA � c

and

y � 0.

Maximize (�W) � �yb,

subject to

�yA � �c

and

y � 0.

Dual Problem Converted to Standard Form

Maximize Z � cx,

subject to

Ax � b

and

x � 0.

Minimize (�Z) � �cx,

subject to

�Ax � �b

and

x � 0.

Converted to 
Standard Form Its Dual Problem

→

→


→
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Here is a useful mnemonic device for remembering what the forms of dual constraints
should be. With a maximization problem, it might seem sensible for a functional constraint
to be in � form, slightly odd to be in � form, and somewhat bizarre to be in � form.
Similarly, for a minimization problem, it might seem sensible to be in � form, slightly odd
to be in � form, and somewhat bizarre to be in � form. For the constraint on an individ-
ual variable in either kind of problem, it might seem sensible to have a nonnegativity con-
straint, somewhat odd to have no constraint (so the variable is unconstrained in sign), and
quite bizarre for the variable to be restricted to be less than or equal to zero. Now recall
the correspondence between entities in the primal and dual problems indicated in Table 6.3;
namely, functional constraint i in one problem corresponds to variable i in the other prob-
lem, and vice versa. The sensible-odd-bizarre method, or SOB method for short, says
that the form of a functional constraint or the constraint on a variable in the dual problem
should be sensible, odd, or bizarre, depending on whether the form for the corresponding
entity in the primal problem is sensible, odd, or bizarre. Here is a summary.

The SOB Method for Determining the Form of Constraints in the Dual.3

1. Formulate the primal problem in either maximization form or minimization form, and
then the dual problem automatically will be in the other form.

2. Label the different forms of functional constraints and of constraints on individual vari-
ables in the primal problem as being sensible, odd, or bizarre according to Table 6.14. The
labeling of the functional constraints depends on whether the problem is a maximization
problem (use the second column) or a minimization problem (use the third column).

3. For each constraint on an individual variable in the dual problem, use the form that
has the same label as for the functional constraint in the primal problem that corre-
sponds to this dual variable (as indicated by Table 6.3).

4. For each functional constraint in the dual problem, use the form that has the same la-
bel as for the constraint on the corresponding individual variable in the primal prob-
lem (as indicated by Table 6.3).

The arrows between the second and third columns of Table 6.14 spell out the corre-
spondence between the forms of constraints in the primal and dual. Note that the corre-
spondence always is between a functional constraint in one problem and a constraint on
an individual variable in the other problem. Since the primal problem can be either a max-
imization or minimization problem, where the dual then will be of the opposite type, the
second column of the table gives the form for whichever is the maximization problem and
the third column gives the form for the other problem (a minimization problem).

To illustrate, consider the radiation therapy example presented at the beginning of
Sec. 3.4. To show the conversion in both directions in Table 6.14, we begin with the max-
imization form of this model as the primal problem, before using the (original) mini-
mization form.

The primal problem in maximization form is shown on the left side of Table 6.15. By
using the second column of Table 6.14 to represent this problem, the arrows in this table
indicate the form of the dual problem in the third column. These same arrows are used in
Table 6.15 to show the resulting dual problem. (Because of these arrows, we have placed
the functional constraints last in the dual problem rather than in their usual top position.)

6.4 ADAPTING TO OTHER PRIMAL FORMS 213

3This particular mnemonic device (and a related one) for remembering what the forms of the dual constraints
should be has been suggested by Arthur T. Benjamin, a mathematics professor at Harvey Mudd College. An in-
teresting and wonderfully bizarre fact about Professor Benjamin himself is that he is one of the world’s great
human calculators who can perform such feats as quickly multiplying six-digit numbers in his head. For a
further discussion and derivation of the SOB method, see A. T. Benjamin: “Sensible Rules for Remembering
Duals — The S-O-B Method,” SIAM Review, 37(1): 85–87, 1995.
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Beside each constraint in both problems, we have inserted (in parentheses) an S, O, or B to
label the form as sensible, odd, or bizarre. As prescribed by the SOB method, the label for
each dual constraint always is the same as for the corresponding primal constraint.

However, there was no need (other than for illustrative purposes) to convert the pri-
mal problem to maximization form. Using the original minimization form, the equivalent
primal problem is shown on the left side of Table 6.16. Now we use the third column of
Table 6.14 to represent this primal problem, where the arrows indicate the form of the
dual problem in the second column. These same arrows in Table 6.16 show the resulting
dual problem on the right side. Again, the labels on the constraints show the application
of the SOB method.

Just as the primal problems in Tables 6.15 and 6.16 are equivalent, the two dual prob-
lems also are completely equivalent. The key to recognizing this equivalency lies in the
fact that the variables in each version of the dual problem are the negative of those in the
other version (y1
 � �y1, y2
 � �y2, y3 � �y3
). Therefore, for each version, if the vari-
ables in the other version are used instead, and if both the objective function and the con-
straints are multiplied through by �1, then the other version is obtained. (Problem 6.4-5
asks you to verify this.)

If you would like to see another example of using the SOB method to construct a
dual problem, one is given in the Worked Examples section of the book’s website.

If the simplex method is to be applied to either a primal or a dual problem that has
any variables constrained to be nonpositive (for example, y3
 � 0 in the dual problem of
Table 6.15), this variable may be replaced by its nonnegative counterpart (for example,
y3 � �y3
).
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■ TABLE 6.14 Corresponding primal-dual forms

Primal Problem Dual Problem
Label (or Dual Problem) (or Primal Problem)

Maximize Z (or W) Minimize W (or Z)

Constraint i: Variable yi (or xi):
Sensible � form yi � 0
Odd � form Unconstrained  
Bizarre � form yi
 � 0

Variable xj (or yj): Constraint j:
Sensible xj � 0 � form
Odd Unconstrained � form
Bizarre xj
 � 0 � form

←→
←→
←→

←→
←→
←→

■ TABLE 6.15 One primal-dual form for the radiation therapy example

Maximize �Z � �0.4x1 � 0.5x2,

subject to

(S) 0.3x1 � 0.1x2 � 2.7
(O) 0.5x1 � 0.5x2 � 6
(B) 0.6x1 � 0.4x2 � 6

and

(S) x1 � 0
(S) x2 � 0

Minimize W � 2.7y1 � 6y2 � 6y3
,

subject to

y1 � 0 (S)
y2 unconstrained in sign (O)
y3
 � 0 (B)

and

0.3y1 � 0.5y2 � 0.6y3
 � �0.4 (S)
0.1y1 � 0.5y2 � 0.4y3
 � �0.5 (S)

Primal Problem Dual Problem

←→
←→
←→

←→
←→
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When artificial variables are used to help the simplex method solve a primal prob-
lem, the duality interpretation of row 0 of the simplex tableau is the following: Since ar-
tificial variables play the role of slack variables, their coefficients in row 0 now provide
the values of the corresponding dual variables in the complementary basic solution for the
dual problem. Since artificial variables are used to replace the real problem with a more
convenient artificial problem, this dual problem actually is the dual of the artificial prob-
lem. However, after all the artificial variables become nonbasic, we are back to the real
primal and dual problems. With the two-phase method, the artificial variables would need
to be retained in phase 2 in order to read off the complete dual solution from row 0. With
the Big M method, since M has been added initially to the coefficient of each artificial
variable in row 0, the current value of each corresponding dual variable is the current co-
efficient of this artificial variable minus M.

For example, look at row 0 in the final simplex tableau for the radiation therapy
example, given at the bottom of Table 4.12. After M is subtracted from the coefficients
of the artificial variables x�4 and x�6, the optimal solution for the corresponding dual prob-
lem given in Table 6.15 is read from the coefficients of x3, x�4, and x�6 as (y1, y2, y3
)
� (0.5, �1.1, 0). As usual, the surplus variables for the two functional constraints are
read from the coefficients of x1 and x2 as z1 � c1 � 0 and z2 � c2 � 0.

■ TABLE 6.16 The other primal-dual form for the radiation therapy example

Minimize Z � 0.4x1 � 0.5x2,

subject to

(B) 0.3x1 � 0.1x2 � 2.7
(O) 0.5x1 � 0.5x2 � 6
(S) 0.6x1 � 0.4x2 � 6

and

(S) x1 � 0
(S) x2 � 0

Maximize W � 2.7y1
 � 6y2
 � 6y3,

subject to

y1
 � 0 (B)
y2
 unconstrained in sign (O)
y3 � 0 (S)

and

0.3y1
 � 0.5y2
 � 0.6y3 � 0.4 (S)
0.1y1
 � 0.5y2
 � 0.4y3 � 0.6 (S)

Primal Problem Dual Problem

←→
←→
←→

←→
←→

■ 6.5 THE ROLE OF DUALITY THEORY IN SENSITIVITY ANALYSIS

As described further in the next three sections, sensitivity analysis basically involves in-
vestigating the effect on the optimal solution of making changes in the values of the
model parameters aij, bi, and cj. However, changing parameter values in the primal prob-
lem also changes the corresponding values in the dual problem. Therefore, you have your
choice of which problem to use to investigate each change. Because of the primal-dual
relationships presented in Secs. 6.1 and 6.3 (especially the complementary basic solu-
tions property), it is easy to move back and forth between the two problems as desired.
In some cases, it is more convenient to analyze the dual problem directly in order to de-
termine the complementary effect on the primal problem. We begin by considering two
such cases.

Changes in the Coefficients of a Nonbasic Variable

Suppose that the changes made in the original model occur in the coefficients of a vari-
able that was nonbasic in the original optimal solution. What is the effect of these changes
on this solution? Is it still feasible? Is it still optimal?
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Because the variable involved is nonbasic (value of zero), changing its coefficients
cannot affect the feasibility of the solution. Therefore, the open question in this case is
whether it is still optimal. As Tables 6.10 and 6.11 indicate, an equivalent question is whether
the complementary basic solution for the dual problem is still feasible after these changes
are made. Since these changes affect the dual problem by changing only one constraint,
this question can be answered simply by checking whether this complementary basic so-
lution still satisfies this revised constraint.

We shall illustrate this case in the corresponding subsection of Sec. 6.7 after devel-
oping a relevant example. The Worked Examples section of the book’s website also gives
another example for both this case and the next one.

Introduction of a New Variable

As indicated in Table 6.6, the decision variables in the model typically represent the lev-
els of the various activities under consideration. In some situations, these activities were
selected from a larger group of possible activities, where the remaining activities were not
included in the original model because they seemed less attractive. Or perhaps these other
activities did not come to light until after the original model was formulated and solved.
Either way, the key question is whether any of these previously unconsidered activities
are sufficiently worthwhile to warrant initiation. In other words, would adding any of these
activities to the model change the original optimal solution?

Adding another activity amounts to introducing a new variable, with the appropriate
coefficients in the functional constraints and objective function, into the model. The only
resulting change in the dual problem is to add a new constraint (see Table 6.3).

After these changes are made, would the original optimal solution, along with the
new variable equal to zero (nonbasic), still be optimal for the primal problem? As for the
preceding case, an equivalent question is whether the complementary basic solution for
the dual problem is still feasible. And, as before, this question can be answered simply
by checking whether this complementary basic solution satisfies one constraint, which in
this case is the new constraint for the dual problem.

To illustrate, suppose for the Wyndor Glass Co. problem of Sec. 3.1 that a possible
third new product now is being considered for inclusion in the product line. Letting xnew

represent the production rate for this product, we show the resulting revised model as 
follows:

Maximize Z � 3x1 � 5x2 � 4xnew,

subject to

x1 � 2x2 � 2xnew � 4
3x1 � 2x2 � 3xnew � 12
3x1 � 2x2 � xnew � 18

and

x1 � 0, x2 � 0, xnew � 0.

After we introduced slack variables, the original optimal solution for this problem with-
out xnew (given by Table 4.8) was (x1, x2, x3, x4, x5) � (2, 6, 2, 0, 0). Is this solution, along
with xnew � 0, still optimal?

To answer this question, we need to check the complementary basic solution for the dual
problem. As indicated by the complementary optimal basic solutions property in Sec. 6.3,
this solution is given in row 0 of the final simplex tableau for the primal problem, using
the locations shown in Table 6.4 and illustrated in Table 6.5. Therefore, as given in both
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■ 6.6 THE ESSENCE OF SENSITIVITY ANALYSIS

The work of the operations research team usually is not even nearly done when the sim-
plex method has been successfully applied to identify an optimal solution for the model.
As we pointed out at the end of Sec. 3.3, one assumption of linear programming is that

the bottom row of Table 6.5 and the sixth row of Table 6.9, the solution is

(y1, y2, y3, z1 � c1, z2 � c2) � �0, �
3
2

�, 1, 0, 0�.

(Alternatively, this complementary basic solution can be derived in the way that was illus-
trated in Sec. 6.3 for the complementary basic solution in the next-to-last row of Table 6.9.)

Since this solution was optimal for the original dual problem, it certainly satisfies the
original dual constraints shown in Table 6.1. But does it satisfy this new dual constraint?

2y1 � 3y2 � y3 � 4

Plugging in this solution, we see that

2(0) � 3��
3
2

�� � (1) � 4

is satisfied, so this dual solution is still feasible (and thus still optimal). Consequently, the
original primal solution (2, 6, 2, 0, 0), along with xnew � 0, is still optimal, so this third
possible new product should not be added to the product line.

This approach also makes it very easy to conduct sensitivity analysis on the coefficients
of the new variable added to the primal problem. By simply checking the new dual constraint,
you can immediately see how far any of these parameter values can be changed before they
affect the feasibility of the dual solution and so the optimality of the primal solution.

Other Applications

Already we have discussed two other key applications of duality theory to sensitivity analy-
sis, namely, shadow prices and the dual simplex method. As described in Secs. 4.7 and 6.2,
the optimal dual solution (y1*, y2*, . . . , ym*) provides the shadow prices for the respective
resources that indicate how Z would change if (small) changes were made in the bi (the re-
source amounts). The resulting analysis will be illustrated in some detail in Sec. 6.7.

In more general terms, the economic interpretation of the dual problem and of the sim-
plex method presented in Sec. 6.2 provides some useful insights for sensitivity analysis.

When we investigate the effect of changing the bi or the aij values (for basic vari-
ables), the original optimal solution may become a superoptimal basic solution (as de-
fined in Table 6.10) instead. If we then want to reoptimize to identify the new optimal
solution, the dual simplex method (discussed at the end of Secs. 6.1 and 6.3) should be
applied, starting from this basic solution. (This important variant of the simplex method
will be described in Sec. 7.1.)

We mentioned in Sec. 6.1 that sometimes it is more efficient to solve the dual prob-
lem directly by the simplex method in order to identify an optimal solution for the pri-
mal problem. When the solution has been found in this way, sensitivity analysis for the
primal problem then is conducted by applying the procedure described in the next two
sections directly to the dual problem and then inferring the complementary effects on the
primal problem (e.g., see Table 6.11). This approach to sensitivity analysis is relatively
straightforward because of the close primal-dual relationships described in Secs. 6.1 and
6.3. (See Prob. 6.6-3.)
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all the parameters of the model (aij, bi, and cj) are known constants. Actually, the param-
eter values used in the model normally are just estimates based on a prediction of future
conditions. The data obtained to develop these estimates often are rather crude or non-
existent, so that the parameters in the original formulation may represent little more than
quick rules of thumb provided by busy line personnel. The data may even represent de-
liberate overestimates or underestimates to protect the interests of the estimators.

Thus, the successful manager and operations research staff will maintain a healthy
skepticism about the original numbers coming out of the computer and will view them in
many cases as only a starting point for further analysis of the problem. An “optimal” so-
lution is optimal only with respect to the specific model being used to represent the real
problem, and such a solution becomes a reliable guide for action only after it has been
verified as performing well for other reasonable representations of the problem. Fur-
thermore, the model parameters (particularly bi) sometimes are set as a result of man-
agerial policy decisions (e.g., the amount of certain resources to be made available to the
activities), and these decisions should be reviewed after their potential consequences are
recognized.

For these reasons it is important to perform sensitivity analysis to investigate the ef-
fect on the optimal solution provided by the simplex method if the parameters take on
other possible values. Usually there will be some parameters that can be assigned any rea-
sonable value without the optimality of this solution being affected. However, there may
also be parameters with likely alternative values that would yield a new optimal solution.
This situation is particularly serious if the original solution would then have a substan-
tially inferior value of the objective function, or perhaps even be infeasible!

Therefore, one main purpose of sensitivity analysis is to identify the sensitive param-
eters (i.e., the parameters whose values cannot be changed without changing the optimal
solution). For coefficients in the objective function that are not categorized as sensitive,
it is also very helpful to determine the range of values of the coefficient over which the
optimal solution will remain unchanged. (We call this range of values the allowable range
for that coefficient.) In some cases, changing the right-hand side of a functional constraint
can affect the feasibility of the optimal BF solution. For such parameters, it is useful to
determine the range of values over which the optimal BF solution (with adjusted values
for the basic variables) will remain feasible. (We call this range of values the allowable
range for the right-hand side involved.) This range of values also is the range over which
the current shadow price for the corresponding constraint remains valid. In the next sec-
tion, we will describe the specific procedures for obtaining this kind of information.

Such information is invaluable in two ways. First, it identifies the more important
parameters, so that special care can be taken to estimate them closely and to select a
solution that performs well for most of their likely values. Second, it identifies the para-
meters that will need to be monitored particularly closely as the study is implemented. If
it is discovered that the true value of a parameter lies outside its allowable range, this
immediately signals a need to change the solution.

For small problems, it would be straightforward to check the effect of a variety of
changes in parameter values simply by reapplying the simplex method each time to see if
the optimal solution changes. This is particularly convenient when using a spreadsheet for-
mulation. Once the Solver has been set up to obtain an optimal solution, all you have to
do is make any desired change on the spreadsheet and then click on the Solve button again.

However, for larger problems of the size typically encountered in practice, sensi-
tivity analysis would require an exorbitant computational effort if it were necessary to
reapply the simplex method from the beginning to investigate each new change in a pa-
rameter value. Fortunately, the fundamental insight discussed in Sec. 5.3 virtually elim-
inates computational effort. The basic idea is that the fundamental insight immediately
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reveals just how any changes in the original model would change the numbers in the fi-
nal simplex tableau (assuming that the same sequence of algebraic operations originally
performed by the simplex method were to be duplicated ). Therefore, after making a few
simple calculations to revise this tableau, we can check easily whether the original op-
timal BF solution is now nonoptimal (or infeasible). If so, this solution would be used
as the initial basic solution to restart the simplex method (or dual simplex method) to
find the new optimal solution, if desired. If the changes in the model are not major, only
a very few iterations should be required to reach the new optimal solution from this
“advanced” initial basic solution.

To describe this procedure more specifically, consider the following situation. The
simplex method already has been used to obtain an optimal solution for a linear pro-
gramming model with specified values for the bi, cj, and aij parameters. To initiate sen-
sitivity analysis, at least one of the parameters is changed. After the changes are made,
let b�i, c�j, and a�ij denote the values of the various parameters. Thus, in matrix notation,

b � b�, c � c�, A � A�,

for the revised model.
The first step is to revise the final simplex tableau to reflect these changes. In par-

ticular, we want to find the revised final tableau that would result if exactly the same al-
gebraic operations (including the same multiples of rows being added to or subtracted
from other rows) that led from the initial tableau to the final tableau were repeated when
starting from the new initial tableau. (This isn’t necessarily the same as reapplying the
simplex method since the changes in the initial tableau might cause the simplex method
to change some of the algebraic operations being used.) Continuing to use the notation
presented in Table 5.9, as well as the accompanying formulas for the fundamental insight
[(1) t* � t � y*T and (2) T* � S*T], the revised final tableau is calculated from y* and
S* (which have not changed) and the new initial tableau, as shown in Table 6.17. Note
that y* and S* together are the coefficients of the slack variables in the final simplex
tableau, where the vector y* (the dual variables) equals these coefficients in row 0 and
the matrix S* gives these coefficients in the other rows of the tableau. Thus, simply by
using y*, S*, and the revised numbers in the initial tableau, Table 6.17 reveals how the
revised numbers in the rest of the final tableau are calculated immediately without hav-
ing to repeat any algebraic operations.

Example (Variation 1 of the Wyndor Model). To illustrate, suppose that the first
revision in the model for the Wyndor Glass Co. problem of Sec. 3.1 is the one shown in
Table 6.18.
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■ TABLE 6.17 Revised final simplex tableau resulting from changes in original model

Coefficient of:

Eq. Z Original Variables Slack Variables Right Side

(0) 1 �c� 0 0
New initial tableau

(1, 2, . . . , m) 0 A� I b�

(0) 1 z* � c� � y*A� � c� y* Z* � y*b�
Revised final tableau

(1, 2, . . . , m) 0 A* � S*A� S* b* � S*b�
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Thus, the changes from the original model are c1 � 3 � 4, a31 � 3 � 2, and
b2 � 12 � 24. Figure 6.2 shows the graphical effect of these changes. For the original
model, the simplex method already has identified the optimal CPF solution as (2, 6), ly-
ing at the intersection of the two constraint boundaries, shown as dashed lines 2x2 � 12
and 3x1 � 2x2 � 18. Now the revision of the model has shifted both of these constraint bound-
aries as shown by the dark lines 2x2 � 24 and 2x1 � 2x2 � 18. Consequently, the previous
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■ TABLE 6.18 The original model and the first revised model (variation 1) for
conducting sensitivity analysis on the Wyndor Glass Co. model

Maximize Z � [3, 5] � �,
subject to

� � �

and

x � 0.





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Maximize Z � [4, 5] � �,
subject to
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and

x � 0.
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3x1 � 2x2 � 18

2x1 � 2x2 � 18
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x2 � 0

(2, 6)

(0, 9) optimal 

■ FIGURE 6.2
Shift of the final corner-point
solution from (2, 6) to 
(�3, 12) for Variation 1 of
the Wyndor Glass Co. model
where c1 � 3 � 4, 
a31 � 3 � 2, and 
b2 � 12 � 24.

hil76299_ch06_195-275.qxd  11/19/08  09:50 AM  Page 220



Rev.Confirming Pages

CPF solution (2, 6) now shifts to the new intersection (�3, 12), which is a corner-point
infeasible solution for the revised model. The procedure described in the preceding para-
graphs finds this shift algebraically (in augmented form). Furthermore, it does so in a man-
ner that is very efficient even for huge problems where graphical analysis is impossible.

To carry out this procedure, we begin by displaying the parameters of the revised
model in matrix form:

c� � [4, 5], A� � , b� � .

The resulting new initial simplex tableau is shown at the top of Table 6.19. Below this
tableau is the original final tableau (as first given in Table 4.8). We have drawn dark boxes
around the portions of this final tableau that the changes in the model definitely do not
change, namely, the coefficients of the slack variables in both row 0 (y*) and the rest of
the rows (S*). Thus,

y* � [0, �
3
2

�, 1], S* � .

These coefficients of the slack variables necessarily are unchanged with the same alge-
braic operations originally performed by the simplex method because the coefficients of
these same variables in the initial tableau are unchanged.
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■ TABLE 6.19 Obtaining the revised final simplex tableau for Variation 1 of the
Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �4 �5 0 0 0 0

New initial tableau
x3 (1) 0 1 0 1 0 0 4
x4 (2) 0 0 2 0 1 0 24
x5 (3) 0 2 2 0 0 1 18

Z (0) 1 0 0 0 �
3
2

� 1 36

Final tableau for
x3 (1) 0 0 0 1 �

1
3

� ��
1
3

� 2

original model
x2 (2) 0 0 1 0 �

1
2

� 0 6

x1 (3) 0 1 0 0 ��
1
3

� �
1
3

� 2

Z (0) 1 �2 0 0 �
3
2

� 1 54

x3 (1) 0 �
1
3

� 0 1 �
1
3

� ��
1
3

� 6
Revised final tableau

x2 (2) 0 0 1 0 �
1
2

� 0 12

x1 (3) 0 �
2
3

� 0 0 ��
1
3

� �
1
3

� �2
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However, because other portions of the initial tableau have changed, there will be
changes in the rest of the final tableau as well. Using the formulas in Table 6.17, we cal-
culate the revised numbers in the rest of the final tableau as follows:

z* � c� � [0, �
3
2

�, 1] � [4, 5] � [�2, 0], Z* � [0, �
3
2

�, 1] � 54,

A* � � ,

b* � � .

The resulting revised final tableau is shown at the bottom of Table 6.19.
Actually, we can substantially streamline these calculations for obtaining the revised

final tableau. Because none of the coefficients of x2 changed in the original model (tableau),
none of them can change in the final tableau, so we can delete their calculation. Several
other original parameters (a11, a21, b1, b3) also were not changed, so another shortcut is
to calculate only the incremental changes in the final tableau in terms of the incremental
changes in the initial tableau, ignoring those terms in the vector or matrix multiplication
that involve zero change in the initial tableau. In particular, the only incremental changes
in the initial tableau are �c1 � 1, �a31 � �1, and �b2 � 12, so these are the only terms
that need be considered. This streamlined approach is shown below, where a zero or dash
appears in each spot where no calculation is needed.

�(z* � c) � y* �A � �c � [0, �
3
2

�, 1] � [1, —] � [�2, —].

�Z* � y* �b � [0, �
3
2

�, 1] � 18.

�A* � S* �A � � .

�b* � S* �b � � .

Adding these increments to the original quantities in the final tableau (middle of Table 6.19)
then yields the revised final tableau (bottom of Table 6.19).

This incremental analysis also provides a useful general insight, namely, that changes
in the final tableau must be proportional to each change in the initial tableau. We illustrate
in the next section how this property enables us to use linear interpolation or extrapolation
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to determine the range of values for a given parameter over which the final basic solution
remains both feasible and optimal.

After obtaining the revised final simplex tableau, we next convert the tableau to proper
form from Gaussian elimination (as needed). In particular, the basic variable for row i
must have a coefficient of 1 in that row and a coefficient of 0 in every other row (in-
cluding row 0) for the tableau to be in the proper form for identifying and evaluating the
current basic solution. Therefore, if the changes have violated this requirement (which can
occur only if the original constraint coefficients of a basic variable have been changed),
further changes must be made to restore this form. This restoration is done by using Gauss-
ian elimination, i.e., by successively applying step 3 of an iteration for the simplex method
(see Chap. 4) as if each violating basic variable were an entering basic variable. Note that
these algebraic operations may also cause further changes in the right side column, so
that the current basic solution can be read from this column only when the proper form
from Gaussian elimination has been fully restored.

For the example, the revised final simplex tableau shown in the top half of Table 6.20
is not in proper form from Gaussian elimination because of the column for the basic vari-
able x1. Specifically, the coefficient of x1 in its row (row 3) is �

2
3

� instead of 1, and it has
nonzero coefficients (�2 and �

1
3

�) in rows 0 and 1. To restore proper form, row 3 is mul-
tiplied by �

3
2

�; then 2 times this new row 3 is added to row 0 and �
1
3

� times new row 3 is sub-
tracted from row 1. This yields the proper form from Gaussian elimination shown in the
bottom half of Table 6.20, which now can be used to identify the new values for the cur-
rent (previously optimal) basic solution:

(x1, x2, x3, x4, x5) � (�3, 12, 7, 0, 0).

Because x1 is negative, this basic solution no longer is feasible. However, it is superopti-
mal (as defined in Table 6.10), and so dual feasible, because all the coefficients in row 0 still
are nonnegative. Therefore, the dual simplex method can be used to reoptimize (if desired),
by starting from this basic solution. (The sensitivity analysis procedure in IOR Tutorial in-
cludes this option.) Referring to Fig. 6.2 (and ignoring slack variables), the dual simplex method
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■ TABLE 6.20 Converting the revised final simplex tableau to proper form from
Gaussian elimination for Variation 1 of the Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �2 0 0 �
3
2

� 1 54

Revised final
x3 (1) 0 �

1
3

� 0 1 �
1
3

� ��
1
3

� 6

tableau
x2 (2) 0 0 1 0 �

1
2

� 0 12

x1 (3) 0 �
2
3

� 0 0 ��
1
3

� �
1
3

� �2

Z (0) 1 0 0 0 �
1
2

� 2 48

Converted to proper
x3 (1) 0 0 0 1 �

1
2

� ��
1
2

� 7

form
x2 (2) 0 0 1 0 �

1
2

� 0 12

x1 (3) 0 1 0 0 ��
1
2

� �
1
2

� �3
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uses just one iteration to move from the corner-point solution (�3, 12) to the optimal CPF so-
lution (0, 9). (It is often useful in sensitivity analysis to identify the solutions that are optimal
for some set of likely values of the model parameters and then to determine which of these
solutions most consistently performs well for the various likely parameter values.)

If the basic solution (�3, 12, 7, 0, 0) had been neither primal feasible nor dual fea-
sible (i.e., if the tableau had negative entries in both the right side column and row 0), ar-
tificial variables could have been introduced to convert the tableau to the proper form for
an initial simplex tableau.4

The General Procedure. When one is testing to see how sensitive the original optimal
solution is to the various parameters of the model, the common approach is to check each
parameter (or at least cj and bi) individually. In addition to finding allowable ranges as de-
scribed in the next section, this check might include changing the value of the parameter
from its initial estimate to other possibilities in the range of likely values (including the end-
points of this range). Then some combinations of simultaneous changes of parameter val-
ues (such as changing an entire functional constraint) may be investigated. Each time one
(or more) of the parameters is changed, the procedure described and illustrated here would
be applied. Let us now summarize this procedure.

Summary of Procedure for Sensitivity Analysis

1. Revision of model: Make the desired change or changes in the model to be investigated next.
2. Revision of final tableau: Use the fundamental insight (as summarized by the formu-

las on the bottom of Table 6.17) to determine the resulting changes in the final sim-
plex tableau. (See Table 6.19 for an illustration.)

3. Conversion to proper form from Gaussian elimination: Convert this tableau to the
proper form for identifying and evaluating the current basic solution by applying (as
necessary) Gaussian elimination. (See Table 6.20 for an illustration.)

4. Feasibility test: Test this solution for feasibility by checking whether all its basic vari-
able values in the right-side column of the tableau still are nonnegative.

5. Optimality test: Test this solution for optimality (if feasible) by checking whether all
its nonbasic variable coefficients in row 0 of the tableau still are nonnegative.

6. Reoptimization: If this solution fails either test, the new optimal solution can be ob-
tained (if desired) by using the current tableau as the initial simplex tableau (and mak-
ing any necessary conversions) for the simplex method or dual simplex method.

The interactive routine entitled sensitivity analysis in IOR Tutorial will enable you to
efficiently practice applying this procedure. In addition, a demonstration in OR Tutor (also
entitled sensitivity analysis) provides you with another example.

For problems with only two decision variables, graphical analysis provides an alter-
native to the above algebraic procedure for performing sensitivity analysis. IOR Tutorial
includes a procedure called Graphical Method and Sensitivity Analysis for performing
such graphical analysis efficiently.

In the next section, we shall discuss and illustrate the application of the above alge-
braic procedure to each of the major categories of revisions in the original model. We also
will use graphical analysis to illuminate what is being accomplished algebraically. This
discussion will involve, in part, expanding upon the example introduced in this section
for investigating changes in the Wyndor Glass Co. model. In fact, we shall begin by
individually checking each of the preceding changes. At the same time, we shall integrate
some of the applications of duality theory to sensitivity analysis discussed in Sec. 6.5.

4There also exists a primal-dual algorithm that can be directly applied to such a simplex tableau without any
conversion.
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Sensitivity analysis often begins with the investigation of changes in the values of bi, the
amount of resource i (i � 1, 2, . . . , m) being made available for the activities under con-
sideration. The reason is that there generally is more flexibility in setting and adjusting
these values than there is for the other parameters of the model. As already discussed in
Secs. 4.7 and 6.2, the economic interpretation of the dual variables (the yi) as shadow
prices is extremely useful for deciding which changes should be considered.

Case 1—Changes in bi

Suppose that the only changes in the current model are that one or more of the bi param-
eters (i � 1, 2, . . . , m) has been changed. In this case, the only resulting changes in the
final simplex tableau are in the right-side column. Consequently, the tableau still will be
in proper form from Gaussian elimination and all the nonbasic variable coefficients in
row 0 still will be nonnegative. Therefore, both the conversion to proper form from Gaussian
elimination and the optimality test steps of the general procedure can be skipped. After
revising the right-side column of the tableau, the only question will be whether all the
basic variable values in this column still are nonnegative (the feasibility test).

As shown in Table 6.17, when the vector of the bi values is changed from b to b�, the
formulas for calculating the new right-side column in the final tableau are

Right side of final row 0: Z* � y*b�,
Right side of final rows 1, 2, . . . , m: b* � S*b�.

(See the bottom of Table 6.17 for the location of the unchanged vector y* and matrix S*
in the final tableau.) The first equation has a natural economic interpretation that relates
to the economic interpretation of the dual variables presented at the beginning of Sec. 6.2.
The vector y* gives the optimal values of the dual variables, where these values are in-
terpreted as the shadow prices of the respective resources. In particular, when Z* repre-
sents the profit from using the optimal primal solution x* and each bi represents the amount
of resource i being made available, yi* indicates how much the profit could be increased
per unit increase in bi (for small increases in bi).

Example (Variation 2 of the Wyndor Model). Sensitivity analysis is begun for the
original Wyndor Glass Co. problem of Sec. 3.1 by examining the optimal values of the yi

dual variables ( y1* � 0, y2* � �
3
2

�, y3* � 1). These shadow prices give the marginal value of
each resource i (the available production capacity of Plant i) for the activities (two new
products) under consideration, where marginal value is expressed in the units of Z (thou-
sands of dollars of profit per week). As discussed in Sec. 4.7 (see Fig. 4.8), the total profit
from these activities can be increased $1,500 per week ( y2* times $1,000 per week) for
each additional unit of resource 2 (hour of production time per week in Plant 2) that is
made available. This increase in profit holds for relatively small changes that do not affect
the feasibility of the current basic solution (and so do not affect the yi* values).

Consequently, the OR team has investigated the marginal profitability from the other
current uses of this resource to determine if any are less than $1,500 per week. This in-
vestigation reveals that one old product is far less profitable. The production rate for this
product already has been reduced to the minimum amount that would justify its marketing
expenses. However, it can be discontinued altogether, which would provide an additional
12 units of resource 2 for the new products. Thus, the next step is to determine the profit
that could be obtained from the new products if this shift were made. This shift changes
b2 from 12 to 24 in the linear programming model. Figure 6.3 shows the graphical effect
of this change, including the shift in the final corner-point solution from (2, 6) to (�2, 12).
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(Note that this figure differs from Fig. 6.2, which depicts Variation 1 of the Wyndor model,
because the constraint 3x1 � 2x2 � 18 has not been changed here.)

Thus, for Variation 2 of the Wyndor model, the only revision in the original model is
the following change in the vector of the bi values:

b � → b� � .

so only b2 has a new value.

Analysis of Variation 2. When the fundamental insight (Table 6.17) is applied, the
effect of this change in b2 on the original final simplex tableau (middle of Table 6.19) is
that the entries in the right-side column change to the following values:

Z* � y*b� � [0, �
3
2

�, 1] � 54,

b* � S*b� � � , so � .

Equivalently, because the only change in the original model is �b2 � 24 � 12 � 12,
incremental analysis can be used to calculate these same values more quickly. Incremental
analysis involves calculating just the increments in the tableau values caused by the change
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■ FIGURE 6.3
Feasible region for Variation
2 of the Wyndor Glass Co.
model where b2 � 12 → 24.
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(or changes) in the original model, and then adding these increments to the original values.
In this case, the increments in Z* and b* are

�Z* � y*�b � y* � y* ,

�b* � S* �b � S* � S* .

Therefore, using the second component of y* and the second column of S*, the only cal-
culations needed are

�Z* � �
3
2

�(12) � 18, so Z* � 36 � 18 � 54,

�b1* � �
1
3

�(12) � 4, so b1* � 2 � 4 � 6,

�b2* � �
1
2

�(12) � 6, so b2* � 6 � 6 � 12,

�b3* � ��
1
3

�(12) � �4, so b3* � 2 � 4 � �2,

where the original values of these quantities are obtained from the right-side column in
the original final tableau (middle of Table 6.19). The resulting revised final tableau cor-
responds completely to this original final tableau except for replacing the right-side col-
umn with these new values.

Therefore, the current (previously optimal) basic solution has become

(x1, x2, x3, x4, x5) � (�2, 12, 6, 0, 0),

which fails the feasibility test because of the negative value. The dual simplex method
now can be applied, starting with this revised simplex tableau, to find the new optimal so-
lution. This method leads in just one iteration to the new final simplex tableau shown in
Table 6.21. (Alternatively, the simplex method could be applied from the beginning, which
also would lead to this final tableau in just one iteration in this case.) This tableau indi-
cates that the new optimal solution is

(x1, x2, x3, x4, x5) � (0, 9, 4, 6, 0),

with Z � 45, thereby providing an increase in profit from the new products of 9 units
($9,000 per week) over the previous Z � 36. The fact that x4 � 6 indicates that 6 of the
12 additional units of resource 2 are unused by this solution.
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■ TABLE 6.21 Data for Variation 2 of the Wyndor Glass Co. model

Final Simplex Tableau after Reoptimization

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 45

x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 9

x4 (3) 0 �3 0 0 1 �1 6

c1 � 3, c2 � 5 (n � 2)
a11 � 1, a12 � 0, b1 � 4
a21 � 0, a22 � 2, b2 � 24
a31 � 3, a32 � 2, b3 � 18

Model Parameters
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Based on the results with b2 � 24, the relatively unprofitable old product will be dis-
continued and the unused 6 units of resource 2 will be saved for some future use. Since
y3* still is positive, a similar study is made of the possibility of changing the allocation of
resource 3, but the resulting decision is to retain the current allocation. Therefore, the cur-
rent linear programming model at this point (Variation 2) has the parameter values and
optimal solution shown in Table 6.21. This model will be used as the starting point for
investigating other types of changes in the model later in this section. However, before
turning to these other cases, let us take a broader look at the current case.

The Allowable Range for a Right-Hand Side. Although �b2 � 12 proved to be too
large an increase in b2 to retain feasibility (and so optimality) with the basic solution where
x1, x2, and x3 are the basic variables (middle of Table 6.19), the above incremental analy-
sis shows immediately just how large an increase is feasible. In particular, note that

b1* � 2 � �
1
3

� �b2,

b2* � 6 � �
1
2

� �b2,

b3* � 2 � �
1
3

� �b2,

where these three quantities are the values of x3, x2, and x1, respectively, for this basic so-
lution. The solution remains feasible, and so optimal, as long as all three quantities remain
nonnegative.

2 � �
1
3

� �b2 � 0 ⇒ �
1
3

� �b2 � �2 ⇒ �b2 � �6,

6 � �
1
2

� �b2 � 0 ⇒ �
1
2

� �b2 � �6 ⇒ �b2 � �12,

2 � �
1
3

� �b2 � 0 ⇒ 2 � �
1
3

� �b2 ⇒ �b2 � 6.

The Pacific Lumber Company (PALCO) is a large tim-
ber-holding company with headquarters in Scotia, Cali-
fornia. The company has over 200,000 acres of highly
productive forest lands that support five mills located in
Humboldt County in northern California. The lands
include some of the most spectacular redwood groves in
the world that have been given or sold at low cost to be
preserved as parks. PALCO manages the remaining lands
intensively for sustained timber production, subject to
strong forest practice laws. Since PALCO’s forests are
home to many species of wildlife, including endangered
species such as spotted owls and marbled murrelets, the
provisions of the federal Endangered Species Act also
need to be carefully observed.

To obtain a sustained yield plan for the entire land-
holding, PALCO management contracted with a team of
OR consultants to develop a 120-year, 12-period, long-
term forest ecosystem management plan. The OR team
performed this task by formulating and applying a linear
programming model to optimize the company’s overall

timberland operations and profitability after satisfying
the various constraints. The model was a huge one with
approximately 8,500 functional constraints and 353,000
decision variables.

A major challenge in applying the linear program-
ming model was the many uncertainties in estimating
what the parameters of the model should be. The major
factors causing these uncertainties were the continuing
fluctuations in market supply and demand, logging costs,
and environmental regulations. Therefore, the OR team
made extensive use of detailed sensitivity analysis. The
resulting sustained yield plan increased the company’s
present net worth by over $398 million while also gener-
ating a better mix of wildlife habitat acres.

Source: L. R. Fletcher, H. Alden, S. P. Holmen, D. P. Angelis,
and M. J. Etzenhouser: “Long-Term Forest Ecosystem Planning
at Pacific Lumber,” Interfaces, 29(1): 90–112, Jan–Feb. 1999.
(A link to this article is provided on our website, www.mhhe.com/
hillier.)

An Application Vignette
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Therefore, since b2 � 12 � �b2, the solution remains feasible only if

�6 � �b2 � 6, that is, 6 � b2 � 18.

(Verify this graphically in Fig. 6.3.) As introduced in Sec. 4.7, this range of values for b2

is referred to as its allowable range.

For any bi, recall from Sec. 4.7 that its allowable range is the range of values
over which the current optimal BF solution5 (with adjusted values for the basic
variables) remains feasible. Thus, the shadow price for bi remains valid for eval-
uating the effect on Z of changing bi only as long as bi remains within this al-
lowable range. (It is assumed that the change in this one bi value is the only
change in the model.) The adjusted values for the basic variables are obtained
from the formula b* � S*b�. The calculation of the allowable range then is based
on finding the range of values of bi such that b* � 0.

Many linear programming software packages use this same technique for automati-
cally generating the allowable range for each bi. (A similar technique, discussed under
Cases 2a and 3, also is used to generate an allowable range for each cj.) In Chap. 4, we
showed the corresponding output for the Excel Solver and LINDO in Figs. 4.10 and A4.2,
respectively. Table 6.22 summarizes this same output with respect to the bi for the origi-
nal Wyndor Glass Co. model. For example, both the allowable increase and allowable de-
crease for b2 are 6, that is, �6 � �b2 � 6. The analysis in the preceding paragraph shows
how these quantities were calculated.

Analyzing Simultaneous Changes in Right-Hand Sides. When multiple bi val-
ues are changed simultaneously, the formula b* � S*b� can again be used to see how the
right-hand sides change in the final tableau. If all these right-hand sides still are nonneg-
ative, the feasibility test will indicate that the revised solution provided by this tableau
still is feasible. Since row 0 has not changed, being feasible implies that this solution also
is optimal.

Although this approach works fine for checking the effect of a specific set of changes
in the bi, it does not give much insight into how far the bi can be simultaneously changed
from their original values before the revised solution will no longer be feasible. As part of
postoptimality analysis, the management of an organization often is interested in investi-
gating the effect of various changes in policy decisions (e.g., the amounts of resources be-
ing made available to the activities under consideration) that determine the right-hand sides.
Rather than considering just one specific set of changes, management may want to explore
directions of changes where some right-hand sides increase while others decrease. Shadow

■ TABLE 6.22 Typical software output for sensitivity analysis of the right-hand
sides for the original Wyndor Glass Co. model

Constraint Shadow Price Current RHS Allowable Increase Allowable Decrease

Plant 1 0.0 4 � 2
Plant 2 1.5 12 6 6
Plant 3 1.0 18 6 6

5When there is more than one optimal BF solution for the current model (before changing bi), we are referring
here to the one obtained by the simplex method.
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prices are invaluable for this kind of exploration. However, shadow prices remain valid for
evaluating the effect of such changes on Z only within certain ranges of changes. For each
bi, the allowable range gives this range if none of the other bi are changing at the same time.
What do these allowable ranges become when some of the bi are changing simultaneously?

A partial answer to this question is provided by the following 100 percent rule, which
combines the allowable changes (increase or decrease) for the individual bi that are given
by the last two columns of a table like Table 6.22.

The 100 Percent Rule for Simultaneous Changes in Right-Hand Sides: The
shadow prices remain valid for predicting the effect of simultaneously changing
the right-hand sides of some of the functional constraints as long as the changes
are not too large. To check whether the changes are small enough, calculate for
each change the percentage of the allowable change (increase or decrease) for that
right-hand side to remain within its allowable range. If the sum of the percentage
changes does not exceed 100 percent, the shadow prices definitely will still be
valid. (If the sum does exceed 100 percent, then we cannot be sure.)

Example (Variation 3 of the Wyndor Model). To illustrate this rule, consider Vari-
ation 3 of the Wyndor Glass Co. model, which revises the original model by changing the
right-hand side vector as follows:

b � � b� � .

The calculations for the 100 percent rule in this case are

b2: 12 � 15. Percentage of allowable increase � 100 ��15 �
6

12
�� � 50%

b3: 18 � 15. Percentage of allowable decrease � 100 ��18 �
6

15
�� � 50%

Sum � 100%

Since the sum of 100 percent barely does not exceed 100 percent, the shadow prices def-
initely are valid for predicting the effect of these changes on Z. In particular, since the
shadow prices of b2 and b3 are 1.5 and 1, respectively, the resulting change in Z would be

�Z � 1.5(3) � 1(�3) � 1.5,

so Z* would increase from 36 to 37.5.
Figure 6.4 shows the feasible region for this revised model. (The dashed lines show

the original locations of the revised constraint boundary lines.) The optimal solution now
is the CPF solution (0, 7.5), which gives

Z � 3x1 � 5x2 � 0 � 5(7.5) � 37.5,

just as predicted by the shadow prices. However, note what would happen if either b2

were further increased above 15 or b3 were further decreased below 15, so that the sum
of the percentages of allowable changes would exceed 100 percent. This would cause the
previously optimal corner-point solution to slide to the left of the x2 axis (x1 � 0), so
this infeasible solution would no longer be optimal. Consequently, the old shadow prices
would no longer be valid for predicting the new value of Z*.
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Case 2a—Changes in the Coefficients of a Nonbasic Variable

Consider a particular variable xj (fixed j) that is a nonbasic variable in the optimal solu-
tion shown by the final simplex tableau. In Case 2a, the only change in the current model
is that one or more of the coefficients of this variable—cj, a1j , a2j , . . . , amj —have been
changed. Thus, letting c�j and a�ij denote the new values of these parameters, with A�j (col-
umn j of matrix A�) as the vector containing the a�ij, we have

cj → c�j, Aj → A�j

for the revised model.
As described at the beginning of Sec. 6.5, duality theory provides a very convenient

way of checking these changes. In particular, if the complementary basic solution y* in
the dual problem still satisfies the single dual constraint that has changed, then the orig-
inal optimal solution in the primal problem remains optimal as is. Conversely, if y* vio-
lates this dual constraint, then this primal solution is no longer optimal.

If the optimal solution has changed and you wish to find the new one, you can do so
rather easily. Simply apply the fundamental insight to revise the xj column (the only one
that has changed) in the final simplex tableau. Specifically, the formulas in Table 6.17 re-
duce to the following:

Coefficient of xj in final row 0: zj* � c�j � y*A�j � c�j,

Coefficient of xj in final rows 1 to m: Aj* � S*A�j.

With the current basic solution no longer optimal, the new value of zj* � cj now will be
the one negative coefficient in row 0, so restart the simplex method with xj as the initial
entering basic variable.
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■ FIGURE 6.4
Feasible region for Variation
3 of the Wyndor Glass Co.
model where b2 � 12 � 15
and b3 � 18 � 15.
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Note that this procedure is a streamlined version of the general procedure summa-
rized at the end of Sec. 6.6. Steps 3 and 4 (conversion to proper form from Gaussian elim-
ination and the feasibility test) have been deleted as irrelevant, because the only column
being changed in the revision of the final tableau (before reoptimization) is for the non-
basic variable xj. Step 5 (optimality test) has been replaced by a quicker test of optimal-
ity to be performed right after step 1 (revision of model). It is only if this test reveals that
the optimal solution has changed, and you wish to find the new one, that steps 2 and 6
(revision of final tableau and reoptimization) are needed.

Example (Variation 4 of the Wyndor Model). Since x1 is nonbasic in the current
optimal solution (see Table 6.21) for Variation 2 of the Wyndor Glass Co. model, the next
step in its sensitivity analysis is to check whether any reasonable changes in the estimates
of the coefficients of x1 could still make it advisable to introduce product 1. The set of
changes that goes as far as realistically possible to make product 1 more attractive would
be to reset c1 � 4 and a31 � 2. Rather than exploring each of these changes independently
(as is often done in sensitivity analysis), we will consider them together. Thus, the changes
under consideration are

c1 � 3 → c�1 � 4, A1 � → A�1 � .

These two changes in Variation 2 give us Variation 4 of the Wyndor model. Variation 4
actually is equivalent to Variation 1 considered in Sec. 6.6 and depicted in Fig. 6.2, since
Variation 1 combined these two changes with the change in the original Wyndor model
(b2 � 12 � 24) that gave Variation 2. However, the key difference from the treatment of
Variation 1 in Sec. 6.6 is that the analysis of Variation 4 treats Variation 2 as being the
original model, so our starting point is the final simplex tableau given in Table 6.21 where
x1 now is a nonbasic variable.

The change in a31 revises the feasible region from that shown in Fig. 6.3 to the 
corresponding region in Fig. 6.5. The change in c1 revises the objective function from 
Z � 3x1 � 5x2 to Z � 4x1 � 5x2. Figure 6.5 shows that the optimal objective function
line Z � 45 � 4x1 � 5x2 still passes through the current optimal solution (0, 9), so this
solution remains optimal after these changes in a31 and c1.

To use duality theory to draw this same conclusion, observe that the changes in c1

and a31 lead to a single revised constraint for the dual problem, namely, the constraint
that a11y1 � a21y2 � a31y3 � c1. Both this revised constraint and the current y* (coeffi-
cients of the slack variables in row 0 of Table 6.21) are shown below.

y1* � 0, y2* � 0, y3* � �
5
2

�,

y1 � 3y3 � 3 → y1 � 2y3 � 4,

0 � 2��
5
2

�� � 4.

Since y* still satisfies the revised constraint, the current primal solution (Table 6.21) is
still optimal.

Because this solution is still optimal, there is no need to revise the xj column in the
final tableau (step 2). Nevertheless, we do so below for illustrative purposes.

z1* � c�1 � y*A�1 � c1 � [0, 0, �
5
2

�] � 4 � 1.
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A1* � S*A�1 � � .

The fact that z1* � c�1 � 0 again confirms the optimality of the current solution. Since 
z1* � c1 is the surplus variable for the revised constraint in the dual problem, this way of
testing for optimality is equivalent to the one used above.

This completes the analysis of the effect of changing the current model (Variation 2)
to Variation 4. Because any larger changes in the original estimates of the coefficients of
x1 would be unrealistic, the OR team concludes that these coefficients are insensitive pa-
rameters in the current model. Therefore, they will be kept fixed at their best estimates
shown in Table 6.21—c1 � 3 and a31 � 3—for the remainder of the sensitivity analysis.

The Allowable Range for an Objective Function Coefficient of a Nonbasic
Variable. We have just described and illustrated how to analyze simultaneous changes
in the coefficients of a nonbasic variable xj. It is common practice in sensitivity analysis
to also focus on the effect of changing just one parameter, cj. As introduced in Sec. 4.7,
this involves streamlining the above approach to find the allowable range for cj.

For any cj, recall from Sec. 4.7 that its allowable range is the range of values
over which the current optimal solution (as obtained by the simplex method for
the current model before cj is changed) remains optimal. (It is assumed that the
change in this one cj is the only change in the current model.) When xj is a
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■ FIGURE 6.5
Feasible region for Variation
4 of the Wyndor model
where Variation 2 (Fig. 6.3)
has been revised so 
a31 � 3 � 2 and 
c1 � 3 � 4.
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nonbasic variable for this solution, the solution remains optimal as long as
zj* � cj � 0, where zj* � y*Aj is a constant unaffected by any change in the value
of cj. Therefore, the allowable range for cj can be calculated as cj � y*Aj.

For example, consider the current model (Variation 2) for the Wyndor Glass Co. prob-
lem summarized on the left side of Table 6.21, where the current optimal solution (with
c1 � 3) is given on the right side. When considering only the decision variables, x1 and
x2, this optimal solution is (x1, x2) = (0, 9), as displayed in Fig. 6.3. When just c1 is
changed, this solution remains optimal as long as

c1 � y*A1 � [0, 0, �
5
2

�] � 7�
1
2

�,

so c1 � 7�
1
2

� is the allowable range.
An alternative to performing this vector multiplication is to note in Table 6.21 that

z1* � c1 � �
9
2

� (the coefficient of x1 in row 0) when c1 � 3, so z1* � 3 � �
9
2

� � 7�
1
2

�. Since 
z1* � y*A1, this immediately yields the same allowable range.

Figure 6.3 provides graphical insight into why c1 � 7�
1
2

� is the allowable range. At 
c1 � 7�

1
2

�, the objective function becomes Z � 7.5x1 � 5x2 � 2.5(3x1 � 2x2), so the opti-
mal objective line will lie on top of the constraint boundary line 3x1 � 2x2 � 18 shown
in the figure. Thus, at this endpoint of the allowable range, we have multiple optimal so-
lutions consisting of the line segment between (0, 9) and (4, 3). If c1 were to be increased
any further (c1 � 7�

1
2

� ), only (4, 3) would be optimal. Consequently, we need c1 � 7�
1
2

� for
(0, 9) to remain optimal.

IOR Tutorial includes a procedure called Graphical Method and Sensitivity Analysis
that enables you to perform this kind of graphical analysis very efficiently.

For any nonbasic decision variable xj, the value of zj* � cj sometimes is referred to
as the reduced cost for xj, because it is the minimum amount by which the unit cost of
activity j would have to be reduced to make it worthwhile to undertake activity j (increase
xj from zero). Interpreting cj as the unit profit of activity j (so reducing the unit cost in-
creases cj by the same amount), the value of zj* � cj thereby is the maximum allowable
increase in cj to keep the current BF solution optimal.

The sensitivity analysis information generated by linear programming software pack-
ages normally includes both the reduced cost and the allowable range for each coefficient
in the objective function (along with the types of information displayed in Table 6.22).
This was illustrated in Fig. 4.10 for the Excel Solver and in Figs. A4.1 and A4.2 for LINGO
and LINDO. Table 6.23 displays this information in a typical form for our current model
(Variation 2 of the Wyndor Glass Co. model). The last three columns are used to calcu-
late the allowable range for each coefficient, so these allowable ranges are

c1 � 3 � 4.5 � 7.5,
c2 � 5 � 3 � 2.
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■ TABLE 6.23 Typical software output for sensitivity analysis of the objective
function coefficients for Variation 2 of the Wyndor Glass Co. model

Reduced Current Allowable Allowable
Variable Value Cost Coefficient Increase Decrease

x1 0 4.5 3 4.5 �

x2 9 0.0 5 � 3
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As was discussed in Sec. 4.7, if any of the allowable increases or decreases had turned
out to be zero, this would have been a signpost that the optimal solution given in the table
is only one of multiple optimal solutions. In this case, changing the corresponding coef-
ficient a tiny amount beyond the zero allowed and re-solving would provide another op-
timal CPF solution for the original model.

Thus far, we have described how to calculate the type of information in Table 6.23
for only nonbasic variables. For a basic variable like x2, the reduced cost automatically
is 0. We will discuss how to obtain the allowable range for cj when xj is a basic variable
under Case 3.

Analyzing Simultaneous Changes in Objective Function Coefficients. Regard-
less of whether xj is a basic or nonbasic variable, the allowable range for cj is valid only
if this objective function coefficient is the only one being changed. However, when simul-
taneous changes are made in the coefficients of the objective function, a 100 percent rule
is available for checking whether the original solution must still be optimal. Much like the
100 percent rule for simultaneous changes in right-hand sides, this 100 percent rule com-
bines the allowable changes (increase or decrease) for the individual cj that are given by
the last two columns of a table like Table 6.23, as described below.

The 100 Percent Rule for Simultaneous Changes in Objective Function Co-
efficients: If simultaneous changes are made in the coefficients of the objective
function, calculate for each change the percentage of the allowable change (in-
crease or decrease) for that coefficient to remain within its allowable range.
If the sum of the percentage changes does not exceed 100 percent, the original
optimal solution definitely will still be optimal. (If the sum does exceed 100 per-
cent, then we cannot be sure.)

Using Table 6.23 (and referring to Fig. 6.3 for visualization), this 100 percent rule
says that (0, 9) will remain optimal for Variation 2 of the Wyndor Glass Co. model even
if we simultaneously increase c1 from 3 and decrease c2 from 5 as long as these changes
are not too large. For example, if c1 is increased by 1.5 (33�

1
3

� percent of the allowable
change), then c2 can be decreased by as much as 2 (66�

2
3

� percent of the allowable change).
Similarly, if c1 is increased by 3 (66�

2
3

� percent of the allowable change), then c2 can only
be decreased by as much as 1 (33�

1
3

� percent of the allowable change). These maximum
changes revise the objective function to either Z � 4.5x1 � 3x2 or Z � 6x1 � 4x2, which
causes the optimal objective function line in Fig. 6.3 to rotate clockwise until it coincides
with the constraint boundary equation 3x1 � 2x2 � 18.

In general, when objective function coefficients change in the same direction, it is pos-
sible for the percentages of allowable changes to sum to more than 100 percent without chang-
ing the optimal solution. We will give an example at the end of the discussion of Case 3.

Case 2b—Introduction of a New Variable

After solving for the optimal solution, we may discover that the linear programming
formulation did not consider all the attractive alternative activities. Considering a new
activity requires introducing a new variable with the appropriate coefficients into the
objective function and constraints of the current model—which is Case 2b.

The convenient way to deal with this case is to treat it just as if it were Case 2a! This
is done by pretending that the new variable xj actually was in the original model with all
its coefficients equal to zero (so that they still are zero in the final simplex tableau) and
that xj is a nonbasic variable in the current BF solution. Therefore, if we change these
zero coefficients to their actual values for the new variable, the procedure (including any
reoptimization) does indeed become identical to that for Case 2a.
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In particular, all you have to do to check whether the current solution still is optimal
is to check whether the complementary basic solution y* satisfies the one new dual con-
straint that corresponds to the new variable in the primal problem. We already have de-
scribed this approach and then illustrated it for the Wyndor Glass Co. problem in Sec. 6.5.

Case 3—Changes in the Coefficients of a Basic Variable

Now suppose that the variable xj (fixed j ) under consideration is a basic variable in the
optimal solution shown by the final simplex tableau. Case 3 assumes that the only changes
in the current model are made to the coefficients of this variable.

Case 3 differs from Case 2a because of the requirement that a simplex tableau be in
proper form from Gaussian elimination. This requirement allows the column for a nonba-
sic variable to be anything, so it does not affect Case 2a. However, for Case 3, the basic
variable xj must have a coefficient of 1 in its row of the simplex tableau and a coefficient
of 0 in every other row (including row 0). Therefore, after the changes in the xj column of
the final simplex tableau have been calculated,6 it probably will be necessary to apply
Gaussian elimination to restore this form, as illustrated in Table 6.20. In turn, this step prob-
ably will change the value of the current basic solution and may make it either infeasible
or nonoptimal (so reoptimization may be needed). Consequently, all the steps of the over-
all procedure summarized at the end of Sec. 6.6 are required for Case 3.

Before Gaussian elimination is applied, the formulas for revising the xj column are
the same as for Case 2a, as summarized below.

Coefficient of xj in final row 0: zj* � c�j � y*A�j � c�j.

Coefficient of xj in final rows 1 to m: Aj* � S*A�j.

Example (Variation 5 of the Wyndor Model). Because x2 is a basic variable in
Table 6.21 for Variation 2 of the Wyndor Glass Co. model, sensitivity analysis of its co-
efficients fits Case 3. Given the current optimal solution (x1 � 0, x2 � 9), product 2 is the
only new product that should be introduced, and its production rate should be relatively
large. Therefore, the key question now is whether the initial estimates that led to the co-
efficients of x2 in the current model (Variation 2) could have overestimated the attrac-
tiveness of product 2 so much as to invalidate this conclusion. This question can be tested
by checking the most pessimistic set of reasonable estimates for these coefficients, which
turns out to be c2 � 3, a22 � 3, and a32 � 4. Consequently, the changes to be investigated
(Variation 5 of the Wyndor model) are

c2 � 5 → c�2 � 3, A2 � → A�2 � .

The graphical effect of these changes is that the feasible region changes from the one
shown in Fig. 6.3 to the one in Fig. 6.6. The optimal solution in Fig. 6.3 is (x1, x2) �
(0, 9), which is the corner-point solution lying at the intersection of the x1 � 0 and 
3x1 � 2x2 � 18 constraint boundaries. With the revision of the constraints, the corre-
sponding corner-point solution in Fig. 6.6 is (0, �

9
2

� ). However, this solution no longer is op-
timal, because the revised objective function of Z � 3x1 � 3x2 now yields a new optimal
solution of (x1, x2) � (4, �

3
2

� ).
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6For the relatively sophisticated reader, we should point out a possible pitfall for Case 3 that would be discov-
ered at this point. Specifically, the changes in the initial tableau can destroy the linear independence of the
columns of coefficients of basic variables. This event occurs only if the unit coefficient of the basic variable xj

in the final tableau has been changed to zero at this point, in which case more extensive simplex method cal-
culations must be used for Case 3.
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Analysis of Variation 5. Now let us see how we draw these same conclusions alge-
braically. Because the only changes in the model are in the coefficients of x2, the only re-
sulting changes in the final simplex tableau (Table 6.21) are in the x2 column. Therefore,
the above formulas are used to recompute just this column.

z2 � c�2 � y*A�2 � c�2 � [0, 0, �
5
2

�] � 3 � 7.

A2* � S*A�2 � � .

(Equivalently, incremental analysis with �c2 � �2, �a22 � 1, and �a32 � 2 can be used
in the same way to obtain this column.)

The resulting revised final tableau is shown at the top of Table 6.24. Note that the new
coefficients of the basic variable x2 do not have the required values, so the conversion to
proper form from Gaussian elimination must be applied next. This step involves dividing row
2 by 2, subtracting 7 times the new row 2 from row 0, and adding the new row 2 to row 3.

The resulting second tableau in Table 6.24 gives the new value of the current basic
solution, namely, x3 � 4, x2 � �

9
2

�, x4 � �
2
2
1
� (x1 � 0, x5 � 0). Since all these variables are
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■ FIGURE 6.6
Feasible region for Variation
5 of the Wyndor model
where Variation 2 (Fig. 6.3)
has been revised so 
c2 � 5 � 3, a22 � 2 � 3,
and a32 � 2 � 4.
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nonnegative, the solution is still feasible. However, because of the negative coefficient
of x1 in row 0, we know that it is no longer optimal. Therefore, the simplex method would
be applied to this tableau, with this solution as the initial BF solution, to find the new
optimal solution. The initial entering basic variable is x1, with x3 as the leaving basic
variable. Just one iteration is needed in this case to reach the new optimal solution x1 � 4,
x2 � �

3
2

�, x4 � �
3
2
9
� (x3 � 0, x5 � 0), as shown in the last tableau of Table 6.24.

All this analysis suggests that c2, a22, and a32 are relatively sensitive parameters. How-
ever, additional data for estimating them more closely can be obtained only by conducting
a pilot run. Therefore, the OR team recommends that production of product 2 be initiated
immediately on a small scale (x2 � �

3
2

�) and that this experience be used to guide the deci-
sion on whether the remaining production capacity should be allocated to product 2 or
product 1.

The Allowable Range for an Objective Function Coefficient of a Basic Variable.
For Case 2a, we described how to find the allowable range for any cj such that xj is a
nonbasic variable for the current optimal solution (before cj is changed). When xj is a ba-
sic variable instead, the procedure is somewhat more involved because of the need to con-
vert to proper form from Gaussian elimination before testing for optimality.

To illustrate the procedure, consider Variation 5 of the Wyndor Glass Co. model (with
c2 � 3, a22 � 3, a23 � 4) that is graphed in Fig. 6.6 and solved in Table 6.24. Since x2 is
a basic variable for the optimal solution (with c2 � 3) given at the bottom of this table,
the steps needed to find the allowable range for c2 are the following:

1. Since x2 is a basic variable, note that its coefficient in the new final row 0 (see the bot-
tom tableau in Table 6.24) is automatically z2* � c2 � 0 before c2 is changed from its
current value of 3.
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New final tableau
after reoptimization
(only one iteration of
the simplex method
needed in this case)

■ TABLE 6.24 Sensitivity analysis procedure applied to Variation 5 of the 
Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 �
9
2

� 7 0 0 �
5
2

� 45

Revised final tableau
x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
2

� 2 0 0 �
1
2

� 9

x4 (3) 0 �3 �1 0 1 �1 6

Z (0) 1 ��
3
4

� 0 0 0 �
3
4

� �
2
2
7
�

Converted to proper form
x3 (1) 0 1 0 1 0 0 4

x2 (2) 0 �
3
4

� 1 0 0 �
1
4

� �
9
2

�

x4 (3) 0 ��
9
4

� 0 0 1 ��
3
4

� �
2
2
1
�

Z (0) 1 0 0 �
3
4

� 0 �
3
4

� �
3
2
3
�

x1 (1) 0 1 0 1 0 0 4

x2 (2) 0 0 1 ��
3
4

� 0 �
1
4

� �
3
2

�

x4 (3) 0 0 0 �
9
4

� 1 ��
3
4

� �
3
2
9
�
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2. Now increment c2 � 3 by �c2 (so c2 � 3 � �c2). This changes the coefficient noted
in step 1 to z2* � c2 � ��c2, which changes row 0 to

Row 0 � �0, ��c2, �
3
4

�, 0, �
3
4

� �
3
2
3
��.

3. With this coefficient now not zero, we must perform elementary row operations to re-
store proper form from Gaussian elimination. In particular, add to row 0 the product,
�c2 times row 2, to obtain the new row 0, as shown below.

�0, ��c2, ��
3
4

�,�c2 0, �
3
4

��c2 �
3
2
3
��

� �0, ��c2, ��
3
4

��c2, 0, �
1
4

��c2 �
3
2

��c2�
New row 0 � �0, 0, �

3
4

� � �
3
4

��c2, 0, �
3
4

� � �
1
4

��c2 �
3
2
3
� � �

3
2

��c2�
4. Using this new row 0, solve for the range of values of �c2 that keeps the coefficients

of the nonbasic variables (x3 and x5) nonnegative.

�
3
4

� � �
3
4

� �c2 � 0 ⇒ �
3
4

� � �
3
4

� �c2 ⇒ �c2 � 1.

�
3
4

� � �
1
4

� �c2 � 0 ⇒ �
1
4

� �c2 � ��
3
4

� ⇒ �c2 � �3.

Thus, the range of values is �3 � �c2 � 1.
5. Since c2 � 3 � �c2, add 3 to this range of values, which yields

0 � c2 � 4

as the allowable range for c2.

With just two decision variables, this allowable range can be verified graphically by us-
ing Fig. 6.6 with an objective function of Z � 3x1 � c2x2. With the current value of 
c2 � 3, the optimal solution is (4, �

3
2

�). When c2 is increased, this solution remains optimal only
for c2 � 4. For c2 � 4, (0, �

9
2

�) becomes optimal (with a tie at c2 � 4), because of the constraint
boundary 3x1 � 4x2 � 18. When c2 is decreased instead, (4, �

3
2

�) remains optimal only for 
c2 � 0. For c2 � 0, (4, 0) becomes optimal because of the constraint boundary x1 � 4.

In a similar manner, the allowable range for c1 (with c2 fixed at 3) can be derived either
algebraically or graphically to be c1 � �

9
4

�. (Problem 6.7-10 asks you to verify this both ways.)
Thus, the allowable decrease for c1 from its current value of 3 is only �

3
4

�. However, it
is possible to decrease c1 by a larger amount without changing the optimal solution if c2

also decreases sufficiently. For example, suppose that both c1 and c2 are decreased by 1
from their current value of 3, so that the objective function changes from Z � 3x1 � 3x2

to Z � 2x1 � 2x2. According to the 100 percent rule for simultaneous changes in objec-
tive function coefficients, the percentages of allowable changes are 133�

1
3

� percent and
33�

1
3

� percent, respectively, which sum to far over 100 percent. However, the slope of the
objective function line has not changed at all, so (4, �

3
2

�) still is optimal.

Case 4—Introduction of a New Constraint

In this case, a new constraint must be introduced to the model after it has already been
solved. This case may occur because the constraint was overlooked initially or because
new considerations have arisen since the model was formulated. Another possibility is that
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the constraint was deleted purposely to decrease computational effort because it appeared
to be less restrictive than other constraints already in the model, but now this impression
needs to be checked with the optimal solution actually obtained.

To see if the current optimal solution would be affected by a new constraint, all you
have to do is to check directly whether the optimal solution satisfies the constraint. If it
does, then it would still be the best feasible solution (i.e., the optimal solution), even if
the constraint were added to the model. The reason is that a new constraint can only elim-
inate some previously feasible solutions without adding any new ones.

If the new constraint does eliminate the current optimal solution, and if you want to
find the new solution, then introduce this constraint into the final simplex tableau (as an
additional row) just as if this were the initial tableau, where the usual additional variable
(slack variable or artificial variable) is designated to be the basic variable for this new
row. Because the new row probably will have nonzero coefficients for some of the other
basic variables, the conversion to proper form from Gaussian elimination is applied next,
and then the reoptimization step is applied in the usual way.

Just as for some of the preceding cases, this procedure for Case 4 is a streamlined ver-
sion of the general procedure summarized at the end of Sec. 6.6. The only question to be
addressed for this case is whether the previously optimal solution still is feasible, so step 5
(optimality test) has been deleted. Step 4 (feasibility test) has been replaced by a much
quicker test of feasibility (does the previously optimal solution satisfy the new constraint?)
to be performed right after step 1 (revision of model). It is only if this test provides a neg-
ative answer, and you wish to reoptimize, that steps 2, 3, and 6 are used (revision of final
tableau, conversion to proper form from Gaussian elimination, and reoptimization).

Example (Variation 6 of the Wyndor Model). To illustrate this case, we consider
Variation 6 of the Wyndor Glass Co. model, which simply introduces the new constraint

2x1 � 3x2 � 24

into the Variation 2 model given in Table 6.21. The graphical effect is shown in Fig. 6.7.
The previous optimal solution (0, 9) violates the new constraint, so the optimal solution
changes to (0, 8).

To analyze this example algebraically, note that (0, 9) yields 2x1 � 3x2 � 27 � 24, so
this previous optimal solution is no longer feasible. To find the new optimal solution, add
the new constraint to the current final simplex tableau as just described, with the slack vari-
able x6 as its initial basic variable. This step yields the first tableau shown in Table 6.25.
The conversion to proper form from Gaussian elimination then requires subtracting from
the new row the product, 3 times row 2, which identifies the current basic solution x3 � 4,
x2 � 9, x4 � 6, x6 � �3 (x1 � 0, x5 � 0), as shown in the second tableau. Applying the
dual simplex method (described in Sec. 7.1) to this tableau then leads in just one iteration
(more are sometimes needed) to the new optimal solution in the last tableau of Table 6.25.

Systematic Sensitivity Analysis—Parametric Programming

So far we have described how to test specific changes in the model parameters. Another
common approach to sensitivity analysis is to vary one or more parameters continuously
over some interval(s) to see when the optimal solution changes.

For example, with Variation 2 of the Wyndor Glass Co. model, rather than beginning
by testing the specific change from b2 � 12 to b�2 � 24, we might instead set

b�2 � 12 � �

and then vary � continuously from 0 to 12 (the maximum value of interest). The geomet-
ric interpretation in Fig. 6.3 is that the 2x2 � 12 constraint line is being shifted upward to
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x2

x1

x1 � 0
14

10

12

8

6

4

2

0 2 4 6 8 10 12 14

2x1 � 3x2 � 24

3x1 � 2x2 � 18

x1 � 4

2x2 � 24

x2 � 0

(0, 9)  

(0, 8) optimal  

Feasible
region

■ FIGURE 6.7
Feasible region for Variation
6 of the Wyndor model
where Variation 2 (Fig. 6.3)
has been revised by adding
the new constraint, 
2x1 � 3x2 � 24.

2x2 � 12 � �, with � being increased from 0 to 12. The result is that the original optimal
CPF solution (2, 6) shifts up the 3x1 � 2x2 � 18 constraint line toward (�2, 12). This 
corner-point solution remains optimal as long as it is still feasible (x1 � 0), after which
(0, 9) becomes the optimal solution.

The algebraic calculations of the effect of having �b2 � � are directly analogous to
those for the Case 1 example where �b2 � 12. In particular, we use the expressions for
Z* and b* given for Case 1,

Z* � y*b�
b* � S*b�

where b� now is

b� �

and where y* and S* are given in the boxes in the middle tableau in Table 6.19. These
equations indicate that the optimal solution is

Z* � 36 � �
3
2

��

x3 � 2 � �
1
3

��

x2 � 6 � �
1
2

��

(x4 � 0, x5 � 0)

x1 � 2 � �
1
3

��







4

12��

18






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for � small enough that this solution still is feasible, i.e., for � � 6. For � � 6, the dual
simplex method (described in Sec. 7.1) yields the tableau shown in Table 6.21 except for
the value of x4. Thus, Z � 45, x3 � 4, x2 � 9 (along with x1 � 0, x5 � 0), and the ex-
pression for b* yields

x4 � b3* � 0(4) � 1(12 � �) � 1(18) � �6 � �.

This information can then be used (along with other data not incorporated into the model
on the effect of increasing b2) to decide whether to retain the original optimal solution
and, if not, how much to increase b2.

In a similar way, we can investigate the effect on the optimal solution of varying sev-
eral parameters simultaneously. When we vary just the bi parameters, we express the new
value bi in terms of the original value bi as follows:

b�i � bi � �i�, for i � 1, 2, . . . , m,

where the �i values are input constants specifying the desired rate of increase (positive or
negative) of the corresponding right-hand side as � is increased.

For example, suppose that it is possible to shift some of the production of a current
Wyndor Glass Co. product from Plant 2 to Plant 3, thereby increasing b2 by decreasing
b3. Also suppose that b3 decreases twice as fast as b2 increases. Then

b�2 � 12 � �

b�3 � 18 � 2�,

242 CHAPTER 6 DUALITY THEORY AND SENSITIVITY ANALYSIS

■ TABLE 6.25 Sensitivity analysis procedure applied to Variation 6 
of the Wyndor Glass Co. model

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 0 45

x3 (1) 0 1 0 1 0 0 0 4

Revised final tableau x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 0 9

x4 (3) 0 �3 0 0 1 �1 0 6
x6 New 0 2 3 0 0 0 1 24

Z (0) 1 �
9
2

� 0 0 0 �
5
2

� 0 45

x3 (1) 0 1 0 1 0 0 0 4

Converted to proper form x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 0 9

x4 (3) 0 �3 0 0 1 �1 0 6

x6 New 0 ��
5
2

� 0 0 0 ��
3
2

� 1 �3

Z (0) 1 �
1
3

� 0 0 0 0 �
5
3

� 40

x3 (1) 0 1 0 1 0 0 0 4

x2 (2) 0 �
2
3

� 1 0 0 0 �
1
3

� 8

x4 (3) 0 ��
4
3

� 0 0 1 0 ��
2
3

� 8

x5 New 0 �
5
3

� 0 0 0 1 ��
2
3

� 2

New final tableau
after reoptimization
(only one iteration of
dual simplex method
needed in this case)

hil76299_ch06_195-275.qxd  11/19/08  09:50 AM  Page 242



Rev.Confirming Pages

where the (nonnegative) value of � measures the amount of production shifted. (Thus,
�1 � 0, �2 � 1, and �3 � �2 in this case.) In Fig. 6.3, the geometric interpretation is that
as � is increased from 0, the 2x2 � 12 constraint line is being pushed up to 2x2 � 12 � �
(ignore the 2x2 � 24 line) and simultaneously the 3x1 � 2x2 � 18 constraint line is being
pushed down to 3x1 � 2x2 � 18 � 2�. The original optimal CPF solution (2, 6) lies at the
intersection of the 2x2 � 12 and 3x1 � 2x2 � 18 lines, so shifting these lines causes this
corner-point solution to shift. However, with the objective function of Z � 3x1 � 5x2, this
corner-point solution will remain optimal as long as it is still feasible (x1 � 0).

An algebraic investigation of simultaneously changing b2 and b3 in this way again
involves using the formulas for Case 1 (treating � as representing an unknown num-
ber) to calculate the resulting changes in the final tableau (middle of Table 6.19),
namely,

Z* � y*b� � [0, �
3
2

�, 1] � 36 � �
1
2

��,

b* � S*b� � � .

Therefore, the optimal solution becomes

Z* � 36 � �
1
2

��

x3 � 2 � �
(x4 � 0, x5 � 0)

x2 � 6 � �
1
2

��

x1 � 2 � �

for 
 small enough that this solution still is feasible, i.e., for � � 2. (Check this conclusion
in Fig. 6.3.) However, the fact that Z decreases as � increases from 0 indicates that the best
choice for � is � � 0, so none of the possible shifting of production should be done.

The approach to varying several cj parameters simultaneously is similar. In this case,
we express the new value c�j in terms of the original value of cj as

c�j � cj � �j�, for j � 1, 2, . . . , n,

where the �j are input constants specifying the desired rate of increase (positive or neg-
ative) of cj as � is increased.

To illustrate this case, reconsider the sensitivity analysis of c1 and c2 for the Wyndor
Glass Co. problem that was performed earlier in this section. Starting with Variation 2 of
the Wyndor model presented in Table 6.21 and Fig. 6.3, we separately considered the ef-
fect of changing c1 from 3 to 4 (its most optimistic estimate) and c2 from 5 to 3 (its most
pessimistic estimate). Now we can simultaneously consider both changes, as well as var-
ious intermediate cases with smaller changes, by setting

c�1 � 3 � � and c�2 � 5 � 2�,

where the value of � measures the fraction of the maximum possible change that is made.
The result is to replace the original objective function Z � 3x1 � 5x2 by a function of �

Z(�) � (3 � �)x1 � (5 � 2�)x2,







2 � �

6 � �
1
2

��

2 � �













4

12 � �

18 � 2�













��
1
3

�

0
�
1
3

�

�
1
3

�

�
1
2

�

��
1
3

�

1

0

0













4

12 � �

18 � 2�






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so the optimization now can be performed for any desired (fixed) value of � between 0
and 1. By checking the effect as � increases from 0 to 1, we can determine just when and
how the optimal solution changes as the error in the original estimates of these parame-
ters increases.

Considering these changes simultaneously is especially appropriate if there are factors
that cause the parameters to change together. Are the two products competitive in some
sense, so that a larger-than-expected unit profit for one implies a smaller-than-expected
unit profit for the other? Are they both affected by some exogenous factor, such as the
advertising emphasis of a competitor? Is it possible to simultaneously change both unit
profits through appropriate shifting of personnel and equipment?

In the feasible region shown in Fig. 6.3, the geometric interpretation of changing the
objective function from Z � 3x1 � 5x2 to Z(�) � (3 � �)x1 � (5 � 2�)x2 is that we are
changing the slope of the original objective function line (Z � 45 � 3x1 � 5x2) that passes
through the optimal solution (0, 9). If � is increased enough, this slope will change suf-
ficiently that the optimal solution will switch from (0, 9) to another CPF solution (4, 3).
(Check graphically whether this occurs for � � 1.)

The algebraic procedure for dealing simultaneously with these two changes (�c1 � �
and �c2 � �2�) is shown in Table 6.26. Although the changes now are expressed in terms
of � rather than specific numerical amounts, � is treated just as an unknown number. The
table displays just the relevant rows of the tableaux involved (row 0 and the row for the
basic variable x2). The first tableau shown is just the final tableau for the current version
of the model (before c1 and c2 are changed) as given in Table 6.21. Refer to the formu-
las in Table 6.17. The only changes in the revised final tableau shown next are that �c1

and �c2 are subtracted from the row 0 coefficients of x1 and x2, respectively. To convert
this tableau to proper form from Gaussian elimination, we subtract 2� times row 2 from
row 0, which yields the last tableau shown. The expressions in terms of � for the coeffi-
cients of nonbasic variables x1 and x5 in row 0 of this tableau show that the current BF
solution remains optimal for � � �

9
8

�. Because � � 1 is the maximum realistic value of �, this
indicates that c1 and c2 together are insensitive parameters with respect to the Variation 2
model in Table 6.21. There is no need to try to estimate these parameters more closely
unless other parameters change (as occurred for Variation 5 of the Wyndor model).

■ TABLE 6.26 Dealing with �c1 � � and �c2 � �2� for Variation 2 of the 
Wyndor model as given in Table 6.21

Coefficient of:

Basic Right
Variable Eq. Z x1 x2 x3 x4 x5 Side

Final tableau
Z (0) 1 �

9
2

� 0 0 0 �
5
2

� 45

x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 9

Revised final tableau when
Z(�) (0) 1 �

9
2

� � � 2� 0 0 �
5
2

� 45

�c1 � � and �c2 � �2�
x2 (2) 0 �

3
2

� 1 0 0 �
1
2

� 9

Converted to proper form
Z(�) (0) 1 �

9
2

� � 4� 0 0 0 �
5
2

� � � 45 � 18�

x2 (2) 0 �
3
2

� 1 0 0 �
1
2

� 9
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With the help of the Excel Solver, spreadsheets provide an alternative, relatively straight-
forward way of performing much of the sensitivity analysis described in Secs. 6.5–6.7. The
spreadsheet approach is basically the same for each of the cases considered in Sec. 6.7 for
the types of changes made in the original model. Therefore, we will focus on only the effect
of changes in the coefficients of the variables in the objective function (Cases 2a and 3 in
Sec. 6.7). We will illustrate this effect by making changes in the original Wyndor model
formulated in Sec. 3.1, where the coefficients of x1 (number of batches of the new door
produced per week) and x2 (number of batches of the new window produced per week) in
the objective function are

c1 � 3 � profit (in thousands of dollars) per batch of the new type of door,
c2 � 5 � profit (in thousands of dollars) per batch of the new type of window.

For your convenience, the spreadsheet formulation of this model (Fig. 3.22) is repeated
here as Fig. 6.8. Note that the cells containing the quantities to be changed are Profit-
PerBatch (C4:D4). Since the profits in these cells are expressed in dollars, whereas c1 and
c2 are in units of thousands of dollars, we hereafter will discuss the sensitivity analysis in
terms of the changes in the profits shown in these cells instead of changes in c1 and c2.
To this end, we will denote these profits by

PD � profit per batch of doors currently entered in cell C4,
PW � profit per batch of windows currently entered in cell D4.

Spreadsheets actually provide three methods of performing sensitivity analysis. One
is to check the effect of an individual change in the model by simply making the change
on the spreadsheet and re-solving. A second is to systematically generate a table on a sin-
gle spreadsheet that shows the effect of a series of changes in one or two parameters of
the model. A third is to obtain and apply Excel’s sensitivity report. We describe each of
these methods in turn below.

Checking Individual Changes in the Model

One of the great strengths of a spreadsheet is the ease with which it can be used interac-
tively to perform various kinds of sensitivity analysis. Once the Solver has been set up to
obtain an optimal solution, you can immediately find out what would happen if one of
the parameters of the model were changed to some other value. All you have to do is make
this change on the spreadsheet and then click on the Solve button again.

■ 6.8 PERFORMING SENSITIVITY ANALYSIS ON A SPREADSHEET7

7We have written this section in a way that can be understood without first reading any of the preceding sec-
tions in this chapter. However, Sec. 4.7 is important background for the latter part of this section.

As we discussed in Sec. 4.7, this way of continuously varying several parameters
simultaneously is referred to as parametric linear programming. Section 7.2 presents
the complete parametric linear programming procedure (including identifying new op-
timal solutions for larger values of �) when just the cj parameters are being varied and
then when just the bi parameters are being varied. Some linear programming software
packages also include routines for varying just the coefficients of a single variable or
just the parameters of a single constraint. In addition to the other applications discussed
in Sec. 4.7, these procedures provide a convenient way of conducting sensitivity analy-
sis systematically.
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To illustrate, suppose that Wyndor management is quite uncertain about what the
profit per batch of doors (PD) will turn out to be. Although the figure of $3,000 given in
Fig. 6.8 is considered to be a reasonable initial estimate, management feels that the true
profit could end up deviating substantially from this figure in either direction. However,
the range between PD � $2,000 and PD � $5,000 is considered fairly likely.

Figure 6.9 shows what would happen if the profit per batch of doors were to drop
from PD � $3,000 to PD � $2,000. Comparing with Fig. 6.8, there is no change at all in

1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $2,000 $5,000

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12

18 18Plant 3 3 2 <=

Doors Windows Total Profit
Batches Produced 2 6 $34,000

Hours Used Per Batch Produced

■ FIGURE 6.9
The revised Wyndor problem
where the estimate of the
profit per batch of doors has
been decreased from 
PD � $3,000 to PD � $2,000,
but no change occurs in the
optimal solution for the
product mix.

1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G
Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $3,000 $5,000

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12

18 18Plant 3 3 2 <=

Doors Windows Total Profit
Batches Produced 2 6 $36,000

Hours Used Per Batch Produced

5
6
7
8
9

E
Hours
Used

=SUMPRODUCT(C7:D7,BatchesProduced)
=SUMPRODUCT(C8:D8,BatchesProduced)
=SUMPRODUCT(C9:D9,BatchesProduced)

11
12

G
Total Profit

=SUMPRODUCT(ProfitPerBatch,BatchesProduced)

Range Name Cells
BatchesProduced C12:D12
HoursAvailable G7:G9
HoursUsed E7:E9
HoursUsedPerBatchProduced C7:D9
ProfitPerBatch C4:D4
TotalProfit G12

■ FIGURE 6.8
The spreadsheet model and
the optimal solution
obtained for the original
Wyndor problem before
performing sensitivity
analysis.
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1
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7
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9

10
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A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $5,000 $5,000

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12

18 18Plant 3 3 2 <=

Doors Windows Total Profit
Batches Produced 2 6 $40,000

Hours Used Per Batch Produced

■ FIGURE 6.10
The revised Wyndor problem
where the estimate of the
profit per batch of doors has
been increased from
PD � $3,000 to PD � $5,000,
but no change occurs in the
optimal solution for the
product mix.

the optimal solution for the product mix. In fact, the only changes in the new spreadsheet
are the new value of PD in cell C4 and a decrease of $2,000 in the total profit shown in
cell G12 (because each of the two batches of doors produced per week provides $1,000
less profit). Because the optimal solution does not change, we now know that the original
estimate of PD � $3,000 can be considerably too high without invalidating the model’s
optimal solution.

But what happens if this estimate is too low instead? Figure 6.10 shows what would
happen if PD were increased to PD � $5,000. Again, there is no change in the optimal
solution. Therefore, we now know that the range of values of PD over which the current
optimal solution remains optimal (i.e., the allowable range discussed in Sec. 6.7) in-
cludes the range from $2,000 to $5,000 and may extend further.

Because the original value of PD � $3,000 can be changed considerably in either
direction without changing the optimal solution, PD is a relatively insensitive parameter.
It is not necessary to pin down this estimate with great accuracy in order to have confi-
dence that the model is providing the correct optimal solution.

This may be all the information that is needed about PD. However, if there is a good
possibility that the true value of PD will turn out to be even outside this broad range from
$2,000 to $5,000, further investigation would be desirable. How much higher or lower can
PD be before the optimal solution would change?

Figure 6.11 demonstrates that the optimal solution would indeed change if PD is in-
creased all the way up to PD � $10,000. Thus, we now know that this change occurs
somewhere between $5,000 and $10,000 during the process of increasing PD.

1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G
Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $10,000 $5,000

Hours Hours
Used Available

Plant 1 1 0 4 <= 4
Plant 2 0 2 6 <= 12
Plant 3 3 2 18 <= 18

Doors Windows Total Profit
Batches Produced 4 3 $55,000

Hours Used Per Batch Produced

■ FIGURE 6.11
The revised Wyndor problem
where the estimate of the
profit per batch of doors has
been increased from 
PD � $3,000 to PD � $10,000,
which results in a change in
the optimal solution for the
product mix.
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Using the Solver Table to Do Sensitivity Analysis Systematically

To pin down just when the optimal solution will change, we could continue selecting new
values of PD at random. However, a better approach is to systematically consider a range
of values of PD. An Excel add-in developed by Professor Mark Hillier, called the Solver
Table, is designed to perform just this sort of analysis. It is available to you in your OR
Courseware on the book’s website. To install it, you need simply to open the Solver Table
file in OR Courseware.

The Solver Table is used to show the results in the changing cells and/or certain out-
put cells for various trial values in a data cell. For each trial value in the data cell, Solver
is called on to re-solve the problem. Therefore, the Solver Table (or any comparable Excel
add-in) provides a systematic way of performing sensitivity analysis and then displaying
the results to managers and others who are not familiar with the more technical aspects
of sensitivity analysis.

To use the Solver Table, first expand the original spreadsheet (Fig. 6.8) to make a
table with headings as shown in Fig. 6.12. In the first column of the table (cells B19:B28),
list the trial values for the data cell (the profit per batch of doors), except leave the first
row (cell B18) blank. The headings of the next columns specify which output will be eval-
uated. For each of these columns, use the first row of the table (cells C18:E18) to write
an equation that sets the value in each of these cells equal to the relevant changing cell
or output cell. In this case, the cells of interest are DoorBatchesProduced (C12), Win-
dowBatchesProduced (D12), and TotalProfit (G12), so the equations for C18:E18 are those
shown just below the spreadsheet in Fig. 6.12.

Next, select the entire table by clicking and dragging from cells B18 through E28,
and then choose Solver Table from the Add-Ins tab (for Excel 2007) or Tools menu (for
earlier versions of Excel), after having installed this Excel add-in provided in your OR
Courseware. In the Solver Table dialogue box (as shown at the bottom of Fig. 6.12), in-
dicate the column input cell (C4), which refers to the data cell that is being changed in
the first column of the table. Nothing is entered for the row input cell because no row is
being used to list the trial values of a data cell in this case.

The Solver Table shown in Fig. 6.13 is then generated automatically by clicking on the
OK button. For each trial value listed in the first column of the table for the data cell of in-
terest, Excel re-solves the problem using Solver and then fills in the corresponding values
in the other columns of the tables. (The numbers in the first row of the table come from the
original solution in the spreadsheet before the original value in the data cell was changed.)

The table reveals that the optimal solution remains the same all the way from PD  � $1,000
(and perhaps lower) to PD � $7,000, but that a change occurs somewhere between $7,000
and $8,000. We next could systematically consider values of PD between $7,000 and $8,000
to determine more closely where the optimal solution changes. However, this is not necessary
since, as discussed a little later, a shortcut is to use the Excel sensitivity report to determine
exactly where the optimal solution changes.

Thus far, we have illustrated how to systematically investigate the effect of changing only
PD (cell C4 in Fig. 6.8). The approach is the same for PW (cell D4). In fact, the Solver Table
can be used in this way to investigate the effect of changing any single data cell in the model,
including any cell in HoursAvailable (G7:G9) or HoursUsedPerBatchProduced (C7:D9).

We next will illustrate how to investigate simultaneous changes in two data cells with
a spreadsheet, first by itself and then with the help of the Solver Table.

Checking Two-Way Changes in the Model

When using the original estimates for PD ($3,000) and PW ($5,000), the optimal solu-
tion indicated by the model (Fig. 6.8) is heavily weighted toward producing the windows
(6 batches per week) rather than the doors (only 2 batches per week). Suppose that
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $3,000 $5,000

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12
Plant 3 3 2 18 <= 18

Doors Windows Total Profit
Batches Produced 2 6 $36,000

Profit Per Batch Total
for Doors Doors Windows Profit

$1,000
$2,000
$3,000
$4,000
$5,000
$6,000
$7,000
$8,000
$9,000
$10,000

Hours Used Per Batch Produced

Optimal Batches Produced
Select these 

cells 
(B18:E28), 

before 
choosing the 
Solver Table.

16
17
18

C D E
Total

Doors Windows Profit
=DoorBatchesProduced =WindowBatchesProduced =TotalProfit

Optimal Batches Produced

Range Name Cells
DoorBatchesProduced C12
TotalProfit G12
WIndowBatchesProduced D12

2 6 $36,000

■ FIGURE 6.12
Expansion of the spreadsheet
in Fig. 6.8 to prepare for
using the Solver Table to
show the effect of
systematically varying the
estimate of the profit per
batch of doors in the 
Wyndor problem.

Wyndor management is concerned about this imbalance and feels that the problem may
be that the estimate for PD is too low and the estimate for PW is too high. This raises the
question: If the estimates are indeed off in these directions, would this lead to a more bal-
anced product mix being the most profitable one? (Keep in mind that it is the ratio of PD

to PW that is relevant for determining the optimal product mix, so having their estimates
be off in the same direction with little change in this ratio is unlikely to change the opti-
mal product mix).

This question can be answered in a matter of seconds simply by substituting new es-
timates of the profits per batch in the original spreadsheet in Fig. 6.8 and clicking on the
Solve button. Figure 6.14 shows that new estimates of $4,500 for doors and $4,000 for
windows causes no change at all in the solution for the optimal product mix. (The total
profit does change, but this occurs only because of the changes in the profits per batch.)
Would even larger changes in the estimates of profits per batch finally lead to a change
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in the optimal product mix? Figure 6.15 shows that this does happen, yielding a relatively
balanced product mix of (x1, x2) � (4, 3), when estimates of $6,000 for doors and $3,000
for windows are used.

Figures 6.14 and 6.15 don’t reveal where the optimal product mix changes as the
profit estimates increase from $4,500 to $6,000 for doors and decrease from $4,000 to
$3,000 for windows. We next describe how the Solver Table can systematically help to
pin this down better.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $3,000 $5,000

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12
Plant 3 3 2 18 <= 18

Doors Windows Total Profit
Batches Produced 2 6 $36,000

Profit Per Batch Total
for Doors Doors Windows Profit

2 6 $36,000
$1,000 2 6 $32,000
$2,000 2 6 $34,000
$3,000 2 6 $36,000
$4,000 2 6 $38,000
$5,000 2 6 $40,000
$6,000 2 6 $42,000
$7,000 2 6 $44,000
$8,000 4 3 $47,000
$9,000 4 3 $51,000
$10,000 4 3 $55,000

Hours Used Per Batch Produced

Optimal Batches Produced

■ FIGURE 6.13
An application of the Solver
Table that shows the effect
of systematically varying the
estimate of the profit per
batch for doors in the
Wyndor problem.

1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $4,500 $4,000

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12
Plant 3 3 2 18 <= 18

Doors Windows Total Profit
Batches Produced 2 6 $33,000

Hours Used Per Batch Produced

■ FIGURE 6.14
The revised Wyndor
problem where the
estimates of the profits per
batch of doors and
windows have been
changed to PD � $4,500
and PW � $4,000,
respectively, but no change
occurs in the optimal
product mix.
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Using the Solver Table for Two-Way Sensitivity Analysis

A two-way version of the Solver Table provides a way of systematically investigating the
effect if the estimates entered into two data cells are inaccurate simultaneously. (However,
two is the maximum number of data cells that can be considered simultaneously by the
Solver Table.) In this case, the Solver Table shows the results in a single output cell for
various trial values in the two data cells.

To illustrate this approach, we again will investigate the effect of increasing PD and
decreasing PW simultaneously. Before considering the effect on the optimal product mix,
we will look at the effect on the total profit. To do this, the Solver Table will be used to
show how TotalProfit (G12) in Fig. 6.8 varies over a range of trial values in the two data
cells, ProfitPerBatch (C4:D4). For each pair of trial values in these data cells, Solver will
be called on to re-solve the problem.

To create a two-way Solver Table for the Wyndor problem, expand the original spread-
sheet (Fig. 6.8) to make a table with column and row headings as shown in rows 16–21
of the spreadsheet in Fig. 6.16. In the upper left-hand corner of the table (C17), write an
equation (�TotalProfit) that refers to the target cell. In the first column of the table (column
C, below the equation in cell C17), insert various trial values for the first data cell of in-
terest (the profit per batch of the doors). In the first row of the table (row 17, to the right
of the equation in cell C17), insert various trial values for the second data cell of interest
(the profit per batch of the windows).

Next, select the entire table (C17:H21) and choose Solver Table from the Add-Ins
tab (for Excel 2007) or Tools menu (for earlier versions of Excel), after having installed
this Excel add-in provided in your OR Courseware. In the Solver Table dialogue box
(shown at the bottom of Fig. 6.16), indicate which data cells are being changed simul-
taneously. The column input cell C4 refers to the data cell whose various trial values
are listed in the first column of the table (C18:C21), while the row input cell D4 refers
to the data cell whose various trial values are listed in the first row of the table
(D17:H17).

The Solver Table shown in Fig. 6.17 is then generated automatically by clicking on
the OK button. For each pair of trial values for the two data cells, Excel re-solves the
problem using Solver and then fills in the total profit in the corresponding spot in the
table. (The number in C17 comes from the target cell in the original spreadsheet before
the original values in the two data cells are changed.)

Unlike a one-way Solver Table that can show the results of multiple changing cells and/or
output cells for various trial values of a single data cell, a two-way Solver Table is limited to
showing the results in a single cell for each pair of trial values in the two data cells of interest.

1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $6,000 $3,000

Hours Hours
Used Available

Plant 1 1 0 4 <= 4
Plant 2 0 2 6 <= 12
Plant 3 3 2 18 <= 18

Doors Windows Total Profit
Batches Produced 4 3 $33,000

Hours Used Per Batch Produced

■ FIGURE 6.15
The revised Wyndor problem
where the estimates of the
profits per batch of doors
and windows have been
changed to $6,000 and
$3,000, respectively, which
results in a change in the
optimal product mix.
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However, there is a trick using the & symbol that enables Solver Table to show the results
from multiple changing cells and/or output cells within a single cell of the table. We utilize
this trick in the Solver Table shown in Fig. 6.18 to show the results for both changing
cells, DoorBatchesProduced (C12) and WindowBatchesProduced (D12), for each pair of
trial values for ProfitPerBatch (C4:D4). The key formula is in cell C25:

C25 � “(“& DoorBatchesProduced &”, “& WindowBatchesProduced &”)”

The & character tells Excel to concatenate, so the result will be a left parenthesis, followed
by the value in DoorBatchesProduced (C12), then a comma and the contents in Window-
BatchesProduced (D12), and finally a right parenthesis. If DoorBatchesProduced � 2 and
WindowBatchesProduced � 6, the result is (2, 6). Thus, the results from both changing
cells are displayed within a single cell of the table.

After the usual preliminaries in entering the information shown in rows 24–25 and
columns B-C of Fig. 6.18, along with the formula in C25, clicking on the OK button

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

A B C D E F G H I

Wyndor Glass Co. Product-Mix Problem

Doors Windows
Profit Per Batch $3,000 $5,000

Hours Hours
Used Available

Plant 1 1 0 2 <= 4
Plant 2 0 2 12 <= 12
Plant 3 3 2 18 <= 18

Doors Windows Total Profit
Batches Produced 2 6 $36,000

Total Profit Profit Per Batch for Windows
$36,000 $1,000 $2,000 $3,000 $4,000 $5,000
$3,000

Profit Per Batch $4,000
for Doors $5,000

$6,000

Hours Used Per Batch Produced

Select these 
cells 

(C17:H21), 
before 

choosing the 
Solver Table.

Range Name Cell
TotalProfit G1217

C
=TotalProfit

■ FIGURE 6.16
Expansion of the spreadsheet
in Fig. 6.8 to prepare for
using a two-dimensional
Solver Table to show the
effect on total profits of
systematically varying the
estimates of the profits per
batch of doors and windows
for the Wyndor problem.

16
17
18
19
20
21

B C D E F G H
Total Profit Profit Per Batch for Windows

$36,000 $1,000 $2,000 $3,000 $4,000 $5,000
$3,000 $15,000 $18,000 $24,000 $30,000 $36,000

Profit Per Batch $4,000 $19,000 $22,000 $26,000 $32,000 $38,000
for Doors $5,000 $23,000 $26,000 $29,000 $34,000 $40,000

$6,000 $27,000 $30,000 $33,000 $36,000 $42,000

■ FIGURE 6.17
A two-dimensional
application of the Solver
Table that shows the effect
on the optimal total profit of
systematically varying the
estimates of the profits per
batch of doors and windows
for the Wyndor problem.
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automatically generates the entire Solver Table. Cells D26:H29 show the optimal solution
for the various combinations of trial values for the profits per batch of the doors and win-
dows. The upper right-hand corner (cell H26) of this Solver Table gives the optimal solution
of (x1, x2) � (2, 6) when using the original profit estimates of $3,000 per batch of doors
and $5,000 per batch of windows. Moving down from this cell corresponds to increasing
this estimate for doors while moving to the left amounts to decreasing the estimate for
windows. (The cells when moving up or to the right of H26 are not shown because these
changes would only increase the attractiveness of (x1, x2) � (2, 6) as the optimal solu-
tion.) Note that (x1, x2) � (2, 6) continues to be the optimal solution for all the cells near
H26. This indicates that the original estimates of profit per batch would need to be very
inaccurate indeed before the optimal product mix would change.

Using the Sensitivity Report to Perform Sensitivity Analysis

You now have seen how some sensitivity analysis can be performed readily on a spread-
sheet either by interactively making changes in data cells and re-solving or by using
the Solver Table to generate similar information systematically. However, there is a
shortcut. Some of the same information (and more) can be obtained more quickly and
precisely by simply using the sensitivity report provided by the Excel Solver. (Essen-
tially the same sensitivity report is a standard part of the output available from other
linear programming software packages as well, including MPL/CPLEX, LINDO, and
LINGO.)

Section 4.7 already has discussed the sensitivity report and how it is used to perform
sensitivity analysis. Figure 4.10 in that section shows the sensitivity report for the Wyndor
problem. Part of this report is shown here in Fig. 6.19. Rather than repeating Sec. 4.7, we
will focus here on illustrating how the sensitivity report can efficiently address the spe-
cific questions raised in the preceding subsections for the Wyndor problem.

The question considered in the first two subsections was how far the initial estimate
of $3,000 for PD could be off before the current optimal solution, (x1, x2) � (2, 6), would
change. Figures 6.10 and 6.11 showed that the optimal solution would not change until

24
25
26
27
28
29

B C D E F G H
Batches Produced (Doors, Windows) Profit Per Batch for Windows

(2,6) $1,000 $2,000 $3,000 $4,000
$3,000 (4,3) (4,3) (2,6) (2,6) (2,6)

Profit Per Batch $4,000 (4,3) (4,3) (2,6) (2,6) (2,6)
for Doors $5,000 (4,3) (4,3) (4,3) (2,6) (2,6)

$6,000 (4,3) (4,3) (4,3) (4,3) (4,3)

$5,000

25
C

="(" & DoorBatchesProduced & "," & WindowBatchesProduced & ")"

Range Name Cells
DoorBatchesProduced C12
WindowBatchesProduced D12

■ FIGURE 6.18
A two-dimensional
application of the Solver
Table that shows the effect
on the optimal product mix
of systematically varying the
estimates of the profits per
batch of doors and windows
for the Wyndor problem.
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PD is raised to somewhere between $5,000 and $10,000. Figure 6.13 then narrowed down
the gap for where the optimal solution changes to somewhere between $7,000 and $8,000.
This figure also showed that if the initial estimate of $3,000 for PD is too high rather than
too low, PD would need to be dropped to somewhere below $1,000 before the optimal so-
lution would change.

Now look at how the portion of the sensitivity report in Figure 6.19 addresses this
same question. The DoorBatchesProduced row in this report provides the following
information (without the dollar signs) about PD.

Current value of PD: 3,000.
Allowable increase in PD: 4,500. So PD � 3,000 � 4,500 � 7,500
Allowable decrease in PD: 3,000. So PD � 3,000 – 3,000 � 0.
Allowable range for PD: 0 � PD � 7,500.

Therefore, if PD is changed from its current value (without making any other change in
the model), the current solution (x1, x2) � (2, 6) will remain optimal so long as the new
value of PD is within this allowable range, 0 � PD � $7,500.

Figure 6.20 provides graphical insight into this allowable range. For the original value
of PD � 3,000, the solid line in the figure shows the slope of the objective function line
passing through (2, 6). At the lower end of the allowable range, where PD � 0, the objec-
tive function line that passes through (2, 6) now is line B in the figure, so every point on
the line segment between (0, 6) and (2, 6) is an optimal solution. For any value of PD � 0,
the objective function line will have rotated even further so that (0, 6) becomes the only
optimal solution. At the upper end of the allowable range, when PD � 7,500, the objec-
tive function line that passes through (2, 6) becomes line C, so every point on the line seg-
ment between (2, 6) and (4, 3) becomes an optimal solution. For any value of PD � 7,500,
the objective function line is even steeper than line C, so (4, 3) becomes the only optimal
solution. Consequently, the original optimal solution, (x1, x2) � (2, 6) remains optimal only
as long as 0 � PD � $7,500.

The procedure called Graphical Method and Sensitivity Analysis in IOR Tutorial is de-
signed to help you perform this kind of graphical analysis. After you enter the model for
the original Wyndor problem, the module provides you with the graph shown in Fig. 6.20
(without the dashed lines). You then can simply drag one end of the objective line up or
down to see how far you can increase or decrease PD before (x1, x2) � (2, 6) will no longer
be optimal.

Conclusion: The allowable range for PD is 0 � PD � $7,500, because 
(x1, x2) � (2, 6) remains optimal over this range but not beyond. (When PD � 0
or PD � $7,500, there are multiple optimal solutions, but (x1, x2) � (2, 6) still is
one of them.) With the range this wide around the original estimate of $3,000

Adjustable Cells

Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease

$C$12 DoorBatchesProduced
$D$12 WindowBatchesProduced

2
6

0
0

3000
5000

4500
1E+30

3000
3000

■ FIGURE 6.19
Part of the sensitivity report
generated by the Excel Solver
for the original Wyndor
problem (Fig. 6.8), where the
last three columns identify
the allowable ranges for the
profits per batch of doors
and windows.
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(PD � $3,000) for the profit per batch of doors, we can be quite confident of
obtaining the correct optimal solution for the true profit.

Now let us turn to the question considered in the preceding two subsections. What
would happen if the estimate of PD ($3,000) were too low and the estimate of PW ($5,000)
were too high simultaneously? Specifically, how far can the estimates be off in these di-
rections before the current optimal solution, (x1, x2) � (2, 6), would change?

Figure 6.14 showed that if PD were increased by $1,500 (from $3,000 to $4,500) and
PW were decreased by $1,000 (from $5,000 to $4,000), the optimal solution would remain
the same. Figure 6.15 then indicated that doubling these changes would result in a change
in the optimal solution. However, it is unclear where the change in the optimal solution
occurs. Figure 6.18 provided further information, but not a definitive answer to this
question.

Fortunately, additional information can be gleaned from the sensitivity report (Fig. 6.19)
by using its allowable increases and allowable decreases in PD and PW. The key is to apply
the following rule (as first stated in Sec. 6.7):

The 100 Percent Rule for Simultaneous Changes in Objective Function
Coefficients: If simultaneous changes are made in the coefficients of the ob-
jective function, calculate for each change the percentage of the allowable
change (increase or decrease) for that coefficient to remain within its allow-
able range. If the sum of the percentage changes does not exceed 100 percent,
the original optimal solution definitely will still be optimal. (If the sum does
exceed 100 percent, then we cannot be sure.)

This rule does not spell out what happens if the sum of the percentage changes does
exceed 100 percent. The consequence depends on the directions of the changes in the

x2

x1

■ FIGURE 6.20
The two dashed lines that
pass through solid constraint
boundary lines are the
objective function lines when
PD (the profit per batch of
doors) is at an endpoint of
its allowable range, 0 � PD
� $7,500, since either line or
any objective function line in
between still yields 
(x1, x2) � (2, 6) as an
optimal solution for the
Wyndor problem.
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coefficients. Remember that it is the ratios of the coefficients that are relevant for deter-
mining the optimal solution, so the original optimal solution might indeed remain opti-
mal even when the sum of the percentage changes greatly exceeds 100 percent if the
changes in the coefficients are in the same direction. Thus, exceeding 100 percent may or
may not change the optimal solution, but so long as 100 percent is not exceeded, the orig-
inal optimal solution definitely will still be optimal.

Keep in mind that we can safely use the entire allowable increase or decrease in a
single objective function coefficient only if none of the other coefficients have changed
at all. With simultaneous changes in the coefficients, we focus on the percentage of the
allowable increase or decrease that is being used for each coefficient.

To illustrate, consider the Wyndor problem again, along with the information pro-
vided by the sensitivity report in Fig. 6.19. Suppose now that the estimate of PD has
increased from $3,000 to $4,500 while the estimate of PW has decreased from $5,000 to
$4,000. The calculations for the 100 percent rule now are

PD: $3,000 → $4,500.

Percentage of allowable increase � 100 ��4,500
4,

�
500

3,000
��% � 33�

1
3

�%

PW: $5,000 → $4,000. 

Percentage of allowable decrease � 100 ��5,000
3,

�
000

4,000
��% � 33�

1
3

�%

Sum � 66�
2
3

�%.

Since the sum of the percentages does not exceed 100 percent, the original optimal solu-
tion (x1, x2) � (2, 6) definitely is still optimal, just as we found earlier in Fig. 6.14.

Now suppose that the estimate of PD has increased from $3,000 to $6,000 while the
estimate PW has decreased from $5,000 to $3,000. The calculations for the 100 percent
rule now are

PD: $3,000 → $6,000.

Percentage of allowable increase � 100 ��6,000
4,

�
500

3,000
��% � 66�

2
3

�%

PW: $5,000 → $3,000.

Percentage of allowable decrease � 100 ��5,000
3,

�
000

3,000
��% � 66�

2
3

�%

Sum � 133�
1
3

�%.

Since the sum of the percentages now exceeds 100 percent, the 100 percent rule says
that we can no longer guarantee that (x1, x2) � (2, 6) is still optimal. In fact, we found
earlier in both Figs. 6.15 and 6.18 that the optimal solution has changed to (x1, x2)
� (4, 3).

These results suggest how to find just where the optimal solution changes while PD

is being increased and PW is being decreased by these relative amounts. Since 100 per-
cent is midway between 66�

2
3

� percent and 133�
1
3

� percent, the sum of the percentage changes
will equal 100 percent when the values of PD and PW are midway between their values
in the above cases. In particular, PD � $5,250 is midway between $4,500 and $6,000 and
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PW � $3,500 is midway between $4,000 and $3,000. The corresponding calculations for
the 100 percent rule are

PD: $3,000 → $5,250.

Percentage of allowable increase � 100 ��5,250
4,

�
500

3,000
��% � 50%

PW: $5,000 → $3,500.

Percentage of allowable decrease � 100 ��5,000
3,

�
000

3,500
��% � 50%

Sum � 100%.

Although the sum of the percentages equals 100 percent, the fact that it does not exceed
100 percent guarantees that (x1, x2) � (2, 6) is still optimal. Figure 6.21 shows graphically
that both (2, 6) and (4, 3) are now optimal, as well as all the points on the line segment
connecting these two points. However. If PD and PW were to be changed any further from
their original values (so that the sum of the percentages exceeds 100 percent), the objec-
tive function line would be rotated so far toward the vertical that (x1, x2) � (4, 3) would
become the only optimal solution.

At the same time, keep in mind that having the sum of the percentages of allowable
changes exceed 100 percent does not automatically mean that the optimal solution will
change. For example, suppose that the estimates of both unit profits are halved. The
resulting calculations for the 100 percent rule are

x2

x1

■ FIGURE 6.21
When the estimates of the
profits per batch of doors
and windows change to
PD � $5,250 and 
PW � $3,500, which lies at
the edge of what is allowed
by the 100 percent rule, the
graphical method shows that
(x1, x2) � (2, 6) still is an
optimal solution, but now
every other point on the line
segment between this
solution and (4, 3) also is
optimal.
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PD: $3,000 → $1,500.

Percentage of allowable decrease � 100 ��3,000
3,

�
000

1,500
��% � 50%

PW: $5,000 → $2,500.

Percentage of allowable decrease � 100 ��5,000
3,

�
000

2,500
��% � 83�

1
3

�%

Sum � 133�
1
3

�%.

Even though this sum exceeds 100 percent, Fig. 6.22 shows that the original optimal
solution is still optimal. In fact, the objective function line has the same slope as the
original objective function line (the solid line in Fig. 6.20). This happens whenever pro-
portional changes are made to all the profit estimates, which will automatically lead to
the same optimal solution.

Other Types of Sensitivity Analysis

This section has focused on how to use a spreadsheet to investigate the effect of changes
in only the coefficients of the variables in the objective function. One often is interested
in investigating the effect of changes in the right-hand sides of the functional constraints

x2

x1

Optimal solution

■ FIGURE 6.22
When the estimates of the
profits per batch of doors
and windows change to
PD � $1,500 and
PW � $2,500 (half of their
original values), the graphical
method shows that the
optimal solution still is
(x1, x2) � (2, 6), even
though the 100 percent rule
says that the optimal solution
might change.
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as well. Occasionally you might even want to check whether the optimal solution would
change if changes need to be made in some coefficients in the functional constraints.

The spreadsheet approach for investigating these other kinds of changes in the model
is virtually the same as for the coefficients in the objective function. Once again, you can
try out any changes in the data cells by simply making these changes on the spreadsheet
and using the Excel Solver to re-solve the model. And once again, you can systematically
check the effect of a series of changes in any one or two data cells by using the Solver Table.
As already described in Sec. 4.7, the sensitivity report generated by the Excel Solver (or
any other linear programming software package) also provides some valuable information,
including the shadow prices, regarding the effect of changing the right-hand side of any sin-
gle functional constraint. When changing a number of right-hand sides simultaneously, there
also is a “100 percent rule” for this case that is analogous to the 100 percent rule for
simultaneous changes in objective function constraints. (See the Case 1 portion of Sec. 6.7
for details about how to investigate the effect of changes in right-hand sides, including the
application of the 100 percent rule for simultaneous changes in right-hand sides.)

The Worked Examples section of the book’s website includes another example of
using a spreadsheet to investigate the effect of changing individual right-hand sides.

■ 6.9 CONCLUSIONS
Every linear programming problem has associated with it a dual linear programming
problem. There are a number of very useful relationships between the original (primal)
problem and its dual problem that enhance our ability to analyze the primal problem. For
example, the economic interpretation of the dual problem gives shadow prices that mea-
sure the marginal value of the resources in the primal problem and provides an interpreta-
tion of the simplex method. Because the simplex method can be applied directly to either
problem in order to solve both of them simultaneously, considerable computational effort
sometimes can be saved by dealing directly with the dual problem. Duality theory, includ-
ing the dual simplex method (Sec. 7.1) for working with superoptimal basic solutions, also
plays a major role in sensitivity analysis.

The values used for the parameters of a linear programming model generally are just
estimates. Therefore, sensitivity analysis needs to be performed to investigate what hap-
pens if these estimates are wrong. The fundamental insight of Sec. 5.3 provides the key
to performing this investigation efficiently. The general objectives are to identify the sen-
sitive parameters that affect the optimal solution, to try to estimate these sensitive param-
eters more closely, and then to select a solution that remains good over the range of likely
values of the sensitive parameters. This analysis is a very important part of most linear
programming studies.

With the help of the Excel Solver, spreadsheets also provide some useful methods
of performing sensitivity analysis. One method is to repeatedly enter changes in one or
more parameters of the model into the spreadsheet and then click on the Solve button to
see immediately if the optimal solution changes. A second is to use the Solver Table to
systematically check on the effect of making a series of changes in one or two parame-
ters of the model. A third is to use the sensitivity report provided by the Excel Solver to
identify the allowable range for the coefficients in the objective function, the shadow
prices for the functional constraints, and the allowable range for each right-hand side
over which its shadow price remains valid. (Other software that applies the simplex
method—including MPL/CPLEX, LINDO, and LINGO—also provides such a sensitiv-
ity report upon request.)
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Worked Examples:

Examples for Chapter 6

A Demonstration Example in OR Tutor:

Sensitivity Analysis

Interactive Procedures in IOR Tutorial:

Interactive Graphical Method
Enter or Revise a General Linear Programming Model
Solve Interactively by the Simplex Method
Sensitivity Analysis

Automatic Procedures in IOR Tutorial:

Solve Automatically by the Simplex Method
Graphical Method and Sensitivity Analysis

Excel Add-Ins:

Premium Solver for Education
Solver Table

Files (Chapter 3) for Solving the Wyndor Example:

Excel Files
LINGO/LINDO File
MPL/CPLEX File

Glossary for Chapter 6

See Appendix 1 for documentation of the software.

■ SELECTED REFERENCES

■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)
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■ PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example just listed may be helpful.
I: We suggest that you use the corresponding interactive pro-

cedure just listed (the printout records your work).
C: Use the computer with any of the software options available

to you (or as instructed by your instructor) to solve the prob-
lem automatically.

E*: Use Excel.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

6.1-1.* Construct the dual problem for each of the following lin-
ear programming models fitting our standard form.
(a) Model in Prob. 3.1-6
(b) Model in Prob. 4.7-5

6.1-2. Consider the linear programming model in Prob. 4.5-4.
(a) Construct the primal-dual table and the dual problem for this

model.
(b) What does the fact that Z is unbounded for this model imply

about its dual problem?

6.1-3. For each of the following linear programming models, give
your recommendation on which is the more efficient way (proba-
bly) to obtain an optimal solution: by applying the simplex method
directly to this primal problem or by applying the simplex method
directly to the dual problem instead. Explain.
(a) Maximize Z � 10x1 � 4x2 � 7x3,

subject to

3x1 � x2 � 2x3 � 25
x1 � 2x2 � 3x3 � 25

5x1 � x2 � 2x3 � 40
x1 � x2 � x3 � 90

2x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

(b) Maximize Z � 2x1 � 5x2 � 3x3 � 4x4 � x5,

subject to

x1 � 3x2 � 2x3 � 3x4 � x5 � 6
4x1 � 6x2 � 5x3 � 7x4 � x5 � 15

and

xj � 0, for j � 1, 2, 3, 4, 5.

6.1-4. Consider the following problem.

Maximize Z � �x1 � 2x2 � x3,

subject to

x1 � x2 � 2x3 � 12
x1 � x2 � x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem.
(b) Use duality theory to show that the optimal solution for the

primal problem has Z � 0.

6.1-5. Consider the following problem.

Maximize Z � 5x1 � 4x2 � 3x3,

subject to

x1x1 � x3 � 15 (resource 1)
x1x2 � 2x3 � 25 (resource 2)

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem for this primal problem.
I (b) Solve the dual problem graphically. Use this solution to iden-

tify the shadow prices for the resources in the primal problem.
C (c) Confirm your results from part (b) by solving the primal

problem automatically by the simplex method and then iden-
tifying the shadow prices.

6.1-6. Follow the instructions of Prob. 6.1-5 for the following 
problem.

Maximize Z � x1 � 3x2 � 2x3,

subject to

2x1 � 2x2 � 2x3 � 6 (resource 1)
2x1 �x2 � 2x3 � 4 (resource 2)

and

x1 � 0, x2 � 0, x3 � 0.

6.1-7. Consider the following problem.

Maximize Z � 2x1 � 3x2,

subject to

4x1 � x2 � 20
�x1 � x2 � 10

and

x1 � 0, x2 � 0.

I (a) Demonstrate graphically that this problem has no feasible
solutions.

(b) Construct the dual problem.

hil76299_ch06_195-275.qxd  11/19/08  09:50 AM  Page 261



Rev.Confirming Pages

262 CHAPTER 6 DUALITY THEORY AND SENSITIVITY ANALYSIS

I (c) Demonstrate graphically that the dual problem has an un-
bounded objective function.

I 6.1-8. Construct and graph a primal problem with two decision
variables and two functional constraints that has feasible solutions
and an unbounded objective function. Then construct the dual prob-
lem and demonstrate graphically that it has no feasible solutions.

I 6.1-9. Construct a pair of primal and dual problems, each with
two decision variables and two functional constraints, such that
both problems have no feasible solutions. Demonstrate this prop-
erty graphically.

6.1-10. Construct a pair of primal and dual problems, each with
two decision variables and two functional constraints, such that the
primal problem has no feasible solutions and the dual problem has
an unbounded objective function.

6.1-11. Use the weak duality property to prove that if both the pri-
mal and the dual problem have feasible solutions, then both must
have an optimal solution.

6.1-12. Consider the primal and dual problems in our standard
form presented in matrix notation at the beginning of Sec. 6.1. Use
only this definition of the dual problem for a primal problem in
this form to prove each of the following results.
(a) The weak duality property presented in Sec. 6.1.
(b) If the primal problem has an unbounded feasible region that

permits increasing Z indefinitely, then the dual problem has no
feasible solutions.

6.1-13. Consider the primal and dual problems in our standard
form presented in matrix notation at the beginning of Sec. 6.1. Let
y* denote the optimal solution for this dual problem. Suppose that
b is then replaced by b�. Let x� denote the optimal solution for the
new primal problem. Prove that

cx� � y*b�.     

6.1-14. For any linear programming problem in our standard form
and its dual problem, label each of the following statements as true
or false and then justify your answer.
(a) The sum of the number of functional constraints and the num-

ber of variables (before augmenting) is the same for both the
primal and the dual problems.

(b) At each iteration, the simplex method simultaneously identi-
fies a CPF solution for the primal problem and a CPF solution
for the dual problem such that their objective function values
are the same.

(c) If the primal problem has an unbounded objective function,
then the optimal value of the objective function for the dual
problem must be zero.

6.2-1. Consider the simplex tableaux for the Wyndor Glass Co.
problem given in Table 4.8. For each tableau, give the economic
interpretation of the following items:
(a) Each of the coefficients of the slack variables (x3, x4, x5) in

row 0
(b) Each of the coefficients of the decision variables (x1, x2) in 

row 0

(c) The resulting choice for the entering basic variable (or the de-
cision to stop after the final tableau)

6.3-1.* Consider the following problem.

Maximize Z � 6x1 � 8x2,

subject to

5x1 � 2x2 � 20
x1 � 2x2 � 10

and

x1 � 0, x2 � 0.

(a) Construct the dual problem for this primal problem.
(b) Solve both the primal problem and the dual problem graphi-

cally. Identify the CPF solutions and corner-point infeasible
solutions for both problems. Calculate the objective function
values for all these solutions.

(c) Use the information obtained in part (b) to construct a table
listing the complementary basic solutions for these problems.
(Use the same column headings as for Table 6.9.)

I (d) Work through the simplex method step by step to solve the
primal problem. After each iteration (including iteration 0),
identify the BF solution for this problem and the comple-
mentary basic solution for the dual problem. Also identify
the corresponding corner-point solutions.

6.3-2. Consider the model with two functional constraints and
two variables given in Prob. 4.1-5. Follow the instructions of
Prob. 6.3-1 for this model.

6.3-3. Consider the primal and dual problems for the Wyndor Glass
Co. example given in Table 6.1. Using Tables 5.5, 5.6, 6.8, and 6.9,
construct a new table showing the eight sets of nonbasic variables
for the primal problem in column 1, the corresponding sets of as-
sociated variables for the dual problem in column 2, and the set of
nonbasic variables for each complementary basic solution in the
dual problem in column 3. Explain why this table demonstrates the
complementary slackness property for this example.

6.3-4. Suppose that a primal problem has a degenerate BF solu-
tion (one or more basic variables equal to zero) as its optimal so-
lution. What does this degeneracy imply about the dual problem?
Why? Is the converse also true?

6.3-5. Consider the following problem.

Maximize Z � 3x1 � 8x2,

subject to

x1 � 2x2 � 10

and

x1 � 0, x2 � 0.

(a) Construct the dual problem, and then find its optimal solution
by inspection.

(b) Use the complementary slackness property and the optimal
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solution for the dual problem to find the optimal solution for
the primal problem.

(c) Suppose that c1, the coefficient of x1 in the primal objective
function, actually can have any value in the model. For what
values of c1 does the dual problem have no feasible solutions?
For these values, what does duality theory then imply about
the primal problem?

6.3-6. Consider the following problem.

Maximize Z � 2x1 � 7x2 � 4x3,

subject to

x1 � 2x2 � x3 � 10
3x1 � 3x2 � 2x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

(a) Construct the dual problem for this primal problem.
(b) Use the dual problem to demonstrate that the optimal value of

Z for the primal problem cannot exceed 25.
(c) It has been conjectured that x2 and x3 should be the basic vari-

ables for the optimal solution of the primal problem. Directly de-
rive this basic solution (and Z) by using Gaussian elimination.
Simultaneously derive and identify the complementary basic
solution for the dual problem by using Eq. (0) for the primal
problem. Then draw your conclusions about whether these two
basic solutions are optimal for their respective problems.

I (d) Solve the dual problem graphically. Use this solution to
identify the basic variables and the nonbasic variables for
the optimal solution of the primal problem. Directly derive
this solution, using Gaussian elimination.

6.3-7.* Reconsider the model of Prob. 6.1-3b.
(a) Construct its dual problem.
I (b) Solve this dual problem graphically.
(c) Use the result from part (b) to identify the nonbasic variables

and basic variables for the optimal BF solution for the primal
problem.

(d) Use the results from part (c) to obtain the optimal solution for
the primal problem directly by using Gaussian elimination to
solve for its basic variables, starting from the initial system of
equations [excluding Eq. (0)] constructed for the simplex
method and setting the nonbasic variables to zero.

(e) Use the results from part (c) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the primal prob-
lem, and then use these equations to find this solution.

6.3-8. Consider the model given in Prob. 5.3-10.
(a) Construct the dual problem.
(b) Use the given information about the basic variables in the

optimal primal solution to identify the nonbasic variables
and basic variables for the optimal dual solution.

(c) Use the results from part (b) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the dual prob-
lem, and then use these equations to find this solution.

I (d) Solve the dual problem graphically to verify your results
from part (c).

6.3-9. Consider the model given in Prob. 3.1-5.
(a) Construct the dual problem for this model.
(b) Use the fact that (x1, x2) � (13, 5) is optimal for the primal

problem to identify the nonbasic variables and basic variables
for the optimal BF solution for the dual problem.

(c) Identify this optimal solution for the dual problem by directly
deriving Eq. (0) corresponding to the optimal primal solution
identified in part (b). Derive this equation by using Gaussian
elimination.

(d) Use the results from part (b) to identify the defining equations
(see Sec. 5.1) for the optimal CPF solution for the dual prob-
lem. Verify your optimal dual solution from part (c) by check-
ing to see that it satisfies this system of equations.

6.3-10. Suppose that you also want information about the dual
problem when you apply the matrix form of the simplex method
(see Sec. 5.2) to the primal problem in our standard form.
(a) How would you identify the optimal solution for the dual 

problem?
(b) After obtaining the BF solution at each iteration, how would

you identify the complementary basic solution in the dual
problem?

6.4-1. Consider the following problem.

Maximize Z � 5x1 � 4x2,

subject to

2x1 � 3x2 � 10
x1 � 2x2 � 20

and

x2 � 0 (x1 unconstrained in sign).

(a) Use the SOB method to construct the dual problem.
(b) Use Table 6.12 to convert the primal problem to our standard

form given at the beginning of Sec. 6.1, and construct the cor-
responding dual problem. Then show that this dual problem is
equivalent to the one obtained in part (a).

6.4-2. Consider the primal and dual problems in our standard form
presented in matrix notation at the beginning of Sec. 6.1. Use only
this definition of the dual problem for a primal problem in this
form to prove each of the following results.
(a) If the functional constraints for the primal problem Ax � b

are changed to Ax � b, the only resulting change in the dual
problem is to delete the nonnegativity constraints, y � 0. (Hint:
The constraints Ax � b are equivalent to the set of constraints
Ax � b and Ax � b.)

(b) If the functional constraints for the primal problem Ax � b are
changed to Ax � b, the only resulting change in the dual prob-
lem is that the nonnegativity constraints y � 0 are replaced by
nonpositivity constraints y � 0, where the current dual variables
are interpreted as the negative of the original dual variables.
(Hint: The constraints Ax � b are equivalent to �Ax � �b.)
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(c) If the nonnegativity constraints for the primal problem x � 0
are deleted, the only resulting change in the dual problem is
to replace the functional constraints yA � c by yA � c. (Hint:
A variable unconstrained in sign can be replaced by the dif-
ference of two nonnegative variables.)

6.4-3.* Construct the dual problem for the linear programming
problem given in Prob. 4.6-3.

6.4-4. Consider the following problem.

Minimize Z � 5x1 � 10x2,

subject to

�4x1 � 2x2 � 4
5x1 �10x2 � 10

and

x1 � 0, x2 � 0.

(a) Construct the dual problem.
I (b) Use graphical analysis of the dual problem to determine

whether the primal problem has feasible solutions and, if so,
whether its objective function is bounded.

6.4-5. Consider the two versions of the dual problem for the radia-
tion therapy example that are given in Tables 6.15 and 6.16. Review
in Sec. 6.4 the general discussion of why these two versions are com-
pletely equivalent. Then fill in the details to verify this equivalency
by proceeding step by step to convert the version in Table 6.15 to
equivalent forms until the version in Table 6.16 is obtained.

6.4-6. For each of the following linear programming models, use
the SOB method to construct its dual problem.
(a) Model in Prob. 4.6-7
(b) Model in Prob. 4.6-16

6.4-7. Consider the model with equality constraints given in Prob.
4.6-2.
(a) Construct its dual problem.
(b) Demonstrate that the answer in part (a) is correct (i.e., equality

constraints yield dual variables without nonnegativity constraints)
by first converting the primal problem to our standard form (see
Table 6.12), then constructing its dual problem, and next con-
verting this dual problem to the form obtained in part (a).

6.4-8.* Consider the model without nonnegativity constraints
given in Prob. 4.6-14.
(a) Construct its dual problem.
(b) Demonstrate that the answer in part (a) is correct (i.e., variables

without nonnegativity constraints yield equality constraints in
the dual problem) by first converting the primal problem to our
standard form (see Table 6.12), then constructing its dual prob-
lem, and finally converting this dual problem to the form ob-
tained in part (a).

6.4-9. Consider the dual problem for the Wyndor Glass Co. ex-
ample given in Table 6.1. Demonstrate that its dual problem is the

primal problem given in Table 6.1 by going through the conver-
sion steps given in Table 6.13.

6.4-10. Consider the following problem.

Minimize Z � �5x1 � 15x2,

subject to

�2x1 � 4x2 � 8
�3x1 � 3x2 � 24

and

x1 � 0, x2 � 0.

I (a) Demonstrate graphically that this problem has an unbounded
objective function.

(b) Construct the dual problem.
I (c) Demonstrate graphically that the dual problem has no feasi-

ble solutions.

6.5-1. Consider the model of Prob. 6.7-2. Use duality theory di-
rectly to determine whether the current basic solution remains op-
timal after each of the following independent changes.
(a) The change in part (e) of Prob. 6.7-2
(b) The change in part (g) of Prob. 6.7-2

6.5-2. Consider the model of Prob. 6.7-4. Use duality theory di-
rectly to determine whether the current basic solution remains op-
timal after each of the following independent changes.
(a) The change in part (b) of Prob. 6.7-4
(b) The change in part (d ) of Prob. 6.7-4

6.5-3. Reconsider part (d ) of Prob. 6.7-6. Use duality theory di-
rectly to determine whether the original optimal solution is still
optimal.

6.6-1.* Consider the following problem.

Maximize Z � 3x1 � x2 � 4x3,

subject to

6x1 � 3x2 � 5x3 � 25
3x1 � 4x2 � 5x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

The corresponding final set of equations yielding the optimal so-
lution is

(0) Z � 2x2 � �
1
5

�x4 � �
3
5

�x5 � 17

(1) x1 � �
1
3

�x2 � �
1
3

�x4 � �
1
3

�x5 � �
5
3

�

(2) x2 � x3 � �
1
5

�x4 � �
2
5

�x5 � 3.

(a) Identify the optimal solution from this set of equations.
(b) Construct the dual problem.
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I (c) Identify the optimal solution for the dual problem from the
final set of equations. Verify this solution by solving the dual
problem graphically.

(d) Suppose that the original problem is changed to

Maximize Z � 3x1 � 3x2 � 4x3,

subject to

6x1 � 2x2 � 5x3 � 25
3x1 � 3x2 � 5x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

Use duality theory to determine whether the previous optimal
solution is still optimal.

(e) Use the fundamental insight presented in Sec. 5.3 to identify
the new coefficients of x2 in the final set of equations after it
has been adjusted for the changes in the original problem given
in part (d ).

(f) Now suppose that the only change in the original problem is
that a new variable xnew has been introduced into the model as
follows:

Maximize Z � 3x1 � x2 � 4x3 � 2xnew,

subject to

6x1 � 3x2 � 5x3 � 3xnew � 25
3x1 � 4x2 � 5x3 � 2xnew � 20

and

x1 � 0, x2 � 0, x3 � 0, xnew � 0.

Use duality theory to determine whether the previous optimal
solution, along with xnew � 0, is still optimal.

(g) Use the fundamental insight presented in Sec. 5.3 to identify
the coefficients of xnew as a nonbasic variable in the final set
of equations resulting from the introduction of xnew into the
original model as shown in part ( f ).

D,I 6.6-2. Reconsider the model of Prob. 6.6-1. You are now to
conduct sensitivity analysis by independently investigating each of
the following six changes in the original model. For each change,
use the sensitivity analysis procedure to revise the given final set
of equations (in tableau form) and convert it to proper form from
Gaussian elimination. Then test this solution for feasibility and for
optimality. (Do not reoptimize.)
(a) Change the right-hand side of constraint 1 to b1 � 10.
(b) Change the right-hand side of constraint 2 to b2 � 10.
(c) Change the coefficient of x2 in the objective function to c2 � 3.
(d) Change the coefficient of x3 in the objective function to c3 � 2.
(e) Change the coefficient of x2 in constraint 2 to a22 � 2.
(f) Change the coefficient of x1 in constraint 1 to a11 � 8.

D,I 6.6-3. Consider the following problem.

Minimize W � 5y1 � 4y2,

subject to

4y1 � 3y2 � 4
2y1 � y2 � 3
y1 � 2y2 � 1
y1 � y2 � 2

and

y1 � 0, y2 � 0.

Because this primal problem has more functional constraints than
variables, suppose that the simplex method has been applied di-
rectly to its dual problem. If we let x5 and x6 denote the slack vari-
ables for this dual problem, the resulting final simplex tableau is

For each of the following independent changes in the original pri-
mal model, you now are to conduct sensitivity analysis by directly
investigating the effect on the dual problem and then inferring the
complementary effect on the primal problem. For each change, ap-
ply the procedure for sensitivity analysis summarized at the end of
Sec. 6.6 to the dual problem (do not reoptimize), and then give
your conclusions as to whether the current basic solution for the
primal problem still is feasible and whether it still is optimal. Then
check your conclusions by a direct graphical analysis of the pri-
mal problem.
(a) Change the objective function to W � 3y1 � 5y2.
(b) Change the right-hand sides of the functional constraints to

3, 5, 2, and 3, respectively.
(c) Change the first constraint to 2y1 � 4y2 � 7.
(d) Change the second constraint to 5y1 � 2y2 � 10.

6.7-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 6.7.
Briefly describe how sensitivity analysis was applied in this study.
Then list the various financial and nonfinancial benefits that re-
sulted from the study.

D,I 6.7-2.* Consider the following problem.

Maximize Z � �5x1 � 5x2 � 13x3,

subject to

�x1 � x2 � 3x3 � 20
12x1 � 4x2 � 10x3 � 90

and

xj � 0 ( j � 1, 2, 3).

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 x6 Side

Z (0) 1 3 0 2 0 1 1 9
x2 (1) 0 1 1 �1 0 1 �1 1
x4 (2) 0 2 0 3 1 �1 2 3
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If we let x4 and x5 be the slack variables for the respective con-
straints, the simplex method yields the following final set of
equations:

(0) Z � 2x3 � 5x4 � 100.
(1) �x1 � x2 � 3x3 � x4 � 20.
(2) 16x1 � 2x3 � 4x4 � x5 � 10.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following nine changes in the original
model. For each change, use the sensitivity analysis procedure to
revise this set of equations (in tableau form) and convert it to proper
form from Gaussian elimination for identifying and evaluating the
current basic solution. Then test this solution for feasibility and for
optimality. (Do not reoptimize.)
(a) Change the right-hand side of constraint 1 to

b1 � 30.

(b) Change the right-hand side of constraint 2 to

b2 � 70.

(c) Change the right-hand sides to

� � � � �.

(d) Change the coefficient of x3 in the objective function to

c3 � 8.

(e) Change the coefficients of x1 to

� .

(f) Change the coefficients of x2 to

� .

(g) Introduce a new variable x6 with coefficients

� .

(h) Introduce a new constraint 2x1 � 3x2 � 5x3 � 50. (Denote its
slack variable by x6.)

(i) Change constraint 2 to

10x1 � 5x2 � 10x3 � 100.

6.7-3.* Reconsider the model of Prob. 6.7-2. Suppose that we now
want to apply parametric linear programming analysis to this prob-
lem. Specifically, the right-hand sides of the functional constraints
are changed to

20 � 2� (for constraint 1)

and

90 � � (for constraint 2),

where � can be assigned any positive or negative values.
Express the basic solution (and Z ) corresponding to the

original optimal solution as a function of �. Determine the
lower and upper bounds on � before this solution would be-
come infeasible.

D,I 6.7-4. Consider the following problem.

Maximize Z � 2x1 � 7x2 � 3x3,

subject to

x1 � 3x2 � 4x3 � 30
x1 � 4x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

By letting x4 and x5 be the slack variables for the respective con-
straints, the simplex method yields the following final set of
equations:

(0) Z � x2 � x3 � 2x5 � 20,
(1) � x2 � 5x3 � x4 � x5 � 20,
(2) x1 � 4x2 � x3 � x5 � 10.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following seven changes in the original
model. For each change, use the sensitivity analysis procedure to
revise this set of equations (in tableau form) and convert it to
proper form from Gaussian elimination for identifying and eval-
uating the current basic solution. Then test this solution for fea-
sibility and for optimality. If either test fails, reoptimize to find a
new optimal solution.
(a) Change the right-hand sides to

� � � � �.

(b) Change the coefficients of x3 to

� .

(c) Change the coefficients of x1 to

� .

(d) Introduce a new variable x6 with coefficients

� .

(e) Change the objective function to Z � x1 � 5x2 � 2x3.






�3

1

2











c6

a16

a26











4

3

2











c1

a11

a21











�2

3

�2











c3

a13

a23






20

30

b1

b2






10

3

5











c6

a16

a26











6

2

5











c2

a12

a22











�2

0

5











c1

a11

a21






10

100

b1

b2

hil76299_ch06_195-275.qxd  11/19/08  09:50 AM  Page 266



Rev.Confirming Pages

PROBLEMS 267

(f) Introduce a new constraint 3x1 � 2x2 � 3x3 � 25.
(g) Change constraint 2 to x1 � 2x2 � 2x3 � 35.

6.7-5. Reconsider the model of Prob. 6.7-4. Suppose that we now
want to apply parametric linear programming analysis to this prob-
lem. Specifically, the right-hand sides of the functional constraints
are changed to

30 � 3� (for constraint 1)

and

10 � � (for constraint 2),

where � can be assigned any positive or negative values.
Express the basic solution (and Z ) corresponding to the orig-

inal optimal solution as a function of �. Determine the lower and
upper bounds on � before this solution would become infeasible.

D,I 6.7-6. Consider the following problem.

Maximize Z � 2x1 � x2 � x3,

subject to

3x1 � 2x2 � 2x3 � 15
�x1 � x2 � x3 � 3

x1 � x2 � x3 � 4

and

x1 � 0, x2 � 0, x3 � 0.

If we let x4, x5, and x6 be the slack variables for the respective
constraints, the simplex method yields the following final set of
equations:

(0) Z � 2x3 � x4 � x5 � 18,
(1) x2 � 5x3 � x4 � 3x5 � 24,
(2) 2x3 � x5 � x6 � 7,
(3) x1 � 4x3 � x4 � 2x5 � 21.

Now you are to conduct sensitivity analysis by independently in-
vestigating each of the following eight changes in the original model.
For each change, use the sensitivity analysis procedure to revise this
set of equations (in tableau form) and convert it to proper form from
Gaussian elimination for identifying and evaluating the current ba-
sic solution. Then test this solution for feasibility and for optimal-
ity. If either test fails, reoptimize to find a new optimal solution.
(a) Change the right-hand sides to

� .

(b) Change the coefficient of x3 in the objective function to c3 � 2.
(c) Change the coefficient of x1 in the objective function to c1 � 3.
(d) Change the coefficients of x3 to

� .

(e) Change the coefficients of x1 and x2 to

� and � ,

respectively.
(f) Change the objective function to Z � 5x1 � x2 � 3x3.
(g) Change constraint 1 to 2x1 � x2 � 4x3 � 12.
(h) Introduce a new constraint 2x1 � x2 � 3x3 � 60.

C 6.7-7 Consider the Distribution Unlimited Co. problem pre-
sented in Sec. 3.4 and summarized in Fig. 3.13.

Although Fig. 3.13 gives estimated unit costs for shipping
through the various shipping lanes, there actually is some uncer-
tainty about what these unit costs will turn out to be. Therefore,
before adopting the optimal solution given at the end of Sec. 3.4,
management wants additional information about the effect of in-
accuracies in estimating these unit costs.

Use a computer package based on the simplex method to gen-
erate sensitivity analysis information preparatory to addressing the
following questions.
(a) Which of the unit shipping costs given in Fig. 3.13 has the

smallest margin for error without invalidating the optimal so-
lution given in Sec. 3.4? Where should the greatest effort be
placed in estimating the unit shipping costs?

(b) What is the allowable range for each of the unit shipping costs?
(c) How should these allowable ranges be interpreted to manage-

ment?
(d) If the estimates change for more than one of the unit shipping

costs, how can you use the generated sensitivity analysis in-
formation to determine whether the optimal solution might
change?

6.7-8. Consider the following problem.

Maximize Z � c1x1 � c2x2,

subject to

2x1 � x2 � b1

x1 � x2 � b2

and

x1 � 0, x2 � 0.

Let x3 and x4 denote the slack variables for the respective func-
tional constraints. When c1 � 3, c2 � �2, b1 � 30, and b2 � 10,
the simplex method yields the following final simplex tableau.







�2

�2

3

2













c2

a12

a22

a32













1

1

�2

3













c1

a11

a21

a31













4

3

2

1













c3

a13

a23

a33












10

4

2











b1

b2

b3






Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 Side

Z (0) 1 0 0 1 1 40
x2 (1) 0 0 1 1 �2 10
x1 (2) 0 1 0 1 �1 20
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I (a) Use graphical analysis to determine the allowable range for
c1 and c2.

(b) Use algebraic analysis to derive and verify your answers in
part (a).

I (c) Use graphical analysis to determine the allowable range for
b1 and b2.

(d) Use algebraic analysis to derive and verify your answers in
part (c)

C (e) Use a software package based on the simplex method to find
these allowable ranges.

I 6.7-9. Consider Variation 5 of the Wyndor Glass Co. model (see
Fig. 6.6 and Table 6.24), where the changes in the parameter val-
ues given in Table 6.21 are c�2 � 3, a�22 � 3, and a�32 � 4. Use the
formula b* � S*b� to find the allowable range for each bi. Then in-
terpret each allowable range graphically.

I 6.7-10. Consider Variation 5 of the Wyndor Glass Co. model (see
Fig. 6.6 and Table 6.24), where the changes in the parameter val-
ues given in Table 6.21 are c�2 � 3, a�22 � 3, and a�32 � 4. Verify
both algebraically and graphically that the allowable range for c1

is c1 � �
9
4

�.

6.7-11. For the problem given in Table 6.21, find the allowable
range for c2. Show your work algebraically, using the tableau given
in Table 6.21. Then justify your answer from a geometric view-
point, referring to Fig. 6.3.

6.7-12.* For the original Wyndor Glass Co. problem, use the last
tableau in Table 4.8 to do the following.
(a) Find the allowable range for each bi.
(b) Find the allowable range for c1 and c2.
C (c) Use a software package based on the simplex method to find

these allowable ranges.

6.7-13. For Variation 6 of the Wyndor Glass Co. model presented
in Sec. 6.7, use the last tableau in Table 6.25 to do the following.
(a) Find the allowable range for each bi.
(b) Find the allowable range for c1 and c2.
C (c) Use a software package based on the simplex method to find

these allowable ranges.

6.7-14. Consider Variation 5 of the Wyndor Glass Co. model pre-
sented in Sec. 6.7, where c�2 � 3, a�22 � 3, a�32 � 4, and where the
other parameters are given in Table 6.21. Starting from the resulting
final tableau given at the bottom of Table 6.24, construct a table like
Table 6.26 to perform parametric linear programming analysis, where

c1 � 3 � � and c2 � 3 � 2�.

How far can � be increased above 0 before the current basic solu-
tion is no longer optimal?

6.7-15. Reconsider the model of Prob. 6.7-6. Suppose that you now
have the option of making trade-offs in the profitability of the first
two activities, whereby the objective function coefficient of x1 can
be increased by any amount by simultaneously decreasing the ob-
jective function coefficient of x2 by the same amount. Thus, the al-
ternative choices of the objective function are

Z(�) � (2 � �)x1 � (1 � �)x2 � x3,

where any nonnegative value of � can be chosen.
Construct a table like Table 6.26 to perform parametric linear

programming analysis on this problem. Determine the upper bound
on � before the original optimal solution would become nonopti-
mal. Then determine the best choice of � over this range.

6.7-16. Consider the following parametric linear programming
problem.

Maximize Z(�) � (10 � 4�)x1 � (4 � �)x2 � (7 � �)x3,

subject to

3x1 � x2 � 2x3 � 7 (resource 1),
2x1 � x2 � 3x3 � 5 (resource 2),

and

x1 � 0, x2 � 0, x3 � 0,

where � can be assigned any positive or negative values. Let x4 and
x5 be the slack variables for the respective constraints. After we
apply the simplex method with � � 0, the final simplex tableau is

(a) Determine the range of values of � over which the above BF
solution will remain optimal. Then find the best choice of �
within this range.

(b) Given that � is within the range of values found in part (a), find
the allowable range for b1 (the available amount of resource 1).
Then do the same for b2 (the available amount of resource 2).

(c) Given that � is within the range of values found in part (a), iden-
tify the shadow prices (as a function of �) for the two resources.
Use this information to determine how the optimal value of the
objective function would change (as a function of �) if the avail-
able amount of resource 1 were decreased by 1 and the avail-
able amount of resource 2 simultaneously were increased by 1.

(d) Construct the dual of this parametric linear programming prob-
lem. Set � � 0 and solve this dual problem graphically to find
the corresponding shadow prices for the two resources of the
primal problem. Then find these shadow prices as a function
of � [within the range of values found in part (a)] by alge-
braically solving for this same optimal CPF solution for the
dual problem as a function of �.

6.7-17. Consider the following parametric linear programming
problem.

Maximize Z(�) � 2x1 � 4x2 � 5x3,

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 0 0 3 2 2 24
x1 (1) 0 1 0 �1 1 �1 2
x2 (2) 0 0 1 5 �2 3 1
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subject to

x1 � 3x2 � 2x3 � 5 � �
x1 � 2x2 � 3x3 � 6 � 2�

and

x1 � 0, x2 � 0, x3 � 0,

where � can be assigned any positive or negative values. Let x4 and
x5 be the slack variables for the respective functional constraints.
After we apply the simplex method with � � 0, the final simplex
tableau is

(a) Express the BF solution (and Z ) given in this tableau as a func-
tion of �. Determine the lower and upper bounds on � before
this optimal BF solution would become infeasible. Then de-
termine the best choice of � between these bounds.

(b) Given that � is between the bounds found in part (a), deter-
mine the allowable range for c1 (the coefficient of x1 in the ob-
jective function).

6.7-18. Consider the following problem.

Maximize Z � 10x1 � 4x2,

subject to

3x1 � x2 � 30
2x1 � x2 � 25

and

x1 � 0, x2 � 0.

Let x3 and x4 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is

Now suppose that both of the following changes are made si-
multaneously in the original model:

1. The first constraint is changed to 4x1 � x2 � 40.
2. Parametric programming is introduced to change the objective

function to the alternative choices of

Z(�) � (10 � 2�)x1 � (4 � �)x2,

where any nonnegative value of � can be chosen.
(a) Construct the resulting revised final tableau (as a function of

�), and then convert this tableau to proper form from Gauss-
ian elimination. Use this tableau to identify the new optimal
solution that applies for either � � 0 or sufficiently small val-
ues of �.

(b) What is the upper bound on � before this optimal solution
would become nonoptimal?

(c) Over the range of � from zero to this upper bound, which choice
of � gives the largest value of the objective function?

6.7-19. Consider the following problem.

Maximize Z � 9x1 � 8x2 � 5x3,

subject to

2x1 � 3x2 � x3 � 4
5x1 � 4x2 � 3x3 � 11

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 denote the slack variables for the respective func-
tional constraints. After we apply the simplex method, the final
simplex tableau is

D,I (a) Suppose that a new technology has become available for
conducting the first activity considered in this problem. If
the new technology were adopted to replace the existing
one, the coefficients of x1 in the model would change

from � to � .

Use the sensitivity analysis procedure to investigate the
potential effect and desirability of adopting the new tech-
nology. Specifically, assuming it were adopted, construct
the resulting revised final tableau, convert this tableau to
proper form from Gaussian elimination, and then reopti-
mize (if necessary) to find the new optimal solution.

(b) Now suppose that you have the option of mixing the old and
new technologies for conducting the first activity. Let � denote






18

3

6











c1

a11

a21











9

2

5











c1

a11

a21






Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 0 0 1 0 1 1 11
x1 (1) 1 1 5 0 3 �2 3
x3 (2) 2 0 �1 1 �1 1 1

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 Side

Z (0) 1 0 0 2 2 110
x2 (1) 0 0 1 �2 3 15
x1 (2) 0 1 0 1 �1 5

Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 0 2 0 2 1 19
x1 (1) 0 1 5 0 3 �1 1
x3 (2) 0 0 �7 1 �5 2 2
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the fraction of the technology used that is from the new tech-
nology, so 0 � � � 1. Given �, the coefficients of x1 in the
model become

� .

Construct the resulting revised final tableau (as a function of �), and
convert this tableau to proper form from Gaussian elimination. Use
this tableau to identify the current basic solution as a function of �.
Over the allowable values of 0 � � � 1, give the range of values of
� for which this solution is both feasible and optimal. What is the
best choice of � within this range?

6.7-20. Consider the following problem.

Maximize Z � 3x1 � 5x2 � 2x3,

subject to

�2x1 � 2x2 � x3 � 5
�3x1 � x2 � x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

Let x4 and x5 be the slack variables for the respective functional
constraints. After we apply the simplex method, the final simplex
tableau is

Parametric linear programming analysis now is to be applied si-
multaneously to the objective function and right-hand sides, where
the model in terms of the new parameter is the following:

Maximize Z(�) � (3 � 2�)x1 � (5 � �)x2 � (2 � �)x3,

subject to

�2x1 � 2x2 � x3 � 5 � 6�
�3x1 � x2 � x3 � 10 � 8�

and

x1 � 0, x2 � 0, x3 � 0.

Construct the resulting revised final tableau (as a function of �), and
convert this tableau to proper form from Gaussian elimination. Use
this tableau to identify the current basic solution as a function of �.
For � � 0, give the range of values of � for which this solution is both
feasible and optimal. What is the best choice of � within this range?

6.7-21. Consider the Wyndor Glass Co. problem described in
Sec. 3.1. Suppose that, in addition to considering the introduction
of two new products, management now is considering changing the
production rate of a certain old product that is still profitable. Refer
to Table 3.1. The number of production hours per week used per unit
production rate of this old product is 1, 4, and 3 for Plants 1, 2, and
3, respectively. Therefore, if we let � denote the change (positive or
negative) in the production rate of this old product, the right-hand
sides of the three functional constraints in Sec. 3.1 become 4 � �,
12 � 4�, and 18 � 3�, respectively. Thus, choosing a negative value
of � would free additional capacity for producing more of the two new
products, whereas a positive value would have the opposite effect.
(a) Use a parametric linear programming formulation to determine

the effect of different choices of � on the optimal solution for
the product mix of the two new products given in the final
tableau of Table 4.8. In particular, use the fundamental insight
of Sec. 5.3 to obtain expressions for Z and the basic variables
x3, x2, and x1 in terms of �, assuming that � is sufficiently close
to zero that this “final” basic solution still is feasible and thus
optimal for the given value of �.

(b) Now consider the broader question of the choice of � along
with the product mix for the two new products. What is the
breakeven unit profit for the old product (in comparison with
the two new products) below which its production rate should
be decreased (� � 0) in favor of the new products and above
which its production rate should be increased (� � 0)?

(c) If the unit profit is above this breakeven point, how much can
the old product’s production rate be increased before the final
BF solution would become infeasible?

(d) If the unit profit is below this breakeven point, how much can
the old product’s production rate be decreased (assuming its
previous rate was larger than this decrease) before the final BF
solution would become infeasible?

6.7-22. Consider the following problem.

Maximize Z � 2x1 � x2 � 3x3,

subject to

x1 � x2 � x3 � 3
x1 � 2x2 � x3 � 1
x1 � 2x2 � x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

Suppose that the Big M method (see Sec. 4.6) is used to obtain the
initial (artificial) BF solution. Let x�4 be the artificial slack variable
for the first constraint, x5 the surplus variable for the second con-
straint, x�6 the artificial variable for the second constraint, and x7

the slack variable for the third constraint. The corresponding final
set of equations yielding the optimal solution is

(0) Z � 5x2 � (M � 2)x�4 � Mx�6 � x7 � 8,
(1) x1 � x2 � x�4 � x7 � 1,
(2) 2x2 � x3 � x7 � 2,
(3) 3x2 � x�4 � x5 � x�6 � 2.






9 � 9�

2 � �

5 � �











c1

a11

a21






Coefficient of:
Basic Right

Variable Eq. Z x1 x2 x3 x4 x5 Side

Z (0) 1 0 20 0 9 7 115
x1 (1) 0 1 3 0 1 1 15
x3 (2) 0 0 8 1 3 2 35
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Suppose that the original objective function is changed to 
Z � 2x1 � 3x2 � 4x3 and that the original third constraint is
changed to 2x2 � x3 � 1. Use the sensitivity analysis procedure to
revise the final set of equations (in tableau form) and convert it to
proper form from Gaussian elimination for identifying and evalu-
ating the current basic solution. Then test this solution for feasi-
bility and for optimality. (Do not reoptimize.)

6.8-1. Consider the following problem.

Maximize Z � 2x1 � 5x2,

subject to

x1 � 2x2 � 10 (resource 1)
x1 � 3x2 � 12 (resource 2)

and

x1 � 0, x2 � 0,

where Z measures the profit in dollars from the two activities.
While doing sensitivity analysis, you learn that the estimates

of the unit profits are accurate only to within �50 percent. In other
words, the ranges of likely values for these unit profits are $1 to
$3 for activity 1 and $2.50 to $7.50 for activity 2.
E* (a) Formulate a spreadsheet model for this problem based on

the original estimates of the unit profits. Then use the Solver
to find an optimal solution and to generate the sensitivity
report.

E* (b) Use the spreadsheet and Solver to check whether this opti-
mal solution remains optimal if the unit profit for activity 1
changes from $2 to $1. From $2 to $3.

E* (c) Also check whether the optimal solution remains optimal
if the unit profit for activity 1 still is $2 but the unit profit
for activity 2 changes from $5 to $2.50. From $5 to $7.50.

E* (d) Use the Solver Table to systematically generate the optimal
solution and total profit as the unit profit of activity 1 in-
creases in 20¢ increments from $1 to $3 (without changing
the unit profit of activity 2). Then do the same as the unit
profit of activity 2 increases in 50¢ increments from $2.50
to $7.50 (without changing the unit profit of activity 1). Use
these results to estimate the allowable range for the unit
profit of each activity.

I (e) Use the Graphical Method and Sensitivity Analysis proce-
dure in IOR Tutorial to estimate the allowable range for the
unit profit of each activity.

E* (f) Use the sensitivity report provided by the Excel Solver to
find the allowable range for the unit profit of each activity.
Then use these ranges to check your results in parts (b–e).

E* (g) Use a two-way Solver Table to systematically generate the
optimal solution as the unit profits of the two activities are
changed simultaneously as described in part (d).

I (h) Use the Graphical Method and Sensitivity Analysis procedure
in IOR Tutorial to interpret the results in part (g) graphically.

E* 6.8-2. Reconsider the model given in Prob. 6.8-1. While doing
sensitivity analysis, you learn that the estimates of the right-hand
sides of the two functional constraints are accurate only to within

�50 percent. In other words, the ranges of likely values for these
parameters are 5 to 15 for the first right-hand side and 6 to 18 for
the second right-hand side.
(a) After solving the original spreadsheet model, determine the

shadow price for the first functional constraint by increasing
its right-hand side by 1 and solving again.

(b) Use the Solver Table to generate the optimal solution and to-
tal profit as the right-hand side of the first functional constraint
is incremented by 1 from 5 to 15. Use this table to estimate
the allowable range for this right-hand side, i.e., the range over
which the shadow price obtained in part (a) is valid.

(c) Repeat part (a) for the second functional constraint.
(d) Repeat part (b) for the second functional constraint where its

right-hand side is incremented by 1 from 6 to 18.
(e) Use the Solver’s sensitivity report to determine the shadow

price for each functional constraint and the allowable range for
the right-hand side of each of these constraints.

6.8-3. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � 3x2 � 8 (resource 1)
x1 � x2 � 4 (resource 2)

and

x1 � 0, x2 � 0,

where Z measures the profit in dollars from the two activities and
the right-hand sides are the number of units available of the re-
spective resources.
I (a) Use the graphical method to solve this model.
I (b) Use graphical analysis to determine the shadow price for

each of these resources by solving again after increasing the
amount of the resource available by 1.

E* (c) Use the spreadsheet model and the Solver instead to do
parts (a) and (b).

E* (d) For each resource in turn, use the Solver Table to system-
atically generate the optimal solution and the total profit
when the only change is that the amount of that resource
available increases in increments of 1 from 4 less than the
original value up to 6 more than the current value. Use these
results to estimate the allowable range for the amount avail-
able of each resource.

(e) Use the Solver’s sensitivity report to obtain the shadow prices.
Also use this report to find the range for the amount of each
resource available over which the corresponding shadow price
remains valid.

(f) Describe why these shadow prices are useful when manage-
ment has the flexibility to change the amounts of the resources
being made available.

6.8-4.* One of the products of the G.A. Tanner Company is a spe-
cial kind of toy that provides an estimated unit profit of $3. Be-
cause of a large demand for this toy, management would like to
increase its production rate from the current level of 1,000 per day.
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Resource Usage per 
Unit of Each Activity

Activity

Produce Produce Amount of
Resource Toys Subassemblies Resource Available

Subassembly A 2 –1 3,000
Subassembly B 1 –1 1,000
Unit profit $3 –$2.50

However, a limited supply of two subassemblies (A and B) from
vendors makes this difficult. Each toy requires two subassemblies
of type A, but the vendor providing these subassemblies would only
be able to increase its supply rate from the current 2,000 per day
to a maximum of 3,000 per day. Each toy requires only one sub-
assembly of type B, but the vendor providing these subassemblies
would be unable to increase its supply rate above the current level
of 1,000 per day. Because no other vendors currently are available
to provide these subassemblies, management is considering initi-
ating a new production process internally that would simultane-
ously produce an equal number of subassemblies of the two types
to supplement the supply from the two vendors. It is estimated that
the company’s cost for producing one subassembly of each type
would be $2.50 more than the cost of purchasing these subassem-
blies from the two vendors. Management wants to determine both
the production rate of the toy and the production rate of each pair
of subassemblies (one A and one B) that would maximize the to-
tal profit.

The following table summarizes the data for the problem.

E* (a) Formulate and solve a spreadsheet model for this problem.
E* (b) Since the stated unit profits for the two activities are only

estimates, management wants to know how much each of
these estimates can be off before the optimal solution would
change. Begin exploring this question for the first activity
(producing toys) by using the spreadsheet and Solver to
manually generate a table that gives the optimal solution
and total profit as the unit profit for this activity increases
in 50¢ increments from $2 to $4. What conclusion can be
drawn about how much the estimate of this unit profit can
differ in each direction from its original value of $3 before
the optimal solution would change?

E* (c) Repeat part (b) for the second activity (producing sub-
assemblies) by generating a table as the unit profit for this
activity increases in 50¢ increments from –$3.50 to –$1.50
(with the unit profit for the first activity fixed at $3).

E* (d) Use the Solver Table to systematically generate all the data
requested in parts (b) and (c), except use 25¢ increments
instead of 50¢ increments. Use these data to refine your
conclusions in parts (b) and (c).

I (e) Use the Graphical Method and Sensitivity Analysis proce-
dure in IOR Tutorial to determine how much the unit profit
of each activity can change in either direction (without
changing the unit profit of the other activity) before the

optimal solution would change. Use this information to specify
the allowable range for the unit profit of each activity.

E* (f) Use Excel’s sensitivity report to find the allowable range
for the unit profit of each activity.

E* (g) Use a two-way Solver Table to systematically generate the
optimal solution as the unit profits of the two activities are
changed simultaneously as described in parts (b) and (c).

(h) Use the information provided by Excel’s sensitivity report to de-
scribe how far the unit profits of the two activities can change
simultaneously before the optimal solution might change.

E* 6.8-5. Reconsider Prob. 6.8-4. After further negotiations with
each vendor, management of the G.A. Tanner Co. has learned that
either of them would be willing to consider increasing their sup-
ply of their respective subassemblies over the previously stated
maxima (3,000 subassemblies of type A per day and 1,000 of type
B per day) if the company would pay a small premium over the
regular price for the extra subassemblies. The size of the premium
for each type of subassembly remains to be negotiated. The de-
mand for the toy being produced is sufficiently high so that 2,500
per day could be sold if the supply of subassemblies could be in-
creased enough to support this production rate. Assume that the
original estimates of unit profits given in Prob. 6.8-4 are accurate.
(a) Formulate and solve a spreadsheet model for this problem with

the original maximum supply levels and the additional constraint
that no more than 2,500 toys should be produced per day.

(b) Without considering the premium, use the spreadsheet and
Solver to determine the shadow price for the subassembly A
constraint by solving the model again after increasing the max-
imum supply by 1. Use this shadow price to determine the
maximum premium that the company should be willing to pay
for each subassembly of this type.

(c) Repeat part (b) for the subassembly B constraint.
(d) Estimate how much the maximum supply of subassemblies of

type A could be increased before the shadow price (and the
corresponding premium) found in part (b) would no longer be
valid by using the Solver Table to generate the optimal solu-
tion and total profit (excluding the premium) as the maximum
supply increases in increments of 100 from 3,000 to 4,000.

(e) Repeat part (d) for subassemblies of type B by using the Solver
Table as the maximum supply increases in increments of 100
from 1,000 to 2,000.

(f) Use the Solver’s sensitivity report to determine the shadow
price for each of the subassembly constraints and the allow-
able range for the right-hand side of each of these constraints.

E* 6.8-6.* Consider the Union Airways problem presented in
Sec. 3.4, including the data given in Table 3.19. The Excel files
for Chap. 3 include a spreadsheet that shows the formulation and
optimal solution for this problem. You are to use this spreadsheet
and the Excel Solver to do parts (a) to (g) below.

Management is about to begin negotiations on a new contract
with the union that represents the company’s customer service
agents. This might result in some small changes in the daily costs
per agent given in Table 3.19 for the various shifts. Several possible
changes listed below are being considered separately. In each case,
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management would like to know whether the change might result in
the solution in the spreadsheet no longer being optimal. Answer this
question in parts (a) to (e) by using the spreadsheet and Solver di-
rectly. If the optimal solution changes, record the new solution.
(a) The daily cost per agent for Shift 2 changes from $160 to $165.
(b) The daily cost per agent for Shift 4 changes from $180 to $170.
(c) The changes in parts (a) and (b) both occur.
(d) The daily cost per agent increases by $4 for shifts 2, 4, and 5,

but decreases by $4 for shifts 1 and 3.
(e) The daily cost per agent increases by 2 percent for each shift.
(f) Use the Solver to generate the sensitivity report for this prob-

lem. Suppose that the above changes are being considered later
without having the spreadsheet model immediately available
on a computer. Show in each case how the sensitivity report
can be used to check whether the original optimal solution must
still be optimal.

(g) For each of the five shifts in turn, use the Solver Table to sys-
tematically generate the optimal solution and total cost when
the only change is that the daily cost per agent on that shift in-
creases in $3 increments from $15 less than the current cost
up to $15 more than the current cost.

E* 6.8-7. Reconsider the Union Airways problem and its spread-
sheet model that was dealt with in Prob. 6.8-6.

Management now is considering increasing the level of ser-
vice provided to customers by increasing one or more of the
numbers in the rightmost column of Table 3.19 for the minimum
number of agents needed in the various time periods. To guide
them in making this decision, they would like to know what im-
pact this change would have on total cost.

Use the Excel Solver to generate the sensitivity report in
preparation for addressing the following questions.
(a) Which of the numbers in the rightmost column of Table 3.19

can be increased without increasing total cost? In each case,
indicate how much it can be increased (if it is the only one be-
ing changed) without increasing total cost.

(b) For each of the other numbers, how much would the total cost
increase per increase of 1 in the number? For each answer,
indicate how much the number can be increased (if it is the
only one being changed) before the answer is no longer valid.

(c) Do your answers in part (b) definitely remain valid if all the
numbers considered in part (b) are simultaneously increased
by one?

(d) Do your answers in part (b) definitely remain valid if all 10
numbers are simultaneously increased by one?

(e) How far can all 10 numbers be simultaneously increased by
the same amount before your answers in part (b) may no longer
be valid?

6.8-8. David, LaDeana, and Lydia are the sole partners and work-
ers in a company which produces fine clocks. David and LaDeana
each are available to work a maximum of 40 hours per week at the
company, while Lydia is available to work a maximum of 20 hours
per week.

The company makes two different types of clocks: a grand-
father clock and a wall clock. To make a clock, David (a mechanical

engineer) assembles the inside mechanical parts of the clock while
LaDeana (a woodworker) produces the handcarved wood casings.
Lydia is responsible for taking orders and shipping the clocks. The
amount of time required for each of these tasks is shown below.

Each grandfather clock built and shipped yields a profit of $300,
while each wall clock yields a profit of $200.

The three partners now want to determine how many clocks
of each type should be produced per week to maximize the total
profit.
(a) Formulate a linear programming model in algebraic form for

this problem.
I (b) Use the Graphical Method and Sensitivity Analysis proce-

dure in IOR Tutorial to solve the model. Then use this pro-
cedure to check if the optimal solution would change if the
unit profit for grandfather clocks is changed from $300 to
$375 (with no other changes in the model). Then check if
the optimal solution would change if, in addition to this
change in the unit profit for grandfather clocks, the esti-
mated unit profit for wall clocks also changes from $200
to $175.

E* (c) Formulate and solve this model on a spreadsheet.
E* (d) Use the Excel Solver to check the effect of the changes

specified in part (b).
E* (e) Use the Solver Table to systematically generate the optimal

solution and total profit as the unit profit for grandfather
clocks is increased in $20 increments from $150 to $450
(with no change in the unit profit for wall clocks). Then do
the same as the unit profit for wall clocks is increased in
$20 increments from $50 to $350 (with no change in the
unit profit for grandfather clocks). Use this information to
estimate the allowable range for the unit profit of each type
of clock.

E* (f) Use a two-way Solver Table to systematically generate the
optimal solution as the unit profits for the two types of
clocks are changed simultaneously as specified in part (e),
except use $50 increments instead of  $20 increments.

E* (g) For each of the three partners in turn, use the Excel Solver
to determine the effect on the optimal solution and the total
profit if that partner alone were to increase the maximum
number of hours available to work per week by 5 hours.

E* (h) Use the Solver Table to systematically generate the optimal
solution and the total profit when the only change is that
David’s maximum number of hours available to work per
week changes to each of the following values: 35, 37, 39,
41, 43, 45. Then do the same when the only change is that
LaDeana’s number changes in the same way. Then do the

Time Required

Task Grandfather Clock Wall Clock

Assemble clock mechanism 6 hours 4 hours
Carve wood casing 8 hours 4 hours
Shipping 3 hours 3 hours
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same when the only change is that Lydia’s number changes
to each of the following values: 15, 17, 19, 21, 23, 25.

E* (i) Generate the Excel sensitivity report and use it to determine
the allowable range for the unit profit for each type of clock
and the allowable range for the maximum number of hours
each partner is available to work per week.

(j) To increase the total profit, the three partners have agreed that
one of them will slightly increase the maximum number of
hours available to work per week. The choice of which one will
be based on which one would increase the total profit the most.
Use the sensitivity report to make this choice. (Assume no
change in the original estimates of the unit profits.)

(k) Explain why one of the shadow prices is equal to zero.
(l) Can the shadow prices in the sensitivity report be validly used

to determine the effect if Lydia were to change her maximum
number of hours available to work per week from 20 to 25? If
so, what would be the increase in the total profit?

(m) Repeat part (l) if, in addition to the change for Lydia, David
also were to change his maximum number of hours available
to work per week from 40 to 35.

I (n) Use graphical analysis to verify your answer in part (m).

■ CASES

CASE 6.1 Controlling Air Pollution
Refer to Sec. 3.4 (subsection entitled “Controlling Air
Pollution”) for the Nori & Leets Co. problem. After the OR
team obtained an optimal solution, we mentioned that the
team then conducted sensitivity analysis. We now continue
this story by having you retrace the steps taken by the OR
team, after we provide some additional background.

The values of the various parameters in the original for-
mulation of the model are given in Tables 3.12, 3.13, and
3.14. Since the company does not have much prior experi-
ence with the pollution abatement methods under consider-
ation, the cost estimates given in Table 3.14 are fairly rough,
and each one could easily be off by as much as 10 percent
in either direction. There also is some uncertainty about the
parameter values given in Table 3.13, but less so than for
Table 3.14. By contrast, the values in Table 3.12 are policy
standards, and so are prescribed constants.

However, there still is considerable debate about where
to set these policy standards on the required reductions in
the emission rates of the various pollutants. The numbers in
Table 3.12 actually are preliminary values tentatively agreed
upon before learning what the total cost would be to meet these
standards. Both the city and company officials agree that the
final decision on these policy standards should be based on the
trade-off between costs and benefits. With this in mind, the city
has concluded that each 10 percent increase in the policy stan-
dards over the current values (all the numbers in Table 3.12)
would be worth $3.5 million to the city. Therefore, the city has
agreed to reduce the company’s tax payments to the city by
$3.5 million for each 10 percent reduction in the policy stan-
dards (up to 50 percent) that is accepted by the company.

Finally, there has been some debate about the relative
values of the policy standards for the three pollutants. As
indicated in Table 3.12, the required reduction for particu-
lates now is less than half of that for either sulfur oxides or

hydrocarbons. Some have argued for decreasing this dispar-
ity. Others contend that an even greater disparity is justified
because sulfur oxides and hydrocarbons cause considerably
more damage than particulates. Agreement has been reached
that this issue will be reexamined after information is ob-
tained about which trade-offs in policy standards (increas-
ing one while decreasing another) are available without
increasing the total cost.

(a) Use any available linear programming software to solve the
model for this problem as formulated in Sec. 3.4. In addition
to the optimal solution, obtain the additional output provided
for performing postoptimality analysis (e.g., the Sensitivity
Report when using Excel). This output provides the basis for
the following steps.

(b) Ignoring the constraints with no uncertainty about their para-
meter values (namely, xj � 1 for j � 1, 2, . . . , 6), identify the
parameters of the model that should be classified as sensitive
parameters. (Hint: See the subsection “Sensitivity Analysis”
in Sec. 4.7.) Make a resulting recommendation about which
parameters should be estimated more closely, if possible.

(c) Analyze the effect of an inaccuracy in estimating each cost pa-
rameter given in Table 3.14. If the true value is 10 percent less
than the estimated value, would this alter the optimal solution?
Would it change if the true value were 10 percent more than
the estimated value? Make a resulting recommendation about
where to focus further work in estimating the cost parameters
more closely.

(d) Consider the case where your model has been converted to
maximization form before applying the simplex method. Use
Table 6.14 to construct the corresponding dual problem, and
use the output from applying the simplex method to the pri-
mal problem to identify an optimal solution for this dual prob-
lem. If the primal problem had been left in minimization form,
how would this affect the form of the dual problem and the
sign of the optimal dual variables?

(e) For each pollutant, use your results from part (d) to specify the
rate at which the total cost of an optimal solution would change
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with any small change in the required reduction in the annual
emission rate of the pollutant. Also specify how much this re-
quired reduction can be changed (up or down) without affect-
ing the rate of change in the total cost.

(f) For each unit change in the policy standard for particulates given
in Table 3.12, determine the change in the opposite direction
for sulfur oxides that would keep the total cost of an optimal
solution unchanged. Repeat this for hydrocarbons instead of sul-
fur oxides. Then do it for a simultaneous and equal change for
both sulfur oxides and hydrocarbons in the opposite direction
from particulates.

(g) Letting � denote the percentage increase in all the policy stan-
dards given in Table 3.12, formulate the problem of analyz-
ing the effect of simultaneous proportional increases in these

standards as a parametric linear programming problem. Then
use your results from part (e) to determine the rate at which
the total cost of an optimal solution would increase with a small
increase in � from zero.

(h) Use the simplex method to find an optimal solution for the
parametric linear programming problem formulated in part (g)
for each � � 10, 20, 30, 40, 50. Considering the tax incentive
offered by the city, use these results to determine which value
of � (including the option of � � 0) should be chosen to min-
imize the company’s total cost of both pollution abatement and
taxes.

(i) For the value of � chosen in part (h), repeat parts (e) and ( f ) so
that the decision makers can make a final decision on the rela-
tive values of the policy standards for the three pollutants.

■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 6.2 Farm Management
The Ploughman family has owned and operated a 640-acre
farm for several generations. The family now needs to make
a decision about the mix of livestock and crops for the
coming year. By assuming that normal weather conditions
will prevail next year, a linear programming model can be
formulated and solved to guide this decision. However, ad-
verse weather conditions would harm the crops and greatly
reduce the resulting value. Therefore, considerable postop-
timality analysis is needed to explore the effect of several
possible scenarios for the weather next year and the impli-
cations for the family’s decision.

CASE 6.3 Assigning Students 
to Schools, Revisited
This case is a continuation of Case 4.3, which involved
the Springfield School Board assigning students from six
residential areas to the city’s three remaining middle
schools. After solving a linear programming model for

the problem with any software package, that package’s
sensitivity analysis report now needs to be used for two
purposes. One is to check on the effect of an increase in
certain bussing costs because of ongoing road construc-
tion in one of the residential areas. The other is to explore
the advisability of adding portable classrooms to increase
the capacity of one or more of the middle schools for a
few years.

CASE 6.4 Writing a Nontechnical
Memo
After setting goals for how much the sales of three products
should increase as a result of an upcoming advertising cam-
paign, the management of the Profit & Gambit Co. now wants
to explore the trade-off between advertising cost and increased
sales. Your first task is to perform the associated sensitivity
analysis. Your main task then is to write a nontechnical memo
to Profit & Gambit management presenting your results in the
language of management.
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7C H A P T E R

Other Algorithms for Linear
Programming

■ 7.1 THE DUAL SIMPLEX METHOD

The dual simplex method is based on the duality theory presented in the first part of Chap. 6.
To describe the basic idea behind this method, it is helpful to use some terminology in-
troduced in Tables 6.10 and 6.11 of Sec. 6.3 for describing any pair of complementary ba-
sic solutions in the primal and dual problems. In particular, recall that both solutions are
said to be primal feasible if the primal basic solution is feasible, whereas they are called

The key to the extremely widespread use of linear programming is the availability of
an exceptionally efficient algorithm—the simplex method—that will routinely solve

the large-size problems that typically arise in practice. However, the simplex method is
only part of the arsenal of algorithms regularly used by linear programming practitioners.
We now turn to these other algorithms.

This chapter begins with three algorithms that are, in fact, variants of the simplex method.
In particular, the next three sections introduce the dual simplex method (a modification par-
ticularly useful for sensitivity analysis), parametric linear programming (an extension for sys-
tematic sensitivity analysis), and the upper bound technique (a streamlined version of the
simplex method for dealing with variables having upper bounds). We will not go into the
kind of detail with these algorithms that we did with the simplex method in Chaps. 4 and 5.
The goal instead will be to briefly introduce their main ideas.

Section 4.9 introduced another algorithmic approach to linear programming—a type of
algorithm that moves through the interior of the feasible region. We describe this interior-
point approach further in Sec. 7.4.

A supplement to this chapter on the book’s website also introduces linear goal pro-
gramming. In this case, rather than having a single objective (maximize or minimize Z )
as for linear programming, the problem instead has several goals toward which we must
strive simultaneously. Certain formulation techniques enable converting a linear goal pro-
gramming problem back into a linear programming problem so that solution procedures
based on the simplex method can still be used. The supplement describes these techniques
and procedures.
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dual feasible if the complementary dual basic solution is feasible for the dual problem.
Also recall (as indicated on the right side of Table 6.11) that each complementary basic
solution is optimal for its problem only if it is both primal feasible and dual feasible.

The dual simplex method can be thought of as the mirror image of the simplex method.
The simplex method deals directly with basic solutions in the primal problem that are pri-
mal feasible but not dual feasible. It then moves toward an optimal solution by striving
to achieve dual feasibility as well (the optimality test for the simplex method). By con-
trast, the dual simplex method deals with basic solutions in the primal problem that are
dual feasible but not primal feasible. It then moves toward an optimal solution by striv-
ing to achieve primal feasibility as well.

Furthermore, the dual simplex method deals with a problem as if the simplex method
were being applied simultaneously to its dual problem. If we make their initial basic so-
lutions complementary, the two methods move in complete sequence, obtaining comple-
mentary basic solutions with each iteration.

The dual simplex method is very useful in certain special types of situations. Ordinar-
ily it is easier to find an initial basic solution that is feasible than one that is dual feasible.
However, it is occasionally necessary to introduce many artificial variables to construct an
initial BF solution artificially. In such cases it may be easier to begin with a dual feasible
basic solution and use the dual simplex method. Furthermore, fewer iterations may be re-
quired when it is not necessary to drive many artificial variables to zero.

When dealing with a problem whose initial basic solutions (without artificial vari-
ables) are neither primal feasible nor dual feasible, it also is possible to combine the ideas
of the simplex method and dual simplex method into a primal-dual algorithm that strives
toward both primal feasibility and dual feasibility.

As we mentioned several times in Chap. 6 as well as in Sec. 4.7, another important
primary application of the dual simplex method is its use in conjunction with sensitivity
analysis. Suppose that an optimal solution has been obtained by the simplex method but
that it becomes necessary (or of interest for sensitivity analysis) to make minor changes
in the model. If the formerly optimal basic solution is no longer primal feasible (but still
satisfies the optimality test), you can immediately apply the dual simplex method by
starting with this dual feasible basic solution. (We will illustrate this at the end of this
section.) Applying the dual simplex method in this way usually leads to the new optimal
solution much more quickly than would solving the new problem from the beginning
with the simplex method.

The dual simplex method also can be useful in solving certain huge linear program-
ming problems from scratch because it is such an efficient algorithm. Computational ex-
perience with the most powerful versions of CPLEX indicates that the dual simplex method
often is more efficient than the simplex method for solving particularly massive problems
encountered in practice.

The rules for the dual simplex method are very similar to those for the simplex method.
In fact, once the methods are started, the only difference between them is in the criteria
used for selecting the entering and leaving basic variables and for stopping the algorithm.

To start the dual simplex method (for a maximization problem), we must have all the
coefficients in Eq. (0) nonnegative (so that the basic solution is dual feasible). The basic
solutions will be infeasible (except for the last one) only because some of the variables
are negative. The method continues to decrease the value of the objective function, always
retaining nonnegative coefficients in Eq. (0), until all the variables are nonnegative. Such
a basic solution is feasible (it satisfies all the equations) and is, therefore, optimal by the
simplex method criterion of nonnegative coefficients in Eq. (0).

The details of the dual simplex method are summarized next.
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Summary of the Dual Simplex Method

1. Initialization: After converting any functional constraints in � form to � form (by
multiplying through both sides by �1), introduce slack variables as needed to con-
struct a set of equations describing the problem. Find a basic solution such that the 
coefficients in Eq. (0) are zero for basic variables and nonnegative for nonbasic vari-
ables (so the solution is optimal if it is feasible). Go to the feasibility test.

2. Feasibility test: Check to see whether all the basic variables are nonnegative. If they are,
then this solution is feasible, and therefore optimal, so stop. Otherwise, go to an iteration.

3. Iteration:
Step 1 Determine the leaving basic variable: Select the negative basic variable

that has the largest absolute value.
Step 2 Determine the entering basic variable: Select the nonbasic variable

whose coefficient in Eq. (0) reaches zero first as an increasing multiple of the equa-
tion containing the leaving basic variable is added to Eq. (0). This selection is made
by checking the nonbasic variables with negative coefficients in that equation (the one
containing the leaving basic variable) and selecting the one with the smallest absolute
value of the ratio of the Eq. (0) coefficient to the coefficient in that equation.

Step 3 Determine the new basic solution: Starting from the current set of equa-
tions, solve for the basic variables in terms of the nonbasic variables by Gaussian elim-
ination. When we set the nonbasic variables equal to zero, each basic variable (and Z )
equals the new right-hand side of the one equation in which it appears (with a coeffi-
cient of �1). Return to the feasibility test.

To fully understand the dual simplex method, you must realize that the method pro-
ceeds just as if the simplex method were being applied to the complementary basic solutions
in the dual problem. (In fact, this interpretation was the motivation for constructing the
method as it is.) Step 1 of an iteration, determining the leaving basic variable, is equivalent
to determining the entering basic variable in the dual problem. The negative variable with
the largest absolute value corresponds to the negative coefficient with the largest absolute
value in Eq. (0) of the dual problem (see Table 6.3). Step 2, determining the entering basic
variable, is equivalent to determining the leaving basic variable in the dual problem. The co-
efficient in Eq. (0) that reaches zero first corresponds to the variable in the dual problem
that reaches zero first. The two criteria for stopping the algorithm are also complementary.

An Example

We shall now illustrate the dual simplex method by applying it to the dual problem for the
Wyndor Glass Co. (see Table 6.1). Normally this method is applied directly to the prob-
lem of concern (a primal problem). However, we have chosen this problem because you
have already seen the simplex method applied to its dual problem (namely, the primal prob-
lem1) in Table 4.8 so you can compare the two. To facilitate the comparison, we shall con-
tinue to denote the decision variables in the problem being solved by yi rather than xj.

In maximization form, the problem to be solved is

Maximize Z � �4y1 � 12y2 � 18y3,

subject to

y1 � 3y3 � 3
2y2 � 2y3 � 5

1Recall that the symmetry property in Sec. 6.1 points out that the dual of a dual problem is the original primal
problem.
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and

y1 � 0, y2 � 0, y3 � 0.

Since negative right-hand sides are now allowed, we do not need to introduce artificial vari-
ables to be the initial basic variables. Instead, we simply convert the functional 
constraints to � form and introduce slack variables to play this role. The resulting initial
set of equations is that shown for iteration 0 in Table 7.1. Notice that all the coefficients
in Eq. (0) are nonnegative, so the solution is optimal if it is feasible.

The initial basic solution is y1 � 0, y2 � 0, y3 � 0, y4 � �3, y5 � �5, with Z � 0,
which is not feasible because of the negative values. The leaving basic variable is y5 (5 � 3),
and the entering basic variable is y2 (12/2 � 18/2), which leads to the second set of equa-
tions, labeled as iteration 1 in Table 7.1. The corresponding basic solution is y1 � 0,
y2 � �

5
2

�, y3 � 0, y4 � �3, y5 � 0, with Z � �30, which is not feasible.
The next leaving basic variable is y4, and the entering basic variable is y3 (6/3 � 4/1),

which leads to the final set of equations in Table 7.1. The corresponding basic solution is
y1 � 0, y2 � �

3
2

�, y3 � 1, y4 � 0, y5 � 0, with Z � �36, which is feasible and therefore 
optimal.

Notice that the optimal solution for the dual of this problem2 is x*1 � 2, x*2 � 6,
x*3 � 2, x*4 � 0, x*5 � 0, as was obtained in Table 4.8 by the simplex method. We suggest
that you now trace through Tables 7.1 and 4.8 simultaneously and compare the comple-
mentary steps for the two mirror-image methods.

As mentioned earlier, an important primary application of the dual simplex method
is that it frequently can be used to quickly re-solve a problem when sensitivity analysis
results in making small changes in the original model. In particular, if the formerly opti-
mal basic solution is no longer primal feasible (one or more right-hand sides now are neg-
ative) but still satisfies the optimality test (no negative coefficients in Row 0), you can
immediately apply the dual simplex method by starting with this dual feasible basic so-
lution. For example, this situation arises when a new constraint that violates the formerly
optimal solution is added to the original model. To illustrate, suppose that the problem
solved in Table 7.1 originally did not include its first functional constraint (y1 � 3y3 � 3).

■ TABLE 7.1 Dual simplex method applied to the Wyndor Glass Co. dual problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z y1 y2 y3 y4 y5 Side

Z (0) 1 4 12 18 0 0 0
0 y4 (1) 0 �1 0 �3 1 0 �3

y5 (2) 0 0 �2 �2 0 1 �5

Z (0) 1 4 0 6 0 6 �30
1 y4 (1) 0 �1 0 �3 1 0 �3

y2 (2) 0 0 1 1 0 ��
1
2

� �
5
2

�

Z (0) 1 2 0 0 2 6 �36

2 y3 (1) 0 �
1
3

� 0 1 ��
1
3

� 0 1

y2 (2) 0 ��
1
3

� 1 0 �
1
3

� ��
1
2

� �
3
2

�

2The complementary optimal basic solutions property presented in Sec. 6.3 indicates how to read the optimal so-
lution for the dual problem from row 0 of the final simplex tableau for the primal problem. This same conclusion
holds regardless of whether the simplex method or the dual simplex method is used to obtain the final tableau.
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3See Appendix 2 for a definition and discussion of convex functions.

After deleting Row 1, the iteration 1 tableau in Table 7.1 shows that the resulting optimal
solution is y1 � 0, y2 � �

5
2

�, y3 � 0, y5 � 0, with Z � �30. Now suppose that sensitivity
analysis leads to adding the originally omitted constraint, y1 � 3y3 � 3, which is vio-
lated by the original optimal solution since both y1 � 0 and y3 � 0. To find the new op-
timal solution, this constraint (including its slack variable y4) now would be added as
Row 1 of the middle tableau in Table 7.1. Regardless of whether this tableau had been
obtained by applying the simplex method or the dual simplex method to obtain the orig-
inal optimal solution (perhaps after many iterations), applying the dual simplex method
to this tableau leads to the new optimal solution in just one iteration.

If you would like to see another example of applying the dual simplex method, one
is provided in the Worked Examples section of the book’s website.

■ 7.2 PARAMETRIC LINEAR PROGRAMMING

At the end of Sec. 6.7 we described parametric linear programming and its use for con-
ducting sensitivity analysis systematically by gradually changing various model parame-
ters simultaneously. We shall now present the algorithmic procedure, first for the case
where the cj parameters are being changed and then where the bi parameters are varied.

Systematic Changes in the cj Parameters

For the case where the cj parameters are being changed, the objective function of the or-
dinary linear programming model

Z � �
n

j�1
cjxj

is replaced by

Z(�) � �
n

j�1
(cj��j�)xj,

where the �j are given input constants representing the relative rates at which the coeffi-
cients are to be changed. Therefore, gradually increasing � from zero changes the coeffi-
cients at these relative rates.

The values assigned to the �j may represent interesting simultaneous changes of the cj

for systematic sensitivity analysis of the effect of increasing the magnitude of these changes.
They may also be based on how the coefficients (e.g., unit profits) would change together
with respect to some factor measured by �. This factor might be uncontrollable, e.g., the
state of the economy. However, it may also be under the control of the decision maker, e.g.,
the amount of personnel and equipment to shift from some of the activities to others.

For any given value of �, the optimal solution of the corresponding linear program-
ming problem can be obtained by the simplex method. This solution may have been ob-
tained already for the original problem where � � 0. However, the objective is to find the
optimal solution of the modified linear programming problem [maximize Z(�) subject to
the original constraints] as a function of �. Therefore, in the solution procedure you need
to be able to determine when and how the optimal solution changes (if it does) as � in-
creases from zero to any specified positive number.

Figure 7.1 illustrates how Z*(�), the objective function value for the optimal solution
(given �), changes as � increases. In fact, Z*(�) always has this piecewise linear and convex3

form (see Prob. 7.2-7). The corresponding optimal solution changes (as � increases) just
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at the values of � where the slope of the Z*(�) function changes. Thus, Fig. 7.1 depicts a
problem where three different solutions are optimal for different values of �, the first for
0 � � � �1, the second for �1 � � � �2, and the third for � � �2. Because the value of
each xj remains the same within each of these intervals for �, the value of Z*(�) varies
with � only because the coefficients of the xj are changing as a linear function of �. The
solution procedure is based directly upon the sensitivity analysis procedure for investi-
gating changes in the cj parameters (Cases 2a and 3, Sec. 6.7). As described in the last
subsection of Sec. 6.7, the only basic difference with parametric linear programming is
that the changes now are expressed in terms of � rather than as specific numbers.

Example. To illustrate the solution procedure, suppose that �1 � 2 and �2 � �1 for the
original Wyndor Glass Co. problem presented in Sec. 3.1, so that

Z(�) � (3 � 2�)x1 � (5 � �)x2.

Beginning with the final simplex tableau for � � 0 (Table 4.8), we see that its Eq. (0)

(0) Z � �
3
2

�x4 � x5 � 36

would first have these changes from the original (� � 0) coefficients added into it on the
left-hand side:

(0) Z � 2�x1 � �x2 � �
3
2

�x4 � x5 � 36.

Because both x1 and x2 are basic variables [appearing in Eqs. (3) and (2), respectively],
they both need to be eliminated algebraically from Eq. (0):

Z � 2�x1 � �x2 � �
3
2

�x4 � x5 � 36

� 2� times Eq. (3)
� � times Eq. (2)

(0) Z � ��
3
2

� � �
7
6

���x4 � �1 � �
2
3

���x5 � 36 � 2�.

The optimality test says that the current BF solution will remain optimal as long as
these coefficients of the nonbasic variables remain nonnegative:

�
3
2

� � �
7
6

�� � 0, for 0 � � � �
9
7

�,

1 � �
2
3

�� � 0, for all � � 0.

■ FIGURE 7.1
The objective function value
for an optimal solution as a
function of � for parametric
linear programming with
systematic changes in the 
cj parameters.

Z* ( )

0 1 2
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Therefore, after � is increased past � � �
9
7

�, x4 would need to be the entering basic variable
for another iteration of the simplex method to find the new optimal solution. Then � would
be increased further until another coefficient goes negative, and so on until � has been in-
creased as far as desired.

This entire procedure is now summarized, and the example is completed in Table 7.2.

Summary of the Parametric Linear Programming Procedure 
for Systematic Changes in the cj Parameters

1. Solve the problem with � � 0 by the simplex method.
2. Use the sensitivity analysis procedure (Cases 2a and 3, Sec. 6.7) to introduce the

	cj � �j� changes into Eq. (0).
3. Increase � until one of the nonbasic variables has its coefficient in Eq. (0) go negative

(or until � has been increased as far as desired).
4. Use this variable as the entering basic variable for an iteration of the simplex method

to find the new optimal solution. Return to step 3.

Systematic Changes in the bi Parameters
For the case where the bi parameters change systematically, the one modification made
in the original linear programming model is that bi is replaced by bi � �i�, for i � 1,
2, . . . , m, where the �i are given input constants. Thus, the problem becomes

Maximize Z(�) � �
n

j�1
cjxj,

■ TABLE 7.2 The cj parametric linear programming procedure applied to the 
Wyndor Glass Co. example

Coefficient of:
Range Basic Right Optimal
of � Variable Eq. Z x1 x2 x3 x4 x5 Side Solution

Z(�) (0) 1 0 0 �0 �
9 �

6
7�

� �
3 �

3
2�

� 36 � 2� x4 � 0

x5 � 0

0 � � � �
9
7

� x3 (1) 0 0 0 �1 ��
1
3

� ��
1
3

� 2 x3 � 2

x2 (2) 0 0 1 �0 ��
1
2

� �0 6 x2 � 6

x1 (3) 0 1 0 �0 ��
1
3

� ��
1
3

� 2 x1 � 2

Z(�) (0) 1 0 0 �
�9

2
� 7�
� 0 �

5 �
2

�
� 27 � 5� x3 � 0

x5 � 0

�
9
7

� � � � 5 x4 (1) 0 0 0 �3 1 �1 6 x4 � 6

x2 (2) 0 0 1 ��
3
2

� 0 ��
1
2

� 3 x2 � 3

x1 (3) 0 1 0 �1 0 �0 4 x1 � 4

Z(�) (0) 1 0 �5 � � 3 � 2� 0 �0 12 � 8� x2 � 0
x3 � 0

� � 5 x4 (1) 0 0 2 �0 1 �0 12 x4 � 12
x5 (2) 0 0 2 �3 0 �1 6 x5 � 6
x1 (3) 0 1 0 �1 0 �0 4 x1 � 4
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subject to

�
n

j�1
aijxj � bi � �i� for i � 1, 2, . . . , m

and

xj � 0 for j � 1, 2, . . . , n.

The goal is to identify the optimal solution as a function of �.
With this formulation, the corresponding objective function value Z*(�) always has

the piecewise linear and concave4 form shown in Fig. 7.2. (See Prob. 7.2-8.) The set of
basic variables in the optimal solution still changes (as � increases) only where the slope
of Z*(�) changes. However, in contrast to the preceding case, the values of these variables
now change as a (linear) function of � between the slope changes. The reason is that 
increasing � changes the right-hand sides in the initial set of equations, which then causes
changes in the right-hand sides in the final set of equations, i.e., in the values of the final
set of basic variables. Figure 7.2 depicts a problem with three sets of basic variables that
are optimal for different values of �, the first for 0 � � � �1, the second for �1 � � � �2,
and the third for � � �2. Within each of these intervals of �, the value of Z*(�) varies with
� despite the fixed coefficients cj because the xj values are changing.

The following solution procedure summary is very similar to that just presented for
systematic changes in the cj parameters. The reason is that changing the bi values is equiv-
alent to changing the coefficients in the objective function of the dual model. Therefore,
the procedure for the primal problem is exactly complementary to applying simultane-
ously the procedure for systematic changes in the cj parameters to the dual problem. Con-
sequently, the dual simplex method (see Sec. 7.1) now would be used to obtain each new
optimal solution, and the applicable sensitivity analysis case (see Sec. 6.7) now is Case 1,
but these differences are the only major differences.

Summary of the Parametric Linear Programming Procedure 
for Systematic Changes in the bi Parameters

1. Solve the problem with � � 0 by the simplex method.
2. Use the sensitivity analysis procedure (Case 1, Sec. 6.7) to introduce the �bi � �i�

changes to the right side column.

0

Z* ( )

1 2

■ FIGURE 7.2
The objective function value
for an optimal solution as a
function of � for parametric
linear programming with
systematic changes in the 
bi parameters.

4See Appendix 2 for a definition and discussion of concave functions.
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3. Increase � until one of the basic variables has its value in the right side column go
negative (or until � has been increased as far as desired).

4. Use this variable as the leaving basic variable for an iteration of the dual simplex
method to find the new optimal solution. Return to step 3.

Example. To illustrate this procedure in a way that demonstrates its duality relation-
ship with the procedure for systematic changes in the cj parameters, we now apply it to
the dual problem for the Wyndor Glass Co. (see Table 6.1). In particular, suppose that
�1 � 2 and �2 � �1 so that the functional constraints become

y1 � 3y3 � 3 � 2� or �y1 � 3y3 � �3 � 2�
2y2 � 2y3 � 5 � � or �2y2 � 2y3 � �5 � �.

Thus, the dual of this problem is just the example considered in Table 7.2.
This problem with � � 0 has already been solved in Table 7.1, so we begin with the

final simplex tableau given there. Using the sensitivity analysis procedure for Case 1,
Sec. 6.7, we find that the entries in the right side column of the tableau change to the 
values given below.

Z* � y*b� � [2, 6] � � � �36 � 2�,

b* � S*b� � � � � .

Therefore, the two basic variables in this tableau

y3 � �
3 �

3
2�

� and y2 � �
9 �

6
7�

�

remain nonnegative for 0 � � � �
9
7

�. Increasing � past � � �
9
7

� requires making y2 a leaving
basic variable for another iteration of the dual simplex method, and so on, as summarized
in Table 7.3.





1 � �
2
3
�
�

�
3
2

� � �
7
6
�





�3 � 2�

�5 � �





0

��
1
2�

��
1
3�

�
1
3�





�3 � 2�

�5 � �

■ TABLE 7.3 The bi parametric linear programming procedure applied to the dual
of the Wyndor Glass Co. example

Coefficient of:
Range Basic Right Optimal
of � Variable Eq. Z y1 y2 y3 y4 y5 Side Solution

Z(�) (0) 1 2 0 0 2 6 �36 � 2� y1 � y4 � y5 � 0

0 � � � �
9
7

� y3 (1) 0 �
1
3

� 0 1 ��
1
3

� 0 �
3 �

3
2�

� y3 � �
3 �

3
2�

�

y2 (2) 0 ��
1
3

� 1 0 �
1
3

� ��
1
2

� �
9 �

6
7�

� y2 � �
9 �

6
7�

�

Z(�) (0) 1 0 6 0 4 3 �27 � 5� y2 � y4 � y5 � 0

�
9
7

� � � � 5 y3 (1) 0 0 1 1 0 ��
1
2

� �
5 �

2
�

� y3 � �
5 �

2
�

�

y1 (2) 0 1 �3 0 �1 �
3
2

� �
�9

2
� 7�
� y1 � �

�9
2
� 7�
�

Z(�) (0) 1 0 12 6 4 0 �12 � 8� y2 � y3 � y4 � 0

� � 5 y5 (1) 0 0 �2 �2 0 1 �5 � � y5 � �5 � �
y1 (2) 0 1 0 3 �1 0 3 � 2� y1 � 3 � 2�
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5The upper bound technique assumes that the variables have the usual nonnegativity constraints in addition to
the upper bound constraints. If a variable has a lower bound other than 0, say, xj � Lj, then this constraint can
be converted into a nonnegativity constraint by making the change of variables, xj
 � xj � Lj, so xj
 � 0.

■ 7.3 THE UPPER BOUND TECHNIQUE

It is fairly common in linear programming problems for some of or all the individual xj

variables to have upper bound constraints

xj � uj,

where uj is a positive constant representing the maximum feasible value of xj. We pointed
out in Sec. 4.8 that the most important determinant of computation time for the simplex
method is the number of functional constraints, whereas the number of nonnegativity con-
straints is relatively unimportant. Therefore, having a large number of upper bound constraints
among the functional constraints greatly increases the computational effort required.

The upper bound technique avoids this increased effort by removing the upper bound
constraints from the functional constraints and treating them separately, essentially like
nonnegativity constraints.5 Removing the upper bound constraints in this way causes no
problems as long as none of the variables gets increased over its upper bound. The only
time the simplex method increases some of the variables is when the entering basic vari-
able is increased to obtain a new BF solution. Therefore, the upper bound technique sim-
ply applies the simplex method in the usual way to the remainder of the problem (i.e.,
without the upper bound constraints) but with the one additional restriction that each new
BF solution must satisfy the upper bound constraints in addition to the usual lower bound
(nonnegativity) constraints.

To implement this idea, note that a decision variable xj with an upper bound con-
straint xj � uj can always be replaced by

xj � uj � yj,

where yj would then be the decision variable. In other words, you have a choice be-
tween letting the decision variable be the amount above zero (xj) or the amount below 
uj (yj � uj � xj). (We shall refer to xj and yj as complementary decision variables.) 
Because

0 � xj � uj

it also follows that

0 � yj � uj.

Thus, at any point during the simplex method, you can either

1. Use xj, where 0 � xj � uj, or
2. Replace xj by uj � yj, where 0 � yj � uj.

The upper bound technique uses the following rule to make this choice:

Rule: Begin with choice 1.
Whenever xj � 0, use choice 1, so xj is nonbasic.

We suggest that you now trace through Tables 7.2 and 7.3 simultaneously to note the
duality relationship between the two procedures.

The Worked Examples section of the book’s website includes another example of the
procedure for systematic changes in the bi parameters.
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Whenever xj � uj, use choice 2, so yj � 0 is nonbasic.
Switch choices only when the other extreme value of xj is reached.

Therefore, whenever a basic variable reaches its upper bound, you should switch choices
and use its complementary decision variable as the new nonbasic variable (the leaving ba-
sic variable) for identifying the new BF solution. Thus, the one substantive modification
being made in the simplex method is in the rule for selecting the leaving basic variable.

Recall that the simplex method selects as the leaving basic variable the one that would
be the first to become infeasible by going negative as the entering basic variable is in-
creased. The modification now made is to select instead the variable that would be the
first to become infeasible in any way, either by going negative or by going over the up-
per bound, as the entering basic variable is increased. (Notice that one possibility is that
the entering basic variable may become infeasible first by going over its upper bound, so
that its complementary decision variable becomes the leaving basic variable.) If the 
leaving basic variable reaches zero, then proceed as usual with the simplex method. 
However, if it reaches its upper bound instead, then switch choices and make its comple-
mentary decision variable the leaving basic variable.

An Example

To illustrate the upper bound technique, consider this problem:

Maximize Z � 2x1 � x2 � 2x3,

subject to

4x1 � x2 � 12
�2x1 � x3 � 4

and

0 � x1 � 4, 0 � x2 � 15, 0 � x3 � 6.

Thus, all three variables have upper bound constraints (u1 � 4, u2 � 15, u3 � 6).
The two equality constraints are already in proper form from Gaussian elimination for

identifying the initial BF solution (x1 � 0, x2 � 12, x3 � 4), and none of the variables in
this solution exceeds its upper bound, so x2 and x3 can be used as the initial basic variables
without artificial variables being introduced. However, these variables then need to be elim-
inated algebraically from the objective function to obtain the initial Eq. (0), as follows:

Z � 2(� (2x1 � x2 � 2x3 � 0
Z � 2(� (4x1 � x2 � 2x3 � 12)
Z � 2(� (2x1 � x2 � x3 � 4)

(0) Z � 2(� (2x1 � x2 � 2x3 � 20.

To start the first iteration, this initial Eq. (0) indicates that the initial entering basic
variable is x1. Since the upper bound constraints are not to be included, the entire initial
set of equations and the corresponding calculations for selecting the leaving basic variables
are those shown in Table 7.4. The second column shows how much the entering basic vari-
able x1 can be increased from zero before some basic variable (including x1) becomes in-
feasible. The maximum value given next to Eq. (0) is just the upper bound constraint for
x1. For Eq. (1), since the coefficient of x1 is positive, increasing x1 to 3 decreases the ba-
sic variable in this equation (x2) from 12 to its lower bound of zero. For Eq. (2), since the
coefficient of x1 is negative, increasing x1 to 1 increases the basic variable in this equation
(x3) from 4 to its upper bound of 6.
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6The basic approach for this variant actually was proposed in 1967 by a Russian mathematician I. I. Dikin and
then rediscovered soon after the appearance of Karmarkar’s work by a number of researchers, including E. R.
Barnes, T. M. Cavalier, and A. L. Soyster. Also see R. J. Vanderbei, M. S. Meketon, and B. A. Freedman, “A Mod-
ification of Karmarkar’s Linear Programming Algorithm,” Algorithmica, 1(4) (Special Issue on New Approaches
to Linear Programming): 395–407, 1986.

■ TABLE 7.4 Equations and calculations for the initial leaving basic variable in the
example for the upper bound technique

Initial Set of Equations Maximum Feasible Value of x1

(0) Z � 2x1 � x2 � x3 � 20 x1 � 4 (since u1 � 4)

(1) Z � 4x1 � x2 � x3 � 12 x1 � �
1
4
2
� � 3

(2) Z � 2x1 � x2 � x3 � 4 x1 � �
6 �

2
4

� � 1 � minimum (because u3 � 6)

Because Eq. (2) has the smallest maximum feasible value of x1 in Table 7.4, the ba-
sic variable in this equation (x3) provides the leaving basic variable. However, because x3

reached its upper bound, replace x3 by 6 � y3, so that y3 � 0 becomes the new nonbasic
variable for the next BF solution and x1 becomes the new basic variable in Eq. (2). This
replacement leads to the following changes in this equation:

(2) � 2x1 � x3 � 4
→ � 2x1 � 6 � y3 � 4
→ � 2x1 � y3 � �2

→ x1 � y3 � 1

Therefore, after we eliminate x1 algebraically from the other equations, the second com-
plete set of equations becomes

(0) Zx2x2 � y3 � 22
(1) Zx2x2 � 2y3 � 8

(2) Zx1x2 � �
1
2

�y3 � 1.

The resulting BF solution is x1 � 1, x2 � 8, y3 � 0. By the optimality test, it also is an
optimal solution, so x1 � 1, x2 � 8, x3 � 6 � y3 � 6 is the desired solution for the orig-
inal problem.

If you would like to see another example of the upper bound technique, the Worked
Examples section of the book’s website includes one.

1
�
2

■ 7.4 AN INTERIOR-POINT ALGORITHM

In Sec. 4.9 we discussed a dramatic development in linear programming that occurred in
1984, namely, the invention by Narendra Karmarkar of AT&T Bell Laboratories of a pow-
erful algorithm for solving huge linear programming problems with an approach very dif-
ferent from the simplex method. We now introduce the nature of Karmarkar’s approach
by describing a relatively elementary variant (the “affine” or “affine-scaling” variant) of
his algorithm.6 (Your IOR Tutorial also includes this variant under the title, Solve Auto-
matically by the Interior-Point Algorithm.)

Throughout this section we shall focus on Karmarkar’s main ideas on an intuitive
level while avoiding mathematical details. In particular, we shall bypass certain details

hil76299_ch07_276-303.qxd  11/19/08  08:30 AM  Page 287



Rev.Confirming Pages

288 CHAPTER 7 OTHER ALGORITHMS FOR LINEAR PROGRAMMING

0 4 6 82

2

4

6

8

x2

x1

(0, 8) optimal

Z � 16 � x1 � 2x2

(3, 4)

(2, 2)

■ FIGURE 7.3
Example for the interior-point
algorithm.

that are needed for the full implementation of the algorithm (e.g., how to find an initial
feasible trial solution) but are not central to a basic conceptual understanding. The ideas
to be described can be summarized as follows:

Concept 1: Shoot through the interior of the feasible region toward an optimal solution.
Concept 2: Move in a direction that improves the objective function value at the fastest

possible rate.
Concept 3: Transform the feasible region to place the current trial solution near its cen-

ter, thereby enabling a large improvement when concept 2 is implemented.

To illustrate these ideas throughout the section, we shall use the following example:

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � 8

and

x1 � 0, x2 � 0.

This problem is depicted graphically in Fig. 7.3, where the optimal solution is seen to be
(x1, x2) � (0, 8) with Z � 16. (We will describe the significance of the arrow in the fig-
ure shortly.)

You will see that our interior-point algorithm requires a considerable amount of work
to solve this tiny example. The reason is that the algorithm is designed to solve huge prob-
lems efficiently, but is much less efficient than the simplex method (or the graphical method
in this case) for small problems. However, having an example with only two variables will
allow us to depict graphically what the algorithm is doing.

The Relevance of the Gradient for Concepts 1 and 2

The algorithm begins with an initial trial solution that (like all subsequent trial solutions)
lies in the interior of the feasible region, i.e., inside the boundary of the feasible region.
Thus, for the example, the solution must not lie on any of the three lines (x1 � 0, x2 � 0,
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x1 � x2 � 8) that form the boundary of this region in Fig. 7.3. (A trial solution that lies
on the boundary cannot be used because this would lead to the undefined mathematical
operation of division by zero at one point in the algorithm.) We have arbitrarily chosen
(x1, x2) � (2, 2) to be the initial trial solution.

To begin implementing concepts 1 and 2, note in Fig. 7.3 that the direction of move-
ment from (2, 2) that increases Z at the fastest possible rate is perpendicular to (and to-
ward) the objective function line Z � 16 � x1 � 2x2. We have shown this direction by the
arrow from (2, 2) to (3, 4). Using vector addition, we have

(3, 4) � (2, 2) � (1, 2),

where the vector (1, 2) is the gradient of the objective function. (We will discuss gradi-
ents further in Sec. 12.5 in the broader context of nonlinear programming, where algo-
rithms similar to Karmarkar’s have long been used.) The components of (1, 2) are just the
coefficients in the objective function. Thus, with one subsequent modification, the gradi-
ent (1, 2) defines the ideal direction to which to move, where the question of the distance
to move will be considered later.

The algorithm actually operates on linear programming problems after they have been
rewritten in augmented form. Letting x3 be the slack variable for the functional constraint
of the example, we see that this form is

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � x3 � 8

and

x1 � 0, x2 � 0, x3 � 0.

In matrix notation (slightly different from Chap. 5 because the slack variable now is in-
corporated into the notation), the augmented form can be written in general as

Maximize Z � cTx,

subject to

Ax � b

and

x � 0,

where

c � , x � , A � [1, 1, 1], b � [8], 0 �

for the example. Note that cT � [1, 2, 0] now is the gradient of the objective function.
The augmented form of the example is depicted graphically in Fig. 7.4. The feasible

region now consists of the triangle with vertices (8, 0, 0), (0, 8, 0), and (0, 0, 8). Points
in the interior of this feasible region are those where x1 � 0, x2 � 0, and x3 � 0. Each of
these three xj � 0 conditions has the effect of forcing (x1, x2) away from one of the three
lines forming the boundary of the feasible region in Fig. 7.3.
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(2, 2, 4)

(3, 4, 4)
(2, 3, 3)

8

x3

8 x1

(0, 8, 0) optimal 
x2

0

8
■ FIGURE 7.4
Example in augmented form
for the interior-point
algorithm.

Using the Projected Gradient to Implement Concepts 1 and 2

In augmented form, the initial trial solution for the example is (x1, x2, x3) � (2, 2, 4).
Adding the gradient (1, 2, 0) leads to

(3, 4, 4) � (2, 2, 4) � (1, 2, 0).

However, now there is a complication. The algorithm cannot move from (2, 2, 4) to (3, 4,
4), because (3, 4, 4) is infeasible! When x1 � 3 and x2 � 4, then x3 � 8 � x1 � x2 � 1 in-
stead of 4. The point (3, 4, 4) lies on the near side as you look down on the feasible tri-
angle in Fig. 7.4. Therefore, to remain feasible, the algorithm (indirectly) projects the point
(3, 4, 4) down onto the feasible triangle by dropping a line that is perpendicular to this 
triangle. A vector from (0, 0, 0) to (1, 1, 1) is perpendicular to this triangle, so the per-
pendicular line through (3, 4, 4) is given by the equation

(x1, x2, x3) � (3, 4, 4) � �(1, 1, 1),

where � is a scalar. Since the triangle satisfies the equation x1 � x2 � x3 � 8, this per-
pendicular line intersects the triangle at (2, 3, 3). Because

(2, 3, 3) � (2, 2, 4) � (0, 1, �1),
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the projected gradient of the objective function (the gradient projected onto the feasible
region) is (0, 1, �1). It is this projected gradient that defines the direction of movement
from (2, 2, 4) for the algorithm, as shown by the arrow in Fig. 7.4.

A formula is available for computing the projected gradient directly. By defining the
projection matrix P as

P � I � AT(AAT)�1A,

the projected gradient (in column form) is

cp � Pc.

Thus, for the example,

P � � �[1 1 1] �
�1

[1 1 1]

� � �
1
3

� [1 1 1]

� � �
1
3

� � ,

so

cp � � .

Moving from (2, 2, 4) in the direction of the projected gradient (0, 1, �1) involves
increasing � from zero in the formula

x � � 4�cp � � 4� ,

where the coefficient 4 is used simply to give an upper bound of 1 for � to maintain fea-
sibility (all xj � 0). Note that increasing � to � � 1 would cause x3 to decrease to 
x3 � 4 � 4(1)(�1) � 0, where � � 1 yields x3 � 0. Thus, � measures the fraction used
of the distance that could be moved before the feasible region is left.

How large should � be made for moving to the next trial solution? Because the in-
crease in Z is proportional to �, a value close to the upper bound of 1 is good for giving
a relatively large step toward optimality on the current iteration. However, the problem with
a value too close to 1 is that the next trial solution then is jammed against a constraint
boundary, thereby making it difficult to take large improving steps during subsequent itera-
tions. Therefore, it is very helpful for trial solutions to be near the center of the feasible 
region (or at least near the center of the portion of the feasible region in the vicinity of an
optimal solution), and not too close to any constraint boundary. With this in mind, Karmarkar
has stated for his algorithm that a value as large as � � 0.25 should be “safe.” In practice,
much larger values (for example, � � 0.9) sometimes are used. For the purposes of this
example (and the problems at the end of the chapter), we have chosen � � 0.5. (Your IOR
Tutorial uses � � 0.5 as the default value, but also has � � 0.9 available.)
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A Centering Scheme for Implementing Concept 3

We now have just one more step to complete the description of the algorithm, namely, a
special scheme for transforming the feasible region to place the current trial solution near
its center. We have just described the benefit of having the trial solution near the center,
but another important benefit of this centering scheme is that it keeps turning the direc-
tion of the projected gradient to point more nearly toward an optimal solution as the al-
gorithm converges toward this solution.

The basic idea of the centering scheme is straightforward—simply change the scale
(units) for each of the variables so that the trial solution becomes equidistant from the
constraint boundaries in the new coordinate system. (Karmarkar’s original algorithm uses
a more sophisticated centering scheme.)

For the example, there are three constraint boundaries in Fig. 7.3, each one cor-
responding to a zero value for one of the three variables of the problem in augmented
form, namely, x1 � 0, x2 � 0, and x3 � 0. In Fig. 7.4, see how these three constraint
boundaries intersect the Ax � b (x1 � x2 � x3 � 8) plane to form the boundary of the
feasible region. The initial trial solution is (x1, x2, x3) � (2, 2, 4), so this solution is
2 units away from the x1 � 0 and x2 � 0 constraint boundaries and 4 units away from
the x3 � 0 constraint boundary, when the units of the respective variables are used.
However, whatever these units are in each case, they are quite arbitrary and can be
changed as desired without changing the problem. Therefore, let us rescale the vari-
ables as follows:

x~1 � �
x
2
1�, x~2 � �

x
2
2�, x~3 � �

x
4
3�

in order to make the current trial solution of (x1, x2, x3) � (2, 2, 4) become

(x~1, xx~2, xx~3) � (1, 1, 1).

In these new coordinates (substituting 2x~1 for x1, 2x~2 for x2, and 4x~3 for x3), the problem
becomes

Maximize Z � 2x~1 � 4x~2,

subject to

2x~1 � 2xx~2 � 4x~3 � 8

and

x~1 � 0, x~2 � 0, x~3 � 0,

as depicted graphically in Fig. 7.5.
Note that the trial solution (1, 1, 1) in Fig. 7.5 is equidistant from the three constraint

boundaries xx~1 � 0, x~2 � 0, x~3 � 0. For each subsequent iteration as well, the problem is
rescaled again to achieve this same property, so that the current trial solution always is
(1, 1, 1) in the current coordinates.

Summary and Illustration of the Algorithm

Now let us summarize and illustrate the algorithm by going through the first iteration for
the example, then giving a summary of the general procedure, and finally applying this
summary to a second iteration.

Iteration 1. Given the initial trial solution (x1, x2, x3) � (2, 2, 4), let D be the corre-
sponding diagonal matrix such that x � Dx~, so that
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Example after rescaling for
iteration 1.

D � .

The rescaled variables then are the components of

x~ � D�1x � � .

In these new coordinates, A and c have become

Ã � AD � [1 1 1] � [2 2 4],

c~ � Dc � � .

Therefore, the projection matrix is

P � I � ÃT(ÃÃT)�1Ã

P � � �[2 2 4] �
�1

[2 2 4]
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P � � �
2
1
4
� � ,

so that the projected gradient is

cp � Pc~ � � .

Define v as the absolute value of the negative component of cp having the largest absolute
value, so that v � �2 � 2 in this case. Consequently, in the current coordinates, the
algorithm now moves from the current trial solution (x~1, x~2, x~3) � (1, 1, 1) to the next
trial solution

x~ � � �
�
v

�cp � � �
0
2
.5
� � ,

as shown in Fig. 7.5. (The definition of v has been chosen to make the smallest compo-
nent of x~ equal to zero when � � 1 in this equation for the next trial solution.) In the orig-
inal coordinates, this solution is

� Dx~ � � .

This completes the iteration, and this new solution will be used to start the next iteration.
These steps can be summarized as follows for any iteration.

Summary of the Interior-Point Algorithm

1. Given the current trial solution (x1, x2, . . . , xn), set

D �

2. Calculate Ã � AD and c~ � Dc.
3. Calculate P � I � ÃT(ÃÃT)�1Ã and cp � Pc~.
4. Identify the negative component of cp having the largest absolute value, and set v equal

to this absolute value. Then calculate

x~ � � �
�
v

�cp,

where � is a selected constant between 0 and 1 (for example, � � 0.5).
5. Calculate x � Dx~ as the trial solution for the next iteration (step 1). (If this trial solu-

tion is virtually unchanged from the preceding one, then the algorithm has virtually
converged to an optimal solution, so stop.)
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Now let us apply this summary to iteration 2 for the example.

Iteration 2
Step 1:
Given the current trial solution (x1, x2, x3) � (�

5
2

�, �
7
2

�, 2), set

D � .

(Note that the rescaled variables are

� D�1x � � ,

so that the BF solutions in these new coordinates are

x~ � D�1 � , x~ � D�1 � ,

and

x~ � D�1 � ,

as depicted in Fig. 7.6.)

Step 2:

Ã � AD � [�
5
2

�, �
7
2

�, 2] and c~ � Dc � .
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■ FIGURE 7.6
Example after rescaling for
iteration 2.
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8

~x3

~x2

~x1

0
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(0, 1.63, 0) optimal

■ FIGURE 7.7
Example after rescaling for
iteration 3.

Step 3:

P � and cp � .

Step 4:

��
4
1
1
5
� � ��

1
1
1
2
�, so v � �

4
1
1
5
� and

x~ � � � � .

Step 5:

x � Dx~ � �

is the trial solution for iteration 3.
Since there is little to be learned by repeating these calculations for additional iter-

ations, we shall stop here. However, we do show in Fig. 7.7 the reconfigured feasible re-
gion after rescaling based on the trial solution just obtained for iteration 3. As always,
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the rescaling has placed the trial solution at (x~1, x~2, x~3) � (1, 1, 1), equidistant from the
x~1 � 0, x~2 � 0, and x~3 � 0 constraint boundaries. Note in Figs. 7.5, 7.6, and 7.7 how the
sequence of iterations and rescaling have the effect of “sliding” the optimal solution to-
ward (1, 1, 1) while the other BF solutions tend to slide away. Eventually, after enough
iterations, the optimal solution will lie very near (x~1, x~2, x~3) � (0, 1, 0) after rescaling,
while the other two BF solutions will be very far from the origin on the x~1 and x~3 axes.
Step 5 of that iteration then will yield a solution in the original coordinates very near the
optimal solution of (x1, x2, x3) � (0, 8, 0).

Figure 7.8 shows the progress of the algorithm in the original x1 � x2 coordinate sys-
tem before the problem is augmented. The three points—(x1, x2) � (2, 2), (2.5, 3.5), and
(2.08, 4.92)—are the trial solutions for initiating iterations 1, 2, and 3, respectively. We
then have drawn a smooth curve through and beyond these points to show the trajectory
of the algorithm in subsequent iterations as it approaches (x1, x2) � (0, 8).

The functional constraint for this particular example happened to be an inequality
constraint. However, equality constraints cause no difficulty for the algorithm, since it
deals with the constraints only after any necessary augmenting has been done to convert
them to equality form (Ax � b) anyway. To illustrate, suppose that the only change in the
example is that the constraint x1 � x2 � 8 is changed to x1 � x2 � 8. Thus, the feasible
region in Fig. 7.3 changes to just the line segment between (8, 0) and (0, 8). Given an ini-
tial feasible trial solution in the interior (x1 � 0 and x2 � 0) of this line segment—say,
(x1, x2) � (4, 4)—the algorithm can proceed just as presented in the five-step summary
with just the two variables and A � [1, 1]. For each iteration, the projected gradient points
along this line segment in the direction of (0, 8). With � � �

1
2

�, iteration 1 leads from (4, 4)
to (2, 6), iteration 2 leads from (2, 6) to (1, 7), etc. (Problem 7.4-3 asks you to verify these
results.)

Although either version of the example has only one functional constraint, having more
than one leads to just one change in the procedure as already illustrated (other than more
extensive calculations). Having a single functional constraint in the example meant that A

(0, 8) optimal

0 2 4 6 8

2

4

6

8

x2

x1

(2, 2)

(2.5, 3.5)

(2.08, 4.92)

■ FIGURE 7.8
Trajectory of the interior-
point algorithm for the
example in the original 
x1-x2 coordinate system.
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had only a single row, so the (ÃÃT)�1 term in step 3 only involved taking the reciprocal
of the number obtained from the vector product ÃÃT. Multiple functional constraints mean
that A has multiple rows, so then the (ÃÃT)�1 term involves finding the inverse of the
matrix obtained from the matrix product ÃÃT.

To conclude, we need to add a comment to place the algorithm into better perspective.
For our extremely small example, the algorithm requires relatively extensive calculations
and then, after many iterations, obtains only an approximation of the optimal solution. By
contrast, the graphical procedure of Sec. 3.1 finds the optimal solution in Fig. 7.3 imme-
diately, and the simplex method requires only one quick iteration. However, do not let this
contrast fool you into downgrading the efficiency of the interior-point algorithm. This al-
gorithm is designed for dealing with big problems that may have many  thousands of func-
tional constraints. The simplex method typically requires thousands of iterations on such
problems. By “shooting” through the interior of the feasible region, the interior-point al-
gorithm tends to require a substantially smaller number of iterations (although with con-
siderably more work per iteration). This sometimes enables an interior-point algorithm to
efficiently solve huge linear programming problems that might even be beyond the reach
of either the simplex method or the dual simplex method. Therefore, interior-point algo-
rithms similar to the one presented here should play an important role in the future of lin-
ear programming.

See Sec. 4.9 for a comparison of the interior-point approach with the simplex
method. Section 4.9 also discusses the complementary roles of the interior-point ap-
proach and the simplex method, including how they can even be combined into a hybrid
algorithm.

Finally, we should emphasize that this section has provided only a conceptual intro-
duction to the interior-point approach to linear programming by describing an elementary
variant of Karmakar’s path-breaking 1984 algorithm. Over the many subsequent years, a
number of top-notch researchers have developed many key advances in the interior-point
approach. Further coverage of this advanced topic is beyond the scope of this book. How-
ever, the interested reader can find many details in the selected references listed at the end
of this chapter.

The dual simplex method and parametric linear programming are especially valuable for
postoptimality analysis, although they also can be very useful in other contexts.

The upper bound technique provides a way of streamlining the simplex method for
the common situation in which many or all of the variables have explicit upper bounds.
It can greatly reduce the computational effort for large problems.

Mathematical-programming computer packages usually include all three of these pro-
cedures, and they are widely used. Because their basic structure is based largely upon the
simplex method as presented in Chap. 4, they retain the exceptional computational effi-
ciency to handle very large problems of the sizes described in Sec. 4.8.

Various other special-purpose algorithms also have been developed to exploit the spe-
cial structure of particular types of linear programming problems (such as those to be dis-
cussed in Chaps. 8 and 9). Much research is currently being done in this area.

Karmarkar’s interior-point algorithm initiated another key line of research into how
to solve linear programming problems. Variants of this algorithm now provide a power-
ful approach for efficiently solving some very large problems.

■ 7.5 CONCLUSIONS
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Worked Examples:

Examples for Chapter 7

Interactive Procedures in IOR Tutorial:

Enter or Revise a General Linear Programming Model
Set Up for the Simplex Method—Interactive Only
Solve Interactively by the Simplex Method
Interactive Graphical Method

Automatic Procedures in IOR Tutorial:

Solve Automatically by the Simplex Method
Solve Automatically by the Interior-Point Algorithm
Graphical Method and Sensitivity Analysis

An Excel Add-In:

Premium Solver for Education

“Ch. 7—Other Algorithms for LP” Files for Solving the Examples:

Excel Files
LINGO/LINDO File
MPL/CPLEX File

Glossary for Chapter 7

Supplement to This Chapter:

Linear Goal Programming and Its Solution Procedures (includes two accompanying cases: A Cure
for Cuba and Airport Security)

See Appendix 1 for documentation of the software.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

I: We suggest that you use one of the procedures in IOR
Tutorial (the print-out records your work). For parametric
linear programming, this only applies to � � 0, after which
you should proceed manually.

C: Use the computer to solve the problem by using the au-
tomatic procedure for the interior-point algorithm in IOR
Tutorial.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

7.1-1. Consider the following problem.

Maximize Z � �x1 � 2x2,

subject to

2x1 � x2 � 40
x2 � 15

�2x1 � x2 � 10

and

x1 � 0, x2 � 0.

I (a) Solve this problem graphically.
(b) Use the dual simplex method manually to solve this problem.
(c) Trace graphically the path taken by the dual simplex method.

7.1-2.* Use the dual simplex method manually to solve the fol-
lowing problem.

Minimize Z � 5x1 � 2x2 � 4x3,

subject to

3x1 � x2 � 2x3 � 4
6x1 � 3x2 � 5x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

7.1-3. Use the dual simplex method manually to solve the following
problem.

Minimize Z � 7x1 � 2x2 � 5x3 � 4x4,

subject to

2x1 � 4x2 � 7x3 � x4 � 5
8x1 � 4x2 � 6x3 � 4x4 � 8
3x1 � 8x2 � x3 � 4x4 � 4

and

xj � 0, for j � 1, 2, 3, 4.

7.1-4. Consider the following problem.

Maximize Z � 5x1 � 10x2,

subject to

3x1 � x2 � 40
x1 � x2 � 20

5x1 � 3x2 � 90

and

x1 � 0, x2 � 0.

I (a) Solve by the original simplex method (in tabular form). Iden-
tify the complementary basic solution for the dual problem
obtained at each iteration.

(b) Solve the dual of this problem manually by the dual simplex
method. Compare the resulting sequence of basic solutions
with the complementary basic solutions obtained in part (a).

7.1-5. Consider the example for case 1 of sensitivity analysis given
in Sec. 6.7, where the initial simplex tableau of Table 4.8 is mod-
ified by changing b2 from 12 to 24, thereby changing the respec-
tive entries in the right-side column of the final simplex tableau to
54, 6, 12, and �2. Starting from this revised final simplex tableau,
use the dual simplex method to obtain the new optimal solution
shown in Table 6.21. Show your work.

7.1-6.* Consider part (a) of Prob. 6.7-2. Use the dual simplex method
manually to reoptimize, starting from the revised final tableau.

7.2-1.* Consider the following problem.

Maximize Z � 8x1 � 24x2,

subject to

x1 � 2x2 � 10
2x1 � x2 � 10

and

x1 � 0, x2 � 0.

Suppose that Z represents profit and that it is possible to modify
the objective function somewhat by an appropriate shifting of key
personnel between the two activities. In particular, suppose that
the unit profit of activity 1 can be increased above 8 (to a max-
imum of 18) at the expense of decreasing the unit profit of ac-
tivity 2 below 24 by twice the amount. Thus, Z can actually be
represented as

Z(�) � (8 � �)x1 � (24 � 2�)x2,

where � is also a decision variable such that 0 � � � 10.
I (a) Solve the original form of this problem graphically. Then ex-

tend this graphical procedure to solve the parametric exten-
sion of the problem; i.e., find the optimal solution and the
optimal value of Z(�) as a function of �, for 0 � � � 10.

I (b) Find an optimal solution for the original form of the prob-
lem by the simplex method. Then use parametric linear pro-
gramming to find an optimal solution and the optimal value
of Z(�) as a function of �, for 0 � � � 10. Plot Z(�).

■ PROBLEMS
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(c) Determine the optimal value of �. Then indicate how this op-
timal value could have been identified directly by solving only
two ordinary linear programming problems. (Hint: A convex
function achieves its maximum at an endpoint.)

I 7.2-2. Use parametric linear programming to find the optimal so-
lution for the following problem as a function of �, for 0 � � � 20.

Maximize Z(�) � (20 � 4�)x1 � (30 � 3�)x2 � 5x3,

subject to

3x1 � 3x2 � x3 � 10
8x1 � 6x2 � 4x3 � 25
6x1 � x2 � x3 � 15

and

x1 � 0, x2 � 0, x3 � 0.

I 7.2-3. Consider the following problem.

Maximize Z(�) � (10 � �)x1 � (12 � �)x2 � (7 � 2�)x3,

subject to

x1 � 2x2 � 2x3 � 30
x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

(a) Use parametric linear programming to find an optimal solu-
tion for this problem as a function of �, for � � 0.

(b) Construct the dual model for this problem. Then find an opti-
mal solution for this dual problem as a function of �, for � � 0,
by the method described in the latter part of Sec. 7.2. Indicate
graphically what this algebraic procedure is doing. Compare the
basic solutions obtained with the complementary basic solutions
obtained in part (a).

I 7.2-4.* Use the parametric linear programming procedure for
making systematic changes in the bi parameters to find an opti-
mal solution for the following problem as a function of �, for 
0 � � � 25.

Maximize Z(�) � 2x1 � x2,

subject to

x1 � 10 � 2�
x1 � x2 � 25 � �

x2 � 10 � 2�

and

x1 � 0, x2 � 0.

Indicate graphically what this algebraic procedure is doing.

I 7.2-5. Use parametric linear programming to find an optimal so-
lution for the following problem as a function of �, for 0 � � � 30.

Maximize Z(�) � 5x1 � 42x2 � 28x3 � 49x4,

subject to

3x1 � 2x2 � x3 � 3x4 � 135 � 2�
2x1 � 4x2 � x3 � 2x4 � 78 � �
x1 � 2x2 � x3 � 2x4 � 30 � �

and

xj � 0, for j � 1, 2, 3, 4.

Then identify the value of � that gives the largest optimal value 
of Z(�).

7.2-6. Consider Prob. 6.7-3. Use parametric linear programming
to find an optimal solution as a function of � for �20 � � � 0.
(Hint: Substitute ��
 for �, and then increase �
 from zero.)

7.2-7. Consider the Z*(�) function shown in Fig. 7.1 for parametric
linear programming with systematic changes in the cj parameters.
(a) Explain why this function is piecewise linear.
(b) Show that this function must be convex.

7.2-8. Consider the Z*(�) function shown in Fig. 7.2 for parametric
linear programming with systematic changes in the bi parameters.
(a) Explain why this function is piecewise linear.
(b) Show that this function must be concave.

7.2-9. Let

Z* � max ��
n

j�1
cjxj	,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n

(where the aij, bi, and cj are fixed constants), and let (y1*, y2*, . . . ,
y*m) be the corresponding optimal dual solution. Then let

Z** � max ��
n

j�1
cjxj	,

subject to

�
n

j�1
aijxj � bi � ki, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n,

where k1, k2, . . . , km are given constants. Show that

Z** � Z* � �
m

i�1
kiyi*.

7.3-1. Consider the following problem.

Maximize Z � 2x1 � 3x2,
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subject to

3x1 � 9x2 � 20
3x1 � 40

9x2 � 40

and

x1 � 0, x2 � 0.

I (a) Solve this problem graphically.
(b) Use the upper bound technique manually to solve this problem.
(c) Trace graphically the path taken by the upper bound technique.

7.3-2.* Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � x1 � 3x2 � 2x3,

subject to

x2 � 2x3 � 1
2x1 � x2 � 2x3 � 8
x1 � 1

x2 � 3
x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

7.3-3. Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � 2x1 � 3x2 � 2x3 � 5x4,

subject to

2x1 � 2x2 � x3 � 2x4 � 5
x1 � 2x2 � 3x3 � 4x4 � 5

and

0 � xj � 1, for j � 1, 2, 3, 4.

7.3-4. Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � 2x1 � 5x2 � 3x3 � 4x4 � x5,

subject to

x1 � 3x2 � 2x3 � 3x4 � x5 � 6
4x1 � 6x2 � 5x3 � 7x4 � x5 � 15

and

0 � xj � 1, for j � 1, 2, 3, 4, 5.

7.3-5. Simultaneously use the upper bound technique and the dual
simplex method manually to solve the following problem.

Minimize Z � 3x1 � 4x2 � 2x3,

subject to

x1 � x2 � x3 � 15
x2 � x3 � 10

and

0 � x1 � 25, 0 � x2 � 5, 0 � x3 � 15.

C 7.4-1. Reconsider the example used to illustrate the interior-
point algorithm in Sec. 7.4. Suppose that (x1, x2) � (1, 3) were
used instead as the initial feasible trial solution. Perform two iter-
ations manually, starting from this solution. Then use the automatic
procedure in your IOR Tutorial to check your work.

7.4-2. Consider the following problem.

Maximize Z � 3x1 � x2,

subject to

x1 � x2 � 4

and

x1 � 0, x2 � 0.

I (a) Solve this problem graphically. Also identify all CPF solutions.
C (b) Starting from the initial trial solution (x1, x2) � (1, 1), per-

form four iterations of the interior-point algorithm presented
in Sec. 7.4 manually. Then use the automatic procedure in
your IOR Tutorial to check your work.

(c) Draw figures corresponding to Figs. 7.4, 7.5, 7.6, 7.7, and 7.8
for this problem. In each case, identify the basic (or corner-
point) feasible solutions in the current coordinate system. (Trial
solutions can be used to determine projected gradients.)

7.4-3. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � 8

and

x1 � 0, x2 � 0.

C (a) Near the end of Sec. 7.4, there is a discussion of what the
interior-point algorithm does on this problem when starting
from the initial feasible trial solution (x1, x2) � (4, 4). Ver-
ify the results presented there by performing two iterations
manually. Then use the automatic procedure in your IOR
Tutorial to check your work.

(b) Use these results to predict what subsequent trial solutions
would be if additional iterations were to be performed.

(c) Suppose that the stopping rule adopted for the algorithm in
this application is that the algorithm stops when two suc-
cessive trial solutions differ by no more than 0.01 in any
component. Use your predictions from part (b) to predict the
final trial solution and the total number of iterations required
to get there. How close would this solution be to the opti-
mal solution (x1, x2) � (0, 8)?
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7.4-4. Consider the following problem.

Maximize Z � 3x1 � x2,

subject to

3x1 � 2x2 � 45
6x1 � x2 � 45

and

x1 � 0, x2 � 0.

I (a) Solve the problem graphically.
(b) Find the gradient of the objective function in the original 

x1-x2 coordinate system. If you move from the origin in the
direction of the gradient until you reach the boundary of the
feasible region, where does it lead relative to the optimal
solution?

C (c) Starting from the initial trial solution (x1, x2) � (1, 1), use
your IOR Tutorial to perform 10 iterations of the interior-
point algorithm presented in Sec. 7.4.

C (d) Repeat part (c) with � � 0.9.

7.4-5. Consider the following problem.

Maximize Z � 2x1 � 5x2 �7x3,

subject to

x1 � 2x2 � 3x3 � 6

and

x1 � 0, x2 � 0, x3 � 0.

I (a) Graph the feasible region.
(b) Find the gradient of the objective function, and then find the

projected gradient onto the feasible region.
(c) Starting from the initial trial solution (x1, x2, x3) � (1, 1, 1),

perform two iterations of the interior-point algorithm presented
in Sec. 7.4 manually.

C (d) Starting from this same initial trial solution, use your IOR
Tutorial to perform 10 iterations of this algorithm.

C 7.4-6. Starting from the initial trial solution (x1, x2) � (2, 2),
use your IOR Tutorial to apply 15 iterations of the interior-point
algorithm presented in Sec. 7.4 to the Wyndor Glass Co. prob-
lem presented in Sec. 3.1. Also draw a figure like Fig. 7.8 to show
the trajectory of the algorithm in the original x1-x2 coordinate
system.

PROBLEMS 303
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8C H A P T E R

The Transportation 
and Assignment Problems 

304

Chapter 3 emphasized the wide applicability of linear programming. We continue to
broaden our horizons in this chapter by discussing two particularly important (and re-

lated) types of linear programming problems. One type, called the transportation problem,
received this name because many of its applications involve determining how to optimally
transport goods. However, some of its important applications (e.g., production scheduling)
actually have nothing to do with transportation.

The second type, called the assignment problem, involves such applications as as-
signing people to tasks. Although its applications appear to be quite different from those
for the transportation problem, we shall see that the assignment problem can be viewed
as a special type of transportation problem.

The next chapter will introduce additional special types of linear programming prob-
lems involving networks, including the minimum cost flow problem (Sec. 9.6). There we
shall see that both the transportation and assignment problems actually are special cases
of the minimum cost flow problem. We introduce the network representation of the trans-
portation and assignment problems in this chapter.

Applications of the transportation and assignment problems tend to require a very
large number of constraints and variables, so a straightforward computer application of
the simplex method may require an exorbitant computational effort. Fortunately, a key
characteristic of these problems is that most of the aij coefficients in the constraints are
zeros, and the relatively few nonzero coefficients appear in a distinctive pattern. As a re-
sult, it has been possible to develop special streamlined algorithms that achieve dramatic
computational savings by exploiting this special structure of the problem. Therefore, it is
important to become sufficiently familiar with these special types of problems that you
can recognize them when they arise and apply the proper computational procedure.

To describe special structures, we shall introduce the table (matrix) of constraint coeffi-
cients shown in Table 8.1, where aij is the coefficient of the jth variable in the ith functional
constraint. Later, portions of the table containing only coefficients equal to zero will be in-
dicated by leaving them blank, whereas blocks containing nonzero coefficients will be shaded.

After presenting a prototype example for the transportation problem, we describe the
special structure in its model and give additional examples of its applications. Section 8.2
presents the transportation simplex method, a special streamlined version of the simplex
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8.1 THE TRANSPORTATION PROBLEM 305

method for efficiently solving transportation problems. (You will see in Sec. 9.7 that this
algorithm is related to the network simplex method, another streamlined version of the
simplex method for efficiently solving any minimum cost flow problem, including both
transportation and assignment problems.) Section 8.3 focuses on the assignment problem.
Section 8.4 then presents a specialized algorithm, called the Hungarian algorithm, for
solving only assignment problems very efficiently.

The book’s website also provides a supplement to this chapter. It is a complete case
study (including the analysis) that illustrates how a corporate decision regarding where to
locate a new facility (an oil refinery in this case) may require solving many transporta-
tion problems. (One of the cases for this chapter asks you to continue the analysis for an
extension of this case study.)

■ 8.1 THE TRANSPORTATION PROBLEM

Prototype Example

One of the main products of the P & T COMPANY is canned peas. The peas are pre-
pared at three canneries (near Bellingham, Washington; Eugene, Oregon; and Albert Lea,
Minnesota) and then shipped by truck to four distributing warehouses in the western
United States (Sacramento, California; Salt Lake City, Utah; Rapid City, South Dakota;
and Albuquerque, New Mexico), as shown in Fig. 8.1. Because the shipping costs are a
major expense, management is initiating a study to reduce them as much as possible. For
the upcoming season, an estimate has been made of the output from each cannery, and
each warehouse has been allocated a certain amount from the total supply of peas. This
information (in units of truckloads), along with the shipping cost per truckload for each
cannery-warehouse combination, is given in Table 8.2. Thus, there are a total of 300
truckloads to be shipped. The problem now is to determine which plan for assigning these
shipments to the various cannery-warehouse combinations would minimize the total ship-
ping cost.

By ignoring the geographical layout of the canneries and warehouses, we can pro-
vide a network representation of this problem in a simple way by lining up all the can-
neries in one column on the left and all the warehouses in one column on the right. This
representation is shown in Fig. 8.2. The arrows show the possible routes for the truck-
loads, where the number next to each arrow is the shipping cost per truckload for that
route. A square bracket next to each location gives the number of truckloads to be shipped
out of that location (so that the allocation into each warehouse is given as a negative
number).

The problem depicted in Fig. 8.2 is actually a linear programming problem of the
transportation problem type. To formulate the model, let Z denote total shipping cost, and
let xij (i � 1, 2, 3; j � 1, 2, 3, 4) be the number of truckloads to be shipped from cannery

■ TABLE 8.1 Table of
constraint coefficients
for linear programming

A �







a1n

a2n

amn

…
…

…

a12

a22

am2

a11

a21

am1







………………………
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CANNERY 1
Bellingham

CANNERY 2
Eugene CANNERY 3

Albert Lea 

WAREHOUSE 4
Albuquerque

WAREHOUSE 3
Rapid City

WAREHOUSE 2
Salt Lake City

WAREHOUSE 1
Sacramento

■ FIGURE 8.1
Location of canneries and warehouses for the P & T Co. problem.

Procter & Gamble (P & G) makes and markets over
300 brands of consumer goods worldwide. The company
has grown continuously over its long history tracing back
to the 1830s. To maintain and accelerate that growth, a
major OR study was undertaken to strengthen P & G’s
global effectiveness. Prior to the study, the company’s
supply chain consisted of hundreds of suppliers, over
50 product categories, over 60 plants, 15 distribution
centers, and over 1,000 customer zones. However, as
the company moved toward global brands, management
realized that it needed to consolidate plants to reduce
manufacturing expenses, improve speed to market, and
reduce capital investment. Therefore, the study focused
on redesigning the company’s production and distribu-
tion system for its North American operations. The re-
sult was a reduction in the number of North American

plants by almost 20 percent, saving over $200 million in
pretax costs per year.

A major part of the study revolved around formulat-
ing and solving transportation problems for individual
product categories. For each option regarding the plants
to keep open, and so forth, solving the corresponding
transportation problem for a product category showed
what the distribution cost would be for shipping the prod-
uct category from those plants to the distribution centers
and customer zones. 

Source: J. D. Camm, T. E. Chorman, F. A. Dill, J. R. Evans,
D. J. Sweeney, and G. W. Wegryn: “Blending OR/MS, Judg-
ment, and GIS: Restructuring P & G’s Supply Chain,” Inter-
faces, 27(1): 128–142, Jan.–Feb. 1997. (A link to this article is
provided on our website, www.mhhe.com/hillier.)

An Application Vignette
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i to warehouse j. Thus, the objective is to choose the values of these 12 decision variables
(the xij) so as to

Minimize Z � 464x11 � 513x12 � 654x13 � 867x14 � 352x21 � 416x22

� 690x23 � 791x24 � 995x31 � 682x32 � 388x33 � 685x34,

subject to the constraints

x11 � x12 � x13 � x14 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � 75
� x21 � x21 � x21 � x21x21 � x22 � x23 � x24 � x21 � x21 � x21 � x21 � 125
� x21 � x21 � x21 � x21 � x21 � x21 � x21 � x21x31 � x32 � x33 � x34 � 100
x11 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � x31 � x21 � x21 � x21 � 80
x11 � x12 � x21 � x21 � x21 � x22 � x21 � x21 �x21 � x32 � x21 � x21 � 65
x11 � x12 � x13 � x21 � x21 � x21 � x23 � x21 � x21 � x21 � x33 � x21 � 70
x11 � x12 � x13 � x14 � x21 � x21 � x21 � x24 � x21 � x21 � x21 � x34 � 85

and

xij � 0 (i � 1, 2, 3; j � 1, 2, 3, 4).

■ TABLE 8.2 Shipping data for P & T Co.

Shipping Cost ($) per Truckload

Warehouse

1 2 3 4 Output

1 464 513 654 867 75
Cannery 2 352 416 690 791 125

3 995 682 388 685 100

Allocation 80 65 70 85

[75]

[125]

[100]

[�80]

[�65]

[�70]

[�85]

C1

C2

C3 

W1

W2

W3

W4

464

352

995

867

654

513

416

690
791

682

388

685

■ FIGURE 8.2
Network representation of
the P & T Co. problem.
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Table 8.3 shows the constraint coefficients. As you will see later in this section, it is the
special structure in the pattern of these coefficients that distinguishes this problem as a
transportation problem, not its context. However, we first will describe the various other
characteristics of the transportation problem model.

The Transportation Problem Model

To describe the general model for the transportation problem, we need to use terms that
are considerably less specific than those for the components of the prototype example. In
particular, the general transportation problem is concerned (literally or figuratively) with
distributing any commodity from any group of supply centers, called sources, to any group
of receiving centers, called destinations, in such a way as to minimize the total distribu-
tion cost. The correspondence in terminology between the prototype example and the gen-
eral problem is summarized in Table 8.4.

As indicated by the fourth and fifth rows of the table, each source has a certain sup-
ply of units to distribute to the destinations, and each destination has a certain demand
for units to be received from the sources. The model for a transportation problem makes
the following assumption about these supplies and demands.

The requirements assumption: Each source has a fixed supply of units, where
this entire supply must be distributed to the destinations. (We let si denote the
number of units being supplied by source i, for i � 1, 2, . . . , m.) Similarly, each
destination has a fixed demand for units, where this entire demand must be re-
ceived from the sources. (We let dj denote the number of units being received by
destination j, for j � 1, 2, . . . , n.)

This assumption holds for the P & T Co. problem since each cannery (source) has a fixed
output and each warehouse (destination) has a fixed allocation.

■ TABLE 8.4 Terminology for the transportation problem

Prototype Example General Problem

Truckloads of canned peas Units of a commodity
Three canneries m sources
Four warehouses n destinations
Output from cannery i Supply si from source i
Allocation to warehouse j Demand dj at destination j
Shipping cost per truckload from cannery Cost cij per unit distributed from source 
i to warehouse j i to destination j



























■ TABLE 8.3 Constraint coefficients for P & T Co.

Coefficient of:

x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34

1 1 1 1
Cannery

1 1 1 1
constraints

1 1 1 1

A � 1 1 1
1 1 1 Warehouse

1 1 1 constraints
1 1 1
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This assumption that there is no leeway in the amounts to be sent or received means
that there needs to be a balance between the total supply from all sources and the total
demand at all destinations.

The feasible solutions property: A transportation problem will have feasible
solutions if and only if

�
m

i�1
si � �

n

j�1
dj.

Fortunately, these sums are equal for the P & T Co. since Table 8.2 indicates that the sup-
plies (outputs) sum to 300 truckloads and so do the demands (allocations).

In some real problems, the supplies actually represent maximum amounts (rather than
fixed amounts) to be distributed. Similarly, in other cases, the demands represent maxi-
mum amounts (rather than fixed amounts) to be received. Such problems do not quite fit
the model for a transportation problem because they violate the requirements assumption.
However, it is possible to reformulate the problem so that they then fit this model by in-
troducing a dummy destination or a dummy source to take up the slack between the ac-
tual amounts and maximum amounts being distributed. We will illustrate how this is done
with two examples at the end of this section.

The last row of Table 8.4 refers to a cost per unit distributed. This reference to a unit
cost implies the following basic assumption for any transportation problem.

The cost assumption: The cost of distributing units from any particular source to
any particular destination is directly proportional to the number of units distrib-
uted. Therefore, this cost is just the unit cost of distribution times the number of
units distributed. (We let cij denote this unit cost for source i and destination j.)

This assumption holds for the P & T Co. problem since the cost of shipping peas from
any cannery to any warehouse is directly proportional to the number of truckloads being
shipped.

The only data needed for a transportation problem model are the supplies, demands,
and unit costs. These are the parameters of the model. All these parameters can be sum-
marized conveniently in a single parameter table as shown in Table 8.5.

The model: Any problem (whether involving transportation or not) fits the
model for a transportation problem if it can be described completely in terms
of a parameter table like Table 8.5 and it satisfies both the requirements assump-
tion and the cost assumption. The objective is to minimize the total cost of distrib-
uting the units. All the parameters of the model are included in this parameter table.

■ TABLE 8.5 Parameter table for the transportation problem

Cost per Unit Distributed

Destination

1 2 … n Supply

1 c11 c12
… c1n s1

2 c21 c22
… c2n s2Source

� �

m cm1 cm2
… cmn sm

Demand d1 d2
… dn

…………………………………………………………………
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Therefore, formulating a problem as a transportation problem only requires filling
out a parameter table in the format of Table 8.5. (The parameter table for the P & T Co.
problem is shown in Table 8.2.) Alternatively, the same information can be provided by
using the network representation of the problem shown in Fig. 8.3 (as was done in 
Fig. 8.2 for the P & T Co. problem). Some problems that have nothing to do with trans-
portation also can be formulated as a transportation problem in either of these two ways.
The Worked Examples section of the book’s website includes another example of such
a problem.

Since a transportation problem can be formulated simply by either filling out a para-
meter table or drawing its network representation, it is not necessary to write out a for-
mal mathematical model for the problem. However, we will go ahead and show you this
model once for the general transportation problem just to emphasize that it is indeed a
special type of linear programming problem.

Letting Z be the total distribution cost and xij (i � 1, 2, . . . , m; j � 1, 2, . . . , n) be
the number of units to be distributed from source i to destination j, the linear program-
ming formulation of this problem is

Minimize Z � �
m

i�1
�
n

j�1
cijxij,

subject to

�
n

j�1
xij � si for i � 1, 2, . . . , m,

D1 S1 [s1] [�d1]

S2 D2 [s2] [�d2]

Sm Dn [sm] [�dn]

c11

c22

c m1 

c m2 

cmn 

c
2n

c12

c
1n

c21

■ FIGURE 8.3
Network representation of
the transportation problem.
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�
m

i�1

xij � dj for j � 1, 2, . . . , n,

and

xij � 0, for all i and j.

Note that the resulting table of constraint coefficients has the special structure shown in 
Table 8.6. Any linear programming problem that fits this special formulation is of the trans-
portation problem type, regardless of its physical context. In fact, there have been numerous 
applications unrelated to transportation that have been fitted to this special structure, as we
shall illustrate in the next example later in this section. (The assignment problem described
in Sec. 8.3 is an additional example.) This is one of the reasons why the transportation prob-
lem is considered such an important special type of linear programming problem.

For many applications, the supply and demand quantities in the model (the si and dj)
have integer values, and implementation will require that the distribution quantities (the xij)
also have integer values. Fortunately, because of the special structure shown in Table 8.6,
all such problems have the following property.

Integer solutions property: For transportation problems where every si and dj

have an integer value, all the basic variables (allocations) in every basic feasible
(BF) solution (including an optimal one) also have integer values.

The solution procedure described in Sec. 8.2 deals only with BF solutions, so it auto-
matically will obtain an integer optimal solution for this case. (You will be able to see why
this solution procedure actually gives a proof of the integer solutions property after you
learn the procedure; Prob. 8.2-20 guides you through the reasoning involved.) Therefore,
it is unnecessary to add a constraint to the model that the xij must have integer values.

As with other linear programming problems, the usual software options (Excel,
LINGO/LINDO, MPL/CPLEX) are available to you for setting up and solving trans-
portation problems (and assignment problems), as demonstrated in the files for this
chapter in your OR Courseware. However, because the Excel approach now is some-
what different from what you have seen previously, we next describe this approach.

Using Excel to Formulate and Solve Transportation Problems

As described in Sec. 3.6, the process of using a spreadsheet to formulate a linear program-
ming model for a problem begins by developing answers to three questions. What are the
decisions to be made? What are the constraints on these decisions? What is the overall mea-
sure of performance for these decisions? Since a transportation problem is a special type of

■ TABLE 8.6 Constraint coefficients for the transportation problem

Coefficient of:

x11 x12
… x1n x21 x22

… x2n
… xm1 xm2

… xmn

1 1 … 1
1 1 … 1 Supply

constraints
1 1 … 1

A �
1 1 1

1 1 … 1 Demand
constraints

1 1 1

………

…



























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linear programming problem, addressing these questions also is a suitable starting point for
formulating this kind of problem on a spreadsheet. The design of the spreadsheet then re-
volves around laying out this information and the associated data in a logical way.

To illustrate, consider the P & T Co. problem again. The decisions to be made are
the number of truckloads of peas to ship from each cannery to each warehouse. The con-
straints on these decisions are that the total amount shipped from each cannery must equal
its output (the supply) and the total amount received at each warehouse must equal its al-
location (the demand). The overall measure of performance is the total shipping cost, so
the objective is to minimize this quantity.

This information leads to the spreadsheet model shown in Fig. 8.4. All the data pro-
vided in Table 8.2 are displayed in the following data cells: UnitCost (D5:G7), Supply
(J12:J14), and Demand (D17:G17). The decisions on shipping quantities are given by the
changing cells, ShipmentQuantity (D12:G14). The output cells are TotalShipped (H12:H14)
and TotalReceived (D15:G15), where the SUM functions entered into these cells are shown
near the bottom of Fig. 8.4. The constraints, TotalShipped (H12:H14) = Supply (J12:J14)
and TotalReceived (D15:G15) = Demand (D17:G17), have been specified on the spread-
sheet and entered into the Solver dialogue box. The target cell is TotalCost (J17), where
its SUMPRODUCT function is shown in the lower right-hand corner of Fig. 8.4. The
Solver dialogue box specifies that the objective is to minimize this target cell. One of the
selected Solver options (Assume Non-Negative) specifies that all shipment quantities must
be nonnegative. The other one (Assume Linear Model) indicates that this transportation
problem is also a linear programming problem.

To begin the process of solving the problem, any value (such as 0) can be entered in
each of the changing cells. After clicking on the Solve button, the Solver will use the sim-
plex method to solve the transportation problem and determine the best value for each of

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

A B C D E F G H I J
P&T Co. Distribution Problem

Unit Cost Destination (Warehouse)
Sacramento Salt Lake City Rapid City Albuquerque

Source Bellingham $464 $513 $654 $867
(Cannery) Eugene $352 $416 $690 $791

Albert Lea $995 $682 $388 $685

Shipment Quantity Destination (Warehouse)
(Truckloads) Sacramento Salt Lake City Rapid City Albuquerque Total Shipped Supply

Source Bellingham 0 20 0 55 75 = 75
(Cannery) Eugene 80 45 0 0 125 = 125

Albert Lea 0 0 70 30 100 = 100
Total Received 80 65 70 85

= = = = Total Cost
Demand 80 65 70 85 152,535$   

■ FIGURE 8.4
A spreadsheet formulation of
the P & T Co. problem as a
transportation problem,
including the target cell
TotalCost (J17) and the other
output cells TotalShipped
(H12:H14) and TotalReceived
(D15:G15), as well as the
specifications needed to set
up the model. The changing
cells ShipmentQuantity
(D12:G14) show the optimal
shipping plan obtained by 
the Solver.
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the decision variables. This optimal solution is shown in ShipmentQuantity (D12:G14) in
Fig. 8.4, along with the resulting value $152,535 in the target cell TotalCost (J17).

Note that the Solver simply uses the general simplex method to solve a transporta-
tion problem rather than a streamlined version that is specially designed for solving trans-
portation problems very efficiently, such as the transportation simplex method presented
in the next section. Therefore, a software package that includes such a streamlined ver-
sion should solve a large transportation problem much faster than the Excel Solver.

We mentioned earlier that some problems do not quite fit the model for a transportation
problem because they violate the requirements assumption, but that it is possible to re-
formulate such a problem to fit this model by introducing a dummy destination or a dummy
source. When using the Excel Solver, it is not necessary to do this reformulation since the
simplex method can solve the original model where the supply constraints are in � form
or the demand constraints are in � form. (The Excel files for the next two examples in
your OR Courseware illustrate spreadsheet formulations that retain either the supply con-
straints or the demand constraints in their original inequality form.) However, the larger
the problem, the more worthwhile it becomes to do the reformulation and use the trans-
portation simplex method (or equivalent) instead with another software package.

The next two examples illustrate how to do this kind of reformulation.

An Example with a Dummy Destination

The NORTHERN AIRPLANE COMPANY builds commercial airplanes for various airline
companies around the world. The last stage in the production process is to produce the jet
engines and then to install them (a very fast operation) in the completed airplane frame.
The company has been working under some contracts to deliver a considerable number of
airplanes in the near future, and the production of the jet engines for these planes must
now be scheduled for the next four months.

To meet the contracted dates for delivery, the company must supply engines for in-
stallation in the quantities indicated in the second column of Table 8.7. Thus, the cumu-
lative number of engines produced by the end of months 1, 2, 3, and 4 must be at least
10, 25, 50, and 70, respectively.

The facilities that will be available for producing the engines vary according to other
production, maintenance, and renovation work scheduled during this period. The result-
ing monthly differences in the maximum number that can be produced and the cost 
(in millions of dollars) of producing each one are given in the third and fourth columns
of Table 8.7.

Because of the variations in production costs, it may well be worthwhile to produce
some of the engines a month or more before they are scheduled for installation, and this
possibility is being considered. The drawback is that such engines must be stored until
the scheduled installation (the airplane frames will not be ready early) at a storage cost
of $15,000 per month (including interest on expended capital) for each engine,1 as shown
in the rightmost column of Table 8.7.

The production manager wants a schedule developed for the number of engines to be
produced in each of the four months so that the total of the production and storage costs
will be minimized.

Formulation. One way to formulate a mathematical model for this problem is to let xj

be the number of jet engines to be produced in month j, for j � 1, 2, 3, 4. By using only

1For modeling purposes, assume that this storage cost is incurred at the end of the month for just those engines
that are being held over into the next month. Thus, engines that are produced in a given month for installation
in the same month are assumed to incur no storage cost.
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these four decision variables, the problem can be formulated as a linear programming
problem that does not fit the transportation problem type. (See Prob. 8.2-18.)

On the other hand, by adopting a different viewpoint, we can instead formulate the
problem as a transportation problem that requires much less effort to solve. This view-
point will describe the problem in terms of sources and destinations and then identify the
corresponding xij, cij, si, and dj. (See if you can do this before reading further.)

Because the units being distributed are jet engines, each of which is to be scheduled
for production in a particular month and then installed in a particular (perhaps different)
month,

Source i � production of jet engines in month i (i � 1, 2, 3, 4)

Destination j � installation of jet engines in month j ( j � 1, 2, 3, 4)

xij � number of engines produced in month i for installation in month j

cij � cost associated with each unit of xij

� �
si � ?

dj � number of scheduled installations in month j.

The corresponding (incomplete) parameter table is given in Table 8.8. Thus, it remains to
identify the missing costs and the supplies.

Since it is impossible to produce engines in one month for installation in an earlier
month, xij must be zero if i � j. Therefore, there is no real cost that can be associated with
such xij. Nevertheless, in order to have a well-defined transportation problem to which the
solution procedure of Sec. 8.2 can be applied, it is necessary to assign some value for the
unidentified costs. Fortunately, we can use the Big M method introduced in Sec. 4.6 to

if i � j
if i � j

cost per unit for production and any storage
?

■ TABLE 8.8 Incomplete parameter table for Northern Airplane Co.

Cost per Unit Distributed

Destination

1 2 3 4 Supply

1 1.080 1.095 1.110 1.125 ?
2 ? 1.110 1.125 1.140 ?

Source
3 ? ? 1.100 1.115 ?
4 ? ? ? 1.130 ?

Demand 10 15 25 20

■ TABLE 8.7 Production scheduling data for Northern Airplane Co.

Scheduled Maximum Unit Cost* Unit Cost*
Month Installations Production of Production of Storage

1 10 25 1.08 0.015
2 15 35 1.11 0.015
3 25 30 1.10 0.015
4 20 10 1.13

*Cost is expressed in millions of dollars.
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assign this value. Thus, we assign a very large number (denoted by M for convenience)
to the unidentified cost entries in Table 8.8 to force the corresponding values of xij to be
zero in the final solution.

The numbers that need to be inserted into the supply column of Table 8.8 are not ob-
vious because the “supplies,” the amounts produced in the respective months, are not fixed
quantities. In fact, the objective is to solve for the most desirable values of these production
quantities. Nevertheless, it is necessary to assign some fixed number to every entry in the
table, including those in the supply column, to have a transportation problem. A clue is pro-
vided by the fact that although the supply constraints are not present in the usual form, these
constraints do exist in the form of upper bounds on the amount that can be supplied, namely,

x11 � x12 � x13 � x14 � 25,

x21 � x22 � x23 � x24 � 35,

x31 � x32 � x33 � x34 � 30,

x41 � x42 � x43 � x44 � 10.

The only change from the standard model for the transportation problem is that these con-
straints are in the form of inequalities instead of equalities.

To convert these inequalities to equations in order to fit the transportation problem
model, we use the familiar device of slack variables, introduced in Sec. 4.2. In this con-
text, the slack variables are allocations to a single dummy destination that represent the
unused production capacity in the respective months. This change permits the supply in
the transportation problem formulation to be the total production capacity in the given
month. Furthermore, because the demand for the dummy destination is the total unused
capacity, this demand is

(25 � 35 � 30 � 10) � (10 � 15 � 25 � 20) � 30.

With this demand included, the sum of the supplies now equals the sum of the demands,
which is the condition given by the feasible solutions property for having feasible solutions.

The cost entries associated with the dummy destination should be zero because there
is no cost incurred by a fictional allocation. (Cost entries of M would be inappropriate
for this column because we do not want to force the corresponding values of xij to be
zero. In fact, these values need to sum to 30.)

The resulting final parameter table is given in Table 8.9, with the dummy destination
labeled as destination 5(D). By using this formulation, it is quite easy to find the optimal
production schedule by the solution procedure described in Sec. 8.2. (See Prob. 8.2-10
and its answer in the back of the book.)

■ TABLE 8.9 Complete parameter table for Northern Airplane Co.

Cost per Unit Distributed

Destination

1 2 3 4 5(D) Supply

1 1.080 1.095 1.110 1.125 0 25
2 M 1.110 1.125 1.140 0 35

Source
3 M M 1.100 1.115 0 30
4 M M M 1.130 0 10

Demand 10 15 25 20 30
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An Example with a Dummy Source

METRO WATER DISTRICT is an agency that administers water distribution in a large ge-
ographic region. The region is fairly arid, so the district must purchase and bring in water
from outside the region. The sources of this imported water are the Colombo, Sacron, and
Calorie rivers. The district then resells the water to users in the region. Its main customers
are the water departments of the cities of Berdoo, Los Devils, San Go, and Hollyglass.

It is possible to supply any of these cities with water brought in from any of the three
rivers, with the exception that no provision has been made to supply Hollyglass with Calo-
rie River water. However, because of the geographic layouts of the aqueducts and the cities
in the region, the cost to the district of supplying water depends upon both the source of
the water and the city being supplied. The variable cost per acre foot of water (in tens of
dollars) for each combination of river and city is given in Table 8.10. Despite these vari-
ations, the price per acre foot charged by the district is independent of the source of the
water and is the same for all cities.

The management of the district is now faced with the problem of how to allocate the
available water during the upcoming summer season. In units of 1 million acre feet, the
amounts available from the three rivers are given in the rightmost column of Table 8.10.
The district is committed to providing a certain minimum amount to meet the essential
needs of each city (with the exception of San Go, which has an independent source of
water), as shown in the minimum needed row of the table. The requested row indicates
that Los Devils desires no more than the minimum amount, but that Berdoo would like
to buy as much as 20 more, San Go would buy up to 30 more, and Hollyglass will take
as much as it can get.

Management wishes to allocate all the available water from the three rivers to the
four cities in such a way as to at least meet the essential needs of each city while mini-
mizing the total cost to the district.

Formulation. Table 8.10 already is close to the proper form for a parameter table, with
the rivers being the sources and the cities being the destinations. However, the one basic
difficulty is that it is not clear what the demands at the destinations should be. The amount
to be received at each destination (except Los Devils) actually is a decision variable, with
both a lower bound and an upper bound. This upper bound is the amount requested un-
less the request exceeds the total supply remaining after the minimum needs of the other
cities are met, in which case this remaining supply becomes the upper bound. Thus, in-
satiably thirsty Hollyglass has an upper bound of

(50 � 60 � 50) � (30 � 70 � 0) � 60.

Unfortunately, just like the other numbers in the parameter table of a transportation
problem, the demand quantities must be constants, not bounded decision variables. To

■ TABLE 8.10 Water resources data for Metro Water District

Cost (Tens of Dollars) per Acre Foot

Berdoo Los Devils San Go Hollyglass Supply

Colombo River 16 13 22 17 50
Sacron River 14 13 19 15 60
Calorie River 19 20 23 — 50

Minimum needed 30 70 0 10 (in units of 1
Requested 50 70 30 � million acre feet)
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begin resolving this difficulty, temporarily suppose that it is not necessary to satisfy the
minimum needs, so that the upper bounds are the only constraints on amounts to be al-
located to the cities. In this circumstance, can the requested allocations be viewed as the
demand quantities for a transportation problem formulation? After one adjustment, yes!
(Do you see already what the needed adjustment is?)

The situation is analogous to Northern Airplane Co.’s production scheduling prob-
lem, where there was excess supply capacity. Now there is excess demand capacity. Con-
sequently, rather than introducing a dummy destination to “receive” the unused supply
capacity, the adjustment needed here is to introduce a dummy source to “send” the un-
used demand capacity. The imaginary supply quantity for this dummy source would be
the amount by which the sum of the demands exceeds the sum of the real supplies:

(50 � 70 � 30 � 60) � (50 � 60 � 50) � 50.

This formulation yields the parameter table shown in Table 8.11, which uses units of
million acre feet and tens of millions of dollars. The cost entries in the dummy row are
zero because there is no cost incurred by the fictional allocations from this dummy source.
On the other hand, a huge unit cost of M is assigned to the Calorie River–Hollyglass spot.
The reason is that Calorie River water cannot be used to supply Hollyglass, and assign-
ing a cost of M will prevent any such allocation.

Now let us see how we can take each city’s minimum needs into account in this kind
of formulation. Because San Go has no minimum need, it is all set. Similarly, the for-
mulation for Hollyglass does not require any adjustments because its demand (60) ex-
ceeds the dummy source’s supply (50) by 10, so the amount supplied to Hollyglass from
the real sources will be at least 10 in any feasible solution. Consequently, its minimum
need of 10 from the rivers is guaranteed. (If this coincidence had not occurred, Hollyglass
would need the same adjustments that we shall have to make for Berdoo.)

Los Devils’ minimum need equals its requested allocation, so its entire demand of 70
must be filled from the real sources rather than the dummy source. This requirement calls
for the Big M method! Assigning a huge unit cost of M to the allocation from the dummy
source to Los Devils ensures that this allocation will be zero in an optimal solution.

Finally, consider Berdoo. In contrast to Hollyglass, the dummy source has an ade-
quate (fictional) supply to “provide” at least some of Berdoo’s minimum need in addition
to its extra requested amount. Therefore, since Berdoo’s minimum need is 30, adjustments
must be made to prevent the dummy source from contributing more than 20 to Berdoo’s
total demand of 50. This adjustment is accomplished by splitting Berdoo into two desti-
nations, one having a demand of 30 with a unit cost of M for any allocation from the
dummy source and the other having a demand of 20 with a unit cost of zero for the dummy
source allocation. This formulation gives the final parameter table shown in Table 8.12.

■ TABLE 8.11 Parameter table without minimum needs for Metro Water District

Cost (Tens of Millions of Dollars) per Unit Distributed

Destination

Berdoo Los Devils San Go Hollyglass Supply

Colombo River 16 13 22 17 50
Sacron River 14 13 19 15 60

Source
Calorie River 19 20 23 M 50
Dummy 0 0 0 0 50

Demand 50 70 30 60
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2For example, see K. Holmberg and H. Tuy: “A Production-Transportation Problem with Stochastic Demand
and Concave Production Costs,” Mathematical Programming Series A, 85: 157–179, 1999.

This problem will be solved in Sec. 8.2 to illustrate the solution procedure pre-
sented there.

Generalizations of the Transportation Problem

Even after the kinds of reformulations illustrated by the two preceding examples, some
problems involving the distribution of units from sources to destinations fail to satisfy the
model for the transportation problem. One reason may be that the distribution does not
go directly from the sources to the destinations but instead passes through transfer points
along the way. The Distribution Unlimited Co example in Sec. 3.4 (See Fig. 3.13) illus-
trates such a problem. In this case, the sources are the two factories and the destinations
are the two warehouses. However, a shipment from a particular factory to a particular
warehouse may first get transferred at a distribution center, or even at the other factory or
the other warehouse, before reaching its destination. The unit shipping costs differ for
these different shipping lanes. Furthermore, there are upper limits on how much can be
shipped through some of the shipping lanes. Although it is not a transportation problem,
this kind of problem still is a special type of linear programming problem, called the min-
imum cost flow problem, that will be discussed in Sec. 9.6. The network simplex method
described in Sec. 9.7 provides an efficient way of solving minimum cost flow problems.
A minimum cost flow problem that does not impose any upper limits on how much can be
shipped through the shipping lanes is referred to as a transshipment problem. Section 23.1
on the book’s website is devoted to discussing transshipment problems.

In other cases, the distribution may go directly from sources to destinations, but other
assumptions of the transportation problem may be violated. The cost assumption will be
violated if the cost of distributing units from any particular source to any particular des-
tination is a nonlinear function of the number of units distributed. The requirements as-
sumption will be violated if either the supplies from the sources or the demands at the
destinations are not fixed. For example, the final demand at a destination may not become
known until after the units have arrived and then a nonlinear cost is incurred if the amount
received deviates from the final demand. If the supply at a source is not fixed, the cost of
producing the amount supplied may be a nonlinear function of this amount. For example,
a fixed cost may be part of the cost associated with a decision to open up a new source.
Considerable research has been done to generalize the transportation problem and its so-
lution procedure in these kinds of directions.2

■ TABLE 8.12 Parameter table for Metro Water District

Cost (Tens of Millions of Dollars) per Unit Distributed

Destination

Berdoo (min.) Berdoo (extra) Los Devils San Go Hollyglass
1 2 3 4 5 Supply

Source Colombo River 1(D) 16 16 13 22 17 50
Source

Sacron River 2(D) 14 14 13 19 15 60
Source

Calorie River 3(D) 19 19 20 23 M 50
Source Dummy 4(D) M 0 M 0 0 50

Demand 30 20 70 30 60
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■ 8.2 A STREAMLINED SIMPLEX METHOD 
FOR THE TRANSPORTATION PROBLEM

Because the transportation problem is just a special type of linear programming problem,
it can be solved by applying the simplex method as described in Chap. 4. However, you
will see in this section that some tremendous computational shortcuts can be taken in this
method by exploiting the special structure shown in Table 8.6. We shall refer to this stream-
lined procedure as the transportation simplex method.

As you read on, note particularly how the special structure is exploited to achieve great
computational savings. This will illustrate an important OR technique—streamlining an
algorithm to exploit the special structure in the problem at hand.

Setting Up the Transportation Simplex Method

To highlight the streamlining achieved by the transportation simplex method, let us first
review how the general (unstreamlined) simplex method would set up a transportation
problem in tabular form. After constructing the table of constraint coefficients (see Table
8.6), converting the objective function to maximization form, and using the Big M
method to introduce artificial variables z1, z2, . . . , zm�n into the m � n respective equal-
ity constraints (see Sec. 4.6), typical columns of the simplex tableau would have the
form shown in Table 8.13, where all entries not shown in these columns are zeros. [The
one remaining adjustment to be made before the first iteration of the simplex method
is to algebraically eliminate the nonzero coefficients of the initial (artificial) basic vari-
ables in row 0.]

After any subsequent iteration, row 0 then would have the form shown in Table 8.14.
Because of the pattern of 0s and 1s for the coefficients in Table 8.13, by the fundamen-
tal insight presented in Sec. 5.3, ui and vj would have the following interpretation:

ui � multiple of original row i that has been subtracted (directly or indirectly) from
original row 0 by the simplex method during all iterations leading to the cur-
rent simplex tableau.

vj � multiple of original row m � j that has been subtracted (directly or indirectly)
from original row 0 by the simplex method during all iterations leading to the
current simplex tableau.

■ TABLE 8.13 Original simplex tableau before simplex method is applied 
to transportation problem

Coefficient of:
Basic Right

Variable Eq. Z … xij
… zi

… zm�j
… side

Z (0) �1 cij M M 0
(1)
�

zi (i) �0 1 1 si

�

zm�j (m � j) �0 1 1 dj

�

(m � n)
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Using the duality theory introduced in Chap. 6, another property of the ui and vj is that
they are the dual variables.3 If xij is a nonbasic variable, cij � ui � vj is interpreted as the
rate at which Z will change as xij is increased.

The Needed Information. To lay the groundwork for simplifying this setup, recall
what information is needed by the simplex method. In the initialization, an initial BF so-
lution must be obtained, which is done artificially by introducing artificial variables as the
initial basic variables and setting them equal to si and dj. The optimality test and step 1
of an iteration (selecting an entering basic variable) require knowing the current row 0,
which is obtained by subtracting a certain multiple of another row from the preceding
row 0. Step 2 (determining the leaving basic variable) must identify the basic variable that
reaches zero first as the entering basic variable is increased, which is done by comparing
the current coefficients of the entering basic variable and the corresponding right side.
Step 3 must determine the new BF solution, which is found by subtracting certain multi-
ples of one row from the other rows in the current simplex tableau.

Greatly Streamlined Ways of Obtaining This Information. Now, how does the
transportation simplex method obtain the same information in much simpler ways? This
story will unfold fully in the coming pages, but here are some preliminary answers.

First, no artificial variables are needed, because a simple and convenient procedure
(with several variations) is available for constructing an initial BF solution.

Second, the current row 0 can be obtained without using any other row simply by cal-
culating the current values of ui and vj directly. Since each basic variable must have a co-
efficient of zero in row 0, the current ui and vj are obtained by solving the set of equations

cij � ui � vj � 0 for each i and j such that xij is a basic variable.

(We will illustrate this straightforward procedure later when discussing the optimality test for
the transportation simplex method.) The special structure in Table 8.13 makes this convenient
way of obtaining row 0 possible by yielding cij � ui � vj as the coefficient of xij in Table 8.14.

Third, the leaving basic variable can be identified in a simple way without (explicitly)
using the coefficients of the entering basic variable. The reason is that the special structure
of the problem makes it easy to see how the solution must change as the entering basic
variable is increased. As a result, the new BF solution also can be identified immediately
without any algebraic manipulations on the rows of the simplex tableau. (You will see the
details when we describe how the transportation simplex method performs an iteration.)

The grand conclusion is that almost the entire simplex tableau (and the work of main-
taining it) can be eliminated! Besides the input data (the cij, si, and dj values), the only

■ TABLE 8.14 Row 0 of simplex tableau when simplex method is applied to
transportation problem

Coefficient of:
Basic Right

Variable Eq. Z … xij
… zi

… zm�j
… Side

Z (0) �1 cij � ui � vj M � ui M � vj ��
m

i�1
siui � �

n

j�1
djvj

3It would be easier to recognize these variables as dual variables by relabeling all these variables as yi and then
changing all the signs in row 0 of Table 8.14 by converting the objective function back to its original mini-
mization form.
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information needed by the transportation simplex method is the current BF solution,4 the
current values of ui and vj, and the resulting values of cij � ui � vj for nonbasic variables
xij. When you solve a problem by hand, it is convenient to record this information for
each iteration in a transportation simplex tableau, such as shown in Table 8.15. (Note
carefully that the values of xij and cij � ui � vj are distinguished in these tableaux by cir-
cling the former but not the latter.)

The Resulting Great Improvement in Efficiency. You can gain a fuller appreciation
for the great difference in efficiency and convenience between the simplex and the trans-
portation simplex methods by applying both to the same small problem (see Prob. 8.2-17).
However, the difference becomes even more pronounced for large problems that must be
solved on a computer. This pronounced difference is suggested somewhat by comparing
the sizes of the simplex and the transportation simplex tableaux. Thus, for a transportation
problem having m sources and n destinations, the simplex tableau would have m � n � 1
rows and (m � 1)(n � 1) columns (excluding those to the left of the xij columns), and the
transportation simplex tableau would have m rows and n columns (excluding the two ex-
tra informational rows and columns). Now try plugging in various values for m and n
(for example, m � 10 and n � 100 would be a rather typical medium-size transportation
problem), and note how the ratio of the number of cells in the simplex tableau to the
number in the transportation simplex tableau increases as m and n increase.

Initialization

Recall that the objective of the initialization is to obtain an initial BF solution. Because
all the functional constraints in the transportation problem are equality constraints, the
simplex method would obtain this solution by introducing artificial variables and using
them as the initial basic variables, as described in Sec. 4.6. The resulting basic solution

4Since nonbasic variables are automatically zero, the current BF solution is fully identified by recording just the
values of the basic variables. We shall use this convention from now on.

■ TABLE 8.15 Format of a transportation simplex tableau

Destination

1 2 ��� n Supply ui

1 ��� s1

2 ��� s2
Source

� ��� ��� ��� ��� �

m ��� sm

Demand d1 d2 ��� dn Z �

vj

Additional information to be added to each cell:
If xij is a If xij is a

basic variable nonbasic variable

c11

c21

cm1

c12

c22

cm2

c1n

c2n

cmn

xij cij � ui � vj

cij cij
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actually is feasible only for a revised version of the problem, so a number of iterations
are needed to drive these artificial variables to zero in order to reach the real BF solu-
tions. The transportation simplex method bypasses all this by instead using a simpler pro-
cedure to directly construct a real BF solution on a transportation simplex tableau.

Before outlining this procedure, we need to point out that the number of basic vari-
ables in any basic solution of a transportation problem is one fewer than you might ex-
pect. Ordinarily, there is one basic variable for each functional constraint in a linear
programming problem. For transportation problems with m sources and n destinations,
the number of functional constraints is m � n. However,

Number of basic variables � m � n � 1.

The reason is that the functional constraints are equality constraints, and this set of
m � n equations has one extra (or redundant) equation that can be deleted without chang-
ing the feasible region; i.e., any one of the constraints is automatically satisfied whenever
the other m � n � 1 constraints are satisfied. (This fact can be verified by showing that
any supply constraint exactly equals the sum of the demand constraints minus the sum of
the other supply constraints, and that any demand equation also can be reproduced by sum-
ming the supply equations and subtracting the other demand equations. See Prob. 8.2-19.)
Therefore, any BF solution appears on a transportation simplex tableau with exactly
m � n � 1 circled nonnegative allocations, where the sum of the allocations for each row
or column equals its supply or demand.5

The procedure for constructing an initial BF solution selects the m � n � 1 basic vari-
ables one at a time. After each selection, a value that will satisfy one additional constraint
(thereby eliminating that constraint’s row or column from further consideration for pro-
viding allocations) is assigned to that variable. Thus, after m � n � 1 selections, an en-
tire basic solution has been constructed in such a way as to satisfy all the constraints. A
number of different criteria have been proposed for selecting the basic variables. We pre-
sent and illustrate three of these criteria here, after outlining the general procedure.

General Procedure6 for Constructing an Initial BF Solution. To begin, all source
rows and destination columns of the transportation simplex tableau are initially under con-
sideration for providing a basic variable (allocation).

1. From the rows and columns still under consideration, select the next basic variable (al-
location) according to some criterion.

2. Make that allocation large enough to exactly use up the remaining supply in its row or
the remaining demand in its column (whichever is smaller).

3. Eliminate that row or column (whichever had the smaller remaining supply or demand)
from further consideration. (If the row and column have the same remaining supply and
demand, then arbitrarily select the row as the one to be eliminated. The column will be
used later to provide a degenerate basic variable, i.e., a circled allocation of zero.)

4. If only one row or only one column remains under consideration, then the procedure
is completed by selecting every remaining variable (i.e., those variables that were nei-
ther previously selected to be basic nor eliminated from consideration by eliminating

5However, note that any feasible solution with m � n � 1 nonzero variables is not necessarily a basic solution
because it might be the weighted average of two or more degenerate BF solutions (i.e., BF solutions having
some basic variables equal to zero). We need not be concerned about mislabeling such solutions as being basic,
however, because the transportation simplex method constructs only legitimate BF solutions.
6In Sec. 4.1 we pointed out that the simplex method is an example of the algorithms (systematic solution pro-
cedures) so prevalent in OR work. Note that this procedure also is an algorithm, where each successive execu-
tion of the (four) steps constitutes an iteration.

hil76299_ch08_304-357.qxd  11/19/08  08:30 AM  Page 322



Rev.Confirming Pages

8.2 A STREAMLINED SIMPLEX METHOD FOR THE TRANSPORTATION PROBLEM 323

their row or column) associated with that row or column to be basic with the only
feasible allocation. Otherwise, return to step 1.

Alternative Criteria for Step 1

1. Northwest corner rule: Begin by selecting x11 (that is, start in the northwest corner of
the transportation simplex tableau). Thereafter, if xij was the last basic variable selected,
then next select xi,j�1 (that is, move one column to the right) if source i has any sup-
ply remaining. Otherwise, next select xi�1,j (that is, move one row down).

Example. To make this description more concrete, we now illustrate the general pro-
cedure on the Metro Water District problem (see Table 8.12) with the northwest corner
rule being used in step 1. Because m � 4 and n � 5 in this case, the procedure would find
an initial BF solution having m � n � 1 � 8 basic variables.

As shown in Table 8.16, the first allocation is x11 � 30, which exactly uses up the
demand in column 1 (and eliminates this column from further consideration). This first
iteration leaves a supply of 20 remaining in row 1, so next select x1,1�1 � x12 to be a ba-
sic variable. Because this supply is no larger than the demand of 20 in column 2, all of
it is allocated, x12 � 20, and this row is eliminated from further consideration. (Row 1 is
chosen for elimination rather than column 2 because of the parenthetical instruction in
step 3.) Therefore, select x1�1,2 � x22 next. Because the remaining demand of 0 in col-
umn 2 is less than the supply of 60 in row 2, allocate x22 � 0 and eliminate column 2.

Continuing in this manner, we eventually obtain the entire initial BF solution
shown in Table 8.16, where the circled numbers are the values of the basic variables
(x11 � 30, . . . , x45 � 50) and all the other variables (x13, etc.) are nonbasic variables
equal to zero. Arrows have been added to show the order in which the basic variables (al-
locations) were selected. The value of Z for this solution is

Z � 16(30) � 16(20) � . . . � 0(50) � 2,470 � 10M.

2. Vogel’s approximation method: For each row and column remaining under consider-
ation, calculate its difference, which is defined as the arithmetic difference between
the smallest and next-to-the-smallest unit cost cij still remaining in that row or col-
umn. (If two unit costs tie for being the smallest remaining in a row or column, then

■ TABLE 8.16 Initial BF solution from the Northwest Corner Rule

Destination

1 2 3 4 5 Supply ui

1 30 20 50

2 0 60 60

Source

3 10 30 10 50

4(D) 50 50

Demand 30 20 70 30 60 Z � 2,470 � 10M

vj

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

→ →

→

→

→

→ →
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the difference is 0.) In that row or column having the largest difference, select the
variable having the smallest remaining unit cost. (Ties for the largest difference, or
for the smallest remaining unit cost, may be broken arbitrarily.)

Example. Now let us apply the general procedure to the Metro Water District problem
by using the criterion for Vogel’s approximation method to select the next basic variable
in step 1. With this criterion, it is more convenient to work with parameter tables (rather
than with complete transportation simplex tableaux), beginning with the one shown in
Table 8.12. At each iteration, after the difference for every row and column remaining un-
der consideration is calculated and displayed, the largest difference is circled and the small-
est unit cost in its row or column is enclosed in a box. The resulting selection (and value)
of the variable having this unit cost as the next basic variable is indicated in the lower
right-hand corner of the current table, along with the row or column thereby being elim-
inated from further consideration (see steps 2 and 3 of the general procedure). The table
for the next iteration is exactly the same except for deleting this row or column and sub-
tracting the last allocation from its supply or demand (whichever remains).

Applying this procedure to the Metro Water District problem yields the sequence of
parameter tables shown in Table 8.17, where the resulting initial BF solution consists of
the eight basic variables (allocations) given in the lower right-hand corner of the respec-
tive parameter tables.

This example illustrates two relatively subtle features of the general procedure that war-
rant special attention. First, note that the final iteration selects three variables (x31, x32, and x33)
to become basic instead of the single selection made at the other iterations. The reason is that
only one row (row 3) remains under consideration at this point. Therefore, step 4 of the gen-
eral procedure says to select every remaining variable associated with row 3 to be basic.

Second, note that the allocation of x23 � 20 at the next-to-last iteration exhausts both
the remaining supply in its row and the remaining demand in its column. However, rather
than eliminate both the row and column from further consideration, step 3 says to elimi-
nate only the row, saving the column to provide a degenerate basic variable later. Column 3
is, in fact, used for just this purpose at the final iteration when x33 � 0 is selected as one
of the basic variables. For another illustration of this same phenomenon, see Table 8.16
where the allocation of x12 � 20 results in eliminating only row 1, so that column 2 is
saved to provide a degenerate basic variable, x22 � 0, at the next iteration.

Although a zero allocation might seem irrelevant, it actually plays an important role.
You will see soon that the transportation simplex method must know all m � n � 1 basic
variables, including those with value zero, in the current BF solution.

3. Russell’s approximation method: For each source row i remaining under consideration,
determine its u�i, which is the largest unit cost cij still remaining in that row. For each
destination column j remaining under consideration, determine its v�j, which is the largest
unit cost cij still remaining in that column. For each variable xij not previously selected
in these rows and columns, calculate �ij � cij � u�i � v�j. Select the variable having the
largest (in absolute terms) negative value of �ij. (Ties may be broken arbitrarily.)

Example. Using the criterion for Russell’s approximation method in step 1, we again
apply the general procedure to the Metro Water District problem (see Table 8.12). The re-
sults, including the sequence of basic variables (allocations), are shown in Table 8.18.

At iteration 1, the largest unit cost in row 1 is u�1 � 22, the largest in column 1 is 
v�1 � M, and so forth. Thus,

�11 � c11 � u�1 � v�1 � 16 � 22 � M � �6 � M.
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■ TABLE 8.17 Initial BF solution from Vogel’s approximation method

Destination
Row

1 2 3 4 5 Supply Difference

1 16 16 13 22 17 50 3
2 14 14 13 19 15 60 1Source 3 19 19 20 23 M 50 0
4(D) M 0 M 0 0 50 0

Demand 30 20 70 30 60 Select x44 � 30
Column difference 2 14 0 19 15 Eliminate column 4

Destination
Row

1 2 3 5 Supply Difference

1 16 16 13 17 50 3
2 14 14 13 15 60 1Source 3 19 19 20 M 50 0
4(D) M 0 M 0 20 0

Demand 30 20 70 60 Select x45 � 20
Column difference 2 14 0 15 Eliminate row 4(D)

Destination
Row

1 2 3 5 Supply Difference

1 16 16 13 17 50 3
Source 2 14 14 13 15 60 1

3 19 19 20 M 50 0

Demand 30 20 70 40 Select x13 � 50
Column difference 2 2 0 2 Eliminate row 1

Destination
Row

1 2 3 5 Supply Difference

2 14 14 13 15 60 1Source 3 19 19 20 M 50 0

Demand 30 20 20 40 Select x25 � 40
Column difference 5 5 7 M � 15 Eliminate column 5

Destination
Row

1 2 3 Supply Difference

2 14 14 13 20 1Source 3 19 19 20 50 0

Demand 30 20 20 Select x23 � 20
Column difference 5 5 7 Eliminate row 2

Destination

1 2 3 Supply

Source 3 19 19 20 50

Demand 30 20 0 Select x31 � 30
Select x32 � 20 Z � 2,460
Select x33 � 0
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7N. V. Reinfeld and W. R. Vogel: Mathematical Programming, Prentice-Hall, Englewood Cliffs, NJ, 1958.
8E. J. Russell: “Extension of Dantzig’s Algorithm to Finding an Initial Near-Optimal Basis for the Transporta-
tion Problem,” Operations Research, 17: 187–191, 1969.

Calculating all the �ij values for i � 1, 2, 3, 4 and j � 1, 2, 3, 4, 5 shows that �45 � 0 � 2M
has the largest negative value, so x45 � 50 is selected as the first basic variable (allocation).
This allocation exactly uses up the supply in row 4, so this row is eliminated from further
consideration.

Note that eliminating this row changes v�1 and v�3 for the next iteration. Therefore, the
second iteration requires recalculating the �ij with j � 1, 3 as well as eliminating i � 4.
The largest negative value now is

�15 � 17 � 22 � M � � 5 � M,

so x15 � 10 becomes the second basic variable (allocation), eliminating column 5 from
further consideration.

The subsequent iterations proceed similarly, but you may want to test your under-
standing by verifying the remaining allocations given in Table 8.18. As with the other pro-
cedures in this (and other) section(s), you should find your IOR Tutorial useful for doing
the calculations involved and illuminating the approach. (See the interactive procedure for
finding an initial BF solution.)

Comparison of Alternative Criteria for Step 1. Now let us compare these three
criteria for selecting the next basic variable. The main virtue of the northwest corner rule
is that it is quick and easy. However, because it pays no attention to unit costs cij, usually
the solution obtained will be far from optimal. (Note in Table 8.16 that x35 � 10 even
though c35 � M.) Expending a little more effort to find a good initial BF solution might
greatly reduce the number of iterations then required by the transportation simplex method
to reach an optimal solution (see Probs. 8.2-7 and 8.2-9). Finding such a solution is the
objective of the other two criteria.

Vogel’s approximation method has been a popular criterion for many years,7 partially
because it is relatively easy to implement by hand. Because the difference represents the
minimum extra unit cost incurred by failing to make an allocation to the cell having the
smallest unit cost in that row or column, this criterion does take costs into account in an
effective way.

Russell’s approximation method provides another excellent criterion8 that is still quick
to implement on a computer (but not manually). Although it is unclear as to which is more

■ TABLE 8.18 Initial BF solution from Russell’s approximation method

Largest
Iteration u�1 u�2 u�3 u�4 v�1 v�2 v�3 v�4 v�5 Negative �ij Allocation

1 22 19 M M M 19 M 23 M �45 � �2M x45 � 50
2 22 19 M 19 19 20 23 M �15 � �5 � M x15 � 10
3 22 19 23 19 19 20 23 �13 � �29 x13 � 40
4 19 23 19 19 20 23 �23 � �26 x23 � 30
5 19 23 19 19 23 �21 � �24* x21 � 30
6 Irrelevant x31 � 0

x32 � 20
x34 � 30

o     Z � 2,570

*Tie with �22 � �24 broken arbitrarily.
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effective on average, this criterion frequently does obtain a better solution than Vogel’s.
(For the example, Vogel’s approximation method happened to find the optimal solution
with Z � 2,460, whereas Russell’s misses slightly with Z � 2,570.) For a large problem,
it may be worthwhile to apply both criteria and then use the better solution to start the it-
erations of the transportation simplex method.

One distinct advantage of Russell’s approximation method is that it is patterned di-
rectly after step 1 for the transportation simplex method (as you will see soon), which
somewhat simplifies the overall computer code. In particular, the u�i and v�j values have
been defined in such a way that the relative values of the cij � u�i � v�j estimate the rela-
tive values of cij � ui � vj that will be obtained when the transportation simplex method
reaches an optimal solution.

We now shall use the initial BF solution obtained in Table 8.18 by Russell’s approxi-
mation method to illustrate the remainder of the transportation simplex method. Thus, our
initial transportation simplex tableau (before we solve for ui and vj) is shown in Table 8.19.

The next step is to check whether this initial solution is optimal by applying the op-
timality test.

Optimality Test

Using the notation of Table 8.14, we can reduce the standard optimality test for the sim-
plex method (see Sec. 4.3) to the following for the transportation problem:

Optimality test: A BF solution is optimal if and only if cij � ui � vj � 0 for
every (i, j) such that xij is nonbasic.9

Thus, the only work required by the optimality test is the derivation of the values of ui

and vj for the current BF solution and then the calculation of these cij � ui � vj, as de-
scribed below.

■ TABLE 8.19 Initial transportation simplex tableau (before we obtain cij � ui � vj)
from Russell’s approximation method

Destination

1 2 3 4 5 Supply ui

1 40 10 50

2 30 30 60

Source

3 0 20 30 50

4(D) 50 50

Demand 30 20 70 30 60 Z � 2,570

vj

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
0

9The one exception is that two or more equivalent degenerate BF solutions (i.e., identical solutions having dif-
ferent degenerate basic variables equal to zero) can be optimal with only some of these basic solutions satisfy-
ing the optimality test. This exception is illustrated later in the example (see the identical solutions in the last
two tableaux of Table 8.23, where only the latter solution satisfies the criterion for optimality).
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Since cij � ui � vj is required to be zero if xij is a basic variable, ui and vj satisfy the
set of equations

cij � ui � vj for each (i, j) such that xij is basic.

There are m � n � 1 basic variables, and so there are m � n � 1 of these equations. Since
the number of unknowns (the ui and vj) is m � n, one of these variables can be assigned
a value arbitrarily without violating the equations. The choice of this one variable and its
value does not affect the value of any cij � ui � vj, even when xij is nonbasic, so the only
(minor) difference it makes is in the ease of solving these equations. A convenient choice
for this purpose is to select the ui that has the largest number of allocations in its row
(break any tie arbitrarily) and to assign to it the value zero. Because of the simple struc-
ture of these equations, it is then very simple to solve for the remaining variables alge-
braically.

To demonstrate, we give each equation that corresponds to a basic variable in our ini-
tial BF solution.

x31: 19 � u3 � v1. Set u3 � 0, so v1 � 19,

x32: 19 � u3 � v2. Set u3 � 0, so v2 � 19,

x34: 23 � u3 � v4. Set u3 � 0, so v4 � 23.

x21: 14 � u2 � v1. Know v1 � 19, so u2 � �5.

x23: 13 � u2 � v3. Know u2 � � 5, so v3 � 18.

x13: 13 � u1 � v3. Know v3 � 18, so u1 � �5.

x15: 17 � u1 � v5. Know u1 � �5, so v5 � 22.

x45: 0 � u4 � v5. Know v5 � 22, so u4 � �22.

Setting u3 � 0 (since row 3 of Table 8.19 has the largest number of allocations—3) and
moving down the equations one at a time immediately give the derivation of values for the
unknowns shown to the right of the equations. (Note that this derivation of the ui and vj

values depends on which xij variables are basic variables in the current BF solution, so
this derivation will need to be repeated each time a new BF solution is obtained.)

Once you get the hang of it, you probably will find it even more convenient to solve
these equations without writing them down by working directly on the transportation sim-
plex tableau. Thus, in Table 8.19 you begin by writing in the value u3 � 0 and then pick-
ing out the circled allocations (x31, x32, x34) in that row. For each one you set vj � c3j and
then look for circled allocations (except in row 3) in these columns (x21). Mentally calculate
u2 � c21 � v1, pick out x23, set v3 � c23 � u2, and so on until you have filled in all the
values for ui and vj. (Try it.) Then calculate and fill in the value of cij � ui � vj for each
nonbasic variable xij (that is, for each cell without a circled allocation), and you will have
the completed initial transportation simplex tableau shown in Table 8.20.

We are now in a position to apply the optimality test by checking the values of 
cij � ui � vj given in Table 8.20. Because two of these values (c25 � u2 � v5 � �2 and
c44 � u4 � v4 � �1) are negative, we conclude that the current BF solution is not opti-
mal. Therefore, the transportation simplex method must next go to an iteration to find a
better BF solution.

An Iteration

As with the full-fledged simplex method, an iteration for this streamlined version must
determine an entering basic variable (step 1), a leaving basic variable (step 2), and then
identify the resulting new BF solution (step 3).
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Step 1: Find the Entering Basic Variable. Since cij � ui � vj represents the rate at
which the objective function will change as the nonbasic variable xij is increased, the en-
tering basic variable must have a negative cij � ui � vj value to decrease the total cost Z.
Thus, the candidates in Table 8.20 are x25 and x44. To choose between the candidates, se-
lect the one having the larger (in absolute terms) negative value of cij � ui � vj to be the
entering basic variable, which is x25 in this case.

Step 2: Find the Leaving Basic Variable. Increasing the entering basic variable from
zero sets off a chain reaction of compensating changes in other basic variables (alloca-
tions), in order to continue satisfying the supply and demand constraints. The first basic
variable to be decreased to zero then becomes the leaving basic variable.

With x25 as the entering basic variable, the chain reaction in Table 8.20 is the rela-
tively simple one summarized in Table 8.21. (We shall always indicate the entering basic
variable by placing a boxed plus sign in the center of its cell while leaving the corre-
sponding value of cij � ui � vj in the lower right-hand corner of this cell.) Increasing x25

by some amount requires decreasing x15 by the same amount to restore the demand of 60
in column 5. This change then requires increasing x13 by this same amount to restore the

■ TABLE 8.20 Completed initial transportation simplex tableau

Destination

1 2 3 4 5 Supply ui

1 40 10 50 �5

2 30 30 60 �5

Source

3 0 20 30 50 0

4(D) 50 50 �22

Demand 30 20 70 30 60 Z � 2,570

vj 19 19 18 23 22

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
0

�2 �2

0

�4

�1

�2

�1�3

M � 22

M � 4M � 3

�2

■ TABLE 8.21 Part of initial transportation simplex tableau showing the chain
reaction caused by increasing the entering basic variable x25

Destination

3 4 5 Supply

1 … 40 � 10 � 50

Source

2 … 30 � � 60

… … … …

Demand 70 30 60

13

13

22

19

17

15

�2�1

�4
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supply of 50 in row 1. This change then requires decreasing x23 by this amount to re-
store the demand of 70 in column 3. This decrease in x23 successfully completes the
chain reaction because it also restores the supply of 60 in row 2. (Equivalently, we
could have started the chain reaction by restoring this supply in row 2 with the de-
crease in x23, and then the chain reaction would continue with the increase in x13 and
decrease in x15.)

The net result is that cells (2, 5) and (1, 3) become recipient cells, each receiving its
additional allocation from one of the donor cells, (1, 5) and (2, 3). (These cells are indi-
cated in Table 8.21 by the plus and minus signs.) Note that cell (1, 5) had to be the donor
cell for column 5 rather than cell (4, 5), because cell (4, 5) would have no recipient cell
in row 4 to continue the chain reaction. [Similarly, if the chain reaction had been started
in row 2 instead, cell (2, 1) could not be the donor cell for this row because the chain re-
action could not then be completed successfully after necessarily choosing cell (3, 1) as
the next recipient cell and either cell (3, 2) or (3, 4) as its donor cell.] Also note that, ex-
cept for the entering basic variable, all recipient cells and donor cells in the chain reac-
tion must correspond to basic variables in the current BF solution.

Each donor cell decreases its allocation by exactly the same amount as the entering
basic variable (and other recipient cells) is increased. Therefore, the donor cell that starts
with the smallest allocation—cell (1, 5) in this case (since 10 	 30 in Table 8.21)—must
reach a zero allocation first as the entering basic variable x25 is increased. Thus, x15 be-
comes the leaving basic variable.

In general, there always is just one chain reaction (in either direction) that can be
completed successfully to maintain feasibility when the entering basic variable is increased
from zero. This chain reaction can be identified by selecting from the cells having a ba-
sic variable: first the donor cell in the column having the entering basic variable, then the
recipient cell in the row having this donor cell, then the donor cell in the column having
this recipient cell, and so on until the chain reaction yields a donor cell in the row hav-
ing the entering basic variable. When a column or row has more than one additional ba-
sic variable cell, it may be necessary to trace them all further to see which one must be
selected to be the donor or recipient cell. (All but this one eventually will reach a dead
end in a row or column having no additional basic variable cell.) After the chain reaction
is identified, the donor cell having the smallest allocation automatically provides the leav-
ing basic variable. (In the case of a tie for the donor cell having the smallest allocation,
any one can be chosen arbitrarily to provide the leaving basic variable.)

Step 3: Find the New BF Solution. The new BF solution is identified simply by adding
the value of the leaving basic variable (before any change) to the allocation for each recipient
cell and subtracting this same amount from the allocation for each donor cell. In Table 8.21
the value of the leaving basic variable x15 is 10, so the portion of the transportation simplex
tableau in this table changes as shown in Table 8.22 for the new solution. (Since x15 is non-
basic in the new solution, its new allocation of zero is no longer shown in this new tableau.)

We can now highlight a useful interpretation of the cij � ui � vj quantities derived
during the optimality test. Because of the shift of 10 allocation units from the donor cells
to the recipient cells (shown in Tables 8.21 and 8.22), the total cost changes by

�Z � 10(15 � 17 � 13 � 13) � 10(�2) � 10(c25 � u2 � v5).

Thus, the effect of increasing the entering basic variable x25 from zero has been a cost
change at the rate of �2 per unit increase in x25. This is precisely what the value of 
c25 � u2 � v5 � �2 in Table 8.20 indicates would happen. In fact, another (but less effi-
cient) way of deriving cij � ui � vj for each nonbasic variable xij is to identify the chain
reaction caused by increasing this variable from 0 to 1 and then to calculate the resulting
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■ TABLE 8.22 Part of second transportation simplex tableau showing the changes
in the BF solution

Destination

3 4 5 Supply

1 … 50 50

Source
2 … 20 10 60

… … … …

Demand 70 30 60

13

13

22

19

17

15

cost change. This intuitive interpretation sometimes is useful for checking calculations
during the optimality test.

Before completing the solution of the Metro Water District problem, we now sum-
marize the rules for the transportation simplex method.

Summary of the Transportation Simplex Method

Initialization: Construct an initial BF solution by the procedure outlined earlier in this
section. Go to the optimality test.

Optimality test: Derive ui and vj by selecting the row having the largest number of 
allocations, setting its ui � 0, and then solving the set of equations 
cij � ui � vj for each (i, j) such that xij is basic. If cij � ui � vj � 0 for
every (i, j) such that xij is nonbasic, then the current solution is optimal,
so stop. Otherwise, go to an iteration.

Iteration:
1. Determine the entering basic variable: Select the nonbasic variable xij having the largest

(in absolute terms) negative value of cij � ui � vj.
2. Determine the leaving basic variable: Identify the chain reaction required to retain fea-

sibility when the entering basic variable is increased. From the donor cells, select the
basic variable having the smallest value.

3. Determine the new BF solution: Add the value of the leaving basic variable to the allo-
cation for each recipient cell. Subtract this value from the allocation for each donor cell.

Continuing to apply this procedure to the Metro Water District problem yields 
the complete set of transportation simplex tableaux shown in Table 8.23. Since all the 
cij � ui � vj values are nonnegative in the fourth tableau, the optimality test identifies the
set of allocations in this tableau as being optimal, which concludes the algorithm.

It would be good practice for you to derive the values of ui and vj given in the sec-
ond, third, and fourth tableaux. Try doing this by working directly on the tableaux. Also
check out the chain reactions in the second and third tableaux, which are somewhat more
complicated than the one you have seen in Table 8.21.

Special Features of This Example

Note three special points that are illustrated by this example. First, the initial BF solution
is degenerate because the basic variable x31 � 0. However, this degenerate basic variable
causes no complication, because cell (3, 1) becomes a recipient cell in the second tableau,
which increases x31 to a value greater than zero.

hil76299_ch08_304-357.qxd  11/19/08  08:30 AM  Page 331



Rev.Confirming Pages

332 CHAPTER 8 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

Destination

1 2 3 4 5 Supply ui

1 50 50 �8

2 20 � 40 � 60 �8

Source

3 30 20 � 0 � 50 0

4(D) 30 � 20 � 50 �23

Demand 30 20 70 30 60 Z � 2,460

vj 19 19 21 23 23

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
2

�5 �5

�3�3

�7 �2

�4

�1

�4

M � 23

M � 2M � 4

■ TABLE 8.23 Complete set of transportation simplex tableaux for the Metro
Water District problem

Destination

1 2 3 4 5 Supply ui

1 40 � 10 � 50 �5

2 30 30 � � 60 �5

Source

3 0 20 30 50 0

4(D) 50 50 �22

Demand 30 20 70 30 60 Z � 2,570

vj 19 19 18 23 22

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
0

�2 �2

0

�4

�1

�2

�1�3

M � 22

M � 4M � 3

�2

Destination

1 2 3 4 5 Supply ui

1 50 50 �5

2 30 � 20 10 � 60 �5

Source

3 0 � 20 30 � 50 0

4(D) � 50 � 50 �20

Demand 30 20 70 30 60 Z � 2,550

vj 19 19 18 23 20

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
1

�2 �2

0

�4 �2

�1

�2

�3�1

M � 20

M � 2M � 1
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Second, another degenerate basic variable (x34) arises in the third tableau because
the basic variables for two donor cells in the second tableau, cells (2, 1) and (3, 4),
tie for having the smallest value (30). (This tie is broken arbitrarily by selecting x21

as the leaving basic variable; if x34 had been selected instead, then x21 would have be-
come the degenerate basic variable.) This degenerate basic variable does appear to cre-
ate a complication subsequently, because cell (3, 4) becomes a donor cell in the third
tableau but has nothing to donate! Fortunately, such an event actually gives no cause
for concern. Since zero is the amount to be added to or subtracted from the alloca-
tions for the recipient and donor cells, these allocations do not change. However, the
degenerate basic variable does become the leaving basic variable, so it is replaced by
the entering basic variable as the circled allocation of zero in the fourth tableau. This
change in the set of basic variables changes the values of ui and vj. Therefore, if any
of the cij � ui � vj had been negative in the fourth tableau, the algorithm would have
gone on to make real changes in the allocations (whenever all donor cells have non-
degenerate basic variables).

Third, because none of the cij � ui � vj turned out to be negative in the fourth tableau,
the equivalent set of allocations in the third tableau is optimal also. Thus, the algorithm
executed one more iteration than was necessary. This extra iteration is a flaw that occa-
sionally arises in both the transportation simplex method and the simplex method be-
cause of degeneracy, but it is not sufficiently serious to warrant any adjustments to these
algorithms.

If you would like to see additional (smaller) examples of the application of the trans-
portation simplex method, two are available. One is the demonstration provided for the
transportation problem area in your OR Tutor. In addition, the Worked Examples section
of the book’s website includes another example of this type. Also provided in your IOR
Tutorial are both an interactive procedure and an automatic procedure for the transporta-
tion simplex method.

Now that you have studied the transportation simplex method, you are in a posi-
tion to check for yourself how the algorithm actually provides a proof of the integer so-
lutions property presented in Sec. 8.1. Problem 8.2-20 helps to guide you through the
reasoning.

■ TABLE 8.23 (Continued)

Destination

1 2 3 4 5 Supply ui

1 50 50 �7

2 20 40 60 �7

Source

3 30 20 0 50 0

4(D) 30 20 50 �22

Demand 30 20 70 30 60 Z � 2,460

vj 19 19 20 22 22

16

14

19

M

16

14

19

0

13

13

20

M

22

19

23

0

17

15

M

0

Iteration
3

�4 �4

�2�2

�7 �2

�4

�1

�3

M � 22

M � 2M � 3
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10For example, see L. J. LeBlanc, D. Randels, Jr., and T. K. Swann: “Heery International’s Spreadsheet Opti-
mization Model for Assigning Managers to Construction Projects,” Interfaces, 30(6): 95–106, Nov.–Dec. 2000.
Page 98 of this article also cites seven other applications of the assignment problem.

The assignment problem is a special type of linear programming problem where as-
signees are being assigned to perform tasks. For example, the assignees might be em-
ployees who need to be given work assignments. Assigning people to jobs is a common
application of the assignment problem.10 However, the assignees need not be people. They
also could be machines, or vehicles, or plants, or even time slots to be assigned tasks. The
first example below involves machines being assigned to locations, so the tasks in this
case simply involve holding a machine. A subsequent example involves plants being as-
signed products to be produced.

To fit the definition of an assignment problem, these kinds of applications need to be
formulated in a way that satisfies the following assumptions.

1. The number of assignees and the number of tasks are the same. (This number is de-
noted by n.)

2. Each assignee is to be assigned to exactly one task.
3. Each task is to be performed by exactly one assignee.
4. There is a cost cij associated with assignee i (i � 1, 2, . . . , n) performing task j

( j � 1, 2, . . . , n).
5. The objective is to determine how all n assignments should be made to minimize the

total cost.

Any problem satisfying all these assumptions can be solved extremely efficiently by al-
gorithms designed specifically for assignment problems.

The first three assumptions are fairly restrictive. Many potential applications do not
quite satisfy these assumptions. However, it often is possible to reformulate the problem
to make it fit. For example, dummy assignees or dummy tasks frequently can be used for
this purpose. We illustrate these formulation techniques in the examples.

Prototype Example

The JOB SHOP COMPANY has purchased three new machines of different types. There
are four available locations in the shop where a machine could be installed. Some of these
locations are more desirable than others for particular machines because of their proxim-
ity to work centers that will have a heavy work flow to and from these machines. (There
will be no work flow between the new machines.) Therefore, the objective is to assign the
new machines to the available locations to minimize the total cost of materials handling.
The estimated cost in dollars per hour of materials handling involving each of the ma-
chines is given in Table 8.24 for the respective locations. Location 2 is not considered
suitable for machine 2, so no cost is given for this case.

To formulate this problem as an assignment problem, we must introduce a dummy
machine for the extra location. Also, an extremely large cost M should be attached to the
assignment of machine 2 to location 2 to prevent this assignment in the optimal solution.
The resulting assignment problem cost table is shown in Table 8.25. This cost table con-
tains all the necessary data for solving the problem. The optimal solution is to assign ma-
chine 1 to location 4, machine 2 to location 3, and machine 3 to location 1, for a total
cost of $29 per hour. The dummy machine is assigned to location 2, so this location is
available for some future real machine.

■ 8.3 THE ASSIGNMENT PROBLEM
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We shall discuss how this solution is obtained after we formulate the mathematical
model for the general assignment problem.

The Assignment Problem Model

The mathematical model for the assignment problem uses the following decision variables:

xij � �
for i � 1, 2, . . . , n and j � 1, 2, . . . , n. Thus, each xij is a binary variable (it has value
0 or 1). As discussed at length in the chapter on integer programming (Chap. 11), binary
variables are important in OR for representing yes/no decisions. In this case, the yes/no
decision is: Should assignee i perform task j?

By letting Z denote the total cost, the assignment problem model is

Minimize Z � �
n

i�1
�
n

j�1
cijxij,

subject to

�
n

j�1
xij � 1 for i � 1, 2, . . . , n,

�
n

i�1
xij � 1 for j � 1, 2, . . . , n,

and

xij � 0, for all i and j
(xij binary, for all i and j).

if assignee i performs task j,
if not,

1
0

■ TABLE 8.24 Materials-handling cost data 
($) for Job Shop Co.

Location

1 2 3 4

1 13 16 12 11
Machine 2 15 — 13 20

3 5 7 10 6

■ TABLE 8.25 Cost table for the Job Shop Co. 
assignment problem

Task
(Location)

1 2 3 4

1 13 16 12 11
Assignee 2 15 M 13 20
(Machine) 3 5 7 10 6

4(D) 0 0 0 0
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The first set of functional constraints specifies that each assignee is to perform exactly
one task, whereas the second set requires each task to be performed by exactly one as-
signee. If we delete the parenthetical restriction that the xij be binary, the model clearly
is a special type of linear programming problem and so can be readily solved. Fortu-
nately, for reasons about to unfold, we can delete this restriction. (This deletion is the
reason that the assignment problem appears in this chapter rather than in the integer pro-
gramming chapter.)

Now compare this model (without the binary restriction) with the transportation prob-
lem model presented in the third subsection of Sec. 8.1 (including Table 8.6). Note how
similar their structures are. In fact, the assignment problem is just a special type of trans-
portation problem where the sources now are assignees and the destinations now are tasks
and where

Number of sources m � number of destinations n,

Every supply si � 1,

Every demand dj � 1.

Now focus on the integer solutions property in the subsection on the transporta-
tion problem model. Because si and dj are integers (� 1) now, this property implies
that every BF solution (including an optimal one) is an integer solution for an assign-
ment problem. The functional constraints of the assignment problem model prevent any
variable from being greater than 1, and the nonnegativity constraints prevent values less
than 0. Therefore, by deleting the binary restriction to enable us to solve an assign-
ment problem as a linear programming problem, the resulting BF solutions obtained
(including the final optimal solution) automatically will satisfy the binary restriction
anyway.

Just as the transportation problem has a network representation (see Fig. 8.3), the as-
signment problem can be depicted in a very similar way, as shown in Fig. 8.5. The first
column now lists the n assignees and the second column the n tasks. Each number in a
square bracket indicates the number of assignees being provided at that location in the
network, so the values are automatically 1 on the left, whereas the values of �1 on the
right indicate that each task is using up one assignee.

For any particular assignment problem, practitioners normally do not bother writing
out the full mathematical model. It is simpler to formulate the problem by filling out a
cost table (e.g., Table 8.25), including identifying the assignees and tasks, since this table
contains all the essential data in a far more compact form.

Problems occasionally arise that do not quite fit the model for an assignment prob-
lem because certain assignees will be assigned to more than one task. In this case, the
problem can be reformulated to fit the model by splitting each such assignee into sepa-
rate (but identical) new assignees where each new assignee will be assigned to exactly
one task. (Table 8.29 will illustrate this for a subsequent example.) Similarly, if a task is
to be performed by multiple assignees, that task can be split into separate (but identical)
new tasks where each new task is to be performed by exactly one assignee according to
the reformulated model. The Worked Examples section of the book’s website provides
another example that illustrates both cases and the resulting reformulation to fit the model
for an assignment problem. An alternative formulation as a transportation problem also
is shown.

Solution Procedures for Assignment Problems

Alternative solution procedures are available for solving assignment problems. Problems
that aren’t much larger than the Job Shop Co. example can be solved very quickly by the
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general simplex method, so it may be convenient to simply use a basic software package
(such as Excel and its Solver) that only employs this method. If this were done for the
Job Shop Co. problem, it would not have been necessary to add the dummy machine to
Table 8.25 to make it fit the assignment problem model. The constraints on the number
of machines assigned to each location would be expressed instead as

�
3

i�1
xij � 1 for j � 1, 2, 3, 4.

As shown in the Excel files for this chapter, a spreadsheet formulation for this example
would be very similar to the formulation for a transportation problem displayed in 
Fig. 8.4 except now all the supplies and demands would be 1 and the demand constraints
would be �1 instead of � 1.

However, large assignment problems can be solved much faster by using more spe-
cialized solution procedures, so we recommend using such a procedure instead of the gen-
eral simplex method for big problems.

Because the assignment problem is a special type of transportation problem, one con-
venient and relatively fast way to solve any particular assignment problem is to apply the
transportation simplex method described in Sec. 8.2. This approach requires converting
the cost table to a parameter table for the equivalent transportation problem, as shown in
Table 8.26a.

For example, Table 8.26b shows the parameter table for the Job Shop Co. problem
that is obtained from the cost table of Table 8.25. When the transportation simplex method
is applied to this transportation problem formulation, the resulting optimal solution has

c11 

c12 

c21 

c22 

c2n 

c n1
 

cnn

c n2  

c
1n 

A1 [1] [�1]

[1] [�1]

An [1] [�1]

T1 

A2 T2 

Tn 

■ FIGURE 8.5
Network representation of
the assignment problem.
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basic variables x13 � 0, x14 � 1, x23 � 1, x31 � 1, x41 � 0, x42 � 1, x43 � 0. (You are
asked to verify this solution in Prob. 8.3-6.). The degenerate basic variables (xij � 0)
and the assignment for the dummy machine (x42 � 1) do not mean anything for the orig-
inal problem, so the real assignments are machine 1 to location 4, machine 2 to loca-
tion 3, and machine 3 to location 1.

It is no coincidence that this optimal solution provided by the transportation simplex
method has so many degenerate basic variables. For any assignment problem with n as-
signments to be made, the transportation problem formulation shown in Table 8.26a has
m � n, that is, both the number of sources (m) and the number of destinations (n) in this
formulation equal the number of assignments (n). Transportation problems in general have
m � n � 1 basic variables (allocations), so every BF solution for this particular kind of
transportation problem has 2n � 1 basic variables, but exactly n of these xij equal 1 (cor-
responding to the n assignments being made). Therefore, since all the variables are binary
variables, there always are n � 1 degenerate basic variables (xij � 0). As discussed at the
end of Sec. 8.2, degenerate basic variables do not cause any major complication in the
execution of the algorithm. However, they do frequently cause wasted iterations, where
nothing changes (same allocations) except for the labeling of which allocations of zero
correspond to degenerate basic variables rather than nonbasic variables. These wasted it-
erations are a major drawback to applying the transportation simplex method in this kind
of situation, where there always are so many degenerate basic variables.

Another drawback of the transportation simplex method here is that it is purely a
general-purpose algorithm for solving all transportation problems. Therefore, it does noth-
ing to exploit the additional special structure in this special type of transportation problem 
(m � n, every si � 1, and every dj � 1). Fortunately, specialized algorithms have been de-
veloped to fully streamline the procedure for solving just assignment problems. These algo-
rithms operate directly on the cost table and do not bother with degenerate basic variables.
When a computer code is available for one of these algorithms, it generally should be used
in preference to the transportation simplex method, especially for really big problems.11

Section 8.4 describes one of these specialized algorithms (called the Hungarian al-
gorithm) for solving only assignment problems very efficiently.

11For an article comparing various algorithms for the assignment problem, see J. L. Kennington and Z. Wang:“An
Empirical Analysis of the Dense Assignment Problem: Sequential and Parallel Implementations,” ORSA Journal
on Computing, 3: 299–306, 1991.

■ TABLE 8.26 Parameter table for the assignment problem formulated as a transportation problem, illustrated
by the Job Shop Co. example

(a) General Case

Cost per Unit
Distributed

Destination

1 2 … n Supply

1 c11 c12
… c1n 1

2 c21 c22
… c2n 1

Source
� … … … … �

m � n cn1 cn2
… cnn 1

Demand 1 1 … 1

(b) Job Shop Co. Example

Cost per Unit
Distributed

Destination (Location)

1 2 3 4 Supply

1 13 16 12 11 1
Source 2 15 M 13 20 1
(Machine) 3 5 7 10 6 1

4(D) 0 0 0 0 1

Demand 1 1 1 1
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Your IOR Tutorial includes both an interactive procedure and an automatic procedure
for applying this algorithm.

Example—Assigning Products to Plants

The BETTER PRODUCTS COMPANY has decided to initiate the production of four
new products, using three plants that currently have excess production capacity. The
products require a comparable production effort per unit, so the available production
capacity of the plants is measured by the number of units of any product that can be
produced per day, as given in the rightmost column of Table 8.27. The bottom row gives
the required production rate per day to meet projected sales. Each plant can produce
any of these products, except that Plant 2 cannot produce product 3. However, the vari-
able costs per unit of each product differ from plant to plant, as shown in the main body
of Table 8.27.

Management now needs to make a decision on how to split up the production of the
products among plants. Two kinds of options are available.

Option 1: Permit product splitting, where the same product is produced in more than one
plant.

Option 2: Prohibit product splitting.

This second option imposes a constraint that can only increase the cost of an optimal
solution based on Table 8.27. On the other hand, the key advantage of Option 2 is
that it eliminates some hidden costs associated with product splitting that are not re-
flected in Table 8.27, including extra setup, distribution, and administration costs.
Therefore, management wants both options analyzed before a final decision is made.
For Option 2, management further specifies that every plant should be assigned at
least one of the products.

We will formulate and solve the model for each option in turn, where Option 1 leads
to a transportation problem and Option 2 leads to an assignment problem.

Formulation of Option 1. With product splitting permitted, Table 8.27 can be con-
verted directly to a parameter table for a transportation problem. The plants become the
sources, and the products become the destinations (or vice versa), so the supplies are
the available production capacities and the demands are the required production rates.
Only two changes need to be made in Table 8.27. First, because Plant 2 cannot produce
product 3, such an allocation is prevented by assigning to it a huge unit cost of M. Sec-
ond, the total capacity (75 � 75 � 45 � 195) exceeds the total required production 
(20 � 30 � 30 � 40 � 120), so a dummy destination with a demand of 75 is needed to
balance these two quantities. The resulting parameter table is shown in Table 8.28.

The optimal solution for this transportation problem has basic variables (allocations)
x12 � 30, x13 � 30, x15 � 15, x24 � 15, x25 � 60, x31 � 20, and x34 � 25, so

■ TABLE 8.27 Data for the Better Products Co. problem

Unit Cost ($) for Product
Capacity

1 2 3 4 Available

1 41 27 28 24 75
Plant 2 40 29 — 23 75

3 37 30 27 21 45

Production rate 20 30 30 40
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Plant 1 produces all of products 2 and 3.
Plant 2 produces 37.5 percent of product 4.
Plant 3 produces 62.5 percent of product 4 and all of product 1.

The total cost is Z � $3,260 per day.

Formulation of Option 2. Without product splitting, each product must be assigned
to just one plant. Therefore, producing the products can be interpreted as the tasks for an
assignment problem, where the plants are the assignees.

Management has specified that every plant should be assigned at least one of the prod-
ucts. There are more products (four) than plants (three), so one of the plants will need to
be assigned two products. Plant 3 has only enough excess capacity to produce one prod-
uct (see Table 8.27), so either Plant 1 or Plant 2 will take the extra product.

To make this assignment of an extra product possible within an assignment problem
formulation, Plants 1 and 2 each are split into two assignees, as shown in Table 8.29.

The number of assignees (now five) must equal the number of tasks (now four), so
a dummy task (product) is introduced into Table 8.29 as 5(D). The role of this dummy
task is to provide the fictional second product to either Plant 1 or Plant 2, whichever one
receives only one real product. There is no cost for producing a fictional product so, as
usual, the cost entries for the dummy task are zero. The one exception is the entry of M
in the last row of Table 8.29. The reason for M here is that Plant 3 must be assigned a
real product (a choice of product 1, 2, 3, or 4), so the Big M method is needed to prevent
the assignment of the fictional product to Plant 3 instead. (As in Table 8.28, M also is
used to prevent the infeasible assignment of product 3 to Plant 2.)

The remaining cost entries in Table 8.29 are not the unit costs shown in Tables 8.27
or 8.28. Table 8.28 gives a transportation problem formulation (for Option 1), so unit costs

■ TABLE 8.28 Parameter table for the transportation problem formulation of 
Option 1 for the Better Products Co. problem

Cost per Unit Distributed

Destination (Product)

1 2 3 4 5(D) Supply

1 41 27 28 24 0 75
Source

2 40 29 M 23 0 75
(Plant)

3 37 30 27 21 0 45

Demand 20 30 30 40 75

■ TABLE 8.29 Cost table for the assignment problem formulation of Option 2 for
the Better Products Co. problem

Task (Product)

1 2 3 4 5(D)

1a 820 810 840 960 0
1b 820 810 840 960 0

Assignee
2a 800 870 M 920 0

(Plant)
2b 800 870 M 920 0
3 740 900 810 840 M
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are appropriate there, but now we are formulating an assignment problem (for Option 2).
For an assignment problem, the cost cij is the total cost associated with assignee i per-
forming task j. For Table 8.29, the total cost (per day) for Plant i to produce product j is
the unit cost of production times the number of units produced (per day), where these two
quantities for the multiplication are given separately in Table 8.27. For example, consider
the assignment of Plant 1 to product 1. By using the corresponding unit cost in Table 8.28
($41) and the corresponding demand (number of units produced per day) in Table 8.28
(20), we obtain

Cost of Plant 1 producing one unit of product 1 � $41

Required (daily) production of product 1 � 20 units

Total (daily) cost of assigning plant 1 to product 1 � 20 ($41)

� $820

so 820 is entered into Table 8.29 for the cost of either Assignee 1a or 1b performing Task 1.
The optimal solution for this assignment problem is as follows:

Plant 1 produces products 2 and 3.
Plant 2 produces product 1.
Plant 3 produces product 4.

Here the dummy assignment is given to Plant 2. The total cost is Z � $3,290 per day.
As usual, one way to obtain this optimal solution is to convert the cost table of Table

8.29 to a parameter table for the equivalent transportation problem (see Table 8.26) and
then apply the transportation simplex method. Because of the identical rows in Table
8.29, this approach can be streamlined by combining the five assignees into three sources
with supplies 2, 2, and 1, respectively. (See Prob. 8.3-5.) This streamlining also decreases
by two the number of degenerate basic variables in every BF solution. Therefore, even
though this streamlined formulation no longer fits the format presented in Table 8.26a
for an assignment problem, it is a more efficient formulation for applying the trans-
portation simplex method.

Figure 8.6 shows how Excel and its Solver can be used to obtain this optimal solu-
tion, which is displayed in the changing cells Assignment (C19:F21) of the spreadsheet.
Since the general simplex method is being used, there is no need to fit this formulation
into the format for either the assignment problem or transportation problem model. There-
fore, the formulation does not bother to split Plants 1 and 2 into two assignees each, or
to add a dummy task. Instead, Plants 1 and 2 are given a supply of 2 each, and then �
signs are entered into cells H19 and H20 as well as into the corresponding constraints in
the Solver dialogue box. There also is no need to include the Big M method to prohibit
assigning product 3 to Plant 2 in cell E20, since this dialogue box includes the constraint
that E20 � 0. The target cell TotalCost (I24) shows the total cost of $3,290 per day.

Now look back and compare this solution to the one obtained for Option 1, which
included the splitting of product 4 between Plants 2 and 3. The allocations are somewhat
different for the two solutions, but the total daily costs are virtually the same ($3,260 for
Option 1 versus $3,290 for Option 2). However, there are hidden costs associated with
product splitting (including the cost of extra setup, distribution, and administration) that
are not included in the objective function for Option 1. As with any application of OR,
the mathematical model used can provide only an approximate representation of the total
problem, so management needs to consider factors that cannot be incorporated into the
model before it makes a final decision. In this case, after evaluating the disadvantages of
product splitting, management decided to adopt the Option 2 solution.
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In Sec. 8.3, we pointed out that the transportation simplex method can be used to solve
assignment problems but that a specialized algorithm designed for such problems should
be more efficient. We now will describe a classic algorithm of this type. It is called the
Hungarian algorithm (or Hungarian method) because it was developed by Hungarian
mathematicians. We will focus just on the key ideas without filling in all the details needed
for a complete computer implementation.

The Role of Equivalent Cost Tables

The algorithm operates directly on the cost table for the problem. More precisely, it converts
the original cost table into a series of equivalent cost tables until it reaches one where an op-
timal solution is obvious. This final equivalent cost table is one consisting of only positive or
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■ 8.4 A SPECIAL ALGORITHM FOR THE ASSIGNMENT PROBLEM

11
12
13
14

B C D E F
Cost ($/day) Product 1 Product 2 Product 3 Product 4

Plant 1 =C4*C$8 =D4*D$8 =E4*E$8 =F4*F$8
Plant 2 =C5*C$8 =D5*D$8 - =F5*F$8
Plant 3 =C6*C$8 =D6*D$8 =E6*E$8 =F6*F$8

17
18
19
20
21

G
Total

Assignments
=SUM(C19:F19)
=SUM(C20:F20)
=SUM(C21:F21)

Range Name Cells
Assignment C19:F21
Cost C12:F14
Demand C24:F24
RequiredProduction C8:F8
Supply I19:I21
TotalAssigned C22:F22
TotalAssignments G19:G21
TotalCost I24
UnitCost C4:F6

23
24

I
Total Cost

=SUMPRODUCT(Cost,Assignment)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E F G H I
Better Products Co. Production Planning Problem (Option 2)

Unit Cost Product 1 Product 2 Product 3 Product 4
Plant 1 $41 $27 $28 $24
Plant 2 $40 $29 - $23
Plant 3 $37 $30 $27 $21

Required Production 20 30 30 40

Cost ($/day) Product 1 Product 2 Product 3 Product 4
Plant 1 $820 $810 $840 $960
Plant 2 $800 $870 - $920
Plant 3 $740 $900 $810 $840

Total
Assignment Product 1 Product 2 Product 3 Product 4 Assignments Supply

Plant 1 0 1 1 0 2 <= 2
Plant 2 1 0 0 0 1 <= 2
Plant 3 0 0 0 1 1 = 1

Total Assigned 1 1 1 1
= = = = Total Cost

Demand 1 1 1 1 $3,290

22
B C D E F

Total Assigned =SUM(C19:C21) =SUM(D19:D21) =SUM(E19:E21) =SUM(F19:F21)

■ FIGURE 8.6
A spreadsheet formulation of
Option 2 for the Better
Products Co. problem as a
variant of an assignment
problem. The target cell is
TotalCost (I24) and the other
output cells are Cost
(C12:F14), TotalAssignments
(G19:G21), and
TotalAssigned (C22:F22),
where the equations entered
into these cells are shown
below the spreadsheet. The
values of 1 in the changing
cells Assignment (C19:F21)
display the optimal
production plan obtained by
the Solver.
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1 2 3 4

1 2 5 1 0

2 15 M 13 20

3 5 7 10 6

4(D) 0 0 0 0

Since any feasible solution must have exactly one assignment in row 1, the total cost for
the new table must always be exactly 11 less than for the old table. Hence, the solution
which minimizes total cost for one table must also minimize total cost for the other.

Notice that, whereas the original cost table had only strictly positive elements in the
first three rows, the new table has a zero element in row 1. Since the objective is to 
obtain enough strategically located zero elements to yield a complete set of assignments,
this process should be continued on the other rows and columns. Negative elements are
to be avoided, so the constant to be subtracted should be the minimum element in the row
or column. Doing this for rows 2 and 3 yields the following equivalent cost table:

12The individual rows and columns actually can be reduced in any order, but starting with all the rows and then
doing all the columns provides one systematic way of executing the algorithm.

zero elements where all the assignments can be made to the zero element positions. Since
the total cost cannot be negative, this set of assignments with a zero total cost is clearly op-
timal. The question remaining is how to convert the original cost table into this form.

The key to this conversion is the fact that one can add or subtract any constant from every
element of a row or column of the cost table without really changing the problem. That is, an
optimal solution for the new cost table must also be optimal for the old one, and conversely.

Therefore, the algorithm begins by subtracting the smallest number in each row from
every number in the row. This row reduction process will create an equivalent cost table
that has a zero element in every row. If this cost table has any columns without a zero 
element, the next step is to perform a column reduction process by subtracting the small-
est number in each such column from every number in the column.12 The new equivalent
cost table will have a zero element in every row and every column. If these zero elements
provide a complete set of assignments, these assignments constitute an optimal solution
and the algorithm if finished.

To illustrate, consider the cost table for the Job Shop Co. problem given in Table 8.25.
To convert this cost table into an equivalent cost table, suppose that we begin the row re-
duction process by subtracting 11 from every element in row 1, which yields:

1 2 3 4

1 2 5 1 0

2 2 M 0 7

3 0 2 5 1

4(D) 0 0 0 0

This cost table has all the zero elements required for a complete set of assignments,
as shown by the four boxes, so these four assignments constitute an optimal solution (as
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1 2 3 4 5(D)

1a 80 0 30 120 0

1b 80 0 30 120 0

2a 60 60 M 80 0

2b 60 60 M 80 0

3 0 90 0 0 M

claimed in Sec. 8.3 for this problem). The total cost for this optimal solution is seen in
Table 8.25 to be Z � 29, which is just the sum of the numbers that have been subtracted
from rows 1, 2, and 3.

Unfortunately, an optimal solution is not always obtained quite so easily, as we now
illustrate with the assignment problem formulation of Option 2 for the Better Products
Co. problem shown in Table 8.29.

Because this problem’s cost table already has zero elements in every row but the last one,
suppose we begin the process of converting to equivalent cost tables by subtracting the mini-
mum element in each column from every entry in that column. The result is shown below.

1 2 3 4 5(D)

1a 80 0 30 120 0

1b 80 0 30 120 0

2a 60 60 M 80 0

2b 60 60 M 80 0

3 0 90 0 0 M

Now every row and column has at least one zero element, but a complete set of assign-
ments with zero elements is not possible this time. In fact, the maximum number of as-
signments that can be made in zero element positions in only 3. (Try it.) Therefore, one
more idea must be implemented to finish solving this problem that was not needed for
the first example.

The Creation of Additional Zero Elements

This idea involves a new way of creating additional positions with zero elements with-
out creating any negative elements. Rather than subtracting a constant from a single row
or column, we now add or subtract a constant from a combination of rows and columns.

This procedure begins by drawing a set of lines through some of the rows and columns
in such a way as to cover all the zeros. This is done with a minimum number of lines, as
shown in the next cost table.

Notice that the minimum element not crossed out is 30 in the two top positions in col-
umn 3. Therefore, subtracting 30 from every element in the entire table, i.e., from every
row or from every column, will create a new zero element in these two positions. Then,
in order to restore the previous zero elements and eliminate negative elements, we add 30
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to each row or column with a line covering it—row 3 and columns 2 and 5(D). This yields
the following equivalent cost table.

1 2 3 4 5(D)

1a 50 0 0 90 0

1b 50 0 0 90 0

2a 30 60 M 50 0

2b 30 60 M 50 0

3 0 120 0 0 M

1 2 3 4 5(D)

1a 50 0 0 90 0

1b 50 0 0 90 0

2a 30 60 M 50 0

2b 30 60 M 50 0

3 0 120 0 0 M

A shortcut for obtaining this cost table from the preceding one is to subtract 30 from
just the elements without a line through them and then add 30 to every element that lies
at the intersection of two lines.

Note that columns 1 and 4 in this new cost table have only a single zero element and
they both are in the same row (row 3). Consequently, it now is possible to make four as-
signments to zero element positions, but still not five. (Try it.) In general, the minimum num-
ber of lines needed to cover all zeros equals the maximum number of assignments that can
be made to zero element positions. Therefore, we repeat the above procedure, where four
lines (the same number as the maximum number of assignments) now are the minimum
needed to cover all zeros. One way of doing this is shown below.

The minimum element not covered by a line is again 30, where this number now appears
in the first position in both rows 2a and 2b. Therefore, we subtract 30 from every uncov-
ered element and add 30 to every doubly covered element (except for ignoring elements
of M), which gives the following equivalent cost table.

1 2 3 4 5(D)

1a 50 0 0 90 30

1b 50 0 0 90 30

2a 0 30 M 20 0

2b 0 30 M 20 0

3 0 120 0 0 M
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The linear programming model encompasses a wide variety of specific types of problems.
The general simplex method is a powerful algorithm that can solve surprisingly large ver-
sions of any of these problems. However, some of these problem types have such simple
formulations that they can be solved much more efficiently by streamlined algorithms that
exploit their special structure. These streamlined algorithms can cut down tremendously
on the computer time required for large problems, and they sometimes make it computa-
tionally feasible to solve huge problems. This is particularly true for the two types of lin-
ear programming problems studied in this chapter, namely, the transportation problem and
the assignment problem. Both types have a number of common applications, so it is im-
portant to recognize them when they arise and to use the best available algorithms. These
special-purpose algorithms are included in some linear programming software packages.

346 CHAPTER 8 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

■ 8.5 CONCLUSIONS

This table actually has several ways of making a complete set of assignments to zero
element positions (several optimal solutions), including the one shown by the five boxes.
The resulting total cost is seen in Table 8.29 to be

Z � 810 � 840 � 800 � 0 � 840 � 3,290.

We now have illustrated the entire algorithm, as summarized below.

Summary of the Hungarian Algorithm

1. Subtract the smallest number in each row from every number in the row. (This is called
row reduction.) Enter the results in a new table.

2. Subtract the smallest number in each column of the new table from every number in
the column. (This is called column reduction.) Enter the results in another table.

3. Test whether an optimal set of assignments can be made. You do this by determining
the minimum number of lines needed to cover (i.e., cross out) all zeros. Since this min-
imum number of lines equals the maximum number of assignments that can be made
to zero element positions, if the minimum number of lines equals the number of rows,
an optimal set of assignments is possible. (If you find that a complete set of assign-
ments to zero element positions is not possible, this means that you did not reduce the
number of lines covering all zeros down to the minimum number.) In that case, go to
step 6. Otherwise go on to step 4.

4. If the number of lines is less than the number of rows, modify the table in the fol-
lowing way:
a. Subtract the smallest uncovered number from every uncovered number in the table.
b. Add the smallest uncovered number to the numbers at intersections of covering lines.
c. Numbers crossed out but not at the intersections of cross-out lines carry over un-

changed to the next table.
5. Repeat steps 3 and 4 until an optimal set of assignments is possible.
6. Make the assignments one at a time in positions that have zero elements. Begin with

rows or columns that have only one zero. Since each row and each column needs to
receive exactly one assignment, cross out both the row and the column involved after
each assignment is made. Then move on to the rows and columns that are not yet
crossed out to select the next assignment, with preference again given to any such row
or column that has only one zero that is not crossed out. Continue until every row and
every column has exactly one assignment and so has been crossed out. The complete
set of assignments made in this way is an optimal solution for the problem.  

Your IOR Tutorial provides an interactive procedure for applying this algorithm ef-
ficiently. An automatic procedure in included as well.
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We shall reexamine the special structure of the transportation and assignment prob-
lems in Sec. 9.6. There we shall see that these problems are special cases of an important
class of linear programming problems known as the minimum cost flow problem. This
problem has the interpretation of minimizing the cost for the flow of goods through a net-
work. A streamlined version of the simplex method called the network simplex method
(described in Sec. 9.7) is widely used for solving this type of problem, including its var-
ious special cases.

A supplementary chapter (Chap. 23) on the book’s website describes various addi-
tional special types of linear programming problems. One of these, called the transship-
ment problem, is a generalization of the transportation problem which allows shipments
from any source to any destination to first go through intermediate transfer points. Since
the transshipment problem also is a special case of the minimum cost flow problem, we
will describe it further in Sec. 9.6.

Much research continues to be devoted to developing streamlined algorithms for spe-
cial types of linear programming problems, including some not discussed here. At the
same time, there is widespread interest in applying linear programming to optimize the
operation of complicated large-scale systems. The resulting formulations usually have spe-
cial structures that can be exploited. Being able to recognize and exploit special structures
is an important factor in the successful application of linear programming.

■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)

Worked Examples:

Examples for Chapter 8

A Demonstration Example in OR Tutor:

The Transportation Problem

Interactive Procedures in IOR Tutorial:

Enter or Revise a Transportation Problem
Find Initial Basic Feasible Solution—for Interactive Method
Solve Interactively by the Transportation Simplex Method
Solve an Assignment Problem Interactively

Automatic Procedures in IOR Tutorial:

Solve Automatically by the Transportation Simplex Method
Solve an Assignment Problem Automatically
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Distance

Distribution Center

1 2 3 4

1 800 miles 1,300 miles 400 miles 700 miles
Plant 2 1,100 miles 1,400 miles 600 miles 1,000 miles

3 600 miles 1,200 miles 800 miles 900 miles

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example just listed may be helpful.
I: We suggest that you use the relevant interactive procedure

in IOR Tutorial (the printout records your work).
C: Use the computer with any of the software options avail-

able to you (or as instructed by your instructor) to solve
the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

8.1-1. Read the referenced article that fully describes the OR study
summarized in the application vignette in Sec. 8.1. Briefly describe
how the model for the transportation problem was applied in this
study. Then list the various financial and nonfinancial benefits that
resulted from this study.

8.1-2. The Childfair Company has three plants producing child
push chairs that are to be shipped to four distribution centers. Plants
1, 2, and 3 produce 12, 17, and 11 shipments per month, respec-
tively. Each distribution center needs to receive 10 shipments per
month. The distance from each plant to the respective distributing
centers is given below:

The freight cost for each shipment is $100 plus 50 cents per mile.
How much should be shipped from each plant to each of the

distribution centers to minimize the total shipping cost?
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(b) Draw the network representation of this problem.
C (c) Obtain an optimal solution.

8.1-3.* Tom would like 3 pints of home brew today and an addi-
tional 4 pints of home brew tomorrow. Dick is willing to sell a
maximum of 5 pints total at a price of $3.00 per pint today and
$2.70 per pint tomorrow. Harry is willing to sell a maximum of
4 pints total at a price of $2.90 per pint today and $2.80 per pint 
tomorrow.

Tom wishes to know what his purchases should be to mini-
mize his cost while satisfying his thirst requirements.
(a) Formulate a linear programming model for this problem, and

construct the initial simplex tableau (see Chaps. 3 and 4).
(b) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
C (c) Obtain an optimal solution.

8.1-4. The Versatech Corporation has decided to produce three new
products. Five branch plants now have excess product capacity. The
unit manufacturing cost of the first product would be $41, $39,
$42, $38, and $39 in Plants 1, 2, 3, 4, and 5, respectively. The unit
manufacturing cost of the second product would be $55, $51, $56,
$52, and $53 in Plants 1, 2, 3, 4, and 5, respectively. The unit man-
ufacturing cost of the third product would be $48, $45, and $50 in
Plants 1, 2, and 3, respectively, whereas Plants 4 and 5 do not have
the capability for producing this product. Sales forecasts indicate
that 700, 1,000, and 900 units of products 1, 2, and 3, respec-
tively, should be produced per day. Plants 1, 2, 3, 4, and 5 have
the capacity to produce 400, 600, 400, 600, and 1,000 units daily,

■ PROBLEMS

An Excel Add-in:

Premium Solver for Education

“Ch. 8—Transp. & Assignment” Files for Solving the Examples:

Excel Files
LINGO/LINDO File
MPL/CPLEX File

Glossary for Chapter 8

Supplement to this Chapter:

A Case Study with Many Transportation Problems

See Appendix 1 for documentation of the software.
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respectively, regardless of the product or combination of products
involved. Assume that any plant having the capability and capac-
ity to produce them can produce any combination of the products
in any quantity.

Management wishes to know how to allocate the new prod-
ucts to the plants to minimize total manufacturing cost.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
C (b) Obtain an optimal solution.

C 8.1-5. Reconsider the P & T Co. problem presented in Sec. 8.1.
You now learn that one or more of the shipping costs per truck-
load given in Table 8.2 may change slightly before shipments
begin.

Use the Excel Solver to generate the Sensitivity Report for
this problem. Use this report to determine the allowable range for
each of the unit costs. What do these allowable ranges tell P & T
management?

8.1-6. The Onenote Co. produces a single product at three plants
for four customers. The three plants will produce 60, 80, and 40
units, respectively, during the next time period. The firm has made
a commitment to sell 40 units to customer 1, 60 units to customer
2, and at least 20 units to customer 3. Both customers 3 and 4 also
want to buy as many of the remaining units as possible. The net
profit associated with shipping a unit from plant i for sale to cus-
tomer j is given by the following table:

Management wishes to know how many units to sell to customers
3 and 4 and how many units to ship from each of the plants to each
of the customers to maximize profit.
(a) Formulate this problem as a transportation problem where

the objective function is to be maximized by constructing
the appropriate parameter table that gives unit profits.

(b) Now formulate this transportation problem with the usual
objective of minimizing total cost by converting the param-
eter table from part (a) into one that gives unit costs instead
of unit profits.

(c) Display the formulation in part (a) on an Excel spreadsheet.
C (d) Use this information and the Excel Solver to obtain an op-

timal solution.
C (e) Repeat parts (c) and (d ) for the formulation in part (b). Com-

pare the optimal solutions for the two formulations.

8.1-7. The Move-It Company has two plants producing forklift
trucks that then are shipped to three distribution centers. The

production costs are the same at the two plants, and the cost of
shipping for each truck is shown for each combination of plant
and distribution center:

A total of 60 forklift trucks are produced and shipped per week.
Each plant can produce and ship any amount up to a maximum of
50 trucks per week, so there is considerable flexibility on how to
divide the total production between the two plants so as to reduce
shipping costs. However, each distribution center must receive ex-
actly 20 trucks per week.

Management’s objective is to determine how many forklift
trucks should be produced at each plant, and then what the over-
all shipping pattern should be to minimize total shipping cost.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(b) Display the transportation problem on an Excel spreadsheet.
C (c) Use the Excel Solver to obtain an optimal solution.

8.1-8. Redo Prob. 8.1-7 when any distribution center may receive
any quantity between 10 and 30 forklift trucks per week in order
to further reduce total shipping cost, provided only that the total
shipped to all three distribution centers must still equal 60 trucks
per week.

8.1-9. The MJK Manufacturing Company must produce two
products in sufficient quantity to meet contracted sales in each
of the next three months. The two products share the same pro-
duction facilities, and each unit of both products requires the
same amount of production capacity. The available production
and storage facilities are changing month by month, so the pro-
duction capacities, unit production costs, and unit storage costs
vary by month. Therefore, it may be worthwhile to overproduce
one or both products in some months and store them until
needed.

For each of the three months, the second column of the fol-
lowing table gives the maximum number of units of the two prod-
ucts combined that can be produced on Regular Time (RT) and on
Overtime (O). For each of the two products, the subsequent
columns give (1) the number of units needed for the contracted
sales, (2) the cost (in thousands of dollars) per unit produced on
Regular Time, (3) the cost (in thousands of dollars) per unit pro-
duced on Overtime, and (4) the cost (in thousands of dollars) of
storing each extra unit that is held over into the next month. In
each case, the numbers for the two products are separated by a
slash /, with the number for Product 1 on the left and the number
for Product 2 on the right.

Customer

1 2 3 4

1 $800 $700 $500 $200
Plant 2 $500 $200 $100 $300

3 $600 $400 $300 $500

Distribution Center

1 2 3

A $800 $700 $400
Plant

B $600 $800 $500
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Destination

1 2 3 4 Supply

1 7 4 1 4 1
2 4 6 7 2 1

Source
3 8 5 4 6 1
4 6 7 6 3 1

Demand 1 1 1 1

The production manager wants a schedule developed for the
number of units of each of the two products to be produced on
Regular Time and (if Regular Time production capacity is used
up) on Overtime in each of the three months. The objective is to
minimize the total of the production and storage costs while meet-
ing the contracted sales for each month. There is no initial in-
ventory, and no final inventory is desired after the three months.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
C (b) Obtain an optimal solution.

8.2-1. Consider the transportation problem having the following
parameter table:

(a) Use Vogel’s approximation method manually (don’t use the in-
teractive procedure in IOR Tutorial) to select the first basic
variable for an initial BF solution.

(b) Use Russell’s approximation method manually to select the
first basic variable for an initial BF solution.

(c) Use the northwest corner rule manually to construct a com-
plete initial BF solution.

D,I 8.2-2.* Consider the transportation problem having the fol-
lowing parameter table:

Use each of the following criteria to obtain an initial BF solution.
Compare the values of the objective function for these solutions.
(a) Northwest corner rule.
(b) Vogel’s approximation method.
(c) Russell’s approximation method.

D,I 8.2-3. Consider the transportation problem having the follow-
ing parameter table:

Use each of the following criteria to obtain an initial BF solution.
Compare the values of the objective function for these solutions.
(a) Northwest corner rule.
(b) Vogel’s approximation method.
(c) Russell’s approximation method.

8.2-4. Consider the transportation problem having the following
parameter table:

(a) Notice that this problem has three special characteristics:
(1) number of sources � number of destinations, (2) each
supply � 1, and (3) each demand � 1. Transportation prob-
lems with these characteristics are of a special type called the
assignment problem (as described in Sec. 8.3). Use the integer
solutions property to explain why this type of transportation
problem can be interpreted as assigning sources to destinations
on a one-to-one basis.

(b) How many basic variables are there in every BF solution? How
many of these are degenerate basic variables (� 0)?

D,I (c) Use the northwest corner rule to obtain an initial BF 
solution.

I (d) Construct an initial BF solution by applying the general
procedure for the initialization step of the transportation
simplex method. However, rather than using one of the three

Product 1/Product 2

Maximum Unit Cost
Combined of Production Unit Cost
Production ($1,000’s) of Storage

Month RT OT Sales RT OT ($1,000’s)

1 10 3 5/3 15/16 18/20 1/2
2 8 2 3/5 17/15 20/18 2/1
3 10 3 4/4 19/17 22/22

Destination

1 2 3 Supply

1 15 9 13 7
Source 2 11 M 17 5

3 9 11 9 3

Demand 7 3 5

Destination

1 2 3 4 5 Supply

1 2 4 6 5 7 4
2 7 6 3 M 4 6

Source
3 8 7 5 2 5 6
4 0 0 0 0 0 4

Demand 4 4 2 5 5

Destination

1 2 3 4 5 6 Supply

1 13 10 22 29 18 0 5
2 14 13 16 21 M 0 6

Source 3 3 0 M 11 6 0 7
4 18 9 19 23 11 0 4
5 30 24 34 36 28 0 3

Demand 3 5 4 5 6 2
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criteria for step 1 presented in Sec. 8.2, use the minimum cost
criterion given next for selecting the next basic variable. (With
the corresponding interactive routine in your OR Courseware,
choose the Northwest Corner Rule, since this choice actually
allows the use of any criterion.)

Minimum cost criterion: From among the rows
and columns still under consideration, select the
variable xij having the smallest unit cost cij to be the
next basic variable. (Ties may be broken arbitrarily.)

D,I (e) Starting with the initial BF solution from part (c), interac-
tively apply the transportation simplex method to obtain an
optimal solution.

8.2-5. Consider the prototype example for the transportation prob-
lem (the P & T Co. problem) presented at the beginning of Sec.
8.1. Verify that the solution given there actually is optimal by ap-
plying just the optimality test portion of the transportation simplex
method to this solution.

8.2-6. Consider the transportation problem having the following
parameter table:

After several iterations of the transportation simplex method, a BF
solution is obtained that has the following basic variables: x13 � 20,
x21 � 25, x24 � 5, x32 � 25, x34 � 5, x42 � 0, x43 � 0, x45 � 20.
Continue the transportation simplex method for two more iterations
by hand. After two iterations, state whether the solution is optimal
and, if so, why.

D,I 8.2-7.* Consider the transportation problem having the fol-
lowing parameter table:

Use each of the following criteria to obtain an initial BF solution.
In each case, interactively apply the transportation simplex method,
starting with this initial solution, to obtain an optimal solution.

Compare the resulting number of iterations for the transportation
simplex method.
(a) Northwest corner rule.
(b) Vogel’s approximation method.
(c) Russell’s approximation method.

D,I 8.2-8. The Cost-Less Corp. supplies its four retail outlets from
its four plants. The shipping cost per shipment from each plant to
each retail outlet is given below.

Plants 1, 2, 3, and 4 make 10, 20, 20, and 10 shipments per month,
respectively. Retail outlets 1, 2, 3, and 4 need to receive 20, 10, 10,
and 20 shipments per month, respectively.

The distribution manager, Randy Smith, now wants to deter-
mine the best plan for how many shipments to send from each plant
to the respective retail outlets each month. Randy’s objective is to
minimize the total shipping cost.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(b) Use the northwest corner rule to construct an initial BF

solution.
(c) Starting with the initial basic solution from part (b), interac-

tively apply the transportation simplex method to obtain an op-
timal solution.

8.2-9. The Energetic Company needs to make plans for the energy
systems for a new building.

The energy needs in the building fall into three categories:
(1) electricity, (2) heating water, and (3) heating space in the build-
ing. The daily requirements for these three categories (all measured
in the same units) are

Electricity 30 units
Water heating 20 units
Space heating 50 units

The three possible sources of energy to meet these needs are elec-
tricity, natural gas, and a solar heating unit that can be installed
on the roof. The size of the roof limits the largest possible solar
heater to 40 units, but there is no limit to the electricity and nat-
ural gas available. Electricity needs can be met only by purchas-
ing electricity (at a cost of $50 per unit). Both other energy needs
can be met by any source or combination of sources. The unit
costs are

Destination

1 2 3 4 5 Supply

1 8 6 3 7 5 20
2 5 M 8 4 7 30

Source
3 6 3 9 6 8 30
4(D) 0 0 0 0 0 20

Demand 25 25 20 10 20
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Destination

1 2 3 4 Supply

1 3 7 6 4 5
Source 2 2 4 3 2 2

3 4 3 8 5 3

Demand 3 3 2 2

Unit Shipping Cost
Retail Outlet

1 2 3 4

1 $700 $800 $500 $200
2 $200 $900 $100 $400

Plant
3 $400 $500 $300 $100
4 $200 $100 $400 $300
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The objective is to minimize the total cost of meeting the energy
needs.
(a) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
D,I (b) Use the northwest corner rule to obtain an initial BF solu-

tion for this problem.
D,I (c) Starting with the initial BF solution from part (b), interac-

tively apply the transportation simplex method to obtain an
optimal solution.

D,I (d) Use Vogel’s approximation method to obtain an initial BF
solution for this problem.

D,I (e) Starting with the initial BF solution from part (d ), interac-
tively apply the transportation simplex method to obtain an
optimal solution.

I (f) Use Russell’s approximation method to obtain an initial BF
solution for this problem.

D,I (g) Starting with the initial BF solution obtained from part ( f ),
interactively apply the transportation simplex method to
obtain an optimal solution. Compare the number of itera-
tions required by the transportation simplex method here
and in parts (c) and (e).

D,I 8.2-10.* Interactively apply the transportation simplex method
to solve the Northern Airplane Co. production scheduling problem
as it is formulated in Table 8.9.

D,I 8.2-11.* Reconsider Prob. 8.1-2.
(a) Use the northwest corner rule to obtain an initial BF solution.
(b) Starting with the initial BF solution from part (a), interactively

apply the transportation simplex method to obtain an optimal
solution.

D,I 8.2-12. Reconsider Prob. 8.1-3b. Starting with the northwest
corner rule, interactively apply the transportation simplex method
to obtain an optimal solution for this problem.

D,I 8.2-13. Reconsider Prob. 8.1-4. Starting with the northwest
corner rule, interactively apply the transportation simplex method
to obtain an optimal solution for this problem.

D,I 8.2-14. Reconsider Prob. 8.1-6. Starting with Russell’s ap-
proximation method, interactively apply the transportation simplex
method to obtain an optimal solution for this problem.

8.2-15. Reconsider the transportation problem formulated in Prob.
8.1-7a.
D,I (a) Use each of the three criteria presented in Sec. 8.2 to ob-

tain an initial BF solution, and time how long you spend
for each one. Compare both these times and the values of
the objective function for these solutions.

C (b) Obtain an optimal solution for this problem. For each of
the three initial BF solutions obtained in part (a), calculate

the percentage by which its objective function value ex-
ceeds the optimal one.

D,I (c) For each of the three initial BF solutions obtained in part
(a), interactively apply the transportation simplex method
to obtain (and verify) an optimal solution. Time how long
you spend in each of the three cases. Compare both these
times and the number of iterations needed to reach an op-
timal solution.

8.2-16. Follow the instructions of Prob. 8.2-15 for the transporta-
tion problem formulated in Prob. 8.1-7a.

8.2-17. Consider the transportation problem having the following
parameter table:

(a) Using your choice of a criterion from Sec. 8.2 for obtaining
the initial BF solution, solve this problem manually by the
transportation simplex method. (Keep track of your time.)

(b) Reformulate this problem as a general linear programming
problem, and then solve it manually by the simplex method.
Keep track of how long this takes you, and contrast it with the
computation time for part (a).

8.2-18. Consider the Northern Airplane Co. production schedul-
ing problem presented in Sec. 8.1 (see Table 8.7). Formulate this
problem as a general linear programming problem by letting the
decision variables be xj � number of jet engines to be produced in
month j ( j � 1, 2, 3, 4). Construct the initial simplex tableau for
this formulation, and then contrast the size (number of rows and
columns) of this tableau and the corresponding tableaux used to
solve the transportation problem formulation of the problem (see
Table 8.9).

8.2-19. Consider the general linear programming formulation of
the transportation problem (see Table 8.6). Verify the claim in
Sec. 8.2 that the set of (m � n) functional constraint equations
(m supply constraints and n demand constraints) has one redun-
dant equation; i.e., any one equation can be reproduced from a
linear combination of the other (m � n � 1) equations.

8.2-20. When you deal with a transportation problem where the
supply and demand quantities have integer values, explain why the
steps of the transportation simplex method guarantee that all 
the basic variables (allocations) in the BF solutions obtained must
have integer values. Begin with why this occurs with the initial-
ization step when the general procedure for constructing an initial
BF solution is used (regardless of the criterion for selecting the
next basic variable). Then given a current BF solution that is inte-
ger, next explain why Step 3 of an iteration must obtain a new BF

Electricity Natural Gas Solar Heater

Water heating $150 $110 $70
Space heating $140 $100 $90

Destination

1 2 Supply

1 8 5 4
Source

2 6 4 2

Demand 3 3
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solution that also is integer. Finally, explain how the initialization
step can be used to construct any initial BF solution, so the trans-
portation simplex method actually gives a proof of the integer 
solutions property presented in Sec. 8.1.

8.2-21. A contractor, Susan Meyer, has to haul gravel to three
building sites. She can purchase as much as 18 tons at a gravel pit
in the north of the city and 14 tons at one in the south. She needs
10, 5, and 10 tons at sites 1, 2, and 3, respectively. The purchase
price per ton at each gravel pit and the hauling cost per ton are
given in the table below.

Susan wishes to determine how much to haul from each pit to
each site to minimize the total cost for purchasing and hauling
gravel.
(a) Formulate a linear programming model for this problem.

Using the Big M method, construct the initial simplex tableau
ready to apply the simplex method (but do not actually
solve).

(b) Now formulate this problem as a transportation problem by
constructing the appropriate parameter table. Compare the size
of this table (and the corresponding transportation simplex
tableau) used by the transportation simplex method with the
size of the simplex tableaux from part (a) that would be needed
by the simplex method.

D (c) Susan Meyer notices that she can supply sites 1 and 2 com-
pletely from the north pit and site 3 completely from the
south pit. Use the optimality test (but no iterations) of the
transportation simplex method to check whether the corre-
sponding BF solution is optimal.

D,I (d) Starting with the northwest corner rule, interactively apply
the transportation simplex method to solve the problem as
formulated in part (b).

(e) As usual, let cij denote the unit cost associated with source
i and destination j as given in the parameter table constructed
in part (b). For the optimal solution obtained in part (d ), sup-
pose that the value of cij for each basic variable xij is fixed
at the value given in the parameter table, but that the value
of cij for each nonbasic variable xij possibly can be altered
through bargaining because the site manager wants to pick
up the business. Use sensitivity analysis to determine the
allowable range for each of the latter cij, and explain how
this information is useful to the contractor.

C 8.2-22. Consider the transportation problem formulation and so-
lution of the Metro Water District problem presented in Secs. 8.1
and 8.2 (see Tables 8.12 and 8.23).

The numbers given in the parameter table are only estimates
that may be somewhat inaccurate, so management now wishes to
do some what-if analysis. Use the Excel Solver to generate the Sen-
sitivity Report. Then use this report to address the following ques-
tions. (In each case, assume that the indicated change is the only
change in the model.)
(a) Would the optimal solution in Table 8.23 remain optimal if the

cost per acre foot of shipping Calorie River water to San Go
were actually $200 rather than $230?

(b) Would this solution remain optimal if the cost per acre foot of
shipping Sacron River water to Los Devils were actually $160
rather than $130?

(c) Must this solution remain optimal if the costs considered in
parts (a) and (b) were simultaneously changed from their orig-
inal values to $215 and $145, respectively?

(d) Suppose that the supply from the Sacron River and the demand
at Hollyglass are decreased simultaneously by the same
amount. Must the shadow prices for evaluating these changes
remain valid if the decrease were 0.5 million acre feet?

8.2-23. Without generating the Sensitivity Report, adapt the sensi-
tivity analysis procedure presented in Secs. 6.6 and 6.7 to conduct
the sensitivity analysis specified in the four parts of Prob. 8.2-22.

8.3-1. Consider the assignment problem having the following cost
table.

(a) Draw the network representation of this assignment problem.
(b) Formulate this problem as a transportation problem by con-

structing the appropriate parameter table.
(c) Display this formulation on an Excel spreadsheet.
C (d) Use the Excel Solver to obtain an optimal solution.

8.3-2. Four cargo ships will be used for shipping goods from one
port to four other ports (labeled 1, 2, 3, 4). Any ship can be used for
making any one of these four trips. However, because of differences
in the ships and cargoes, the total cost of loading, transporting, and
unloading the goods for the different ship-port combinations varies
considerably, as shown in the following table:

PROBLEMS 353

Hauling Cost per Ton at Site

Pit 1 2 3 Price per Ton

North $100 $190 $160 $300
South $180 $110 $140 $420

Task

1 2 3 4

A 8 6 5 7
B 6 5 3 4

Assignee
C 7 8 4 6
D 6 7 5 6

Port

1 2 3 4

1 $500 $400 $600 $700
2 $600 $600 $700 $500

Ship
3 $700 $500 $700 $600
4 $500 $400 $600 $600
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The objective is to assign the four ships to four different ports in
such a way as to minimize the total cost for all four shipments.
(a) Describe how this problem fits into the general format for the

assignment problem.
C (b) Obtain an optimal solution.
(c) Reformulate this problem as an equivalent transportation prob-

lem by constructing the appropriate parameter table.
D,I (d) Use the northwest corner rule to obtain an initial BF solu-

tion for the problem as formulated in part (c).
D,I (e) Starting with the initial BF solution from part (d ), in-

teractively apply the transportation simplex method to
obtain an optimal set of assignments for the original
problem.

D,I (f) Are there other optimal solutions in addition to the one ob-
tained in part (e)? If so, use the transportation simplex
method to identify them.

8.3-3. Reconsider Prob. 8.1-4. Suppose that the sales forecasts
have been revised downward to 280, 400, and 350 units per day of
products 1, 2, and 3, respectively, and that each plant now has the
capacity to produce all that is required of any one product. There-
fore, management has decided that each new product should be as-
signed to only one plant and that no plant should be assigned more
than one product (so that three plants are each to be assigned one
product, and two plants are to be assigned none). The objective is
to make these assignments so as to minimize the total cost of pro-
ducing these amounts of the three products.
(a) Formulate this problem as an assignment problem by con-

structing the appropriate cost table.
C (b) Obtain an optimal solution.
(c) Reformulate this assignment problem as an equivalent trans-

portation problem by constructing the appropriate parameter
table.

D,I (d) Starting with Vogel’s approximation method, interactively
apply the transportation simplex method to solve the prob-
lem as formulated in part (c).

8.3-4.* The coach of an age group swim team needs to assign
swimmers to a 200-yard medley relay team to send to the Junior
Olympics. Since most of his best swimmers are very fast in more
than one stroke, it is not clear which swimmer should be assigned
to each of the four strokes. The five fastest swimmers and the best
times (in seconds) they have achieved in each of the strokes (for
50 yards) are

(a) Formulate this problem as an assignment problem.
C (b) Obtain an optimal solution.

8.3-5. Consider the assignment problem formulation of Option 2
for the Better Products Co. problem presented in Table 8.29.
(a) Reformulate this problem as an equivalent transportation prob-

lem with three sources and five destinations by constructing
the appropriate parameter table.

(b) Convert the optimal solution given in Sec. 8.3 for this assign-
ment problem into a complete BF solution (including degen-
erate basic variables) for the transportation problem formulated
in part (a). Specifically, apply the “General Procedure for
Constructing an Initial BF Solution” given in Sec. 8.2. For
each iteration of the procedure, rather than using any of the
three alternative criteria presented for step 1, select the next
basic variable to correspond to the next assignment of a plant
to a product given in the optimal solution. When only one row
or only one column remains under consideration, use step 4
to select the remaining basic variables.

(c) Verify that the optimal solution given in Sec. 8.3 for this as-
signment problem actually is optimal by applying just the op-
timality test portion of the transportation simplex method to
the complete BF solution obtained in part (b).

(d) Now reformulate this assignment problem as an equivalent
transportation problem with five sources and five destina-
tions by constructing the appropriate parameter table. Com-
pare this transportation problem with the one formulated in
part (a).

(e) Repeat part (b) for the problem as formulated in part (d ). Com-
pare the BF solution obtained with the one from part (b).

D,I 8.3-6. Starting with Vogel’s approximation method, interac-
tively apply the transportation simplex method to solve the Job Shop
Co. assignment problem as formulated in Table 8.26b. (As stated
in Sec. 8.3, the resulting optimal solution has x14 � 1, x23 � 1,
x31 � 1, x42 � 1, and all other xij � 0.)

8.3-7. Reconsider Prob. 8.1-7. Now assume that distribution
centers 1, 2, and 3 must receive exactly 10, 20, and 30 units per
week, respectively. For administrative convenience, management
has decided that each distribution center will be supplied totally
by a single plant, so that one plant will supply one distribution cen-
ter and the other plant will supply the other two distribution cen-
ters. The choice of these assignments of plants to distribution
centers is to be made solely on the basis of minimizing total
shipping cost.
(a) Formulate this problem as an assignment problem by con-

structing the appropriate cost table, including identifying the
corresponding assignees and tasks.

C (b) Obtain an optimal solution.
(c) Reformulate this assignment problem as an equivalent trans-

portation problem (with four sources) by constructing the ap-
propriate parameter table.

C (d) Solve the problem as formulated in part (c).
(e) Repeat part (c) with just two sources.
C (f) Solve the problem as formulated in part (e).

The coach wishes to determine how to assign four swimmers to
the four different strokes to minimize the sum of the correspond-
ing best times.

Stroke Carl Chris David Tony Ken

Backstroke 37.7 32.9 33.8 37.0 35.4
Breaststroke 43.4 33.1 42.2 34.7 41.8
Butterfly 33.3 28.5 38.9 30.4 33.6
Freestyle 29.2 26.4 29.6 28.5 31.1
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Job

1 2 3

A 5 7 4
Person B 3 6 5

C 2 3 4

8.3-8. Consider the assignment problem having the following 
cost table.

The optimal solution is A-3, B-1, C-2, with Z � 10.
C (a) Use the computer to verify this optimal solution.
(b) Reformulate this problem as an equivalent transportation

problem by constructing the appropriate parameter table.
C (c) Obtain an optimal solution for the transportation problem

formulated in part (b).
(d) Why does the optimal BF solution obtained in part (c) include

some (degenerate) basic variables that are not part of the optimal
solution for the assignment problem?

(e) Now consider the nonbasic variables in the optimal BF solution
obtained in part (c). For each nonbasic variable xij and the
corresponding cost cij, adapt the sensitivity analysis procedure
for general linear programming (see Case 2a in Sec. 6.7) to
determine the allowable range for cij.

8.3-9. Consider the linear programming model for the general as-
signment problem given in Sec. 8.3. Construct the table of con-
straint coefficients for this model. Compare this table with the one
for the general transportation problem (Table 8.6). In what ways
does the general assignment problem have more special structure
than the general transportation problem?

I 8.4-1. Reconsider the assignment problem presented in 
Prob. 8.3-2. Manually apply the Hungarian algorithm to solve
this problem. (You may use the corresponding interactive pro-
cedure in your IOR Tutorial.)

I 8.4-2. Reconsider Prob. 8.3-4. See its formulation as an assignment
problem in the answers given in the back of the book. Manually
apply the Hungarian algorithm to solve this problem. (You may use
the corresponding interactive procedure in your IOR Tutorial.)

I 8.4-3. Reconsider the assignment problem formulation of Op-
tion 2 for the Better Products Co. problem presented in Table
8.29. Suppose that the cost of having Plant 1 produce product 1

is reduced from 820 to 720. Solve this problem by manually
applying the Hungarian algorithm. (You may use the corre-
sponding interactive procedure in your IOR Tutorial.)

I 8.4-4. Manually apply the Hungarian algorithm (perhaps us-
ing the corresponding interactive procedure in your IOR Tu-
torial) to solve the assignment problem having the following
cost table:

I 8.4-5. Manually apply the Hungarian algorithm (perhaps using
the corresponding interactive procedure in your IOR Tutorial) to
solve the assignment problem having the following cost table:

Job

1 2 3

1 M 8 7
Person 2 7 6 4

3(D) 0 0 0

Task

1 2 3 4

A 4 1 0 1

Assignee
B 1 3 4 0
C 3 2 1 3
D 2 2 3 0

I 8.4-6. Manually apply the Hungarian algorithm (perhaps using
the corresponding interactive procedure in your IOR Tutorial) to
solve the assignment problem having the following cost table:

Task

1 2 3 4

A 5 8 6 7

Assignee
B 9 5 7 8
C 5 9 8 4
D 6 3 5 9
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Unit Cost by Rail ($1,000’s) Unit Cost by Ship ($1,000’s)
Market Market

Source 1 2 3 4 5 1 2 3 4 5

1 61 72 45 55 66 31 38 24 — 35
2 69 78 60 49 56 36 43 28 24 31
3 59 66 63 61 47 — 33 36 32 26

Investment for Ships ($1,000’s)
Market

Source 1 2 3 4 5

1 275 303 238 — 285
2 293 318 270 250 265
3 — 283 275 268 240

Considering the expected useful life of the ships and the
time value of money, the equivalent uniform annual cost of
these investments is one-tenth the amount given in the table.
The objective is to determine the overall shipping plan that
minimizes the total equivalent uniform annual cost (includ-
ing shipping costs).

You are the head of the OR team that has been assigned
the task of determining this shipping plan for each of the
following three options.

Option 1: Continue shipping exclusively by rail.
Option 2: Switch to shipping exclusively by water (except where

only rail is feasible).

Option 3: Ship by either rail or water, depending on which is
less expensive for the particular route.

Present your results for each option. Compare.
Finally, consider the fact that these results are based on

current shipping and investment costs, so the decision on
the option to adopt now should take into account manage-
ment’s projection of how these costs are likely to change in
the future. For each option, describe a scenario of future cost
changes that would justify adopting that option now.

(Note: Data files for this case are provided on the book’s
website for your convenience.)

The capital investment (in thousands of dollars) in ships re-
quired for each million board feet to be transported annually
by ship along each route is given as follows:

■ CASES

CASE 8.1  Shipping Wood to Market
Alabama Atlantic is a lumber company that has three
sources of wood and five markets to be supplied. The an-
nual availability of wood at sources 1, 2, and 3 is 15, 20,
and 15 million board feet, respectively. The amount that can
be sold annually at markets 1, 2, 3, 4, and 5 is 11, 12, 9,
10, and 8 million board feet, respectively.

In the past the company has shipped the wood by train.
However, because shipping costs have been increasing, the al-
ternative of using ships to make some of the deliveries is be-
ing investigated. This alternative would require the company
to invest in some ships. Except for these investment costs, the
shipping costs in thousands of dollars per million board feet
by rail and by water (when feasible) would be the following
for each route:
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■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 8.2  Continuation of the 
Texago Case Study
The supplement to this chapter on the book’s website pre-
sents a case study of how the Texago Corp. solved many
transportation problems to help make its decision regarding
where to locate its new oil refinery. Management now needs
to address the question of whether the capacity of the new
refinery should be made somewhat larger than originally
planned. This will require formulating and solving some ad-
ditional transportation problems. A key part of the analysis
then will involve combining two transportation problems into
a single linear programming model that simultaneously con-
siders the shipping of crude oil from the oil fields to the re-
fineries and the shipping of final product from the refineries

to the distribution centers. A memo to management sum-
marizing your results and recommendations also needs to be
written.

CASE 8.3  Project Pickings
This case focuses on a series of applications of the assign-
ment problem for a pharmaceutical manufacturing company.
The decision has been made to undertake five research and
development projects to attempt to develop new drugs that
will treat five specific types of medical ailments. Five senior
scientists are available to lead these projects as project di-
rectors. The problem now is to decide on how to assign these
scientists to the projects on a one-to-one basis. A variety of
likely scenarios need to be considered.
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9C H A P T E R

Network Optimization Models

Networks arise in numerous settings and in a variety of guises. Transportation, electrical,
and communication networks pervade our daily lives. Network representations also are

widely used for problems in such diverse areas as production, distribution, project planning,
facilities location, resource management, and financial planning—to name just a few exam-
ples. In fact, a network representation provides such a powerful visual and conceptual aid for
portraying the relationships between the components of systems that it is used in virtually
every field of scientific, social, and economic endeavor.

One of the most exciting developments in operations research (OR) in recent years
has been the unusually rapid advance in both the methodology and application of network
optimization models. A number of algorithmic breakthroughs have had a major impact,
as have ideas from computer science concerning data structures and efficient data ma-
nipulation. Consequently, algorithms and software now are available and are being used
to solve huge problems on a routine basis that would have been completely intractable
two or three decades ago.

Many network optimization models actually are special types of linear programming
problems. For example, both the transportation problem and the assignment problem dis-
cussed in the preceding chapter fall into this category because of their network represen-
tations presented in Figs. 8.3 and 8.5.

One of the linear programming examples presented in Sec. 3.4 also is a network op-
timization problem. This is the Distribution Unlimited Co. problem of how to distribute
its goods through the distribution network shown in Fig. 3.13. This special type of linear
programming problem, called the minimum cost flow problem, is presented in Sec. 9.6.
We shall return to this specific example in that section and then solve it with network
methodology in the following section.

In this one chapter we only scratch the surface of the current state of the art of net-
work methodology. However, we shall introduce you to five important kinds of network
problems and some basic ideas of how to solve them (without delving into issues of data
structures that are so vital to successful large-scale implementations). Each of the first three
problem types—the shortest-path problem, the minimum spanning tree problem, and the
maximum flow problem—has a very specific structure that arises frequently in applications.

The fourth type—the minimum cost flow problem—provides a unified approach to
many other applications because of its far more general structure. In fact, this structure is
so general that it includes as special cases both the shortest-path problem and the maxi-
mum flow problem as well as the transportation problem and the assignment problem from
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Chap. 8. Because the minimum cost flow problem is a special type of linear programming
problem, it can be solved extremely efficiently by a streamlined version of the simplex method
called the network simplex method. (We shall not discuss even more general network prob-
lems that are more difficult to solve.)

The fifth kind of network problem considered here involves determining the most
economical way to conduct a project so that it can be completed by its deadline. A tech-
nique called the CPM method of time-cost trade-offs is used to formulate a network model
of the project and the time-cost trade-offs for its activities. Either marginal cost analysis
or linear programming then is used to solve for the optimal project plan.

The first section introduces a prototype example that will be used subsequently to il-
lustrate the approach to the first three of these problems. Section 9.2 presents some basic
terminology for networks. The next four sections deal with the first four problems in turn,
and Sec. 9.7 then is devoted to the network simplex method. Section 9.8 presents the CPM
method of time-cost trade-offs.

■ 9.1 PROTOTYPE EXAMPLE

SEERVADA PARK has recently been set aside for a limited amount of sightseeing and
backpack hiking. Cars are not allowed into the park, but there is a narrow, winding road
system for trams and for jeeps driven by the park rangers. This road system is shown
(without the curves) in Fig. 9.1, where location O is the entrance into the park; other let-
ters designate the locations of ranger stations (and other limited facilities). The numbers
give the distances of these winding roads in miles.

The park contains a scenic wonder at station T. A small number of trams are used to
transport sightseers from the park entrance to station T and back.

The park management currently faces three problems. One is to determine which
route from the park entrance to station T has the smallest total distance for the opera-
tion of the trams. (This is an example of the shortest-path problem to be discussed in
Sec. 9.3.)

A second problem is that telephone lines must be installed under the roads to estab-
lish telephone communication among all the stations (including the park entrance). Be-
cause the installation is both expensive and disruptive to the natural environment, lines
will be installed under just enough roads to provide some connection between every pair
of stations. The question is where the lines should be laid to accomplish this with a min-
imum total number of miles of line installed. (This is an example of the minimum span-
ning tree problem to be discussed in Sec. 9.4.)
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■ FIGURE 9.1
The road system for Seervada
Park.
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The third problem is that more people want to take the tram ride from the park
entrance to station T than can be accommodated during the peak season. To avoid un-
duly disturbing the ecology and wildlife of the region, a strict ration has been placed
on the number of tram trips that can be made on each of the roads per day. (These lim-
its differ for the different roads, as we shall describe in detail in Sec. 9.5.) Therefore,
during the peak season, various routes might be followed regardless of distance to in-
crease the number of tram trips that can be made each day. The question pertains to
how to route the various trips to maximize the number of trips that can be made per
day without violating the limits on any individual road. (This is an example of the max-
imum flow problem to be discussed in Sec. 9.5.)

■ 9.2 THE TERMINOLOGY OF NETWORKS

A relatively extensive terminology has been developed to describe the various kinds of
networks and their components. Although we have avoided as much of this special vo-
cabulary as we could, we still need to introduce a considerable number of terms for use
throughout the chapter. We suggest that you read through this section once at the outset
to understand the definitions and then plan to return to refresh your memory as the terms
are used in subsequent sections. To assist you, each term is highlighted in boldface at the
point where it is defined.

A network consists of a set of points and a set of lines connecting certain pairs of the
points. The points are called nodes (or vertices); e.g., the network in Fig. 9.1 has seven
nodes designated by the seven circles. The lines are called arcs (or links or edges or
branches); e.g., the network in Fig. 9.1 has 12 arcs corresponding to the 12 roads in the
road system. Arcs are labeled by naming the nodes at either end; for example, AB is the
arc between nodes A and B in Fig. 9.1.

The arcs of a network may have a flow of some type through them, e.g., the flow of
trams on the roads of Seervada Park in Sec. 9.1. Table 9.1 gives several examples of flow
in typical networks. If flow through an arc is allowed in only one direction (e.g., a one-
way street), the arc is said to be a directed arc. The direction is indicated by adding an
arrowhead at the end of the line representing the arc. When a directed arc is labeled by
listing two nodes it connects, the from node always is given before the to node; e.g., an arc
that is directed from node A to node B must be labeled as AB rather than BA. Alternatively,
this arc may be labeled as A � B.

If flow through an arc is allowed in either direction (e.g., a pipeline that can be used
to pump fluid in either direction), the arc is said to be an undirected arc. To help you
distinguish between the two kinds of arcs, we shall frequently refer to undirected arcs by
the suggestive name of links.

Although the flow through an undirected arc is allowed to be in either direction, we
do assume that the flow will be one way in the direction of choice rather than having 

■ TABLE 9.1 Components of typical networks

Nodes Arcs Flow

Intersections Roads Vehicles
Airports Air lanes Aircraft
Switching points Wires, channels Messages
Pumping stations Pipes Fluids
Work centers Materials-handling routes Jobs
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simultaneous flows in opposite directions. (The latter case requires the use of a pair of
directed arcs in opposite directions.) However, in the process of making the decision on
the flow through an undirected arc, it is permissible to make a sequence of assignments
of flows in opposite directions, but with the understanding that the actual flow will be the
net flow (the difference of the assigned flows in the two directions). For example, if a flow
of 10 has been assigned in one direction and then a flow of 4 is assigned in the opposite di-
rection, the actual effect is to cancel 4 units of the original assignment by reducing the flow
in the original direction from 10 to 6. Even for a directed arc, the same technique some-
times is used as a convenient device to reduce a previously assigned flow. In particular, you
are allowed to make a fictional assignment of flow in the “wrong” direction through a di-
rected arc to record a reduction of that amount in the flow in the “right” direction.

A network that has only directed arcs is called a directed network. Similarly, if all
its arcs are undirected, the network is said to be an undirected network. A network with
a mixture of directed and undirected arcs (or even all undirected arcs) can be converted
to a directed network, if desired, by replacing each undirected arc by a pair of directed
arcs in opposite directions. (You then have the choice of interpreting the flows through
each pair of directed arcs as being simultaneous flows in opposite directions or providing
a net flow in one direction, depending on which fits your application.)

When two nodes are not connected by an arc, a natural question is whether they are
connected by a series of arcs. A path between two nodes is a sequence of distinct arcs con-
necting these nodes. For example, one of the paths connecting nodes O and T in Fig. 9.1
is the sequence of arcs OB–BD–DT (O � B � D � T), or vice versa. When some of or
all the arcs in the network are directed arcs, we then distinguish between directed paths
and undirected paths. A directed path from node i to node j is a sequence of connecting
arcs whose direction (if any) is toward node j, so that flow from node i to node j along this
path is feasible. An undirected path from node i to node j is a sequence of connecting
arcs whose direction (if any) can be either toward or away from node j. (Notice that a di-
rected path also satisfies the definition of an undirected path, but not vice versa.) Frequently,
an undirected path will have some arcs directed toward node j but others directed away
(i.e., toward node i). You will see in Secs. 9.5 and 9.7 that, perhaps surprisingly, undirected
paths play a major role in the analysis of directed networks.

To illustrate these definitions, Fig. 9.2 shows a typical directed network. (Its nodes and
arcs are the same as in Fig. 3.13, where nodes A and B represent two factories, nodes D and
E represent two warehouses, node C represents a distribution center, and the arcs represent
shipping lanes.) The sequence of arcs AB–BC–CE (A � B � C � E) is a directed path from
node A to E, since flow toward node E along this entire path is feasible. On the other hand,
BC–AC–AD (B � C � A � D) is not a directed path from node B to node D, because the
direction of arc AC is away from node D (on this path). However, B � C � A � D is an
undirected path from node B to node D, because the sequence of arcs BC–AC–AD does con-
nect these two nodes (even though the direction of arc AC prevents flow through this path).

As an example of the relevance of undirected paths, suppose that 2 units of flow from
node A to node C had previously been assigned to arc AC. Given this previous assign-
ment, it now is feasible to assign a smaller flow, say, 1 unit, to the entire undirected path
B � C � A � D, even though the direction of arc AC prevents positive flow through 
C � A. The reason is that this assignment of flow in the “wrong” direction for arc AC
actually just reduces the flow in the “right” direction by 1 unit. Sections 9.5 and 9.7 make
heavy use of this technique of assigning a flow through an undirected path that includes
arcs whose direction is opposite to this flow, where the real effect for these arcs is to re-
duce previously assigned positive flows in the “right” direction.

A path that begins and ends at the same node is called a cycle. In a directed net-
work, a cycle is either a directed or an undirected cycle, depending on whether the
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path involved is a directed or an undirected path. (Since a directed path also is an undi-
rected path, a directed cycle is an undirected cycle, but not vice versa in general.) In
Fig. 9.2, for example, DE–ED is a directed cycle. By contrast, AB–BC–AC is not a di-
rected cycle, because the direction of arc AC opposes the direction of arcs AB and BC.
On the other hand, AB–BC–AC is an undirected cycle, because A � B � C � A is an
undirected path. In the undirected network shown in Fig. 9.1, there are many cycles,
for example, OA–AB–BC–CO. However, note that the definition of path (a sequence
of distinct arcs) rules out retracing one’s steps in forming a cycle. For example, OB–BO
in Fig. 9.1 does not qualify as a cycle, because OB and BO are two labels for the same
arc (link). On the other hand, DE–ED is a (directed) cycle in Fig. 9.2, because DE and
ED are distinct arcs.

Two nodes are said to be connected if the network contains at least one undirected
path between them. (Note that the path does not need to be directed even if the network
is directed.) A connected network is a network where every pair of nodes is connected.
Thus, the networks in Figs. 9.1 and 9.2 are both connected. However, the latter network
would not be connected if arcs AD and CE were removed.

Consider a connected network with n nodes (e.g., the n � 5 nodes in Fig. 9.2) where
all the arcs have been deleted. A “tree” can then be “grown” by adding one arc (or “branch”)
at a time from the original network in a certain way. The first arc can go anywhere to con-
nect some pair of nodes. Thereafter, each new arc should be between a node that already
is connected to other nodes and a new node not previously connected to any other nodes.
Adding an arc in this way avoids creating a cycle and ensures that the number of con-
nected nodes is 1 greater than the number of arcs. Each new arc creates a larger tree,
which is a connected network (for some subset of the n nodes) that contains no undirected
cycles. Once the (n � 1)st arc has been added, the process stops because the resulting tree
spans (connects) all n nodes. This tree is called a spanning tree, i.e., a connected net-
work for all n nodes that contains no undirected cycles. Every spanning tree has exactly
n � 1 arcs, since this is the minimum number of arcs needed to have a connected network
and the maximum number possible without having undirected cycles.

Figure 9.3 uses the five nodes and some of the arcs of Fig. 9.2 to illustrate this process
of growing a tree one arc (branch) at a time until a spanning tree has been obtained. There
are several alternative choices for the new arc at each stage of the process, so Fig. 9.3
shows only one of many ways to construct a spanning tree in this case. Note, however,
how each new added arc satisfies the conditions specified in the preceding paragraph. We
shall discuss and illustrate spanning trees further in Sec. 9.4.
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■ FIGURE 9.2
The distribution network for
Distribution Unlimited Co.,
first shown in Fig. 3.13,
illustrates a directed network.
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Spanning trees play a key role in the analysis of many networks. For example, they
form the basis for the minimum spanning tree problem discussed in Sec. 9.4. Another
prime example is that (feasible) spanning trees correspond to the BF solutions for the net-
work simplex method discussed in Sec. 9.7.

Finally, we shall need a little additional terminology about flows in networks. The
maximum amount of flow (possibly infinity) that can be carried on a directed arc is re-
ferred to as the arc capacity. For nodes, a distinction is made among those that are net
generators of flow, net absorbers of flow, or neither. A supply node (or source node or
source) has the property that the flow out of the node exceeds the flow into the node. The
reverse case is a demand node (or sink node or sink), where the flow into the node ex-
ceeds the flow out of the node. A transshipment node (or intermediate node) satisfies
conservation of flow, so flow in equals flow out.
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(a)

(b)
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E

A D

A D

E

(e)(c )

A D

C

E

(d )

■ FIGURE 9.3
Example of growing a tree
one arc at a time for the
network of Fig. 9.2: (a) The
nodes without arcs; (b) a tree
with one arc; (c) a tree with
two arcs; (d) a tree with
three arcs; (e) a spanning
tree.

Although several other versions of the shortest-path problem (including some for directed
networks) are mentioned at the end of the section, we shall focus on the following sim-
ple version. Consider an undirected and connected network with two special nodes called
the origin and the destination. Associated with each of the links (undirected arcs) is a non-
negative distance. The objective is to find the shortest path (the path with the minimum
total distance) from the origin to the destination.

A relatively straightforward algorithm is available for this problem. The essence of
this procedure is that it fans out from the origin, successively identifying the shortest path
to each of the nodes of the network in the ascending order of their (shortest) distances
from the origin, thereby solving the problem when the destination node is reached. We
shall first outline the method and then illustrate it by solving the shortest-path problem
encountered by the Seervada Park management in Sec. 9.1.

■ 9.3 THE SHORTEST-PATH PROBLEM
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■ TABLE 9.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Distance Nearest Minimum Last

n to Unsolved Nodes Unsolved Node Involved Node Distance Connection

1 O A 2 A 2 OA

O C 4 C 4 OC
2, 3

A B 2 � 2 � 4 B 4 AB

A D 2 � 7 � 9
4 B E 4 � 3 � 7 E 7 BE

C E 4 � 4 � 8

A D 2 � 7 � 9
5 B D 4 � 4 � 8 D 8 BD

E D 7 � 1 � 8 D 8 ED

D T 8 � 5 � 13 T 13 DT
6

E T 7 � 7 � 14

O B D

T

EC

A

2

7

2

5

4

4

1

4

1 7

5

3

Algorithm for the Shortest-Path Problem

Objective of nth iteration: Find the nth nearest node to the origin (to be repeated for 
n � 1, 2, . . . until the nth nearest node is the destination.

Input for nth iteration: n � 1 nearest nodes to the origin (solved for at the previous iter-
ations), including their shortest path and distance from the origin.
(These nodes, plus the origin, will be called solved nodes; the oth-
ers are unsolved nodes.)

Candidates for nth nearest node: Each solved node that is directly connected by a link to
one or more unsolved nodes provides one candidate—
the unsolved node with the shortest connecting link.
(Ties provide additional candidates.)

Calculation of nth nearest node: For each such solved node and its candidate, add the
distance between them and the distance of the shortest
path from the origin to this solved node. The candidate
with the smallest such total distance is the nth nearest
node (ties provide additional solved nodes), and its
shortest path is the one generating this distance.

Applying This Algorithm to the Seervada Park 
Shortest-Path Problem

The Seervada Park management needs to find the shortest path from the park entrance
(node O) to the scenic wonder (node T ) through the road system shown in Fig. 9.1. Ap-
plying the above algorithm to this problem yields the results shown in Table 9.2 (where
the tie for the second nearest node allows skipping directly to seeking the fourth nearest
node next). The first column (n) indicates the iteration count. The second column simply
lists the solved nodes for beginning the current iteration after deleting the irrelevant ones
(those not connected directly to any unsolved node). The third column then gives the can-
didates for the nth nearest node (the unsolved nodes with the shortest connecting link to
a solved node). The fourth column calculates the distance of the shortest path from the
origin to each of these candidates (namely, the distance to the solved node plus the link
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distance to the candidate). The candidate with the smallest such distance is the nth nearest
node to the origin, as listed in the fifth column. The last two columns summarize the in-
formation for this newest solved node that is needed to proceed to subsequent iterations
(namely, the distance of the shortest path from the origin to this node and the last link on
this shortest path).

Now let us relate these columns directly to the outline given for the algorithm. The
input for nth iteration is provided by the fifth and sixth columns for the preceding itera-
tions, where the solved nodes in the fifth column are then listed in the second column for
the current iteration after deleting those that are no longer directly connected to unsolved
nodes. The candidates for nth nearest node next are listed in the third column for the cur-
rent iteration. The calculation of nth nearest node is performed in the fourth column, and
the results are recorded in the last three columns for the current iteration.

After the work shown in Table 9.2 is completed, the shortest path from the desti-
nation to the origin can be traced back through the last column of Table 9.2 as either
T � D � E � B � A � O or T � D � B � A � O. Therefore, the two alternates
for the shortest path from the origin to the destination have been identified as O � A �
B � E � D � T and O � A � B � D � T, with a total distance of 13 miles on ei-
ther path.

Using Excel to Formulate and Solve Shortest-Path Problems

This algorithm provides a particularly efficient way of solving large shortest-path prob-
lems. However, some mathematical programming software packages do not include this
algorithm. If not, they often will include the network simplex method described in Sec. 9.7,
which is another good option for these problems.

Since the shortest-path problem is a special type of linear programming problem, the
general simplex method also can be used when better options are not readily available.
Although not nearly as efficient as these specialized algorithms on large shortest-path
problems, it is quite adequate for problems of even very substantial size (much larger than
the Seervada Park problem). Excel, which relies on the general simplex method, provides
a convenient way of formulating and solving shortest-path problems with dozens of arcs
and nodes.

Figure 9.4 shows an appropriate spreadsheet formulation for the Seervada Park
shortest-path problem. Rather than using the kind of formulation presented in Sec. 3.6
that uses a separate row for each functional constraint of the linear programming model,
this formulation exploits the special structure by listing the nodes in column G and the
arcs in columns B and C, as well as the distance (in miles) along each arc in column E.
Since each link in the network is an undirected arc, whereas travel through the shortest
path is in one direction, each link can be replaced by a pair of directed arcs in opposite di-
rections. Thus, columns B and C together list both of the nearly vertical links in Fig. 9.1
(B–C and D–E) twice, once as a downward arc and once as an upward arc, since either
direction might be on the chosen path. However, the other links are only listed as left-
to-right arcs, since this is the only direction of interest for choosing a shortest path from
the origin to the destination.

A trip from the origin to the destination is interpreted to be a “flow” of 1 on the cho-
sen path through the network. The decisions to be made are which arcs should be included
in the path to be traversed. A flow of 1 is assigned to an arc if it is included, whereas the
flow is 0 if it is not included. Thus, the decision variables are

xij � � if arc i � j is not included
if arc i � j is included

0
1
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for each of the arcs under consideration. The values of these decision variables are entered
in the changing cells OnRoute (D4:D17).

Each node can be thought of as having a flow of 1 passing through it if it is on the
selected path, but no flow otherwise. The net flow generated at a node is the flow out mi-
nus the flow in, so the net flow is 1 at the origin, �1 at the destination, and 0 at every
other node. These requirements for the net flows are specified in column J of Fig. 9.4.
Using the equations at the bottom of the figure, each column H cell then calculates the
actual net flow at that node by adding the flow out and subtracting the flow in. The cor-
responding constraints, NetFlow (H4:H10) � SupplyDemand (J4:J10), are specified in the
Solver dialogue box.

The target cell TotalDistance (D19) gives the total distance in miles of the chosen
path by using the equation for this cell given at the bottom of Fig. 9.4. The objective of
minimizing this target cell has been specified in the Solver dialogue box. The solution
shown in column D is an optimal solution obtained after clicking on the Solve button.

366 CHAPTER 9 NETWORK OPTIMIZATION MODELS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

A B C D E F G H I J

Seervada Park Shortest-Path Problem

From To On Route Distance Nodes Net Flow Supply/Demand
O A 1 2 O 1 = 1
O B 0 5 A 0 = 0
O C 0 4 B 0 = 0
A B 1 2 C 0 = 0
A D 0 7 D 0 = 0
B C 0 1 E 0 = 0
B D 0 4 T -1 = -1
B E 1 3
C B 0 1
C E 0 4
D E 0 1
D T 1 5
E D 1 1
E T 0 7

Total Distance 13

Range Name Cells
Distance E4:E17
From B4:B17
NetFlow H4:H10
Nodes G4:G10
OnRoute D4:D17
SupplyDemand J4:J10
To C4:C17
TotalDistance D19

3
4
5
6
7
8
9

10

H

Net Flow
=SUMIF(From,G4,OnRoute)-SUMIF(To,G4,OnRoute)
=SUMIF(From,G5,OnRoute)-SUMIF(To,G5,OnRoute)
=SUMIF(From,G6,OnRoute)-SUMIF(To,G6,OnRoute)
=SUMIF(From,G7,OnRoute)-SUMIF(To,G7,OnRoute)
=SUMIF(From,G8,OnRoute)-SUMIF(To,G8,OnRoute)
=SUMIF(From,G9,OnRoute)-SUMIF(To,G9,OnRoute)
=SUMIF(From,G10,OnRoute)-SUMIF(To,G10,OnRoute)

19
C D

Total Distance =SUMPRODUCT(D4:D17,E4:E17)

■ FIGURE 9.4
A spreadsheet formulation for the Seervada Park shortest-path problem, where the changing cells OnRoute (D4:D17)
show the optimal solution obtained by the Excel Solver and the target cell TotalDistance (D19) gives the total distance
(in miles) of this shortest path. The network next to the spreadsheet shows the road system for Seervada Park that was
originally depicted in Fig. 9.1.
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This solution is, of course, one of the two shortest paths identified earlier by the algorithm
for the shortest-path algorithm.

Other Applications

Not all applications of the shortest-path problem involve minimizing the distance traveled
from the origin to the destination. In fact, they might not even involve travel at all. The
links (or arcs) might instead represent activities of some other kind, so choosing a path
through the network corresponds to selecting the best sequence of activities. The numbers
giving the “lengths” of the links might then be, for example, the costs of the activities, in
which case the objective would be to determine which sequence of activities minimizes
the total cost. The Worked Examples section of the book’s website includes another ex-
ample of this type that illustrates its formulation as a shortest-path problem and then its
solution by using either the algorithm for such problems or the Excel Solver with a spread-
sheet formulation.

Here are three categories of applications.

1. Minimize the total distance traveled, as in the Seervada Park example.
2. Minimize the total cost of a sequence of activities. (Problem 9.3-3 is of this type.)
3. Minimize the total time of a sequence of activities. (Problems 9.3-6 and 9.3-7 are of

this type.)

It is even possible for all three categories to arise in the same application. For exam-
ple, suppose you wish to find the best route for driving from one town to another
through a number of intermediate towns. You then have the choice of defining the best
route as being the one that minimizes the total distance traveled or that minimizes the
total cost incurred or that minimizes the total time required. (Problem 9.3-2 illustrates
such an application.)

Incorporated in 1881, Canadian Pacific Railway (CPR)
was North America’s first transcontinental railway. CPR
transports rail freight over a 14,000-mile network extend-
ing from Montreal to Vancouver and throughout the U.S.
Northwest and Midwest. Alliances with other carriers
extend CPR’s market reach into the major business cen-
ters of Mexico as well.

Every day CPR receives approximately 7,000 new
shipments from its customers going to destinations
across North America and for export. It must route and
move these shipments in railcars over the network of
track, where a railcar may be switched a number of
times from one locomotive engine to another before
reaching its destination. CPR must coordinate the ship-
ments with its operational plans for 1,600 locomotives,
65,000 railcars, over 5,000 train crew members, and 250
train yards.

CPR management turned to an OR consulting firm,
MultiModal Applied Systems, to work with CPR employ-
ees in developing an operations research approach to this
problem. A variety of OR techniques were used to create a
new operating strategy. However, the foundation of the

approach was to represent the flow of blocks of railcars as
flow through a network where each node corresponds to
both a location and a point in time. This representation
then enabled the application of network optimization tech-
niques. For example, numerous shortest path problems are
solved each day as part of the overall approach.

This application of operations research is saving CPR
roughly US$100 million per year. Labor productivity,
locomotive productivity, fuel consumption, and railcar
velocity have improved very substantially. In addition,
CPR now provides its customers with reliable delivery
times and has received many awards for its improvement
in service. This application of network optimization tech-
niques also led to CPR winning the prestigious First Prize in
the 2003 international competition for the Franz Edelman
Award for Achievement in Operations Research and the
Management Sciences.

Source: P. Ireland, R. Case, J. Fallis, C. Van Dyke, J. Kuehn,
and M. Meketon: “The Canadian Pacific Railway Transforms
Operations by Using Models to Develop Its Operating Plans,”
Interfaces, 34(1): 5–14, Jan.–Feb. 2004. (A link to this article is
provided on our website, www.mhhe.com/hillier.)

An Application Vignette
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■ 9.4 THE MINIMUM SPANNING TREE PROBLEM
The minimum spanning tree problem bears some similarities to the main version of the
shortest-path problem presented in the preceding section. In both cases, an undirected and
connected network is being considered, where the given information includes some mea-
sure of the positive length (distance, cost, time, etc.) associated with each link. Both prob-
lems also involve choosing a set of links that have the shortest total length among all sets
of links that satisfy a certain property. For the shortest-path problem, this property is that
the chosen links must provide a path between the origin and the destination. For the min-
imum spanning tree problem, the required property is that the chosen links must provide
a path between each pair of nodes.

The minimum spanning tree problem can be summarized as follows.

1. You are given the nodes of a network but not the links. Instead, you are given the po-
tential links and the positive length for each if it is inserted into the network. (Alter-
native measures for the length of a link include distance, cost, and time.)

2. You wish to design the network by inserting enough links to satisfy the requirement
that there be a path between every pair of nodes.

3. The objective is to satisfy this requirement in a way that minimizes the total length of
the links inserted into the network.

A network with n nodes requires only (n � 1) links to provide a path between each
pair of nodes. No extra links should be used, since this would needlessly increase the to-
tal length of the chosen links. The (n � 1) links need to be chosen in such a way that the
resulting network (with just the chosen links) forms a spanning tree (as defined in Sec. 9.2).
Therefore, the problem is to find the spanning tree with a minimum total length of the links.

Figure 9.5 illustrates this concept of a spanning tree for the Seervada Park problem
(see Sec. 9.1). Thus, Fig. 9.5a is not a spanning tree because nodes O, A, B, and C are
not connected with nodes D, E, and T. It needs another link to make this connection. This
network actually consists of two trees, one for each of these two sets of nodes. The links
in Fig. 9.5b do span the network (i.e., the network is connected as defined in Sec. 9.2),
but it is not a tree because there are two cycles (O–A–B–C–O and D–T–E–D). It has too

Many applications require finding the shortest directed path from the origin to the
destination through a directed network. The algorithm already presented can be easily
modified to deal just with directed paths at each iteration. In particular, when candidates
for the nth nearest node are identified, only directed arcs from a solved node to an un-
solved node are considered.

Another version of the shortest-path problem is to find the shortest paths from the
origin to all the other nodes of the network. Notice that the algorithm already solves for
the shortest path to each node that is closer to the origin than the destination. Therefore,
when all nodes are potential destinations, the only modification needed in the algorithm
is that it does not stop until all nodes are solved nodes.

An even more general version of the shortest-path problem is to find the shortest paths
from every node to every other node. Another option is to drop the restriction that “distances”
(arc values) be nonnegative. Constraints also can be imposed on the paths that can be followed.
All these variations occasionally arise in applications and so have been studied by researchers.

The algorithms for a wide variety of combinatorial optimization problems, such as cer-
tain vehicle routing or network design problems, often call for the solution of a large number
of shortest-path problems as subroutines. Although we lack the space to pursue this topic fur-
ther, this use may now be the most important kind of application of the shortest-path problem.
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4■ FIGURE 9.5
Illustrations of the spanning
tree concept for the
Seervada Park problem: 
(a) Not a spanning tree; 
(b) not a spanning tree; 
(c) a spanning tree.

many links. Because the Seervada Park problem has n � 7 nodes, Sec. 9.2 indicates that
the network must have exactly n � 1 � 6 links, with no cycles, to qualify as a spanning
tree. This condition is achieved in Fig. 9.5c, so this network is a feasible solution (with a
value of 24 miles for the total length of the links) for the minimum spanning tree prob-
lem. (You soon will see that this solution is not optimal because it is possible to construct
a spanning tree with only 14 miles of links.)

Some Applications

Here is a list of some key types of applications of the minimum spanning tree problem.

1. Design of telecommunication networks (fiber-optic networks, computer networks,
leased-line telephone networks, cable television networks, etc.)

2. Design of a lightly used transportation network to minimize the total cost of provid-
ing the links (rail lines, roads, etc.)

3. Design of a network of high-voltage electrical power transmission lines
4. Design of a network of wiring on electrical equipment (e.g., a digital computer sys-

tem) to minimize the total length of the wire
5. Design of a network of pipelines to connect a number of locations

In this age of the information superhighway, applications of this first type have
become particularly important. In a telecommunication network, it is only necessary
to insert enough links to provide a path between every pair of nodes, so designing such
a network is a classic application of the minimum spanning tree problem. Because
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some telecommunication networks now cost many millions of dollars, it is very important
to optimize their design by finding the minimum spanning tree for each one.

An Algorithm

The minimum spanning tree problem can be solved in a very straightforward way because it
happens to be one of the few OR problems where being greedy at each stage of the solution
procedure still leads to an overall optimal solution at the end! Thus, beginning with any node,
the first stage involves choosing the shortest possible link to another node, without worrying
about the effect of this choice on subsequent decisions. The second stage involves identify-
ing the unconnected node that is closest to either of these connected nodes and then adding
the corresponding link to the network. This process is repeated, per the following summary,
until all the nodes have been connected. (Note that this is the same process already illustrated
in Fig. 9.3 for constructing a spanning tree, but now with a specific rule for selecting each
new link.) The resulting network is guaranteed to be a minimum spanning tree.

Algorithm for the Minimum Spanning Tree Problem

1. Select any node arbitrarily, and then connect it (i.e., add a link) to the nearest distinct node.
2. Identify the unconnected node that is closest to a connected node, and then connect

these two nodes (i.e., add a link between them). Repeat this step until all nodes have
been connected.

3. Tie breaking: Ties for the nearest distinct node (step 1) or the closest unconnected node
(step 2) may be broken arbitrarily, and the algorithm must still yield an optimal solu-
tion. However, such ties are a signal that there may be (but need not be) multiple op-
timal solutions. All such optimal solutions can be identified by pursuing all ways of
breaking ties to their conclusion.

The fastest way of executing this algorithm manually is the graphical approach il-
lustrated next.

Applying This Algorithm to the Seervada Park 
Minimum Spanning Tree Problem

The Seervada Park management (see Sec. 9.1) needs to determine under which roads tele-
phone lines should be installed to connect all stations with a minimum total length of line.
Using the data given in Fig. 9.1, we outline the step-by-step solution of this problem.

Nodes and distances for the problem are summarized below, where the thin lines now
represent potential links.
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Arbitrarily select node O to start. The unconnected node closest to node O is node A.
Connect node A to node O.
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The unconnected node closest to either node O or node A is node B (closest to A). Con-
nect node B to node A.

The unconnected node closest to node O, A, or B is node C (closest to B). Connect node
C to node B.

The unconnected node closest to node O, A, B, or C is node E (closest to B). Connect
node E to node B.
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The unconnected node closest to node O, A, B, C, or E is node D (closest to E). Connect
node D to node E.

The only remaining unconnected node is node T. It is closest to node D. Connect node T
to node D.

All nodes are now connected, so this solution to the problem is the desired (optimal) one.
The total length of the links is 14 miles.

Although it may appear at first glance that the choice of the initial node will affect
the resulting final solution (and its total link length) with this procedure, it really does
not. We suggest you verify this fact for the example by reapplying the algorithm, starting
with nodes other than node O.
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■ 9.5 THE MAXIMUM FLOW PROBLEM
Now recall that the third problem facing the Seervada Park management (see Sec. 9.1)
during the peak season is to determine how to route the various tram trips from the park
entrance (station O in Fig. 9.1) to the scenic wonder (station T ) to maximize the num-
ber of trips per day. (Each tram will return by the same route it took on the outgoing
trip, so the analysis focuses on outgoing trips only.) To avoid unduly disturbing the ecol-
ogy and wildlife of the region, strict upper limits have been imposed on the number
of outgoing trips allowed per day in the outbound direction on each individual road.
For each road, the direction of travel for outgoing trips is indicated by an arrow in
Fig. 9.6. The number at the base of the arrow gives the upper limit on the number of
outgoing trips allowed per day. Given the limits, one feasible solution is to send 7 trams
per day, with 5 using the route O � B � E � T, 1 using O � B � C � E � T, and
1 using O � B � C � E � D � T. However, because this solution blocks the use of
any routes starting with O � C (because the E � T and E � D capacities are fully
used), it is easy to find better feasible solutions. Many combinations of routes (and the
number of trips to assign to each one) need to be considered to find the one(s) maxi-
mizing the number of trips made per day. This kind of problem is called a maximum flow
problem.

In general terms, the maximum flow problem can be described as follows.

1. All flow through a directed and connected network originates at one node, called the
source, and terminates at one other node, called the sink. (The source and sink in
the Seervada Park problem are the park entrance at node O and the scenic wonder
at node T, respectively.)

2. All the remaining nodes are transshipment nodes. (These are nodes A, B, C, D, and E
in the Seervada Park problem.)

3. Flow through an arc is allowed only in the direction indicated by the arrowhead, where
the maximum amount of flow is given by the capacity of that arc. At the source, all
arcs point away from the node. At the sink, all arcs point into the node.
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■ FIGURE 9.6
The Seervada Park maximum
flow problem.

The minimum spanning tree problem is the one problem we consider in this chapter
that falls into the broad category of network design. In this category, the objective is to
design the most appropriate network for the given application (frequently involving
transportation systems) rather than analyzing an already designed network. Selected
Reference 6 provides a survey of this important area.
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4. The objective is to maximize the total amount of flow from the source to the sink. This
amount is measured in either of two equivalent ways, namely, either the amount leav-
ing the source or the amount entering the sink.

Some Applications

Here are some typical kinds of applications of the maximum flow problem.

1. Maximize the flow through a company’s distribution network from its factories to its
customers.

2. Maximize the flow through a company’s supply network from its vendors to its factories.
3. Maximize the flow of oil through a system of pipelines.
4. Maximize the flow of water through a system of aqueducts.
5. Maximize the flow of vehicles through a transportation network.

For some of these applications, the flow through the network may originate at more
than one node and may also terminate at more than one node, even though a maximum
flow problem is allowed to have only a single source and a single sink. For example, a
company’s distribution network commonly has multiple factories and multiple customers.
A clever reformulation is used to make such a situation fit the maximum flow problem.
This reformulation involves expanding the original network to include a dummy source,
a dummy sink, and some new arcs. The dummy source is treated as the node that origi-
nates all the flow that, in reality, originates from some of the other nodes. For each of
these other nodes, a new arc is inserted that leads from the dummy source to this node,
where the capacity of this arc equals the maximum flow that, in reality, can originate from
this node. Similarly, the dummy sink is treated as the node that absorbs all the flow that,
in reality, terminates at some of the other nodes. Therefore, a new arc is inserted from
each of these other nodes to the dummy sink, where the capacity of this arc equals the
maximum flow that, in reality, can terminate at this node. Because of all these changes,
all the nodes in the original network now are transshipment nodes, so the expanded net-
work has the required single source (the dummy source) and single sink (the dummy sink)
to fit the maximum flow problem.

An Algorithm

Because the maximum flow problem can be formulated as a linear programming prob-
lem (see Prob. 9.5-2), it can be solved by the simplex method, so any of the linear pro-
gramming software packages introduced in Chaps. 3 and 4 can be used. However, an
even more efficient augmenting path algorithm is available for solving this problem.
This algorithm is based on two intuitive concepts, a residual network and an augment-
ing path.

After some flows have been assigned to the arcs, the residual network shows the re-
maining arc capacities (called residual capacities) for assigning additional flows. For ex-
ample, consider arc O � B in Fig. 9.6, which has an arc capacity of 7. Now suppose that
the assigned flows include a flow of 5 through this arc, which leaves a residual capacity
of 7 � 5 � 2 for any additional flow assignment through O � B. This status is depicted
as follows in the residual network.
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■ FIGURE 9.7
The initial residual network
for the Seervada Park
maximum flow problem.

The number on an arc next to a node gives the residual capacity for flow from that node to
the other node. Therefore, in addition to the residual capacity of 2 for flow from O to B, the
5 on the right indicates a residual capacity of 5 for assigning some flow from B to O (that
is, for canceling some previously assigned flow from O to B).

Initially, before any flows have been assigned, the residual network for the Seervada
Park problem has the appearance shown in Fig. 9.7. Every arc in the original network
(Fig. 9.6) has been changed from a directed arc to an undirected arc. However, the arc
capacity in the original direction remains the same and the arc capacity in the opposite
direction is zero, so the constraints on flows are unchanged.

Subsequently, whenever some amount of flow is assigned to an arc, that amount is
subtracted from the residual capacity in the same direction and added to the residual ca-
pacity in the opposite direction.

An augmenting path is a directed path from the source to the sink in the residual
network such that every arc on this path has strictly positive residual capacity. The mini-
mum of these residual capacities is called the residual capacity of the augmenting path
because it represents the amount of flow that can feasibly be added to the entire path.
Therefore, each augmenting path provides an opportunity to further augment the flow
through the original network.

The augmenting path algorithm repeatedly selects some augmenting path and adds a
flow equal to its residual capacity to that path in the original network. This process con-
tinues until there are no more augmenting paths, so the flow from the source to the sink
cannot be increased further. The key to ensuring that the final solution necessarily is op-
timal is the fact that augmenting paths can cancel some previously assigned flows in the
original network, so an indiscriminate selection of paths for assigning flows cannot pre-
vent the use of a better combination of flow assignments.

To summarize, each iteration of the algorithm consists of the following three steps.

The Augmenting Path Algorithm for the Maximum Flow Problem1

1. Identify an augmenting path by finding some directed path from the source to the sink
in the residual network such that every arc on this path has strictly positive residual
capacity. (If no augmenting path exists, the net flows already assigned constitute an
optimal flow pattern.)

2. Identify the residual capacity c* of this augmenting path by finding the minimum of
the residual capacities of the arcs on this path. Increase the flow in this path by c*.

1It is assumed that the arc capacities are either integers or rational numbers.
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3. Decrease by c* the residual capacity of each arc on this augmenting path. Increase by
c* the residual capacity of each arc in the opposite direction on this augmenting path.
Return to step 1.

When step 1 is carried out, there often will be a number of alternative augmenting
paths from which to choose. Although the algorithmic strategy for making this selection
is important for the efficiency of large-scale implementations, we shall not delve into this
relatively specialized topic. (Later in the section, we do describe a systematic procedure
for finding some augmenting path.) Therefore, for the following example (and the prob-
lems at the end of the chapter), the selection is just made arbitrarily.

Applying This Algorithm to the Seervada Park 
Maximum Flow Problem

Applying this algorithm to the Seervada Park problem (see Fig. 9.6 for the original net-
work) yields the results summarized next. (Also see the Worked Examples section of the
book’s website for another example of the application of this algorithm.) Starting with
the initial residual network given in Fig. 9.7, we give the new residual network after each
one or two iterations, where the total amount of flow from O to T achieved thus far is
shown in boldface (next to nodes O and T ).

Iteration 1: In Fig. 9.7, one of several augmenting paths is O � B � E � T, which
has a residual capacity of min{7, 5, 6} � 5. By assigning a flow of 5 to this path, the re-
sulting residual network is
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Iteration 2: Assign a flow of 3 to the augmenting path O � A � D � T. The re-
sulting residual network is
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Iteration 3: Assign a flow of 1 to the augmenting path O � A � B � D � T.
Iteration 4: Assign a flow of 2 to the augmenting path O � B � D � T. The re-

sulting residual network is
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Iteration 5: Assign a flow of 1 to the augmenting path O � C � E � D � T.
Iteration 6: Assign a flow of 1 to the augmenting path O � C � E � T. The re-

sulting residual network is

Iteration 7: Assign a flow of 1 to the augmenting path O � C � E � B � D � T.
The resulting residual network is
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There are no more augmenting paths, so the current flow pattern is optimal.
The current flow pattern may be identified by either cumulating the flow assignments

or comparing the final residual capacities with the original arc capacities. If we use the lat-
ter method, there is flow along an arc if the final residual capacity is less than the original
capacity. The magnitude of this flow equals the difference in these capacities. Applying
this method by comparing the residual network obtained from the last iteration with either
Fig. 9.6 or 9.7 yields the optimal flow pattern shown in Fig. 9.8.

This example nicely illustrates the reason for replacing each directed arc i � j in the
original network by an undirected arc in the residual network and then increasing the resid-
ual capacity for j � i by c* when a flow of c* is assigned to i � j. Without this refine-
ment, the first six iterations would be unchanged. However, at that point it would appear
that no augmenting paths remain (because the real unused arc capacity for E � B is zero).
Therefore, the refinement permits us to add the flow assignment of 1 for O � C � E �
B � D � T in iteration 7. In effect, this additional flow assignment cancels 1 unit of
flow assigned at iteration 1 (O � B � E � T ) and replaces it by assignments of 1 unit
of flow to both O � B � D � T and O � C � E � T.

Finding an Augmenting Path

The most difficult part of this algorithm when large networks are involved is finding an aug-
menting path. This task may be simplified by the following systematic procedure. Begin
by determining all nodes that can be reached from the source along a single arc with strictly
positive residual capacity. Then, for each of these nodes that were reached, determine all new
nodes (those not yet reached) that can be reached from this node along an arc with strictly
positive residual capacity. Repeat this successively with the new nodes as they are reached.
The result will be the identification of a tree of all the nodes that can be reached from the
source along a path with strictly positive residual flow capacity. Hence, this fanning-out 
procedure will always identify an augmenting path if one exists. The procedure is illustrated
in Fig. 9.9 for the residual network that results from iteration 6 in the preceding example.

Although the procedure illustrated in Fig. 9.9 is a relatively straightforward one, it
would be helpful to be able to recognize when optimality has been reached without an ex-
haustive search for a nonexistent path. It is sometimes possible to recognize this event be-
cause of an important theorem of network theory known as the max-flow min-cut theorem.
A cut may be defined as any set of directed arcs containing at least one arc from every di-
rected path from the source to the sink. There normally are many ways to slice through a
network to form a cut to help analyze the network. For any particular cut, the cut value
is the sum of the arc capacities of the arcs (in the specified direction) of the cut. The
max-flow min-cut theorem states that, for any network with a single source and sink,
the maximum feasible flow from the source to the sink equals the minimum cut value for
all cuts of the network. Thus, if we let F denote the amount of flow from the source to the
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■ FIGURE 9.8
Optimal solution for the
Seervada Park maximum flow
problem.
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■ FIGURE 9.9
Procedure for finding an
augmenting path for
iteration 7 of the Seervada
Park maximum flow
problem.

sink for any feasible flow pattern, the value of any cut provides an upper bound to F, and
the smallest of the cut values is equal to the maximum value of F. Therefore, if a cut whose
value equals the value of F currently attained by the solution procedure can be found in
the original network, the current flow pattern must be optimal. Eventually, optimality has
been attained whenever there exists a cut in the residual network whose value is zero.

To illustrate, consider the network of Fig. 9.7. One interesting cut through this net-
work is shown in Fig. 9.10. Notice that the value of the cut is 3 � 4 � 1 � 6 � 14, which
was found to be the maximum value of F, so this cut is a minimum cut. Notice also that,
in the residual network resulting from iteration 7, where F � 14, the corresponding cut
has a value of zero. If this had been noticed, it would not have been necessary to search
for additional augmenting paths.

Using Excel to Formulate and Solve Maximum Flow Problems

Most maximum flow problems that arise in practice are considerably larger, and occa-
sionally vastly larger, than the Seervada Park problem. Some problems have thousands of
nodes and arcs. The augmenting path algorithm just presented is far more efficient than
the general simplex method for solving such large problems. However, for problems of
modest size, a reasonable and convenient alternative is to use Excel and its Solver based
on the general simplex method.

Figure 9.11 shows a spreadsheet formulation for the Seervada Park maximum flow prob-
lem. The format is similar to that for the Seervada Park shortest-path problem displayed in
Fig. 9.4. The arcs are listed in columns B and C, and the corresponding arc capacities are
given in column F. Since the decision variables are the flows through the respective arcs,

O

C

D

T0
0

0

5
7

4

0

0

0

2 5

4
0

0

0

1

6

0

0
9

0

4

3

1

A

B

E

■ FIGURE 9.10
A minimum cut for the
Seervada Park maximum flow
problem.
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Range Name Cells
Capacity F4:F15
Flow D4:D15
From B4:B15
MaxFlow D17
NetFlow I4:I10
Nodes H4:H10
SupplyDemand K5:K9
To C4:C15

17
C D

Maximum Flow =I4

3
4
5
6
7
8
9

10

I

Net Flow
=SUMIF(From,H4,Flow)-SUMIF(To,H4,Flow)
=SUMIF(From,H5,Flow)-SUMIF(To,H5,Flow)
=SUMIF(From,H6,Flow)-SUMIF(To,H6,Flow)
=SUMIF(From,H7,Flow)-SUMIF(To,H7,Flow)
=SUMIF(From,H8,Flow)-SUMIF(To,H8,Flow)
=SUMIF(From,H9,Flow)-SUMIF(To,H9,Flow)
=SUMIF(From,H10,Flow)-SUMIF(To,H10,Flow)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

A B C D E F G H I J K

Seervada Park Maximum Flow Problem

From To Flow Capacity Nodes Net Flow Supply/Demand
O A 4 <= 5 O 14
O B 7 <= 7 A 0 = 0
O C 3 <= 4 B 0 = 0
A B 1 <= 1 C 0 = 0
A D 3 <= 3 D 0 = 0
B C 0 <= 2 E 0 = 0
B D 4 <= 4 T -14
B E 4 <= 5
C E 3 <= 4
D T 8 <= 9
E D 1 <= 1
E T 6 <= 6

Max imum Flow 14
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■ 9.6 THE MINIMUM COST FLOW PROBLEM

■ FIGURE 9.11
A spreadsheet formulation for
the Seervada Park maximum
flow problem, where the
changing cells Flow
(D4:D15) show the optimal
solution obtained by the
Excel Solver and the target
cell MaxFlow (D17) gives the
resulting maximum flow
through the network. The
network next to the
spreadsheet shows the
Seervada Park maximum flow
problem as it was originally
depicted in Fig. 9.6.

these quantities are entered in the changing cells Flow (D4:D15). Employing the equations
given in the bottom right-hand corner of the figure, these flows then are used to calculate
the net flow generated at each of the nodes (see columns H and I). These net flows are re-
quired to be 0 for the transshipment nodes (A, B, C, D, and E), as indicated by the first set
of constraints (I5:I9 � SupplyDemand) in the Solver dialogue box. The second set of con-
straints (Flow � Capacity) specifies the arc capacity constraints. The total amount of flow
from the source (node O) to the sink (node T ) equals the flow generated at the source
(cell I4), so the target cell MaxFlow (D17) is set equal to I4. After specifying maxi-
mization of the target cell in the Solver dialogue box and then clicking on the Solve
button, the optimal solution shown in Flow (D4:D15) is obtained.

The minimum cost flow problem holds a central position among network optimization
models, both because it encompasses such a broad class of applications and because it
can be solved extremely efficiently. Like the maximum flow problem, it considers flow
through a network with limited arc capacities. Like the shortest-path problem, it considers
a cost (or distance) for flow through an arc. Like the transportation problem or assignment
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problem of Chap. 8, it can consider multiple sources (supply nodes) and multiple destina-
tions (demand nodes) for the flow, again with associated costs. In fact, all four of these
previously studied problems are special cases of the minimum cost flow problem, as we
will demonstrate shortly.

The reason that the minimum cost flow problem can be solved so efficiently is that
it can be formulated as a linear programming problem so it can be solved by a stream-
lined version of the simplex method called the network simplex method. We describe this
algorithm in the next section.

The minimum cost flow problem is described below.

1. The network is a directed and connected network.
2. At least one of the nodes is a supply node.
3. At least one of the other nodes is a demand node.
4. All the remaining nodes are transshipment nodes.
5. Flow through an arc is allowed only in the direction indicated by the arrowhead, where

the maximum amount of flow is given by the capacity of that arc. (If flow can occur in
both directions, this would be represented by a pair of arcs pointing in opposite directions.)

6. The network has enough arcs with sufficient capacity to enable all the flow generated
at the supply nodes to reach all the demand nodes.

7. The cost of the flow through each arc is proportional to the amount of that flow, where
the cost per unit flow is known.

8. The objective is to minimize the total cost of sending the available supply through the
network to satisfy the given demand. (An alternative objective is to maximize the to-
tal profit from doing this.)

Some Applications

Probably the most important kind of application of minimum cost flow problems is to
the operation of a company’s distribution network. As summarized in the first row of
Table 9.3, this kind of application always involves determining a plan for shipping goods
from its sources (factories, etc.) to intermediate storage facilities (as needed) and then
on to the customers.

For some applications of minimum cost flow problems, all the transshipment nodes
are processing facilities rather than intermediate storage facilities. This is the case for

■ TABLE 9.3 Typical kinds of applications of minimum cost flow problems

Kind of Application Supply Nodes Transshipment Nodes Demand Nodes

Operation of a Sources of goods Intermediate storage Customers
distribution network facilities

Solid waste Sources of solid Processing facilities Landfill locations
management waste

Operation of a supply Vendors Intermediate warehouses Processing
network facilities

Coordinating product Plants Production of a specific Market for a
mixes at plants product specific product

Cash flow Sources of cash at Short-term investment Needs for cash at
management a specific time options a specific time
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An especially challenging problem encountered daily by
any major airline company is how to compensate effec-
tively for disruptions in the airline's flight schedules. Bad
weather can disrupt flight arrivals and departures; so can
mechanical problems. Each delay or cancellation involv-
ing a particular airplane can then cause subsequent delays
or cancellations because that airplane is not available on
time for its next scheduled flights.

Such delays or cancellations may require both reas-
signing crews to flights and readjusting the plans for
which airplanes will be used to fly the respective flights.
The application vignette in Sec. 2.2 describes how Conti-
nental Airlines led the way in applying operations
research to the problem of quickly reassigning crews to
flights in the most cost-effective manner. However, a dif-
ferent approach is needed to address the problem of
quickly reassigning airplanes to flights.

An airline has two primary ways of reassigning air-
planes to flights to compensate for delays or cancella-
tions. One is to swap aircraft so that an airplane scheduled
for a later flight can take the place of the delayed or can-
celled airplane. The other is to use a spare airplane (often
after flying it in) to replace the delayed or cancelled 

airplane. However, it is a real challenge to quickly make
good decisions of these types when a considerable num-
ber of delays or cancellations occur throughout the day.

United Airlines has led the way in applying opera-
tions research to this problem. This is done by formulat-
ing and solving the problem as a minimum-cost flow
problem where each node in the network represents an
airport and each arc represents the route of a flight. The
objective of the model then is to keep the airplanes flow-
ing through the network in a way that minimizes the cost
incurred by having delays or cancellations. When a status
monitor subsystem alerts an operations controller of
impending delays or cancellations, the controller pro-
vides the necessary input into the model and then solves
it in order to provide the updated operating plan in a mat-
ter of minutes. This application of the minimum-cost
flow problem has resulted in reducing passenger delays
by about 50 percent.

Source: A. Rakshit, N. Krishnamurthy, and G. Yu: “System
Operations Advisor: A Real-Time Decision Support System for
Managing Airline Operations at United Airlines,” Interfaces,
26(2): 50–58, Mar.–Apr. 1996. (A link to this article is provided
on our website, www.mhhe.com/hillier.)

An Application Vignette

solid waste management, as indicated in the second row of Table 9.3. Here, the flow of
materials through the network begins at the sources of the solid waste, then goes to the
facilities for processing these waste materials into a form suitable for landfill, and then
sends them on to the various landfill locations. However, the objective still is to deter-
mine the flow plan that minimizes the total cost, where the cost now is for both shipping
and processing.

In other applications, the demand nodes might be processing facilities. For example,
in the third row of Table 9.3, the objective is to find the minimum cost plan for obtain-
ing supplies from various possible vendors, storing these goods in warehouses (as needed),
and then shipping the supplies to the company’s processing facilities (factories, etc.). Since
the total amount that could be supplied by all the vendors is more than the company needs,
the network includes a dummy demand node that receives (at zero cost) all the unused
supply capacity at the vendors.

The next kind of application in Table 9.3 (coordinating product mixes at plants) il-
lustrates that arcs can represent something other than a shipping lane for a physical flow
of materials. This application involves a company with several plants (the supply nodes)
that can produce the same products but at different costs. Each arc from a supply node
represents the production of one of the possible products at that plant, where this arc
leads to the transshipment node that corresponds to this product. Thus, this transship-
ment node has an arc coming in from each plant capable of producing this product, and
then the arcs leading out of this node go to the respective customers (the demand nodes)
for this product. The objective is to determine how to divide each plant’s production ca-
pacity among the products so as to minimize the total cost of meeting the demand for
the various products.
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The last application in Table 9.3 (cash flow management) illustrates that different nodes
can represent some event that occurs at different times. In this case, each supply node rep-
resents a specific time (or time period) when some cash will become available to the com-
pany (through maturing accounts, notes receivable, sales of securities, borrowing, etc.). The
supply at each of these nodes is the amount of cash that will become available then. Sim-
ilarly, each demand node represents a specific time (or time period) when the company will
need to draw on its cash reserves. The demand at each such node is the amount of cash that
will be needed then. The objective is to maximize the company’s income from investing the
cash between each time it becomes available and when it will be used. Therefore, each trans-
shipment node represents the choice of a specific short-term investment option (e.g., pur-
chasing a certificate of deposit from a bank) over a specific time interval. The resulting
network will have a succession of flows representing a schedule for cash becoming avail-
able, being invested, and then being used after the maturing of the investment.

Formulation of the Model

Consider a directed and connected network where the n nodes include at least one sup-
ply node and at least one demand node. The decision variables are

xij � flow through arc i � j,

and the given information includes

cij � cost per unit flow through arc i � j,
uij � arc capacity for arc i � j,
bi � net flow generated at node i.

The value of bi depends on the nature of node i, where

bi � 0 if node i is a supply node,
bi � 0 if node i is a demand node,
bi � 0 if node i is a transshipment node.

The objective is to minimize the total cost of sending the available supply through the
network to satisfy the given demand.

By using the convention that summations are taken only over existing arcs, the lin-
ear programming formulation of this problem is

Minimize Z � �
n

i�1
�
n

j�1
cijxij,

subject to

�
n

j�1
xij � �

n

j�1
xji � bi, for each node i,

and

0 � xij � uij, for each arc i � j.

The first summation in the node constraints represents the total flow out of node i, whereas
the second summation represents the total flow into node i, so the difference is the net
flow generated at this node.

The pattern of the coefficients in these node constraints is a key characteristic of min-
imum cost flow problems. It is not always easy to recognize a minimum cost flow prob-
lem, but formulating (or reformulating) a problem so that its constraint coefficients have
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this pattern is a good way of doing so. This then enables solving the problem extremely
efficiently by the network simplex method.

In some applications, it is necessary to have a lower bound Lij � 0 for the flow through
each arc i � j. When this occurs, use a translation of variables x�ij � xij � Lij, with x�ij � Lij

substituted for xij throughout the model, to convert the model back to the above format with
nonnegativity constraints.

It is not guaranteed that the problem actually will possess feasible solutions, depending
partially upon which arcs are present in the network and their arc capacities. However,
for a reasonably designed network, the main condition needed is the following.

Feasible solutions property: A necessary condition for a minimum cost flow
problem to have any feasible solutions is that

�
n

i�1
bi � 0.

That is, the total flow being generated at the supply nodes equals the total flow
being absorbed at the demand nodes.

If the values of bi provided for some application violate this condition, the usual inter-
pretation is that either the supplies or the demands (whichever are in excess) actually
represent upper bounds rather than exact amounts. When this situation arose for the trans-
portation problem in Sec. 8.1, either a dummy destination was added to receive the ex-
cess supply or a dummy source was added to send the excess demand. The analogous
step now is that either a dummy demand node should be added to absorb the excess sup-
ply (with cij � 0 arcs added from every supply node to this node) or a dummy supply
node should be added to generate the flow for the excess demand (with cij � 0 arcs added
from this node to every demand node).

For many applications, bi and uij will have integer values, and implementation will
require that the flow quantities xij also be integer. Fortunately, just as for the transporta-
tion problem, this outcome is guaranteed without explicitly imposing integer constraints
on the variables because of the following property.

Integer solutions property: For minimum cost flow problems where every bi

and uij have integer values, all the basic variables in every basic feasible (BF)
solution (including an optimal one) also have integer values.

An Example

Figure 9.12 shows an example of a minimum cost flow problem. This network actually is
the distribution network for the Distribution Unlimited Co. problem presented in Sec. 3.4
(see Fig. 3.13). The quantities given in Fig. 3.13 provide the values of the bi, cij, and uij

shown here. The bi values in Fig. 9.12 are shown in square brackets by the nodes, so the
supply nodes (bi � 0) are A and B (the company’s two factories), the demand nodes
(bi � 0) are D and E (two warehouses), and the one transshipment node (bi � 0) is C
(a distribution center). The cij values are shown next to the arcs. In this example, all but
two of the arcs have arc capacities exceeding the total flow generated (90), so uij � �
for all practical purposes. The two exceptions are arc A � B, where uAB � 10, and arc
C � E, which has uCE � 80.

The linear programming model for this example is

Minimize Z � 2xAB � 4xAC � 9xAD � 3xBC � xCE � 3xDE � 2xED,

384 CHAPTER 9 NETWORK OPTIMIZATION MODELS
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subject to

xAB � xAC � xAD � 50
�xAB � xBC � 40

� xAC � xBC � xCE � 0
� xAD � xDE � xED � �30

� xCE � xDE � xED � �60

and

xAB � 10, xCE � 80, all xij � 0.

Now note the pattern of coefficients for each variable in the set of five node constraints
(the equality constraints). Each variable has exactly two nonzero coefficients, where one
is �1 and the other is �1. This pattern recurs in every minimum cost flow problem, and
it is this special structure that leads to the integer solutions property.

Another implication of this special structure is that (any) one of the node constraints is
redundant. The reason is that summing all these constraint equations yields nothing but ze-
ros on both sides (assuming feasible solutions exist, so the bi values sum to zero), so the
negative of any one of these equations equals the sum of the rest of the equations. With just
n � 1 nonredundant node constraints, these equations provide just n � 1 basic variables for
a BF solution. In the next section, you will see that the network simplex method treats the
xij � uij constraints as mirror images of the nonnegativity constraints, so the total number
of basic variables is n � 1. This leads to a direct correspondence between the n � 1 arcs of
a spanning tree and the n � 1 basic variables—but more about that story later.

Using Excel to Formulate and Solve Minimum Cost Flow Problems

Excel provides a convenient way of formulating and solving small minimum cost flow
problems like this one, as well as somewhat larger problems. Figure 9.13 shows how
this can be done. The format is almost the same as displayed in Fig. 9.11 for a maxi-
mum flow problem. One difference is that the unit costs (cij) now need to be included
(in column G). Because bi values are specified for every node, net flow constraints are
needed for all the nodes. However, only two of the arcs happen to need arc capacity

9.6 THE MINIMUM COST FLOW PROBLEM 385

(uAB � 10)

(uCE � 80)

bA � [50] [�30]

[40]

D

[�60]

[0]

A

3

E

2
4

cAD � 9

B

2

3
1

C

■ FIGURE 9.12
The Distribution Unlimited
Co. problem formulated as a
minimum cost flow problem.
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constraints. The target cell TotalCost (D12) now gives the total cost of the flow (ship-
ments) through the network (see its equation at the bottom of the figure), so the objec-
tive specified in the Solver dialogue box is to minimize this quantity. The changing cells
Ship (D4:D10) in this spreadsheet show the optimal solution obtained after clicking on
the Solve button.

For much larger minimum cost flow problems, the network simplex method described
in the next section provides a considerably more efficient solution procedure. It also is an
attractive option for solving various special cases of the minimum cost flow problem out-
lined below. This algorithm is commonly included in mathematical programming soft-
ware packages. For example, it is one of the options with CPLEX.

We shall soon solve this same example by the network simplex method. However, let
us first see how some special cases fit into the network format of the minimum cost flow
problem.

Special Cases

The Transportation Problem. To formulate the transportation problem presented in
Sec. 8.1 as a minimum cost flow problem, a supply node is provided for each source, as
well as a demand node for each destination, but no transshipment nodes are included in the
network. All the arcs are directed from a supply node to a demand node, where distributing
xij units from source i to destination j corresponds to a flow of xij through arc i � j. The
cost cij per unit distributed becomes the cost cij per unit of flow. Since the transportation
problem does not impose upper bound constraints on individual xij, all the uij � 	.

Using this formulation for the P & T Co. transportation problem presented in Table 8.2
yields the network shown in Fig. 8.2. The corresponding network for the general trans-
portation problem is shown in Fig. 8.3.

The Assignment Problem. Since the assignment problem discussed in Sec. 8.3 is a
special type of transportation problem, its formulation as a minimum cost flow problem
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1
2
3
4
5
6
7
8
9

10
11
12

A B C D E F G H I J K L

Distribution Unlimited Co. Minimum Cost Flow Problem

From To Ship Capacity Unit Cost Nodes Net Flow Supply/Demand
A B 0 <= 10 2 A 50 = 50
A C 40 4 B 40 = 40
A D 10 9 C 0 = 0
B C 40 3 D -30 = -30
C E 80 <= 80 1 E -60 = -60
D E 0 3
E D 20 2

Total Cost 490

Range Name Cells
Capacity F4:F10
From B4:B10
NetFlow J4:J8
Nodes I4:I8
Ship D4:D10
SupplyDemand L4:L8
To C4:C10
TotalCost D12
UnitCost G4:G10

3
4
5
6
7
8

J

Net Flow
=SUMIF(From,I4,Ship)-SUMIF(To,I4,Ship)
=SUMIF(From,I5,Ship)-SUMIF(To,I5,Ship)
=SUMIF(From,I6,Ship)-SUMIF(To,I6,Ship)
=SUMIF(From,I7,Ship)-SUMIF(To,I7,Ship)
=SUMIF(From,I8,Ship)-SUMIF(To,I8,Ship)

12

C D

Total Cost =SUMPRODUCT(D4:D10,G4:G10)

■ FIGURE 9.13
A spreadsheet formulation for
the Distribution Unlimited
Co. minimum cost flow
problem, where the
changing cells Ship (D4:D10)
show the optimal solution
obtained by the Excel Solver
and the target cell TotalCost
(D12) gives the resulting
total cost of the flow of
shipments through the
network.
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fits into the same format. The additional factors are that (1) the number of supply nodes
equals the number of demand nodes, (2) bi � 1 for each supply node, and (3) bi � �1
for each demand node.

Figure 8.5 shows this formulation for the general assignment problem.

The Transshipment Problem. This special case actually includes all the general fea-
tures of the minimum cost flow problem except for not having (finite) arc capacities. Thus,
any minimum cost flow problem where each arc can carry any desired amount of flow is
also called a transshipment problem.

For example, the Distribution Unlimited Co. problem shown in Fig. 9.13 would be a
transshipment problem if the upper bounds on the flow through arcs A � B and C � E
were removed.

Transshipment problems frequently arise as generalizations of transportation prob-
lems where units being distributed from each source to each destination can first pass
through intermediate points. These intermediate points may include other sources and des-
tinations, as well as additional transfer points that would be represented by transshipment
nodes in the network representation of the problem. For example, the Distribution Un-
limited Co. problem can be viewed as a generalization of a transportation problem with
two sources (the two factories represented by nodes A and B in Fig. 9.13), two destina-
tions (the two warehouses represented by nodes D and E ), and one additional intermedi-
ate transfer point (the distribution center represented by node C ).

(Chapter 23 on the book’s website includes a further discussion of the transship-
ment problem.)

The Shortest-Path Problem. Now consider the main version of the shortest-path
problem presented in Sec. 9.3 (finding the shortest path from one origin to one destina-
tion through an undirected network). To formulate this problem as a minimum cost flow
problem, one supply node with a supply of 1 is provided for the origin, one demand node
with a demand of 1 is provided for the destination, and the rest of the nodes are trans-
shipment nodes. Because the network of our shortest-path problem is undirected, whereas
the minimum cost flow problem is assumed to have a directed network, we replace each
link with a pair of directed arcs in opposite directions (depicted by a single line with ar-
rowheads at both ends). The only exceptions are that there is no need to bother with arcs
into the supply node or out of the demand node. The distance between nodes i and j be-
comes the unit cost cij or cji for flow in either direction between these nodes. As with the
preceding special cases, no arc capacities are imposed, so all uij � �.

Figure 9.14 depicts this formulation for the Seervada Park shortest-path problem
shown in Fig. 9.1, where the numbers next to the lines now represent the unit cost of flow
in either direction.

The Maximum Flow Problem. The last special case we shall consider is the maxi-
mum flow problem described in Sec. 9.5. In this case a network already is provided with
one supply node (the source), one demand node (the sink), and various transshipment
nodes, as well as the various arcs and arc capacities. Only three adjustments are needed
to fit this problem into the format for the minimum cost flow problem. First, set cij � 0
for all existing arcs to reflect the absence of costs in the maximum flow problem. Sec-
ond, select a quantity F�, which is a safe upper bound on the maximum feasible flow
through the network, and then assign a supply and a demand of F� to the supply node and
the demand node, respectively. (Because all other nodes are transshipment nodes, they au-
tomatically have bi � 0.) Third, add an arc going directly from the supply node to the de-
mand node and assign it an arbitrarily large unit cost of cij � M as well as an unlimited
arc capacity (uij � �). Because of this positive unit cost for this arc and the zero unit cost
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All cij � 0 except cOT.
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■ FIGURE 9.15
Formulation of the Seervada
Park maximum flow problem
as a minimum cost flow
problem.
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All uij � 	.
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cAD � 7 � cDA
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■ FIGURE 9.14
Formulation of the Seervada
Park shortest-path problem
as a minimum cost flow
problem.

for all the other arcs, the minimum cost flow problem will send the maximum feasible
flow through the other arcs, which achieves the objective of the maximum flow problem.

Applying this formulation to the Seervada Park maximum flow problem shown in
Fig. 9.6 yields the network given in Fig. 9.15, where the numbers given next to the orig-
inal arcs are the arc capacities.

Final Comments. Except for the transshipment problem, each of these special cases
has been the focus of a previous section in either this chapter or Chap. 8. When each was
first presented, we talked about a special-purpose algorithm for solving it very efficiently.
Therefore, it certainly is not necessary to reformulate these special cases to fit the format
of the minimum cost flow problem in order to solve them. However, when a computer code
is not readily available for the special-purpose algorithm, it is very reasonable to use the
network simplex method instead. In fact, recent implementations of the network simplex
method have become so powerful that it now provides an excellent alternative to the
special-purpose algorithm.
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The fact that these problems are special cases of the minimum cost flow problem is
of interest for other reasons as well. One reason is that the underlying theory for the min-
imum cost flow problem and for the network simplex method provides a unifying theory
for all these special cases. Another reason is that some of the many applications of the
minimum cost flow problem include features of one or more of the special cases, so it is
important to know how to reformulate these features into the broader framework of the
general problem.

9.7 THE NETWORK SIMPLEX METHOD 389

■ 9.7 THE NETWORK SIMPLEX METHOD

The network simplex method is a highly streamlined version of the simplex method for
solving minimum cost flow problems. As such, it goes through the same basic steps at
each iteration—finding the entering basic variable, determining the leaving basic variable,
and solving for the new BF solution—in order to move from the current BF solution to a
better adjacent one. However, it executes these steps in ways that exploit the special net-
work structure of the problem without ever needing a simplex tableau.

You may note some similarities between the network simplex method and the trans-
portation simplex method presented in Sec. 8.2. In fact, both are streamlined versions of
the simplex method that provide alternative algorithms for solving transportation prob-
lems in similar ways. The network simplex method extends these ideas to solving other
types of minimum cost flow problems as well.

In this section, we provide a somewhat abbreviated description of the network sim-
plex method that focuses just on the main concepts. We omit certain details needed for a
full computer implementation, including how to construct an initial BF solution and how
to perform certain calculations (such as for finding the entering basic variable) in the most
efficient manner. These details are provided in various more specialized textbooks, such
as Selected References 1 and 3.

Incorporating the Upper Bound Technique

The first concept is to incorporate the upper bound technique described in Sec. 7.3 to deal
efficiently with the arc capacity constraints xij � uij. Thus, rather than these constraints
being treated as functional constraints, they are handled just as nonnegativity constraints
are. Therefore, they are considered only when the leaving basic variable is determined. In
particular, as the entering basic variable is increased from zero, the leaving basic variable
is the first basic variable that reaches either its lower bound (0) or its upper bound (uij).
A nonbasic variable at its upper bound xij � uij is replaced with xij � uij � yij, so yij � 0
becomes the nonbasic variable. See Sec. 7.3 for further details.

In our current context, yij has an interesting network interpretation. Whenever yij be-
comes a basic variable with a strictly positive value (� uij), this value can be thought of
as flow from node j to node i (so in the “wrong” direction through arc i � j) that, in ac-
tuality, is canceling that amount of the previously assigned flow (xij � uij) from node i to
node j. Thus, when xij � uij is replaced with xij � uij � yij, we also replace the real arc 
i � j with the reverse arc j � i, where this new arc has arc capacity uij (the maximum
amount of the xij � uij flow that can be canceled) and unit cost � cij (since each unit
of flow canceled saves cij). To reflect the flow of xij � uij through the deleted arc, we
shift this amount of net flow generated from node i to node j by decreasing bi by uij

and increasing bj by uij. Later, if yij becomes the leaving basic variable by reaching
its upper bound, then yij � uij is replaced with yij � uij � xij with xij � 0 as the new
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nonbasic variable, so the above process would be reversed (replace arc j � i by arc i � j,
etc.) to the original configuration.

To illustrate this process, consider the minimum cost flow problem shown in Fig. 9.12.
While the network simplex method is generating a sequence of BF solutions, suppose
that xAB has become the leaving basic variable for some iteration by reaching its up-
per bound of 10. Consequently, xAB � 10 is replaced with xAB � 10 � yAB, so yAB � 0 
becomes the new nonbasic variable. At the same time, we replace arc A � B with arc 
B � A (with yAB as its flow quantity), and we assign this new arc a capacity of 10 and
a unit cost of �2. To take xAB � 10 into account, we also decrease bA from 50 to 40 and
increase bB from 40 to 50. The resulting adjusted network is shown in Fig. 9.16.

We shall soon illustrate the entire network simplex method with this same example, start-
ing with yAB � 0 (xAB � 10) as a nonbasic variable and so using Fig. 9.16. A later iteration
will show xCE reaching its upper bound of 80 and so being replaced with xCE � 80 � yCE,
and so on, and then the next iteration has yAB reaching its upper bound of 10. You will see
that all these operations are performed directly on the network, so we will not need to use
the xij or yij labels for arc flows or even to keep track of which arcs are real arcs and which
are reverse arcs (except when we record the final solution). Using the upper bound technique
leaves the node constraints (flow out minus flow in � bi) as the only functional constraints.
Minimum cost flow problems tend to have far more arcs than nodes, so the resulting num-
ber of functional constraints generally is only a small fraction of what it would have been if
the arc capacity constraints had been included. The computation time for the simplex
method goes up relatively rapidly with the number of functional constraints, but only slowly
with the number of variables (or the number of bounding constraints on these variables).
Therefore, incorporating the upper bound technique here tends to provide a tremendous
saving in computation time.

However, this technique is not needed for uncapacitated minimum cost flow prob-
lems (including all but the last special case considered in the preceding section), where
there are no arc capacity constraints.

Correspondence between BF Solutions and Feasible Spanning Trees

The most important concept underlying the network simplex method is its network rep-
resentation of BF solutions. Recall from Sec. 9.6 that with n nodes, every BF solution
has (n � 1) basic variables, where each basic variable xij represents the flow through
arc i � j. These (n � 1) arcs are referred to as basic arcs. (Similarly, the arcs corre-
sponding to the nonbasic variables xij � 0 or yij � 0 are called nonbasic arcs.)
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■ FIGURE 9.16
The adjusted network for the
example when the upper-
bound technique leads to
replacing xAB � 10 with 
xAB � 10 � yAB.
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A key property of basic arcs is that they never form undirected cycles. (This property
prevents the resulting solution from being a weighted average of another pair of feasible
solutions, which would violate one of the general properties of BF solutions.) However,
any set of n � 1 arcs that contains no undirected cycles forms a spanning tree. Therefore,
any complete set of n � 1 basic arcs forms a spanning tree.

Thus, BF solutions can be obtained by “solving” spanning trees, as summarized below.

A spanning tree solution is obtained as follows:

1. For the arcs not in the spanning tree (the nonbasic arcs), set the corresponding vari-
ables (xij or yij) equal to zero.

2. For the arcs that are in the spanning tree (the basic arcs), solve for the corresponding
variables (xij or yij) in the system of linear equations provided by the node constraints.

(The network simplex method actually solves for the new BF solution from the current
one much more efficiently, without solving this system of equations from scratch.) Note
that this solution process does not consider either the nonnegativity constraints or the arc
capacity constraints for the basic variables, so the resulting spanning tree solution may or
may not be feasible with respect to these constraints—which leads to our next definition.

A feasible spanning tree is a spanning tree whose solution from the node con-
straints also satisfies all the other constraints (0 � xij � uij or 0 � yij � uij).

With these definitions, we now can summarize our key conclusion as follows:

The fundamental theorem for the network simplex method says that basic so-
lutions are spanning tree solutions (and conversely) and that BF solutions are solu-
tions for feasible spanning trees (and conversely).

To begin illustrating the application of this fundamental theorem, consider the
network shown in Fig. 9.16 that results from replacing xAB � 10 with xAB � 10 � yAB

for our example in Fig. 9.12. One spanning tree for this network is the one shown in
Fig. 9.3e, where the arcs are A � D, D � E, C � E, and B � C. With these as the
basic arcs, the process of finding the spanning tree solution is shown below. On the
left is the set of node constraints given in Sec. 9.6 after 10 � yAB is substituted for
xAB, where the basic variables are shown in boldface. On the right, starting at the top
and moving down, is the sequence of steps for setting or calculating the values of the
variables.

yAB � 0, xAC � 0, xED � 0

�yAB � xAC � xAD � xBC � xCE � xDE � xED � �40 xAD � 40.
�yAB � xAC � xAD � xBC � �50 xBC � 50.
�yAB � xAC �xAD � xBC � xCE � � 0 so xCE � 50.
�yAB � xAC� xAD � xBC � xCE � xDE � xED � �30 so xDE � 10.
�yAB � xAC � xAD � xBC � xCE � xDE � xED � �60 Redundant.

Since the values of all these basic variables satisfy the nonnegativity constraints and the
one relevant arc capacity constraint (xCE � 80), the spanning tree is a feasible spanning
tree, so we have a BF solution.

We shall use this solution as the initial BF solution for demonstrating the network
simplex method. Figure 9.17 shows its network representation, namely, the feasible span-
ning tree and its solution. Thus, the numbers given next to the arcs now represent flows
(values of xij) rather than the unit costs cij previously given. (To help you distinguish, we
shall always put parentheses around flows but not around costs.)
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Selecting the Entering Basic Variable

To begin an iteration of the network simplex method, recall that the standard simplex
method criterion for selecting the entering basic variable is to choose the nonbasic vari-
able which, when increased from zero, will improve Z at the fastest rate. Now let us see
how this is done without having a simplex tableau.

To illustrate, consider the nonbasic variable xAC in our initial BF solution, i.e., the
nonbasic arc A � C. Increasing xAC from zero to some value � means that the arc 
A � C with flow � must be added to the network shown in Fig. 9.17. Adding a nonba-
sic arc to a spanning tree always creates a unique undirected cycle, where the cycle in this
case is seen in Fig. 9.18 to be AC–CE–DE–AD. Figure 9.18 also shows the effect of adding
the flow � to arc A � C on the other flows in the network. Specifically, the flow is thereby
increased by � for other arcs that have the same direction as A � C in the cycle (arc 
C � E ), whereas the net flow is decreased by � for other arcs whose direction is oppo-
site to A � C in the cycle (arcs D � E and A � D). In the latter case, the new flow is,
in effect, canceling a flow of � in the opposite direction. Arcs not in the cycle (arc 
B � C ) are unaffected by the new flow. (Check these conclusions by noting the effect of
the change in xAC on the values of the other variables in the solution just derived for the
initial feasible spanning tree.)

Now what is the incremental effect on Z (total flow cost) from adding the flow � to
arc A � C? Figure 9.19 shows most of the answer by giving the unit cost times the change
in the flow for each arc of Fig. 9.18. Therefore, the overall increment in Z is


Z � cAC� � cCE� � cDE(��) � cAD(��)
� 4� � � � 3� � 9�
� �7�.

Setting � � 1 then gives the rate of change of Z as xAC is increased, namely,


Z � �7, when � � 1.

Because the objective is to minimize Z, this large rate of decrease in Z by increasing xAC

is very desirable, so xAC becomes a prime candidate to be the entering basic variable.
We now need to perform the same analysis for the other nonbasic variables before we

make the final selection of the entering basic variable. The only other nonbasic variables are
yAB and xED, corresponding to the two other nonbasic arcs B � A and E � D in Fig. 9.16.

Figure 9.20 shows the incremental effect on costs of adding arc B � A with flow �
to the initial feasible spanning tree given in Fig. 9.17. Adding this arc creates the undi-
rected cycle BA–AD–DE–CE–BC, so the flow increases by � for arcs A � D and D � E
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The initial feasible spanning
tree and its solution for the
example.
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The incremental effect on
costs of adding arc A � C
with flow � to the initial
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The effect on flows of adding
arc A � C with flow � to the
initial feasible spanning tree.
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■ FIGURE 9.20
The incremental effect on
costs of adding arc B � A
with flow � to the initial
feasible spanning tree.

but decreases by � for the two arcs in the opposite direction on this cycle, C � E and
B � C. These flow increments, � and ��, are the multiplicands for the cij values in the
figure. Therefore,


Z � �2� � 9� � 3� � 1(��) � 3(��) � 6�
� 6, when � � 1.

The fact that Z increases rather than decreases when yAB (flow through the reverse arc 
B � A) is increased from zero rules out this variable as a candidate to be the entering
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■ FIGURE 9.21
The incremental effect on
costs of adding arc E � D
with flow � to the initial
feasible spanning tree.

basic variable. (Remember that increasing yAB from zero really means decreasing xAB,
flow through the real arc A � B, from its upper bound of 10.)

A similar result is obtained for the last nonbasic arc E � D. Adding this arc with flow
� to the initial feasible spanning tree creates the undirected cycle ED–DE shown in Fig. 9.21,
so the flow also increases by � for arc D � E, but no other arcs are affected. Therefore,


Z � 2� � 3� � 5�
� 5, when � � 1,

so xED is ruled out as a candidate to be the entering basic variable.
To summarize,

�7, if 
xAC � 1

Z � � 6, if 
yAB � 1

�5, if 
xED � 1

so the negative value for xAC implies that xAC becomes the entering basic variable for the
first iteration. If there had been more than one nonbasic variable with a negative value of

Z, then the one having the largest absolute value would have been chosen. (If there had
been no nonbasic variables with a negative value of 
Z, the current BF solution would
have been optimal.)

Rather than identifying undirected cycles, etc., the network simplex method actually ob-
tains these 
Z values by an algebraic procedure that is considerably more efficient (especially
for large networks). The procedure is analogous to that used by the transportation simplex
method (see Sec. 8.2) to solve for ui and vj in order to obtain the value of cij � ui � vj for
each nonbasic variable xij. We shall not describe this procedure further, so you should just
use the undirected cycles method when you are doing problems at the end of the chapter.

Finding the Leaving Basic Variable and the Next BF Solution

After selection of the entering basic variable, only one more quick step is needed to si-
multaneously determine the leaving basic variable and solve for the next BF solution. For
the first iteration of the example, the key is Fig. 9.18. Since xAC is the entering basic vari-
able, the flow � through arc A � C is to be increased from zero as far as possible until
one of the basic variables reaches either its lower bound (0) or its upper bound (uij). For
those arcs whose flow increases with � in Fig. 9.18 (arcs A � C and C � E ), only the
upper bounds (uAC � � and uCE � 80) need to be considered:

xAC � � � �.
xCE � 50 � � � 80, so � � 30.
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For those arcs whose flow decreases with � (arcs D � E and A � D), only the lower
bound of 0 needs to be considered:

xDE � 10 � � � 0, so � � 10.
xAD � 40 � � � 0, so � � 40.

Arcs whose flow is unchanged by � (i.e., those not part of the undirected cycle), which is
just arc B � C in Fig. 9.18, can be ignored since no bound will be reached as � is increased.

For the five arcs in Fig. 9.18, the conclusion is that xDE must be the leaving basic
variable because it reaches a bound for the smallest value of � (10). Setting � � 10 in this
figure thereby yields the flows through the basic arcs in the next BF solution:

xAC � � � 10,
xCE � 50 � � � 60,
xAD � 40 � � � 30,
xBC � 50.

The corresponding feasible spanning tree is shown in Fig. 9.22.
If the leaving basic variable had reached its upper bound, then the adjustments dis-

cussed for the upper bound technique would have been needed at this point (as you will
see illustrated during the next two iterations). However, because it was the lower bound
of 0 that was reached, nothing more needs to be done.

Completing the Example. For the two remaining iterations needed to reach the op-
timal solution, the primary focus will be on some features of the upper bound technique
they illustrate. The pattern for finding the entering basic variable, the leaving basic vari-
able, and the next BF solution will be very similar to that described for the first iteration,
so we only summarize these steps briefly.

Iteration 2: Starting with the feasible spanning tree shown in Fig. 9.22 and refer-
ring to Fig. 9.16 for the unit costs cij, we arrive at the calculations for selecting the en-
tering basic variable in Table 9.4. The second column identifies the unique undirected
cycle that is created by adding the nonbasic arc in the first column to this spanning tree,
and the third column shows the incremental effect on costs because of the changes in
flows on this cycle caused by adding a flow of � � 1 to the nonbasic arc. Arc E � D
has the largest (in absolute terms) negative value of 
Z, so xED is the entering basic
variable.

We now make the flow � through arc E � D as large as possible, while satisfying
the following flow bounds:
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The second feasible spanning
tree and its solution for the
example.
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The third feasible spanning
tree and its solution for the
example.
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■ FIGURE 9.24
The adjusted network with
unit costs at the completion
of iteration 2.

■ TABLE 9.4 Calculations for selecting the entering basic variable for iteration 2

Nonbasic Arc Cycle Created �Z When � � 1

B � A BA–AC–BC 2 �2 � 4 � 3 � �1
D � E DE–CE–AC–AD 3 � 1 � 4 � 9 � �7
E � D ED–AD–AC–CE 2 � 9 � 4 � 1 � �2 � Minimum

xED � � � uED � �, so � � �.
xAD � 30 � � � 0, so � � 30.
xAC � 10 � � � uAC � �, so � � �.
xCE � 60 � � � uCE � 80, so � � 20. � Minimum

Because xCE imposes the smallest upper bound (20) on �, xCE becomes the leaving basic vari-
able. Setting � � 20 in the above expressions for xED, xAD, and xAC then yields the flow through
the basic arcs for the next BF solution (with xBC � 50 unaffected by �), as shown in Fig. 9.23.

What is of special interest here is that the leaving basic variable xCE was obtained by the
variable reaching its upper bound (80). Therefore, by using the upper bound technique, xCE is
replaced with 80 � yCE, where yCE � 0 is the new nonbasic variable. At the same time, the
original arc C � E with cCE � 1 and uCE � 80 is replaced with the reverse arc 
E � C with cEC � �1 and uEC � 80. The values of bE and bC also are adjusted by adding 80
to bE and subtracting 80 from bC. The resulting adjusted network is shown in Fig. 9.24, where
the nonbasic arcs are shown as dashed lines and the numbers by all the arcs are unit costs.
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Iteration 3: If Figs. 9.23 and 9.24 are used to initiate the next iteration, Table 9.5
shows the calculations that lead to selecting yAB (reverse arc B � A) as the entering ba-
sic variable. We then add as much flow � through arc B � A as possible while satisfying
the flow bounds below:

yAB � � � uBA � 10, so � � 10. � Minimum
xAC � 30 � � � uAC � �, so � � �.
xBC � 50 � � � 0, so � � 50.

The smallest upper bound (10) on � is imposed by yAB, so this variable becomes the leaving
basic variable. Setting � � 10 in these expressions for xAC and xBC (along with the unchanged
values of xAC � 10 and xED � 20) then yields the next BF solution, as shown in Fig. 9.25.

As with iteration 2, the leaving basic variable (yAB) was obtained here by the vari-
able reaching its upper bound. In addition, there are two other points of special interest
concerning this particular choice. One is that the entering basic variable yAB also became
the leaving basic variable on the same iteration! This event occurs occasionally with the
upper bound technique whenever increasing the entering basic variable from zero causes
its upper bound to be reached first before any of the other basic variables reach a bound.

The other interesting point is that the arc B � A that now needs to be replaced by a re-
verse arc A � B (because of the leaving basic variable reaching an upper bound) already is
a reverse arc! This is no problem, because the reverse arc for a reverse arc is simply the orig-
inal real arc. Therefore, the arc B � A (with cBA � �2 and uBA � 10) in Fig. 9.24 now is
replaced by arc A � B (with cAB � 2 and uAB � 10), which is the arc between nodes A and
B in the original network shown in Fig. 9.12, and a generated net flow of 10 is shifted from
node B (bB � 50 � 40) to node A (bA � 40 � 50). Simultaneously, the variable yAB � 10
is replaced by 10 � xAB, with xAB � 0 as the new nonbasic variable. The resulting adjusted
network is shown in Fig. 9.26.

Passing the Optimality Test: At this point, the algorithm would attempt to use
Figs. 9.25 and 9.26 to find the next entering basic variable with the usual calculations
shown in Table 9.6. However, none of the nonbasic arcs gives a negative value of 
Z,
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■ FIGURE 9.25
The fourth (and final)
feasible spanning tree and its
solution for the example.

■ TABLE 9.5 Calculations for selecting the entering basic variable for iteration 3

Nonbasic Arc Cycle Created �Z When � � 1

B � A BA–AC–BC �1 �2 � 4 � 3 � �1 � Minimum
D � E DE–ED �1 �2 � 3 � 2 � �5
E � C EC–AC–AD–ED �1 � 4 � 9 � 2 � �2
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■ FIGURE 9.26
The adjusted network with
unit costs at the completion
of iteration 3.

so an improvement in Z cannot be achieved by introducing flow through any of them.
This means that the current BF solution shown in Fig. 9.25 has passed the optimal-
ity test, so the algorithm stops.

To identify the flows through real arcs rather than reverse arcs for this optimal solu-
tion, the current adjusted network (Fig. 9.26) should be compared with the original net-
work (Fig. 9.12). Note that each of the arcs has the same direction in the two networks
with the one exception of the arc between nodes C and E. This means that the only reverse
arc in Fig. 9.26 is arc E � C, where its flow is given by the variable yCE. Therefore, calcu-
late xCE � uCE � yCE � 80 � yCE. Arc E � C happens to be a nonbasic arc, so yCE � 0 and
xCE � 80 is the flow through the real arc C � E. All the other flows through real arcs are
the flows given in Fig. 9.25. Therefore, the optimal solution is the one shown in Fig. 9.27.

Another complete example of applying the network simplex method is provided by
the demonstration in the Network Analysis Area of your OR Tutor. An additional example
is given in the Worked Examples section of the book’s website as well. Also included in
your IOR Tutorial is an interactive procedure for the network simplex method.

■ TABLE 9.6 Calculations for the optimality test at the end of iteration 3

Nonbasic Arc Cycle Created �Z When � � 1

A � B AB–BC–AC 2 � 3 � 4 � 1
D � E DE–ED 3 � 2 � 5
E � C EC–AC–AD–ED �1 � 4 � 9 � 2 � 2

■ FIGURE 9.27
The optimal flow pattern in
the original network for the
Distribution Unlimited Co.
example.
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■ 9.8 A NETWORK MODEL FOR OPTIMIZING A PROJECT’S 
TIME-COST TRADE-OFF

Networks provide a natural way of graphically displaying the flow of activities in a major
project, such as a construction project or a research-and-development project. Therefore,
one of the most important applications of network theory is in aiding the management of
such projects.

In the late 1950s, two network-based OR techniques—PERT (program evaluation
and review technique) and CPM (critical path method)—were developed independently
to assist project managers in carrying out their responsibilities. These techniques were de-
signed to help plan how to coordinate a project’s various activities, develop a realistic
schedule for the project, and then monitor the progress of the project after it is under way.
Over the years, the better features of these two techniques have tended to be merged into
what is now commonly referred to as the PERT/CPM technique. This network approach
to project management continues to be widely used today.

One of the supplementary chapters on the book’s website, Chap. 22 (Project Man-
agement with PERT/CPM), provides a complete description of the various features of
PERT/CPM. We now will highlight one of these features for two reasons. First, it is a
network optimization model and so fits into the theme of the current chapter. Second, it
illustrates the kind of important applications that such models can have.

The feature we will highlight is referred to as the CPM method of time-cost trade-
offs because it was a key part of the original CPM technique. It addresses the follow-
ing problem for a project that needs to be completed by a specific deadline. Suppose
that this deadline would not be met if all the activities are performed in the normal
manner, but that there are various ways of meeting the deadline by spending more
money to expedite some of the activities. What is the optimal plan for expediting
some activities so as to minimize the total cost of performing the project within the
deadline?

The general approach begins by using a network to display the various activities and
the order in which they need to be performed. An optimization model then is formulated
that can be solved by using either marginal analysis or linear programming. As with the
other network optimization models considered earlier in this chapter, the special structure
of the problem makes it relatively easy to solve efficiently.

This approach is illustrated below by using the same prototype example that is car-
ried through Chap. 22.

A Prototype Example—the Reliable Construction Co. Problem

The RELIABLE CONSTRUCTION COMPANY has just made the winning bid of $5.4 mil-
lion to construct a new plant for a major manufacturer. The manufacturer needs the plant to
go into operation within 40 weeks.

Reliable is assigning its best construction manager, David Perty, to this project to help
ensure that it stays on schedule. Mr. Perty will need to arrange for a number of crews to
perform the various construction activities at different times. Table 9.7 shows his list of
the various activities. The third column provides important additional information for co-
ordinating the scheduling of the crews.

For any given activity, its immediate predecessors (as given in the third col-
umn of Table 9.7) are those activities that must be completed by no later than
the starting time of the given activity. (Similarly, the given activity is called an
immediate successor of each of its immediate predecessors.)
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■ TABLE 9.7 Activity list for the Reliable Construction Co. project

Immediate Estimated
Activity Activity Description Predecessors Duration

A Excavate — 2 weeks
B Lay the foundation A 4 weeks
C Put up the rough wall B 10 weeks
D Put up the roof C 6 weeks
E Install the exterior plumbing C 4 weeks
F Install the interior plumbing E 5 weeks
G Put up the exterior siding D 7 weeks
H Do the exterior painting E, G 9 weeks
I Do the electrical work C 7 weeks
J Put up the wallboard F, I 8 weeks
K Install the flooring J 4 weeks
L Do the interior painting J 5 weeks
M Install the exterior fixtures H 2 weeks
N Install the interior fixtures K, L 6 weeks

For example, the top entries in this column indicate that

1. Excavation does not need to wait for any other activities.
2. Excavation must be completed before starting to lay the foundation.
3. The foundation must be completely laid before starting to put up the rough wall, and

so on.

When a given activity has more than one immediate predecessor, all must be finished be-
fore the activity can begin.

In order to schedule the activities, Mr. Perty consults with each of the crew supervi-
sors to develop an estimate of how long each activity should take when it is done in the
normal way. These estimates are given in the rightmost column of Table 9.7.

Adding up these times gives a grand total of 79 weeks, which is far beyond the dead-
line of 40 weeks for the project. Fortunately, some of the activities can be done in par-
allel, which substantially reduces the project completion time. We will see next how the
project can be displayed graphically to better visualize the flow of the activities and to
determine the total time required to complete the project if no delays occur.

We have seen in this chapter how valuable networks can be to represent and help an-
alyze many kinds of problems. In much the same way, networks play a key role in dealing
with projects. They enable showing the relationships between the activities and succinctly
displaying the overall plan for the project. They also are helpful for analyzing the project.

Project Networks

A network used to represent a project is called a project network. A project network
consists of a number of nodes (typically shown as small circles or rectangles) and a
number of arcs (shown as arrows) that connect two different nodes.

As Table 9.7 indicates, three types of information are needed to describe a project.

1. Activity information: Break down the project into its individual activities (at the de-
sired level of detail).

2. Precedence relationships: Identify the immediate predecessor(s) for each activity.
3. Time information: Estimate the duration of each activity.

The project network should convey all this information. Two alternative types of project
networks are available for doing this.
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One type is the activity-on-arc (AOA) project network, where each activity is represented
by an arc. A node is used to separate an activity (an outgoing arc) from each of its immedi-
ate predecessors (an incoming arc). The sequencing of the arcs thereby shows the precedence
relationships between the activities.

The second type is the activity-on-node (AON) project network, where each activity
is represented by a node. Then the arcs are used just to show the precedence relationships
that exist between the activities. In particular, the node for each activity with immediate
predecessors has an arc coming in from each of these predecessors.

The original versions of PERT and CPM used AOA project networks, so this was the
conventional type for some years. However, AON project networks have some important
advantages over AOA project networks for conveying the same information.

1. AON project networks are considerably easier to construct than AOA project networks.
2. AON project networks are easier to understand than AOA project networks for inex-

perienced users, including many managers.
3. AON project networks are easier to revise than AOA project networks when there are

changes in the project.

For these reasons, AON project networks have become increasingly popular with practi-
tioners. It appears that they may become the standard format for project networks. There-
fore, we will focus solely on AON project networks, and will drop the adjective AON.

Figure 9.28 shows the project network for Reliable’s project.2 Referring also to the
third column of Table 9.7, note how there is an arc leading to each activity from each of
its immediate predecessors. Because activity A has no immediate predecessors, there is
an arc leading from the start node to this activity. Similarly, since activities M and N have
no immediate successors, arcs lead from these activities to the finish node. Therefore, the
project network nicely displays at a glance all the precedence relationships between all
the activities (plus the start and finish of the project). Based on the rightmost column of
Table 9.7, the number next to the node for each activity then records the estimated dura-
tion (in weeks) of that activity.

The Critical Path

How long should the project take? We noted earlier that summing the durations of all the
activities gives a grand total of 79 weeks. However, this isn’t the answer to the question
because some of the activities can be performed (roughly) simultaneously.

What is relevant instead is the length of each path through the network.

A path through a project network is one of the routes following the arcs from
the START node to the FINISH node. The length of a path is the sum of the (es-
timated) durations of the activities on the path.

The six paths through the project network in Fig. 9.28 are given in Table 9.8, along with
the calculations of the lengths of these paths. The path lengths range from 31 weeks up
to 44 weeks for the longest path (the fourth one in the table).

So given these path lengths, what should be the (estimated) project duration (the to-
tal time required for the project)? Let us reason it out.

Since the activities on any given path must be done in sequence with no overlap, the
project duration cannot be shorter than the path length. However, the project duration can
be longer because some activity on the path with multiple immediate predecessors might

9.8 A NETWORK MODEL 401

2Although project networks often are drawn from left to right, we go from top to bottom to better fit on the
printed page.
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have to wait longer for an immediate predecessor not on the path to finish than for the
one on the path. For example, consider the second path in Table 9.8 and focus on activ-
ity H. This activity has two immediate predecessors, one (activity G) not on the path and
one (activity E ) that is. After activity C finishes, only 4 more weeks are required for ac-
tivity E but 13 weeks will be needed for activity D and then activity G to finish. There-
fore, the project duration must be considerably longer than the length of the second path
in the table.

However, the project duration will not be longer than one particular path. This is
the longest path through the project network. The activities on this path can be per-
formed sequentially without interruption. (Otherwise, this would not be the longest path.)

402 CHAPTER 9 NETWORK OPTIMIZATION MODELS

■ TABLE 9.8 The paths and path lengths through Reliable’s project network

Path Length

START �A�B�C�D�G�H�M� FINISH 2 � 4 � 10 � 6 � 7 � 9 � 2 � 6 � 40 weeks
START �A�B�C�E�H�M� FINISH 2 � 4 � 10 � 4 � 9 � 2 � 2 � 6 � 31 weeks
START �A�B�C�E�F�J�K�N� FINISH 2 � 4 � 10 � 4 � 5 � 8 � 4 � 6 � 43 weeks
START �A�B�C�E�F�J�L�N� FINISH 2 � 4 � 10 � 4 � 5 � 8 � 5 � 6 � 44 weeks
START �A�B�C�I�J�K�N� FINISH 2 � 4 � 10 � 7 � 8 � 4 � 6 � 6 � 41 weeks
START �A�B�C�I�J�L�N� FINISH 2 � 4 � 10 � 7 � 8 � 5 � 6 � 6 � 42 weeks
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■ FIGURE 9.28
The project network for the
Reliable Construction Co.
project.
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Therefore, the time required to reach the FINISH node equals the length of this path. Fur-
thermore, all the shorter paths will reach the FINISH node no later than this.

Here is the key conclusion.

The (estimated) project duration equals the length of the longest path through
the project network. This longest path is called the critical path.3 (If more than
one path tie for the longest, they all are critical paths.)

Thus, for the Reliable Construction Co. project, we have

Critical path: START �A�B�C�E�F�J�L�N� FINISH
(Estimated) project duration � 44 weeks.

Therefore, if no delays occur, the total time required to complete the project should be
about 44 weeks. Furthermore, the activities on this critical path are the critical bottleneck
activities where any delays in their completion must be avoided to prevent delaying proj-
ect completion. This is valuable information for Mr. Perty, since he now knows that he
should focus most of his attention on keeping these particular activities on schedule in
striving to keep the overall project on schedule. Furthermore, to reduce the duration of
the project (remember that the deadline for completion is 40 weeks), these are the main
activities where changes should be made to reduce their durations.

Mr. Perty now needs to determine specifically which activites should have their du-
rations reduced, and by how much, in order to meet the deadline of 40 weeks in the least
expensive way. He remembers that CPM provides an excellent procedure for investigat-
ing such time-cost trade-offs, so he will use this approach to address this question.

We begin with some background.

Time-Cost Trade-Offs for Individual Activities

The first key concept for this approach is that of crashing.

Crashing an activity refers to taking special costly measures to reduce the dura-
tion of an activity below its normal value. These special measures might include us-
ing overtime, hiring additional temporary help, using special time-saving materials,
obtaining special equipment, etc. Crashing the project refers to crashing a num-
ber of activities in order to reduce the duration of the project below its normal value.

The CPM method of time-cost trade-offs is concerned with determining how much
(if any) to crash each of the activities in order to reduce the anticipated duration of the
project to a desired value.

The data necessary for determining how much to crash a particular activity are given
by the time-cost graph for the activity. Figure 9.29 shows a typical time-cost graph. Note
the two key points on this graph labeled Normal and Crash.

The normal point on the time-cost graph for an activity shows the time (dura-
tion) and cost of the activity when it is performed in the normal way. The crash
point shows the time and cost when the activity is fully crashed, i.e., it is fully
expedited with no cost spared to reduce its duration as much as possible. As an
approximation, CPM assumes that these times and costs can be reliably predicted
without significant uncertainty.

For most applications, it is assumed that partially crashing the activity at any level will
give a combination of time and cost that will lie somewhere on the line segment between

9.8 A NETWORK MODEL 403

3Although Table 9.8 illustrates how the enumeration of paths and path lengths can be used to find the critical
path for small projects, Chap. 22 describes how PERT/CPM normally uses a considerably more efficient pro-
cedure to obtain a variety of useful information, including the critical path.
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these two points.4 (For example, this assumption says that half of a full crash will give a
point on this line segment that is midway between the normal and crash points.) This sim-
plifying approximation reduces the necessary data gathering to estimating the time and
cost for just two situations: normal conditions (to obtain the normal point) and a full crash
(to obtain the crash point).

Using this approach, Mr. Perty has his staff and crew supervisors working on de-
veloping these data for each of the activities of Reliable’s project. For example, the su-
pervisor of the crew responsible for putting up the wallboard indicates that adding two
temporary employees and using overtime would enable him to reduce the duration of this
activity from 8 weeks to 6 weeks, which is the minimum possible. Mr. Perty’s staff then
estimates the cost of fully crashing the activity in this way as compared to following the
normal 8-week schedule, as shown below.

Activity J (put up the wallboard):

Normal point: time � 8 weeks, cost � $430,000.
Crash point: time � 6 weeks, cost � $490,000.
Maximum reduction in time � 8 � 6 � 2 weeks.

Crash cost per week saved �

� $30,000.

After investigating the time-cost trade-off for each of the other activities in the same way,
Table 9.9 gives the data obtained for all the activities.

Which Activities Should Be Crashed?

Summing the normal cost and crash cost columns of Table 9.9 gives

Sum of normal costs � $4.55 million,
Sum of crash costs � $6.15 million.

$490,000 � $430,000
���

2
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Crash  

Normal

Crash cost

Normal cost

Activity
cost   

Crash time Normal time Activity duration

■ FIGURE 9.29
A typical time-cost graph for
an activity.

4This is a convenient assumption, but it often is only a rough approximation since the underlying assumptions
of proportionality and divisibility may not hold completely. If the true time-cost graph is convex, linear pro-
gramming can still be employed by using a piecewise linear approximation and then applying the separable
programming technique described in Sec. 12.8.
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Recall that the company will be paid $5.4 million for doing this project. This payment
needs to cover some overhead costs in addition to the costs of the activities listed in the
table, as well as provide a reasonable profit to the company. When developing the win-
ning bid of $5.4 million, Reliable’s management felt that this amount would provide a
reasonable profit as long as the total cost of the activities could be held fairly close to the
normal level of about $4.55 million. Mr. Perty understands very well that it is his re-
sponsibility to keep the project as close to both budget and schedule as possible.

As found previously in Table 9.8, if all the activities are performed in the normal way,
the anticipated duration of the project would be 44 weeks (if delays can be avoided). If all
the activities were to be fully crashed instead, then a similar calculation would find that this
duration would be reduced to only 28 weeks. But look at the prohibitive cost ($6.15 million)
of doing this! Fully crashing all activities clearly is not a viable option.

However, Mr. Perty still wants to investigate the possibility of partially or fully crash-
ing just a few activities to reduce the anticipated duration of the project to 40 weeks.

The problem: What is the least expensive way of crashing some activities to re-
duce the (estimated) project duration to the specified level (40 weeks)?

One way of solving this problem is marginal cost analysis, which uses the last column
of Table 9.9 (along with Table 9.8) to determine the least expensive way to reduce project
duration 1 week at a time. The easiest way to conduct this kind of analysis is to set up a table
like Table 9.10 that lists all the paths through the project network and the current length of
each of these paths. To get started, this information can be copied directly from Table 9.8.

Since the fourth path listed in Table 9.10 has the longest length (44 weeks), the only
way to reduce project duration by a week is to reduce the duration of the activities on
this particular path by a week. Comparing the crash cost per week saved given in the last
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■ TABLE 9.9 Time-cost trade-off data for the activities of Reliable’s project

Time Cost Maximum Crash Cost
Reduction per Week

Activity Normal Crash Normal Crash in Time Saved

A 2 weeks 1 weeks $180,000 $1,280,000 1 weeks $100,000
B 4 weeks 2 weeks $320,000 $1,420,000 2 weeks $ 50,000
C 10 weeks 7 weeks $620,000 $1,860,000 3 weeks $ 80,000
D 6 weeks 4 weeks $260,000 $1,340,000 2 weeks $ 40,000
E 4 weeks 3 weeks $410,000 $1,570,000 1 weeks $160,000
F 5 weeks 3 weeks $180,000 $1,260,000 2 weeks $ 40,000
G 7 weeks 4 weeks $900,000 $1,020,000 3 weeks $ 40,000
H 9 weeks 6 weeks $200,000 $1,380,000 3 weeks $ 60,000
I 7 weeks 5 weeks $210,000 $1,270,000 2 weeks $ 30,000
J 8 weeks 6 weeks $430,000 $1,490,000 2 weeks $ 30,000
K 4 weeks 3 weeks $160,000 $1,200,000 1 weeks $ 40,000
L 5 weeks 3 weeks $250,000 $1,350,000 2 weeks $ 50,000
M 2 weeks 1 weeks $100,000 $1,200,000 1 weeks $100,000
N 6 weeks 3 weeks $330,000 $1,510,000 3 weeks $ 60,000

■ TABLE 9.10 The initial table for starting marginal cost analysis of Reliable’s
project

Length of Path
Activity to Crash

Crash Cost ABCDGHM ABCEHM ABCEFJKN ABCEFJLN ABCIJKN ABCIJLN

40 31 43 44 41 42
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■ TABLE 9.11 The final table for performing marginal cost analysis on 
Reliable’s project

Length of Path
Activity to Crash

Crash Cost ABCDGHM ABCEHM ABCEFJKN ABCEFJLN ABCIJKN ABCIJLN

40 31 43 44 41 42
J $30,000 40 31 42 43 40 41
J $30,000 40 31 41 42 39 40
F $40,000 40 31 40 41 39 40
F $40,000 40 31 39 40 39 40

column of Table 9.9 for these activities, the smallest cost is $30,000 for activity J. (Note
that activity I with this same cost is not on this path.) Therefore, the first change is to
crash activity J enough to reduce its duration by a week.

This change results in reducing the length of each path that includes activity J (the
third, fourth, fifth, and sixth paths in Table 9.10) by a week, as shown in the second row
of Table 9.11. Because the fourth path still is the longest (43 weeks), the same process
is repeated to find the least expensive activity to shorten on this path. This again is ac-
tivity J, since the next-to-last column in Table 9.9 indicates that a maximum reduction
of 2 weeks is allowed for this activity. This second reduction of a week for activity J leads
to the third row of Table 9.11.

At this point, the fourth path still is the longest (42 weeks), but activity J cannot be
shortened any further. Among the other activities on this path, activity F now is the least
expensive to shorten ($40,000 per week) according to the last column of Table 9.9. There-
fore, this activity is shortened by a week to obtain the fourth row of Table 9.11, and then
(because a maximum reduction of 2 weeks is allowed) is shortened by another week to
obtain the last row of this table.

The longest path (a tie between the first, fourth, and sixth paths) now has the desired
length of 40 weeks, so we don’t need to do any more crashing. (If we did need to go fur-
ther, the next step would require looking at the activities on all three paths to find the least
expensive way of shortening all three paths by a week.) The total cost of crashing activ-
ities J and F to get down to this project duration of 40 weeks is calculated by adding the
costs in the second column of Table 9.11—a total of $140,000. Figure 9.30 shows the re-
sulting project network, where the darker arrows show the critical paths.

Figure 9.30 shows that reducing the durations of activities F and J to their crash times
has led to now having three critical paths through the network. The reason is that, as we
found earlier from the last row of Table 9.11, the three paths tie for being the longest,
each with a length of 40 weeks.

With larger networks, marginal cost analysis can become quite unwieldy. A more ef-
ficient procedure would be desirable for large projects. For this reason, the standard CPM
procedure is to apply linear programming instead (commonly with a customized software
package that exploits the special structure of this network optimization model).

Using Linear Programming to Make Crashing Decisions

The problem of finding the least expensive way of crashing activities can be rephrased in
a form more familiar to linear programming as follows.

Restatement of the problem: Let Z be the total cost of crashing activities. The
problem then is to minimize Z, subject to the constraint that project duration must
be less than or equal to the time desired by the project manager.
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The natural decision variables are

xj � reduction in the duration of activity j due to crashing this activity,
for j � A, B, . . . , N.

By using the last column of Table 9.9, the objective function to be minimized then is

Z � 100,000xA � 50,000xB � . . . � 60,000xN.

Each of the 14 decision variables on the right-hand side needs to be restricted to nonnega-
tive values that do not exceed the maximum given in the next-to-last column of Table 9.9.

To impose the constraint that project duration must be less than or equal to the desired
value (40 weeks), let

yFINISH � project duration, i.e., the time at which the FINISH node in the project
network is reached.

The constraint then is . . . 

yFINISH � 40.

To help the linear programming model assign the appropriate value to yFINISH, given
the values of xA, xB, . . . , xN, it is convenient to introduce into the model the following
additional variables.
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■ FIGURE 9.30
The project network if
activities J and F are fully
crashed (with all other
activities normal) for
Reliable’s project. The darker
arrows show the various
critical paths through the
project network.
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yj � start time of activity j (for j � B, C, . . . , N), given the values of xA, xB, . . . , xN.

(No such variable is needed for activity A, since an activity that begins the project is au-
tomatically assigned a value of 0.) By treating the FINISH node as another activity (al-
beit one with zero duration), as we now will do, this definition of yj for activity FINISH
also fits the definition of yFINISH given in the preceding paragraph.

The start time of each activity (including FINISH) is directly related to the start time
and duration of each of its immediate predecessors as summarized below.

For each activity (B, C, . . . , N, FINISH) and each of its immediate predecessors,
Start time of this activity � (start time � duration) for this immediate predecessor.

Furthermore, by using the normal times from Table 9.9, the duration of each activity is
given by the following formula:

Duration of activity j � its normal time � xj,

To illustrate these relationships, consider activity F in the project network (Fig. 9.28
or 9.30).

Immediate predecessor of activity F:
Activity E, which has duration � 4 � xE.

Relationship between these activities:

yF � yE � 4 � xE.

Thus, activity F cannot start until activity E starts and then completes its duration of 4 � xE.
Now consider activity J, which has two immediate predecessors.

Immediate predecessors of activity J:
Activity F, which has duration � 5 � xF.
Activity I, which has duration � 7 � xI.

Relationships between these activities:

yJ � yF � 5 � xF,
yJ � yI � 7 � xI.

These inequalities together say that activity j cannot start until both of its predecessors
finish.

By including these relationships for all the activities as constraints, we obtain the
complete linear programming model given below.

Minimize Z � 100,000xA � 50,000xB � . . . � 60,000xN,

subject to the following constraints:

1. Maximum reduction constraints:
Using the next-to-last column of Table 9.9,

xA � 1, xB � 2, . . . , xN � 3.

2. Nonnegativity constraints:

xA � 0, xB � 0, . . . , xN � 0
yB � 0, yC � 0, . . . , yN � 0, yFINISH � 0.

3. Start-time constraints:
As described above the objective function, with the exception of activity A (which starts
the project), there is one start-time constraint for each activity with a single immediate

408 CHAPTER 9 NETWORK OPTIMIZATION MODELS
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predecessor (activities B, C, D, E, F, G, I, K, L, M) and two constraints for each activity
with two immediate predecessors (activities H, J, N, FINISH), as listed below.
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yB � 0 � 2 � xA yH � yG � 7 � xG

yC � yB � 4 � xB yH � yE � 4 � xE

yD � yC � 10 � xC �

� yFINISH � yM � 2 � xM

yM � yH � 9 � xH yFINISH � yN � 6 � xN

(In general, the number of start-time constraints for an activity equals its number of
immediate predecessors since each immediate predecessor contributes one start-time
constraint.)

4. Project duration constraint:

yFINISH � 40.

Figure 9.31 shows how this problem can be formulated as a linear programming model
on a spreadsheet. The decisions to be made are shown in the changing cells, StartTime
(I6:I19), TimeReduction (J6:J19), and ProjectFinishTime (I22). Columns B to H correspond
to the columns in Table 9.9. As the equations in the bottom half of the figure indicate,
columns G and H are calculated in a straightforward way. The equations for column K
express the fact that the finish time for each activity is its start time plus its normal time
minus its time reduction due to crashing. The equation entered into the target cell TotalCost
(I24) adds all the normal costs plus the extra costs due to crashing to obtain the total cost.

The last set of constraints in the Solver dialogue box, TimeReduction (J6:J19) � Max-
TimeReduction (G6:G19), specifies that the time reduction for each activity cannot ex-
ceed its maximum time reduction given in column G. The two preceding constraints,
ProjectFinishTime (I22) � MFinish (K18) and ProjectFinishTime (I22) � NFINISH
(K19), indicate that the project cannot finish until each of the two immediate predeces-
sors (activities M and N ) finish. The constraint that ProjectFinishTime (I22) � MaxTime
(K22) is a key one that specifies that the project must finish within 40 weeks.

The constraints involving StartTime (I6:I19) all are start-time constraints that specify
that an activity cannot start until each of its immediate predecessors has finished. For exam-
ple, the first constraint shown, BStart (I7) � AFinish (K6), says that activity B cannot start
until activity A (its immediate predecessor) finishes. When an activity has more than one im-
mediate predecessor, there is one such constraint for each of them. To illustrate, activity H
has both activities E and G as immediate predecessors. Consequently, activity H has two start-
time constraints, HStart (I13) � EFinish (K10) and HStart (I13) � GFinish (K12).

You may have noticed that the � form of the start-time constraints allows a delay in
starting an activity after all its immediate predecessors have finished. Although such a de-
lay is feasible in the model, it cannot be optimal for any activity on a critical path, since
this needless delay would increase the total cost (by necessitating additional crashing to
meet the project duration constraint). Therefore, an optimal solution for the model will
not have any such delays, except possibly for activities not on a critical path.

Columns I and J in Fig. 9.31 show the optimal solution obtained after having clicked
on the Solve button. (Note that this solution involves one delay—activity K starts at 30
even though its only immediate predecessor, activity J, finishes at 29—but this doesn’t
matter since activity K is not on a critical path.) This solution corresponds to the one dis-
played in Fig. 9.30 that was obtained by marginal cost analysis.

If you would like to see another example that illustrates both the marginal cost analy-
sis approach and the linear programming approach to applying the CPM method of time-
cost trade-offs, the Worked Examples section of the book’s website provides one.
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Reliable Construction Co. Project Scheduling Problem with Time-Cost Trade-offs

Maximum Crash Cost
Time Cost Time per Week Start Time Finish

Activity Normal Crash Normal Crash Reduction saved Time Reduction Time
A 2 1 $180,000 $280,000 1 $100,000 0 0 2
B 4 2 $320,000 $420,000 2 $50,000 2 0 6
C 10 7 $620,000 $860,000 3 $80,000 6 0 16
D 6 4 $260,000 $340,000 2 $40,000 16 0 22
E 4 3 $410,000 $570,000 1 $160,000 16 0 20
F 5 3 $180,000 $260,000 2 $40,000 20 2 23
G 7 4 $900,000 $1,020,000 3 $40,000 22 0 29
H 9 6 $200,000 $380,000 3 $60,000 29 0 38
I 7 5 $210,000 $270,000 2 $30,000 16 0 23
J 8 6 $430,000 $490,000 2 $30,000 23 2 29
K 4 3 $160,000 $200,000 1 $40,000 30 0 34
L 5 3 $250,000 $350,000 2 $50,000 29 0 34
M 2 1 $100,000 $200,000 1 $100,000 38 0 40
N 6 3 $330,000 $510,000 3 $60,000 34 0 40

Max Time
Project Finish Time 40 <= 40

Total Cost $4,690,000

Range Name Cells
AFinish K6
AStart I6
BFinish K7
BStart I7
CFinish K8
CrashCost F6:F19
CrashCostPerWeekSaved H6:H19
CrashTime D6:D19
CStart I8
DFinish K9
DStart I9
EFinish K10
EStart I10
FFinish K11
FinishTime K6:K19
FStart I11
GFinish K12
GStart I12
HFinish K13
HStart I13
IFinish K14
IStart I14
JFinish K15
JStart I15
KFinish K16
KStart I16
LFinish K17
LStart I17
MaxTime K22
MaxTimeReduction G6:G19
MFinish K18
MStart I18
NFinish K19
NormalCost E6:E19
NormalTime C6:C19
NStart I19
ProjectFinishTime I22
StartTime I6:I19
TimeReduction J6:J19
TotalCost I24

■ FIGURE 9.31
The spreadsheet displays the application of the CPM method of time-cost trade-offs to Reliable’s project, where columns I
and J show the optimal solution obtained by using the Excel Solver with the entries shown in the Solver dialogue box.

■ 9.9 CONCLUSIONS
Networks of some type arise in a wide variety of contexts. Network representations are
very useful for portraying the relationships and connections between the components of
systems. Frequently, flow of some type must be sent through a network, so a decision needs
to be made about the best way to do this. The kinds of network optimization models and
algorithms introduced in this chapter provide a powerful tool for making such decisions.

The minimum cost flow problem plays a central role among these network optimization
models, both because it is so broadly applicable and because it can be solved extremely
efficiently by the network simplex method. Two of its special cases included in this chap-
ter, the shortest-path problem and the maximum flow problem, also are basic network op-
timization models, as are additional special cases discussed in Chap. 8 (the transportation
problem and the assignment problem).

Whereas all these models are concerned with optimizing the operation of an existing
network, the minimum spanning tree problem is a prominent example of a model for op-
timizing the design of a new network.

The CPM method of time-cost trade-offs provides a powerful way of using a network op-
timization model to design a project so that it can meet its deadline with a minimum total cost.

This chapter has only scratched the surface of the current state of the art of network
methodology. Because of their combinatorial nature, network problems often are extremely
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Worked Examples:

Examples for Chapter 9

A Demonstration Example in OR Tutor:

Network Simplex Method
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A

B

C

D

E

F

Miles between Adjacent Towns

Town A B C D E Destination

Origin 40 60 50 — — —
A 10 — 70 — —
B 20 55 40 —
C — 50 —
D 10 60
E 80

■ PROBLEMS

An Interactive Procedure in IOR Tutorial:

Network Simplex Method—Interactive

An Excel Add-in:

Premium Solver for Education

“Ch. 9—Network Opt Models” Files for Solving the Examples:

Excel Files
LINGO/LINDO File
MPL/CPLEX File

Glossary for Chapter 9

See Appendix 1 for documentation of the software.

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example just listed in Learning Aids
may be helpful.

I: We suggest that you use the interactive procedure just
listed (the printout records your work).

C: Use the computer with any of the software options avail-
able to you (or as instructed by your instructor) to solve
the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

9.2-1. Consider the following directed network.

9.3-2. You need to take a trip by car to another town that you
have never visited before. Therefore, you are studying a map to
determine the shortest route to your destination. Depending on
which route you choose, there are five other towns (call them A,
B, C, D, E) that you might pass through on the way. The map
shows the mileage along each road that directly connects two
towns without any intervening towns. These numbers are sum-
marized in the following table, where a dash indicates that there
is no road directly connecting these two towns without going
through any other towns.

(a) Find a directed path from node A to node F, and then identify
three other undirected paths from node A to node F.

(b) Find three directed cycles. Then identify an undirected cycle
that includes every node.

(c) Identify a set of arcs that forms a spanning tree.
(d) Use the process illustrated in Fig. 9.3 to grow a tree one arc

at a time until a spanning tree has been formed. Then repeat
this process to obtain another spanning tree. [Do not duplicate
the spanning tree identified in part (c).]

9.3-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 9.3.
Briefly describe how network optimization models were applied in
this study. Then list the various financial and nonfinancial benefits
that resulted from this study.

(a) Formulate this problem as a shortest-path problem by drawing
a network where nodes represent towns, links represent roads,
and numbers indicate the length of each link in miles.

(b) Use the algorithm described in Sec. 9.3 to solve this shortest-
path problem.

C (c) Formulate and solve a spreadsheet model for this problem.
(d) If each number in the table represented your cost (in dollars)

for driving your car from one town to the next, would the an-
swer in part (b) or (c) now give your minimum cost route?

(e) If each number in the table represented your time (in minutes)
for driving your car from one town to the next, would the an-
swer in part (b) or (c) now give your minimum time route?

9.3-3. At a small but growing airport, the local airline company is
purchasing a new tractor for a tractor-trailer train to bring luggage
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(Origin) (Destination)T

E

D

O B

C

A

4

6

5
2

5

7

5

4

6

8

1

(a)

1

T(Origin) (Destination)O

B E I

A D G

HFC

4

3 4

2 225
6

3 4 5

2

1 2

5 8

43

72

6 5

(b)

j

1 2 3

0 $13,000 $28,000 $48,000
i 1 $17,000 $33,000

2 $20,000

LNSE B E

C F

A D

4.2 3.8

4.7 3.6

4.6
3.5

3.4

3.6

3.3

3.5

3.2

3.4

3.4

to and from the airplanes. A new mechanized luggage system will
be installed in 3 years, so the tractor will not be needed after that.
However, because it will receive heavy use, so that the running and
maintenance costs will increase rapidly as the tractor ages, it may
still be more economical to replace the tractor after 1 or 2 years.
The following table gives the total net discounted cost associated
with purchasing a tractor (purchase price minus trade-in allowance,
plus running and maintenance costs) at the end of year i and trad-
ing it in at the end of year j (where year 0 is now).

The problem is to determine at what times (if any) the tractor should
be replaced to minimize the total cost for the tractors over 3 years.
(a) Formulate this problem as a shortest-path problem.
(b) Use the algorithm described in Sec. 9.3 to solve this shortest-

path problem.
C (c) Formulate and solve a spreadsheet model for this problem.

9.3-4.* Use the algorithm described in Sec. 9.3 to find the short-
est path through each of the following networks, where the num-
bers represent actual distances between the corresponding nodes.

9.3-5. Formulate the shortest-path problem as a linear program-
ming problem.

9.3-6. One of Speedy Airlines’ flights is about to take off from
Seattle for a nonstop flight to London. There is some flexibility
in choosing the precise route to be taken, depending upon weather
conditions. The following network depicts the possible routes
under consideration, where SE and LN are Seattle and London,
respectively, and the other nodes represent various intermediate
locations. 

The winds along each arc greatly affect the flying time (and so
the fuel consumption). Based on current meteorological reports,
the flying times (in hours) for this particular flight are shown next
to the arcs. Because the fuel consumed is so expensive, the man-
agement of Speedy Airlines has established a policy of choosing
the route that minimizes the total flight time.
(a) What plays the role of “distances” in interpreting this problem

to be a shortest-path problem?
(b) Use the algorithm described in Sec. 9.3 to solve this shortest-

path problem.
C (c) Formulate and solve a spreadsheet model for this problem.

9.3-7. The Quick Company has learned that a competitor is plan-
ning to come out with a new kind of product with a great sales
potential. Quick has been working on a similar product that had
been scheduled to come to market in 20 months. However, research
is nearly complete and Quick’s management now wishes to rush
the product out to meet the competition.

There are four nonoverlapping phases left to be accomplished,
including the remaining research that currently is being conducted
at a normal pace. However, each phase can instead be conducted at
a priority or crash level to expedite completion, and these are the
only levels that will be considered for the last three phases. The times
required at these levels are given in the following table. (The times
in parentheses at the normal level have been ruled out as too long.)

Time

Initiate
Design of Production 

Remaining Manufacturing and
Level Research Development System Distribution

Normal 5 months (4 months) (7 months) (4 months)
Priority 4 months 3 months 5 months 2 months
Crash 2 months 2 months 3 months 1 month
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Cost

Initiate
Design of Production 

Remaining Manufacturing and
Level Research Development System Distribution

Normal $5 million — — —
Priority $9 million $10 million $14 million $6 million
Crash $14 million $15 million $19 million $9 million

Distance between Pairs of Offices

Main B.1 B.2 B.3 B.4 B.5

Main office — 190 70 115 270 160
Branch 1 190 — 100 110 215 50
Branch 2 70 100 — 140 120 220
Branch 3 115 110 140 — 175 80
Branch 4 270 215 120 175 — 310
Branch 5 160 50 220 80 310 —

Source Sink
7

6

5

3

4

4

6

1 3

4

4

1
4

9
3

F F

2

1

Distance between Pairs of Groves

1 2 3 4 5 6 7 8

1 — 1.3 2.1 0.9 0.7 1.8 2.0 1.5
2 1.3 — 0.9 1.8 1.2 2.6 2.3 1.1
3 2.1 0.9 — 2.6 1.7 2.5 1.9 1.0

Grove 4 0.9 1.8 2.6 — 0.7 1.6 1.5 0.9
5 0.7 1.2 1.7 0.7 — 0.9 1.1 0.8
6 1.8 2.6 2.5 1.6 0.9 — 0.6 1.0
7 2.0 2.3 1.9 1.5 1.1 0.6 — 0.5
8 1.5 1.1 1.0 0.9 0.8 1.0 0.5 —

Management has allocated $50 million for these four phases.
The cost of each phase at the different levels under consideration
is as follows:

Management wishes to determine at which level to conduct each
of the four phases to minimize the total time until the product can
be marketed subject to the budget restriction of $50 million.
(a) Formulate this problem as a shortest-path problem.
(b) Use the algorithm described in Sec. 9.3 to solve this shortest-

path problem.

9.4-1.* Reconsider the networks shown in Prob. 9.3-4. Use the al-
gorithm described in Sec. 9.4 to find the minimum spanning tree
for each of these networks.
9.4-2. The Wirehouse Lumber Company will soon begin logging
eight groves of trees in the same general area. Therefore, it must
develop a system of dirt roads that makes each grove accessible
from every other grove. The distance (in miles) between every pair
of groves is as follows:

Management now wishes to determine between which pairs
of groves the roads should be constructed to connect all groves
with a minimum total length of road.
(a) Describe how this problem fits the network description of the

minimum spanning tree problem.
(b) Use the algorithm described in Sec. 9.4 to solve the problem.

9.4-3. The Premiere Bank soon will be hooking up computer ter-
minals at each of its branch offices to the computer at its main of-
fice using special phone lines with telecommunications devices.

The phone line from a branch office need not be connected directly
to the main office. It can be connected indirectly by being con-
nected to another branch office that is connected (directly or indi-
rectly) to the main office. The only requirement is that every branch
office be connected by some route to the main office.

The charge for the special phone lines is $100 times the num-
ber of miles involved, where the distance (in miles) between every
pair of offices is as follows:

Management wishes to determine which pairs of offices should be
directly connected by special phone lines in order to connect every
branch office (directly or indirectly) to the main office at a mini-
mum total cost.
(a) Describe how this problem fits the network description of the

minimum spanning tree problem.
(b) Use the algorithm described in Sec. 9.4 to solve the problem.

9.5-1.* For the network shown below, use the augmenting path al-
gorithm described in Sec. 9.5 to find the flow pattern giving the
maximum flow from the source to the sink, given that the arc ca-
pacity from node i to node j is the number nearest node i along the
arc between these nodes. Show your work.

9.5-2. Formulate the maximum flow problem as a linear program-
ming problem.

9.5-3. The next diagram depicts a system of aqueducts that 
originate at three rivers (nodes R1, R2, and R3) and terminate at
a major city (node T), where the other nodes are junction points
in the system.
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FromTo FromTo FromTo

From A B C From D E F From T

R1 130 115 — A 110 85 — D 220
R2 70 90 110 B 130 95 85 E 330
R3 — 140 120 C — 130 160 F 240

The city water manager wants to determine a flow plan that will
maximize the flow of water to the city.
(a) Formulate this problem as a maximum flow problem by iden-

tifying a source, a sink, and the transshipment nodes, and
then drawing the complete network that shows the capacity
of each arc.

(b) Use the augmenting path algorithm described in Sec. 9.5 to
solve this problem.

C (c) Formulate and solve a spreadsheet model for this problem.

9.5-4. The Texago Corporation has four oil fields, four refineries,
and four distribution centers. A major strike involving the trans-
portation industries now has sharply curtailed Texago’s capacity to
ship oil from the oil fields to the refineries and to ship petroleum
products from the refineries to the distribution centers. Using units
of thousands of barrels of crude oil (and its equivalent in refined
products), the following tables show the maximum number of units
that can be shipped per day from each oil field to each refinery,
and from each refinery to each distribution center.

A

C
F

R3

R1 D

B
E

T

R2

The Texago management now wants to determine a plan for
how many units to ship from each oil field to each refinery and
from each refinery to each distribution center that will maximize
the total number of units reaching the distribution centers.
(a) Draw a rough map that shows the location of Texago’s oil

fields, refineries, and distribution centers. Add arrows to show
the flow of crude oil and then petroleum products through this
distribution network.

(b) Redraw this distribution network by lining up all the nodes
representing oil fields in one column, all the nodes represent-
ing refineries in a second column, and all the nodes repre-
senting distribution centers in a third column. Then add arcs
to show the possible flow.

(c) Modify the network in part (b) as needed to formulate this
problem as a maximum flow problem with a single source, a
single sink, and a capacity for each arc.

(d) Use the augmenting path algorithm described in Sec. 9.5 to
solve this maximum flow problem.

C (e) Formulate and solve a spreadsheet model for this problem.

9.5-5. One track of the Eura Railroad system runs from the major
industrial city of Faireparc to the major port city of Portstown. This
track is heavily used by both express passenger and freight trains.
The passenger trains are carefully scheduled and have priority over
the slow freight trains (this is a European railroad), so that the
freight trains must pull over onto a siding whenever a passenger
train is scheduled to pass them soon. It is now necessary to increase
the freight service, so the problem is to schedule the freight trains
so as to maximize the number that can be sent each day without
interfering with the fixed schedule for passenger trains.

Consecutive freight trains must maintain a schedule differen-
tial of at least 0.1 hour, and this is the time unit used for schedul-
ing them (so that the daily schedule indicates the status of each
freight train at times 0.0, 0.1, 0.2, . . . , 23.9). There are S sidings
between Faireparc and Portstown, where siding i is long enough
to hold ni freight trains (i � 1, . . . , S ). It requires ti time units
(rounded up to an integer) for a freight train to travel from siding
i to siding i � 1 (where t0 is the time from the Faireparc station to
siding 1 and ts is the time from siding S to the Portstown station).
A freight train is allowed to pass or leave siding i (i � 0, 1, . . . ,
S ) at time j ( j � 0.0, 0.1, . . . , 23.9) only if it would not be over-
taken by a scheduled passenger train before reaching siding i � 1
(let 
ij � 1 if it would not be overtaken, and let 
ij � 0 if it would
be). A freight train also is required to stop at a siding if there will
not be room for it at all subsequent sidings that it would reach
before being overtaken by a passenger train.

Refinery

Oil Field New Orleans Charleston Seattle St. Louis

Texas 11 7 2 8
California 5 4 8 7
Alaska 7 3 12 6
Middle East 8 9 4 15

Distribution Center

Refinery Pittsburgh Atlanta Kansas City San Francisco

New Orleans 5 9 6 4
Charleston 8 7 9 5
Seattle 4 6 7 8
St. Louis 12 11 9 7

Using units of thousands of acre feet, the tables below the
diagram show the maximum amount of water that can be pumped
through each aqueduct per day.
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To Unit Shipping Cost Shipping Capacity

From RO1 RO2 RO3 RO1 RO2 RO3

Warehouse 1 $1370 $1505 $1490 300 450 300
Warehouse 2 $1190 $1210 $1240 375 450 225

Demand $450 $600 $450 450 600 450

Formulate this problem as a maximum flow problem by
identifying each node (including the supply node and the de-
mand node) as well as each arc and its arc capacity for the net-
work representation of the problem. (Hint: Use a different set of
nodes for each of the 240 times.)

9.5-6. Consider the maximum flow problem shown below, where
the source is node A, the sink is node F, and the arc capacities are
the numbers shown next to these directed arcs.

A

B

C

D

E

F

6

9

3
2

4

6

7

9

7

(a) Formulate the network representation of this problem as a
minimum cost flow problem.

(b) Formulate the linear programming model for this problem.

9.6-4. Reconsider Prob. 9.3-3. Now formulate this problem as a
minimum cost flow problem by showing the appropriate network
representation.

9.6-5. The Makonsel Company is a fully integrated company that
both produces goods and sells them at its retail outlets. After
production, the goods are stored in the company’s two warehouses
until needed by the retail outlets. Trucks are used to transport the
goods from the two plants to the warehouses, and then from the
warehouses to the three retail outlets.

Using units of full truckloads, the following table shows each
plant’s monthly output, its shipping cost per truckload sent to each
warehouse, and the maximum amount that it can ship per month
to each warehouse.

To Unit Shipping Cost Shipping Capacity Output

From Warehouse Warehouse Warehouse Warehouse  
1 2 1 2 

Plant 1 $1175 $1580 375 450 600
Plant 2 $1430 $1700 525 600 900

Unit Shipping Cost

To Warehouse
Distribution

From Center 1 2 Output

Factory 1 3 7 — 80
Factory 2 4 — 9 70

Distribution center 2 4

Allocation 60 90

(a) Use the augmenting path algorithm described in Sec. 9.5 to
solve this problem.

C (b) Formulate and solve a spreadsheet model for this problem.

9.6-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 9.6. Briefly
describe how the model for the minimum cost flow problem was ap-
plied in this study. Then list the various financial and nonfinancial
benefits that resulted from this study.

9.6-2. Reconsider the maximum flow problem shown in Prob. 9.5-6.
Formulate this problem as a minimum cost flow problem, including
adding the arc A � F. Use F� � 20.

9.6-3. A company will be producing the same new product at two
different factories, and then the product must be shipped to two
warehouses. Factory 1 can send an unlimited amount by rail to
warehouse 1 only, whereas factory 2 can send an unlimited amount
by rail to warehouse 2 only. However, independent truckers can
be used to ship up to 50 units from each factory to a distribution
center, from which up to 50 units can be shipped to each ware-
house. The shipping cost per unit for each alternative is shown in
the following table, along with the amounts to be produced at the
factories and the amounts needed at the warehouses.

For each retail outlet (RO), the next table shows its monthly
demand, its shipping cost per truckload from each warehouse, and
the maximum amount that can be shipped per month from each
warehouse.

Management now wants to determine a distribution plan (number
of truckloads shipped per month from each plant to each ware-
house and from each warehouse to each retail outlet) that will min-
imize the total shipping cost.
(a) Draw a network that depicts the company’s distribution net-

work. Identify the supply nodes, transshipment nodes, and de-
mand nodes in this network.

(b) Formulate this problem as a minimum cost flow problem by
inserting all the necessary data into this network.

C (c) Formulate and solve a spreadsheet model for this problem.
C (d) Use the computer to solve this problem without using Excel.
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Vendor Warehouse 1 Warehouse 2

1 1,600 miles 1,400 miles
2 1,500 miles 1,600 miles
3 2,000 miles 1,000 miles

Unit Shipping Cost

Factory 1 Factory 2

Warehouse 1 $200 $700
Warehouse 2 $400 $500

Monthly demand 10 6

Whenever one of the company’s two factories needs a ship-
ment of speakers to assemble into the boomboxes, the company
hires a trucker to bring the shipment in from one of the warehouses.
The cost per shipment is given next, along with the number of ship-
ments needed per month at each factory.

In addition, each vendor would charge a shipping cost. Each ship-
ment would go to one of the company’s two warehouses. Each ven-
dor has its own formula for calculating this shipping cost based on
the mileage to the warehouse. These formulas and the mileage data
are shown below.

Each vendor is able to supply as many as 10 shipments per
month. However, because of shipping limitations, each vendor is
able to send a maximum of only 6 shipments per month to each

Vendor Price

1 $22,500
2 $22,700
3 $22,300

9.6-6. The Audiofile Company produces boomboxes. However,
management has decided to subcontract out the production of the
speakers needed for the boomboxes. Three vendors are available
to supply the speakers. Their price for each shipment of 1,000
speakers is shown below.

Vendor Charge per Shipment

1 $300 � 40¢/mile
2 $200 � 50¢/mile
3 $500 � 20¢/mile

warehouse. Similarly, each warehouse is able to send a maximum
of only 6 shipments per month to each factory.

Management now wants to develop a plan for each month re-
garding how many shipments (if any) to order from each vendor,
how many of those shipments should go to each warehouse, and
then how many shipments each warehouse should send to each fac-
tory. The objective is to minimize the sum of the purchase costs
(including the shipping charge) and the shipping costs from the
warehouses to the factories.
(a) Draw a network that depicts the company’s supply network.

Identify the supply nodes, transshipment nodes, and demand
nodes in this network.

(b) Formulate this problem as a minimum cost flow problem by
inserting all the necessary data into this network. Also include
a dummy demand node that receives (at zero cost) all the un-
used supply capacity at the vendors.

C (c) Formulate and solve a spreadsheet model for this problem.
C (d) Use the computer to solve this problem without using -

Excel.

D 9.7-1. Consider the minimum cost flow problem shown below,
where the bi values (net flows generated) are given by the nodes,
the cij values (costs per unit flow) are given by the arcs, and the
uij values (arc capacities) are given between nodes C and D. Do
the following work manually.
(a) Obtain an initial BF solution by solving the feasible spanning

tree with basic arcs A � B, C � E, D � E, and C � A

E

A

B

C

D

3

4

[0]

[�30]

[10]

[20] [0]

6

2

5

3

5

Arc capacities:
A � C: 10
B � C: 25
Others: 	

(a reverse arc), where one of the nonbasic arcs (C � B) also
is a reverse arc. Show the resulting network (including bi, cij,
and uij) in the same format as the above one (except use dashed
lines to draw the nonbasic arcs), and add the flows in paren-
theses next to the basic arcs.

(b) Use the optimality test to verify that this initial BF solution
is optimal and that there are multiple optimal solutions. 
Apply one iteration of the network simplex method to find
the other optimal BF solution, and then use these results 
to identify the other optimal solutions that are not BF 
solutions.

(c) Now consider the following BF solution.
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Basic Arc Flow Nonbasic Arc

A � D 20 A � B
B � C 10 A � C
C � E 10 B � D
D � E 20

5

8

[125]

[200]

A
9 (uAD � 100)

C

[�175]

[�150]

[0]

(uBE � 100)

6

3

8

D

B E

2

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 8 months 5 months $25,000 $40,000
B 9 months 7 months $20,000 $30,000
C 6 months 4 months $16,000 $24,000
D 7 months 4 months $27,000 $45,000

given by the arcs, and the finite uij values are given in parentheses
by the arcs. Obtain an initial BF solution by solving the feasible
spanning tree with basic arcs A � C, B � A, C � D, and C � E,
where one of the nonbasic arcs (D � A) is a reverse arc. Then use
the network simplex method yourself (you may use the interactive
procedure in your IOR Tutorial) to solve this problem.

9.8-1. The Tinker Construction Company is ready to begin a
project that must be completed in 12 months. This project has
four activities (A, B, C, D) with the project network shown next.

START FINISH

A

B D

C

Use marginal cost analysis to solve the problem.

9.8-2. Reconsider the Tinker Construction Co. problem presented
in Prob. 9.8-1. While in college, Sean Murphy took an OR course
that devoted a month to linear programming, so Sean has decided
to use linear programming to analyze this problem.

Starting from this BF solution, apply one iteration of the network
simplex method. Identify the entering basic arc, the leaving basic
arc, and the next BF solution, but do not proceed further.

9.7-2. Reconsider the minimum cost flow problem formulated in
Prob. 9.6-2.
(a) Obtain an initial BF solution by solving the feasible spanning 

tree with basic arcs A � B, A � C, A � F, B � D, and 
E � F, where two of the nonbasic arcs (E � C and 
F � D) are reverse arcs.

D,I (b) Use the network simplex method yourself (you may use the
interactive procedure in your IOR Tutorial) to solve this
problem.

9.7-3. Reconsider the minimum cost flow problem formulated in
Prob. 9.6-3.
(a) Obtain an initial BF solution by solving the feasible spanning

tree that corresponds to using just the two rail lines plus factory
1 shipping to warehouse 2 via the distribution center.

D,I (b) Use the network simplex method yourself (you may use the
interactive procedure in your IOR Tutorial) to solve this
problem.

D,I 9.7-4. Reconsider the minimum cost flow problem formulated
in Prob. 9.6-4. Starting with the initial BF solution that corresponds
to replacing the tractor every year, use the network simplex
method yourself (you may use the interactive procedure in your
IOR Tutorial) to solve this problem.

D,I 9.7-5. For the P & T Co. transportation problem given in
Table 8.2, consider its network representation as a minimum cost
flow problem presented in Fig. 8.2. Use the northwest corner rule
to obtain an initial BF solution from Table 8.2. Then use the net-
work simplex method yourself (you may use the interactive pro-
cedure in your IOR Tutorial) to solve this problem (and verify
the optimal solution given in Sec. 8.1).

9.7-6. Consider the Metro Water District transportation problem
presented in Table 8.12.
(a) Formulate the network representation of this problem as a min-

imum cost flow problem. (Hint: Arcs where flow is prohibited
should be deleted.)

D,I (b) Starting with the initial BF solution given in Table 8.19,
use the network simplex method yourself (you may use the
interactive procedure in your IOR Tutorial) to solve this
problem. Compare the sequence of BF solutions obtained
with the sequence obtained by the transportation simplex
method in Table 8.23.

D,I 9.7-7. Consider the minimum cost flow problem shown be-
low, where the bi values are given by the nodes, the cij values are

The project manager, Sean Murphy, has concluded that he can-
not meet the deadline by performing all these activities in the nor-
mal way. Therefore, Sean has decided to use the CPM method of
time-cost trade-offs to determine the most economical way of
crashing the project to meet the deadline. He has gathered the fol-
lowing data for the four activities.
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(a) Consider the upper path through the project network. Formu-
late a two-variable linear programming model for the problem
of how to minimize the cost of performing this sequence of
activities within 12 months. Use the graphical method to solve
this model.

(b) Repeat part (a) for the lower path through the project 
network.

(c) Combine the models in parts (a) and (b) into a single complete
linear programming model for the problem of how to mini-
mize the cost of completing the project within 12 months. What
must an optimal solution for this model be?

(d) Use the CPM linear programming formulation presented in
Sec. 9.8 to formulate a complete model for this problem. [This
model is a little larger than the one in part (c) because this
method of formulation is applicable to more complicated proj-
ect networks as well.]

C (e) Use Excel to solve this problem.
C (f) Use another software option to solve this problem.
C (g) Check the effect of changing the deadline by repeating part

(e) or ( f ) with the deadline of 11 months and then with a
deadline of 13 months.

9.8-3.* Good Homes Construction Company is about to begin the
construction of a large new home. The company’s President, Michael
Dean, is currently planning the schedule for this project. Michael
has identified the five major activities (labeled A, B, . . . , E) that
will need to be performed according to the project network shown
next, followed by a table giving the normal point and crash point
for each of these activities.

These costs reflect the company’s direct costs for the material, equip-
ment, and direct labor required to perform the activities. In addition,
the company incurs indirect project costs such as supervision and other
customary overhead costs, interest charges for capital tied up, and so
forth. Michael estimates that these indirect costs run $5,000 per week.
He wants to minimize the overall cost of the project. Therefore, to

START FINISH

B D

A

C E

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 3 weeks 2 weeks $54,000 $60,000
B 4 weeks 3 weeks $62,000 $65,000
C 5 weeks 2 weeks $66,000 $70,000
D 3 weeks 1 weeks $40,000 $43,000
E 4 weeks 2 weeks $75,000 $80,000

save some of these indirect costs, Michael concludes that he should
shorten the project by doing some crashing to the extent that the
crashing cost for each additional week saved is less than $5,000.
(a) Use marginal cost analysis to determine which activities should

be crashed and by how much to minimize the overall cost
of the project. Under this plan, what is the duration and cost
of each activity? How much money is saved by doing this
crashing?

C (b) Now use the linear programming approach to do part (a) by
shortening the deadline 1 week at a time.

9.8-4. The 21st Century Studios is about to begin the production of
its most important (and most expensive) movie of the year. The movie’s
producer, Dusty Hoffmer, has decided to use PERT/CPM to help plan
and control this key project. He has identified the eight major activi-
ties (labeled A, B, . . . , H) required to produce the movie. Their prece-
dence relationships are shown in the project network below.

START FINISH

A C

D

E

FB
H

G

Dusty now has learned that another studio also will be com-
ing out with a blockbuster movie during the middle of the upcom-
ing summer, just when his movie was to be released. This would
be very unfortunate timing. Therefore, he and the top management
of 21st Century Studios have concluded that they must accelerate
production of their movie and bring it out at the beginning of the
summer (15 weeks from now) to establish it as THE movie of the
year. Although this will require substantially increasing an already
huge budget, management feels that this will pay off in much larger
box office earnings both nationally and internationally.

Dusty now wants to determine the least costly way of meet-
ing the new deadline 15 weeks hence. Using the CPM method of
time-cost trade-offs, he has obtained the following data.

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 5 weeks 3 weeks $24 million $36 million
B 3 weeks 2 weeks $13 million $25 million
C 4 weeks 2 weeks $21 million $29 million
D 6 weeks 3 weeks $30 million $50 million
E 5 weeks 4 weeks $26 million $36 million
F 7 weeks 4 weeks $35 million $57 million
G 9 weeks 5 weeks $30 million $53 million
H 8 weeks 6 weeks $35 million $51 million
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(a) Formulate a linear programming model for this problem.
C (b) Use Excel to solve the problem.
C (c) Use another software option to solve the problem.

9.9-1. From the bottom part of the selected references given at the
end of the chapter, select one of these award-winning appli-
cations of network optimization models. Read this article and
then write a two-page summary of the application and the
benefits (including nonfinancial benefits) it provided.

9.9-2. From the bottom part of the selected references given at the
end of the chapter, select three of these award-winning appli-
cations of network optimization models. For each one, read the
article and then write a one-page summary of the application
and the benefits (including nonfinancial benefits) it provided.

Normal Crash Normal Crash
Activity Time Time Cost Cost

A 32 weeks 28 weeks $160 million $180 million
B 28 weeks 25 weeks $125 million $146 million
C 36 weeks 31 weeks $170 million $210 million
D 16 weeks 13 weeks $ 60 million $ 72 million
E 32 weeks 27 weeks $135 million $160 million
F 54 weeks 47 weeks $215 million $257 million
G 17 weeks 15 weeks $ 90 million $ 96 million
H 20 weeks 17 weeks $120 million $132 million
I 34 weeks 30 weeks $190 million $226 million
J 18 weeks 16 weeks $ 80 million $ 84 million

(a) Formulate a linear programming model for this problem.
C (b) Use Excel to solve the problem.
C (c) Use another software option to solve the problem.

9.8-5. The Lockhead Aircraft Co. is ready to begin a project to
develop a new fighter airplane for the U.S. Air Force. The com-
pany’s contract with the Department of Defense calls for proj-
ect completion within 92 weeks, with penalties imposed for late
delivery.

The project involves 10 activities (labeled A, B, . . . , J ),
where their precedence relationships are shown in the project net-
work below.

■ CASES

CASE 9.1 Money in Motion
Jake Nguyen runs a nervous hand through his once finely
combed hair. He loosens his once perfectly knotted silk tie.
And he rubs his sweaty hands across his once immaculately
pressed trousers.

Today has certainly not been a good day.
Over the past few months, Jake had heard whispers

circulating from Wall Street—whispers from the lips of
investment bankers and stockbrokers famous for their out-
spokenness. They had whispered about a coming Japanese
economic collapse—whispered because they had believed
that publicly vocalizing their fears would hasten the collapse.

And today, their very fears have come true. Jake and
his colleagues gather round a small television dedicated
exclusively to the Bloomberg channel. Jake stares in
disbelief as he listens to the horrors taking place in the
Japanese market. And the Japanese market is taking the fi-
nancial markets in all other East Asian countries with it on
its tailspin. He goes numb. As manager of Asian foreign

Management would like to avoid the hefty penalties for missing
the deadline in the current contract. Therefore, the decision has
been made to crash the project, using the CPM method of time-
cost trade-offs to determine how to do this in the most economi-
cal way. The data needed to apply this method are given next.

investment for Grant Hill Associates, a small West Coast
investment boutique specializing in currency trading, Jake
bears personal responsibility for any negative impacts of
the collapse.

And Grant Hill Associates will experience negative 
impacts.

Jake had not heeded the whispered warnings of a Japan-
ese collapse. Instead, he had greatly increased the stake
Grant Hill Associates held in the Japanese market. Because
the Japanese market had performed better than expected over
the past year, Jake had increased investments in Japan from
2.5 million to 15 million dollars only 1 month ago. At that
time, 1 dollar was worth 80 yen.

No longer. Jake realizes that today’s devaluation of the
yen means that 1 dollar is worth 125 yen. He will be able
to liquidate these investments without any loss in yen, but
now the dollar loss when converting back into U.S. currency
would be huge. He takes a deep breath, closes his eyes, and
mentally prepares himself for serious damage control.

START FINISH

A C

B

D G

E

F
J

H

I
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Jake’s meditation is interrupted by a booming voice call-
ing for him from a large corner office. Grant Hill, the president
of Grant Hill Associates, yells, “Nguyen, get the hell in here!”

Jake jumps and looks reluctantly toward the corner of-
fice hiding the furious Grant Hill. He smooths his hair, tight-
ens his tie, and walks briskly into the office.

Grant Hill meets Jake’s eyes upon his entrance and con-
tinues yelling, “I don’t want one word out of you, Nguyen! No
excuses; just fix this debacle! Get all of our money out of Japan!
My gut tells me this is only the beginning! Get the money into
safe U.S. bonds! NOW! And don’t forget to get our cash posi-
tions out of Indonesia and Malaysia ASAP with it!”

Jake has enough common sense to say nothing. He nods
his head, turns on his heel, and practically runs out of the
office.

Safely back at his desk, Jake begins formulating a plan
to move the investments out of Japan, Indonesia, and
Malaysia. His experiences investing in foreign markets have
taught him that when playing with millions of dollars, how
he gets money out of a foreign market is almost as impor-
tant as when he gets money out of the market. The banking
partners of Grant Hill Associates charge different transac-
tion fees for converting one currency into another one and
wiring large sums of money around the globe.

And now, to make matters worse, the governments in
East Asia have imposed very tight limits on the amount
of money an individual or a company can exchange from
the domestic currency into a particular foreign currency
and withdraw it from the country. The goal of this dramatic
measure is to reduce the outflow of foreign investments out
of those countries to prevent a complete collapse of the

economies in the region. Because of Grant Hill Associ-
ates’ cash holdings of 10.5 billion Indonesian rupiahs and
28 million Malaysian ringgits, along with the holdings in
yen, it is not clear how these holdings should be converted
back into dollars.

Jake wants to find the most cost-effective method to
convert these holdings into dollars. On his company’s web-
site he always can find on-the-minute exchange rates for
most currencies in the world (Table 1).

The table states that, for example, 1 Japanese yen
equals 0.008 U.S. dollars. By making a few phone calls he
discovers the transaction costs his company must pay for
large currency transactions during these critical times
(Table 2).

Jake notes that exchanging one currency for another one
results in the same transaction cost as a reverse conversion.
Finally, Jake finds out the maximum amounts of domestic
currencies his company is allowed to convert into other cur-
rencies in Japan, Indonesia, and Malaysia (Table 3).

(a) Formulate Jake’s problem as a minimum cost flow problem,
and draw the network for his problem. Identify the supply and
demand nodes for the network.

(b) Which currency transactions must Jake perform in order to con-
vert the investments from yen, rupiah, and ringgit into U.S. dol-
lars to ensure that Grant Hill Associates has the maximum dollar
amount after all transactions have occurred? How much money
does Jake have to invest in U.S. bonds?

(c) The World Trade Organization forbids transaction limits be-
cause they promote protectionism. If no transaction limits exist,
what method should Jake use to convert the Asian holdings from
the respective currencies into dollars?

TABLE 1 Currency exchange rates

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Japanese yen 1 50 0.04 0.008 0.01 0.0064 0.0048 0.0768

Indonesian rupiah 1 0.0008 0.00016 0.0002 0.000128 0.000096 0.001536

Malaysian ringgit 1 0.2 0.25 0.16 0.12 1.92

U.S. dollar 1 1.25 0.8 0.6 9.6

Canadian dollar 1 0.64 0.48 7.68

European euro 1 0.75 12

English pound 1 16

Mexican peso 1
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TABLE 3 Transaction limits in equivalent of 1,000 dollars

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Yen — 5,000 5,000 2,000 2,000 2,000 2,000 4,000

Rupiah 5,000 — 2,000 200 200 1,000 500 200

Ringgit 3,000 4,500 — 1,500 1,500 2,500 1,000 1,000

TABLE 2 Transaction cost, percent

To U.S. Canadian
From Yen Rupiah Ringgit Dollar Dollar Euro Pound Peso

Yen — 0.5 0.5 0.4 0.4 0.4 0.25 0.5

Rupiah — 0.7 0.5 0.3 0.3 0.75 0.75

Ringgit — 0.7 0.7 0.4 0.45 0.5

U.S. dollar — 0.05 0.1 0.1 0.1

Canadian dollar — 0.2 0.1 0.1

Euro — 0.05 0.5

Pound — 0.5

Peso —

(d) In response to the World Trade Organization’s mandate forbid-
ding transaction limits, the Indonesian government introduces
a new tax that leads to an increase of transaction costs for trans-
action of rupiah by 500 percent to protect their currency. Given
these new transaction costs but no transaction limits, what
currency transactions should Jake perform in order to convert
the Asian holdings from the respective currencies into dollars?

(e) Jake realizes that his analysis is incomplete because he has not
included all aspects that might influence his planned currency
exchanges. Describe other factors that Jake should examine be-
fore he makes his final decision.

(Note: A data file for this case is provided on the book’s
website for your convenience.)
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CASE 9.2 Aiding Allies 
A rebel army is attempting to overthrow the elected govern-
ment of the Russian Federation. The United States government
has decided to assist its ally by quickly sending troops and
supplies to the Federation. A plan now needs to be developed
for shipping the troops and supplies most effectively. De-
pending on the choice of the overall measure of performance,
the analysis requires formulating and solving a shortest-path
problem, a minimum cost flow problem, or a maximum flow
problem. Subsequent analysis requires formulating and solv-
ing a minimum spanning tree problem.

CASE 9.3 Steps to Success
The management of a privately held company has made the
decision to go public. Many interrelated steps need to be
completed in the process of making the initial public offer-
ing of stock in the company. Management wishes to accel-
erate this process. Therefore, after you construct a project
network to represent this process, apply the CPM method of
time-cost trade-offs.

■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)
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10C H A P T E R

Dynamic Programming

Dynamic programming is a useful mathematical technique for making a sequence of
interrelated decisions. It provides a systematic procedure for determining the opti-

mal combination of decisions.
In contrast to linear programming, there does not exist a standard mathematical for-

mulation of “the” dynamic programming problem. Rather, dynamic programming is a
general type of approach to problem solving, and the particular equations used must be
developed to fit each situation. Therefore, a certain degree of ingenuity and insight into
the general structure of dynamic programming problems is required to recognize when
and how a problem can be solved by dynamic programming procedures. These abilities
can best be developed by an exposure to a wide variety of dynamic programming appli-
cations and a study of the characteristics that are common to all these situations. A large
number of illustrative examples are presented for this purpose.

1This problem was developed by Professor Harvey M. Wagner while he was at Stanford University.

■ 10.1 A PROTOTYPE EXAMPLE FOR DYNAMIC PROGRAMMING

The STAGECOACH PROBLEM is a problem specially constructed1 to illustrate the fea-
tures and to introduce the terminology of dynamic programming. It concerns a mythical
fortune seeker in Missouri who decided to go west to join the gold rush in California dur-
ing the mid-19th century. The journey would require traveling by stagecoach through
unsettled country where there was serious danger of attack by marauders. Although his
starting point and destination were fixed, he had considerable choice as to which states
(or territories that subsequently became states) to travel through en route. The possible
routes are shown in Fig. 10.1, where each state is represented by a circled letter and the
direction of travel is always from left to right in the diagram. Thus, four stages (stage-
coach runs) were required to travel from his point of embarkation in state A (Missouri)
to his destination in state J (California).

This fortune seeker was a prudent man who was quite concerned about his safety. After
some thought, he came up with a rather clever way of determining the safest route. Life
insurance policies were offered to stagecoach passengers. Because the cost of the policy

EXAMPLE 1 The Stagecoach Problem
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for taking any given stagecoach run was based on a careful evaluation of the safety of that
run, the safest route should be the one with the cheapest total life insurance policy.

The cost for the standard policy on the stagecoach run from state i to state j, which
will be denoted by cij, is

3

4

7 4 6

3 2 4

4 1 5

1 4

6 3

3 3

2 4 3

B C D E F G H I J

A B

C

D

E

F

G

H

I

These costs are also shown in Fig. 10.1.
We shall now focus on the question of which route minimizes the total cost of the

policy.

Solving the Problem

First note that the shortsighted approach of selecting the cheapest run offered by each suc-
cessive stage need not yield an overall optimal decision. Following this strategy would
give the route A � B � F � I � J, at a total cost of 13. However, sacrificing a little on
one stage may permit greater savings thereafter. For example, A � D � F is cheaper
overall than A � B � F.

One possible approach to solving this problem is to use trial and error.2 However, the
number of possible routes is large (18), and having to calculate the total cost for each
route is not an appealing task.

Fortunately, dynamic programming provides a solution with much less effort than
exhaustive enumeration. (The computational savings are enormous for larger versions
of this problem.) Dynamic programming starts with a small portion of the original prob-
lem and finds the optimal solution for this smaller problem. It then gradually enlarges
the problem, finding the current optimal solution from the preceding one, until the orig-
inal problem is solved in its entirety.

A C F

D G

B E

I

H

J

2
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6
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3
3
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4
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3

3

3
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■ FIGURE 10.1
The road system and costs
for the stagecoach problem.

2This problem also can be formulated as a shortest-path problem (see Sec. 9.3), where costs here play the role
of distances in the shortest-path problem. The algorithm presented in Sec. 9.3 actually uses the philosophy of
dynamic programming. However, because the present problem has a fixed number of stages, the dynamic pro-
gramming approach presented here is even better.
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For the stagecoach problem, we start with the smaller problem where the fortune
seeker has nearly completed his journey and has only one more stage (stagecoach run) to
go. The obvious optimal solution for this smaller problem is to go from his current state
(whatever it is) to his ultimate destination (state J ). At each subsequent iteration, the prob-
lem is enlarged by increasing by 1 the number of stages left to go to complete the journey.
For this enlarged problem, the optimal solution for where to go next from each possible
state can be found relatively easily from the results obtained at the preceding iteration.
The details involved in implementing this approach follow.

Formulation. Let the decision variables xn (n � 1, 2, 3, 4) be the immediate destina-
tion on stage n (the nth stagecoach run to be taken). Thus, the route selected is A �
x1 � x2 � x3 � x4, where x4 � J.

Let fn(s, xn) be the total cost of the best overall policy for the remaining stages, given
that the fortune seeker is in state s, ready to start stage n, and selects xn as the immedi-
ate destination. Given s and n, let xn* denote any value of xn (not necessarily unique) that
minimizes fn(s, xn), and let f n* (s) be the corresponding minimum value of fn(s, xn). Thus,

f n*(s) � min fn(s, xn) � fn(s, xn*),
xn

where

fn(s, xn) � immediate cost (stage n) � minimum future cost (stages n � 1 onward)
� csxn

� f n*�1(xn).

The value of csxn
is given by the preceding tables for cij by setting i � s (the current state)

and j � xn (the immediate destination). Because the ultimate destination (state J ) is reached
at the end of stage 4, f 5* ( J ) � 0.

The objective is to find f 1* (A) and the corresponding route. Dynamic programming
finds it by successively finding f 4*(s), f 3*(s), f 2*(s), for each of the possible states s and
then using f 2*(s) to solve for f 1*(A).3

Solution Procedure. When the fortune seeker has only one more stage to go (n � 4),
his route thereafter is determined entirely by his current state s (either H or I ) and his fi-
nal destination x4 � J, so the route for this final stagecoach run is s � J. Therefore, since
f 4*(s) � f4(s, J ) � cs,J, the immediate solution to the n � 4 problem is

When the fortune seeker has two more stages to go (n � 3), the solution procedure
requires a few calculations. For example, suppose that the fortune seeker is in state F.
Then, as depicted below, he must next go to either state H or I at an immediate cost of
cF,H � 6 or cF,I � 3, respectively. If he chooses state H, the minimum additional cost af-
ter he reaches there is given in the preceding table as f 4*(H ) � 3, as shown above the H
node in the diagram. Therefore, the total cost for this decision is 6 � 3 � 9. If he chooses
state I instead, the total cost is 3 � 4 � 7, which is smaller. Therefore, the optimal choice
is this latter one, x3* � I, because it gives the minimum cost f 3*(F ) � 7.

n � 4: s f 4*(s) x4*

H 3 J
I 4 J

3Because this procedure involves moving backward stage by stage, some writers also count n backward to denote
the number of remaining stages to the destination. We use the more natural forward counting for greater simplicity.
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Similar calculations need to be made when you start from the other two possible states
s � E and s � G with two stages to go. Try it, proceeding both graphically (Fig. 10.1)
and algebraically [combining cij and f 4*(s) values], to verify the following complete re-
sults for the n � 3 problem.

The solution for the second-stage problem (n � 2), where there are three stages to
go, is obtained in a similar fashion. In this case, f2(s, x2) � csx2

� f 3*(x2). For example,
suppose that the fortune seeker is in state C, as depicted below.

He must next go to state E, F, or G at an immediate cost of cC,E � 3, cC,F � 2, or 
cC,G � 4, respectively. After getting there, the minimum additional cost for stage 3 to the
end is given by the n � 3 table as f 3*(E ) � 4, f 3*(F ) � 7, or f 3*(G ) � 6, respectively, as
shown above the E and F nodes and below the G node in the preceding diagram. The re-
sulting calculations for the three alternatives are summarized below.

x2 � E: f2(C, E ) � cC,E � f 3*(E ) � 3 � 4 � 7.
x2 � F: f2(C, F ) � cC,F � f 3*(F ) � 2 � 7 � 9.
x2 � G: f2(C, G ) � cC,G � f 3*(G ) � 4 � 6 � 10.

The minimum of these three numbers is 7, so the minimum total cost from state C to the
end is f 2*(C ) � 7, and the immediate destination should be x2* � E.

F

H

I

6

3

4

3

f3(s, x3) � csx3
� f 4*(x3)

x3

n � 3: s H I f 3*(s) x3*

E 4 8 4 H
F 9 7 7 I
G 6 7 6 H

C

E

G

3

2

4

F

7

6

4
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Making similar calculations when you start from state B or D (try it) yields the fol-
lowing results for the n � 2 problem:

In the first and third rows of this table, note that E and F tie as the minimizing value of
x2, so the immediate destination from either state B or D should be x2* � E or F.

Moving to the first-stage problem (n � 1), with all four stages to go, we see that the
calculations are similar to those just shown for the second-stage problem (n � 2), except
now there is just one possible starting state s � A, as depicted below.

These calculations are summarized next for the three alternatives for the immediate 
destination:

x1 � B: f1(A, B) � cA,B � f 2*(B) � 2 � 11 � 13.
x1 � C: f1(A, C) � cA,C � f 2*(C ) � 4 � 7 � 11.
x1 � D: f1(A, D) � cA,D � f 2*(D) � 3 � 8 � 11.

Since 11 is the minimum, f 1*(A) � 11 and x1* � C or D, as shown in the following table.

An optimal solution for the entire problem can now be identified from the four ta-
bles. Results for the n � 1 problem indicate that the fortune seeker should go initially to
either state C or state D. Suppose that he chooses x1* � C. For n � 2, the result for s � C
is x2* � E. This result leads to the n � 3 problem, which gives x3* � H for s � E, and the
n � 4 problem yields x4* � J for s � H. Hence, one optimal route is A � C � E �
H � J. Choosing x1* � D leads to the other two optimal routes A � D � E � H � J
and A � D � F � I � J. They all yield a total cost of f 1*(A) � 11.

These results of the dynamic programming analysis also are summarized in Fig. 10.2.
Note how the two arrows for stage 1 come from the first and last columns of the 
n � 1 table and the resulting cost comes from the next-to-last column. Each of the other

f2(s, x2) � csx2
� f 3*(x2)

x2

n � 2: s E F G f 2*(s) x2*

B 11 11 12 11 E or F
C 7 9 10 7 E
D 8 8 11 8 E or F

A

B

D

2

4

11

C

7

8

3

f1(s, x1) � csx1
� f 2*(x1)

x1

n � 1: s B C D f 1*(s) x1*

A 13 11 11 11 C or D
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arrows (and the resulting cost) comes from one row in one of the other tables in just
the same way.

You will see in the next section that the special terms describing the particular con-
text of this problem—stage, state, and policy—actually are part of the general terminol-
ogy of dynamic programming with an analogous interpretation in other contexts.

G

I

T
4

3

4

7
1

33

4

1 3

3
4

CA F

E

H

D

B

11

11 4

3

77

8 6

4

1 2 3 4Stage:

State:

■ FIGURE 10.2
Graphical display of the
dynamic programming
solution of the stagecoach
problem. Each arrow shows
an optimal policy decision
(the best immediate
destination) from that state,
where the number by the
state is the resulting cost
from there to the end.
Following the boldface
arrows from A to T gives the
three optimal solutions (the
three routes giving the
minimum total cost of 11).

■ 10.2 CHARACTERISTICS OF DYNAMIC PROGRAMMING PROBLEMS

The stagecoach problem is a literal prototype of dynamic programming problems. In fact,
this example was purposely designed to provide a literal physical interpretation of the
rather abstract structure of such problems. Therefore, one way to recognize a situation
that can be formulated as a dynamic programming problem is to notice that its basic struc-
ture is analogous to the stagecoach problem.

These basic features that characterize dynamic programming problems are presented
and discussed here.

1. The problem can be divided into stages, with a policy decision required at each stage.
The stagecoach problem was literally divided into its four stages (stagecoaches)

that correspond to the four legs of the journey. The policy decision at each stage was
which life insurance policy to choose (i.e., which destination to select for the next stage-
coach ride). Similarly, other dynamic programming problems require making a sequence
of interrelated decisions, where each decision corresponds to one stage of the problem.

2. Each stage has a number of states associated with the beginning of that stage.
The states associated with each stage in the stagecoach problem were the states 

(or territories) in which the fortune seeker could be located when embarking on that par-
ticular leg of the journey. In general, the states are the various possible conditions in
which the system might be at that stage of the problem. The number of states may be
either finite (as in the stagecoach problem) or infinite (as in some subsequent examples).

3. The effect of the policy decision at each stage is to transform the current state to a
state associated with the beginning of the next stage (possibly according to a proba-
bility distribution).

The fortune seeker’s decision as to his next destination led him from his current state
to the next state on his journey. This procedure suggests that dynamic programming
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problems can be interpreted in terms of the networks described in Chap. 9. Each node
would correspond to a state. The network would consist of columns of nodes, with
each column corresponding to a stage, so that the flow from a node can go only to a
node in the next column to the right. The links from a node to nodes in the next col-
umn correspond to the possible policy decisions on which state to go to next. The value
assigned to each link usually can be interpreted as the immediate contribution to the
objective function from making that policy decision. In most cases, the objective cor-
responds to finding either the shortest or the longest path through the network.

4. The solution procedure is designed to find an optimal policy for the overall problem, i.e.,
a prescription of the optimal policy decision at each stage for each of the possible states.

For the stagecoach problem, the solution procedure constructed a table for each
stage (n) that prescribed the optimal decision (xn*) for each possible state (s). Thus, in
addition to identifying three optimal solutions (optimal routes) for the overall problem,
the results show the fortune seeker how he should proceed if he gets detoured to a state
that is not on an optimal route. For any problem, dynamic programming provides this
kind of policy prescription of what to do under every possible circumstance (which is
why the actual decision made upon reaching a particular state at a given stage is re-
ferred to as a policy decision). Providing this additional information beyond simply
specifying an optimal solution (optimal sequence of decisions) can be helpful in a va-
riety of ways, including sensitivity analysis.

5. Given the current state, an optimal policy for the remaining stages is independent of
the policy decisions adopted in previous stages. Therefore, the optimal immediate de-
cision depends on only the current state and not on how you got there. This is the 
principle of optimality for dynamic programming.

Given the state in which the fortune seeker is currently located, the optimal life
insurance policy (and its associated route) from this point onward is independent of
how he got there. For dynamic programming problems in general, knowledge of the
current state of the system conveys all the information about its previous behavior nec-
essary for determining the optimal policy henceforth. (This property is the Markovian
property, discussed in Sec. 16.2.) Any problem lacking this property cannot be for-
mulated as a dynamic programming problem.

6. The solution procedure begins by finding the optimal policy for the last stage.
The optimal policy for the last stage prescribes the optimal policy decision for

each of the possible states at that stage. The solution of this one-stage problem is usu-
ally trivial, as it was for the stagecoach problem.

7. A recursive relationship that identifies the optimal policy for stage n, given the opti-
mal policy for stage n � 1, is available.

For the stagecoach problem, this recursive relationship was

f n*(s) � min
xn

{csxn
� f *n�1(xn)}.

Therefore, finding the optimal policy decision when you start in state s at stage n re-
quires finding the minimizing value of xn. For this particular problem, the corresponding
minimum cost is achieved by using this value of xn and then following the optimal pol-
icy when you start in state xn at stage n � 1.

The precise form of the recursive relationship differs somewhat among dynamic
programming problems. However, notation analogous to that introduced in the pre-
ceding section will continue to be used here, as summarized below.

N � number of stages.

n � label for current stage (n � 1, 2, . . . , N ).

sn � current state for stage n.
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xn � decision variable for stage n.

xn* � optimal value of xn (given sn).

fn(sn, xn) � contribution of stages n, n � 1, . . . , N to objective function if system
starts in state sn at stage n, immediate decision is xn, and optimal de-
cisions are made thereafter.

f n*(sn) � fn(sn, xn*).

The recursive relationship will always be of the form

f n*(sn) � max { fn(sn, xn)} or f n*(sn) � min {fn(sn, xn)},
xn xn

where fn(sn, xn) would be written in terms of sn, xn, f *n�1(sn�1), and probably some
measure of the immediate contribution of xn to the objective function. It is the inclu-
sion of f *n�1(sn�1) on the right-hand side, so that f *n (sn) is defined in terms of f *n�1(sn�1),
that makes the expression for f *n (sn) a recursive relationship.

The recursive relationship keeps recurring as we move backward stage by stage.
When the current stage number n is decreased by 1, the new fn*(sn) function is derived
by using the f *n�1(sn�1) function that was just derived during the preceding iteration,
and then this process keeps repeating. This property is emphasized in the next (and fi-
nal) characteristic of dynamic programming.

8. When we use this recursive relationship, the solution procedure starts at the end and
moves backward stage by stage—each time finding the optimal policy for that stage—
until it finds the optimal policy starting at the initial stage. This optimal policy immedi-
ately yields an optimal solution for the entire problem, namely, x1* for the initial state s1,
then x2* for the resulting state s2, then x3* for the resulting state s3, and so forth to x*N for
the resulting stage sN.

This backward movement was demonstrated by the stagecoach problem, where the
optimal policy was found successively beginning in each state at stages 4, 3, 2, and 1,
respectively.4 For all dynamic programming problems, a table such as the following
would be obtained for each stage (n � N, N � 1, . . . , 1).

When this table is finally obtained for the initial stage (n � 1), the problem of interest
is solved. Because the initial state is known, the initial decision is specified by x1* in this
table. The optimal value of the other decision variables is then specified by the other ta-
bles in turn according to the state of the system that results from the preceding decisions.

4Actually, for this problem the solution procedure can move either backward or forward. However, for many
problems (especially when the stages correspond to time periods), the solution procedure must move backward.

■ 10.3 DETERMINISTIC DYNAMIC PROGRAMMING

This section further elaborates upon the dynamic programming approach to deterministic
problems, where the state at the next stage is completely determined by the state and pol-
icy decision at the current stage. The probabilistic case, where there is a probability dis-
tribution for what the next state will be, is discussed in the next section.

fn(sn, xn)
xn

sn f n*(sn) xn*
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Deterministic dynamic programming can be described diagrammatically as shown in
Fig. 10.3. Thus, at stage n the process will be in some state sn. Making policy decision
xn then moves the process to some state sn�1 at stage n � 1. The contribution thereafter
to the objective function under an optimal policy has been previously calculated to be
f *n�1(sn�1). The policy decision xn also makes some contribution to the objective func-
tion. Combining these two quantities in an appropriate way provides fn(sn, xn), the con-
tribution of stages n onward to the objective function. Optimizing with respect to xn then
gives f n*(sn) � fn(sn, xn*). After xn* and f n*(sn) are found for each possible value of sn, the
solution procedure is ready to move back one stage.

One way of categorizing deterministic dynamic programming problems is by the
form of the objective function. For example, the objective might be to minimize the sum
of the contributions from the individual stages (as for the stagecoach problem), or to
maximize such a sum, or to minimize a product of such terms, and so on. Another cat-
egorization is in terms of the nature of the set of states for the respective stages. In par-
ticular, states sn might be representable by a discrete state variable (as for the stagecoach
problem) or by a continuous state variable, or perhaps a state vector (more than one vari-
able) is required. Similarly, the decision variables (x1, x2, . . . , xN) also can be either dis-
crete or continuous.

Several examples are presented to illustrate these various possibilities. More impor-
tantly, they illustrate that these apparently major differences are actually quite inconsequential
(except in terms of computational difficulty) because the underlying basic structure shown
in Fig. 10.3 always remains the same.

The first new example arises in a much different context from the stagecoach prob-
lem, but it has the same mathematical formulation except that the objective is to maxi-
mize rather than minimize a sum.

State:

Stage
n

Stage
n � 1

sn sn � 1
Contribution

of xnfn(sn, xn) f *
n � 1(sn � 1)

xn

Value:

■ FIGURE 10.3
The basic structure for
deterministic dynamic
programming.

EXAMPLE 2 Distributing Medical Teams to Countries

The WORLD HEALTH COUNCIL is devoted to improving health care in the underde-
veloped countries of the world. It now has five medical teams available to allocate among
three such countries to improve their medical care, health education, and training pro-
grams. Therefore, the council needs to determine how many teams (if any) to allocate to
each of these countries to maximize the total effectiveness of the five teams. The teams
must be kept intact, so the number allocated to each country must be an integer.

The measure of performance being used is additional person-years of life. (For a
particular country, this measure equals the increased life expectancy in years times the
country’s population.) Table 10.1 gives the estimated additional person-years of life (in
multiples of 1,000) for each country for each possible allocation of medical teams.

Which allocation maximizes the measure of performance?

Formulation. This problem requires making three interrelated decisions, namely, how
many medical teams to allocate to each of the three countries. Therefore, even though
there is no fixed sequence, these three countries can be considered as the three stages in
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Six days after Saddam Hussein ordered his Iraqi military
forces to invade Kuwait on August 2, 1990, the United
States began the long process of deploying many of its
own military units and cargo to the region. After develop-
ing a coalition force from 35 nations led by the United
States, the military operation called Operation Desert
Storm was launched on January 17, 1991, to expel the
Iraqi troops from Kuwait. This led to a decisive victory
for the coalition forces, which liberated Kuwait and pene-
trated Iraq.

The logistical challenge involved in quickly trans-
porting the needed troops and cargo to the war zone was a
daunting one. A typical airlift mission carrying troops and
cargo from the United States to the Persian Gulf required
a three-day round-trip, visited seven or more different air-
fields, burned almost one million pounds of fuel, and cost
$280,000. During Operation Desert Storm, the Military
Airlift Command (MAC) averaged more than 100 such
missions daily as it managed the largest airlift in history.

To meet this challenge, operations research was
applied to develop the decision support systems needed
to schedule and route each airlift mission. The OR tech-
nique used to drive this process was dynamic program-
ming. The stages in the dynamic programming formulation
correspond to the airfields in the network of flight legs

relevant to the mission. For a given airfield, the states are
characterized by the departure time from the airfield and
the remaining available duty for the current crew. The
objective function to be minimized is a weighted sum of
several measures of performance: the lateness of deliver-
ies, the flying time of the mission, the ground time, and
the number of crew changes. The constraints include a
lower bound on the load carried by the mission and upper
bounds on the availability of crew and ground-support
resources at airfields.

This application of dynamic programming had a
dramatic impact on the ability to deliver the necessary
cargo and personnel to the Persian gulf quickly to sup-
port Operation Desert Storm. For example, when
speaking to the developers of this approach, MAC’s
deputy chief of staff for operations and transportation is
quoted as saying, “I guarantee you that we could not
have done that (the deployment to the Persian Gulf)
without your help and the contributions you made to
(the decision support systems)—we absolutely could
not have done that.”

Source: M. C. Hilliard, R. S. Solanki, C. Liu, I. K. Busch,
G. Harrison, and R. D. Kraemer: “Scheduling the Operation Desert
Storm Airlift: An Advanced Automated Scheduling Support
System,” Interfaces, 22(1): 131–146, Jan.–Feb. 1992.

An Application Vignette

a dynamic programming formulation. The decision variables xn (n � 1, 2, 3) are the num-
ber of teams to allocate to stage (country) n.

The identification of the states may not be readily apparent. To determine the states,
we ask questions such as the following. What is it that changes from one stage to the next?
Given that the decisions have been made at the previous stages, how can the status of the
situation at the current stage be described? What information about the current state of
affairs is necessary to determine the optimal policy hereafter? On these bases, an appro-
priate choice for the “state of the system” is

■ TABLE 10.1 Data for the World Health Council problem

Thousands of Additional
Person-Years of Life

Country
Medical
Teams 1 2 3

0 0 0 0
1 45 20 50
2 70 45 70
3 90 75 80
4 105 110 100
5 120 150 130
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sn � number of medical teams still available for allocation to remaining countries
(n, . . . , 3).

Thus, at stage 1 (country 1), where all three countries remain under consideration for al-
locations, s1 � 5. However, at stage 2 or 3 (country 2 or 3), sn is just 5 minus the num-
ber of teams allocated at preceding stages, so that the sequence of states is

s1 � 5, s2 � 5 � x1, s3 � s2 � x2.

With the dynamic programming procedure of solving backward stage by stage, when we
are solving at stage 2 or 3, we shall not yet have solved for the allocations at the preceding
stages. Therefore, we shall consider every possible state we could be in at stage 2 or 3,
namely, sn � 0, 1, 2, 3, 4, or 5.

Figure 10.4 shows the states to be considered at each stage. The links (line segments)
show the possible transitions in states from one stage to the next from making a feasible
allocation of medical teams to the country involved. The numbers shown next to the links
are the corresponding contributions to the measure of performance, where these numbers

434 CHAPTER 10 DYNAMIC PROGRAMMING

Stage:

State:

1 2 3

0 0

120

20
150

50

70
0

105

45

20
110

80

100

130

0

75

45 20

45
75

90
0

110

75
20

70

0 0

20

0

45

45

0 0 0

1 1

2 2

33

44

555

■ FIGURE 10.4
Graphical display of the
World Health Council
problem, showing the
possible states at each stage,
the possible transitions in
states, and the corresponding
contributions to the measure
of performance.
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come from Table 10.1. From the perspective of this figure, the overall problem is to find
the path from the initial state 5 (beginning stage 1) to the final state 0 (after stage 3) that
maximizes the sum of the numbers along the path.

To state the overall problem mathematically, let pi(xi) be the measure of performance
from allocating xi medical teams to country i, as given in Table 10.1. Thus, the objective
is to choose x1, x2, x3 so as to

Maximize �
3

i�1
pi(xi),

subject to

�
3

i�1
xi � 5,

and

xi are nonnegative integers.

Using the notation presented in Sec. 10.2, we see that fn(sn, xn) is

fn(sn, xn) � pn(xn) � max �
3

i�n�1
pi(xi),

where the maximum is taken over xn�1, . . . , x3 such that

�
3

i�n

xi � sn

and the xi are nonnegative integers, for n � 1, 2, 3. In addition,

f n*(sn) � max      fn(sn, xn)
xn�0,1, . . . , sn

Therefore,

fn(sn, xn) � pn(xn) � f *n�1(sn � xn)

(with f 4* defined to be zero). These basic relationships are summarized in Fig. 10.5.
Consequently, the recursive relationship relating functions f 1*, f 2*, and f 3* for this 

problem is

f n*(sn) � max {pn(xn) � f *n�1(sn � xn)}, for n � 1, 2.
xn�0,1, . . . , sn

For the last stage (n � 3),

f 3*(s3) � max p3(x3).
x3�0,1, . . . , s3

The resulting dynamic programming calculations are given next.

Solution Procedure. Beginning with the last stage (n � 3), we note that the values of
p3(x3) are given in the last column of Table 10.1 and these values keep increasing as we
move down the column. Therefore, with s3 medical teams still available for allocation to
country 3, the maximum of p3(x3) is automatically achieved by allocating all s3 teams;
so x3* � s3 and f 3*(s3) � p3(s3), as shown in the following table.
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sn sn � xn

Stage
n � 1

Stage
n

State:

Value: fn(sn, xn) pn(xn)
� pn(xn) � f*n�1(sn � xn)

f*n�1(sn � xn)

xn

■ FIGURE 10.5
The basic structure for the
World Health Council
problem.

2

0

2

45

20

0

1

50

70

0

State:

We now move backward to start from the next-to-last stage (n � 2). Here, finding 
x2* requires calculating and comparing f2(s2, x2) for the alternative values of x2, namely,
x2 � 0, 1, . . . , s2. To illustrate, we depict this situation when s2 � 2 graphically:

This diagram corresponds to Fig. 10.5 except that all three possible states at stage 3 are
shown. Thus, if x2 � 0, the resulting state at stage 3 will be s2 � x2 � 2 � 0 � 2, whereas
x2 � 1 leads to state 1 and x2 � 2 leads to state 0. The corresponding values of p2(x2)
from the country 2 column of Table 10.1 are shown along the links, and the values of
f 3*(s2 � x2) from the n � 3 table are given next to the stage 3 nodes. The required calcu-
lations for this case of s2 � 2 are summarized below.

Formula: f2(2, x2) � p2(x2) � f 3*(2 � x2).
p2(x2) is given in the country 2 column of Table 10.1.
f 3*(2 � x2) is given in the n � 3 table above.

x2 � 0: f2(2, 0) � p2(0) � f 3*(2) � 0 � 70 � 70.
x2 � 1: f2(2, 1) � p2(1) � f 3*(1) � 20 � 50 � 70.
x2 � 2: f2(2, 2) � p2(2) � f 3*(0) � 45 � 0 � 45.

Because the objective is maximization, x2* � 0 or 1 with f 2*(2) � 70.

n � 3: s3 f 3*(s3) x3*

0 0 0
1 50 1
2 70 2
3 80 3
4 100 4
5 130 5
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f2(s2, x2) � p2(x2) � f 3*(s2 � x2)
x2

n � 2: s2 0 1 2 3 4 5 f 2*(s2) x2*

0 0 0 0 or 1
1 50 20 50 0 or 1
2 70 70 45 70 0 or 1
3 80 90 95 75 95 2 or 1
4 100 100 115 125 110 125 3 or 1
5 130 120 125 145 160 150 160 4 or 1

5

0

0

160

4

5

120
125

45

0

State:

f1(s1, x1) � p1(x1) � f 2*(s1 � x1)
x2

n � 1: s1 0 1 2 3 4 5 f 1*(s1) x1*

5 160 170 165 160 155 120 170 1

Proceeding in a similar way with the other possible values of s2 (try it) yields the fol-
lowing table.

We now are ready to move backward to solve the original problem where we are
starting from stage 1 (n � 1). In this case, the only state to be considered is the starting
state of s1 � 5, as depicted below.

Since allocating x1 medical teams to country 1 leads to a state of 5 � x1 at stage 2, a choice
of x1 � 0 leads to the bottom node on the right, x1 � 1 leads to the next node up, and so forth
up to the top node with x1 � 5. The corresponding p1(x1) values from Table 10.1 are shown
next to the links. The numbers next to the nodes are obtained from the f 2*(s2) column of the
n � 2 table. As with n � 2, the calculation needed for each alternative value of the decision
variable involves adding the corresponding link value and node value, as summarized below.

Formula: f1(5, x1) � p1(x1) � f 2*(5 � x1).
p1(x1) is given in the country 1 column of Table 10.1.
f 2*(5 � x1) is given in the n � 2 table.

x1 � 0: f1(5, 0) � p1(0) � f 2*(5) � 0 � 160 � 160.
x1 � 1: f1(5, 1) � p1(1) � f 2*(4) � 45 � 125 � 170.

�

x1 � 5: f1(5, 5) � p1(5) � f 2*(0) � 120 � 0 � 120.

The similar calculations for x1 � 2, 3, 4 (try it) verify that x1* � 1 with f 1*(5) � 170, as
shown in the following table.
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State:

2 3

0

1

0 0

0

50 50
0

0 0

20

70 70

95

80

0

(x
2  

�
 3

)
*

(x 1  �
 1)

*

(x 3  �
 1)

*
50

70

2

80

100

100

5

130

130

4

5

45

170 160

125

110

75

45

5

2

3 3

1

0

Stage: 1

4

■ FIGURE 10.6
Graphical display of the
dynamic programming
solution of the World Health
Council problem. An arrow
from state sn to state sn�1
indicates that an optimal
policy decision from state sn
is to allocate (sn � sn�1)
medical teams to country n.
Allocating the medical teams
in this way when following
the boldfaced arrows from
the initial state to the final
state gives the optimal
solution.

Thus, the optimal solution has x1* � 1, which makes s2 � 5 � 1 � 4, so x2* � 3, which
makes s3 � 4 � 3 � 1, so x3* � 1. Since f 1*(5) � 170, this (1, 3, 1) allocation of medical
teams to the three countries will yield an estimated total of 170,000 additional person-
years of life, which is at least 5,000 more than for any other allocation.

These results of the dynamic programming analysis also are summarized in Fig. 10.6.

A Prevalent Problem Type—The Distribution of Effort Problem

The preceding example illustrates a particularly common type of dynamic programming
problem called the distribution of effort problem. For this type of problem, there is just
one kind of resource that is to be allocated to a number of activities. The objective is to
determine how to distribute the effort (the resource) among the activities most effectively.
For the World Health Council example, the resource involved is the medical teams, and
the three activities are the health care work in the three countries.

Assumptions. This interpretation of allocating resources to activities should ring a bell
for you, because it is the typical interpretation for linear programming problems given at
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the beginning of Chap. 3. However, there also are some key differences between the distri-
bution of effort problem and linear programming that help illuminate the general distinctions
between dynamic programming and other areas of mathematical programming.

One key difference is that the distribution of effort problem involves only one resource
(one functional constraint), whereas linear programming can deal with thousands of re-
sources. (In principle, dynamic programming can handle slightly more than one resource, as
we shall illustrate in Example 5 by solving the three-resource Wyndor Glass Co. problem,
but it quickly becomes very inefficient when the number of resources is increased.)

On the other hand, the distribution of effort problem is far more general than linear
programming in other ways. Consider the four assumptions of linear programming pre-
sented in Sec. 3.3: proportionality, additivity, divisibility, and certainty. Proportionality is
routinely violated by nearly all dynamic programming problems, including distribution of
effort problems (e.g., Table 10.1 violates proportionality). Divisibility also is often vio-
lated, as in Example 2, where the decision variables must be integers. In fact, dynamic
programming calculations become more complex when divisibility does hold (as in Ex-
amples 4 and 5). Although we shall consider the distribution of effort problem only un-
der the assumption of certainty, this is not necessary, and many other dynamic program-
ming problems violate this assumption as well (as described in Sec. 10.4).

Of the four assumptions of linear programming, the only one needed by the distribution
of effort problem (or other dynamic programming problems) is additivity (or its analog for
functions involving a product of terms). This assumption is needed to satisfy the principle
of optimality for dynamic programming (characteristic 5 in Sec. 10.2).

Formulation. Because they always involve allocating one kind of resource to a num-
ber of activities, distribution of effort problems always have the following dynamic pro-
gramming formulation (where the ordering of the activities is arbitrary):

Stage n � activity n (n � 1, 2, . . . , N ).
xn � amount of resource allocated to activity n.

State sn � amount of resource still available for allocation to remaining activities
(n, . . . , N ).

The reason for defining state sn in this way is that the amount of the resource still avail-
able for allocation is precisely the information about the current state of affairs (entering
stage n) that is needed for making the allocation decisions for the remaining activities.

When the system starts at stage n in state sn, the choice of xn results in the next state
at stage n � 1 being sn�1 � sn � xn, as depicted below:5

Note how the structure of this diagram corresponds to the one shown in Fig. 10.5 for the
World Health Council example of a distribution of effort problem. What will differ from
one such example to the next is the rest of what is shown in Fig. 10.5, namely, the rela-
tionship between fn(sn, xn) and f *n�1(sn � xn), and then the resulting recursive relationship
between the f n* and f *n�1 functions. These relationships depend on the particular objective
function for the overall problem.

sn sn � xn
xn

n � 1n

State:

Stage:

5This statement assumes that xn and sn are expressed in the same units. If it is more convenient to define xn as
some other quantity such that the amount of the resource allocated to activity n is anxn, then sn�1 � sn � anxn.
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EXAMPLE 3 Distributing Scientists to Research Teams

A government space project is conducting research on a certain engineering problem that
must be solved before people can fly safely to Mars. Three research teams are currently
trying three different approaches for solving this problem. The estimate has been made
that, under present circumstances, the probability that the respective teams—call them
1, 2, and 3—will not succeed is 0.40, 0.60, and 0.80, respectively. Thus, the current prob-
ability that all three teams will fail is (0.40)(0.60)(0.80) � 0.192. Because the objective
is to minimize the probability of failure, two more top scientists have been assigned to
the project.

Table 10.2 gives the estimated probability that the respective teams will fail when 0, 1,
or 2 additional scientists are added to that team. Only integer numbers of scientists are
considered because each new scientist will need to devote full attention to one team. The
problem is to determine how to allocate the two additional scientists to minimize the prob-
ability that all three teams will fail.

Formulation. Because both Examples 2 and 3 are distribution of effort problems, their
underlying structure is actually very similar. In this case, scientists replace medical teams
as the kind of resource involved, and research teams replace countries as the activities.
Therefore, instead of medical teams being allocated to countries, scientists are being al-
located to research teams. The only basic difference between the two problems is in their
objective functions.

With so few scientists and teams involved, this problem could be solved very easily
by a process of exhaustive enumeration. However, the dynamic programming solution is
presented for illustrative purposes.

In this case, stage n (n � 1, 2, 3) corresponds to research team n, and the state sn is the
number of new scientists still available for allocation to the remaining teams. The decision
variables xn (n � 1, 2, 3) are the number of additional scientists allocated to team n.

Let pi(xi) denote the probability of failure for team i if it is assigned xi additional sci-
entists, as given by Table 10.2. If we let � denote multiplication, the government’s ob-
jective is to choose x1, x2, x3 so as to

Minimize �
3

i�1
pi(xi) � p1(x1)p2(x2)p3(x3),

■ TABLE 10.2 Data for the Government Space Project problem

Probability of Failure

Team
New

Scientists 1 2 3

0 0.40 0.60 0.80
1 0.20 0.40 0.50
2 0.15 0.20 0.30

The structure of the next example is similar to the one for the World Health Council
because it, too, is a distribution of effort problem. However, its recursive relationship dif-
fers in that its objective is to minimize a product of terms for the respective stages.

At first glance, this example may appear not to be a deterministic dynamic program-
ming problem because probabilities are involved. However, it does indeed fit our definition
because the state at the next stage is completely determined by the state and policy decision
at the current stage.
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subject to

�
3

i�1
xi � 2

and

xi are nonnegative integers.

Consequently, fn(sn, xn) for this problem is

fn(sn, xn) � pn(xn) � min �
3

i�n�1
pi(xi),

where the minimum is taken over xn�1, . . . , x3 such that

�
3

i�n

xi � sn

and

xi are nonnegative integers,

for n � 1, 2, 3. Thus,

f n*(sn) � min fn(sn, xn),
xn�0,1, . . . , sn

where

fn(sn, xn) � pn(xn) � f *n�1(sn � xn)

(with f 4* defined to be 1). Figure 10.7 summarizes these basic relationships.
Thus, the recursive relationship relating the f 1*, f 2*, and f 3* functions in this case is

f n*(sn) � min {pn(xn) � f *n�1(sn � xn)}, for n � 1, 2,
xn�0,1, . . . , sn

and, when n � 3,

f 3*(s3) � min p3(x3).
x3 � 0,1, . . . , s3

Solution Procedure. The resulting dynamic programming calculations are as follows:

n � 3: s3 f 3*(s3) x3*

0 0.80 0
1 0.50 1
2 0.30 2

sn sn � xn

Stage
n � 1

Stage
n

State:

Value: fn(sn, xn) pn(xn) f*n�1(sn � xn)

xn

� pn(xn) � f*n�1(sn � xn)

■ FIGURE 10.7
The basic structure for the
government space project
problem.
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f1(s1, x1) � p1(x1) � f 2*(s1 � x1)
x1

n � 1: s1 0 1 2 f 1*(s1) x1*

2 0.064 0.060 0.072 0.060 1

Therefore, the optimal solution must have x1* � 1, which makes s2 � 2 � 1 � 1, so that
x2* � 0, which makes s3 � 1 � 0 � 1, so that x3* � 1. Thus, teams 1 and 3 should each
receive one additional scientist. The new probability that all three teams will fail would
then be 0.060.

All the examples thus far have had a discrete state variable sn at each stage. Further-
more, they all have been reversible in the sense that the solution procedure actually could
have moved either backward or forward stage by stage. (The latter alternative amounts to
renumbering the stages in reverse order and then applying the procedure in the standard
way.) This reversibility is a general characteristic of distribution of effort problems such
as Examples 2 and 3, since the activities (stages) can be ordered in any desired manner.

The next example is different in both respects. Rather than being restricted to integer
values, its state variable sn at stage n is a continuous variable that can take on any value over
certain intervals. Since sn now has an infinite number of values, it is no longer possible to
consider each of its feasible values individually. Rather, the solution for f n*(sn) and xn* must
be expressed as functions of sn. Furthermore, this example is not reversible because its stages
correspond to time periods, so the solution procedure must proceed backward.

Before proceeding directly to the rather involved example presented next, you might
find it helpful at this point to look at the two additional examples of deterministic dynamic
programming presented in the Worked Examples section of the book’s website. The first
one involves production and inventory planning over a number of time periods. Like the ex-
amples thus far, both the state variable and the decision variable at each stage are discrete.
However, this example is not reversible since the stages correspond to time periods. It also
is not a distribution of effort problem. The second example is a nonlinear programming prob-
lem with two variables and a single constraint. Therefore, even though it is reversible, its
state and decision variables are continuous. However, in contrast to the following example
(which has four continuous variables and thus four stages), it has only two stages, so it can
be solved relatively quickly with dynamic programming and a bit of calculus.

f2(s2, x2) � p2(x2) � f 3*(s2 � x2)
x2

n � 2: s2 0 1 2 f 2*(s2) x2*

0 0.48 0.48 0
1 0.30 0.32 0.30 0
2 0.18 0.20 0.16 0.16 2

EXAMPLE 4 Scheduling Employment Levels

The workload for the LOCAL JOB SHOP is subject to considerable seasonal fluctuation.
However, machine operators are difficult to hire and costly to train, so the manager is re-
luctant to lay off workers during the slack seasons. He is likewise reluctant to maintain
his peak season payroll when it is not required. Furthermore, he is definitely opposed to

hil76299_ch10_424-463.qxd  11/19/08  04:20 PM  Page 442



Rev.Confirming Pages

10.3 DETERMINISTIC DYNAMIC PROGRAMMING 443

overtime work on a regular basis. Since all work is done to custom orders, it is not pos-
sible to build up inventories during slack seasons. Therefore, the manager is in a dilemma
as to what his policy should be regarding employment levels.

The following estimates are given for the minimum employment requirements dur-
ing the four seasons of the year for the foreseeable future:

Employment will not be permitted to fall below these levels. Any employment above these
levels is wasted at an approximate cost of $2,000 per person per season. It is estimated
that the hiring and firing costs are such that the total cost of changing the level of em-
ployment from one season to the next is $200 times the square of the difference in em-
ployment levels. Fractional levels of employment are possible because of a few part-time
employees, and the cost data also apply on a fractional basis.

Formulation. On the basis of the data available, it is not worthwhile to have the em-
ployment level go above the peak season requirements of 255. Therefore, spring em-
ployment should be at 255, and the problem is reduced to finding the employment level
for the other three seasons.

For a dynamic programming formulation, the seasons should be the stages. There are
actually an indefinite number of stages because the problem extends into the indefinite
future. However, each year begins an identical cycle, and because spring employment is
known, it is possible to consider only one cycle of four seasons ending with the spring
season, as summarized below.

Stage 1 � summer,
Stage 2 � autumn,
Stage 3 � winter,
Stage 4 � spring.

xn � employment level for stage n (n � 1, 2, 3, 4).
(x4 � 255.)

It is necessary that the spring season be the last stage because the optimal value of
the decision variable for each state at the last stage must be either known or obtainable
without considering other stages. For every other season, the solution for the optimal em-
ployment level must consider the effect on costs in the following season.

Let

rn � minimum employment requirement for stage n,

where these requirements were given earlier as r1 � 220, r2 � 240, r3 � 200, and 
r4 � 255. Thus, the only feasible values for xn are

rn � xn � 255.

Referring to the cost data given in the problem statement, we have

Cost for stage n � 200(xn � xn�1)2 � 2,000(xn � rn).

Note that the cost at the current stage depends upon only the current decision xn and
the employment in the preceding season xn�1. Thus, the preceding employment level is
all the information about the current state of affairs that we need to determine the opti-
mal policy henceforth. Therefore, the state sn for stage n is

State sn � xn�1.

Season Spring Summer Autumn Winter Spring

Requirements 255 220 240 200 255
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■ TABLE 10.3 Data for the Local Job Shop problem

n rn Feasible xn Possible sn � xn�1 Cost

1 220 220 � x1 � 255 s1 � 255 200(x1 � 255)2 � 2,000(x1 � 220)
2 240 240 � x2 � 255 220 � s2 � 255 200(x2 � x1)2 � 2,000(x2 � 240)
3 200 200 � x3 � 255 240 � s3 � 255 200(x3 � x2)2 � 2,000(x3 � 200)
4 255 x4 � 255 200 � s4 � 255 200(255 � x3)2

Stage
n

snState:

Stage
n � 1

Value: fn(sn, xn)
� sum

200(xn � sn)2 � 2,000(xn � rn) f*n�1(xn)

xn
xn

■ FIGURE 10.8
The basic structure for the
Local Job Shop problem.

When n � 1, s1 � x0 � x4 � 255.
For your ease of reference while working through the problem, a summary of the data

is given in Table 10.3 for each of the four stages.
The objective for the problem is to choose x1, x2, x3 (with x0 � x4 � 255) so as to

Minimize �
4

i�1
[200(xi � xi�1)2 � 2,000(xi � ri)],

subject to

ri � xi � 255, for i � 1, 2, 3, 4.

Thus, for stage n onward (n � 1, 2, 3, 4), since sn � xn�1

fn(sn, xn) � 200(xn � sn)2 � 2,000(xn � rn)

� min �
4

i�n�1
[200(xi � xi�1)2 � 2,000(xi � ri)],

ri�xi�255

where this summation equals zero when n � 4 (because it has no terms). Also,

f n*(sn) � min fn(sn, xn).
rn�xn�255

Hence,

fn(sn, xn) � 200(xn � sn)2 � 2,000(xn � rn) � f *n�1(xn)

(with f5* defined to be zero because costs after stage 4 are irrelevant to the analysis). A
summary of these basic relationships is given in Fig. 10.8.

Consequently, the recursive relationship relating the f n* functions is

f n*(sn) � min {200(xn � sn)2 � 2,000(xn � rn) � f *n�1(xn)}.
rn�xn�255

The dynamic programming approach uses this relationship to identify successively
these functions—f 4*(s4), f 3*(s3), f 2*(s2), f 1*(255)—and the corresponding minimizing xn.
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Solution Procedure. Stage 4: Beginning at the last stage (n � 4), we already know
that x4* � 255, so the necessary results are

Stage 3: For the problem consisting of just the last two stages (n � 3), the recursive
relationship reduces to

f 3*(s3) � min {200(x3 � s3)2 � 2,000(x3 � 200) � f 4*(x3)}
200�x3�255

� min {200(x3 � s3)2 � 2,000(x3 � 200) � 200(255 � x3)2},
200�x3�255

where the possible values of s3 are 240 � s3 � 255.
One way to solve for the value of x3 that minimizes f3(s3, x3) for any particular value

of s3 is the graphical approach illustrated in Fig. 10.9.
However, a faster way is to use calculus. We want to solve for the minimizing x3 in

terms of s3 by considering s3 to have some fixed (but unknown) value. Therefore, set the
first (partial) derivative of f3(s3, x3) with respect to x3 equal to zero:

�
�
�
x3
� f3(s3, x3) � 400(x3 � s3) � 2,000 � 400(255 � x3)

� 400(2x3 � s3 � 250)

� 0,

which yields

x3* � �
s3 �

2
250
�.

Because the second derivative is positive, and because this solution lies in the feasible in-
terval for x3 (200 � x3 � 255) for all possible s3 (240 � s3 � 255), it is indeed the de-
sired minimum.

n � 4: s4 f 4*(s4) x4*

200 � s4 � 255 200(255 � s4)2 255

200 s3 s3 � 250
2

255 x3

2,000(x3 � 200)

200(x3 � s3)2

200(255 � x3)2
Sum � f3(s3, x3)

f *
3(s3)

■ FIGURE 10.9
Graphical solution for f 3*(s3)
for the Local Job Shop
problem.
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n � 3: s3 f 3*(s3) x3*

240 � s3 � 255 50(250 � s3)2 � 50(260 � s3)2 � 1,000(s3 � 150)
s3 � 250
��

2

Note a key difference between the nature of this solution and those obtained for the
preceding examples where there were only a few possible states to consider. We now have
an infinite number of possible states (240 � s3 � 255), so it is no longer feasible to solve
separately for x3* for each possible value of s3. Therefore, we instead have solved for x3*
as a function of the unknown s3.

Using

f 3*(s3) � f3(s3, x3*) � 200��s3 �
2

250
� � s3�

2

� 200�255 � �
s3 �

2
250
��

2

� 2,000��s3 �
2

250
� � 200�

and reducing this expression algebraically complete the required results for the third-stage
problem, summarized as follows.

Stage 2: The second-stage (n � 2) and first-stage problems (n � 1) are solved in a
similar fashion. Thus, for n � 2,

f2(s2, x2) � 200(x2 � s2)2 � 2,000(x2 � r2) � f 3*(x2)
� 200(x2 � s2)2 � 2,000(x2 � 240)

� 50(250 � x2)2 � 50(260 � x2)2 � 1,000(x2 � 150).

The possible values of s2 are 220 � s2 � 255, and the feasible region for x2 is 240 �
x2 � 255. The problem is to find the minimizing value of x2 in this region, so that

f 2*(s2) � min f2(s2, x2).
240�x2�255

Setting to zero the partial derivative with respect to x2:

�
�
�
x2
� f2(s2, x2) � 400(x2 � s2) � 2,000 � 100(250 � x2) � 100(260 � x2) � 1,000

� 200(3x2 � 2s2 � 240)

� 0

yields

x2 � �
2s2 �

3
240

�.

Because

f2(s2, x2) � 600 	 0,

this value of x2 is the desired minimizing value if it is feasible (240 � x2 � 255). Over
the possible s2 values (220 � s2 � 255), this solution actually is feasible only if 240 �
s2 � 255.

Therefore, we still need to solve for the feasible value of x2 that minimizes f2(s2, x2)
when 220 � s2 
 240. The key to analyzing the behavior of f2(s2, x2) over the feasible
region for x2 again is the partial derivative of f2(s2, x2). When s2 
 240,

�2

�
�x2

2
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f2(s2, x2) 	 0, for 240 � x2 � 255,

so that x2 � 240 is the desired minimizing value.
The next step is to plug these values of x2 into f2(s2, x2) to obtain f 2*(s2) for s2 � 240

and s2 
 240. This yields

Stage 1: For the first-stage problem (n � 1),

f1(s1, x1) � 200(x1 � s1)2 � 2,000(x1 � r1) � f 2*(x1).

Because r1 � 220, the feasible region for x1 is 220 � x1 � 255. The expression for f 2*(x1)
will differ in the two portions 220 � x1 � 240 and 240 � x1 � 255 of this region. 
Therefore,

�
�
�x2

n � 2: s2 f 2*(s2) x2*

220 � s2 � 240 200(240 � s2)2 � 115,000 240

240 � s2 � 255 �
20

9
0

� [(240 � s2)2 � (255 � s2)2 �
2s2 �

3
240
�

� (270 � s2)2] � 2,000(s2 � 195) 

200(x1 � s1)2 � 2,000(x1 � 220) � 200(240 � x1)2 � 115,000,
if 220 � x1 � 240

f1(s1, x1) � �200(x1 � s1)2 � 2,000(x1 � 220) � [(240 � x1)2 � (255 � x1)2 � (270 � x1)2]

� 2,000(x1 � 195), if 240 � x1 � 255.

200
�

9

Considering first the case where 220 � x1 � 240, we have

�
�
�
x1
� f1(s1, x1) � 400(x1 � s1) � 2,000 � 400(240 � x1)

� 400(2x1 � s1 � 235).

It is known that s1 � 255 (spring employment), so that

�
�
�
x1
� f1(s1, x1) � 800(x1 � 245) 
 0

for all x1 � 240. Therefore, x1 � 240 is the minimizing value of f1(s1, x1) over the region
220 � x1 � 240.

When 240 � x1 � 255,

�
�
�
x1
� f1(s1, x1) � 400(x1 � s1) � 2,000

� �
40
9
0

�[(240 � x1) � (255 � x1) � (270 � x1)] � 2,000

� �
40
3
0

� (4x1 � 3s1 � 225).

Because

�
�
�
x

2

1
2� f1(s1, x1) 	 0 for all x1,
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n � 1: s1 f 1*(s1) x1*

255 185,000 247.5  

EXAMPLE 5 Wyndor Glass Company Problem

Consider the following linear programming problem:

Maximize Z � 3x1 � 5x2,

subject to

x1 � 2x2 � 4
3x1 � 2x2 � 12
3x1 � 2x2 � 18

set

�
�
�
x1
� f1(s1, x1) � 0,

which yields

x1 � �
3s1 �

4
225

�.

Because s1 � 255, it follows that x1 � 247.5 minimizes f1(s1, x1) over the region 
240 � x1 � 255.

Note that this region (240 � x1 � 255) includes x1 � 240, so that f1(s1, 240) 	
f1(s1, 247.5). In the next-to-last paragraph, we found that x1 � 240 minimizes f1(s1, x1)
over the region 220 � x1 � 240. Consequently, we now can conclude that x1 � 247.5 also
minimizes f1(s1, x1) over the entire feasible region 220 � x1 � 255.

Our final calculation is to find f 1*(s1) for s1 � 255 by plugging x1 � 247.5 into the
expression for f1(255, x1) that holds for 240 � x1 � 255. Hence,

f 1*(255) � 200(247.5 � 255)2 � 2,000(247.5 � 220)

� �
20
9
0

� [2(250 � 247.5)2 � (265 � 247.5)2 � 30(742.5 � 575)]

� 185,000.

These results are summarized as follows:

Therefore, by tracing back through the tables for n � 2, n � 3, and n � 4, respec-
tively, and setting sn � x*n�1 each time, the resulting optimal solution is x1* � 247.5,
x2* � 245, x3* � 247.5, x4* � 255, with a total estimated cost per cycle of $185,000.

To conclude our illustrations of deterministic dynamic programming, we give one ex-
ample that requires more than one variable to describe the state at each stage.
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and

x1 � 0, x2 � 0.

(You might recognize this as being the model for the Wyndor Glass Co. problem—
introduced in Sec. 3.1.) One way of solving small linear (or nonlinear) programming prob-
lems like this one is by dynamic programming, which is illustrated below.

Formulation. This problem requires making two interrelated decisions, namely, the
level of activity 1, denoted by x1, and the level of activity 2, denoted by x2. Therefore,
these two activities can be interpreted as the two stages in a dynamic programming for-
mulation. Although they can be taken in either order, let stage n � activity n (n � 1, 2).
Thus, xn is the decision variable at stage n.

What are the states? In other words, given that the decision had been made at prior
stages (if any), what information is needed about the current state of affairs before the de-
cision can be made at stage n? Reflection might suggest that the required information is
the amount of slack left in the functional constraints. Interpret the right-hand side of these
constraints (4, 12, and 18) as the total available amount of resources 1, 2, and 3, respec-
tively (as described in Sec. 3.1). Then state sn can be defined as

State sn � amount of respective resources still available for allocation to 
remaining activities.

(Note that the definition of the state is analogous to that for distribution of effort prob-
lems, including Examples 2 and 3, except that there are now three resources to be allo-
cated instead of just one.) Thus,

sn � (R1, R2, R3),

where Ri is the amount of resource i remaining to be allocated (i � 1, 2, 3). Therefore,

s1 � (4, 12, 18),
s2 � (4 � x1, 12, 18 � 3x1).

However, when we begin by solving for stage 2, we do not yet know the value of x1, and
so we use s2 � (R1, R2, R3) at that point.

Therefore, in contrast to the preceding examples, this problem has three state vari-
ables (i.e., a state vector with three components) at each stage rather than one. From a
theoretical standpoint, this difference is not particularly serious. It only means that, in-
stead of considering all possible values of the one state variable, we must consider all pos-
sible combinations of values of the several state variables. However, from the standpoint
of computational efficiency, this difference tends to be a very serious complication. 
Because the number of combinations, in general, can be as large as the product of the num-
ber of possible values of the respective variables, the number of required calculations tends
to “blow up” rapidly when additional state variables are introduced. This phenomenon has
been given the apt name of the curse of dimensionality.

Each of the three state variables is continuous. Therefore, rather than consider each
possible combination of values separately, we must use the approach introduced in 
Example 4 of solving for the required information as a function of the state of the system.

Despite these complications, this problem is small enough that it can still be solved
without great difficulty. To solve it, we need to introduce the usual dynamic programming
notation. Thus,

f2(R1, R2, R3, x2) � contribution of activity 2 to Z if system starts in state
(R1, R2, R3) at stage 2 and decision is x2

� 5x2,
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Stage
1

State:

Stage
2

Value: f*2 (4 � x1, 12, 18 � 3x1)

x1
4, 12, 18 4 � x1, 12, 18 � 3x1

 f1(4, 12, 18, x1)
� sum

3x1

■ FIGURE 10.10
The basic structure for the
Wyndor Glass Co. linear
programming problem.

n � 2: (R1, R2, R3) f 2*(R1, R2, R3) x2*

R2 � 0, R3 � 0 5 min ��
R
2
2�, �

R
2
3�� min ��

R
2
2�, �

R
2
3��

f1(4, 12, 18, x1) � contribution of activities 1 and 2 to Z if system starts in state 
(4, 12, 18) at stage 1, immediate decision is x1, and then
optimal decision is made at stage 2,

� 3x1 � max {5x2}.
2x2�12

2x2�18�3x1
x2�0

Similarly, for n � 1, 2,

f n*(R1, R2, R3) � max fn(R1, R2, R3, xn),
xn

where this maximum is taken over the feasible values of xn. Consequently, using the rel-
evant portions of the constraints of the problem gives

(1) f 2*(R1, R2, R3) � max {5x2},
2x2�R2
2x2�R3
x2�0

(2) f1(4, 12, 18, x1) � 3x1 � f 2*(4 � x1, 12, 18 � 3x1),

(3) f 1*(4, 12, 18) � max {3x1 � f 2*(4 � x1, 12, 18 � 3x1)}.
x1�4

3x1�18
x1�0

Equation (1) will be used to solve the stage 2 problem. Equation (2) shows the basic
dynamic programming structure for the overall problem, also depicted in Fig. 10.10. Equa-
tion (3) gives the recursive relationship between f 1* and f 2* that will be used to solve the
stage 1 problem.

Solution Procedure. Stage 2: To solve at the last stage (n � 2), Eq. (1) indicates that x2*
must be the largest value of x2 that simultaneously satisfies 2x2 � R2, 2x2 � R3, and x2 � 0.
Assuming that R2 � 0 and R3 � 0, so that feasible solutions exist, this largest value is the
smaller of R2/2 and R3/2. Thus, the solution is

Stage 1: To solve the two-stage problem (n � 1), we plug the solution just obtained
for f 2*(R1, R2, R3) into Eq. (3). For stage 2,

(R1, R2, R3) � (4 � x1, 12, 18 � 3x1),

so that

f 2*(4 � x1, 12, 18 � 3x1) � 5 min ��
R
2
2�, �

R
2
3�� � 5 min ��

1
2
2
�, �

18 �
2

3x1��
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is the specific solution plugged into Eq. (3). After we combine its constraints on x1, Eq. (3)
then becomes

f1*(4, 12, 18) � max �3x1 � 5 min ��
1
2
2
�, �

18 �
2

3x1���.
0�x1�4

Over the feasible interval 0 � x1 � 4, notice that

min ��
1
2
2
�, �

18 �
2

3x1�� � �
so that

3x1 � 5 min ��
1
2
2
�, �

18 �
2

3x1�� � �
Because both

max {3x1 � 30} and max �45 � �
9
2

� x1�0�x1�2 2�x1�4

achieve their maximum at x1 � 2, it follows that x1* � 2 and that this maximum is 36, as
given in the following table.

Because x1* � 2 leads to

R1 � 4 � 2 � 2, R2 � 12, R3 � 18 � 3(2) � 12

for stage 2, the n � 2 table yields x2* � 6. Consequently, x1* � 2, x2* � 6 is the optimal
solution for this problem (as originally found in Sec. 3.1), and the n � 1 table shows that
the resulting value of Z is 36.

You now have seen a variety of applications of dynamic programming, with more to
come in the next section. However, these examples only scratch the surface. For exam-
ple, Chapter 2 of Selected Reference 4 describes 47 types of problems to which dynamic
programming can be applied. (This reference also presents a software tool that can be
used to solve all these problem types.) The one common theme that runs through all these
applications of dynamic programming is the need to make a series of interrelated deci-
sions and the efficient way dynamic programming provides for finding an optimal com-
bination of decisions.

if 0 � x1 � 2

if 2 � x1 � 4.

3x1 � 30

45 � �
9
2

�x1

if 0 � x1 � 2

if 2 � x1 � 4,

6

9 � �
3
2

� x1

n � 1: (R1, R2, R3) f 1*(R1, R2, R3) x1*

(4, 12, 18) 36 2

Probabilistic dynamic programming differs from deterministic dynamic programming in
that the state at the next stage is not completely determined by the state and policy deci-
sion at the current stage. Rather, there is a probability distribution for what the next state
will be. However, this probability distribution still is completely determined by the state

■ 10.4 PROBABILISTIC DYNAMIC PROGRAMMING
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Stage n Stage n � 1

State:

Probability Contribution
from stage n

Decision 
xn

p1

p2

pS

C1

C2

CS

f*n�1(1)

f*n�1(2)

f*n�1(S)

1

2

�
�
�

�
�
�

S

sn

fn(sn, xn)

■ FIGURE 10.11
The basic structure for
probabilistic dynamic
programming.

and policy decision at the current stage. The resulting basic structure for probabilistic dy-
namic programming is described diagrammatically in Fig. 10.11.

For the purposes of this diagram, we let S denote the number of possible states at
stage n � 1 and label these states on the right side as 1, 2, . . . , S. The system goes to
state i with probability pi (i � 1, 2, . . . , S) given state sn and decision xn at stage n. If
the system goes to state i, Ci is the contribution of stage n to the objective function.

When Fig. 10.11 is expanded to include all the possible states and decisions at all the
stages, it is sometimes referred to as a decision tree. If the decision tree is not too large,
it provides a useful way of summarizing the various possibilities.

Because of the probabilistic structure, the relationship between fn(sn, xn) and
the f *n�1(sn�1) necessarily is somewhat more complicated than that for deterministic dy-
namic programming. The precise form of this relationship will depend upon the form of
the overall objective function.

To illustrate, suppose that the objective is to minimize the expected sum of the con-
tributions from the individual stages. In this case, fn(sn, xn) represents the minimum ex-
pected sum from stage n onward, given that the state and policy decision at stage n are
sn and xn, respectively. Consequently,

fn(sn, xn) � �
S

i�1
pi[Ci � f *n�1(i)],

with

f *n�1(i) � min fn�1(i, xn�1),
xn�1

where this minimization is taken over the feasible values of xn�1.
Example 6 has this same form. Example 7 will illustrate another form.

EXAMPLE 6 Determining Reject Allowances

The HIT-AND-MISS MANUFACTURING COMPANY has received an order to supply
one item of a particular type. However, the customer has specified such stringent quality
requirements that the manufacturer may have to produce more than one item to obtain an

hil76299_ch10_424-463.qxd  11/19/08  04:20 PM  Page 452



Rev.Confirming Pages

10.4 PROBABILISTIC DYNAMIC PROGRAMMING 453

item that is acceptable. The number of extra items produced in a production run is called
the reject allowance. Including a reject allowance is common practice when producing
for a custom order, and it seems advisable in this case.

The manufacturer estimates that each item of this type that is produced will be ac-
ceptable with probability �

1
2

� and defective (without possibility for rework) with probability �
1
2

�.
Thus, the number of acceptable items produced in a lot of size L will have a binomial dis-
tribution; i.e., the probability of producing no acceptable items in such a lot is (�

1
2

�)L.
Marginal production costs for this product are estimated to be $100 per item (even if

defective), and excess items are worthless. In addition, a setup cost of $300 must be in-
curred whenever the production process is set up for this product, and a completely new
setup at this same cost is required for each subsequent production run if a lengthy in-
spection procedure reveals that a completed lot has not yielded an acceptable item. The
manufacturer has time to make no more than three production runs. If an acceptable item
has not been obtained by the end of the third production run, the cost to the manufacturer
in lost sales income and penalty costs will be $1,600.

The objective is to determine the policy regarding the lot size (1 � reject allowance)
for the required production run(s) that minimizes total expected cost for the manufacturer.

Formulation. A dynamic programming formulation for this problem is

Stage n � production run n (n � 1, 2, 3),
xn � lot size for stage n,

State sn � number of acceptable items still needed (1 or 0) at beginning of stage n.

Thus, at stage 1, state s1 � 1. If at least one acceptable item is obtained subsequently, the
state changes to sn � 0, after which no additional costs need to be incurred.

Because of the stated objective for the problem,

fn(sn, xn) � total expected cost for stages n, . . . , 3 if system starts in state sn at stage
n, immediate decision is xn, and optimal decisions are made thereafter,

f n*(sn) � min fn(sn, xn),
xn�0, 1, . . .

where f n*(0) � 0. Using $100 as the unit of money, the contribution to cost from stage n
is [K(xn) � xn] regardless of the next state, where K(xn) is a function of xn such that

K(xn) � �
Therefore, for sn � 1,

fn(1, xn) � K(xn) � xn � ��
1
2

��
xn

f *n�1(1) � �1 � ��
1
2

��
xn� f *n�1(0)

� K(xn) � xn � ��
1
2

��
xn

f *n�1(1)

[where f 4*(1) is defined to be 16, the terminal cost if no acceptable items have been ob-
tained]. A summary of these basic relationships is given in Fig. 10.12.

Consequently, the recursive relationship for the dynamic programming calculations is

f n*(1) � min �K(xn) � xn � ��
1
2

��
xn

f *n�1(1)�xn�0, 1, . . . 

for n � 1, 2, 3.

if xn � 0
if xn 	 0.

0,
3,
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Solution Procedure. The calculations using this recursive relationship are summa-
rized as follows.

f2(1, x2) � K(x2) � x2 � ��
1
2

��
x2

f 3*(1)

x2

n � 2: s2 0 1 2 3 4 f 2*(s2) x2*

0 0 0 0

1 8 8 7 7 7�
1
2

� 7 2 or 3

f3(1, x3) � K(x3) � x3 � 16��
1
2

��
x3

x3

n � 3: s3 0 1 2 3 4 5 f 3*(s3) x3*

0 0 0 0

1 16 12 9 8 8 8�
1
2

� 8 3 or 4

f1(1, x1) � K(x1) � x1 � ��
1
2

��
x

1
f 2*(1)

x1

n � 1: s1 0 1 2 3 4 f 1*(s1) x1*

1 7 7�
1
2

� 6�
3
4

� 6�
7
8

� 7�
1
7
6
� 6�

3
4

� 2

Thus, the optimal policy is to produce two items on the first production run; if none
is acceptable, then produce either two or three items on the second production run; if none
is acceptable, then produce either three or four items on the third production run. The to-
tal expected cost for this policy is $675.

State:

Probability Contribution
from stage n

Decision 
1 xn

f*n�1(0) � 0

f*n�1(1)

Value: fn(1, xn)
�  K(   )�xn�       f*n�1(1)

0

1

1 � (  )xn1
2

(  )1
2

xn

(  )1
2

xn

xn(  )  1
2

K(   )�xn xn

     

K(   )�xn  xn

     

 xn
■ FIGURE 10.12
The basic structure for the
Hit-and-Miss Manufacturing
Co. problem.
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EXAMPLE 7 Winning in Las Vegas

An enterprising young statistician believes that she has developed a system for winning
a popular Las Vegas game. Her colleagues do not believe that her system works, so they
have made a large bet with her that if she starts with three chips, she will not have at least
five chips after three plays of the game. Each play of the game involves betting any de-
sired number of available chips and then either winning or losing this number of chips.
The statistician believes that her system will give her a probability of �

2
3

� of winning a given
play of the game.

Assuming the statistician is correct, we now use dynamic programming to determine
her optimal policy regarding how many chips to bet (if any) at each of the three plays of
the game. The decision at each play should take into account the results of earlier plays.
The objective is to maximize the probability of winning her bet with her colleagues.

Formulation. The dynamic programming formulation for this problem is

Stage n � nth play of game (n � 1, 2, 3),
xn � number of chips to bet at stage n,

State sn � number of chips in hand to begin stage n.

This definition of the state is chosen because it provides the needed information about the
current situation for making an optimal decision on how many chips to bet next.

Because the objective is to maximize the probability that the statistician will win her
bet, the objective function to be maximized at each stage must be the probability of fin-
ishing the three plays with at least five chips. (Note that the value of ending with more
than five chips is just the same as ending with exactly five, since the bet is won either
way.) Therefore,

fn(sn, xn) � probability of finishing three plays with at least five chips, given that
the statistician starts stage n in state sn, makes immediate decision xn,
and makes optimal decisions thereafter,

f n*(sn) � max fn(sn, xn).
xn�0, 1, . . . , sn

The expression for fn(sn, xn) must reflect the fact that it may still be possible to ac-
cumulate five chips eventually even if the statistician should lose the next play. If she
loses, the state at the next stage will be sn � xn, and the probability of finishing with at
least five chips will then be f *n�1(sn � xn). If she wins the next play instead, the state will
become sn � xn, and the corresponding probability will be f *n�1(sn � xn). Because the as-
sumed probability of winning a given play is �

2
3

�, it now follows that

fn(sn, xn) � �
1
3

� f *n�1(sn � xn) � �
2
3

� f *n�1(sn � xn)

[where f 4*(s4) is defined to be 0 for s4 
 5 and 1 for s4 � 5]. Thus, there is no direct con-
tribution to the objective function from stage n other than the effect of then being in the
next state. These basic relationships are summarized in Fig. 10.13.

Therefore, the recursive relationship for this problem is

f n*(sn) � max ��
1
3

� f *n�1(sn � xn) � �
2
3

� f *n�1(sn � xn)�,
xn�0, 1, . . . , sn

for n � 1, 2, 3, with f 4*(s4) as just defined.
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n � 3: s3 f 3*(s3) x3*

�0 0 —
�1 0 —
�2 0 —

�3 �
2
3

� 2 (or more)

�4 �
2
3

� 1 (or more)

�5 1 0 (or � s3 � 5)

f2(s2, x2) � �
1
3

�f 3*(s2 � x2) � �
2
3

�f 3*(s2 � x2)

x2

n � 2: s2 0 1 2 3 4 f 2*(s2) x2*

�0 0 0 —
�1 0 0 0 —

�2 0 �
4
9

� �
4
9

� �
4
9

� 1 or 2

�3 �
2
3

� �
4
9

� �
2
3

� �
2
3

� �
2
3

� 0, 2, or 3

�4 �
2
3

� �
8
9

� �
2
3

� �
2
3

� �
2
3

� �
8
9

� 1

�5 1 1 0 (or � s2 � 5)

State:

Probability Contribution
from stage n

Decision 
sn xn

f*n�1(sn � xn)

f*n�1(sn � xn)

Value: fn(sn, xn)

�    f*n�1(sn � xn) � sn � xn

sn � xn

0

0
f*n�1(sn � xn)2

3
1
3

1
3

2
3

Stage n Stage n � 1

■ FIGURE 10.13
The basic structure for the
Las Vegas problem.

Solution Procedure. This recursive relationship leads to the following computational
results.

f1(s1, x1) � �
1
3

�f 2*(s1 � x1) � �
2
3

�f 2*(s1 � x1)

x1

n � 1: s1 0 1 2 3 f 1*(s1) x1*

3 �
2
3

� �
2
2

0
7
� �

2
3

� �
2
3

� �
2
2
0
7
� 1
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Therefore, the optimal policy is

if win, x2* � 1 �
x1* � 1

if lose, x2* � 1 or 2 �
This policy gives the statistician a probability of �

2
2
0
7
� of winning her bet with her colleagues.

if win,

if lose, bet is lost

x3* � 0
x3* � 2 or 3.

if win,
if lose,

x3* � �2 or 3 (for x2* � 1)
1, 2, 3, or 4 (for x2* � 2)�

Dynamic programming is a very useful technique for making a sequence of interrelated
decisions. It requires formulating an appropriate recursive relationship for each individ-
ual problem. However, it provides a great computational savings over using exhaustive
enumeration to find the best combination of decisions, especially for large problems. For
example, if a problem has 10 stages with 10 states and 10 possible decisions at each
stage, then exhaustive enumeration must consider up to 10 billion combinations, whereas
dynamic programming need make no more than a thousand calculations (10 for each
state at each stage).

This chapter has considered only dynamic programming with a finite number of stages.
Chapter 19 is devoted to a general kind of model for probabilistic dynamic programming
where the stages continue to recur indefinitely, namely, Markov decision processes.

■ 10.5 CONCLUSIONS
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(a) Use dynamic programming to solve this problem. Instead of
using the usual tables, show your work graphically by con-
structing and filling in a network such as the one shown for
Prob. 10.2-1. Proceed as in Prob. 10.2-1b by solving for
f n*(sn) for each node (except the terminal node) and writing
its value by the node. Draw an arrowhead to show the opti-
mal link (or links in case of a tie) to take out of each node.
Finally, identify the resulting optimal path (or paths)
through the network and the corresponding optimal solution
(or solutions).

(b) Use dynamic programming to solve this problem by con-
structing the usual tables for n � 3, n � 2, and n � 1.

10.2-3. Consider the following project network (as described in
Sec. 9.8), where the number over each node is the time required
for the corresponding activity. Consider the problem of finding the
longest path (the largest total time) through this network from start
to finish, since the longest path is the critical path.

Region

Salespersons 1 2 3

1 40 24 32
2 54 47 46
3 78 63 70
4 99 78 84

(a) What are the stages and states for the dynamic programming
formulation of this problem?

(b) Use dynamic programming to solve this problem. However,
instead of using the usual tables, show your work graphically
(similar to Fig. 10.2). In particular, start with the given net-
work, where the answers already are given for f n*(sn) for four
of the nodes; then solve for and fill in f 2*(B) and f 1*(O). Draw
an arrowhead that shows the optimal link to traverse out of
each of the latter two nodes. Finally, identify the optimal path
by following the arrows from node O onward to node T.

(c) Use dynamic programming to solve this problem by manually
constructing the usual tables for n � 3, n � 2, and n � 1.

(d) Use the shortest-path algorithm presented in Sec. 9.3 to solve
this problem. Compare and contrast this approach with the one
in parts (b) and (c).

10.2-2. The sales manager for a publisher of college textbooks has
six traveling salespeople to assign to three different regions of the
country. She has decided that each region should be assigned at
least one salesperson and that each individual salesperson should
be restricted to one of the regions, but now she wants to determine
how many salespeople should be assigned to the respective regions
in order to maximize sales.

The next table gives the estimated increase in sales (in ap-
propriate units) in each region if it were allocated various numbers
of salespeople:

■ PROBLEMS
An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

10.2-1. Consider the following network, where each number along
a link represents the actual distance between the pair of nodes con-
nected by that link. The objective is to find the shortest path from
the origin to the destination.

(origin) (destination)B

C

A

D

E

T

9

6O

7

5

7

8

6

6

7

f *
3(D) � 6

f *
3(E) � 7

f *
2(C) � 13

f *
2(A) � 11

B E

D

C
A

0

3

START
FINISH

3 2
7

4
6

0

4

1

4
5

2

5

I
L

K

J

H

G

F

(a) What are the stages and states for the dynamic programming
formulation of this problem?

(b) Use dynamic programming to solve this problem. However,
instead of using the usual tables, show your work graphically.
In particular, fill in the values of the various f n*(sn) under the
corresponding nodes, and show the resulting optimal arc to
traverse out of each node by drawing an arrowhead near the
beginning of the arc. Then identify the optimal path (the
longest path) by following these arrowheads from the Start
node to the Finish node. If there is more than one optimal
path, identify them all.

(c) Use dynamic programming to solve this problem by con-
structing the usual tables for n � 4, n � 3, n � 2, and 
n � 1.

10.2-4. Consider the following statements about solving dynamic
programming problems. Label each statement as true or false, and
then justify your answer by referring to specific statements in the
chapter.
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Store

Crates 1 2 3

0 0 0 0
1 5 6 4
2 9 11 9
3 14 15 13
4 17 19 18
5 21 22 20

(a) The solution procedure uses a recursive relationship that en-
ables solving for the optimal policy for stage (n � 1) given the
optimal policy for stage n.

(b) After completing the solution procedure, if a nonoptimal deci-
sion is made by mistake at some stage, the solution procedure
will need to be reapplied to determine the new optimal deci-
sions (given this nonoptimal decision) at the subsequent
stages.

(c) Once an optimal policy has been found for the overall prob-
lem, the information needed to specify the optimal decision at
a particular stage is the state at that stage and the decisions
made at preceding stages.

10.3-1. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec. 10.3.
Briefly describe how dynamic programming was applied in this
study. Then list the various financial and nonfinancial benefits that
resulted from this study.

10.3-2.* The owner of a chain of three grocery stores has pur-
chased five crates of fresh strawberries. The estimated probability
distribution of potential sales of the strawberries before spoilage
differs among the three stores. Therefore, the owner wants to know
how to allocate five crates to the three stores to maximize expected
profit.

For administrative reasons, the owner does not wish to split
crates between stores. However, he is willing to distribute no crates
to any of his stores.

The following table gives the estimated expected profit at each
store when it is allocated various numbers of crates:

that the alternative allocations for each course would yield the num-
ber of grade points shown in the following table:

Use dynamic programming to determine how many of the five
crates should be assigned to each of the three stores to maximize
the total expected profit.

10.3-3. A college student has 7 days remaining before final ex-
aminations begin in her four courses, and she wants to allocate this
study time as effectively as possible. She needs at least 
1 day on each course, and she likes to concentrate on just one
course each day, so she wants to allocate 1, 2, 3, or 4 days to each
course. Having recently taken an OR course, she decides to use dy-
namic programming to make these allocations to maximize the to-
tal grade points to be obtained from the four courses. She estimates

Estimated Grade Points

Course

Study Days 1 2 3 4

1 1 5 4 4
2 3 6 6 4
3 6 8 7 5
4 8 8 9 8

Area

Commercials 1 2 3 4

0 0 0 0 0
1 4 6 5 3
2 7 8 9 7
3 9 10 11 12
4 12 11 10 14
5 15 12 9 16

Solve this problem by dynamic programming.

10.3-4. A political campaign is entering its final stage, and polls
indicate a very close election. One of the candidates has enough
funds left to purchase TV time for a total of five prime-time
commercials on TV stations located in four different areas. Based
on polling information, an estimate has been made of the num-
ber of additional votes that can be won in the different broad-
casting areas depending upon the number of commercials run.
These estimates are given in the following table in thousands of
votes:

Use dynamic programming to determine how the five com-
mercials should be distributed among the four areas in order to
maximize the estimated number of votes won.

10.3-5. A county chairwoman of a certain political party is mak-
ing plans for an upcoming presidential election. She has received
the services of six volunteer workers for precinct work, and she
wants to assign them to four precincts in such a way as to maxi-
mize their effectiveness. She feels that it would be inefficient to
assign a worker to more than one precinct, but she is willing to as-
sign no workers to any one of the precincts if they can accomplish
more in other precincts.
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Effect on
Market Share

Millions of
Dollars Expended m f2 f3

0 — 0.2 0.3
1 20 0.4 0.5
2 30 0.5 0.6
3 40 0.6 0.7
4 50 — —

Probability of Functioning

Parallel Units Comp. 1 Comp. 2 Comp. 3 Comp. 4

1 0.5 0.6 0.7 0.5
2 0.6 0.7 0.8 0.7
3 0.8 0.8 0.9 0.9

Cost

Parallel Units Comp. 1 Comp. 2 Comp. 3 Comp. 4

1 1 2 1 2
2 2 4 3 3
3 3 5 4 4

Precinct

Workers 1 2 3 4

0 0 0 0 0
1 4 7 5 6
2 9 11 10 11
3 15 16 15 14
4 18 18 18 16
5 22 20 21 17
6 24 21 22 18

The following table gives the estimated increase in the num-
ber of votes for the party’s candidate in each precinct if it were al-
located various numbers of workers:

(b) Now assume that any amount within the total budget can be
spent in each phase, where the estimated effect of spending
an amount xi (in units of millions of dollars) in phase i (i � 1,
2, 3) is

m � 10x1 � x2
1

f2 � 0.40 � 0.10x2

f3 � 0.60 � 0.07x3.

[Hint: After solving for the f 2*(s) and f 3*(s) functions analytically,
solve for x1* graphically.]

10.3-8. Consider an electronic system consisting of four components,
each of which must work for the system to function. The reliability of
the system can be improved by installing several parallel units in one
or more of the components. The following table gives the probability
that the respective components (labeled as Comp. 1, 2, 3, and 4) will
function if they consist of one, two, or three parallel units:

This problem has several optimal solutions for how many of the
six workers should be assigned to each of the four precincts to
maximize the total estimated increase in the plurality of the
party’s candidate. Use dynamic programming to find all of them
so the chairwoman can make the final selection based on other
factors.

10.3-6. Use dynamic programming to solve the Northern Airplane
Co. production scheduling problem presented in Sec. 8.1 (see
Table 8.7). Assume that production quantities must be integer
multiples of 5.

10.3-7.* A company will soon be introducing a new product into
a very competitive market and is currently planning its marketing
strategy. The decision has been made to introduce the product in
three phases. Phase 1 will feature making a special introductory of-
fer of the product to the public at a greatly reduced price to attract
first-time buyers. Phase 2 will involve an intensive advertising cam-
paign to persuade these first-time buyers to continue purchasing the
product at a regular price. It is known that another company will
be introducing a new competitive product at about the time that
phase 2 will end. Therefore, phase 3 will involve a follow-up ad-
vertising and promotion campaign to try to keep the regular pur-
chasers from switching to the competitive product.

A total of $4 million has been budgeted for this marketing
campaign. The problem now is to determine how to allocate this
money most effectively to the three phases. Let m denote the initial
share of the market (expressed as a percentage) attained in phase 1,
f2 the fraction of this market share that is retained in phase 2, and
f3 the fraction of the remaining market share that is retained in
phase 3. Use dynamic programming to determine how to allocate
the $4 million to maximize the final share of the market for the new
product, i.e., to maximize mf2 f3.
(a) Assume that the money must be spent in integer multiples of

$1 million in each phase, where the minimum permissible mul-
tiple is 1 for phase 1 and 0 for phases 2 and 3. The following
table gives the estimated effect of expenditures in each phase:

The probability that the system will function is the prod-
uct of the probabilities that the respective components will 
function.

The cost (in hundreds of dollars) of installing one, two, or three
parallel units in the respective components (labeled as Comp. 1, 2,
3, and 4) is given by the following table:
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Because of budget limitations, a maximum of $1,000 can be
expended.

Use dynamic programming to determine how many parallel
units should be installed in each of the four components to maxi-
mize the probability that the system will function.

10.3-9. Consider the following integer nonlinear programming
problem.

Maximize Z � 3x2
1 � x3

1 � 5x2
2 � x3

2,

subject to

x1 � 2x2 � 4

and

x1 � 0, x2 � 0
x1, x2 are integers.

Use dynamic programming to solve this problem.

10.3-10. Consider the following integer nonlinear programming
problem.

Maximize Z � 32x1 � 2x2
1 � 30x2 � 20x3,

subject to

3x1 � 7x2 � 5x3 � 20

and

x1, x2, x3 are nonnegative integers.

Use dynamic programming to solve this problem.

10.3-11.* Consider the following nonlinear programming problem.

Maximize Z � 36x1 � 9x2
1 � 6x3

1

� 36x2 � 3x3
2,

subject to

x1 � x2 � 3

and

x1 � 0, x2 � 0.

Use dynamic programming to solve this problem.

10.3-12. Re-solve the Local Job Shop employment scheduling
problem (Example 4) when the total cost of changing the level of
employment from one season to the next is changed to $100 times
the square of the difference in employment levels.

10.3-13. Consider the following nonlinear programming problem.

Maximize Z � 2x2
1 � 2x2 � 4x3 � x2

3

subject to

2x1 � x2 � x3 � 4

and

x1 � 0, x2 � 0, x3 � 0.

Use dynamic programming to solve this problem.

10.3-14. Consider the following nonlinear programming problem.

Minimize Z � x4
1 � 2x2

2

subject to

x2
1 � x2

2 � 2.

(There are no nonnegativity constraints.) Use dynamic program-
ming to solve this problem.

10.3-15. Consider the following nonlinear programming problem.

Maximize Z � x3
1 � 4x2

2 � 16x3,

subject to

x1x2x3 � 4

and

x1 � 1, x2 � 1, x3 � 1.

(a) Solve by dynamic programming when, in addition to the given
constraints, all three variables also are required to be integer.

(b) Use dynamic programming to solve the problem as given (con-
tinuous variables).

10.3-16. Consider the following nonlinear programming problem.

Maximize Z � x1(1 � x2)x3,

subject to

x1 � x2 � x3 � 1

and

x1 � 0, x2 � 0, x3 � 0.

Use dynamic programming to solve this problem.

10.3-17. Consider the following linear programming problem.

Maximize Z � 15x1 � 10x2,

subject to

x1 � 2x2 � 6
3x1 � x2 � 8

and

x1 � 0, x2 � 0.

Use dynamic programming to solve this problem.

10.3-18. Consider the following “fixed-charge” problem.

Maximize Z � 3x1 � 7x2 � 6f (x3),
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subject to

x1 � 3x2 � 2x3 � 6
x1 � x2 � 2x3 � 5

and

x1 � 0, x2 � 0, x3 � 0,

where

f (x3) � �
Use dynamic programming to solve this problem.

10.4-1. A backgammon player will be playing three consecutive
matches with friends tonight. For each match, he will have the op-
portunity to place an even bet that he will win; the amount bet can
be any quantity of his choice between zero and the amount of
money he still has left after the bets on the preceding matches. For
each match, the probability is �

1
2

� that he will win the match and thus
win the amount bet, whereas the probability is �

1
2

� that he will lose
the match and thus lose the amount bet. He will begin with $75,
and his goal is to have $100 at the end. (Because these are friendly
matches, he does not want to end up with more than $100.) There-
fore, he wants to find the optimal betting policy (including all
ties) that maximizes the probability that he will have exactly $100
after the three matches.

Use dynamic programming to solve this problem.

10.4-2. Imagine that you have $10,000 to invest and that you will
have an opportunity to invest that amount in either of two invest-
ments (A or B) at the beginning of each of the next 3 years. Both
investments have uncertain returns. For investment A you will ei-
ther lose your money entirely or (with higher probability) get back
$20,000 (a profit of $10,000) at the end of the year. For invest-
ment B you will get back either just your $10,000 or (with low
probability) $20,000 at the end of the year. The probabilities for
these events are as follows:

if x3 � 0
if x3 	 0.

0
�1 � x3

You are allowed to make only (at most) one investment each year,
and you can invest only $10,000 each time. (Any additional money
accumulated is left idle.)
(a) Use dynamic programming to find the investment policy that

maximizes the expected amount of money you will have after
3 years.

(b) Use dynamic programming to find the investment policy that
maximizes the probability that you will have at least $20,000
after 3 years.

10.4-3.* Suppose that the situation for the Hit-and-Miss Manu-
facturing Co. problem (Example 6) has changed somewhat. After
a more careful analysis, you now estimate that each item produced
will be acceptable with probability �

2
3

�, rather than �
1
2

�, so that the prob-
ability of producing zero acceptable items in a lot of size L is (�

1
3

�)L.
Furthermore, there now is only enough time available to make two
production runs. Use dynamic programming to determine the new
optimal policy for this problem.

10.4-4. Reconsider Example 7. Suppose that the bet is changed
as follows: “Starting with two chips, she will not have at least five
chips after five plays of the game.” By referring to the previous
computational results, make additional calculations to determine
the new optimal policy for the enterprising young statistician.

10.4-5. The Profit & Gambit Co. has a major product that has
been losing money recently because of declining sales. In fact,
during the current quarter of the year, sales will be 4 million units
below the break-even point. Because the marginal revenue for each
unit sold exceeds the marginal cost by $5, this amounts to a loss
of $20 million for the quarter. Therefore, management must take
action quickly to rectify this situation. Two alternative courses
of action are being considered. One is to abandon the product
immediately, incurring a cost of $20 million for shutting down.
The other alternative is to undertake an intensive advertising
campaign to increase sales and then abandon the product (at the
cost of $20 million) only if the campaign is not sufficiently suc-
cessful. Tentative plans for this advertising campaign have been
developed and analyzed. It would extend over the next three
quarters (subject to early cancellation), and the cost would be
$30 million in each of the three quarters. It is estimated that the
increase in sales would be approximately 3 million units in the first
quarter, another 2 million units in the second quarter, and another
1 million units in the third quarter. However, because of a number
of unpredictable market variables, there is considerable uncertainty
as to what impact the advertising actually would have; and careful
analysis indicates that the estimates for each quarter could turn out
to be off by as much as 2 million units in either direction. (To quan-
tify this uncertainty, assume that the additional increases in sales

Amount
Investment Returned ($) Probability

A 0 0.25
20,000 0.75

B 10,000 0.9
20,000 0.1

hil76299_ch10_424-463.qxd  11/19/08  04:20 PM  Page 462



Rev.Confirming Pages

PROBLEMS 463

in the three quarters are independent random variables having a
uniform distribution with a range from 1 to 5 million, from 0 to 4
million, and from �1 to 3 million, respectively.) If the actual in-
creases are too small, the advertising campaign can be discontin-
ued and the product abandoned at the end of either of the next two
quarters.

If the intensive advertising campaign were initiated and con-
tinued to its completion, it is estimated that the sales for some time

thereafter would continue to be at about the same level as in the
third (last) quarter of the campaign. Therefore, if the sales in that
quarter still were below the break-even point, the product would
be abandoned. Otherwise, it is estimated that the expected dis-
counted profit thereafter would be $40 for each unit sold over the
break-even point in the third quarter.

Use dynamic programming to determine the optimal policy
maximizing the expected profit.
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Integer Programming

In Chap. 3 you saw several examples of the numerous and diverse applications of linear
programming. However, one key limitation that prevents many more applications is the

assumption of divisibility (see Sec. 3.3), which requires that noninteger values be permis-
sible for decision variables. In many practical problems, the decision variables actually
make sense only if they have integer values. For example, it is often necessary to assign
people, machines, and vehicles to activities in integer quantities. If requiring integer val-
ues is the only way in which a problem deviates from a linear programming formulation,
then it is an integer programming (IP) problem. (The more complete name is integer lin-
ear programming, but the adjective linear normally is dropped except when this problem
is contrasted with the more esoteric integer nonlinear programming problem, which is be-
yond the scope of this book.)

The mathematical model for integer programming is the linear programming model
(see Sec. 3.2) with the one additional restriction that the variables must have integer val-
ues. If only some of the variables are required to have integer values (so the divisibility
assumption holds for the rest), this model is referred to as mixed integer programming
(MIP). When distinguishing the all-integer problem from this mixed case, we call the for-
mer pure integer programming.

For example, the Wyndor Glass Co. problem presented in Sec. 3.1 actually would
have been an IP problem if the two decision variables x1 and x2 had represented the total
number of units to be produced of products 1 and 2, respectively, instead of the produc-
tion rates. Because both products (glass doors and wood-framed windows) necessarily
come in whole units, x1 and x2 would have to be restricted to integer values.

There have been numerous applications of integer programming that involve a direct ex-
tension of linear programming where the divisibility assumption must be dropped. However,
another area of application may be of even greater importance, namely, problems involving
a number of interrelated “yes-or-no decisions.” In such decisions, the only two possible choices
are yes and no. For example, should we undertake a particular fixed project? Should we make
a particular fixed investment? Should we locate a facility in a particular site?

With just two choices, we can represent such decisions by decision variables that are
restricted to just two values, say 0 and 1. Thus, the jth yes-or-no decision would be rep-
resented by, say, xj such that

xj � � if decision j is yes
if decision j is no.

1
0

464
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Such variables are called binary variables (or 0–1 variables). Consequently, IP problems
that contain only binary variables sometimes are called binary integer programming
(BIP) problems (or 0–1 integer programming problems).

Section 11.1 presents a miniature version of a typical BIP problem and Sec. 11.2 sur-
veys a variety of other BIP applications. Additional formulation possibilities with binary
variables are discussed in Sec. 11.3, and Sec. 11.4 presents a series of formulation ex-
amples. Sections 11.5–11.8 then deal with ways to solve IP problems, including both BIP
and MIP problems. The chapter concludes in Sec. 11.9 by introducing an exciting recent
development (constraint programming) that promises to greatly expand our ability to for-
mulate and solve integer programming models.

■ TABLE 11.1 Data for the California Manufacturing Co. example

Decision Yes-or-No Decision Net Present Capital
Number Question Variable Value Required

1 Build factory in Los Angeles? x1 $9 million $6 million
2 Build factory in San Francisco? x2 $5 million $3 million
3 Build warehouse in Los Angeles? x3 $6 million $5 million
4 Build warehouse in San Francisco? x4 $4 million $2 million

Capital available: $10 million

■ 11.1 PROTOTYPE EXAMPLE

The CALIFORNIA MANUFACTURING COMPANY is considering expansion by build-
ing a new factory in either Los Angeles or San Francisco, or perhaps even in both cities.
It also is considering building at most one new warehouse, but the choice of location is
restricted to a city where a new factory is being built. The net present value (total prof-
itability considering the time value of money) of each of these alternatives is shown in
the fourth column of Table 11.1. The rightmost column gives the capital required (already
included in the net present value) for the respective investments, where the total capital
available is $10 million. The objective is to find the feasible combination of alternatives
that maximizes the total net present value.

The BIP Model

Although this problem is small enough that it can be solved very quickly by inspection
(build factories in both cities but no warehouse), let us formulate the IP model for illus-
trative purposes. All the decision variables have the binary form

xj � � ( j � 1, 2, 3, 4).

Let

Z � total net present value of these decisions.

If the investment is made to build a particular facility (so that the corresponding decision
variable has a value of 1), the estimated net present value from that investment is given
in the fourth column of Table 11.1. If the investment is not made (so the decision vari-
able equals 0), the net present value is 0. Therefore, using units of millions of dollars,

Z � 9x1 � 5x2 � 6x3 � 4x4.

if decision j is yes,
if decision j is no,

1
0
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The rightmost column of Table 11.1 indicates that the amount of capital expended on
the four facilities cannot exceed $10 million. Consequently, continuing to use units of mil-
lions of dollars, one constraint in the model is

6x1 � 3x2 � 5x3 � 2x4 � 10.

Because the last two decisions represent mutually exclusive alternatives (the company
wants at most one new warehouse), we also need the constraint

x3 � x4 � 1.

Furthermore, decisions 3 and 4 are contingent decisions, because they are contingent on de-
cisions 1 and 2, respectively (the company would consider building a warehouse in a city
only if a new factory also were going there). Thus, in the case of decision 3, we require that
x3 � 0 if x1 � 0. This restriction on x3 (when x1 � 0) is imposed by adding the constraint

x3 � x1.

Similarly, the requirement that x4 � 0 if x2 � 0 is imposed by adding the constraint

x4 � x2.

Therefore, after we rewrite these two constraints to bring all variables to the left-hand
side, the complete BIP model is

Maximize Z � 9x1 � 5x2 � 6x3 � 4x4,

subject to

6x1 � 3x2 � 5x3 � 2x4 � 10
x3 � x4 � 1

�x1 � x3 � 0
� x2 � x4 � 0

xj � 1
xj � 0

and

xj is integer, for j � 1, 2, 3, 4.

Equivalently, the last three lines of this model can be replaced by the single restriction

xj is binary, for j � 1, 2, 3, 4.

Except for its small size, this example is typical of many real applications of integer
programming where the basic decisions to be made are of the yes-or-no type. Like the
second pair of decisions for this example, groups of yes-or-no decisions often constitute
groups of mutually exclusive alternatives such that only one decision in the group can
be yes. Each group requires a constraint that the sum of the corresponding binary vari-
ables must be equal to 1 (if exactly one decision in the group must be yes) or less than
or equal to 1 (if at most one decision in the group can be yes). Occasionally, decisions of
the yes-or-no type are contingent decisions, i.e., decisions that depend upon previous de-
cisions. For example, one decision is said to be contingent on another decision if it is
allowed to be yes only if the other is yes. This situation occurs when the contingent de-
cision involves a follow-up action that would become irrelevant, or even impossible, if the
other decision were no. The form that the resulting constraint takes always is that illus-
trated by the third and fourth constraints in the example.
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Software Options for Solving Such Models

All the software packages featured in your OR Courseware (Excel, LINGO/LINDO, and
MPL/CPLEX) include an algorithm for solving (pure or mixed) BIP models, as well as
an algorithm for solving general (pure or mixed) IP models where variables need to be
integer but not binary. However, since binary variables are considerably easier to deal with
than general integer variables, the former algorithm generally can solve substantially larger
problems than the latter algorithm.

When using the Excel Solver, the procedure is basically the same as for linear pro-
gramming. The one difference arises when you click on the “Add” button on the Solver
dialogue box to add the constraints. In addition to the constraints that fit linear pro-
gramming, you also need to add the integer constraints. In the case of integer variables
that are not binary, this is accomplished in the Add Constraint dialogue box by choos-
ing the range of integer-restricted variables on the left-hand side and then choosing “int”
from the pop-up menu. In the case of binary variables, choose “bin” from the pop-up
menu instead. 

One of the Excel files for this chapter shows the complete spreadsheet formulation
and solution for the California Manufacturing Co. example. The Worked Examples section
of the book’s website also includes a small minimization example with two integer-
restricted variables. This example illustrates the formulation of the IP model and its graph-
ical solution, along with a spreadsheet formulation and solution.

A LINGO model uses the function @BIN() to specify that the variable named inside
the parentheses is a binary variable. For a general integer variable (one restricted to inte-
ger values but not just binary values), the function @GIN() is used in the same way. In
either case, the function can be embedded inside an @FOR statement to impose this bi-
nary or integer constraint on an entire set of variables.

In a LINDO syntax model, the binary or integer constraints are inserted after the END
statement. A variable X is specified to be a general integer variable by entering GIN X.
Alternatively, for any positive integer value of n, the statement GIN n specifies that the
first n variables are general integer variables. Binary variables are handled in the same
way except for substituting the word INTEGER for GIN.

For an MPL model, the keyword INTEGER is used to designate general integer vari-
ables, whereas BINARY is used for binary variables. In the variables section of an MPL
model, all you need to do is add the appropriate adjective (INTEGER or BINARY) in front
of the label VARIABLES to specify that the set of variables listed below the label is of that
type. Alternatively, you can ignore this specification in the variables section and instead place
the integer or binary constraints in the model section anywhere after the other constraints.
In this case, the label over the set of variables becomes just INTEGER or BINARY.

The prime MPL solver CPLEX includes state-of-the-art algorithms for solving pure
or mixed IP or BIP models. By selecting the MIP Strategy tab from the CPLEX Parame-
ters dialogue box in the Options menu, an experienced practitioner can even choose from
a wide variety of options for exactly how to execute the algorithm to best fit the particu-
lar problem.

These instructions for how to use the various software packages become clearer when you
see them applied to examples. The Excel, LINGO/LINDO, and MPL/CPLEX files for this
chapter in your OR Courseware show how each of these software options would be applied
to the prototype example introduced in this section, as well as to the subsequent IP examples.

The latter part of the chapter will focus on IP algorithms that are similar to those used
in these software packages. Section 11.6 will use the prototype example to illustrate the
application of the pure BIP algorithm presented there.
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■ 11.2 SOME BIP APPLICATIONS

Just as in the California Manufacturing Co. example, managers frequently must face yes-
or-no decisions. Therefore, binary integer programming (BIP) is widely used to aid in
these decisions.

We now will introduce various types of yes-or-no decisions. We also will mention
some examples of actual applications where BIP was used to address these decisions.

Each of these applications is fully described in an article in the journal called Inter-
faces. We will point out several of these articles that are included in the selected refer-
ences of award-winning applications cited at the end of the chapter, since a link to these
articles is provided on the book’s website. For the other articles, we still will mention the
specific issue of Interfaces in which the article appears.

Investment Analysis

Linear programming sometimes is used to make capital budgeting decisions about how
much to invest in various projects. However, as the California Manufacturing Co. exam-
ple demonstrates, some capital budgeting decisions do not involve how much to invest,
but rather, whether to invest a fixed amount. Specifically, the four decisions in the exam-
ple were whether to invest the fixed amount of capital required to build a certain kind of
facility (factory or warehouse) in a certain location (Los Angeles or San Francisco).

Management often must face decisions about whether to make fixed investments
(those where the amount of capital required has been fixed in advance). Should we ac-
quire a certain subsidiary being spun off by another company? Should we purchase a cer-
tain source of raw materials? Should we add a new production line to produce a certain
input item ourselves rather than continuing to obtain it from a supplier?

In general, capital budgeting decisions about fixed investments are yes-or-no deci-
sions of the following type.

Each yes-or-no decision:
Should we make a certain fixed investment?

Its decision variable � �
The July–August 1990 issue of Interfaces describes how the Turkish Petroleum

Refineries Corporation used BIP to analyze capital investments worth tens of millions of
dollars to expand refinery capacity and conserve energy.

A rather different example that still falls somewhat into this category is described
in Selected Reference A7. A major OR study was conducted for the South African Na-
tional Defense Force to upgrade its capabilities with a smaller budget. The “investments”
under consideration in this case were acquisition costs and ongoing expenses that would
be required to provide specific types of military capabilities. A mixed BIP model was
formulated to choose those specific capabilities that would maximize the overall effec-
tiveness of the Defense Force while satisfying a budget constraint. The model had over
16,000 variables (including 256 binary variables) and over 5,000 functional constraints.
The resulting optimization of the size and shape of the defense force provided savings
of over $1.1 billion per year as well as vital nonmonetary benefits. The impact of this
study won it the prestigious first prize among the 1996 Franz Edelman Awards for Man-
agement Science Achievement.

In a somewhat similar military application, the United States Air Force Space Command
spends many billions of dollars each year acquiring and developing launch vehicles and space
systems. The July–August 2003 issue of Interfaces describes how Space Command uses in-
teger programming to optimize these long-term investments over a 24-year time horizon.

if yes
if no.

1
0
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Selected Reference A3 presents another award-winning application of a mixed BIP
model to investment analysis. This particular model has been used by the investment firm
Grantham, Mayo, Van Otterloo and Company to construct many quantitatively managed
portfolios representing over $8 billion in assets. In each case, a portfolio has been con-
structed that is close (in terms of sector and security exposure) to a target portfolio but with
a far smaller and more manageable number of distinct stocks. A binary variable is used to
represent each yes-or-no decision as to whether a particular stock should be included in
the portfolio and then a separate continuous variable represents the amount of the stock to
include. Given a current portfolio that needs to be rebalanced, it is desirable to reduce trans-
action costs by minimizing the number of transactions needed to obtain the final portfolio,
so binary variables also are included to represent the yes-or-no decisions as to whether to
make the transactions to change the amounts of individual stocks being held. The inclu-
sion of this consideration in the model has reduced the annual cost of trading the portfo-
lios being managed by at least $4 million.

Site Selection

In this global economy, many corporations are opening up new plants in various parts of
the world to take advantage of lower labor costs, etc. Before selecting a site for a new
plant, many potential sites may need to be analyzed and compared. (The California Manu-
facturing Co. example had just two potential sites for each of two kinds of facilities.) Each
of the potential sites involves a yes-or-no decision of the following type.

Each yes-or-no decision:
Should a certain site be selected for the location of a certain new facility?

Its decision variable � �
In many cases, the objective is to select the sites so as to minimize the total cost of the
new facilities that will provide the required output.

As described in Selected Reference A11, AT&T used a BIP model to help dozens of
their customers select the sites for their telemarketing centers. The model minimizes la-
bor, communications, and real estate costs while providing the desired level of coverage
by the centers. In one year alone (1988), this approach enabled 46 AT&T customers to
make their yes-or-no decisions on site locations swiftly and confidently, while commit-
ting to $375 million in annual network services and $31 million in equipment sales from
AT&T.

We next describe an important type of problem for many corporations where site se-
lection plays a key role.

Designing a Production and Distribution Network

Manufacturers today face great competitive pressure to get their products to market
more quickly as well as to reduce their production and distribution costs. Therefore,
any corporation that distributes its products over a wide geographical area (or even
worldwide) must pay continuing attention to the design of its production and distribu-
tion network.

This design involves addressing the following kinds of yes-or-no decisions.

Should a certain plant remain open?
Should a certain site be selected for a new plant?
Should a certain distribution center remain open?
Should a certain site be selected for a new distribution center?

if yes
if no.

1
0
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If each market area is to be served by a single distribution center, then we also have an-
other kind of yes-or-no decision for each combination of a market area and a distribution
center.

Should a certain distribution center be assigned to serve a certain market area?

For each of the yes-or-no decisions of any of these kinds,

Its decision variable � �
Ault Foods Limited (July–August 1994 issue of Interfaces) used this approach to de-

sign its production and distribution center. Management considered 10 sites for plants,
13 sites for distribution centers, and 48 market areas. This application of BIP was cred-
ited with saving the company $200,000 per year.

Digital Equipment Corporation (January–February 1995 issue of Interfaces) provides
another example of an application of this kind. At the time, this large multinational corpo-
ration was serving one-quarter million customer sites, with more than half of its $14 billion
annual revenues coming from 81 countries outside the United States. Therefore, this appli-
cation involved restructuring the corporation’s entire global supply chain, consisting of its
suppliers, plants, distribution centers, potential sites, and market areas all around the world.
The restructuring generated annual cost reductions of $500 million in manufacturing and
$300 million in logistics, as well as a reduction of over $400 million in required capital
assets.

Dispatching Shipments

Once a production and distribution network has been designed and put into operation,
daily operating decisions need to be made about how to send the shipments. Some of these
decisions again are yes-or-no decisions.

For example, suppose that trucks are being used to transport the shipments and each
truck typically makes deliveries to several customers during each trip. It then becomes
necessary to select a route (sequence of customers) for each truck, so each candidate for
a route leads to the following yes-or-no decision.

Should a certain route be selected for one of the trucks?

Its decision variable � �
The objective would be to select the routes that would minimize the total cost of making
all the deliveries.

Various complications also can be considered. For example, if different truck sizes
are available, each candidate for selection would include both a certain route and a cer-
tain truck size. Similarly, if timing is an issue, a time period for the departure also can be
specified as part of the yes-or-no decision. With both factors, each yes-or-no decision
would have the form shown next.

Should all the following be selected simultaneously for a delivery run:

1. A certain route,
2. A certain size of truck, and
3. A certain time period for the departure?

Its decision variable � � if yes
if no.

1
0

if yes
if no.

1
0

if yes
if no.

1
0
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For example, Sears, Roebuck and Company (January–February 1999 issue of Inter-
faces) achieved annual savings of over $42 million by using a vehicle-routing-and-scheduling
system based on BIP and a geographic information system to run its delivery and home
service fleets more efficiently.

Scheduling Interrelated Activities

We all schedule interrelated activities in our everyday lives, even if it is just scheduling
when to begin our various homework assignments. So too, managers must schedule var-
ious kinds of interrelated activities. When should we begin production for various new or-
ders? When should we begin marketing various new products? When should we make
various capital investments to expand our production capacity?

For any such activity, the decision about when to begin can be expressed in terms of
a series of yes-or-no decisions, with one of these decisions for each of the possible time
periods in which to begin, as shown below.

Should a certain activity begin in a certain time period?

Its decision variable � �
Since a particular activity can begin in only one time period, the choice of the various
time periods provides a group of mutually exclusive alternatives, so the decision variable
for only one time period can have a value of 1.

For example, consider the following application that occurred in China (January–
February 1995 issue of Interfaces). China was facing at least $240 billion in new invest-
ments over a 15-year horizon to meet the energy needs of its rapidly growing economy.
Shortages of coal and electricity required developing new infrastructure for transporting
coal and transmitting electricity, as well as building new dams and plants for generating
thermal, hydro, and nuclear power. Therefore, the Chinese State Planning Commission
and the World Bank collaborated in developing a huge mixed BIP model to guide the de-
cisions on which projects to approve and when to undertake them over the 15-year plan-
ning period to minimize the total discounted cost. It is estimated that this OR application
is saving China about $6.4 billion over the 15 years.

Airline Applications

The airline industry is an especially heavy user of OR throughout its operations. Many
hundreds of OR professionals now work in this area. Major airline companies typically
have a large in-house department that works on OR applications. In addition, there are
some prominent consulting firms that focus solely on the problems of companies involved
with transportation, including especially airlines. We will mention here just two of the ap-
plications which specifically use BIP.

One is the fleet assignment problem. Given several different types of airplanes avail-
able, the problem is to assign a specific type to each flight leg in the schedule so as to
maximize the total profit from meeting the schedule. The basic trade-off is that if the air-
line uses an airplane that is too small on a particular flight leg, it will leave potential
customers behind, while if it uses an airplane that is too large, it will suffer the greater
expense of the larger airplane to fly empty seats.

For each combination of an airplane type and a flight leg, we have the following
yes-or-no decision.

Should a certain type of airplane be assigned to a certain flight leg?

Its decision variable � � if yes
if no.

1
0

if yes
if no.

1
0
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Delta Air Lines flies over 2,500 domestic flight legs every day, using about 450 air-
planes of 10 different types. As described in Selected Reference A12, they have used a
huge integer programming model (about 40,000 functional constraints, 20,000 binary
variables, and 40,000 general integer variables) to solve their fleet assignment problem
each time a change is needed. This application has saved Delta approximately $100 mil-
lion per year.

A fairly similar application is the crew scheduling problem. Here, rather than assigning
airplane types to flight legs, we are instead assigning sequences of flight legs to crews of
pilots and flight attendants. Thus, for each feasible sequence of flight legs that leaves from
a crew base and returns to the same base, the following yes-or-no decision must be made.

Should a certain sequence of flight legs be assigned to a crew?

Its decision variable � �
The objective is to minimize the total cost of providing crews that cover each flight leg
in the schedule.

American Airlines (July–August 1989 and January–February 1991 issues of Inter-
faces) achieved annual savings of over $20 million by using BIP to solve its crew sched-
uling problem on a monthly basis. This approach also is being used extensively by airline
companies headquartered outside the United States. For example, Air New Zealand
(January–February 2001 issue of Interfaces) saves approximately $6.7 million per year
by using BIP to optimize crew scheduling, as described further in an application vignette
in this section.

A full-fledged formulation example of this type will be presented at the end of Sec. 11.4.
A related problem for airline companies is that their crew schedules occasionally

need to be revised quickly when flight delays or cancellations occur because of in-
clement weather, aircraft mechanical problems, or crew unavailability. As described in
an application vignette in Sec. 2.2 (as well as in Selected Reference A14), Continental
Airlines achieved savings of $40 million in the first year of using an elaborate decision

if yes
if no.

1
0

Commercial airlines must solve two difficult scheduling
problems to ensure that aircrews are available for all
scheduled flights. One, called the tours-of-duty planning
problem, involves constructing sequences of flights with
interspersed rest periods that will comprise tours of duty
over perhaps many days for individual crews. The second
one, called the rostering problem, involves allocating
these tours of duty to individual crew members. Manage-
ment seeks minimum-cost or maximum-productivity
solutions for these problems that also satisfy labor agree-
ments and consider the preferences of crew members.

Many major airlines around the world have achieved
impressive savings in recent years by using BIP models
to obtain optimal solutions for these problems. One of
these airlines is Air New Zealand, which is the largest
national and international airline based in New Zealand.
It employs over 2,000 crew members and operates flights

to Australia, Asia, North America, and Europe, as well as
between the major centers within New Zealand.

The BIP models used by Air New Zealand typically
have hundreds of functional constraints and many thou-
sands of binary variables, where advanced techniques
are then used to solve these models. A conservative esti-
mate of the savings resulting from the use of these mod-
els is US$6.7 million per year, which accounted for 11 %
of the company’s operating profit in one recent year.
There also are many intangible benefits, including quick
implementations, efficiently accommodating late sched-
ule changes, and improved passenger service.

Source: E. R. Butchers, P. R. Day, A. P. Goldie, S. Miller,
J. A. Meyer, D. M. Ryan, A. C. Scott, and C. A. Wallace: “Opti-
mized Crew Scheduling at Air New Zealand,” Interfaces, 31(1):
30–56, Jan.–Feb. 2001. (A link to this article is provided on our
website, www.mhhe.com/hillier.)

An Application Vignette
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support system based on BIP for optimizing the reassignment of crews to flights when
such emergencies occur. (Continental Airlines won first prize among the 2002 Franz
Edelman Awards for Management Science Achievement for this innovative application.)

Many of the problems that face airline companies also arise in other segments of
the transportation industry. Therefore, some of the airline applications of OR are being
extended to these other segments, including railroad travel. For example, three of the
first-prize winners of the Franz Edelman Award for Management Science Achievement
in recent years have been for railroad applications by the national railroad of France, the
Canadian Pacific Railway, and Netherlands Railways that provided dramatic financial ben-
efits. (See the January–February 1998, January–February 2004, and January–February
2009 issues of Interfaces.) Selected Reference A1 also describes how Netherlands Rail-
ways (NS Reizigers) now is saving approximately $4.8 million per year by using BIP to
optimize its crew scheduling. 

■ 11.3 INNOVATIVE USES OF BINARY VARIABLES 
IN MODEL FORMULATION

You have just seen a number of examples where the basic decisions of the problem are
of the yes-or-no type, so that binary variables are introduced to represent these decisions.
We now will look at some other ways in which binary variables can be very useful. In
particular, we will see that these variables sometimes enable us to take a problem whose
natural formulation is intractable and reformulate it as a pure or mixed IP problem.

This kind of situation arises when the original formulation of the problem fits either
an IP or a linear programming format except for minor disparities involving combinatorial
relationships in the model. By expressing these combinatorial relationships in terms of
questions that must be answered yes or no, auxiliary binary variables can be introduced
to the model to represent these yes-or-no decisions. (Rather than being a decision variable
for the original problem under consideration, an auxiliary binary variable is a binary vari-
able that is introduced into the model of the problem simply to help formulate the model
as a pure or mixed BIP model.) Introducing these variables reduces the problem to an MIP
problem (or a pure IP problem if all the original variables also are required to have inte-
ger values).

Some cases that can be handled by this approach are discussed next, where the xj de-
note the original variables of the problem (they may be either continuous or integer variables)
and the yi denote the auxiliary binary variables that are introduced for the reformulation.

Either-Or Constraints

Consider the important case where a choice can be made between two constraints, so
that only one (either one) must hold (whereas the other one can hold but is not required
to do so). For example, there may be a choice as to which of two resources to use for a
certain purpose, so that it is necessary for only one of the two resource availability con-
straints to hold mathematically. To illustrate the approach to such situations, suppose that
one of the requirements in the overall problem is that

Either 3x1 � 2x2 � 18
or x1 � 4x2 � 16,

i.e., at least one of these two inequalities must hold but not necessarily both. This re-
quirement must be reformulated to fit it into the linear programming format where all
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specified constraints must hold. Let M be a very large positive number. Then this re-
quirement can be rewritten as

3x1 � 2x2 � 18
Either

x1 � 4x2 � 16 � M

3x1 � 2x2 � 18 � M
or

x1 � 4x2 � 16.

The key is that adding M to the right-hand side of such constraints has the effect of
eliminating them, because they would be satisfied automatically by any solutions that
satisfy the other constraints of the problem. (This formulation assumes that the set of
feasible solutions for the overall problem is a bounded set and that M is large enough
that it will not eliminate any feasible solutions.) This formulation is equivalent to the
set of constraints

3x1 � 2x2 � 18 � My
x1 � 4x2 � 16 � M(1 � y).

Because the auxiliary variable y must be either 0 or 1, this formulation guarantees that
one of the original constraints must hold while the other is, in effect, eliminated. This new
set of constraints would then be appended to the other constraints in the overall model to
give a pure or mixed IP problem (depending upon whether the xj are integer or continu-
ous variables).

This approach is related directly to our earlier discussion about expressing combina-
torial relationships in terms of questions that must be answered yes or no. The combina-
torial relationship involved concerns the combination of the other constraints of the model
with the first of the two alternative constraints and then with the second. Which of these
two combinations of constraints is better (in terms of the value of the objective function
that then can be achieved)? To rephrase this question in yes-or-no terms, we ask two com-
plementary questions:

1. Should x1 � 4x2 � 16 be selected as the constraint that must hold?
2. Should 3x1 � 2x2 � 18 be selected as the constraint that must hold?

Because exactly one of these questions is to be answered affirmatively, we let the binary
terms y and 1 � y, respectively, represent these yes-or-no decisions. Thus, y � 1 if the an-
swer is yes to the first question (and no to the second), whereas 1 � y � 1 (that is, y � 0)
if the answer is yes to the second question (and no to the first). Since y � 1 � y � 1 (one
yes) automatically, there is no need to add another constraint to force these two decisions
to be mutually exclusive. (If separate binary variables y1 and y2 had been used instead to
represent these yes-or-no decisions, then an additional constraint y1 � y2 � 1 would have
been needed to make them mutually exclusive.)

A formal presentation of this approach is given next for a more general case.

K out of N Constraints Must Hold

Consider the case where the overall model includes a set of N possible constraints such that
only some K of these constraints must hold. (Assume that K � N.) Part of the optimization
process is to choose the combination of K constraints that permits the objective function
to reach its best possible value. The N � K constraints not chosen are, in effect, elimi-
nated from the problem, although feasible solutions might coincidentally still satisfy some
of them.
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This case is a direct generalization of the preceding case, which had K � 1 and N � 2.
Denote the N possible constraints by

f1(x1, x2, . . . , xn) � d1

f2(x1, x2, . . . , xn) � d2

�

fN (x1, x2, . . . , xn) � dN.

Then, applying the same logic as for the preceding case, we find that an equivalent for-
mulation of the requirement that some K of these constraints must hold is

f1(x1, x2, . . . , xn) � d1 � My1

f2(x1, x2, . . . , xn) � d2 � My2

�

fN (x1, x2, . . . , xn) � dN � MyN

�
N

i�1
yi � N � K,

and

yi is binary, for i � 1, 2, . . . , N,

where M is an extremely large positive number. For each binary variable yi (i � 1, 2, . . . ,
N), note that yi � 0 makes Myi � 0, which reduces the new constraint i to the original con-
straint i. On the other hand, yi � 1 makes (di � Myi) so large that (again assuming a bounded
feasible region) the new constraint i is automatically satisfied by any solution that satisfies
the other new constraints, which has the effect of eliminating the original constraint i. There-
fore, because the constraints on the yi guarantee that K of these variables will equal 0 and
those remaining will equal 1, K of the original constraints will be unchanged and the other
(N � K) original constraints will, in effect, be eliminated. The choice of which K constraints
should be retained is made by applying the appropriate algorithm to the overall problem so
it finds an optimal solution for all the variables simultaneously.

Functions with N Possible Values

Consider the situation where a given function is required to take on any one of N given
values. Denote this requirement by

f (x1, x2, . . . , xn) � d1 or d2, . . . , or dN.

One special case is where this function is

f (x1, x2, . . . , xn) � �
n

j�1
ajxj,

as on the left-hand side of a linear programming constraint. Another special case is where
f (x1, x2, . . . , xn) � xj for a given value of j, so the requirement becomes that xj must take
on any one of N given values.

The equivalent IP formulation of this requirement is the following:

f (x1, x2, . . . , xn) � �
N

i�1
diyi

�
N

i�1
yi � 1
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and

yi is binary, for i � 1, 2, . . . , N.

so this new set of constraints would replace this requirement in the statement of the over-
all problem. This set of constraints provides an equivalent formulation because exactly one
yi must equal 1 and the others must equal 0, so exactly one di is being chosen as the value
of the function. In this case, there are N yes-or-no questions being asked, namely, should
di be the value chosen (i � 1, 2, . . . , N)? Because the yi respectively represent these yes-
or-no decisions, the second constraint makes them mutually exclusive alternatives.

To illustrate how this case can arise, reconsider the Wyndor Glass Co. problem pre-
sented in Sec. 3.1. Eighteen hours of production time per week in Plant 3 currently is un-
used and available for the two new products or for certain future products that will be
ready for production soon. In order to leave any remaining capacity in usable blocks for
these future products, management now wants to impose the restriction that the produc-
tion time used by the two current new products be 6 or 12 or 18 hours per week. Thus,
the third constraint of the original model (3x1 � 2x2 � 18) now becomes

3x1 � 2x2 � 6 or 12 or 18.

In the preceding notation, N � 3 with d1 � 6, d2 � 12, and d3 � 18. Consequently, man-
agement’s new requirement should be formulated as follows:

3x1 � 2x2 � 6y1 � 12y2 � 18y3

y1 � y2 � y3 � 1

and

y1, y2, y3 are binary.

The overall model for this new version of the problem then consists of the original model
(see Sec. 3.1) plus this new set of constraints that replaces the original third constraint.
This replacement yields a very tractable MIP formulation.

The Fixed-Charge Problem

It is quite common to incur a fixed charge or setup cost when undertaking an activity.
For example, such a charge occurs when a production run to produce a batch of a par-
ticular product is undertaken and the required production facilities must be set up to
initiate the run. In such cases, the total cost of the activity is the sum of a variable cost
related to the level of the activity and the setup cost required to initiate the activity. Fre-
quently the variable cost will be at least roughly proportional to the level of the activity.
If this is the case, the total cost of the activity (say, activity j) can be represented by a
function of the form

fj(xj) � �
where xj denotes the level of activity j (xj � 0), kj denotes the setup cost, and cj denotes
the cost for each incremental unit. Were it not for the setup cost kj, this cost structure would
suggest the possibility of a linear programming formulation to determine the optimal lev-
els of the competing activities. Fortunately, even with the kj, MIP can still be used.

To formulate the overall model, suppose that there are n activities, each with the pre-
ceding cost structure (with kj � 0 in every case and kj � 0 for some j � 1, 2, . . . , n), and
that the problem is to

Minimize Z � f1(x1) � f2(x2) � . . . � fn(xn),

if xj � 0
if xj � 0,

kj � cjxj

0
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subject to

given linear programming constraints.

To convert this problem to an MIP format, we begin by posing n questions that must
be answered yes or no; namely, for each j � 1, 2, . . . , n, should activity j be undertaken
(xj � 0)? Each of these yes-or-no decisions is then represented by an auxiliary binary vari-
able yj, so that

Z � �
n

j�1
(cjxj � kjyj),

where

yj � �
Therefore, the yj can be viewed as contingent decisions similar to (but not identical to)
the type considered in Sec. 11.1. Let M be an extremely large positive number that ex-
ceeds the maximum feasible value of any xj ( j � 1, 2, . . . , n). Then the constraints

xj � Myj for j � 1, 2, . . . , n

will ensure that yj � 1 rather than 0 whenever xj � 0. The one difficulty remaining is that
these constraints leave yj free to be either 0 or 1 when xj � 0. Fortunately, this difficulty
is automatically resolved because of the nature of the objective function. The case where
kj � 0 can be ignored because yj can then be deleted from the formulation. So we con-
sider the only other case, namely, where kj � 0. When xj � 0, so that the constraints per-
mit a choice between yj � 0 and yj � 1, yj � 0 must yield a smaller value of Z than 
yj � 1. Therefore, because the objective is to minimize Z, an algorithm yielding an opti-
mal solution would always choose yj � 0 when xj � 0.

To summarize, the MIP formulation of the fixed-charge problem is

Minimize Z � �
n

j�1
(cjxj � kjyj),

subject to

the original constraints, plus
xj � Myj � 0

and

yj is binary, for j � 1, 2, . . . , n.

If the xj also had been restricted to be integer, then this would be a pure IP problem.
To illustrate this approach, look again at the Nori & Leets Co. air pollution problem

described in Sec. 3.4. The first of the abatement methods considered—increasing the height
of the smokestacks—actually would involve a substantial fixed charge to get ready for any
increase in addition to a variable cost that would be roughly proportional to the amount of
increase. After conversion to the equivalent annual costs used in the formulation, this fixed
charge would be $2 million each for the blast furnaces and the open-hearth furnaces, whereas
the variable costs are those identified in Table 3.14. Thus, in the preceding notation, k1 � 2,
k2 � 2, c1 � 8, and c2 � 10, where the objective function is expressed in units of millions
of dollars. Because the other abatement methods do not involve any fixed charges, kj � 0
for j � 3, 4, 5, 6. Consequently, the new MIP formulation of this problem is

Minimize Z � 8x1 � 10x2 � 7x3 � 6x4 � 11x5 � 9x6 � 2y1 � 2y2,

if xj � 0
if xj � 0.

1
0
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subject to

the constraints given in Sec. 3.4, plus
x1 � My1 � 0,
x2 � My2 � 0,

and

y1, y2 are binary.

Binary Representation of General Integer Variables

Suppose that you have a pure IP problem where most of the variables are binary vari-
ables, but the presence of a few general integer variables prevents you from solving the
problem by one of the very efficient BIP algorithms now available. A nice way to cir-
cumvent this difficulty is to use the binary representation for each of these general inte-
ger variables. Specifically, if the bounds on an integer variable x are

0 � x � u

and if N is defined as the integer such that

2N � u � 2N�1,

then the binary representation of x is

x � �
N

i�0
2iyi,

where the yi variables are (auxiliary) binary variables. Substituting this binary represen-
tation for each of the general integer variables (with a different set of auxiliary binary
variables for each) thereby reduces the entire problem to a BIP model.

For example, suppose that an IP problem has just two general integer variables x1 and
x2 along with many binary variables. Also suppose that the problem has nonnegativity
constraints for both x1 and x2 and that the functional constraints include

x1 � 5
2x1 � 3x2 � 30.

These constraints imply that u � 5 for x1 and u � 10 for x2, so the above definition of N
gives N � 2 for x1 (since 22 � 5 � 23) and N � 3 for x2 (since 23 � 10 � 24). Therefore,
the binary representations of these variables are

x1 � y0 � 2y1 � 4y2

x2 � y3 � 2y4 � 4y5 � 8y6.

After we substitute these expressions for the respective variables throughout all the func-
tional constraints and the objective function, the two functional constraints noted above
become

y0 � 2y1 � 4y2 � 5
2y0 � 4y1 � 8y2 � 3y3 � 6y4 � 12y5 � 24y6 � 30.

Observe that each feasible value of x1 corresponds to one of the feasible values of the
vector (y0, y1, y2), and similarly for x2 and (y3, y4, y5, y6). For example, x1 � 3 corre-
sponds to (y0, y1, y2) � (1, 1, 0), and x2 � 5 corresponds to (y3, y4, y5, y6) � (1, 0, 1, 0).

For an IP problem where all the variables are (bounded) general integer variables, it
is possible to use this same technique to reduce the problem to a BIP model. However,
this is not advisable for most cases because of the explosion in the number of variables
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involved. Applying a good IP algorithm to the original IP model generally should be more
efficient than applying a good BIP algorithm to the much larger BIP model.1

In general terms, for all the formulation possibilities with auxiliary binary variables
discussed in this section, we need to strike the same note of caution. This approach some-
times requires adding a relatively large number of such variables, which can make the
model computationally infeasible. (Section 11.5 will provide some perspective on the sizes
of IP problems that can be solved.)

11.4 SOME FORMULATION EXAMPLES 479

1For evidence supporting this conclusion, see J. H. Owen and S. Mehrotra, “On the Value of Binary Expansions
for General Mixed lnteger Linear Programs,” Operations Research, 50: 810–819, 2002.

■ 11.4 SOME FORMULATION EXAMPLES

We now present a series of examples that illustrate a variety of formulation techniques
with binary variables, including those discussed in the preceding sections. For the sake of
clarity, these examples have been kept very small. (A somewhat larger formulation
example, with dozens of binary variables and constraints, is included in the Worked Ex-
amples section of the book’s website.) In actual applications, these formulations typically
would be just a small part of a vastly larger model.

EXAMPLE 1 Making Choices When the Decision Variables Are Continuous

The Research and Development Division of the GOOD PRODUCTS COMPANY has de-
veloped three possible new products. However, to avoid undue diversification of the com-
pany’s product line, management has imposed the following restriction.

Restriction 1: From the three possible new products, at most two should be
chosen to be produced.

Each of these products can be produced in either of two plants. For administrative reasons,
management has imposed a second restriction in this regard.

Restriction 2: Just one of the two plants should be chosen to be the sole producer
of the new products.

The production cost per unit of each product would be essentially the same in the two plants.
However, because of differences in their production facilities, the number of hours of pro-
duction time needed per unit of each product might differ between the two plants. These
data are given in Table 11.2, along with other relevant information, including marketing

■ TABLE 11.2 Data for Example 1 (the Good Products Co. problem)

Production Time Used
Production Timefor Each Unit Produced

Available
Product 1 Product 2 Product 3 per Week

Plant 1 3 hours 4 hours 2 hours 30 hours
Plant 2 4 hours 6 hours 2 hours 40 hours

Unit profit 5 7 3 (thousands of dollars)

Sales potential 7 5 9 (units per week)
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estimates of the number of units of each product that could be sold per week if it is pro-
duced. The objective is to choose the products, the plant, and the production rates of the
chosen products so as to maximize total profit.

In some ways, this problem resembles a standard product mix problem such as the
Wyndor Glass Co. example described in Sec. 3.1. In fact, if we changed the problem
by dropping the two restrictions and by requiring each unit of a product to use the
production hours given in Table 11.2 in both plants (so the two plants now perform dif-
ferent operations needed by the products), it would become just such a problem. In par-
ticular, if we let x1, x2, x3 be the production rates of the respective products, the model
then becomes

Maximize Z � 5x1 � 7x2 � 3x3,

subject to

3x1 � 4x2 � 2x3 � 30
4x1 � 6x2 � 2x3 � 40
x1 � 7

x2 � 5
x3 � 9

and

x1 � 0, x2 � 0, x3 � 0.

For the real problem, however, restriction 1 necessitates adding to the model the
constraint

The number of strictly positive decision variables (x1, x2, x3) must be � 2.

This constraint does not fit into a linear or an integer programming format, so the key
question is how to convert it to such a format so that a corresponding algorithm can be
used to solve the overall model. If the decision variables were binary variables, then the
constraint would be expressed in this format as x1 � x2 � x3 � 2. However, with con-
tinuous decision variables, a more complicated approach involving the introduction of aux-
iliary binary variables is needed.

Requirement 2 necessitates replacing the first two functional constraints (3x1 � 4x2

� 2x3 � 30 and 4x1 � 6x2 � 2x3 � 40) by the restriction

Either 3x1 � 4x2 � 2x3 � 30
or 4x1 � 6x2 � 2x3 � 40

must hold, where the choice of which constraint must hold corresponds to the choice of
which plant will be used to produce the new products. We discussed in the preceding sec-
tion how such an either-or constraint can be converted to a linear or an integer program-
ming format, again with the help of an auxiliary binary variable.

Formulation with Auxiliary Binary Variables. To deal with requirement 1, we intro-
duce three auxiliary binary variables (y1, y2, y3) with the interpretation

yj � � if xj � 0 can hold (can produce product j)
if xj � 0 must hold (cannot produce product j),

1
0
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for j � 1, 2, 3. To enforce this interpretation in the model with the help of M (an extremely
large positive number), we add the constraints

x1 � My1

x2 � My2

x3 � My3

y1 � y2 � y3 � 2
yj is binary, for j � 1, 2, 3.

The either-or constraint and nonnegativity constraints give a bounded feasible region 
for the decision variables (so each xj � M throughout this region). Therefore, in each 
xj � Myj constraint, yj � 1 allows any value of xj in the feasible region, whereas yj � 0
forces xj � 0. (Conversely, xj � 0 forces yj � 1, whereas xj � 0 allows either value of yj.)
Consequently, when the fourth constraint forces choosing at most two of the yj to equal 1,
this amounts to choosing at most two of the new products as the ones that can be produced.

To deal with requirement 2, we introduce another auxiliary binary variable y4 with
the interpretation

y4 � �
As discussed in Sec. 11.3, this interpretation is enforced by adding the constraints,

3x1 � 4x2 � 2x3 � 30 � My4

4x1 � 6x2 � 2x3 � 40 � M(1 � y4)
y4 is binary.

Consequently, after we move all variables to the left-hand side of the constraints, the
complete model is

Maximize Z � 5x1 � 7x2 � 3x3,

subject to

x1 � 7
x2 � 5
x3 � 9

x1 � My1 � 0
x2 � My2 � 0
x3 � My3 � 0

y1 � y2 � y3 � 2
3x1 � 4x2 � 2x3 � My4 � 30
4x1 � 6x2 � 2x3 � My4 � 40 � M

and

x1 � 0, x2 � 0, x3 � 0
yj is binary, for j � 1, 2, 3, 4.

This now is an MIP model, with three variables (the xj) not required to be integer and
four binary variables, so an MIP algorithm can be used to solve the model. When this is
done (after substituting a large numerical value for M),2 the optimal solution is y1 � 1,

if 4x1 � 6x2 � 2x3 � 40 must hold (choose Plant 2)
if 3x1 � 4x2 � 2x3 � 30 must hold (choose Plant 1).

1
0

11.4 SOME FORMULATION EXAMPLES 481

2In practice, some care is taken to choose a value for M that definitely is large enough to avoid eliminating any
feasible solutions, but as small as possible otherwise in order to avoid unduly enlarging the feasible region for
the LP relaxation (described in the next section) and to avoid numerical instability. For this example, a careful
examination of the constraints reveals that the minimum feasible value of M is M � 9.
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y2 � 0, y3 � 1, y4 � 1, x1 � 5�
1
2

�, x2 � 0, and x3 � 9; that is, choose products 1 and 3 to
produce, choose Plant 2 for the production, and choose the production rates of 5�

1
2

� units
per week for product 1 and 9 units per week for product 3. The resulting total profit is
$54,500 per week.

EXAMPLE 2 Violating Proportionality

The SUPERSUDS CORPORATION is developing its marketing plans for next year’s new
products. For three of these products, the decision has been made to purchase a total of
five TV spots for commercials on national television networks. The problem we will fo-
cus on is how to allocate the five spots to these three products, with a maximum of three
spots (and a minimum of zero) for each product.

Table 11.3 shows the estimated impact of allocating zero, one, two, or three spots to
each product. This impact is measured in terms of the profit (in units of millions of dol-
lars) from the additional sales that would result from the spots, considering also the cost
of producing the commercial and purchasing the spots. The objective is to allocate five
spots to the products so as to maximize the total profit.

This small problem can be solved easily by dynamic programming (Chap. 10) or even
by inspection. (The optimal solution is to allocate two spots to product 1, no spots to
product 2, and three spots to product 3.) However, we will show two different BIP for-
mulations for illustrative purposes. Such a formulation would become necessary if this
small problem needed to be incorporated into a larger IP model involving the allocation
of resources to marketing activities for all the corporation’s new products.

One Formulation with Auxiliary Binary Variables. A natural formulation would
be to let x1, x2, x3 be the number of TV spots allocated to the respective products. The
contribution of each xj to the objective function then would be given by the correspond-
ing column in Table 11.3. However, each of these columns violates the assumption of pro-
portionality described in Sec. 3.3. Therefore, we cannot write a linear objective function
in terms of these integer decision variables.

Now see what happens when we introduce an auxiliary binary variable yij for each
positive integer value of xi � j ( j � 1, 2, 3), where yij has the interpretation

yij � �
(For example, y21 � 0, y22 � 0, and y23 � 1 mean that x2 � 3.) The resulting linear BIP
model is

Maximize Z � y11 � 3y12 � 3y13 � 2y22 � 3y23 � y31 � 2y32 � 4y33,

if xi � j
otherwise.

1
0

■ TABLE 11.3 Data for Example 2 (the 
Supersuds Corp. problem)

Profit

Product
Number of
TV Spots 1 2 3

0 0 0 �0
1 1 0 �1
2 3 2 �2
3 3 3 �4
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subject to

y11 � y12 � y13 � 1
y21 � y22 � y23 � 1
y31 � y32 � y33 � 1

y11 � 2y12 � 3y13 � y21 � 2y22 � 3y23 � y31 � 2y32 � 3y33 � 5

and

each yij is binary.

Note that the first three functional constraints ensure that each xi will be assigned just
one of its possible values. (Here yi1 � yi2 � yi3 � 0 corresponds to xi � 0, which con-
tributes nothing to the objective function.) The last functional constraint ensures that 
x1 � x2 � x3 � 5. The linear objective function then gives the total profit according to
Table 11.3.

Solving this BIP model gives an optimal solution of

y11 � 0, y12 � 1, y13 � 0, so x1 � 2
y21 � 0, y22 � 0, y23 � 0, so x2 � 0
y31 � 0, y32 � 0, y33 � 1, so x3 � 3.

Another Formulation with Auxiliary Binary Variables. We now redefine the above
auxiliary binary variables yij as follows:

yij � �
Thus, the difference is that yij � 1 now if xi � j instead of xi � j. Therefore,

xi � 0 ⇒ yi1 � 0, yi2 � 0, yi3 � 0,
xi � 1 ⇒ yi1 � 1, yi2 � 0, yi3 � 0,
xi � 2 ⇒ yi1 � 1, yi2 � 1, yi3 � 0,
xi � 3 ⇒ yi1 � 1, yi2 � 1, yi3 � 1,
so xi � yi1 � yi2 � yi3

for i � 1, 2, 3. Because allowing yi2 � 1 is contingent upon yi1 � 1 and allowing yi3 � 1
is contingent upon yi2 � 1, these definitions are enforced by adding the constraints

yi2 � yi1 and yi3 � yi2, for i � 1, 2, 3.

The new definition of the yij also changes the objective function, as illustrated in
Fig. 11.1 for the product 1 portion of the objective function. Since y11, y12, y13 provide
the successive increments (if any) in the value of x1 (starting from a value of 0), the co-
efficients of y11, y12, y13 are given by the respective increments in the product 1 column
of Table 11.3 (1 � 0 � 1, 3 � 1 � 2, 3 � 3 � 0). These increments are the slopes in
Fig. 11.1, yielding 1y11 � 2y12 � 0y13 for the product 1 portion of the objective func-
tion. Note that applying this approach to all three products still must lead to a linear ob-
jective function.

After we bring all variables to the left-hand side of the constraints, the resulting com-
plete BIP model is

Maximize Z � y11 � 2y12 � 2y22 � y23 � y31 � 3y32 � 2y33,

if xi � j
otherwise.

1
0
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Profit from product 1 � 1y11 � 2y12 � 0y13

1 2 3 x1

4

3

2

1

0

Slope � 1

Slope � 2

Slope � 0

y11 y12 y13

■ FIGURE 11.1
The profit from the
additional sales of product 1
that would result from x1
TV spots, where the slopes
give the corresponding
coefficients in the objective
function for the second BIP
formulation for Example 2
(the Supersuds Corp.
problem).

subject to

y12 � y11 � 0
y13 � y12 � 0
y22 � y21 � 0
y23 � y22 � 0
y32 � y31 � 0
y33 � y32 � 0
y11 � y12 � y13 � y21 � y22 � y23 � y31 � y32 � y33 � 5

and

each yij is binary.

Solving this BIP model gives an optimal solution of

y11 � 1, y12 � 1, y13 � 0, so x1 � 2
y21 � 0, y22 � 0, y23 � 0, so x2 � 0
y31 � 1, y32 � 1, y33 � 1, so x3 � 3.

There is little to choose between this BIP model and the preceding one other than
personal taste. They have the same number of binary variables (the prime consideration
in determining computational effort for BIP problems). They also both have some special
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SOUTHWESTERN AIRWAYS needs to assign its crews to cover all its upcoming flights.
We will focus on the problem of assigning three crews based in San Francisco to the flights
listed in the first column of Table 11.4. The other 12 columns show the 12 feasible sequences
of flights for a crew. (The numbers in each column indicate the order of the flights.) Exactly
three of the sequences need to be chosen (one per crew) in such a way that every flight is
covered. (It is permissible to have more than one crew on a flight, where the extra crews
would fly as passengers, but union contracts require that the extra crews would still need to
be paid for their time as if they were working.) The cost of assigning a crew to a particular
sequence of flights is given (in thousands of dollars) in the bottom row of the table. The ob-
jective is to minimize the total cost of the three crew assignments that cover all the flights.

Formulation with Binary Variables. With 12 feasible sequences of flights, we have
12 yes-or-no decisions:

Should sequence j be assigned to a crew? ( j � 1, 2, . . . , 12)

Therefore, we use 12 binary variables to represent these respective decisions:

xj � �
The most interesting part of this formulation is the nature of each constraint that

ensures that a corresponding flight is covered. For example, consider the last flight in
Table 11.4 [Seattle to Los Angeles (LA)]. Five sequences (namely, sequences 6, 9, 10,
11, and 12) include this flight. Therefore, at least one of these five sequences must be
chosen. The resulting constraint is

x6 � x9 � x10 � x11 � x12 � 1.

Using similar constraints for the other 10 flights, the complete BIP model is

Minimize Z � 2x1 � 3x2 � 4x3 � 6x4 � 7x5 � 5x6 � 7x7 � 8x8 � 9x9

� 9x10 � 8x11 � 9x12,

if sequence j is assigned to a crew
otherwise.

1
0
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EXAMPLE 3 Covering All Characteristics

■ TABLE 11.4 Data for Example 3 (the Southwestern Airways problem)

Feasible Sequence of Flights

Flight 1 2 3 4 5 6 7 8 9 10 11 12

1. San Francisco to Los Angeles 1 1 1 1
2. San Francisco to Denver 1 1 1 1
3. San Francisco to Seattle 1 1 1 1
4. Los Angeles to Chicago 2 2 3 2 3
5. Los Angeles to San Francisco 2 3 5 5
6. Chicago to Denver 3 3 4
7. Chicago to Seattle 3 3 3 3 4
8. Denver to San Francisco 2 4 4 5
9. Denver to Chicago 2 2 2

10. Seattle to San Francisco 2 4 4 5
11. Seattle to Los Angeles 2 2 4 4 2

Cost, $1,000’s 2 3 4 6 7 5 7 8 9 9 8 9

structure (constraints for mutually exclusive alternatives in the first model and constraints
for contingent decisions in the second) that can lead to speedup. The second model does
have more functional constraints than the first.
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subject to

x1 � x4 � x7 � x10 � 1 (SF to LA)
x2 � x5 � x8 � x11 � 1 (SF to Denver)
x3 � x6 � x9 � x12 � 1 (SF to Seattle)

x4 � x7 � x9 � x10 � x12 � 1 (LA to Chicago)
x1 � x6 � x10 � x11 � 1 (LA to SF)

x4 � x5 � x9 � 1 (Chicago to Denver)
x7 � x8 � x10 � x11 � x12 � 1 (Chicago to Seattle)

x2 � x4 � x5 � x9 � 1 (Denver to SF)
x5 � x8 � x11 � 1 (Denver to Chicago)

x3 � x7 � x8 � x12 � 1 (Seattle to SF)
x6 � x9 � x10 � x11 � x12 � 1 (Seattle to LA)

�
12

j�1
xj � 3 (assign three crews)

and

xj is binary, for j � 1, 2, . . . , 12.

One optimal solution for this BIP model is

x3 � 1 (assign sequence 3 to a crew)
x4 � 1 (assign sequence 4 to a crew)

x11 � 1 (assign sequence 11 to a crew)

and all other xj � 0, for a total cost of $18,000. (Another optimal solution is x1 � 1,
x5 � 1, x12 � 1, and all other xj � 0.)

This example illustrates a broader class of problems called set covering problems.3

Any set covering problem can be described in general terms as involving a number of po-
tential activities (such as flight sequences) and characteristics (such as flights). Each ac-
tivity possesses some but not all of the characteristics. The objective is to determine the
least costly combination of activities that collectively possess (cover) each characteristic
at least once. Thus, let Si be the set of all activities that possess characteristic i. At least
one member of the set Si must be included among the chosen activities, so a constraint,

�
j�Si

xj � 1,

is included for each characteristic i.
A related class of problems, called set partitioning problems, changes each such

constraint to

�
j�Si

xj � 1,

so now exactly one member of each set Si must be included among the chosen activities.
For the crew scheduling example, this means that each flight must be included exactly
once among the chosen flight sequences, which rules out having extra crews (as passen-
gers) on any flight.

3Strictly speaking, a set covering problem does not include any other functional constraints such as the last func-
tional constraint in the above crew scheduling example. It also is sometimes assumed that every coefficient in
the objective function being minimized equals one, and then the name weighted set covering problem is used
when this assumption does not hold.
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It may seem that IP problems should be relatively easy to solve. After all, linear pro-
gramming problems can be solved extremely efficiently, and the only difference is that
IP problems have far fewer solutions to be considered. In fact, pure IP problems with a
bounded feasible region are guaranteed to have just a finite number of feasible solutions.

Unfortunately, there are two fallacies in this line of reasoning. One is that having a fi-
nite number of feasible solutions ensures that the problem is readily solvable. Finite num-
bers can be astronomically large. For example, consider the simple case of BIP problems.
With n variables, there are 2n solutions to be considered (where some of these solutions can
subsequently be discarded because they violate the functional constraints). Thus, each time
n is increased by 1, the number of solutions is doubled. This pattern is referred to as the
exponential growth of the difficulty of the problem. With n � 10, there are more than
1,000 solutions (1,024); with n � 20, there are more than 1,000,000; with n � 30, there
are more than 1 billion; and so forth. Therefore, even the fastest computers are incapable
of performing exhaustive enumeration (checking each solution for feasibility and, if it is
feasible, calculating the value of the objective value) for BIP problems with more than a
few dozen variables, let alone for general IP problems with the same number of integer
variables. Fortunately, by starting with the ideas described in subsequent sections, today’s
best IP algorithms are vastly superior to exhaustive enumeration. The improvement over
just the past two decades has been dramatic. BIP problems that would have required years
of computing time to solve 20 years ago now can be solved in seconds with today’s best
commercial software (such as CPLEX). This huge speedup is due to great progress in three
areas—dramatic improvements in BIP algorithms (as well as other IP algorithms), striking
improvements in linear programming algorithms that are heavily used within the integer pro-
gramming algorithms, and the great speedup in computers (including desktop computers). As
a result, vastly larger BIP problems now are sometimes being solved than would have been
possible in past decades. The best algorithms today are capable of solving some pure BIP
problems with over a hundred thousand variables. Nevertheless, because of exponential
growth, even the best algorithms cannot be guaranteed to solve every relatively small prob-
lem (less than a few hundred binary variables). Depending on their characteristics, certain
relatively small problems can be much more difficult to solve than some much larger ones.

When dealing with general integer variables instead of binary variables, the size of
the problems that can be solved tend to be substantially smaller. However, there are ex-
ceptions. For example, several years ago, the professional version of CPLEX 8.0 suc-
cessfully solved an IP problem with 215,000 general integer variables, 75,000 functional
constraints, and 6,000,000 nonzero constraint coefficients, and current versions of CPLEX
have become far more powerful.

The second fallacy is that removing some feasible solutions (the noninteger ones)
from a linear programming problem will make it easier to solve. To the contrary, it is only
because all these feasible solutions are there that the guarantee usually can be given
(see Sec. 5.1) that there will be a corner-point feasible (CPF) solution [and so a cor-
responding basic feasible (BF) solution] that is optimal for the overall problem. This guar-
antee is the key to the remarkable efficiency of the simplex method. As a result, linear
programming problems generally are considerably easier to solve than IP problems.

Consequently, most successful algorithms for integer programming incorporate a lin-
ear programming algorithm, such as the simplex method (or dual simplex method), as
much as they can by relating portions of the IP problem under consideration to the cor-
responding linear programming problem (i.e., the same problem except that the integer
restriction is deleted). For any given IP problem, this corresponding linear programming
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problem commonly is referred to as its LP relaxation. The algorithms presented in the
next two sections illustrate how a sequence of LP relaxations for portions of an IP prob-
lem can be used to solve the overall IP problem effectively.

There is one special situation where solving an IP problem is no more difficult than
solving its LP relaxation once by the simplex method, namely, when the optimal solution
to the latter problem turns out to satisfy the integer restriction of the IP problem. When
this situation occurs, this solution must be optimal for the IP problem as well, because it
is the best solution among all the feasible solutions for the LP relaxation, which includes
all the feasible solutions for the IP problem. Therefore, it is common for an IP algorithm
to begin by applying the simplex method to the LP relaxation to check whether this for-
tuitous outcome has occurred.

Although it generally is quite fortuitous indeed for the optimal solution to the LP re-
laxation to be integer as well, there actually exist several special types of IP problems for
which this outcome is guaranteed. You already have seen the most prominent of these
special types in Chaps. 8 and 9, namely, the minimum cost flow problem (with integer pa-
rameters) and its special cases (including the transportation problem, the assignment prob-
lem, the shortest-path problem, and the maximum flow problem). This guarantee can be
given for these types of problems because they possess a certain special structure (e.g., see
Table 8.6) that ensures that every BF solution is integer, as stated in the integer solutions
property given in Secs. 8.1 and 9.6. Consequently, these special types of IP problems can

Taco Bell Corporation has over 6,500 quick-service
restaurants in the United States and a growing interna-
tional market. It serves approximately 2 billion meals
per year, generating about $5.4 billion in annual sales
income.

At each Taco Bell restaurant, the amount of business is
highly variable throughout the day (and from day to day),
with a heavy concentration during the normal meal times.
Therefore, determining how many employees should be
scheduled to perform what functions in the restaurant at any
given time is a complex and vexing problem.

To attack this problem, Taco Bell management
instructed an OR team (including several consultants) to
develop a new labor-management system. The team con-
cluded that the system needed three major components:
(1) a forecasting model for predicting customer transac-
tions at any time, (2) a simulation model (such as those
described in Chap. 20) to translate customer transactions
to labor requirements, and (3) an integer programming
model to schedule employees to satisfy labor require-
ments and minimize payroll.

The integer decision variables for this integer pro-
gramming model for any restaurant are the number of
employees assigned to each of the shifts that begin at var-
ious specified times. The lengths of these shifts also are
decision variables (constrained to be between minimum

and maximum permissible shift lengths), but continuous
decision variables in this case, so the model is a mixed IP
model. The main constraints specify that the number of
employees working during each 15-minute time interval
must be greater than or equal to the minimum number
required during that interval (according to the forecasting
model).

This MIP model is similar to the linear program-
ming model for assigning employees to shifts at United
Airlines facilities that is described in an application
vignette in Sec. 3.4. However, the key difference is that
the number of employees working shifts at Taco Bell
restaurants is much smaller than the number at United
Airlines facilities, so it is necessary to restrict these deci-
sion variables to integer values for the Taco Bell model
(whereas noninteger values in a solution for the United
Airlines can readily be rounded to integer values with lit-
tle loss of accuracy).

The implementation of this MIP model along with
the other components of the labor-management system
has provided Taco Bell with documented savings of $13
million per year in labor costs.

Source: J. Hueter and W. Swart: “An Integrated Labor-
Management System for Taco Bell,” Interfaces, 28(1): 75–91,
Jan.–Feb. 1998. (A link to this article is provided on our web-
site, www.mhhe.com/hillier.)

An Application Vignette

hil76299_ch11_464-536.qxd  11/19/08  08:33 AM  Page 488



Rev.Confirming Pages

11.5 SOME PERSPECTIVES ON SOLVING INTEGER PROGRAMMING 489

be treated as linear programming problems, because they can be solved completely by a
streamlined version of the simplex method.

Although this much simplification is somewhat unusual, in practice IP problems
frequently have some special structure that can be exploited to simplify the problem.
(Examples 2 and 3 in the preceding section fit into this category, because of their mu-
tually exclusive alternatives constraints or contingent decisions constraints or set-covering
constraints.) Sometimes, very large versions of these problems can be solved success-
fully. Special-purpose algorithms designed specifically to exploit certain kinds of spe-
cial structures are becoming increasingly important in integer programming.

Thus, the three primary determinants of computational difficulty for an IP problem
are (1) the number of integer variables, (2) whether these integer variables are binary vari-
ables or general integer variables, and (3) any special structure in the problem. This sit-
uation is in contrast to linear programming, where the number of (functional) constraints
is much more important than the number of variables. In integer programming, the num-
ber of constraints is of some importance (especially if LP relaxations are being solved),
but it is strictly secondary to the other three factors. In fact, there occasionally are cases
where increasing the number of constraints decreases the computation time because the
number of feasible solutions has been reduced. For MIP problems, it is the number of in-
teger variables rather than the total number of variables that is important, because the con-
tinuous variables have almost no effect on the computational effort.

Because IP problems are, in general, much more difficult to solve than linear pro-
gramming problems, sometimes it is tempting to use the approximate procedure of sim-
ply applying the simplex method to the LP relaxation and then rounding the noninteger
values to integers in the resulting solution. This approach may be adequate for some ap-
plications, especially if the values of the variables are quite large so that rounding creates
relatively little error. However, you should beware of two pitfalls involved in this approach.

One pitfall is that an optimal linear programming solution is not necessarily feasible
after it is rounded. Often it is difficult to see in which way the rounding should be done
to retain feasibility. It may even be necessary to change the value of some variables by
one or more units after rounding. To illustrate, consider the following problem:

Maximize Z � x2,

subject to

�x1 � x2 � �
1
2

�

�x1 � x2 � 3�
1
2

�

and

x1 � 0, x2 � 0
x1, x2 are integers.

As Fig. 11.2 shows, the optimal solution for the LP relaxation is x1 � 1�
1
2

�, x2 � 2, but it is
impossible to round the noninteger variable x1 to 1 or 2 (or any other integer) and retain
feasibility. Feasibility can be retained only by also changing the integer value of x2. It is
easy to imagine how such difficulties can be compounded when there are tens or hun-
dreds of constraints and variables.

Even if an optimal solution for the LP relaxation is rounded successfully, there re-
mains another pitfall. There is no guarantee that this rounded solution will be the optimal
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integer solution. In fact, it may even be far from optimal in terms of the value of the ob-
jective function. This fact is illustrated by the following problem:

Maximize Z � x1 � 5x2,

subject to

x1 � 10x2 � 20
x1 � 2

and

x1 � 0, x2 � 0
x1, x2 are integers.

Because there are only two decision variables, this problem can be depicted graphically
as shown in Fig. 11.3. Either the graph or the simplex method may be used to find that
the optimal solution for the LP relaxation is x1 � 2, x2 � �

9
5

�, with Z � 11. If a graphical
solution were not available (which would be the case with more decision variables), then
the variable with the noninteger value x2 � �

9
5

� would normally be rounded in the feasible
direction to x2 � 1. The resulting integer solution is x1 � 2, x2 � 1, which yields Z � 7.
Notice that this solution is far from the optimal solution (x1, x2) � (0, 2), where Z � 10.

Because of these two pitfalls, a better approach for dealing with IP problems that are
too large to be solved exactly is to use one of the available heuristic algorithms. These
algorithms are extremely efficient for large problems, but they are not guaranteed to find
an optimal solution. However, they do tend to be considerably more effective than the
rounding approach just discussed in finding very good feasible solutions.

One of the particularly exciting developments in OR in recent years has been the rapid
progress in developing very effective heuristic algorithms (commonly called metaheuristics)

1 2 3 4 x1

3

2

1

0

The rounded solutions
are not feasible

3
2

( , 2)

Optimal solution for
the LP relaxation

Feasible region for
the LP relaxation

x2

■ FIGURE 11.2
An example of an IP problem
where the optimal solution
for the LP relaxation cannot
be rounded in any way that
retains feasibility.
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■ 11.6 THE BRANCH-AND-BOUND TECHNIQUE AND ITS APPLICATION 
TO BINARY INTEGER PROGRAMMING

Because any bounded pure IP problem has only a finite number of feasible solutions, it
is natural to consider using some kind of enumeration procedure for finding an optimal
solution. Unfortunately, as we discussed in the preceding section, this finite number can be,
and usually is, very large. Therefore, it is imperative that any enumeration procedure be clev-
erly structured so that only a tiny fraction of the feasible solutions actually need be ex-
amined. For example, dynamic programming (see Chap. 10) provides one such kind of
procedure for many problems having a finite number of feasible solutions (although it is
not particularly efficient for most IP problems). Another such approach is provided by the
branch-and-bound technique. This technique and variations of it have been applied with

1 2 3 x1

x2

3

2

1

0

Z* � 10 � x1 � 5x2

Rounded solution

Optimal IP solution

Optimal solution for
the LP relaxation

■ FIGURE 11.3
An example where rounding
the optimal solution for the
LP relaxation is far from
optimal for the IP problem.

for various combinatorial problems such as IP problems. Three prominent types of meta-
heuristics (tabu search, simulated annealing, and genetic algorithms) will be described in
Chap. 13. These sophisticated metaheuristics can even be applied to integer nonlinear pro-
gramming problems that have locally optimal solutions that may be far removed from a
globally optimal solution. They also can be applied to various combinatorial optimization
problems, which frequently can be represented in a model that has integer variables but also
has some constraints that are more complicated than for an IP model. (We’ll discuss such
applications further in Chap. 13.)

Returning to integer linear programming, for IP problems that are small enough to
be solved to optimality, a considerable number of algorithms now are available. However,
no IP algorithm possesses computational efficiency that is nearly comparable to the sim-
plex method (except on special types of problems). Therefore, developing IP algorithms
has continued to be an active area of research. Fortunately, some exciting algorithmic
advances have been made and additional progress can be anticipated during the coming
years. These advances are discussed further in Secs. 11.8 and 11.9.

The most popular traditional mode for IP algorithms is to use the branch-and-bound
technique and related ideas to implicitly enumerate the feasible integer solutions, and we
shall focus on this approach. The next section presents the branch-and-bound technique in
a general context, and illustrates it with a basic branch-and-bound algorithm for BIP prob-
lems. Section 11.7 presents another algorithm of the same type for general MIP problems.
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some success to a variety of OR problems, but it is especially well known for its appli-
cation to IP problems.

The basic concept underlying the branch-and-bound technique is to divide and con-
quer. Since the original “large” problem is too difficult to be solved directly, it is divided
into smaller and smaller subproblems until these subproblems can be conquered. The di-
viding (branching) is done by partitioning the entire set of feasible solutions into smaller
and smaller subsets. The conquering ( fathoming) is done partially by bounding how good
the best solution in the subset can be and then discarding the subset if its bound indicates
that it cannot possibly contain an optimal solution for the original problem.

We shall now describe in turn these three basic steps—branching, bounding, and
fathoming—and illustrate them by applying a branch-and-bound algorithm to the proto-
type example (the California Manufacturing Co. problem) presented in Sec. 11.1 and re-
peated here (with the constraints numbered for later reference).

Maximize Z � 9x1 � 5x2 � 6x3 � 4x4,

subject to

(1) 6x1 � 3x2 � 5x3 � 2x4 � 10
(2) 3 � 3x2 � 5x3 � 2x4 � 1
(3) �x1 � 3x3 � 0
(4) x1 ��x2 � 5x3 � x4 � 0

and

(5) xj is binary, for j � 1, 2, 3, 4.

Branching

When you are dealing with binary variables, the most straightforward way to partition the
set of feasible solutions into subsets is to fix the value of one of the variables (say, x1) at
x1 � 0 for one subset and at x1 � 1 for the other subset. Doing this for the prototype ex-
ample divides the whole problem into the two smaller subproblems shown next.

Subproblem 1:
Fix x1 � 0 so the resulting subproblem reduces to

Maximize Z � 5x2 � 6x3 � 4x4,

subject to

(1) 3x2 � 5x3 � 2x4 � 10
(2) x3 � x4 � 1
(3) x3 � 0
(4) �x2 5x3 � x4 � 0
(5) xj is binary, for j � 2, 3, 4.

Subproblem 2:
Fix x1 � 1 so the resulting subproblem reduces to

Maximize Z � 9 � 5x2 � 6x3 � 4x4,

subject to

(1) 3x2 � 5x3 � 2x4 � 4
(2) x3 � x4 � 1
(3) x3 � 1
(4) �x2 5x3 � x4 � 0
(5) xj is binary, for j � 2, 3, 4.
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Figure 11.4 portrays this dividing (branching) into subproblems by a tree (defined in
Sec. 9.2) with branches (arcs) from the All node (corresponding to the whole problem
having all feasible solutions) to the two nodes corresponding to the two subproblems.
This tree, which will continue “growing branches” iteration by iteration, is referred to as
the branching tree (or solution tree or enumeration tree) for the algorithm. The variable
used to do this branching at any iteration by assigning values to the variable (as with x1

above) is called the branching variable. (Sophisticated methods for selecting branching
variables are an important part of most branch-and-bound algorithms but, for simplicity,
we always select them in their natural order—x1, x2, . . . , xn—throughout this section.)

Later in the section you will see that one of these subproblems can be conquered
(fathomed) immediately, whereas the other subproblem will need to be divided further
into smaller subproblems by setting x2 � 0 or x2 � 1.

For other IP problems where the integer variables have more than two possible
values, the branching can still be done by setting the branching variable at its respective in-
dividual values, thereby creating more than two new subproblems. However, a good al-
ternate approach is to specify a range of values (for example, xj � 2 or xj � 3) for the
branching variable for each new subproblem. This is the approach used for the algorithm
presented in Sec. 11.7.

Bounding

For each of these subproblems, we now need to obtain a bound on how good its best fea-
sible solution can be. The standard way of doing this is to quickly solve a simpler relax-
ation of the subproblem. In most cases, a relaxation of a problem is obtained simply by
deleting (“relaxing”) one set of constraints that had made the problem difficult to solve.
For IP problems, the most troublesome constraints are those requiring the respective vari-
ables to be integer. Therefore, the most widely used relaxation is the LP relaxation that
deletes this set of constraints.

To illustrate for the example, consider first the whole problem given in Sec. 11.1 (and
repeated at the beginning of this section). Its LP relaxation is obtained by replacing the last
line of the model (xj is binary, for j � 1, 2, 3, 4) by the following new (relaxed) version of
this constraint (5).

(5) 0 � xj � 1, for j � 1, 2, 3, 4.

Using the simplex method to quickly solve this LP relaxation yields its optimal solution

(x1, x2, x3, x4) � ��
5
6

�, 1, 0, 1�, with Z � 16�
1
2

�.

Therefore, Z � 16�
1
2

� for all feasible solutions for the original BIP problem (since these so-
lutions are a subset of the feasible solutions for the LP relaxation). In fact, as indicated
later in the summary of the algorithm, this bound of 16�

1
2

� can be rounded down to 16, be-
cause all coefficients in the objective function are integer, so all integer solutions must
have an integer value for Z.

Bound for whole problem: Z � 16.

Now let us obtain the bounds for the two subproblems in the same way. For subprob-
lem 1, where x1 has been fixed at x1 � 0, this can be conveniently expressed in its LP
relaxation by adding the constraint that x1 � 0 since combining this with the current con-
straint that 0 � x1 � 1 forces x1 � 0. Similarly, fixing x1 at x1 � 1 for subproblem 2 leads
to adding the constraint that x1 � 1 for its LP relaxation. Applying the simplex method
then yields the optimal solutions shown below for these LP relaxations.
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All

x1 = 1

x1Variable:

x1 = 0

■ FIGURE 11.4
The branching tree created
by the branching for the first
iteration of the BIP branch-
and-bound algorithm for the
example in Sec. 11.1.
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LP relaxation of subproblem 1: (5) x1 � 0  and   0 � xj � 1 for j � 1, 2, 3, 4.

Optimal solution: (x1, x2, x3, x4) � (0, 1, 0, 1) with Z � 9.

LP relaxation of subproblem 2: (5) x1 � 1  and   0 � xj � 1 for j � 1, 2, 3, 4.

Optimal solution: (x1, x2, x3, x4) � �1, �
4
5

�, 0, �
4
5

�� with Z � 16�
1
5

�.

The resulting bounds for the subproblems then are

Bound for subproblem 1: Z � 9,
Bound for subproblem 2: Z � 16.

Figure 11.5 summarizes these results, where the numbers given just below the nodes
are the bounds and below each bound is the optimal solution obtained for the LP relaxation.

Fathoming

A subproblem can be conquered (fathomed), and thereby dismissed from further consid-
eration, in the three ways described below.

One way is illustrated by the results for subproblem 1 given by the x1 � 0 node in
Fig. 11.5. Note that the (unique) optimal solution for its LP relaxation, (x1, x2, x3, x4) � (0, 1,
0, 1), is an integer solution. Therefore, this solution must also be the optimal solution for sub-
problem 1 itself. This solution should be stored as the first incumbent (the best feasible so-
lution found so far) for the whole problem, along with its value of Z. This value is denoted by

Z* � value of Z for current incumbent,

so Z* � 9 at this point. Since this solution has been stored, there is no reason to consider
subproblem 1 any further by branching from the x1 � 0 node, etc. Doing so could only
lead to other feasible solutions that are inferior to the incumbent, and we have no inter-
est in such solutions. Because it has been solved, we fathom (dismiss) subproblem 1 now.

The above results suggest a second key fathoming test. Since Z* � 9, there is no rea-
son to consider further any subproblem whose bound (after rounding down) � 9, since
such a subproblem cannot have a feasible solution better than the incumbent. Stated more
generally, a subproblem is fathomed whenever its

Bound � Z*.

This outcome does not occur in the current iteration of the example because subproblem 2
has a bound of 16 that is larger than 9. However, it might occur later for descendants of
this subproblem (new smaller subproblems created by branching on this subproblem, and
then perhaps branching further through subsequent “generations”). Furthermore, as new in-
cumbents with larger values of Z* are found, it will become easier to fathom in this way.

The third way of fathoming is quite straightforward. If the simplex method finds that
a subproblem’s LP relaxation has no feasible solutions, then the subproblem itself must
have no feasible solutions, so it can be dismissed (fathomed).

In all three cases, we are conducting our search for an optimal solution by retaining
for further investigation only those subproblems that could possibly have a feasible solu-
tion better than the current incumbent.

Summary of Fathoming Tests. A subproblem is fathomed (dismissed from further
consideration) if

Test 1: Its bound � Z*,
or
Test 2: Its LP relaxation has no feasible solutions,

All

x1Variable:

9
(0, 1, 0, 1)

5
6(   , 1, 0, 1               )

16

4
5

4
5(                )

16

1, , 0,

x1 = 0

x1 = 1

■ FIGURE 11.5
The results of bounding for
the first iteration of the BIP
branch-and-bound algorithm
for the example in Sec. 11.1.
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or
Test 3: The optimal solution for its LP relaxation is integer. (If this solution is better

than the incumbent, it becomes the new incumbent, and test 1 is reapplied to all unfathomed
subproblems with the new larger Z*.)

Figure 11.6 summarizes the results of applying these three tests to subproblems 1 and
2 by showing the current branching tree. Only subproblem 1 has been fathomed, by test 3,
as indicated by F(3) next to the x1 � 0 node. The resulting incumbent also is identified be-
low this node.

The subsequent iterations will illustrate successful applications of all three tests. How-
ever, before continuing the example, we summarize the algorithm being applied to this
BIP problem. (This algorithm assumes that the objective function is to be maximized, that
all coefficients in the objective function are integer and, for simplicity, that the ordering
of the variables for branching is x1, x2, . . . , xn. As noted previously, most branch-and-bound
algorithms use sophisticated methods for selecting branching variables instead.)

Summary of the BIP Branch-and-Bound Algorithm

Initialization: Set Z* � �	. Apply the bounding step, fathoming step, and opti-
mality test described below to the whole problem. If not fathomed, classify this prob-
lem as the one remaining “subproblem” for performing the first full iteration below.

Steps for each iteration:

1. Branching: Among the remaining (unfathomed) subproblems, select the one that was
created most recently. (Break ties according to which has the larger bound.) Branch
from the node for this subproblem to create two new subproblems by fixing the next
variable (the branching variable) at either 0 or 1.

2. Bounding: For each new subproblem, apply the simplex method to its LP relaxation to
obtain an optimal solution, including the value of Z, for this LP relaxation. If this value
of Z is not an integer, round it down to an integer. (If it was already an integer, no change
is needed.) This integer value of Z is the bound for the subproblem.

3. Fathoming: For each new subproblem, apply the three fathoming tests summarized
above, and discard those subproblems that are fathomed by any of the tests.

Optimality test: Stop when there are no remaining subproblems; the current
incumbent is optimal.4 Otherwise, return to perform another iteration.
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4If there is no incumbent, the conclusion is that the problem has no feasible solutions.

All

x1Variable:

     9 � Z*
(0, 1, 0, 1) � incumbent

16

16

F(3)

x1 = 1

x1 = 0

■ FIGURE 11.6
The branching tree after the
first iteration of the BIP
branch-and-bound algorithm
for the example in Sec. 11.1.
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The branching step for this algorithm warrants a comment as to why the subproblem to
branch from is selected in this way. One option not used here (but sometimes adopted in other
branch-and-bound algorithms) would have been always to select the remaining subproblem
with the best bound, because this subproblem would be the most promising one to contain
an optimal solution for the whole problem. The reason for instead selecting the most recently
created subproblem is that LP relaxations are being solved in the bounding step. Rather than
start the simplex method from scratch each time, each LP relaxation generally is solved by
reoptimization in large-scale implementations of this algorithm. This reoptimization involves
revising the final simplex tableau from the preceding LP relaxation as needed because of the
few differences in the model ( just as for sensitivity analysis) and then applying a few itera-
tions of perhaps the dual simplex method. This reoptimization tends to be much faster than
starting from scratch, provided the preceding and current models are closely related. The mod-
els will tend to be closely related under the branching rule used, but not when you are skip-
ping around in the branching tree by selecting the subproblem with the best bound.

Completing the Example

The pattern for the remaining iterations will be quite similar to that for the first iteration de-
scribed above except for the ways in which fathoming occurs. Therefore, we shall summa-
rize the branching and bounding steps fairly briefly and then focus on the fathoming step.

Iteration 2. The only remaining subproblem corresponds to the x1 � 1 node in Fig. 11.6,
so we shall branch from this node to create the two new subproblems given below.

Subproblem 3:
Fix x1 � 1, x2 � 0 so the resulting subproblem reduces to

Maximize Z � 9 � 6x3 � 4x4,

subject to

(1) 5x3 � 2x4 � 4
(2) x3 � x4 � 1
(3) x3 � 1
(4) x4 � 0
(5) xj is binary, for j � 3, 4.

Subproblem 4:
Fix x1 � 1, x2 � 1 so the resulting subproblem reduces to

Maximize Z � 14 � 6x3 � 4x4,

subject to

(1) 5x3 � 2x4 � 1
(2) x3 � x4 � 1
(3) x3 � 1
(4) x4 � 1
(5) xj is binary, for j � 3, 4.

The LP relaxations of these subproblems are obtained by adding the additional con-
straint shown below into the relaxed version of constraint (5). Their optimal solutions also
are shown below.

LP relaxation of subproblem 3: (5) x1 � 1, x2 � 0, and   0 � xj � 1

for j � 1, 2, 3, 4.
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Optimal solution: (x1, x2, x3, x4) � �1, 0, �
4
5

�, 0� with Z � 13�
4
5

�,

LP relaxation of subproblem 4: (5) x1 � 1, x2 � 1, and   0 � xj � 1

for j � 1, 2, 3, 4.

Optimal solution: (x1, x2, x3, x4) � �1, 1, 0, �
1
2

�� with Z � 16.

The resulting bounds for the subproblems are

Bound for subproblem 3: Z � 13,
Bound for subproblem 4: Z � 16.

Note that both these bounds are larger than Z* � 9, so fathoming test 1 fails in both
cases. Test 2 also fails, since both LP relaxations have feasible solutions (as indicated by
the existence of an optimal solution). Alas, test 3 fails as well, because both optimal so-
lutions include variables with noninteger values.

Figure 11.7 shows the resulting branching tree at this point. The lack of an F to the
right of either new node indicates that both remain unfathomed.

Iteration 3. So far, the algorithm has created four subproblems. Subproblem 1 has been
fathomed, and subproblem 2 has been replaced by (separated into) subproblems 3 and 4,
but these last two remain under consideration. Because they were created simultaneously,
but subproblem 4 (x1 � 1, x2 � 1) has the larger bound (16 � 13), the next branching is
done from the (x1, x2) � (1, 1) node in the branching tree, which creates the following
new subproblems (where constraint 3 disappears because it does not contain x4).

Subproblem 5:
Fix x1 � 1, x2 � 1, x3 � 0 so the resulting subproblem reduces to

Maximize Z � 14 � 4x4,

subject to

(1) 2x4 � 1
(2), (4) x4 � 1 (twice)
(5) x4 is binary.

All

x1 x2Variable:

     9 � Z*
(0, 1, 0, 1) � incumbent

16

16

F(3)

4
5(                  )  1, 0,

13

, 0

16
1
2(           )1, 1, 0,

x1 = 1

x1 = 0

x2 = 1

x2 = 0

■ FIGURE 11.7
The branching tree after
iteration 2 of the BIP branch-
and-bound algorithm for the
example in Sec. 11.1.
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Subproblem 6:
Fix x1 � 1, x2 � 1, x3 � 1 so the resulting subproblem reduces to

Maximize Z � 20 � 4x4,

subject to

(1) 2x4 � �4
(2) x4 � �0
(4) x4 � �1
(5) x4 is binary.

The corresponding LP relaxations have the relaxed version of constraint (5), the op-
timal solution, and the bound (when it exists) shown below.

LP relaxation of subproblem 5:

(5) x1 � 1, x2 � 1, x3 � 0, and   0 � xj � 1
for j � 1, 2, 3, 4.

Optimal solution: (x1, x2, x3, x4) � �1, 1, 0, �
1
2

��, with Z � 16.

Bound: Z � 16.

LP relaxation of subproblem 6:
(5) x1 � 1, x2 � 1, x3 � 1, and   0 � xj � 1

for j � 1, 2, 3, 4.

Optimal solution: None since there are no feasible solutions.

Bound: None

For both of these subproblems, the relaxed version of constraint (5) has the effect of fixing
the values of x1, x2, and x3 at the desired values and then requiring that 0 � x4 � 1.
Therefore, the LP relaxations for these subproblems reduce to the statements of the
subproblems given above except for replacing constraint (5) by 0 � x4 � 1. Reducing
these LP relaxations to one-variable problems (plus the fixed values of x1, x2, and x3) make
it easy to see that the optimal solution for the LP relaxation of subproblem 5 is indeed
the one given above. Similarly, note how the combination of constraint 1 and 0 � x4 � 1
in the LP relaxation of subproblem 6 prevents any feasible solutions. Therefore, this
subproblem is fathomed by test 2. However, subproblem 5 fails this test, as well as test 1
(16 � 9) and test 3 (x4 � �

1
2

� is not integer), so it remains under consideration.
We now have the branching tree shown in Fig. 11.8.

Iteration 4. The subproblems corresponding to nodes (1, 0) and (1, 1, 0) in Fig. 11.8
remain under consideration, but the latter node was created more recently, so it is selected
for branching from next. Since the resulting branching variable x4 is the last variable, fix-
ing its value at either 0 or 1 actually creates a single solution rather than subproblems re-
quiring fuller investigation. These single solutions are

x4 � 0: (x1, x2, x3, x4) � (1, 1, 0, 0) is feasible, with Z � 14,
x4 � 1: (x1, x2, x3, x4) � (1, 1, 0, 1) is infeasible.

Formally applying the fathoming tests, we see that the first solution passes test 3 and the
second passes test 2. Furthermore, this feasible first solution is better than the incumbent
(14 � 9), so it becomes the new incumbent, with Z* � 14.

Because a new incumbent has been found, we now reapply fathoming test 1 with the
new larger value of Z* to the only remaining subproblem, the one at node (1, 0).
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Subproblem 3:

Bound � 13 � Z* � 14.

Therefore, this subproblem now is fathomed.
We now have the branching tree shown in Fig. 11.9. Note that there are no remain-

ing (unfathomed) subproblems. Consequently, the optimality test indicates that the cur-
rent incumbent

(x1, x2, x3, x4) � (1, 1, 0, 0)

is optimal, so we are done.
Your OR Tutor includes another example of applying this algorithm. Also in-

cluded in the IOR Tutorial is an interactive procedure for executing this algorithm. As
usual, the Excel, LINGO/LINDO, and MPL/CPLEX files for this chapter in your OR

11.6 THE BRANCH-AND-BOUND TECHNIQUE AND ITS APPLICATION 499

All

x1 x2 x3 x4Variable:

9

16
F(3)F(1)

16

F(2)

14 � Z*
(1, 1, 0, 0) � incumbent

� optimal solution

F(3)x1 = 0

16

x1 = 1
13

x2 = 0

x3 = 1

x3 = 0

F(2)x4 = 1

x4 = 0

16

x2 = 1

■ FIGURE 11.9
The branching tree after the
final (fourth) iteration of the
BIP branch-and-bound
algorithm for the example in
Sec. 11.1.

All

x1 x2 x3Variable:

     9 � Z*
(0, 1, 0, 1) � incumbent

16

16

F(3)

13

16

16
1
2(           )1, 1, 0,

F(2)

x1 = 0

x1 = 1

x2 = 0

x3 = 0

x3 = 1

x2 = 1■ FIGURE 11.8
The branching tree after
iteration 3 of the BIP branch-
and-bound algorithm for the
example in Sec. 11.1.

hil76299_ch11_464-536.qxd  11/19/08  08:33 AM  Page 499



Rev.Confirming Pages

500 CHAPTER 11 INTEGER PROGRAMMING

Courseware show how the student versions of these software packages are applied to
the various examples in the chapter. The algorithms they use for BIP problems all are
similar to the one described above.5

Other Options with the Branch-and-Bound Technique

This section has illustrated the branch-and-bound technique by describing a basic branch-
and-bound algorithm for solving BIP problems. However, the general framework of the
branch-and-bound technique provides a great deal of flexibility in how to design a spe-
cific algorithm for any given type of problem such as BIP. There are many options avail-
able, and constructing an efficient algorithm requires tailoring the specific design to fit
the specific structure of the problem type.

Every branch-and-bound algorithm has the same three basic steps of branching,
bounding, and fathoming. The flexibility lies in how these steps are performed.

Branching always involves selecting one remaining subproblem and dividing it into
smaller subproblems. The flexibility here is found in the rules for selecting and dividing.
Our BIP algorithm selected the most recently created subproblem, because this is very ef-
ficient for reoptimizing each LP relaxation from the preceding one. Selecting the subprob-
lem with the best bound is the other most popular rule, because it tends to lead more quickly
to better incumbents and so more fathoming. Combinations of the two rules also can be
used. The dividing typically (but not always) is done by choosing a branching variable and
assigning it either individual values (e.g., our BIP algorithm) or ranges of values (e.g., the
algorithm in the next section). More sophisticated algorithms generally use a rule for
strategically choosing a branching variable that should tend to lead to early fathoming. This
usually is considerably more efficient than the rule used by our BIP algorithm of simply
selecting the branching variables in their natural order—x1, x2, . . . , xn. For example, a
major drawback of this simple rule for selecting the branching variable is that if this vari-
able has an integer value in the optimal solution for the LP relaxation of the subproblem
being branched on, the next subproblem that fixes this variable at this same integer value
also will have the same optimal solution for its LP relaxation, so no progress will have
been made toward fathoming. Therefore, more strategic options for selecting the branch-
ing variable might do something like selecting the variable whose value in the optimal so-
lution for the LP relaxation of the current subproblem is furthest from being an integer.

Bounding usually is done by solving a relaxation. However, there are a variety of
ways to form relaxations. For example, consider the Lagrangian relaxation, where the
entire set of functional constraints Ax � b (in matrix notation) is deleted (except possi-
bly for any “convenient” constraints) and then the objective function

Maximize Z � cx,

is replaced by

Maximize ZR � cx � �(Ax � b),

where the fixed vector � � 0. If x* is an optimal solution for the original problem, its 
Z � ZR, so solving the Lagrangian relaxation for the optimal value of ZR provides a valid
bound. If � is chosen well, this bound tends to be a reasonably tight one (at least com-
parable to the bound from the LP relaxation). Without any functional constraints, this
relaxation also can be solved extremely quickly. The drawbacks are that fathoming tests
2 and 3 (revised) are not as powerful as for the LP relaxation.

5In the professional version of LINGO, LINDO, and CPLEX, the BIP algorithm also uses a variety of sophis-
ticated techniques along the lines described in Sec. 11.8.
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In general terms, two features are sought in choosing a relaxation: it can be solved rel-
atively quickly, and provides a relatively tight bound. Neither alone is adequate. The LP
relaxation is popular because it provides an excellent trade-off between these two factors.

One option occasionally employed is to use a quickly solved relaxation and then, if
fathoming is not achieved, to tighten the relaxation in some way to obtain a somewhat
tighter bound.

Fathoming generally is done pretty much as described for the BIP algorithm. The
three fathoming criteria can be stated in more general terms as follows.

Summary of Fathoming Criteria. A subproblem is fathomed if an analysis of its
relaxation reveals that

Criterion 1: Feasible solutions of the subproblem must have Z � Z*, or
Criterion 2: The subproblem has no feasible solutions, or
Criterion 3: An optimal solution of the subproblem has been found.

Just as for the BIP algorithm, the first two criteria usually are applied by solving the
relaxation to obtain a bound for the subproblem and then checking whether this bound
is � Z* (test 1) or whether the relaxation has no feasible solutions (test 2). If the re-
laxation differs from the subproblem only by the deletion (or loosening) of some con-
straints, then the third criterion usually is applied by checking whether the optimal
solution for the relaxation is feasible for the subproblem, in which case it must be optimal
for the subproblem. For other relaxations (such as the Lagrangian relaxation), additional
analysis is required to determine whether the optimal solution for the relaxation is also
optimal for the subproblem.

If the original problem involves minimization rather than maximization, two options
are available. One is to convert to maximization in the usual way (see Sec. 4.6). The other
is to convert the branch-and-bound algorithm directly to minimization form, which re-
quires changing the direction of the inequality for fathoming test 1 from

Is the subproblem’s bound � Z*?

to

Is the subproblem’s bound � Z*?

When using this latter inequality, if the value of Z for the optimal solution for the LP
relaxation of the subproblem is not an integer, it now would be rounded up to an integer
to obtain the subproblem’s bound.

So far, we have described how to use the branch-and-bound technique to find only
one optimal solution. However, in the case of ties for the optimal solution, it is sometimes
desirable to identify all these optimal solutions so that the final choice among them can
be made on the basis of intangible factors not incorporated into the mathematical model.
To find them all, you need to make only a few slight alterations in the procedure. First,
change the weak inequality for fathoming test 1 (Is the subproblem’s bound � Z*?) to a
strict inequality (Is the subproblem’s bound � Z*?), so that fathoming will not occur if
the subproblem can have a feasible solution equal to the incumbent. Second, if fathom-
ing test 3 passes and the optimal solution for the subproblem has Z � Z*, then store this
solution as another (tied) incumbent. Third, if test 3 provides a new incumbent (tied or
otherwise), then check whether the optimal solution obtained for the relaxation is unique.
If it is not, then identify the other optimal solutions for the relaxation and check whether
they are optimal for the subproblem as well, in which case they also become incumbents.
Finally, when the optimality test finds that there are no remaining (unfathomed) subsets,
all the current incumbents will be the optimal solutions.
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Finally, note that rather than find an optimal solution, the branch-and-bound tech-
nique can be used to find a nearly optimal solution, generally with much less computa-
tional effort. For some applications, a solution is “good enough” if its Z is “close enough”
to the value of Z for an optimal solution (call it Z**). Close enough can be defined in
either of two ways as either

Z** � K � Z or (1 � �)Z** � Z

for a specified (positive) constant K or �. For example, if the second definition is chosen
and � � 0.05, then the solution is required to be within 5 percent of optimal. Consequently,
if it were known that the value of Z for the current incumbent (Z*) satisfies either

Z** � K � Z* or (1 � �)Z** � Z*

then the procedure could be terminated immediately by choosing the incumbent as the
desired nearly optimal solution. Although the procedure does not actually identify an op-
timal solution and the corresponding Z**, if this (unknown) solution is feasible (and so
optimal) for the subproblem currently under investigation, then fathoming test 1 finds an
upper bound such that

Z** � bound

so that either

Bound � K � Z* or (1 � �)bound � Z*

would imply that the corresponding inequality in the preceding sentence is satisfied. Even
if this solution is not feasible for the current subproblem, a valid upper bound is still ob-
tained for the value of Z for the subproblem’s optimal solution. Thus, satisfying either of
these last two inequalities is sufficient to fathom this subproblem because the incumbent
must be “close enough” to the subproblem’s optimal solution.

Therefore, to find a solution that is close enough to being optimal, only one change
is needed in the usual branch-and-bound procedure. This change is to replace the usual
fathoming test 1 for a subproblem

Bound � Z*?

by either

Bound � K � Z*?

or

(1 � �)(bound) � Z*?

and then perform this test after test 3 (so that a feasible solution found with Z � Z* is still
kept as the new incumbent). The reason this weaker test 1 suffices is that regardless of how
close Z for the subproblem’s (unknown) optimal solution is to the subproblem’s bound, the
incumbent is still close enough to this solution (if the new inequality holds) that the sub-
problem does not need to be considered further. When there are no remaining subprob-
lems, the current incumbent will be the desired nearly optimal solution. However, it is much
easier to fathom with this new fathoming test (in either form), so the algorithm should run
much faster. For an extremely large problem, this acceleration may make the difference be-
tween finishing with a solution guaranteed to be close to optimal and never terminating.
For many extremely large problems arising in practice, since the model provides only an
idealized representation of the real problem anyway, finding a nearly optimal solution for
the model in this way may be sufficient for all practical purposes. Therefore, this shortcut
is used fairly frequently in practice.
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We shall now consider the general MIP problem, where some of the variables (say, I of
them) are restricted to integer values (but not necessarily just 0 and 1) but the rest are or-
dinary continuous variables. For notational convenience, we shall order the variables so
that the first I variables are the integer-restricted variables. Therefore, the general form of
the problem being considered is

Maximize Z � �
n

j�1
cjxj,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n,
xj is integer, for j � 1, 2, . . . , I; I � n.

(When I � n, this problem becomes the pure IP problem.)
We shall describe a basic branch-and-bound algorithm for solving this problem that,

with a variety of refinements, has provided a standard approach to MIP. The structure of
this algorithm was first developed by R. J. Dakin,6 based on a pioneering branch-and-bound
algorithm by A. H. Land and A. G. Doig.7

This algorithm is quite similar in structure to the BIP algorithm presented in the pre-
ceding section. Solving LP relaxations again provides the basis for both the bounding and
fathoming steps. In fact, only four changes are needed in the BIP algorithm to deal with
the generalizations from binary to general integer variables and from pure IP to mixed IP.

One change involves the choice of the branching variable. Before, the next variable
in the natural ordering—x1, x2, . . . , xn—was chosen automatically. Now, the only vari-
ables considered are the integer-restricted variables that have a noninteger value in the
optimal solution for the LP relaxation of the current subproblem. Our rule for choosing
among these variables is to select the first one in the natural ordering. (Production codes
generally use a more sophisticated rule.)

The second change involves the values assigned to the branching variable for creat-
ing the new smaller subproblems. Before, the binary variable was fixed at 0 and 1, re-
spectively, for the two new subproblems. Now, the general integer-restricted variable could
have a very large number of possible integer values, and it would be inefficient to create
and analyze many subproblems by fixing the variable at its individual integer values.
Therefore, what is done instead is to create just two new subproblems (as before) by spec-
ifying two ranges of values for the variable.

To spell out how this is done, let xj be the current branching variable, and let xj* be
its (noninteger) value in the optimal solution for the LP relaxation of the current sub-
problem. Using square brackets to denote

[xj*] � greatest integer � xj*,

■ 11.7 A BRANCH-AND-BOUND ALGORITHM FOR MIXED 
INTEGER PROGRAMMING

6R. J. Dakin, “A Tree Search Algorithm for Mixed Integer Programming Problems,” Computer Journal, 8(3):
250–255, 1965.
7A. H. Land and A. G. Doig, “An Automatic Method of Solving Discrete Programming Problems,” Economet-
rica, 28: 497–520, 1960.
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we have for the range of values for the two new subproblems

xj � [xj*] and xj � [xj*] � 1,

respectively. Each inequality becomes an additional constraint for that new subproblem.
For example, if xj* � 3�

1
2

�, then

xj � 3 and xj � 4

are the respective additional constraints for the new subproblem.
When the two changes to the BIP algorithm described above are combined, an inter-

esting phenomenon of a recurring branching variable can occur. To illustrate, as shown in
Fig. 11.10, let j � 1 in the above example where xj* � 3�

1
2

�, and consider the new subprob-
lem where x1 � 3. When the LP relaxation of a descendant of this subproblem is solved,
suppose that x1* � 1�

1
4

�. Then x1 recurs as the branching variable, and the two new subprob-
lems created have the additional constraint x1 � 1 and x1 � 2, respectively (as well as the
previous additional constraint x1 � 3). Later, when the LP relaxation for a descendant of,
say, the x1 � 1 subproblem is solved, suppose that x1* � �

3
4

�. Then x1 recurs again as the
branching variable, and the two new subproblems created have x1 � 0 (because of the new
x1 � 0 constraint and the nonnegativity constraint on x1) and x1 � 1 (because of the new
x1 � 1 constraint and the previous x1 � 1 constraint).

The third change involves the bounding step. Before, with a pure IP problem and in-
teger coefficients in the objective function, the value of Z for the optimal solution for the
subproblem’s LP relaxation was rounded down to obtain the bound, because any feasible
solution for the subproblem must have an integer Z. Now, with some of the variables not
integer-restricted, the bound is the value of Z without rounding down.

The fourth (and final) change to the BIP algorithm to obtain our MIP algorithm in-
volves fathoming test 3. Before, with a pure IP problem, the test was that the optimal so-
lution for the subproblem’s LP relaxation is integer, since this ensures that the solution is
feasible, and therefore optimal, for the subproblem. Now, with a mixed IP problem, the
test requires only that the integer-restricted variables be integer in the optimal solution
for the subproblem’s LP relaxation, because this suffices to ensure that the solution is fea-
sible, and therefore optimal, for the subproblem.

Incorporating these four changes into the summary presented in the preceding sec-
tion for the BIP algorithm yields the following summary for the new algorithm for MIP.

504 CHAPTER 11 INTEGER PROGRAMMING

All

x1 � 3

x1 � 4

x1 � 1

x1 � 2




 

x1 � 0

x1 � 1




 




 




 

1
2

3( , ...)

1
4

1( , ...)

3
4

( , ...)■ FIGURE 11.10
Illustration of the phenomenon
of a recurring branching
variable, where here x1
becomes a branching
variable three times because
it has a noninteger value in
the optimal solution for the
LP relaxation at three nodes.
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With headquarters in Houston, Texas, Waste Manage-
ment, Inc. (a Fortune 100 company) is the leading
provider of comprehensive waste-management services
in North America. Its network of operations includes 293
active landfill disposal sites, 16 waste-to-energy plants,
72 landfill gas-to-energy facilities, 146 recycling plants,
346 transfer stations, and 435 collection operations
(depots) to provide services to nearly 20 million residen-
tial customers and 2 million commercial customers
throughout the United States and Canada.

The company’s collection-and-transfer vehicles need
to follow nearly 20,000 daily routes. With an annual oper-
ating cost of nearly $120,000 per vehicle, management
wanted to have a comprehensive route-management sys-
tem that would make every route as profitable and effi-
cient as possible. Therefore, an OR team that included a
number of consultants was formed to attack this problem.

The heart of the route-management system developed
by this team is a huge mixed BIP model that optimizes the
routes assigned to the respective collection-and-transfer

vehicles. Although the objective function takes several
factors into account, the primary goal is the minimization
of total travel time. The main decision variables are binary
variables that equal 1 if the route assigned to a particular
vehicle includes a particular possible leg and equal 0 oth-
erwise. A geographical information system (GIS) pro-
vides the data about the distance and time required to go
between any two points. All of this is imbedded within a
Web-based Java application that is integrated with the
company’s other systems.

It is estimated that the recent implementation of this
comprehensive route-management system will increase
the company’s cash flow by $648 million over a 5-year
period, largely because of savings of $498 million in
operational expenses over this same period. It also is pro-
viding better customer service.

Source: S. Sahoo, S. Kim, B.-I. Kim, B. Krass, and A. Popov, Jr.:
“Routing Optimization for Waste Management,” Interfaces,
35(1): 24–36, Jan.–Feb. 2005. (A link to this article is provided
on our website, www.mhhe.com/hillier.)

An Application Vignette

(As before, this summary assumes that the objective function is to be maximized, but the
only change needed for minimization is to change the direction of the inequality for
fathoming test 1.)

Summary of the MIP Branch-and-Bound Algorithm

Initialization: Set Z* � ��. Apply the bounding step, fathoming step, and optimality
test described below to the whole problem. If not fathomed, classify this
problem as the one remaining subproblem for performing the first full
iteration below.

Steps for each iteration:

1. Branching: Among the remaining (unfathomed) subproblems, select the one that was
created most recently. (Break ties according to which has the larger bound.) Among
the integer-restricted variables that have a noninteger value in the optimal solution for
the LP relaxation of the subproblem, choose the first one in the natural ordering of the
variables to be the branching variable. Let xj be this variable and xj* its value in this
solution. Branch from the node for the subproblem to create two new subproblems by
adding the respective constraints xj � [xj*] and xj � [xj*] � 1.

2. Bounding: For each new subproblem, obtain its bound by applying the simplex method
(or the dual simplex method when reoptimizing) to its LP relaxation and using the
value of Z for the resulting optimal solution.

3. Fathoming: For each new subproblem, apply the three fathoming tests given below,
and discard those subproblems that are fathomed by any of the tests.
Test 1: Its bound � Z*, where Z* is the value of Z for the current incumbent.
Test 2: Its LP relaxation has no feasible solutions.
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Test 3: The optimal solution for its LP relaxation has integer values for the integer-
restricted variables. (If this solution is better than the incumbent, it becomes
the new incumbent and test 1 is reapplied to all unfathomed subproblems with
the new larger Z*.)

Optimality test: Stop when there are no remaining subproblems; the current incumbent is
optimal.8 Otherwise, perform another iteration.

An MIP Example. We will now illustrate this algorithm by applying it to the follow-
ing MIP problem:

Maximize Z � 4x1 � 2x2 � 7x3 � x4,

subject to

x1 � 5x3 � 10
x1 � x2 � x3 � 1

6x1 � 5x2 � 2x4 � 0
�x1 5x2 � 2x3 � 2x4 � 3

and

xj � 0, for j � 1, 2, 3, 4
xj is an integer, for j � 1, 2, 3.

Note that the number of integer-restricted variables is I � 3, so x4 is the only continuous
variable.

Initialization. After setting Z* � �	, we form the LP relaxation of this problem by
deleting the set of constraints that xj is an integer for j � 1, 2, 3. Applying the simplex
method to this LP relaxation yields its optimal solution below.

LP relaxation of whole problem: (x1, x2, x3, x4) � ��
5
4

�, �
3
2

�, �
7
4

�, 0�, with Z � 14�
1
4

�.

Because it has feasible solutions and this optimal solution has noninteger values for its
integer-restricted variables, the whole problem is not fathomed, so the algorithm contin-
ues with the first full iteration below.

Iteration 1. In this optimal solution for the LP relaxation, the first integer-restricted
variable that has a noninteger value is x1 � �

5
4

�, so x1 becomes the branching variable. Branch-
ing from the All node (all feasible solutions) with this branching variable then creates the
following two subproblems:

Subproblem 1:
Original problem plus additional constraint

x1 � 1.

Subproblem 2:
Original problem plus additional constraint

x1 � 2.

Deleting the set of integer constraints again and solving the resulting LP relaxations of
these two subproblems yield the following results.

8If there is no incumbent, the conclusion is that the problem has no feasible solutions.
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Subproblem 1:
Optimal solution for LP relaxation: (x1, x2, x3, x4) � �1, �

6
5

�, �
9
5

�, 0�, with Z � 14�
1
5

�.

Bound: Z � 14�
1
5

�.

Subproblem 2:
LP relaxation: No feasible solutions.

This outcome for subproblem 2 means that it is fathomed by test 2. However, just as
for the whole problem, subproblem 1 fails all fathoming tests.

These results are summarized in the branching tree shown in Fig. 11.11.

Iteration 2. With only one remaining subproblem, corresponding to the x1 � 1 node
in Fig. 11.11, the next branching is from this node. Examining its LP relaxation’s opti-
mal solution given above, we see that this node reveals that the branching variable is x2,
because x2 � �

6
5

� is the first integer-restricted variable that has a noninteger value. Adding
one of the constraints x2 � 1 or x2 � 2 then creates the following two new subproblems.

Subproblem 3:
Original problem plus additional constraints

x1 � 1, x2 � 1.

Subproblem 4:
Original problem plus additional constraints

x1 � 1, x2 � 2.

Solving their LP relaxations gives the following results.

Subproblem 3:
Optimal solution for LP relaxation: (x1, x2, x3, x4) � ��

5
6

�, 1, �
1
6
1
�, 0�, with Z � 14�

1
6

�.

Bound: Z � 14�
1
6

�.

Subproblem 4:
Optimal solution for LP relaxation: (x1, x2, x3, x4) � ��

5
6

�, 2, �
1
6
1
�, 0�, with Z � 12�

1
6

�.

Bound: Z � 12�
1
6

�.

Because both solutions exist (feasible solutions) and have noninteger values for integer-
restricted variables, neither subproblem is fathomed. (Test 1 still is not operational, since
Z* � �	 until the first incumbent is found.)

The branching tree at this point is given in Fig. 11.12.

7
4

3
2

, 0

All

x1 � 1

x1 � 2
,5

4
,

9
5

6
5(                 , 01 ),  ,  

1
414

1
514

F(2)
)(

■ FIGURES 11.11
The branching tree after the
first iteration of the MIP
branch-and-bound algorithm
for the MIP example.
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11
6

25
6(                 , 0   )

All

x1 � 1

x1 � 2
,,

11
6

15
6(                 , 0   ) , ,

1
414

1
514

1
612

F(2)

x2 � 1

x2 � 2

1
614

■ FIGURE 11.12
The branching tree after the
second iteration of the MIP
branch-and-bound algorithm
for the MIP example.

Iteration 3. With two remaining subproblems (3 and 4) that were created simultane-
ously, the one with the larger bound (subproblem 3, with 14�

1
6

� � 12�
1
6

�) is selected for the
next branching. Because x1 � �

5
6

� has a noninteger value in the optimal solution for this sub-
problem’s LP relaxation, x1 becomes the branching variable. (Note that x1 now is a
recurring branching variable, since it also was chosen at iteration 1.) This leads to the fol-
lowing new subproblems.

Subproblem 5:
Original problem plus additional constraints

x1 � 1
x2 � 1
x1 � 0 (so x1 � 0).

Subproblem 6:
Original problem plus additional constraints

x1 � 1
x2 � 1
x1 � 1 (so x1 � 1).

The results from solving their LP relaxations are given below.

Subproblem 5:
Optimal solution for LP relaxation: (x1, x2, x3, x4) � �0, 0, 2, �

1
2

��, with Z � 13�
1
2

�.

Bound: Z � 13�
1
2

�.

Subproblem 6:
LP relaxation: No feasible solutions.

Subproblem 6 is immediately fathomed by test 2. However, note that subproblem 5
also can be fathomed. Test 3 passes because the optimal solution for its LP relaxation has
integer values (x1 � 0, x2 � 0, x3 � 2) for all three integer-restricted variables. (It does
not matter that x4 � �

1
2

�, since x4 is not integer-restricted.) This feasible solution for the
original problem becomes our first incumbent:

Incumbent � �0, 0, 2, �
1
2

�� with Z* � 13�
1
2

�.
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Integer programming has been an especially exciting area of OR since the mid-1980s be-
cause of the dramatic progress being made in its solution methodology.

Background

To place this progress into perspective, consider the historical background. One big break-
through had come in the 1960s and early 1970s with the development and refinement of
the branch-and-bound approach. But then the state of the art seemed to hit a plateau. Rel-
atively small problems (well under 100 variables) could be solved very efficiently, but
even a modest increase in problem size might cause an explosion in computation time be-
yond feasible limits. Little progress was being made in overcoming this exponential growth
in computation time as the problem size was increased. Many important problems arising
in practice could not be solved.

Then came the next breakthrough in the mid-1980s, with the introduction of the branch-
and-cut approach to solving BIP problems. There were early reports of very large prob-
lems with as many as a couple thousand variables being solved using this approach. This

■ 11.8 THE BRANCH-AND-CUT APPROACH TO SOLVING BIP PROBLEMS

Using this Z* to reapply fathoming test 1 to the only other subproblem (subproblem 4) is
successful, because its bound 12�

1
6

� � Z*.
This iteration has succeeded in fathoming subproblems in all three possible ways. Fur-

thermore, there now are no remaining subproblems, so the current incumbent is optimal.

Optimal solution � �0, 0, 2, �
1
2

�� with Z � 13�
1
2

�.

These results are summarized by the final branching tree given in Fig. 11.13.

Another example of applying the MIP algorithm is presented in your OR Tutor. In
addition, a small example (only two variables, both integer-restricted) that includes graph-
ical displays is provided in the Worked Examples section of the book’s website. The IOR
Tutorial also includes an interactive procedure for executing the MIP algorithm.

All

x1 � 1

x1 � 2

1
414

1
514

1
612

F(2)

F(1)

F(2)

F(3)

x2 � 1

x2 � 2

1
614

(                  )

x1 � 0

x1 � 1

1
213

1
2 0, 0, 2, � incumbent

� optimal
    solution

■ FIGURE 11.13
The branching tree after the
final (third) iteration of the
MIP branch-and-bound
algorithm for the MIP
example.
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created great excitement and led to intensive research and development activities to refine
the approach that have continued ever since. At first, the approach was limited to pure BIP,
but soon was extended to mixed BIP, and then to MIP problems with some general integer
variables as well. We will limit our description of the approach to the pure BIP case.

It is fairly common now for the branch-and-cut approach to solve some problems with
many thousand variables, and occasionally even hundreds of thousands of variables. As men-
tioned in Sec. 11.4, this tremendous speedup is due to huge progress in three areas—dramatic
improvements in BIP algorithms by incorporating and further developing the branch-and-cut
approach, striking improvements in linear programming algorithms that are heavily used
within the BIP algorithms, and the great speedup in computers (including desktop computers).

We do need to add one note of caution. This algorithmic approach cannot consistently
solve all pure BIP problems with a few thousand variables, or even a few hundred vari-
ables. The very large pure BIP problems solved have sparse A matrices; i.e., the percent-
age of coefficients in the functional constraints that are nonzeros is quite small (perhaps
less than 5 percent, or even less than 1 percent). In fact, the approach depends heavily
upon this sparsity. (Fortunately, this kind of sparsity is typical in large practical problems.)
Furthermore, there are other important factors besides sparsity and size that affect just
how difficult a given IP problem will be to solve. IP formulations of fairly substantial size
should still be approached with considerable caution.

Although it would be beyond the scope and level of this book to fully describe the al-
gorithmic approach discussed above, we will now give a brief overview. Since this overview
is limited to pure BIP, all variables introduced later in this section are binary variables.

The approach mainly uses a combination of three kinds9 of techniques: automatic
problem preprocessing, the generation of cutting planes, and clever branch-and-bound
techniques. You already are familiar with branch-and-bound techniques, and we will not
elaborate further on the more advanced versions incorporated here. An introduction to the
other two kinds of techniques is given below.

Automatic Problem Preprocessing for Pure BIP

Automatic problem preprocessing involves a “computer inspection” of the user-supplied
formulation of the IP problem in order to spot reformulations that make the problem
quicker to solve without eliminating any feasible solutions. These reformulations fall into
three categories:

1. Fixing variables: Identify variables that can be fixed at one of their possible values
(either 0 or 1) because the other value cannot possibly be part of a solution that is both
feasible and optimal.

2. Eliminating redundant constraints: Identify and eliminate redundant constraints (con-
straints that automatically are satisfied by solutions that satisfy all the other constraints).

3. Tightening constraints: Tighten some constraints in a way that reduces the feasible region
for the LP relaxation without eliminating any feasible solutions for the BIP problem.

These categories are described in turn.

Fixing Variables. One general principle for fixing variables is the following.

If one value of a variable cannot satisfy a certain constraint, even when the other vari-
ables equal their best values for trying to satisfy the constraint, then that variable should
be fixed at its other value.

9As discussed briefly in Sec. 11.4, still another technique that has played a significant role in the recent progress
has been the use of heuristics for quickly finding good feasible solutions.
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For example, each of the following � constraints would enable us to fix x1 at x1 � 0,
since x1 � 1 with the best values of the other variables (0 with a nonnegative coefficient
and 1 with a negative coefficient) would violate the constraint.

3x1 � 2 ⇒ x1 � 0, since 3(1) � 2.
3x1 � x2 � 2 ⇒ x1 � 0, since 3(1) � 1(0) � 2.

5x1 � x2 � 2x3 � 2 ⇒ x1 � 0, since 5(1) � 1(0) � 2(1) � 2.

The general procedure for checking any � constraint is to identify the variable with
the largest positive coefficient, and if the sum of that coefficient and any negative coeffi-
cients exceeds the right-hand side, then that variable should be fixed at 0. (Once the vari-
able has been fixed, the procedure can be repeated for the variable with the next largest
positive coefficient, etc.)

An analogous procedure with � constraints can enable us to fix a variable at 1 instead,
as illustrated below three times.

3x1 � 2 ⇒ x1 � 1, since 3(0) � 2.
3x1 � x2 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 2.

3x1 � x2 � 2x3 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 2(0) � 2.

A � constraint also can enable us to fix a variable at 0, as illustrated next.

x1 � x2 � 2x3 � 1 ⇒ x3 � 0, since 1(1) � 1(1) � 2(1) � 1.

The next example shows a � constraint fixing one variable at 1 and another at 0.

3x1 � x2 � 3x3 � 2 ⇒ x1 � 1, since 3(0) � 1(1) � 3(0) � 2
and ⇒ x3 � 0, since 3(1) � 1(1) � 3(1) � 2.

Similarly, a � constraint with a negative right-hand side can result in either 0 or 1
becoming the fixed value of a variable. For example, both happen with the following
constraint.

3x1 � 2x2 � �1 ⇒ x1 � 0, since 3(1) � 2(1) � �1
and ⇒ x2 � 1, since 3(0) � 2(0) � �1.

Fixing a variable from one constraint can sometimes generate a chain reaction of then
being able to fix other variables from other constraints. For example, look at what hap-
pens with the following three constraints.

3x1 � x2 � 2x3 � 2 ⇒ x1 � 1 (as above).

Then

x1 � x4 � x5 � 1 ⇒ x4 � 0, x5 � 0.

Then

�x5 � x6 � 0 ⇒ x6 � 0.

In some cases, it is possible to combine one or more mutually exclusive alternatives
constraints with another constraint to fix a variable, as illustrated below,

8x1 � 4x2 � 5x3 � 3x4 � 2� ⇒ x1 � 0,
8x1 � 4x2 � x3 � 3x4 � 1

since 8(1) � max{4, 5}(1) � 3(0) � 2.

There are additional techniques for fixing variables, including some involving opti-
mality considerations, but we will not delve further into this topic.
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Fixing variables can have a dramatic impact on reducing the size of a problem. It is
not unusual to eliminate over half of the problem’s variables from further consideration.

Eliminating Redundant Constraints. Here is one easy way to detect a redundant
constraint.

If a functional constraint satisfies even the most challenging binary solution, then it has
been made redundant by the binary constraints and can be eliminated from further con-
sideration. For a � constraint, the most challenging binary solution has variables equal to
1 when they have nonnegative coefficients and other variables equal to 0. (Reverse these
values for a � constraint.)

Some examples are given below.

3x1 � 2x2 � �6 is redundant, since 3(1) � 2(1) � 6.
3x1 � 2x2 � �3 is redundant, since 3(1) � 2(0) � 3.
3x1 � 2x2 � �3 is redundant, since 3(0) � 2(1) � �3.

In most cases where a constraint has been identified as redundant, it was not redundant
in the original model but became so after fixing some variables. Of the 11 examples of fix-
ing variables given above, all but the last one left a constraint that then was redundant.

Tightening Constraints.10 Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

2x1 � 3x2 � 4

and

x1, x2 binary.

This BIP problem has just three feasible solutions—(0, 0), (1, 0), and (0, 1)—where
the optimal solution is (1, 0) with Z � 3. The feasible region for the LP relaxation of
this problem is shown in Fig. 11.14. The optimal solution for this LP relaxation is (1, �

2
3

�)

10Also commonly called coefficient reduction.

0 1 x1

1

x2

Optimal solution

Optimal solution
for BIP problem

LP relaxation

Maximize
subject to
and

Feasible
region

Z � 3x1 � 2x2,
2x1 � 3x2 � 4

0 � x1 � 1, 0 � x2 � 1

■ FIGURE 11.14
The LP relaxation (including
its feasible region and
optimal solution) for the BIP
example used to illustrate
tightening a constraint.
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with Z � 4�
1
3

�, which is not very close to the optimal solution for the BIP problem. A
branch-and-bound algorithm would have some work to do to identify the optimal BIP
solution.

Now look what happens when the functional constraint 2x1 � 3x2 � 4 is replaced by

x1 � x2 � 1.

The feasible solutions for the BIP problem remain exactly the same—(0, 0), (1, 0), and
(0, 1)—so the optimal solution still is (1, 0). However, the feasible region for the LP re-
laxation has been greatly reduced, as shown in Fig. 11.15. In fact, this feasible region
has been reduced so much that the optimal solution for the LP relaxation now is (1, 0),
so the optimal solution for the BIP problem has been found without needing any addi-
tional work.

This is an example of tightening a constraint in a way that reduces the feasible re-
gion for the LP relaxation without eliminating any feasible solutions for the BIP problem.
It was easy to do for this tiny two-variable problem that could be displayed graphically.
However, with application of the same principles for tightening a constraint without elim-
inating any feasible BIP solutions, the following algebraic procedure can be used to do
this for any � constraint with any number of variables.

Procedure for Tightening a � Constraint
Denote the constraint by a1x1 � a2x2 � . . . � anxn � b.

1. Calculate S � sum of the positive aj.
2. Identify any aj � 0 such that S � b � aj.

(a) If none, stop; the constraint cannot be tightened further.
(b) If aj � 0, go to step 3.
(c) If aj � 0, go to step 4.

3. (aj � 0) Calculate a�j � S � b and b� � S � aj. Reset aj � a�j and b � b�. Return to
step 1.

4. (aj � 0) Increase aj to aj � b � S. Return to step 1.

Applying this procedure to the functional constraint in the above example flows as
follows:

The constraint is 2x1 � 3x2 � 4 (a1 � 2, a2 � 3, b � 4).
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0 1 x1

1

x2

Optimal solution for both
the LP relaxation and
the BIP problem

LP relaxation

Feasible
region

Maximize
subject to
and

Z � 3x1 � 2x2,
x1 � x2 � 1

0 � x1 � 1, 0 � x2 � 1

■ FIGURE 11.15
The LP relaxation after
tightening the constraint, 
2x1 � 3x2 � 4, to x1 �
x2 � 1 for the example of
Fig. 11.14.
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1. S � 2 � 3 � 5.
2. a1 satisfies S � b � a1, since 5 � 4 � 2. Also a2 satisfies S � b � a2, since 

5 � 4 � 3. Choose a1 arbitrarily.
3. a�1 � 5 � 4 � 1 and b� � 5 � 2 � 3, so reset a1 � 1 and b � 3. The new tighter con-

straint is

x1 � 3x2 � 3 (a1 � 1, a2 � 3, b � 3).

1. S � 1 � 3 � 4.
2. a2 satisfies S � b � a2, since 4 � 3 � 3.
3. a�2 � 4 � 3 � 1 and b� � 4 � 3 � 1, so reset a2 � 1 and b � 1. The new tighter con-

straint is

x1 � x2 � 1 (a1 � 1, a2 � 1, b � 1).

1. S � 1 � 1 � 2.
2. No aj � 0 satisfies S � b � aj, so stop; x1 � x2 � 1 is the desired tightened constraint.

If the first execution of step 2 in the above example had chosen a2 instead, then the
first tighter constraint would have been 2x1 � x2 � 2. The next series of steps again would
have led to x1 � x2 � 1.

In the next example, the procedure tightens the constraint on the left to become the
one on its right and then tightens further to become the second one on the right.

4x1 � 3x2 � x3 � 2x4 � 5 ⇒ 2x1 � 3x2 � x3 � 2x4 � 3
⇒ 2x1 � 2x2 � x3 � 2x4 � 3.

(Problem 11.8-5 asks you to apply the procedure to confirm these results.)
A constraint in � form can be converted to � form (by multiplying through both

sides by �1) to apply this procedure directly.

Generating Cutting Planes for Pure BIP

A cutting plane (or cut) for any IP problem is a new functional constraint that reduces the
feasible region for the LP relaxation without eliminating any feasible solutions for the IP
problem. In fact, you have just seen one way of generating cutting planes for pure BIP prob-
lems, namely, apply the above procedure for tightening constraints. Thus, x1 � x2 � 1 is a
cutting plane for the BIP problem considered in Fig. 11.14, which leads to the reduced fea-
sible region for the LP relaxation shown in Fig. 11.15.

In addition to this procedure, a number of other techniques have been developed for
generating cutting planes that will tend to accelerate how quickly a branch-and-bound al-
gorithm can find an optimal solution for a pure BIP problem. We will focus on just one
of these techniques.

To illustrate this technique, consider the California Manufacturing Co. pure BIP prob-
lem presented in Sec. 11.1 and used to illustrate the BIP branch-and-bound algorithm in
Sec. 11.6. The optimal solution for its LP relaxation is given in Fig. 11.5 as (x1, x2, x3,
x4) � (�

5
6

�, 1, 0, 1). One of the functional constraints is

6x1 � 3x2 � 5x3 � 2x4 � 10.

Now note that the binary constraints and this constraint together imply that

x1 � x2 � x4 � 2.

This new constraint is a cutting plane. It eliminates part of the feasible region for the LP
relaxation, including what had been the optimal solution, (�

5
6

�, 1, 0, 1), but it does not elim-
inate any feasible integer solutions. Adding just this one cutting plane to the original model
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■ 11.9 THE INCORPORATION OF CONSTRAINT PROGRAMMING

No presentation of the basic ideas of integer programming is complete these days with-
out introducing an exciting recent development––the incorporation of the techniques of
constraint programming––that is promising to greatly expand our ability to formulate and

would improve the performance of the BIP branch-and-bound algorithm in Sec. 11.6 (see
Fig. 11.9) in two ways. First, the optimal solution for the new (tighter) LP relaxation
would be (1, 1, �

1
5

�, 0), with Z � 15�
1
5

�, so the bounds for the All node, x1 � 1 node, and
(x1, x2) � (1, 1) node now would be 15 instead of 16. Second, one less iteration would
be needed because the optimal solution for the LP relaxation at the (x1, x2, x3) � (1, 1, 0)
node now would be (1, 1, 0, 0), which provides a new incumbent with Z* � 14. There-
fore, on the third iteration (see Fig. 11.8), this node would be fathomed by test 3, and the
(x1, x2) � (1, 0) node would be fathomed by test 1, thereby revealing that this incumbent
is the optimal solution for the original BIP problem.

Here is the general procedure used to generate this cutting plane.

A Procedure for Generating Cutting Planes

1. Consider any functional constraint in � form with only nonnegative coefficients.
2. Find a group of variables (called a minimum cover of the constraint) such that

(a) The constraint is violated if every variable in the group equals 1 and all other vari-
ables equal 0.

(b) But the constraint becomes satisfied if the value of any one of these variables is
changed from 1 to 0.

3. By letting N denote the number of variables in the group, the resulting cutting plane
has the form

Sum of variables in group � N � 1.

Applying this procedure to the constraint 6x1 � 3x2 � 5x3 � 2x4 � 10, we see that
the group of variables {x1, x2, x4} is a minimal cover because

(a) (1, 1, 0, 1) violates the constraint.
(b) But the constraint becomes satisfied if the value of any one of these three vari-

ables is changed from 1 to 0.

Since N � 3 in this case, the resulting cutting plane is x1 � x2 � x4 � 2.
This same constraint also has a second minimal cover {x1, x3}, since (1, 0, 1, 0)

violates the constraint but both (0, 0, 1, 0) and (1, 0, 0, 0) satisfy the constraint. There-
fore, x1 � x3 � 1 is another valid cutting plane.

The branch-and-cut approach involves generating many cutting planes in a similar
manner before then applying clever branch-and-bound techniques. The results of in-
cluding the cutting planes can be quite dramatic in tightening the LP relaxations. In some
cases, the gap between Z for the optimal solution for the LP relaxation of the whole BIP
problem and Z for this problem’s optimal solution is reduced by as much as 98 percent.

Ironically, the very first algorithms developed for integer programming, including
Ralph Gomory’s celebrated algorithm announced in 1958, were based on cutting planes
(generated in a different way), but this approach proved to be unsatisfactory in practice
(except for special classes of problems). However, these algorithms relied solely on cut-
ting planes. We now know that judiciously combining cutting planes and branch-and-bound
techniques (along with automatic problem preprocessing) provides a powerful algorithmic
approach for solving large-scale BIP problems. This is one reason that the name branch-
and-cut algorithm has been given to this approach.
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solve integer programming models. (These same techniques also are beginning to be used
in related areas of mathematical programming, especially combinatorial optimization, but
we will limit our discussion to their central use in integer programming.)

The Nature of Constraint Programming

In the mid-1980s, researchers in the computer science community began to develop con-
straint programming by combining ideas in artificial intelligence with the development of
computer programming languages. The goal was to have a flexible computer program-
ming system that would include both variables and constraints on their values, while also
allowing the description of search procedures that would generate feasible values of the
variables. Each variable has a domain of possible values, e.g., {2, 4, 6, 8, 10}. Rather than
being limited to the types of mathematical constraints used in mathematical programming,
there is great flexibility in how to state the constraints. In particular, the constraints can
be any of the following types.

1. Mathematical constraints, e.g., x � y � z.
2. Disjunctive constraints, e.g., the times of certain tasks in the problem being modeled

cannot overlap.
3. Relational constraints, e.g., at least three tasks should be assigned to a certain machine.
4. Explicit constraints, e.g., although both x and y have domains {1, 2, 3, 4, 5}, (x, y)

must be (1, 1), (2, 3), or (4, 5).
5. Unary constraints, e.g., z is an integer between 5 and 10.
6. Logical constraints, e.g., if x is 5, then y is between 6 and 8.

When expressing these kinds of constraints, constraint programming allows the use
of various standard logic functions, such as IF, AND, OR, NOT, and so on. Excel includes
many of the same logic functions. LINGO now supports all the standard logic functions
and can use its global optimizer to find a globally optimal solution.

To illustrate the algorithms that constraint programming uses to generate feasible so-
lutions, suppose that a problem has four variables––x1, x2, x3, x4––and their domains are

x1 ∈ {1, 2}, x2 ∈ {1, 2}, x3 ∈ {1, 2, 3), x4 ∈ {1, 2, 3, 4, 5},

where the symbol ∈ signifies that the variable on the left belongs to the set on the right.
Suppose also that the constraints are

(1) All these variables must have different values,
(2) x1 � x3 � 4.

By straightforward logic, since the values of 1 and 2 must be reserved for x1 and x2, the
first constraint immediately implies that x3 ∈ {3}, which then implies that x4 ∈ {4, 5}.
(This process of eliminating possible values for variables is referred to as domain reduc-
tion.) Next, since the domain of x3 has been changed, the process of constraint propaga-
tion applies the second constraint to imply that x1 ∈ {1}. This again triggers the first
constraint, so that

x1 ∈ {1}, x2 ∈ {2}, x3 ∈ {3}, x4 ∈ {4, 5}

lists the only feasible solutions for the problem. This kind of feasibility reasoning based
on alternating between the application of domain reduction and constraint propagation
algorithms is a key part of constraint programming.

After the application of the constraint propagation and domain reduction algo-
rithms to a problem, a search procedure is used to find complete feasible solutions. In

hil76299_ch11_464-536.qxd  11/19/08  08:33 AM  Page 516



Rev.Confirming Pages

11.9 THE INCORPORATION OF CONSTRAINT PROGRAMMING 517

the example above, since the domains of all the variables have been reduced to a sin-
gle value except for x4, the search procedure would simply try the values x4 � 4 and
x4 � 5 to determine the complete feasible solutions for that problem. However, for a
problem with many constraints and variables, the constraint propagation and domain
reduction algorithms typically do not reduce the domain of each variable to a single
value. It is therefore necessary to write a search procedure that will try different as-
signments of values to the variables. As these assignments are tried, the constraint prop-
agation algorithm is triggered and further domain reduction occurs. The process creates
a search tree, which is similar to the branching tree when applying the branch-and-bound
technique to integer programming.

The overall process of applying constraint programming to complicated IP problems
(or related problems) involves the following three steps.

1. Formulate a compact model for the problem by using a variety of constraint types (most
of which do not fit the format of integer programming).

2. Efficiently find feasible solutions that satisfy all these constraints.
3. Search among these feasible solutions for an optimal solution.

The power of constraint programming lies in its great ability to perform the first two
steps rather than the third, whereas the main strength of integer programming and its
algorithms lie in performing the third step. Thus, constraint programming is ideally suited
for a highly constrained problem that has no objective function, so the only goal is to
find a feasible solution. However, it also can be extended to the third step. One method
of doing so is to enumerate the feasible solutions and calculate the value of the objec-
tive function for each one. However, this would be extremely inefficient for problems
where there are numerous feasible solutions. To circumvent this drawback, the common
approach is to add a constraint that tightly bounds the objective function to values that
are very near to what is anticipated for an optimal solution. For example, if the objec-
tive is to maximize the objective function and its value Z is anticipated to be approxi-
mately Z � 10 for an optimal solution, one might add the constraint that Z � 9 so that
the only remaining feasible solutions to be enumerated are those that are very close to
being optimal. Each time that a new best solution then is found during the search, the
bound on Z can be further tightened to consider only feasible solutions that are at least
as good as the current best solution.

Although this is a reasonable approach to the third step, a more attractive approach
would be to integrate constraint programming and integer programming so that each is
mainly used where it is strongest—steps 1 and 2 with constraint programming and step 3
with integer programming. This is part of the potential of constraint programming de-
scribed next.

The Potential of Constraint Programming

In the 1990s, constraint programming features, including powerful constraint-solving al-
gorithms, were successfully incorporated into a number of general-purpose programming
languages, as well as several special-purpose programming languages. This brought com-
puter science closer and closer to the Holy Grail of computer programming, namely,
allowing the user to simply state the problem and then the computer will solve it.

As word of this exciting development began to spread beyond the computer science
community, researchers in operations research began to realize the great potential of in-
tegrating constraint programming with the traditional techniques of integer programming
(and other areas of mathematical programming as well). The much greater flexibility in
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expressing the constraints of the problem should greatly increase the ability to formulate
valid models for complex problems. It also should lead to much more compact and straight-
forward formulations. In addition, by reducing the size of the feasible region that needs to
be considered while efficiently finding solutions within this region, the constraint-solving
algorithms of constraint programming might help accelerate the progress of integer pro-
gramming algorithms in finding an optimal solution.

Because of their substantial differences, integrating constraint programming with in-
teger programming is a very difficult task. Since integer programming does not recognize
most of the constraints of constraint programming, this requires developing computer-
implemented procedures for translating from the language of constraint programming to
the language of integer programming and vice versa. Good progress is being made, but
this undoubtedly will continue to be one of the most active areas of OR research for some
years to come.

To illustrate the way in which constraint programming can greatly simplify the for-
mulation of integer programming models, we now will introduce two of the most impor-
tant “global constraints” of constraint programming. A global constraint is a constraint
that succinctly expresses a global pattern in the allowable relationship between multiple
variables. Therefore, a single global constraint often can replace what used to require a
large number of traditional integer programming constraints while also making the model
considerably more readable. To clarify the presentation, we will use very simple exam-
ples that don’t require the use of constraint programming to illustrate global constraints,
but these same types of constraints also can readily be used for some much more com-
plicated problems.

The All-Different Constraint

The all-different global constraint simply specifies that all the variables in a given set must
have different values. If x1, x2, . . . , xn are the variables involved, the constraint can be
written succinctly as

all-different (x1, x2, . . . , xn)

while also specifying the domains of the individual variables in the model. (These domains
collectively need to include at least n different values in order to enforce the all-different
constraint.)

To illustrate this constraint, consider the classical assignment problem presented
in Sec. 8.3. Recall that this problem involves assigning n assignees to n tasks on a one-
to-one basis so as to minimize the total cost of these assignments. Although the as-
signment problem is a particularly easy one to solve (as described in Sec. 8.4), it nicely
illustrates how the all-different constraint can greatly simplify the formulation of the
model.

With the traditional formulation presented in Sec. 8.3, the decision variables are the
binary variables,

xij � �
for i, j � 1, 2, . . . , n. Ignoring the objective function for now, the functional constraints
are the following.

Each assignee i is to be assigned to exactly one task:

�
n

j�1
xij � 1 for i � 1, 2, . . . , n.

if assignee i performs task j
if not

1,
0,
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Each task j is to be performed by exactly one assignee:

�
n

i�1
xij � 1 for j � 1, 2, . . . , n.

Thus, there are n2 variables and 2n functional constraints.
Now let us look at the much smaller model that constraint programming can provide.

In this case, the variables are

yi � task to which assignee i is assigned

for i � 1, 2, . . . , n. There are n tasks and they are numbered 1, 2, . . . , n, so each of
the yi variables has the domain {1, 2, . . . , n}. Since all the assignees must be assigned
different tasks, this restriction on the variables is precisely described by the single global
constraint,

all-different (y1, y2, . . . , yn).

Therefore, rather than n2 variables and 2n functional constraints, this complete constraint
programming model (excluding the objective function) has only n variables and a single
constraint (plus one domain for all the variables).

Now let us see how the next global constraint enables incorporating the objective
function into this tiny model as well.

The Element Constraint

The element global constraint is most commonly used to look up a cost or profit associated
with an integer variable. In particular, suppose that a variable y has domain {1, 2, . . . , n}
and that the cost associated with each of these values is c1, c2, . . . , cn, respectively. Then
the constraint

element (y, [c1, c2, . . . , cn], z)

constrains the variable z to equal the yth constant in the list [c1, c2, . . . , cn]. In other
words, z � cy. This variable z can now be included in the objective function to provide
the cost associated with y.

To illustrate the use of the element constraint, consider the assignment problem again
and let

cij � cost of assigning assignee i to task j

for i, j, � 1, 2, . . . , n. The complete constraint programming model (including the ob-
jective function for this problem is

Minimize Z � �
n

i�1
zi,

subject to

element (yi, [ci1, ci2, . . . , cin], zi) for i � 1, 2, . . . , n,
all-different (y1, y2, . . . , yn),
yi ∈ {1, 2, . . . , n} for i � 1, 2, . . . , n.

This complete model now has 2n variables and (n � 1) constraints (plus the one domain
for all the variables), which still is far smaller than the traditional integer programming for-
mulation presented in Sec. 8.3. For example, when n � 100, this model has 200 variables
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and 101 constraints whereas the traditional integer programming model has 10,000 vari-
ables and 200 functional constraints.

As an additional example, reconsider Example 2 (Violating Proportionality) presented
in Sec. 11.4. In this case, the original decision variables are

xj � number of TV spots allocated to product j

for j � 1, 2, 3, where a total of five TV spots are to be allocated to the three products.
However, because the profits given in Table 11.3 for different values of each xj are not
proportional to xj, Sec. 11.4 formulates two alternative integer programming models with
auxiliary binary variables for this problem. Both models are fairly complicated.

A constraint programming model that uses the element constraint is much more
straightforward. For example, the profit for Product 1 given in Table 11.3 is 0, 1, 3, and 3
for x1 � 0, 1, 2, and 3, respectively. Therefore, this profit is simply z1 when the value of
z1 is given by the constraint

element (x1 � 1, [0, 1, 3, 3], z1).

(The first component is x1 � 1 instead of x1 because x1 � 1 � 1, 2, 3, or 4, and it is the value
of this component that indicates the choice of position 1, 2, 3, or 4 in the list [0, 1, 3, 3].)
Proceeding in the same way for the other two products, the complete model is

Maximize Z � z1 � z2 � z3,

subject to

element (x1 � 1, [0, 1, 3, 3], z1),
element (x2 � 1, [0, 0, 2, 3], z2),
element (x3 � 1, [0, �1, 2, 4], z3),
x1 � x2 � x3 � 5,
xj ∈ {0, 1, 2, 3} for j � 1, 2, 3.

Now compare this model to the two integer programming models for the same prob-
lem in Sec. 11.4. Note how the use of element constraints provides a considerably more
compact and transparent model.

The all-different and element constraints are but two of the various available global con-
straints (Selected Reference 6 describes nearly 40), but they nicely illustrate the power of
constraint programming to provide a compact and readable model of a complex problem.

Current Research

Current research in integrating constraint programming and integer programming is mov-
ing along several parallel paths. For example, the most straightforward approach is to
simultaneously use both a constraint programming model and an integer programming
model to represent complementary parts of a problem. Thus, each relevant constraint is
included in whichever model it fits or, when feasible, in both models. As a constraint pro-
gramming algorithm and an integer programming algorithm are applied to the respective
models, information is passed back and forth to focus the search on the feasible solutions
(those that satisfy the constraints of both models).

This kind of double modeling scheme can be implemented with the Optimization Pro-
gramming Language (OPL) that is incorporated into the ILOG OPL-CPLEX Develop-
ment System. (ILOG is the company that provides the CPLEX optimization software that
is included in your OR Courseware.) After employing the OPL modeling language, the
ILOG OPL-CPLEX Development System can invoke both a constraint programming
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IP problems arise frequently because some or all of the decision variables must be re-
stricted to integer values. There also are many applications involving yes-or-no decisions
(including combinatorial relationships expressible in terms of such decisions) that can be
represented by binary (0–1) variables. These factors have made integer programming one
of the most widely used OR techniques.

IP problems are more difficult than they would be without the integer restriction, so
the algorithms available for integer programming are generally considerably less efficient
than the simplex method. However, there has been tremendous progress over the past cou-
ple of decades in the ability to solve some (but not all) huge IP problems with tens or
even hundreds of thousands of integer variables. This progress is due to a combination of
three factors—dramatic improvements in IP algorithms, striking improvement in the
linear programming algorithms used within IP algorithms, and the great speedup in com-
puters. However, IP algorithms also will occasionally still fail to solve rather small prob-
lems (even as few as a hundred integer variables). Various characteristics of an IP problem
in addition to its size, have a great influence on how readily it can be solved.

Nevertheless, size is one key factor in determining the time required to solve an IP
problem, if it can be solved at all. The most important determinants of computation time
for an IP algorithm are the number of integer variables and whether the problem has some
special structure that can be exploited. For a fixed number of integer variables, BIP prob-
lems generally are much easier to solve than problems with general integer variables, but
adding continuous variables (MIP) may not increase computation time substantially. For
special types of BIP problems containing a special structure that can be exploited by a
special-purpose algorithm, it may be possible to solve very large problems (thousands of
binary variables) routinely.

Computer codes for IP algorithms now are commonly available in mathematical pro-
gramming software packages. Traditionally, these algorithms usually have been based on
the branch-and-bound technique and variations thereof.

■ 11.10 CONCLUSIONS

algorithm (ILOG CP Optimizer) and a mathematical programming solver (CPLEX) and
then pass some information from one to the other.

Although double modeling is a good first step, the goal is to fully integrate constraint
programming and integer programming so that a single hybrid model and a single algo-
rithm can be used. It is this kind of seamless integration that will be able to fully provide
the complementary strengths of both techniques. Although fully achieving this goal remains
a formidable research challenge, good progress continues to be made in this direction. Se-
lected Reference 6 describes the current state of the art in this area.

Even at this early stage, there already have been numerous successful applications of the
merger of mathematical programming and constraint programming. The areas of application
include network design, vehicle routing, crew rostering, the classical transportation problem
with piecewise linear costs, inventory management, computer graphics, software engineer-
ing, databases, finance, engineering, and combinatorial optimization, among others. In addi-
tion, Selected Reference 2 describes how scheduling is proving to be a particularly fruitful
area for the application of constraint programming. For example, because of the many com-
plicated scheduling constraints involved, constraint programming has been used to determine
the regular-season schedule for the National Football League in the United States.

These applications only begin to tap the potential of integrating constraint program-
ming and integer programming. Further progress in completing this integration promises
to open up many exciting new opportunities for important applications.
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More modern IP algorithms now use the branch-and-cut approach. This algorithmic
approach involves combining automatic problem preprocessing, the generation of cut-
ting planes, and clever branch-and-bound techniques. Research in this area is continu-
ing, along with the development of sophisticated new software packages that incorporate
these techniques.

The latest development in IP methodology is to begin incorporating constraint pro-
gramming. It appears that this approach will greatly expand our ability to formulate and
solve IP models.

In recent years, there has been considerable investigation into the development of al-
gorithms (including heuristic algorithms) for integer nonlinear programming, and this area
continues to be an active area of research. (Selected Reference 8 presents the current state
of the art in this area.)
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Worked Examples:

Examples for Chapter 11

Demonstration Examples in OR Tutor:

Binary Integer Programming Branch-and-Bound Algorithm
Mixed Integer Programming Branch-and-Bound Algorithm

Interactive Procedures in IOR Tutorial:

Enter or Revise an Integer Programming Model
Solve Binary Integer Program Interactively
Solve Mixed Integer Program Interactively

An Excel Add-in:

Premium Solver for Education

“Ch. 11—Integer Programming” Files for Solving the Examples:

Excel Files
LINGO/LINDO File
MPL/CPLEX File

Glossary for Chapter 11

See Appendix 1 for documentation of the software.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The corresponding demonstration example just listed in
Learning Aids may be helpful.

I: We suggest that you use the corresponding interactive pro-
cedure just listed (the printout records your work).

C: Use the computer with any of the software options avail-
able to you (or as instructed by your instructor) to solve
the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

11.1-1. Reconsider the California Manufacturing Co. example pre-
sented in Sec. 11.1. The mayor of San Diego now has contacted the
company’s president to try to persuade him to build a factory and
perhaps a warehouse in that city. With the tax incentives being of-
fered the company, the president’s staff estimates that the net pre-
sent value of building a factory in San Diego would be $7 million
and the amount of capital required to do this would be $4 million.
The net present value of building a warehouse there would be $5
million and the capital required would be $3 million. (This option
would be considered only if a factory also is being built there.)

The company president now wants the previous OR study
revised to incorporate these new alternatives into the overall prob-
lem. The objective still is to find the feasible combination of in-
vestments that maximizes the total net present value, given that the
amount of capital available for these investments is $10 million.
(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

11.1-2* A young couple, Eve and Steven, want to divide their main
household chores (marketing, cooking, dishwashing, and launder-
ing) between them so that each has two tasks but the total time
they spend on household duties is kept to a minimum. Their effi-
ciencies on these tasks differ, where the time each would need to
perform the task is given by the following table:

(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

11.1-3. A real estate development firm, Peterson and Johnson, is
considering five possible development projects. The following table
shows the estimated long-run profit (net present value) that each
project would generate, as well as the amount of investment required
to undertake the project, in units of millions of dollars.

The owners of the firm, Dave Peterson and Ron Johnson, have
raised $20 million of investment capital for these projects. Dave
and Ron now want to select the combination of projects that will
maximize their total estimated long-run profit (net present value)
without investing more that $20 million.
(a) Formulate a BIP model for this problem.
(b) Display this model on an Excel spreadsheet.
C (c) Use the computer to solve this model.

11.1-4. The board of directors of General Wheels Co. is consid-
ering six large capital investments. Each investment can be made
only once. These investments differ in the estimated long-run profit
(net present value) that they will generate as well as in the amount
of capital required, as shown by the following table (in units of
millions of dollars):

The total amount of capital available for these investments is
$100 million. Investment opportunities 1 and 2 are mutually ex-
clusive, and so are 3 and 4. Furthermore, neither 3 nor 4 can be
undertaken unless one of the first two opportunities is under-
taken. There are no such restrictions on investment opportunities
5 and 6. The objective is to select the combination of capital in-
vestments that will maximize the total estimated long-run profit
(net present value).
(a) Formulate a BIP model for this problem.
C (b) Use the computer to solve this model.

11.1-5. Reconsider Prob. 8.3-4, where a swim team coach needs
to assign swimmers to the different legs of a 200-yard medley re-
lay team. Formulate a BIP model for this problem. Identify the
groups of mutually exclusive alternatives in this formulation.

11.1-6. Vincent Cardoza is the owner and manager of a machine
shop that does custom order work. This Wednesday afternoon, he
has received calls from two customers who would like to place rush
orders. One is a trailer hitch company which would like some
custom-made heavy-duty tow bars. The other is a mini-car-carrier
company which needs some customized stabilizer bars. Both cus-
tomers would like as many as possible by the end of the week
(two working days). Since both products would require the use

Time Needed per Week

Marketing Cooking Dishwashing Laundry

Eve 4.5 hours 7.8 hours 3.6 hours 2.9 hours
Steven 4.9 hours 7.2 hours 4.3 hours 3.1 hours

Development Project

1 2 3 4 5

Estimated profit 1 1.8 1.6 0.8 1.4
Capital required 6 12 10 4 8

Investment Opportunity

1 2 3 4 5 6

Estimated profit 15 12 16 18 9 11
Capital required 38 33 39 45 23 27

■ PROBLEMS
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of the same two machines, Vincent needs to decide and inform
the customers this afternoon about how many of each product he
will agree to make over the next two days.

Each tow bar requires 3.2 hours on machine 1 and 2 hours on
machine 2. Each stabilizer bar requires 2.4 hours on machine 1 and
3 hours on machine 2. Machine 1 will be available for 16 hours
over the next two days and machine 2 will be available for 15 hours.
The profit for each tow bar produced would be $130 and the profit
for each stabilizer bar produced would be $150.

Vincent now wants to determine the mix of these production
quantities that will maximize the total profit.
(a) Formulate an IP model for this problem.
(b) Use a graphical approach to solve this model.
C (c) Use the computer to solve the model.

11.1-7. Reconsider Prob. 8.2-21 involving a contractor (Susan
Meyer) who needs to arrange for hauling gravel from two pits to
three building sites.

Susan now needs to hire the trucks (and their drivers) to do
the hauling. Each truck can only be used to haul gravel from a sin-
gle pit to a single site. In addition to the hauling and gravel costs
specified in Prob. 8.2-21, there now is a fixed cost of $150 asso-
ciated with hiring each truck. A truck can haul 5 tons, but it is not
required to go full. For each combination of pit and site, there are
now two decisions to be made: the number of trucks to be used
and the amount of gravel to be hauled.
(a) Formulate an MIP model for this problem.
C (b) Use the computer to solve this model.

11.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 11.2.
Briefly describe how integer programming was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

11.2-2. Select one of the actual applications of BIP by a company
or governmental agency mentioned in Sec. 11.2. Read the article
describing the application in the referenced issue of Interfaces.
Write a two-page summary of the application and its benefits.

11.2-3. Select three of the actual applications of BIP by a com-
pany or governmental agency mentioned in Sec. 11.2. Read the
articles describing the applications in the referenced issues of
Interfaces. For each one, write a one-page summary of the appli-
cation and its benefits.

11.3-1.* The Research and Development Division of the Progres-
sive Company has been developing four possible new product lines.
Management must now make a decision as to which of these four
products actually will be produced and at what levels. Therefore,
an operations research study has been requested to find the most
profitable product mix.

A substantial cost is associated with beginning the produc-
tion of any product, as given in the first row of the following
table. Management’s objective is to find the product mix that
maximizes the total profit (total net revenue minus start-up
costs).

Let the continuous decision variables x1, x2, x3, and x4 be the
production levels of products 1, 2, 3, and 4, respectively. Manage-
ment has imposed the following policy constraints on these variables:

1. No more than two of the products can be produced.
2. Either product 3 or 4 can be produced only if either product 1

or 2 is produced.
3. Either 5x1 � 3x2 � 6x3 � 4x4 � 6,000

or 4x1 � 6x2 � 3x3 � 5x4 � 6,000.

(a) Introduce auxiliary binary variables to formulate a mixed BIP
model for this problem.

C (b) Use the computer to solve this model.

11.3-2. Suppose that a mathematical model fits linear program-
ming except for the restriction that x1 � x2 � 0, or 3, or 6. Show
how to reformulate this restriction to fit an MIP model.

11.3-3. Suppose that a mathematical model fits linear program-
ming except for the restrictions that

1. At least one of the following two inequalities holds:

3x1 � x2 � x3 � x4 � 12
x1 � x2 � x3 � x4 � 15.

2. At least two of the following three inequalities holds:

2x1 � 5x2 � x3 � x4 � 30
�x1� 3x2 � 5x3 � x4 � 40
3x1 � x2 � 3x3 � x4 � 60.

Show how to reformulate these restrictions to fit an MIP model.

11.3-4. The Toys-R-4-U Company has developed two new toys for
possible inclusion in its product line for the upcoming Christmas
season. Setting up the production facilities to begin production
would cost $50,000 for toy 1 and $80,000 for toy 2. Once these
costs are covered, the toys would generate a unit profit of $10 for
toy 1 and $15 for toy 2.

The company has two factories that are capable of producing
these toys. However, to avoid doubling the start-up costs, just one
factory would be used, where the choice would be based on max-
imizing profit. For administrative reasons, the same factory would
be used for both new toys if both are produced.

Toy 1 can be produced at the rate of 50 per hour in factory 1 and
40 per hour in factory 2. Toy 2 can be produced at the rate of 40
per hour in factory 1 and 25 per hour in factory 2. Factories 1 and 2,
respectively, have 500 hours and 700 hours of production time avail-
able before Christmas that could be used to produce these toys.

It is not known whether these two toys would be continued
after Christmas. Therefore, the problem is to determine how many

Product

1 2 3 4

Start-up cost $50,000 $40,000 $70,000 $60,000
Marginal revenue $50,070 $50,060 $50,090 $50,080
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units (if any) of each new toy should be produced before Christ-
mas to maximize the total profit.
(a) Formulate an MIP model for this problem.
C (b) Use the computer to solve this model.

11.3-5.* Northeastern Airlines is considering the purchase of
new long-, medium-, and short-range jet passenger airplanes. The
purchase price would be $67 million for each long-range plane,
$50 million for each medium-range plane, and $35 million for each
short-range plane. The board of directors has authorized a maxi-
mum commitment of $1.5 billion for these purchases. Regardless
of which airplanes are purchased, air travel of all distances is ex-
pected to be sufficiently large that these planes would be utilized
at essentially maximum capacity. It is estimated that the net an-
nual profit (after capital recovery costs are subtracted) would be
$4.2 million per long-range plane, $3 million per medium-range
plane, and $2.3 million per short-range plane.

It is predicted that enough trained pilots will be available to
the company to crew 30 new airplanes. If only short-range planes
were purchased, the maintenance facilities would be able to handle
40 new planes. However, each medium-range plane is equivalent to
1�

1
3

� short-range planes, and each long-range plane is equivalent to 1�
2
3

�

short-range planes in terms of their use of the maintenance facilities.
The information given here was obtained by a preliminary

analysis of the problem. A more detailed analysis will be conducted
subsequently. However, using the preceding data as a first ap-
proximation, management wishes to know how many planes of
each type should be purchased to maximize profit.
(a) Formulate an IP model for this problem.
C (b) Use the computer to solve this problem.
(c) Use a binary representation of the variables to reformulate the

IP model in part (a) as a BIP problem.
C (d) Use the computer to solve the BIP model formulated in part

(c). Then use this optimal solution to identify an optimal so-
lution for the IP model formulated in part (a).

11.3-6. Consider the two-variable IP example discussed in Sec. 11.5
and illustrated in Fig. 11.3.
(a) Use a binary representation of the variables to reformulate this

model as a BIP problem.
C (b) Use the computer to solve this BIP problem. Then use this

optimal solution to identify an optimal solution for the orig-
inal IP model.

11.3-7. The Fly-Right Airplane Company builds small jet airplanes
to sell to corporations for the use of their executives. To meet the
needs of these executives, the company’s customers sometimes or-
der a custom design of the airplanes being purchased. When this
occurs, a substantial start-up cost is incurred to initiate the pro-
duction of these airplanes.

Fly-Right has recently received purchase requests from three
customers with short deadlines. However, because the company’s
production facilities already are almost completely tied up filling
previous orders, it will not be able to accept all three orders. There-
fore, a decision now needs to be made on the number of airplanes

the company will agree to produce (if any) for each of the three
customers.

The relevant data are given in the next table. The first row
gives the start-up cost required to initiate the production of the air-
planes for each customer. Once production is under way, the mar-
ginal net revenue (which is the purchase price minus the marginal
production cost) from each airplane produced is shown in the sec-
ond row. The third row gives the percentage of the available pro-
duction capacity that would be used for each airplane produced.
The last row indicates the maximum number of airplanes requested
by each customer (but less will be accepted).

Customer

1 2 3

Start-up cost $3 million $2 million 0
Marginal net revenue $2 million $3 million $0.8 million
Capacity used per plane 20% 40% 20%
Maximum order 3 planes 2 planes 5 planes

Fly-Right now wants to determine how many airplanes to pro-
duce for each customer (if any) to maximize the company’s total
profit (total net revenue minus start-up costs).
(a) Formulate a model with both integer variables and binary vari-

ables for this problem.
C (b) Use the computer to solve this model.

11.4-1. Reconsider the Fly-Right Airplane Co. problem introduced
in Prob. 11.3-7. A more detailed analysis of the various cost and
revenue factors now has revealed that the potential profit from pro-
ducing airplanes for each customer cannot be expressed simply in
terms of a start-up cost and a fixed marginal net revenue per air-
plane produced. Instead, the profits are given by the following table.

Profit from

Airplanes
Customer

Produced 1 2 3

0 0 0 0
1 �$1 million $1 million $1 million
2 �$2 million $5 million $3 million
3 �$4 million $5 million
4 $6 million
5 $7 million

(a) Formulate a BIP model for this problem that includes con-
straints for mutually exclusive alternatives.

C (b) Use the computer to solve the model formulated in part (a).
Then use this optimal solution to identify the optimal num-
ber of airplanes to produce for each customer.
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Attractive Possible Route

Delivery Location 1 2 3 4 5 6 7 8 9 10

A 1 1 1
B 2 1 2 2 2
C 3 3 3 3
D 2 1 1
E 2 2 3
F 1 2
G 3 1 2 3
H 1 3 1
I 3 4 2

Time (in hours) 6 4 7 5 4 6 5 3 7 6

(Origin) (Destination)O

A

B

C

D

T

6

3

4

3

6

5 3

2

(c) Formulate another BIP model for this model that includes con-
straints for contingent decisions.

C (d) Repeat part (b) for the model formulated in part (c).

11.4-2. Reconsider the Wyndor Glass Co. problem presented in
Sec. 3.1. Management now has decided that only one of the two
new products should be produced, and the choice is to be made on
the basis of maximizing profit. Introduce auxiliary binary variables
to formulate an MIP model for this new version of the problem.

11.4-3.* Reconsider Prob. 3.1-11, where the management of the
Omega Manufacturing Company is considering devoting excess
production capacity to one or more of three products. (See the Par-
tial Answers to Selected Problems in the back of the book for
additional information about this problem.) Management now has
decided to add the restriction that no more than two of the three
prospective products should be produced.
(a) Introduce auxiliary binary variables to formulate an MIP

model for this new version of the problem.
C (b) Use the computer to solve this model.

11.4-4. Consider the following integer nonlinear programming
problem.

Maximize Z � 4x2
1 � x3

1 � 10x2
2 � x4

2,

subject to

x1 � x2 � 3

and

x1 � 0, x2 � 0
x1 and x2 are integers.

This problem can be reformulated in two different ways as an
equivalent pure BIP problem (with a linear objective function) with
six binary variables (y1 j and y2 j for j � 1, 2, 3), depending on the
interpretation given the binary variables.
(a) Formulate a BIP model for this problem where the binary vari-

ables have the interpretation,

yij � �
C (b) Use the computer to solve the model formulated in part (a),

and thereby identify an optimal solution for (x1, x2) for the
original problem.

(c) Formulate a BIP model for this problem where the binary vari-
ables have the interpretation,

yij � �
C (d) Use the computer to solve the model formulated in part (c),

and thereby identify an optimal solution for (x1, x2) for the
original problem.

11.4-5.* Consider the following special type of shortest-path
problem (see Sec. 9.3) where the nodes are in columns and the
only paths considered always move forward one column at a time.

if xi � j
otherwise.

1
0

if xi � j
otherwise.

1
0

The numbers along the links represent distances, and the objective
is to find the shortest path from the origin to the destination.

This problem also can be formulated as a BIP model involv-
ing both mutually exclusive alternatives and contingent decisions.
(a) Formulate this model. Identify the constraints that are for

mutually exclusive alternatives and that are for contingent
decisions.

C (b) Use the computer to solve this problem.

11.4-6. Speedy Delivery provides two-day delivery service of
large parcels across the United States. Each morning at each col-
lection center, the parcels that have arrived overnight are loaded
onto several trucks for delivery throughout the area. Since the
competitive battlefield in this business is speed of delivery, the
parcels are divided among the trucks according to their geo-
graphical destinations to minimize the average time needed to
make the deliveries.

On this particular morning, the dispatcher for the Blue River
Valley Collection Center, Sharon Lofton, is hard at work. Her three
drivers will be arriving in less than an hour to make the day’s de-
liveries. There are nine parcels to be delivered, all at locations many
miles apart. As usual, Sharon has loaded these locations into her
computer. She is using her company’s special software package, a
decision support system called Dispatcher. The first thing Dis-
patcher does is use these locations to generate a considerable num-
ber of attractive possible routes for the individual delivery trucks.
These routes are shown in the following table (where the numbers
in each column indicate the order of the deliveries), along with the
estimated time required to traverse the route.
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Dispatcher is an interactive system that shows these routes to
Sharon for her approval or modification. (For example, the com-
puter may not know that flooding has made a particular route
infeasible.) After Sharon approves these routes as attractive possi-
bilities with reasonable time estimates, Dispatcher next formulates
and solves a BIP model for selecting three routes that minimize
their total time while including each delivery location on exactly
one route. This morning, Sharon does approve all the routes.
(a) Formulate this BIP model.
C (b) Use the computer to solve this model.

11.4-7. An increasing number of Americans are moving to a
warmer climate when they retire. To take advantage of this trend,
Sunny Skies Unlimited is undertaking a major real estate devel-
opment project. The project is to develop a completely new re-
tirement community (to be called Pilgrim Haven) that will cover
several square miles. One of the decisions to be made is where to
locate the two fire stations that have been allocated to the com-
munity. For planning purposes, Pilgrim Haven has been divided
into five tracts, with no more than one fire station to be located
in any given tract. Each station is to respond to all the fires that
occur in the tract in which it is located as well as in the other
tracts that are assigned to this station. Thus, the decisions to be
made consist of (1) the tracts to receive a fire station and (2) the
assignment of each of the other tracts to one of the fire stations.
The objective is to minimize the overall average of the response
times to fires.

The following table gives the average response time to a fire
in each tract (the columns) if that tract is served by a station in a
given tract (the rows). The bottom row gives the forecasted aver-
age number of fires that will occur in each of the tracts per day.

Formulate a BIP model for this problem. Identify any con-
straints that correspond to mutually exclusive alternatives or con-
tingent decisions.

11.4-8. Reconsider Prob. 11.4-7. The management of Sunny Skies
Unlimited now has decided that the decision on the locations of
the fire stations should be based mainly on costs.

The cost of locating a fire station in a tract is $300,000 for
tract 1, $350,000 for tract 2, $600,000 for tract 3, $450,000 for

tract 4, and $700,000 for tract 5. Management’s objective now is
the following:

Determine which tracts should receive a station to min-
imize the total cost of stations while ensuring that each
tract has at least one station close enough to respond to
a fire in no more than 12 minutes (on the average).

In contrast to the original problem, note that the total number of
fire stations is no longer fixed. Furthermore, if a tract without a
station has more than one station within 12 minutes, it is no longer
necessary to assign this tract to just one of these stations.
(a) Formulate a complete pure BIP model with 5 binary variables

for this problem.
(b) Is this a set covering problem? Explain, and identify the rele-

vant sets.
C (c) Use the computer to solve the model formulated in part (a).

11.4-9. Suppose that a state sends R persons to the U.S. House of
Representatives. There are D counties in the state (D � R), and the
state legislature wants to group these counties into R distinct elec-
toral districts, each of which sends a delegate to Congress. The to-
tal population of the state is P, and the legislature wants to form
districts whose population approximates p � P/R. Suppose that the
appropriate legislative committee studying the electoral districting
problem generates a long list of N candidates to be districts 
(N � R). Each of these candidates contains contiguous counties
and a total population pj ( j � 1, 2, . . . , N ) that is acceptably close
to p. Define cj � pj � p. Each county i (i � 1, 2, . . . , D) is in-
cluded in at least one candidate and typically will be included in
a considerable number of candidates (in order to provide many fea-
sible ways of selecting a set of R candidates that includes each
county exactly once). Define

aij � �
Given the values of the cj and the aij, the objective is to se-

lect R of these N possible districts such that each county is contained
in a single district and such that the largest of the associated cj is
as small as possible.

Formulate a BIP model for this problem.

11.5-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 11.5.
Briefly describe how integer programming was applied in this
study. Then list the various financial and nonfinancial benefits that
resulted from this study.

11.5-2.* Consider the following IP problem.

Maximize Z � 5x1 � x2,

subject to

�x1 � 2x2 � 4
x1 � x2 � 1

4x1 � x2 � 12

if county i is included in candidate j
if not.

1
0

Response Times (in minutes)

Assigned Station
Fire in Tract

Located in Tract 1 2 3 4 5

1 5 12 30 20 15
2 20 4 15 10 25
3 15 20 6 15 12
4 25 15 25 4 10
5 10 25 15 12 5

Average frequency 2 per 1 per 3 per 1 per 3 per 
of fires day day day day day
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and

x1 � 0, x2 � 0
x1, x2 are integers.

(a) Solve this problem graphically.
(b) Solve the LP relaxation graphically. Round this solution to

the nearest integer solution and check whether it is feasible.
Then enumerate all the rounded solutions by rounding this
solution for the LP relaxation in all possible ways (i.e., by
rounding each noninteger value both up and down). For each
rounded solution, check for feasibility and, if feasible, cal-
culate Z. Are any of these feasible rounded solutions optimal
for the IP problem?

11.5-3. Follow the instructions of Prob. 11.5-2 for the following
IP problem.

Maximize Z � 220x1 � 80x2,

subject to

5x1 � 2x2 � 16
2x1 � x2 � 4

�x1 � 2x2 � 4

and

x1 � 0, x2 � 0
x1, x2 are integers.

11.5-4. Follow the instructions of Prob. 11.5-2 for the following
BIP problem.

Maximize Z � 10x1 � 25x2,

subject to

19x1 � 6x2 � 15
5x1 � 15x2 � 15

and

x1, x2 are binary.

11.5-5. Follow the instructions of Prob. 11.5-2 for the following
BIP problem.

Maximize Z � �5x1 � 25x2,

subject to

�3x1 � 30x2 � 27
3x1 � x2 � 4

and

x1, x2 are binary.

11.5-6. Label each of the following statements as True or False,
and then justify your answer by referring to specific statements in
the chapter.
(a) Linear programming problems are generally considerably eas-

ier to solve than IP problems.

(b) For IP problems, the number of integer variables is generally
more important in determining the computational difficulty
than is the number of functional constraints.

(c) To solve an IP problem with an approximate procedure, one
may apply the simplex method to the LP relaxation problem
and then round each noninteger value to the nearest integer.
The result will be a feasible but not necessarily optimal solu-
tion for the IP problem.

D,I 11.6-1.* Use the BIP branch-and-bound algorithm presented
in Sec. 11.6 to solve the following problem interactively.

Maximize Z � 2x1 � x2 � 5x3 � 3x4 � 4x5,

subject to

3x1 � 2x2 � 7x3 � 5x4 � 4x5 � 6
x1 � x2 � 2x3 � 4x4 � 2x5 � 0

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 11.6-2. Use the BIP branch-and-bound algorithm presented in
Sec. 11.6 to solve the following problem interactively.

Minimize Z � 5x1 � 6x2 � 7x3 � 8x4 � 9x5,

subject to

3x1 � x2 � x3 � x4 � 2x5 � 2
x1 � 3x2 � x3 � 2x4 � x5 � 0

�x1 � x2 � 3x3 � x4 � x5 � 1

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 11.6-3. Use the BIP branch-and-bound algorithm presented in
Sec. 11.6 to solve the following problem interactively.

Maximize Z � 3x1 � 3x2 � 5x3 � 2x4 � x5,

subject to

x1 � 2x2 7x3 � 3x4 � x5 � 0
�15x1 � 30x2 � 35x3 � 45x4 � 45x5 � 50

and

xj is binary, for j � 1, 2, . . . , 5.

D,I 11.6-4. Reconsider Prob. 11.3-6(a). Use the BIP branch-and-
bound algorithm presented in Sec. 11.6 to solve this BIP model
interactively.

D,I 11.6-5. Reconsider Prob. 11.4-8(a). Use the BIP algorithm pre-
sented in Sec. 11.6 to solve this problem interactively.

11.6-6. Consider the following statements about any pure IP prob-
lem (in maximization form) and its LP relaxation. Label each of
the statements as True or False, and then justify your answer.
(a) The feasible region for the LP relaxation is a subset of the fea-

sible region for the IP problem.
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(b) If an optimal solution for the LP relaxation is an integer solu-
tion, then the optimal value of the objective function is the
same for both problems.

(c) If a noninteger solution is feasible for the LP relaxation, then
the nearest integer solution (rounding each variable to the near-
est integer) is a feasible solution for the IP problem.

11.6-7.* Consider the assignment problem with the following
cost table:

(a) Design a branch-and-bound algorithm for solving such as-
signment problems by specifying how the branching, bound-
ing, and fathoming steps would be performed. (Hint: For the
assignees not yet assigned for the current subproblem, form
the relaxation by deleting the constraints that each of these as-
signees must perform exactly one task.)

(b) Use this algorithm to solve this problem.

11.6-8. Five jobs need to be done on a certain machine. However,
the setup time for each job depends upon which job immediately
preceded it, as shown by the following table:

The objective is to schedule the sequence of jobs that minimizes
the sum of the resulting setup times.
(a) Design a branch-and-bound algorithm for sequencing prob-

lems of this type by specifying how the branch, bound, and
fathoming steps would be performed.

(b) Use this algorithm to solve this problem.

11.6-9.* Consider the following nonlinear BIP problem.

Maximize Z � 80x1 � 60x2 � 40x3 � 20x4

� (7x1 � 5x2 � 3x3 � 2x4)2,

subject to

xj is binary, for j � 1, 2, 3, 4.

Given the value of the first k variables x1, . . . , xk, where k � 0,
1, 2, or 3, an upper bound on the value of Z that can be achieved
by the corresponding feasible solutions is

�
k

j�1
cjxj � ��

k

j�1
djxj�

2

� �
4

j�k�1
max�0, cj � ���

k

i�1
dixi � dj�

2

� ��
k

i�1
dixi�

2

��,

where c1 � 80, c2 � 60, c3 � 40, c4 � 20, d1 � 7, d2 � 5, d3 � 3,
d4 � 2. Use this bound to solve the problem by the branch-and-
bound technique.

11.6-10. Consider the Lagrangian relaxation described near the
end of Sec. 11.6.
(a) If x is a feasible solution for an MIP problem, show that x also

must be a feasible solution for the corresponding Lagrangian
relaxation.

(b) If x* is an optimal solution for an MIP problem, with an ob-
jective function value of Z, show that Z � Z*R, where Z*R is the
optimal objective function value for the corresponding La-
grangian relaxation.

11.7-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 11.7.
Briefly describe how integer programming was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

11.7-2.* Consider the following IP problem.

Maximize Z � �3x1 � 5x2,

subject to

5x1 � 7x2 � 3

and

xj � 3
xj � 0
xj is integer, for j � 1, 2.

(a) Solve this problem graphically.
(b) Use the MIP branch-and-bound algorithm presented in Sec. 11.7

to solve this problem by hand. For each subproblem, solve its
LP relaxation graphically.

(c) Use the binary representation for integer variables to refor-
mulate this problem as a BIP problem.

D,I (d) Use the BIP branch-and-bound algorithm presented in
Sec. 11.6 to solve the problem as formulated in part (c)
interactively.

Task

1 2 3 4 5

1 39 65 69 66 57
2 64 84 24 92 22

Assignee 3 49 50 61 31 45
4 48 45 55 23 50
5 59 34 30 34 18

Setup Time

Job

1 2 3 4 5

None 4 5 8 9 4
1 — 7 12 10 9

Immediately 2 6 — 10 14 11
Preceding Job 3 10 11 — 12 10

4 7 8 15 — 7
5 12 9 8 16 —
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11.7-3. Follow the instructions of Prob. 11.7-2 for the following
IP model.

Minimize Z � 15x1 � 10x2,

subject to

15x1 � 5x2 � 30
10x1 � 10x2 � 30

and

x1 � 0, x2 � 0
x1, x2 are integers.

11.7-4. Reconsider the IP model of Prob. 11.5-2.
(a) Use the MIP branch-and-bound algorithm presented in Sec. 11.7

to solve this problem by hand. For each subproblem, solve its
LP relaxation graphically.

D,I (b) Now use the interactive procedure for this algorithm in
your IOR Tutorial to solve this problem.

C (c) Check your answer by using an automatic procedure to
solve the problem.

D,I 11.7-5. Consider the IP example discussed in Sec. 11.5 and il-
lustrated in Fig. 11.3. Use the MIP branch-and-bound algorithm
presented in Sec. 11.7 to solve this problem interactively.

D,I 11.7-6. Reconsider Prob. 11.3-5a. Use the MIP branch-and-
bound algorithm presented in Sec. 11.7 to solve this IP problem
interactively.

11.7-7. A machine shop makes two products. Each unit of the first
product requires 3 hours on machine 1 and 2 hours on machine 2.
Each unit of the second product requires 2 hours on machine 1 and
3 hours on machine 2. Machine 1 is available only 8 hours per day
and machine 2 only 7 hours per day. The profit per unit sold is 16
for the first product and 10 for the second. The amount of each
product produced per day must be an integral multiple of 0.25. The
objective is to determine the mix of production quantities that will
maximize profit.
(a) Formulate an IP model for this problem.
(b) Solve this model graphically.
(c) Use graphical analysis to apply the MIP branch-and-bound

algorithm presented in Sec. 11.7 to solve this model.
D,I (d) Now use the interactive procedure for this algorithm in

your IOR Tutorial to solve this model.
C (e) Check your answers in parts (b), (c), and (d ) by using an

automatic procedure to solve the model.

D,I 11.7-8. Use the MIP branch-and-bound algorithm presented in
Sec. 11.7 to solve the following MIP problem interactively.

Maximize Z � 20x1 � 10x2 � 25x3 � 20x4,

subject to

x1 � x2 � x3 � 2x4 � 12
3x1 � x2 � 2x3 � 2x4 � 20
x1 � 2x2 � 5x3 � 3x4 � 30

and

xj � 0, for j � 1, 2, 3, 4
xj is integer, for j � 1, 2, 3.

D,I 11.7-9. Use the MIP branch-and-bound algorithm presented in
Sec. 11.7 to solve the following MIP problem interactively.

Maximize Z � 3x1 � 4x2 � 2x3 � x4 � 2x5,

subject to

2x1 � x2 � x3 � x4 � x5 � 3
�x1 � 3x2 � x3 � x4 � 2x5 � 2
2x1 � x2 � x3 � x4 � 3x5 � 1

and

xj � 0, for j � 1, 2, 3, 4, 5
xj is binary, for j � 1, 2, 3.

D,I 11.7-10. Use the MIP branch-and-bound algorithm presented
in Sec. 11.7 to solve the following MIP problem interactively.

Minimize Z � 5x1 � x2 � x3 � 2x4 � 3x5,

subject to

x2 � 5x3 � x4 � 2x5 � �2
5x1 � x2 � x4 � x5 � �7

x1 � x2 � 6x3 � x4 � �4

and

xj � 0, for j � 1, 2, 3, 4, 5
xj is integer, for j � 1, 2, 3.

11.8-1.* For each of the following constraints of pure BIP prob-
lems, use the constraint to fix as many variables as possible.
(a) 4x1 � x2 � 3x3 � 2x4 � 2
(b) 4x1 � x2 � 3x3 � 2x4 � 2
(c) 4x1 � x2 � 3x3 � 2x4 � 7

11.8-2. For each of the following constraints of pure BIP problems,
use the constraint to fix as many variables as possible.
(a) 20x1 � 7x2 � 5x3 � 10
(b) 10x1 � 7x2 � 5x3 � 10
(c) 10x1 � 7x2 � 5x3 � �1

11.8-3. Use the following set of constraints for the same pure
BIP problem to fix as many variables as possible. Also identify
the constraints which become redundant because of the fixed
variables.

3x3 � x5 � x7 � 1
x2 � x4 � x6 � 1
x1 � 2x5 � 2x6 � 2
x1 � x2 � x4 � 0
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11.8-4. For each of the following constraints of pure BIP problems,
identify which ones are made redundant by the binary constraints.
Explain why each one is, or is not, redundant.
(a) 2x1 � x2 � 2x3 � 5
(b) 3x1 � 4x2 � 5x3 � 5
(c) x1 � x2 � x3 � 2
(d) 3x1 � x2 � 2x3 � �4

11.8-5. In Sec. 11.8, at the end of the subsection on tightening
constraints, we indicated that the constraint 4x1 � 3x2 � x3 �
2x4 � 5 can be tightened to 2x1 � 3x2 � x3 � 2x4 � 3 and then
to 2x1 � 2x2 � x3 � 2x4 � 3. Apply the procedure for tightening
constraints to confirm these results.

11.8-6. Apply the procedure for tightening constraints to the fol-
lowing constraint for a pure BIP problem.

5x1 � 10x2 � 15x3 � 15.

11.8-7. Apply the procedure for tightening constraints to the fol-
lowing constraint for a pure BIP problem.

x1 � x2 � 3x3 � 4x4 � 1.

11.8-8. Apply the procedure for tightening constraints to each of
the following constraints for a pure BIP problem.
(a) x1 � 3x2 � 4x3 � 2.
(b) 3x1 � x2 � 4x3 � 1.

11.8-9. In Sec. 11.8, a pure BIP example with the constraint,
2x1 � 3x2 � 4, was used to illustrate the procedure for tightening
constraints. Show that applying the procedure for generating cutting
planes to this constraint yields the same new constraint, x1 � x2 � 1.

11.8-10. One of the constraints of a certain pure BIP problem is

x1 � 3x2 � 2x3 � 4x4 � 5.

Identify all the minimal covers for this constraint, and then give
the corresponding cutting planes.

11.8-11. One of the constraints of a certain pure BIP problem is

25x1 � 15x2 � 20x3 � 10x4 � 35.

Identify all the minimal covers for this constraint, and then give
the corresponding cutting planes.

11.8-12. Generate as many cutting planes as possible from the
following constraint for a pure BIP problem.

3x1 � 5x2 � 4x3 � 8x4 � 10.

11.8-13. Generate as many cutting planes as possible from the
following constraint for a pure BIP problem.

5x1 � 3x2 � 7x3 � 4x4 � 6x5 � 9.

11.8-14. Consider the following BIP problem.

Maximize Z � 2x1 � 3x2 � x3 � 4x4 � 3x5

� 2x6 � 2x7 � x8 � 3x9,

subject to

3x2 � x4 � x5 � 3
x1 � x2 � 1

x2 � x4 � x5 � x6 � �1
x2 � 2x6 � 3x7 � x8 � 2x9 � 4

�x3 � 2x5 � x6 � 2x7 � 2x8 � x9 � 5

and

all xj binary.

Develop the tightest possible formulation of this problem by using
the techniques of automatic problem reprocessing (fixing variables,
deleting redundant constraints, and tightening constraints). Then
use this tightened formulation to determine an optimal solution by
inspection.

11.9-1. Consider the following problem.

Maximize Z � 10x1 � 30x2 � 40x3 � 30x4,

subject to

x1 ∈ {2, 3}, x2 ∈ {2, 4}, x3 ∈ {3, 4}, x4 ∈ {1, 2, 3, 4},
all these variables must have different values,
x1 � x2 � x3 � x4 � 10.

Use the techniques of constraint programming (domain reduction,
constraint propagation, a search procedure, and enumeration) to
identify all the feasible solutions and then to find an optimal so-
lution. Show your work.

11.9-2. Consider the following problem.

Maximize Z � 5x1 � x2
1 � 8x2 �x2

2 � 10x3 � x2
3 � 15x4

� x2
4 � 20x5 � x2

5,

subject to

x1 ∈ {3, 6, 12}, x2 ∈ {3, 6}, x3 ∈ {3, 6, 9, 12},
x4 ∈ {6, 12}, x5 ∈ {9, 12, 15, 18},

all these variables must have different values,
x1 � x3 � x4 � 25.

Use the techniques of constraint programming (domain reduction,
constraint propagation, a search procedure, and enumeration) to
identify all the feasible solutions and then to find an optimal solu-
tion. Show your work.

11.9-3. Consider the following problem.

Maximize Z � 100x1 � 3x2
1� 400x2 �5x2

2 � 200x3

� 4x2
3 � 100x4 � 2x4

4,

subject to

x1 ∈ {25, 30}, x2 ∈ {20, 25, 30, 35, 40, 50},
x3 ∈ {20, 25, 30}, x4 ∈ {20, 25},

all these variables must have different values,
x2 � x3 � 60,
x1 � x3 � 50.
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CASE 11.1 Capacity Concerns
Bentley Hamilton throws the business section of The New
York Times onto the conference room table and watches as
his associates jolt upright in their overstuffed chairs.

Mr. Hamilton wants to make a point.
He throws the front page of The Wall Street Journal on

top of The New York Times and watches as his associates
widen their eyes once heavy with boredom.

Mr. Hamilton wants to make a big point.
He then throws the front page of The Financial Times

on top of the newspaper pile and watches as his associates
dab the fine beads of sweat off their brows.

Mr. Hamilton wants his point indelibly etched into his
associates’ minds.

“I have just presented you with three leading financial
newspapers carrying today’s top business story,” Mr. Hamilton
declares in a tight, angry voice. “My dear associates, our com-
pany is going to hell in a hand basket! Shall I read you the
headlines? From The New York Times, ‘CommuniCorp stock 

■ CASES

Use the techniques of constraint programming (domain reduction,
constraint propagation, a search procedure, and enumeration) to
identify all the feasible solutions and then to find an optimal solu-
tion. Show your work.

11.9-4. Consider the Job Shop Co. example introduced in Sec. 8.3.
Table 8.25 shows its formulation as an assignment problem. Use
global constraints to formulate a compact constraint programming
model for this assignment problem.

11.9-5. Consider the problem of assigning swimmers to the dif-
ferent legs of a medley relay team that is presented in Prob. 8.3-4.
The answer in the back of the book shows the formulation of this
problem as an assignment problem. Use global constraints to for-
mulate a compact constraint programming model for this assign-
ment problem.

11.9-6. Consider the problem of determining the best plan for how
many days to study for each of four final examinations that is pre-
sented in Prob. 10.3-3. Formulate a compact constraint program-
ming model for this problem.

11.9-7. Problem 10.3-2 describes how the owner of a chain of three
grocery stores needs to determine how many crates of fresh straw-
berries should be allocated to each of the stores. Formulate a com-
pact constraint programming model for this problem.

11.9-8. One powerful feature of constraint programming is that
variables can be used as subscripts for the terms in the objective
function. For example, consider the following traveling salesman

problem. The salesman needs to visit each of n cities (city 1,
2, . . . , n) exactly once, starting in city 1 (his home city) and re-
turning to city 1 after completing the tour. Let cij be the distance
from city i to city j for i, j � 1, 2, . . . , n (i ≠ j). The objective is
to determine which route to follow so as to minimize the total dis-
tance of the tour. (As discussed further in Chap. 13, this traveling
salesman problem is a famous classic OR problem with many ap-
plications that have nothing to do with salesmen.)

Letting the decision variable xj (j � 1, 2, . . . , n, n � 1) denote
the jth city visited by the salesman, where x1 � 1 and xn�1 � 1,
constraint programming allows writing the objective as

Minimize Z � �
n

j�1
cxj xj�1

.

Using this objective function, formulate a complete constraint pro-
gramming model for this problem.

11.10-1. From the bottom part of the selected references given at
the end of the chapter, select one of these award-winning applica-
tions of integer programming. Read this article and then write a
two-page summary of the application and the benefits (including
nonfinancial benefits) it provided.

11.10-2. From the bottom part of the selected references given at
the end of the chapter, select three of these award-winning appli-
cations of integer programming. For each one, read the article and
then write a one-page summary of the application and the benefits
(including nonfinancial benefits) it provided.

drops to lowest in 52 weeks.’ From The Wall Street Journal,
‘CommuniCorp loses 25 percent of the pager market in only
one year.’ Oh and my favorite, from The Financial Times,
‘CommuniCorp cannot CommuniCate: CommuniCorp stock
drops because of internal communications disarray.’ How did
our company fall into such dire straits?”

Mr. Hamilton throws a transparency showing a line slop-
ing slightly upward onto the overhead projector. “This is a
graph of our productivity over the last 12 months. As you
can see from the graph, productivity in our pager production
facility has increased steadily over the last year. Clearly, pro-
ductivity is not the cause of our problem.”

Mr. Hamilton throws a second transparency showing a
line sloping steeply upward onto the overhead projector.
“This is a graph of our missed or late orders over the last
12 months.” Mr. Hamilton hears an audible gasp from his
associates. “As you can see from the graph, our missed or
late orders have increased steadily and significantly over the
past 12 months. I think this trend explains why we have been
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losing market share, causing our stock to drop to its lowest
level in 52 weeks. We have angered and lost the business of
retailers, our customers who depend upon on-time deliveries
to meet the demand of consumers.”

“Why have we missed our delivery dates when our pro-
ductivity level should have allowed us to fill all orders?”
Mr. Hamilton asks. “I called several departments to ask this
question.”

“It turns out that we have been producing pagers for the
hell of it!” Mr. Hamilton says in disbelief. “The marketing
and sales departments do not communicate with the manu-
facturing department, so manufacturing executives do not
know what pagers to produce to fill orders. The manufac-
turing executives want to keep the plant running, so they
produce pagers regardless of whether the pagers have been
ordered. Finished pagers are sent to the warehouse, but mar-
keting and sales executives do not know the number and
styles of pagers in the warehouse. They try to communicate

with warehouse executives to determine if the pagers in in-
ventory can fill the orders, but they rarely receive answers
to their questions.”

Mr. Hamilton pauses and looks directly at his associ-
ates. “Ladies and gentlemen, it seems to me that we have
a serious internal communications problem. I intend to
correct this problem immediately. I want to begin by in-
stalling a companywide computer network to ensure that
all departments have access to critical documents and are
able to easily communicate with each other through 
e-mail. Because this intranet will represent a large change
from the current communications infrastructure, I expect
some bugs in the system and some resistance from em-
ployees. I therefore want to phase in the installation of the
intranet.”

Mr. Hamilton passes the following timeline and re-
quirements chart to his associates (IN � Intranet).

Mr. Hamilton proceeds to explain the timeline and re-
quirements chart. “In the first month, I do not want to bring
any department onto the intranet; I simply want to
disseminate information about it and get buy-in from em-
ployees. In the second month, I want to bring the sales de-
partment onto the intranet since the sales department

receives all critical information from customers. In the third
month, I want to bring the manufacturing department onto
the intranet. In the fourth month, I want to install the in-
tranet at the warehouse, and in the fifth and final month, I
want to bring the marketing department onto the intranet.
The requirements chart under the timeline lists the number
of employees requiring access to the intranet in each de-
partment.”

Mr. Hamilton turns to Emily Jones, the head of Corpo-
rate Information Management. “I need your help in plan-
ning for the installation of the intranet. Specifically, the
company needs to purchase servers for the internal network.
Employees will connect to company servers and download
information to their own desktop computers.”

Department Number of Employees

Sales 60
Manufacturing 200
Warehouse 30
Marketing 75

Month 1 Month 2 Month 3 Month 4 Month 5

IN Education
Install IN in
Sales

Install IN in
Manufacturing

Install IN in
Warehouse

Install IN in
Marketing
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■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 11.2 Assigning Art
Plans are being made for an exhibit of up-and-coming mod-
ern artists at the San Francisco Museum of Modern Art. A
long list of possible artists, their available pieces, and the dis-
play prices for these pieces has been compiled. There also are
various constraints regarding the mix of pieces that can be
chosen. BIP now needs to be applied to make the selection
of the pieces for the exhibit under three different scenarios.

CASE 11.3 Stocking Sets
Poor inventory management at the local warehouse for
Furniture City has led to overstocking of many items and
frequent shortages of some others. To begin to rectify this
situation, the 20 most popular kitchen sets in Furniture
City’s kitchen department have just been identified. These
kitchen sets are composed of up to eight features in a vari-
ety of styles, so each of these styles should be well stocked

Mr. Hamilton passes Emily the above chart detailing the
types of servers available, the number of employees each
server supports, and the cost of each server.

“Emily, I need you to decide what servers to purchase
and when to purchase them to minimize cost and to ensure
that the company possesses enough server capacity to fol-
low the intranet implementation timeline,” Mr. Hamilton
says. “For example, you may decide to buy one large server
during the first month to support all employees, or buy
several small servers during the first month to support all
employees, or buy one small server each month to support
each new group of employees gaining access to the
intranet.”

“There are several factors that complicate your deci-
sion,” Mr. Hamilton continues. “Two server manufactur-
ers are willing to offer discounts to CommuniCorp. SGI
is willing to give you a discount of 10 percent off each
server purchased, but only if you purchase servers in the
first or second month. Sun is willing to give you a 25 percent
discount off all servers purchased in the first two months.
You are also limited in the amount of money you can
spend during the first month. CommuniCorp has already
allocated much of the budget for the next two months, so
you only have a total of $9,500 available to purchase

servers in months 1 and 2. Finally, the Manufacturing De-
partment requires at least one of the three more powerful
servers. Have your decision on my desk at the end of the
week.”

(a) Emily first decides to evaluate the number and type of servers to
purchase on a month-to-month basis. For each month, formulate
an IP model to determine which servers Emily should purchase
in that month to minimize costs in that month and support the
new users. How many and which types of servers should she pur-
chase in each month? How much is the total cost of the plan?

(b) Emily realizes that she could perhaps achieve savings if she
bought a larger server in the initial months to support users in
the final months. She therefore decides to evaluate the num-
ber and type of servers to purchase over the entire planning
period. Formulate an IP model to determine which servers
Emily should purchase in which months to minimize total cost
and support all new users. How many and which types of
servers should she purchase in each month? How much is the
total cost of the plan?

(c) Why is the answer using the first method different from that us-
ing the second method?

(d) Are there other costs that Emily is not accounting for in her
problem formulation? If so, what are they?

(e) What further concerns might the various departments of Com-
muniCorp have regarding the intranet?

Number of Employees
Type of Server Server Supports Cost of Server

Standard Intel Pentium PC Up to 30 employees $ 2,500
Enhanced Intel Pentium PC Up to 80 employees $ 5,000
SGI Workstation Up to 200 employees $10,000
Sun Workstation Up to 2,000 employees $25,000
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in the warehouse. However, the limited amount of warehouse
space allocated to the kitchen department means that some
difficult stocking decisions need to be made. After gather-
ing the relevant data for the 20 kitchen sets, BIP now needs
to be applied to determine how many of each feature and
style Furniture City should stock in the local warehouse un-
der three different scenarios.

CASE 11.4 Assigning Students 
to Schools, Revisited Again
As introduced in Case 4.3 and revisited in Case 6.3, the
Springfield School Board needs to assign the middle school

students in the city’s six residential areas to the three re-
maining middle schools. The new complication in that the
school board has just made the decision to prohibit the split-
ting of residential areas among multiple schools. Therefore,
since each of the six areas must be assigned to a single
school, BIP now must be applied to make these assignments
under the various scenarios considered in Case 4.3.
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12C H A P T E R

Nonlinear Programming

The fundamental role of linear programming in OR is accurately reflected by the fact
that it is the focus of a third of this book. A key assumption of linear programming

is that all its functions (objective function and constraint functions) are linear. Although
this assumption essentially holds for many practical problems, it frequently does not hold.
Therefore, it often is necessary to deal directly with nonlinear programming problems, so
we turn our attention to this important area.

In one general form,1 the nonlinear programming problem is to find x � (x1, x2, . . . , xn)
so as to

Maximize f (x),

subject to

gi(x) � bi, for i � 1, 2, . . . , m,

and

x � 0,

where f (x) and the gi(x) are given functions of the n decision variables.2

There are many different types of nonlinear programming problems, depending on
the characteristics of the f(x) and gi(x) functions. Different algorithms are used for the dif-
ferent types. For certain types where the functions have simple forms, problems can be
solved relatively efficiently. For some other types, solving even small problems is a real
challenge.

Because of the many types and the many algorithms, nonlinear programming is a par-
ticularly large subject. We do not have the space to survey it completely. However, we do
present a few sample applications and then introduce some of the basic ideas for solving
certain important types of nonlinear programming problems.

Both Appendixes 2 and 3 provide useful background for this chapter, and we rec-
ommend that you review these appendixes as you study the next few sections.

1The other legitimate forms correspond to those for linear programming listed in Sec. 3.2. Section 4.6 describes
how to convert these other forms to the form given here.
2For simplicity, we assume throughout the chapter that all these functions either are differentiable everywhere
or are piecewise linear functions (discussed in Secs. 12.1 and 12.8).
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Demand x

p(x)

Pr
ic

e

c
Unit cost

■ FIGURE 12.1
Price-demand curve.

■ 12.1 SAMPLE APPLICATIONS

The following examples illustrate a few of the many important types of problems to which
nonlinear programming has been applied.

The Product-Mix Problem with Price Elasticity

In product-mix problems, such as the Wyndor Glass Co. problem of Sec. 3.1, the goal is
to determine the optimal mix of production levels for a firm’s products, given limitations
on the resources needed to produce those products, in order to maximize the firm’s total
profit. In some cases, there is a fixed unit profit associated with each product, so the re-
sulting objective function will be linear. However, in many product-mix problems, certain
factors introduce nonlinearities into the objective function.

For example, a large manufacturer may encounter price elasticity, whereby the amount
of a product that can be sold has an inverse relationship to the price charged. Thus, the
price-demand curve for a typical product might look like the one shown in Fig. 12.1, where
p(x) is the price required in order to be able to sell x units. The firm’s profit from produc-
ing and selling x units of the product then would be the sales revenue, xp(x), minus the
production and distribution costs. Therefore, if the unit cost for producing and distribut-
ing the product is fixed at c (see the dashed line in Fig. 12.1), the firm’s profit from pro-
ducing and selling x units is given by the nonlinear function

P(x) � xp(x) � cx,

as plotted in Fig. 12.2. If each of the firm’s n products has a similar profit function, say,
Pj(xj) for producing and selling xj units of product j ( j � 1, 2, . . . , n), then the overall
objective function is

f (x) � �
n

j�1
Pj(xj),

a sum of nonlinear functions.
Another reason that nonlinearities can arise in the objective function is the fact that

the marginal cost of producing another unit of a given product varies with the production
level. For example, the marginal cost may decrease when the production level is increased
because of a learning-curve effect (more efficient production with more experience). On
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the other hand, it may increase instead, because special measures such as overtime or more
expensive production facilities may be needed to increase production further.

Nonlinearities also may arise in the gi(x) constraint functions in a similar fashion.
For example, if there is a budget constraint on total production cost, the cost function
will be nonlinear if the marginal cost of production varies as just described. For con-
straints on the other kinds of resources, gi(x) will be nonlinear whenever the use of the
corresponding resource is not strictly proportional to the production levels of the re-
spective products.

The Transportation Problem with Volume Discounts 
on Shipping Costs

As illustrated by the P & T Company example in Sec. 8.1, a typical application of the
transportation problem is to determine an optimal plan for shipping goods from various
sources to various destinations, given supply and demand constraints, in order to mini-
mize total shipping cost. It was assumed in Chap. 8 that the cost per unit shipped from
a given source to a given destination is fixed, regardless of the amount shipped. In actu-
ality, this cost may not be fixed. Volume discounts sometimes are available for large ship-
ments, so that the marginal cost of shipping one more unit might follow a pattern like
the one shown in Fig. 12.3. The resulting cost of shipping x units then is given by a non-
linear function C(x), which is a piecewise linear function with slope equal to the mar-
ginal cost, like the one shown in Fig. 12.4. [The function in Fig. 12.4 consists of a line
segment with slope 6.5 from (0, 0) to (0.6, 3.9), a second line segment with slope 5 from
(0.6, 3.9) to (1.5, 8.4), a third line segment with slope 4 from (1.5, 8.4) to (2.7, 13.2),
and a fourth line segment with slope 3 from (2.7, 13.2) to (4.5, 18.6).] Consequently, if each
combination of source and destination has a similar shipping cost function, so that the cost
of shipping xij units from source i (i � 1, 2, . . . , m) to destination j ( j � 1, 2, . . . , n) is
given by a nonlinear function Cij(xij), then the overall objective function to be minimized is

f (x) � �
m

i�1
�
n

j�1
Cij(xij).

Even with this nonlinear objective function, the constraints normally are still the special
linear constraints that fit the transportation problem model in Sec. 8.1.
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■ FIGURE 12.2
Profit function.

hil76299_ch12_537-606.qxd  11/19/08  08:34 AM  Page 539



Rev.Confirming Pages

540 CHAPTER 12 NONLINEAR PROGRAMMING

Amount shipped

M
ar

gi
na

l c
os

t

0.6 1.5 2.7 4.5

6.5

5

4

3

Amount shipped

T
ot

al
 c

os
t

0.6 1.5 2.7 4.5

3.9

8.4

13.2

18.6

■ FIGURE 12.4
Shipping cost function.

■ FIGURE 12.3
Marginal shipping cost.

Portfolio Selection with Risky Securities

It now is common practice for professional managers of large stock portfolios to use com-
puter models based partially on nonlinear programming to guide them. Because investors
are concerned about both the expected return (gain) and the risk associated with their in-
vestments, nonlinear programming is used to determine a portfolio that, under certain 
assumptions, provides an optimal trade-off between these two factors. This approach is
based largely on path-breaking research done by Harry Markowitz and William Sharpe
that helped them win the 1990 Nobel Prize in Economics.

A nonlinear programming model can be formulated for this problem as follows. Sup-
pose that n stocks (securities) are being considered for inclusion in the portfolio, and let the
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decision variables xj ( j � 1, 2, . . . , n) be the number of shares of stock j to be included.
Let �j and �jj be the (estimated) mean and variance, respectively, of the return on each share
of stock j, where �jj measures the risk of this stock. For i � 1, 2, . . . , n (i � j), let �ij be
the covariance of the return on one share each of stock i and stock j. (Because it would be
difficult to estimate all the �ij values, the usual approach is to make certain assumptions
about market behavior that enable us to calculate �ij directly from �ii and �jj .) Then the ex-
pected value R(x) and the variance V(x) of the total return from the entire portfolio are

R(x) � �
n

j�1
�jxj

and

V(x) � �
n

i�1
�
n

j�1
�ij xixj,

where V(x) measures the risk associated with the portfolio. One way to consider the trade-
off between these two factors is to use V(x) as the objective function to be minimized and
then impose the constraint that R(x) must be no smaller than the minimum acceptable ex-
pected return. The complete nonlinear programming model then would be

Minimize V(x) � �
n

i�1
�
n

j�1
�ij xixj,

subject to

�
n

j�1
�j xj � L

�
n

j�1
Pjxj � B

The Bank Hapoalim Group is Israel's largest banking
group, providing services within Israel through a network
of 327 branches, nine regional business centers, and vari-
ous domestic subsidiaries. It also operates worldwide
through 37 branches, offices, and subsidiaries in major
financial centers in North and South America and Europe.

A major part of Bank Hapoalim's business involves
providing investment advisors for its customers. To stay
ahead of its competitors, management embarked on a
restructuring program to provide these investment advi-
sors with state-of-the-art methodology and technology.
An OR team was formed to do this.

The team concluded that it needed to develop a flexi-
ble decision-support system for the investment advisors
that could be tailored to meet the diverse needs of every
customer. Each customer would be asked to provide exten-
sive information about his or her needs, including choos-
ing among various alternatives regarding his or her
investment objectives, investment horizon, choice of an
index to strive to exceed, preference with regard to liquid-
ity and currency, etc. A series of questions also would be
asked to ascertain the customer's risk-taking classification.

The natural choice of the model to drive the resulting
decision-support system (called the Opti-Money System)
was the classical nonlinear programming model for port-
folio selection described in this section of the book, with
modifications to incorporate all the information about the
needs of the individual customer. This model generates
an optimal weighting of 60 possible asset classes of equi-
ties and bonds in the portfolio, and the investment advi-
sor then works with the customer to choose the specific
equities and bonds within these classes.

In one recent year, the bank's investment advisors
held some 133,000 consultation sessions with 63,000
customers while using this decision-support system. The
annual earnings over benchmarks to customers who fol-
low the investment advice provided by the system total
approximately US$244 million, while adding more than
US$31 million to the bank's annual income.

Source: M. Avriel, H. Pri-Zan, R. Meiri, and A. Peretz: “Opti-
Money at Bank Hapoalim: A Model-Based Investment Decision-
Support System for Individual Customers,” Interfaces, 34(1):
39–50, Jan.–Feb. 2004. (A link to this article is provided on our
website, www.mhhe.com/hillier.)

An Application Vignette
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and

xj � 0, for j � 1, 2, . . . , n,

where L is the minimum acceptable expected return, Pj is the price for each share of stock j,
and B is the amount of money budgeted for the portfolio.

One drawback of this formulation is that it is relatively difficult to choose an appro-
priate value for L for obtaining the best trade-off between R(x) and V(x). Therefore, rather
than stopping with one choice of L, it is common to use a parametric (nonlinear) pro-
gramming approach to generate the optimal solution as a function of L over a wide range
of values of L. The next step is to examine the values of R(x) and V(x) for these solutions
that are optimal for some value of L and then to choose the solution that seems to give
the best trade-off between these two quantities. This procedure often is referred to as gen-
erating the solutions on the efficient frontier of the two-dimensional graph of (R(x), V(x))
points for feasible x. The reason is that the (R(x), V(x)) point for an optimal x (for some L)
lies on the frontier (boundary) of the feasible points. Furthermore, each optimal x is effi-
cient in the sense that no other feasible solution is at least equally good with one mea-
sure (R or V ) and strictly better with the other measure (smaller V or larger R).

This application of nonlinear programming is a particularly important one. The use
of nonlinear programming for portfolio optimization now lies at the center of modern fi-
nancial analysis. (More broadly, the relatively new field of financial engineering has arisen
to focus on the application of OR techniques such as nonlinear programming to various
finance problems, including portfolio optimization.) As illustrated by the application vi-
gnette in this section, this kind of application of nonlinear programming is having a tremen-
dous impact in practice. Much research also continues to be done on the properties and
application of both the above model and related nonlinear programming models to so-
phisticated kinds of portfolio analysis.3
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3Important recent research includes the following papers. B. I. Jacobs, K. N. Levy, and H. M. Markowitz: “Port-
folio Optimization with Factors, Scenarios, and Realistic Short Positions,” Operations Research, 53(4): 586–599,
July–Aug. 2005; A. F. Siegel and A. Woodgate: “Performance of Portfolios Optimized with Estimation Error,”
Management Science, 53(6): 1005–1015, June 2007; H. Konno and T. Koshizuka: “Mean-Absolute Deviation
Model,” IIE Transactions, 37(10): 893–900, Oct. 2005.

■ 12.2 GRAPHICAL ILLUSTRATION OF NONLINEAR 
PROGRAMMING PROBLEMS

When a nonlinear programming problem has just one or two variables, it can be repre-
sented graphically much like the Wyndor Glass Co. example for linear programming in
Sec. 3.1. Because such a graphical representation gives considerable insight into the prop-
erties of optimal solutions for linear and nonlinear programming, let us look at a few ex-
amples. To highlight the difference between linear and nonlinear programming, we shall
use some nonlinear variations of the Wyndor Glass Co. problem.

Figure 12.5 shows what happens to this problem if the only changes in the model
shown in Sec. 3.1 are that both the second and the third functional constraints are replaced
by the single nonlinear constraint 9x2

1 � 5x2
2 � 216. Compare Fig. 12.5 with Fig. 3.3. The

optimal solution still happens to be (x1, x2) � (2, 6). Furthermore, it still lies on the bound-
ary of the feasible region. However, it is not a corner-point feasible (CPF) solution. The
optimal solution could have been a CPF solution with a different objective function (check
Z � 3x1 � x2), but the fact that it need not be one means that we no longer have the
tremendous simplification used in linear programming of limiting the search for an opti-
mal solution to just the CPF solutions.
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2 4 x1
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x2

Feasible
region

(2, 6) � optimal solution

Z � 36 � 3x1 � 5x2

0

Maximize  
subject to

and

Z � 3x1 � 5x2,
x1              �     4

9x1 � 5x2 � 216
x1 � 0, x2 � 0

22

■ FIGURE 12.5
The Wyndor Glass Co.
example with the nonlinear
constraint 9x2

1 � 5x2
2 � 216

replacing the original second
and third functional
constraints.

Now suppose that the linear constraints of Sec. 3.1 are kept unchanged, but the ob-
jective function is made nonlinear. For example, if

Z � 126x1 � 9x2
1 � 182x2 � 13x2

2,

then the graphical representation in Fig. 12.6 indicates that the optimal solution is x1 � �
8
3

�,
x2 � 5, which again lies on the boundary of the feasible region. (The value of Z for this
optimal solution is Z � 857, so Fig. 12.6 depicts the fact that the locus of all points with
Z � 857 intersects the feasible region at just this one point, whereas the locus of points
with any larger Z does not intersect the feasible region at all.) On the other hand, if

Z � 54x1 � 9x2
1 � 78x2 � 13x2

2,

then Fig. 12.7 illustrates that the optimal solution turns out to be (x1, x2) � (3, 3), which
lies inside the boundary of the feasible region. (You can check that this solution is opti-
mal by using calculus to derive it as the unconstrained global maximum; because it also
satisfies the constraints, it must be optimal for the constrained problem.) Therefore, a gen-
eral algorithm for solving similar problems needs to consider all solutions in the feasible
region, not just those on the boundary.

Another complication that arises in nonlinear programming is that a local maximum
need not be a global maximum (the overall optimal solution). For example, consider the
function of a single variable plotted in Fig. 12.8. Over the interval 0 � x � 5, this func-
tion has three local maxima—x � 0, x � 2, and x � 4—but only one of these—x � 4—
is a global maximum. (Similarly, there are local minima at x � 1, 3, and 5, but only x � 5
is a global minimum.)

Nonlinear programming algorithms generally are unable to distinguish between a local
maximum and a global maximum (except by finding another better local maximum). There-
fore, it becomes crucial to know the conditions under which any local maximum is guar-
anteed to be a global maximum over the feasible region. You may recall from calculus that
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■ FIGURE 12.7
The Wyndor Glass Co.
example with the original
feasible region but with
another nonlinear objective
function, Z � 54x1 � 9x2

1 �
78x2 � 13x2

2, replacing the
original objective function.
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x1 � 0, x2 � 0
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■ FIGURE 12.6
The Wyndor Glass Co.
example with the original
feasible region but with the
nonlinear objective function
Z � 126x1 � 9x2

1 � 182x2 �
13x2

2 replacing the original
objective function.
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when we maximize an ordinary (doubly differentiable) function of a single variable f(x)
without any constraints, this guarantee can be given when

� 0 for all x.

Such a function that is always “curving downward” (or not curving at all) is called a 
concave function.4 Similarly, if � is replaced by �, so that the function is always “curv-
ing upward” (or not curving at all), it is called a convex function.5 (Thus, a linear
function is both concave and convex.) See Fig. 12.9 for examples. Then note that Fig. 12.8
illustrates a function that is neither concave nor convex because it alternates between curv-
ing upward and curving downward.

Functions of multiple variables also can be characterized as concave or convex if they
always curve downward or curve upward. These intuitive definitions are restated in pre-
cise terms, along with further elaboration on these concepts, in Appendix 2. (Concave and
convex functions play a fundamental role in nonlinear programming, so if you are not
very familiar with such functions, we suggest that you read further in Appendix 2.) 
Appendix 2 also provides a convenient test for checking whether a function of two vari-
ables is concave, convex, or neither.

Here is a convenient way of checking this for a function of more than two variables
when the function consists of a sum of smaller functions of just one or two variables each.

�2f
�
�x2
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f (x)

0 1 2 3 4 5 x

■ FIGURE 12.8
A function with several local
maxima (x � 0, 2, 4), but
only x � 4 is a global
maximum.

4Concave functions sometimes are referred to as concave downward.
5Convex functions sometimes are referred to as concave upward.

f (x)

x

Concave function

(a)

f (x)

x

Convex function

(b)

■ FIGURE 12.9
Examples of (a) a concave
function and (b) a convex
function.
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If each smaller function is concave, then the overall function is concave. Similarly, the
overall function is convex if each smaller function is convex.

To illustrate, consider the function

f (x1, x2, x3) � 4x1 � x2
1 � (x2 � x3)2

� [4x1 � x2
1] � [�(x2 � x3)2],

which is the sum of the two smaller functions given in square brackets. The first smaller
function 4x1 � x2

1 is a function of the single variable x1, so it can be found to be concave
by noting that its second derivative is negative. The second smaller function �(x2 � x3)2 is
a function of just x2 and x3, so the test for functions of two variables given in Appendix 2
is applicable. In fact, Appendix 2 uses this particular function to illustrate the test and
finds that the function is concave. Because both smaller functions are concave, the over-
all function f (x1, x2, x3) must be concave.

If a nonlinear programming problem has no constraints, the objective function being con-
cave guarantees that a local maximum is a global maximum. (Similarly, the objective function
being convex ensures that a local minimum is a global minimum.) If there are constraints, then
one more condition will provide this guarantee, namely, that the feasible region is a convex
set. For this reason, convex sets play a key role in nonlinear programming.

As discussed in Appendix 2, a convex set is simply a set of points such that, for each
pair of points in the collection, the entire line segment joining these two points is also in
the collection. Thus, the feasible region for the original Wyndor Glass Co. problem (see
Fig. 12.6 or 12.7) is a convex set. In fact, the feasible region for any linear programming
problem is a convex set. Similarly, the feasible region in Fig. 12.5 is a convex set.

In general, the feasible region for a nonlinear programming problem is a convex set
whenever all the gi(x) [for the constraints gi(x) � bi] are convex functions. For the 
example of Fig. 12.5, both of its gi(x) are convex functions, since g1(x) � x1 (a linear
function is automatically both concave and convex) and g2(x) � 9x1

2 � 5x2
2 (both 9x1

2 and
5x2

2 are convex functions so their sum is a convex function). These two convex gi(x) lead
to the feasible region of Fig. 12.5 being a convex set.

Now let’s see what happens when just one of these gi(x) is a concave function in-
stead. In particular, suppose that the only changes in the original Wyndor Glass Co.
example are that the second and third functional constraints are replaced by 2x2 � 14 and
8x1 � x2

1 � 14x2 � x2
2 � 49. Therefore, the new g3(x) � 8x1 � x2

1 � 14x2 � x2
2, which is

a concave function since both 8x1 � x2
1 and 14x2 � x2

2 are concave functions. The new fea-
sible region shown in Fig. 12.10 is not a convex set. Why? Because this feasible region
contains pairs of points, for example, (0, 7) and (4, 3), such that part of the line segment
joining these two points is not in the feasible region. Consequently, we cannot guarantee
that a local maximum is a global maximum. In fact, this example has two local maxima,
(0, 7) and (4, 3), but only (0, 7) is a global maximum.

Therefore, to guarantee that a local maximum is a global maximum for a nonlinear
programming problem with constraints gi(x) � bi (i � 1, 2, . . . , m) and x � 0, the ob-
jective function f (x) must be a concave function and each gi(x) must be a convex func-
tion. Such a problem is called a convex programming problem, which is one of the key
types of nonlinear programming problems discussed in Sec. 12.3.

546 CHAPTER 12 NONLINEAR PROGRAMMING

■ 12.3 TYPES OF NONLINEAR PROGRAMMING PROBLEMS

Nonlinear programming problems come in many different shapes and forms. Unlike the
simplex method for linear programming, no single algorithm can solve all these different
types of problems. Instead, algorithms have been developed for various individual

hil76299_ch12_537-606.qxd  11/19/08  08:34 AM  Page 546



Rev.Confirming Pages

classes (special types) of nonlinear programming problems. The most important classes
are introduced briefly in this section. The subsequent sections then describe how some
problems of these types can be solved. To simplify the discussion, we will assume through-
out that the problems have been formulated (or reformulated) in the general form pre-
sented at the beginning of the chapter.

Unconstrained Optimization

Unconstrained optimization problems have no constraints, so the objective is simply to

Maximize f (x)

over all values of x � (x1, x2, . . . , xn). As reviewed in Appendix 3, the necessary condi-
tion that a particular solution x � x* be optimal when f (x) is a differentiable function is

� 0 at x � x*, for j � 1, 2, . . . , n.

When f (x) is a concave function, this condition also is sufficient, so then solving for x*
reduces to solving the system of n equations obtained by setting the n partial derivatives
equal to zero. Unfortunately, for nonlinear functions f(x), these equations often are going
to be nonlinear as well, in which case you are unlikely to be able to solve analytically for
their simultaneous solution. What then? Sections 12.4 and 12.5 describe algorithmic search
procedures for finding x*, first for n � 1 and then for n 	 1. These procedures also play an
important role in solving many of the problem types described next, where there are con-
straints. The reason is that many algorithms for constrained problems are designed so that they
can focus on an unconstrained version of the problem during a portion of each iteration.

�f
�
�xj
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(4, 3) � local maximum

Z � 35 � 3x1 � 5x2

Z � 27 � 3x1 � 5x2

(0, 7) � optimal solution

Feasible region (not a convex set)

Maximize Z � 3x1 � 5x2,  
subject to x1 �   4

8x1 � x1 � 14x2 � x2 � 49

x1 � 0, x2 � 0

22
2x2            � 14

and

■ FIGURE 12.10
The Wyndor Glass Co.
example with 2x2 � 14 and a
nonlinear constraint, 
8x1 � x2

1 � 14x2 � x2
2 � 49,

replacing the original second
and third functional
constraints.
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When a variable xj does have a nonnegativity constraint xj � 0, the preceding neces-
sary and (perhaps) sufficient condition changes slightly to

�
for each such j. This condition is illustrated in Fig. 12.11, where the optimal solution for
a problem with a single variable is at x � 0 even though the derivative there is negative
rather than zero. Because this example has a concave function to be maximized subject
to a nonnegativity constraint, having the derivative less than or equal to 0 at x � 0 is both
a necessary and sufficient condition for x � 0 to be optimal.

A problem that has some nonnegativity constraints but no functional constraints is
one special case (m � 0) of the next class of problems.

Linearly Constrained Optimization

Linearly constrained optimization problems are characterized by constraints that com-
pletely fit linear programming, so that all the gi(x) constraint functions are linear, but the
objective function f (x) is nonlinear. The problem is considerably simplified by having just
one nonlinear function to take into account, along with a linear programming feasible re-
gion. A number of special algorithms based upon extending the simplex method to con-
sider the nonlinear objective function have been developed.

One important special case, which we consider next, is quadratic programming.

Quadratic Programming 

Quadratic programming problems again have linear constraints, but now the objective
function f (x) must be quadratic. Thus, the only difference between such a problem and a
linear programming problem is that some of the terms in the objective function involve
the square of a variable or the product of two variables.

if xj* � 0
if xj* 	 0

at x � x*,
at x � x*,

� 0
� 0

�f
�
�xj
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Global maximum because f (x) is concave and

 � �2 � 0 at x � 0. So x � 0 is optimal.
df
dx

x

Maximize f (x) � 24 � 2x � x2,  
subject to x � 0.

■ FIGURE 12.11
An example that illustrates
how an optimal solution can
lie at a point where a
derivative is negative instead
of zero, because that point
lies at the boundary of a
nonnegativity constraint.
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Many algorithms have been developed for this case under the additional assumption
that f (x) is a concave function. Section 12.7 presents an algorithm that involves a direct
extension of the simplex method.

Quadratic programming is very important, partially because such formulations arise
naturally in many applications. For example, the problem of portfolio selection with risky
securities described in Sec. 12.1 fits into this format. However, another major reason for
its importance is that a common approach to solving general linearly constrained opti-
mization problems is to solve a sequence of quadratic programming approximations.

Convex Programming

Convex programming covers a broad class of problems that actually encompasses as
special cases all the preceding types when f (x) is a concave function to be maximized.
Continuing to assume the general problem form (including maximization) presented at
the beginning of the chapter, the assumptions are that

1. f (x) is a concave function.
2. Each gi(x) is a convex function.

As discussed at the end of Sec. 12.2, these assumptions are enough to ensure that a local max-
imum is a global maximum. (If the objective were to minimize f(x) instead, subject to either
gi(x) � bi or �gi(x) � bi for i � 1, 2, . . . , m, the first assumption would change to requiring
that f(x) must be a convex function, since this is what is needed to ensure that a local mini-
mum is a global minimum.) You will see in Sec. 12.6 that the necessary and sufficient condi-
tions for such an optimal solution are a natural generalization of the conditions just given for
unconstrained optimization and its extension to include nonnegativity constraints. Section 12.9
then describes algorithmic approaches to solving convex programming problems.

Separable Programming

Separable programming is a special case of convex programming, where the one addi-
tional assumption is that

3. All the f (x) and gi(x) functions are separable functions.

A separable function is a function where each term involves just a single variable, so
that the function is separable into a sum of functions of individual variables. For exam-
ple, if f (x) is a separable function, it can be expressed as

f (x) � �
n

j�1
fj(xj),

where each fj(xj) function includes only the terms involving just xj. In the terminology of
linear programming (see Sec. 3.3), separable programming problems satisfy the assump-
tion of additivity but violate the assumption of proportionality when any of the fj(xj) func-
tions are nonlinear functions.

To illustrate, the objective function considered in Fig. 12.6,

f (x1, x2) � 126x1 � 9x1
2 � 182x2 � 13x2

2

is a separable function because it can be expressed as

f (x1, x2) � f1(x1) � f2(x2)

where f1(x1) � 126x1 � 9x1
2 and f2(x2) � 182x2 � 13x2

2 are each a function of a single 
variable—x1 and x2, respectively. By the same reasoning, you can verify that the objective
function considered in Fig. 12.7 also is a separable function.
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It is important to distinguish separable programming problems from other convex pro-
gramming problems, because any such problem can be closely approximated by a linear
programming problem so that the extremely efficient simplex method can be used. This
approach is described in Sec. 12.8. (For simplicity, we focus there on the linearly con-
strained case where the special approach is needed only on the objective function.)

Nonconvex Programming

Nonconvex programming encompasses all nonlinear programming problems that do not
satisfy the assumptions of convex programming. Now, even if you are successful in
finding a local maximum, there is no assurance that it also will be a global maximum.
Therefore, there is no algorithm that will find an optimal solution for all such prob-
lems. However, there do exist some algorithms that are relatively well suited for ex-
ploring various parts of the feasible region and perhaps finding a global maximum in
the process. We describe this approach in Sec. 12.10. Section 12.10 also will introduce
two global optimizers (available with LINGO and MPL) for finding an optimal solu-
tion for nonconvex programming problems of moderate size, as well as a search pro-
cedure that generally will find a near-optimal solution for rather large problems.

Certain specific types of nonconvex programming problems can be solved without
great difficulty by special methods. Two especially important such types are discussed
briefly next.

Geometric Programming

When we apply nonlinear programming to engineering design problems, as well as cer-
tain economics and statistics problems, the objective function and the constraint functions
frequently take the form

g(x) � �
N

i�1
ciPi(x),

where

Pi(x) � x1
ai1x2

ai2 ��� xn
ain, for i � 1, 2, . . . , N.

In such cases, the ci and aij typically represent physical constants, and the xj are design vari-
ables. These functions generally are neither convex nor concave, so the techniques of convex
programming cannot be applied directly to these geometric programming problems. How-
ever, there is one important case where the problem can be transformed to an equivalent con-
vex programming problem. This case is where all the ci coefficients in each function are
strictly positive, so that the functions are generalized positive polynomials (now called
posynomials) and the objective function is to be minimized. The equivalent convex pro-
gramming problem with decision variables y1, y2, . . . , yn is then obtained by setting

xj � eyj, for j � 1, 2, . . . , n

throughout the original model, so now a convex programming algorithm can be applied.
Alternative solution procedures also have been developed for solving these posynomial
programming problems, as well as for geometric programming problems of other types.

Fractional Programming

Suppose that the objective function is in the form of a fraction, i.e., the ratio of two functions,

Maximize f (x) � .
f1(x)
�
f2(x)
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Such fractional programming problems arise, e.g., when one is maximizing the ratio of
output to person-hours expended (productivity), or profit to capital expended (rate of re-
turn), or expected value to standard deviation of some measure of performance for an in-
vestment portfolio (return/risk). Some special solution procedures have been developed
for certain forms of f1(x) and f2(x).

When it can be done, the most straightforward approach to solving a fractional pro-
gramming problem is to transform it to an equivalent problem of a standard type for which
effective solution procedures already are available. To illustrate, suppose that f (x) is of
the linear fractional programming form

f (x) � ,

where c and d are row vectors, x is a column vector, and c0 and d0 are scalars. Also as-
sume that the constraint functions gi(x) are linear, so that the constraints in matrix form
are Ax � b and x � 0.

Under mild additional assumptions, we can transform the problem to an equivalent
linear programming problem by letting

y � and t � ,

so that x � y/t. This result yields

Maximize Z � cy � c0t,

subject to

Ay � bt � 0,
dy � d0t � 1,

and

y � 0, t � 0,

which can be solved by the simplex method. More generally, the same kind of trans-
formation can be used to convert a fractional programming problem with concave f1(x),
convex f2(x), and convex gi(x) to an equivalent convex programming problem.

The Complementarity Problem

When we deal with quadratic programming in Sec. 12.7, you will see one example of how
solving certain nonlinear programming problems can be reduced to solving the comple-
mentarity problem. Given variables w1, w2, . . . , wp and z1, z2, . . . , zp, the complemen-
tarity problem is to find a feasible solution for the set of constraints

w � F (z), w � 0, z � 0

that also satisfies the complementarity contraint

wTz � 0.

Here, w and z are column vectors, F is a given vector-valued function, and the superscript T
denotes the transpose (see Appendix 4). The problem has no objective function, so tech-
nically it is not a full-fledged nonlinear programming problem. It is called the comple-
mentarity problem because of the complementary relationships that either

wi � 0 or zi � 0 (or both) for each i � 1, 2, . . . , p.

1
�
dx � d0

x
�
dx � d0

cx � c0
�
dx � d0
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An important special case is the linear complementarity problem, where

F (z) � q � Mz,

where q is a given column vector and M is a given p � p matrix. Efficient algorithms
have been developed for solving this problem under suitable assumptions6 about the prop-
erties of the matrix M. One type involves pivoting from one basic feasible (BF) solution
to the next, much like the simplex method for linear programming.

In addition to having applications in nonlinear programming, complementarity prob-
lems have applications in game theory, economic equilibrium problems, and engineering
equilibrium problems.

552 CHAPTER 12 NONLINEAR PROGRAMMING

x
x*

f (x)

df (x)
dx � 0

■ FIGURE 12.12
The one-variable unconstrained 
optimization problem when
the function is concave.

6See R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.
7See the beginning of Appendix 3 for a review of the corresponding case when f (x) is not concave.

■ 12.4 ONE-VARIABLE UNCONSTRAINED OPTIMIZATION
We now begin discussing how to solve some of the types of problems just described
by considering the simplest case—unconstrained optimization with just a single vari-
able x (n � 1), where the differentiable function f (x) to be maximized is concave.7

Thus, the necessary and sufficient condition for a particular solution x � x* to be op-
timal (a global maximum) is

� 0 at x � x*,

as depicted in Fig. 12.12. If this equation can be solved directly for x*, you are done.
However, if f (x) is not a particularly simple function, so the derivative is not just a linear
or quadratic function, you may not be able to solve the equation analytically. If not, a
number of search procedures are available for solving the problem numerically.

The approach with any of these search procedures is to find a sequence of trial so-
lutions that leads toward an optimal solution. At each iteration, you begin at the current
trial solution to conduct a systematic search that culminates by identifying a new improved

df
�dx
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trial solution. The procedure is continued until the trial solutions have converged to an
optimal solution, assuming that one exists.

We now will describe two common search procedures. The first one (the bisection
method) was chosen because it is such an intuitive and straightforward procedure. The
second one (Newton’s method) is included because it plays a fundamental role in nonlin-
ear programming in general.

The Bisection Method

This search procedure always can be applied when f(x) is concave (so that the second 
derivative is negative or zero for all x) as depicted in Fig. 12.12. It also can be used for
certain other functions as well. In particular, if x* denotes the optimal solution, all that is
needed8 is that

	 0 if x � x*,

� 0 if x � x*,

� 0 if x 	 x*.

These conditions automatically hold when f(x) is concave, but they also can hold when
the second derivative is positive for some (but not all) values of x.

The idea behind the bisection method is a very intuitive one, namely, that whether
the slope (derivative) is positive or negative at a trial solution definitely indicates whether
improvement lies immediately to the right or left, respectively. Thus, if the derivative eval-
uated at a particular value of x is positive, then x* must be larger than this x (see Fig. 12.12),
so this x becomes a lower bound on the trial solutions that need to be considered there-
after. Conversely, if the derivative is negative, then x* must be smaller than this x, so x
would become an upper bound. Therefore, after both types of bounds have been identi-
fied, each new trial solution selected between the current bounds provides a new tighter
bound of one type, thereby narrowing the search further. As long as a reasonable rule is
used to select each trial solution in this way, the resulting sequence of trial solutions must
converge to x*. In practice, this means continuing the sequence until the distance between
the bounds is sufficiently small that the next trial solution must be within a prespecified
error tolerance of x*.

This entire process is summarized next, given the notation

x
 � current trial solution,

x
�

� current lower bound on x*,

x� � current upper bound on x*,

� � error tolerance for x*.

Although there are several reasonable rules for selecting each new trial solution, the one
used in the bisection method is the midpoint rule (traditionally called the Bolzano search
plan), which says simply to select the midpoint between the two current bounds.

df(x)
�

dx

df(x)
�

dx

df(x)
�

dx
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8Another possibility is that the graph of f(x) is flat at the top so that x is optimal over some interval [a, b]. In
this case, the procedure still will converge to one of these optimal solutions as long as the derivative is positive
for x � a and negative for x 	 b.
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Summary of the Bisection Method

Initialization: Select �. Find an initial x
�

and x� by inspection (or by respectively finding
any value of x at which the derivative is positive and then negative). Select
an initial trial solution

x
 � �
x
�

�
2

x��.

Iteration:

1. Evaluate �
df

d

(

x

x)
� at x � x
.

2. If �
df

d

(

x

x)
� � 0, reset x

�
� x
.

3. If �
df

d

(

x

x)
� � 0, reset x� � x
.

4. Select a new x
 � �
x
�

�
2

x��.

Stopping rule: If x� � x
�

� 2�, so that the new x
 must be within � of x*, stop. Otherwise,
perform another iteration.

We shall now illustrate the bisection method by applying it to the following example.

Example. Suppose that the function to be maximized is

f (x) � 12x � 3x4 � 2x6,

as plotted in Fig. 12.13. Its first two derivatives are

�
df

d
(
x
x)
� � 12(1 � x3 � x5),

�
d

d

2f
x
(
2
x)

� � �12(3x2 � 5x4).
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f (x)

x
�0.2 0.2

f(x) � 12 � 3x4 � 2x6

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

�2

2

4

6

8

10

■ FIGURE 12.13
Example for the bisection
method.
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Because the second derivative is nonpositive everywhere, f (x) is a concave function, so
the bisection method can be safely applied to find its global maximum (assuming a global
maximum exists).

A quick inspection of this function (without even constructing its graph as shown in
Fig. 12.13) indicates that f (x) is positive for small positive values of x, but it is negative
for x � 0 or x 	 2. Therefore, x

�
� 0 and x� � 2 can be used as the initial bounds, with

their midpoint, x
 � 1, as the initial trial solution. Let � � 0.01 be the error tolerance for
x* in the stopping rule, so the final (x� � x

�
) � 0.02 with the final x
 at the midpoint.

Applying the bisection method then yields the sequence of results shown in Table 12.1.
[This table includes both the function and derivative values for your information, where
the derivative is evaluated at the trial solution generated at the preceding iteration. How-
ever, note that the algorithm actually doesn’t need to calculate f (x
) at all and that it only
needs to calculate the derivative far enough to determine its sign.] The conclusion is that

x* � 0.836,
0.828125 � x* � 0.84375.

Your IOR Tutorial includes an interactive procedure for executing the bisection
method.

Newton’s Method

Although the bisection method is an intuitive and straightforward procedure, it has the
disadvantage of converging relatively slowly toward an optimal solution. Each iteration
only decreases the difference between the bounds by one-half. Therefore, even with the
fairly simple function being considered in Table 12.1, seven iterations were required to
reduce the error tolerance for x* to less than 0.01. Another seven iterations would be
needed to reduce this error tolerance to less than 0.0001.

The basic reason for this slow convergence is that the only information about f(x) be-
ing used is the value of the first derivative f
(x) at the respective trial values of x. Addi-
tional helpful information can be obtained by considering the second derivative f �(x) as
well. This is what Newton’s method 9 does.

12.4 ONE-VARIABLE UNCONSTRAINED OPTIMIZATION 555

■ TABLE 12.1 Application of the bisection method to the example

Iteration �
df
d
(
x
x)
� x x New x� f(x�)

0 0. 2. 1. 7.0000
1 �12. 0. 1. 0.5 5.7812
2 �10.12 0.5 1. 0.75 7.6948
3 �4.09 0.75 1. 0.875 7.8439
4 �2.19 0.75 0.875 0.8125 7.8672
5 �1.31 0.8125 0.875 0.84375 7.8829
6 �0.34 0.8125 0.84375 0.828125 7.8815
7 �0.51 0.828125 0.84375 0.8359375 7.8839

Stop

9This method is due to the great 17th-century mathematician and physicist, Sir Isaac Newton. While a young
student at the University of Cambridge (England), Newton took advantage of the university being closed for two
years (due to the bubonic plague that devastated Europe in 1664–65) to discover the law of universal gravita-
tion and invent calculus (among other achievements). His development of calculus led to this method.
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The basic idea behind Newton’s method is to approximate f(x) within the neighbor-
hood of the current trial solution by a quadratic function and then to maximize (or min-
imize) the approximate function exactly to obtain the new trial solution to start the next
iteration. (This idea of working with a quadratic approximation of the objective func-
tion has since been made a key feature of many algorithms for more general kinds of
nonlinear programming problems.) This approximating quadratic function is obtained by
truncating the Taylor series after the second derivative term. In particular, by letting xi+1

be the trial solution generated at iteration i to start iteration i � 1 (so x1 is the initial trial
solution provided by the user to begin iteration 1), the truncated Taylor series for xi+1 is

f(xi�1) � f(xi) � f
(xi)(xi�1 � xi) � (xi�1 � xi)
2.

Having fixed xi at the beginning of iteration i, note that f(xi), f
(xi), and f �(xi) also are fixed
constants in this approximating function on the right. Thus, this approximating function
is just a quadratic function of xi�1. Furthermore, this quadratic function is such a good
approximation of f(xi�1) in the neighborhood of xi that their values and their first and sec-
ond derivatives are exactly the same when xi�1 � xi.

This quadratic function now can be maximized in the usual way by setting its first
derivative to zero and solving for xi�1. (Remember that we are assuming that f(x) is con-
cave, which implies that this quadratic function is concave, so the solution when setting
the first derivative to zero will be a global maximum.) This first derivative is

f 
(xi�1) � f 
(xi) � f �(xi)(xi�1�xi)

since xi , f(xi), f 
(xi), and f �(xi) are constants. Setting the first derivative on the right to
zero yields

f 
(xi�1) � f �(xi)(xi�1�xi) � 0,

which directly leads algebraically to the solution,

xi�1 � xi � .

This is the key formula that is used at each iteration i to calculate the next trial solution xi�1

after obtaining the trial solution xi to begin iteration i and then calculating the first and sec-
ond derivatives at xi. (The same formula is used when minimizing a convex function.)

Iterations generating new trial solutions in this way would continue until these solu-
tions have essentially converged. One criterion for convergence is that xi�1 � xi has be-
come sufficiently small. Another is that f
(x) is sufficiently close to zero. Still another is
that f(xi�1) � f(xi) is sufficiently small. Choosing the first criterion, define � as the value
such that the algorithm is stopped when xi�1 � xi � �.

Here is a complete description of the algorithm.

Summary of Newton’s Method

Initialization: Select �. Find an initial trial solution xi by inspection. Set i � 1.

Iteration i:

1. Calculate f 
(xi) and f �(xi). [Calculating f(xi) is optional.]

2. Set xi�1 � xi � .

Stopping Rule: If xi�1 � xi� �, stop; xi�1 is essentially the optimal solution. Otherwise,
reset i � i �1 and perform another iteration.

f 
(xi)�
f �(xi)

f 
(xi)�
f �(xi)

f �(xi)�
2
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Example. We now will apply Newton’s method to the same example used for the bisection
method. As depicted in Fig. 12.13, the function to be maximized is

f(x) � 12x � 3x4 � 2x6.

Thus, the formula for calculating the new trial solution (xi�1) from the current one (xi) is

xi�1 � xi � � xi � � xi � .

After selecting � � 0.00001 and choosing x1 � 1 as the initial trial solution, Table 12.2
shows the results from applying Newton’s method to this example. After just four itera-
tions, this method has converged to x � 0.83762 as the optimal solution with a very high
degree of precision.

A comparison of this table with Table 12.1 illustrates how much more rapidly Newton’s
method converges than the bisection method. Nearly 20 iterations would be required for
the bisection method to converge with the same degree of precision that Newton’s method
achieved after only four iterations.

Although this rapid convergence is fairly typical of Newton’s method, its performance
does vary from problem to problem. Since the method is based on using a quadratic 
approximation of f(x), its performance is affected by the degree of accuracy of the 
approximation.

1 � x3 � x5

��
3x2 � 5x4

12(1 � x3 � x5)
��
�12(3x2 � 5x4)

f 
(xi)�
f �(xi)

12.5 MULTIVARIABLE UNCONSTRAINED OPTIMIZATION 557

■ 12.5 MULTIVARIABLE UNCONSTRAINED OPTIMIZATION

Now consider the problem of maximizing a concave function f (x) of multiple variables
x � (x1, x2, . . . , xn ) when there are no constraints on the feasible values. Suppose again
that the necessary and sufficient condition for optimality, given by the system of equa-
tions obtained by setting the respective partial derivatives equal to zero (see Sec. 12.3),
cannot be solved analytically, so that a numerical search procedure must be used.

As for the one-variable case, a number of search procedures are available for solving
such a problem numerically. One of these (the gradient search procedure) is an especially
important one because it identifies and uses the direction of movement from the current
trial solution that maximizes the rate at which f (x) is increased. This is one of the key
ideas of nonlinear programming. Adaptations of this same idea to take constraints into ac-
count are a central feature of many algorithms for constrained optimization as well.

After discussing this procedure in some detail, we will briefly describe how Newton’s
method is extended to the multivariable case.

The Gradient Search Procedure

In Sec. 12.4, the value of the ordinary derivative was used by the bisection method to se-
lect one of just two possible directions (increase x or decrease x) in which to move from

■ TABLE 12.2 Application of Newton’s method to the example

Iteration i xi f(xi) f �(xi) f �(xi) xi+1

1 1 7 �12 �96 0.875

2 0.875 7.8439 �2.1940 �62.733 0.84003

3 0.84003 7.8838 �0.1325 �55.279 0.83763

4 0.83763 7.8839 �0.0006 �54.790 0.83762
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the current trial solution to the next one. The goal was to reach a point eventually where
this derivative is (essentially) 0. Now, there are innumerable possible directions in which
to move; they correspond to the possible proportional rates at which the respective vari-
ables can be changed. The goal is to reach a point eventually where all the partial deriv-
atives are (essentially) 0. Therefore, a natural approach is to use the values of the partial
derivatives to select the specific direction in which to move. This selection involves us-
ing the gradient of the objective function, as described next.

Because the objective function f (x) is assumed to be differentiable, it possesses a gra-
dient, denoted by �f (x), at each point x. In particular, the gradient at a specific point 
x � x
 is the vector whose elements are the respective partial derivatives evaluated at 
x � x
, so that

�f (x
) � ��
�

�

x
f

1
�, �

�

�

x
f

2
�, . . . , �

�

�

x
f

n
�� at x � x
.

The significance of the gradient is that the (infinitesimal) change in x that maximizes the
rate at which f(x) increases is the change that is proportional to �f(x). To express this idea
geometrically, the “direction” of the gradient �f(x
) is interpreted as the direction of the di-
rected line segment (arrow) from the origin (0, 0, . . . , 0) to the point (�f/�x1, �f/�x2, . . . ,
�f/�xn), where �f/�xj is evaluated at xj � x
j. Therefore, it may be said that the rate at which
f(x) increases is maximized if (infinitesimal) changes in x are in the direction of the gradi-
ent �f(x). Because the objective is to find the feasible solution maximizing f(x), it would
seem expedient to attempt to move in the direction of the gradient as much as possible.

Because the current problem has no constraints, this interpretation of the gradient
suggests that an efficient search procedure should keep moving in the direction of the gra-
dient until it (essentially) reaches an optimal solution x*, where �f (x*) � 0. However,
normally it would not be practical to change x continuously in the direction of �f (x),
because this series of changes would require continuously reevaluating the �f/�xj and
changing the direction of the path. Therefore, a better approach is to keep moving in a
fixed direction from the current trial solution, not stopping until f (x) stops increasing. This
stopping point would be the next trial solution, so the gradient then would be recalculated
to determine the new direction in which to move. With this approach, each iteration in-
volves changing the current trial solution x
 as follows:

Reset x
 � x
 � t* �f (x
),

where t* is the positive value of t that maximizes f(x
 � t �f (x
)); that is,

f (x
 � t* �f (x
)) � max f (x
 � t �f (x
)).
t�0

[Note that f (x
 � t �f (x
)) is simply f (x) where

xj � x
j � t ��
�

�

x
f

j
��x�x


, for j � 1, 2, . . . , n,

and that these expressions for the xj involve only constants and t, so f (x) becomes a func-
tion of just the single variable t.] The iterations of this gradient search procedure continue
until �f (x) � 0 within a small tolerance �, that is, until

���
�

x

f

j

�� � � for j � 1, 2, . . . , n.10
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10This stopping rule generally will provide a solution x that is close to an optimal solution x*, with a value of
f (x) that is very close to f (x*). However, this cannot be guaranteed, since it is possible that the function main-
tains a very small positive slope (� �) over a great distance from x to x*.
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An analogy may help to clarify this procedure. Suppose that you need to climb to the
top of a hill. You are nearsighted, so you cannot see the top of the hill in order to walk
directly in that direction. However, when you stand still, you can see the ground around
your feet well enough to determine the direction in which the hill is sloping upward most
sharply. You are able to walk in a straight line. While walking, you also are able to tell
when you stop climbing (zero slope in your direction). Assuming that the hill is concave,
you now can use the gradient search procedure for climbing to the top efficiently. This
problem is a two-variable problem, where (x1, x2) represents the coordinates (ignoring
height) of your current location. The function f (x1, x2) gives the height of the hill at 
(x1, x2). You start each iteration at your current location (current trial solution) by deter-
mining the direction [in the (x1, x2) coordinate system] in which the hill is sloping up-
ward most sharply (the direction of the gradient) at this point. You then begin walking in
this fixed direction and continue as long as you still are climbing. You eventually stop at
a new trial location (solution) when the hill becomes level in your direction, at which
point you prepare to do another iteration in another direction. You continue these itera-
tions, following a zigzag path up the hill, until you reach a trial location where the slope
is essentially zero in all directions. Under the assumption that the hill [ f (x1, x2)] is con-
cave, you must then be essentially at the top of the hill.

The most difficult part of the gradient search procedure usually is to find t*, the
value of t that maximizes f in the direction of the gradient, at each iteration. Because x
and �f (x) have fixed values for the maximization, and because f (x) is concave, this prob-
lem should be viewed as maximizing a concave function of a single variable t. There-
fore, it can be solved by the kind of search procedures for one-variable unconstrained
optimization that are described in Sec. 12.4 (while considering only nonnegative values
of t because of the t � 0 constraint). Alternatively, if f is a simple function, it may be
possible to obtain an analytical solution by setting the derivative with respect to t equal
to zero and solving.

Summary of the Gradient Search Procedure
Initialization: Select � and any initial trial solution x
. Go first to the stopping rule.
Iteration:

1. Express f (x
 � t �f (x
)) as a function of t by setting

xj � x
j � t ��
�

�

x
f

j
��x�x


, for j � 1, 2, . . . , n,

and then substituting these expressions into f (x).
2. Use a search procedure for one-variable unconstrained optimization (or calculus) to

find t � t* that maximizes f (x
 � t �f (x
)) over t � 0.
3. Reset x
 � x
 � t* �f (x
). Then go to the stopping rule.

Stopping rule: Evaluate �f (x
) at x � x
. Check if

���
�

x
f

j
�� � � for all j � 1, 2, . . . , n.

If so, stop with the current x
 as the desired approximation of an optimal
solution x*. Otherwise, perform another iteration.

Now let us illustrate this procedure.

Example. Consider the following two-variable problem:

Maximize f (x) � 2x1x2 � 2x2 � x2
1 � 2x2

2.
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Thus,

�
�

�

x
f

1
� � 2x2 � 2x1,

�
�

�

x
f

2
� � 2x1 � 2 � 4x2.

We also can verify (see Appendix 2) that f (x) is concave.
To begin the gradient search procedure, after choosing a suitably small value of �

(normally well under 0.1) suppose that x � (0, 0) is selected as the initial trial solution.
Because the respective partial derivatives are 0 and 2 at this point, the gradient is

�f (0, 0) � (0, 2).

With � � 2, the stopping rule then says to perform an iteration.

Iteration 1: With values of 0 and 2 for the respective partial derivatives, the first iteration
begins by setting

x1 � 0 � t(0) � 0,
x2 � 0 � t(2) � 2t,

and then substituting these expressions into f (x) to obtain

f (x
 � t �f (x
)) � f (0, 2t)
� 2(0)(2t) � 2(2t) � 02 � 2(2t)2

� 4t � 8t2.

Because

f (0, 2t*) � max f (0, 2t) � max {4t � 8t2}
t�0 t�0

and

�
d
d
t
� (4t � 8t2) � 4 � 16t � 0,

it follows that

t* � �
1
4

�,

so

Reset x
 � (0, 0) � �
1
4

�(0, 2) � �0, �
1
2

��.

This completes the first iteration. For this new trial solution, the gradient is

�f �0, �
1
2

�� � (1, 0).

With � � 1, the stopping rule now says to perform another iteration.

Iteration 2: To begin the second iteration, use the values of 1 and 0 for the respective par-
tial derivatives to set

x � �0, �
1
2

�� � t(1, 0) � �t, �
1
2

��,
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so

f (x
 � t �f (x
)) � f �0 � t, �
1
2

� � 0t� � f�t, �
1
2

��
� (2t)��

1
2

�� � 2��
1
2

�� � t2 � 2��
1
2

��
2

� t � t2 � �
1
2

�.

Because

f �t*, �
1
2

�� � max f �t, �
1
2

�� � max �t � t2 � �
1
2

��t�0 t�0

and

�
d
d
t
� �t � t2 � �

1
2

�� � 1 � 2t � 0,

then

t* � �
1
2

�,

so

Reset x
 � �0, �
1
2

�� � �
1
2

�(1, 0) � ��
1
2

�, �
1
2

��.

This completes the second iteration. With a typically small value of �, the procedure
now would continue on to several more iterations in a similar fashion. (We will forego
the details.)

A nice way of organizing this work is to write out a table such as Table 12.3 which sum-
marizes the preceding two iterations. At each iteration, the second column shows the current
trial solution, and the rightmost column shows the eventual new trial solution, which then is
carried down into the second column for the next iteration. The fourth column gives the ex-
pressions for the xj in terms of t that need to be substituted into f(x) to give the fifth column.

By continuing in this fashion, the subsequent trial solutions would be (�
1
2

�, �
3
4

�), (�
3
4

�, �
3
4

�),
(�

3
4

�, �
7
8

�), (�
7
8

�, �
7
8

�), . . . , as shown in Fig. 12.14. Because these points are converging to x* � (1, 1),
this solution is the optimal solution, as verified by the fact that

�f (1, 1) � (0, 0).

However, because this converging sequence of trial solutions never reaches its limit, the
procedure actually will stop somewhere (depending on �) slightly below (1, 1) as its fi-
nal approximation of x*.

As Fig. 12.14 suggests, the gradient search procedure zigzags to the optimal solu-
tion rather than moving in a straight line. Some modifications of the procedure have been
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■ TABLE 12.3 Application of the gradient search procedure to the example

Iteration x� �f(x�) x� � t �f(x�) f(x� � t �f(x�)) t* x� � t* �f(x�)

1 (0, 0) (0, 2) (0, 2t) 4t � 8t2 �
1
4

� �0, �
1
2

��
2 �0, �

1
2

�� (1, 0) �t, �
1
2

�� t � t2 � �
1
2

� �
1
2

� ��
1
2

�, �
1
2

��
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developed that accelerate movement toward the optimal solution by taking this zigzag
behavior into account.

If f (x) were not a concave function, the gradient search procedure still would con-
verge to a local maximum. The only change in the description of the procedure for this
case is that t* now would correspond to the first local maximum of f (x
 � t �f (x
)) as t
is increased from 0.

If the objective were to minimize f (x) instead, one change in the procedure would be
to move in the opposite direction of the gradient at each iteration. In other words, the rule
for obtaining the next point would be

Reset x
 � x
 � t* �f (x
).

The only other change is that t* now would be the nonnegative value of t that minimizes
f (x
 � t �f (x
)); that is,

f (x
 � t* �f (x
)) � min f (x
 � t �f (x
)).
t�0

Additional examples of the application of the gradient search procedure are included
in both the Worked Examples section of the book’s website and your OR Tutor. The IOR 
Tutorial includes both an interactive procedure and an automatic procedure for applying
this algorithm.

Newton’s Method

Section 12.4 describes how Newton’s method would be used to solve one-variable
unconstrained optimization problems. The general version of Newton’s method actu-
ally is designed to solve multivariable unconstrained optimization problems. The basic
idea is the same as described in Sec. 12.4, namely, work with a quadratic approxi-
mation of the objective function f(x), where x � (x1, x2, . . . , xn) in this case. This
approximating quadratic function is obtained by truncating the Taylor series around
the current trial solution after the second derivative term. This approximate function
then is maximized (or minimized) exactly to obtain the new trial solution to start the
next iteration.

562 CHAPTER 12 NONLINEAR PROGRAMMING

1
2(   0, )

x1

x2

(0, 0)

1
2

1
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3
4

1
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4
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4( ),

7
8

3
4( ), 7

8
7
8( ),

x* � (1, 1)..

■ FIGURE 12.14
Illustration of the gradient
search procedure when 
f(x1, x2) � 2x1x2 � 2x2 �
x1

2 � 2x2
2.
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12.6 THE KARUSH-KUHN-TUCKER (KKT) CONDITIONS 563

We now focus on the question of how to recognize an optimal solution for a nonlinear
programming problem (with differentiable functions). What are the necessary and (per-
haps) sufficient conditions that such a solution must satisfy?

In the preceding sections we already noted these conditions for unconstrained opti-
mization, as summarized in the first two rows of Table 12.4. Early in Sec. 12.3 we also
gave these conditions for the slight extension of unconstrained optimization where the
only constraints are nonnegativity constraints. These conditions are shown in the third row
of Table 12.4. As indicated in the last row of the table, the conditions for the general case
are called the Karush-Kuhn-Tucker conditions (or KKT conditions), because they were
derived independently by Karush11 and by Kuhn and Tucker.12 Their basic result is em-
bodied in the following theorem.

■ 12.6 THE KARUSH-KUHN-TUCKER (KKT) CONDITIONS 
FOR CONSTRAINED OPTIMIZATION

■ TABLE 12.4 Necessary and sufficient conditions for optimality

Problem Necessary Conditions for Optimality Also Sufficient If:

One-variable unconstrained �
d
d
x
f
� � 0 f(x) concave

Multivariable unconstrained �
�
�
x
f
j

� � 0 ( j � 1, 2, . . . , n) f(x) concave

Constrained, nonnegativity �
�
�
x
f
j

� � 0 ( j � 1, 2, . . . , n) f(x) concave
constraints only

(or � 0 if xj � 0)

General constrained problem Karush-Kuhn-Tucker conditions f(x) concave and gi (x) convex
(i � 1, 2, . . . , m)

11W. Karush, “Minima of Functions of Several Variables with Inequalities as Side Conditions,” M.S. thesis, De-
partment of Mathematics, University of Chicago, 1939.
12H. W. Kuhn and A. W. Tucker, “Nonlinear Programming,” in Jerzy Neyman (ed.), Proceedings of the Second
Berkeley Symposium, University of California Press, Berkeley, 1951, pp. 481–492.

When the objective function is concave and both the current trial solution x and its
gradient �f(x) are written as column vectors, the solution x� that maximizes the approxi-
mating quadratic function has the form,

x� � x � [�2f(x)]�1
�f(x),

where �2f(x) is the n � n matrix (called the Hessian matrix) of the second partial deriva-
tives of f(x) evaluated at the current trial solution x and [�2f(x)]�1

is the inverse of this
Hessian matrix.

Nonlinear programming algorithms that employ Newton’s method (including those that
adapt it to help deal with constrained optimization problems) commonly approximate the
inverse of the Hessian matrix in various ways. These approximations of Newton’s method
are referred to as quasi-Newton methods (or variable metric methods). We will comment
further on the important role of these methods in nonlinear programming in Sec. 12.9.

Further description of these methods is beyond the scope of this book, but further de-
tails can be found in books devoted to nonlinear programming.

hil76299_ch12_537-606.qxd  11/19/08  08:34 AM  Page 563



Rev.Confirming Pages

Theorem. Assume that f (x), g1(x), g2(x), . . . , gm(x) are differentiable functions satis-
fying certain regularity conditions.13 Then

x* � (x1*, x2*, . . . , x*n)

can be an optimal solution for the nonlinear programming problem only if there exist
m numbers u1, u2, . . . , um such that all the following KKT conditions are satisfied:

1. �
�

�

x
f

j
� � �

m

i�1
ui �

�

�

g
xj

i
� � 0

at x � x*, for j � 1, 2, . . . , n.

2. xj* ��
�

�

x
f

j
� � �

m

i�1
ui �

�

�

g
xj

i
�� � 0

3. gi(x*) � bi � 0
for i � 1, 2, . . . , m.

4. ui[gi(x*) � bi] � 0�
5. xj* � 0, for j � 1, 2, . . . , n.
6. ui � 0, for i � 1, 2, . . . , m.

Note that both conditions 2 and 4 require that the product of two quantities be zero.
Therefore, each of these conditions really is saying that at least one of the two quantities
must be zero. Consequently, condition 4 can be combined with condition 3 to express
them in another equivalent form as

(3, 4) gi(x*) � bi � 0
(or � 0 if ui � 0), for i � 1, 2, . . . , m.

Similarly, condition 2 can be combined with condition 1 as

(1, 2) �
�

�

x
f

j
� � �

m

i�1
ui �

�

�

g
xj

i
� � 0

(or � 0 if xj* � 0), for j � 1, 2, . . . , n.

When m � 0 (no functional constraints), this summation drops out and the combined con-
dition (1, 2) reduces to the condition given in the third row of Table 12.4. Thus, for 
m 	 0, each term in the summation modifies the m � 0 condition to incorporate the ef-
fect of the corresponding functional constraint.

In conditions 1, 2, 4, and 6, the ui correspond to the dual variables of linear pro-
gramming (we expand on this correspondence at the end of the section), and they have a
comparable economic interpretation. However, the ui actually arose in the mathematical
derivation as Lagrange multipliers (discussed in Appendix 3). Conditions 3 and 5 do noth-
ing more than ensure the feasibility of the solution. The other conditions eliminate most
of the feasible solutions as possible candidates for an optimal solution.

However, note that satisfying these conditions does not guarantee that the solution is
optimal. As summarized in the rightmost column of Table 12.4, certain additional con-
vexity assumptions are needed to obtain this guarantee. These assumptions are spelled out
in the following extension of the theorem.

Corollary. Assume that f(x) is a concave function and that g1(x), g2(x), . . . , gm(x) are
convex functions (i.e., this problem is a convex programming problem), where all these func-
tions satisfy the regularity conditions. Then x* � (x1*, x2*, . . . , xn*) is an optimal solution if
and only if all the conditions of the theorem are satisfied.






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13Ibid., p. 483.
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Example. To illustrate the formulation and application of the KKT conditions, we con-
sider the following two-variable nonlinear programming problem:

Maximize f (x) � ln(x1 � 1) � x2,

subject to

2x1 � x2 � 3

and

x1 � 0, x2 � 0,

where ln denotes the natural logarithm. Thus, m � 1 (one functional constraint) and 
g1(x) � 2x1 � x2, so g1(x) is convex. Furthermore, it can be easily verified (see Appendix 2)
that f (x) is concave. Hence, the corollary applies, so any solution that satisfies the KKT
conditions will definitely be an optimal solution. Applying the formulas given in the the-
orem yields the following KKT conditions for this example:

1( j � 1). �
x1 �

1
1

� � 2u1 � 0.

2( j � 1). x1��x1

1
� 1
� � 2u1� � 0.

1( j � 2). 1 � u1 � 0.
2( j � 2). x2(1 � u1) � 0.
3. 2x1 � x2 � 3 � 0.
4. u1(2x1 � x2 � 3) � 0.
5. x1 � 0, x2 � 0.
6. u1 � 0.

The steps in solving the KKT conditions for this particular example are outlined below.

1. u1 � 1, from condition 1( j � 2).
x1 � 0, from condition 5.

2. Therefore, �
x1 �

1
1

� � 2u1 � 0.

3. Therefore, x1 � 0, from condition 2( j � 1).
4. u1 � 0 implies that 2x1 � x2 � 3 � 0, from condition 4.
5. Steps 3 and 4 imply that x2 � 3.
6. x2 � 0 implies that u1 � 1, from condition 2( j � 2).
7. No conditions are violated by x1 � 0, x2 � 3, u1 � 1.

Therefore, there exists a number u1 � 1 such that x1 � 0, x2 � 3, and u1 � 1 satisfy all
the conditions. Consequently, x* � (0, 3) is an optimal solution for this problem.

This particular problem was relatively easy to solve because the first two steps above
quickly led to the remaining conclusions. It often is more difficult to see how to get started.
The particular progression of steps needed to solve the KKT conditions will differ from
one problem to the next. When the logic is not apparent, it is sometimes helpful to con-
sider separately the different cases where each xj and ui are specified to be either equal
to or greater than 0 and then trying each case until one leads to a solution. 

To illustrate, suppose this approach of considering the different cases separately had
been applied to the above example instead of using the logic involved in the above seven
steps. For this example, eight cases need to be considered. These cases correspond to the
eight combinations of x1 � 0 versus x1 	 0, x2 � 0 versus x2 	 0, and u1 � 0 versus u1 	 0.
Each case leads to a simpler statement and analysis of the conditions. To illustrate, con-
sider first the case shown next, where x1 � 0, x2 � 0, and u1 � 0.

12.6 THE KARUSH-KUHN-TUCKER (KKT) CONDITIONS 565
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KKT Conditions for the Case x1 � 0, x2 � 0, u1 � 0

1( j � 1). �
0 �

1
1

� � 0. Contradiction.

1( j � 2). 1 � 0 � 0. Contradiction.
3. 0 � 0 � 3.
(All the other conditions are redundant.)

As listed below, the other three cases where u1 � 0 also give immediate contradic-
tions in a similar way, so no solution is available.

Case x1 � 0, x2 	 0, u1 � 0 contradicts conditions 1( j � 1), 1( j � 2), and 2( j � 2).
Case x1 	 0, x2 � 0, u1 � 0 contradicts conditions 1( j � 1), 2( j � 1), and 1( j � 2).
Case x1 	 0, x2 	 0, u1 � 0 contradicts conditions 1( j � 1), 2( j � 1), 1( j � 2), and 2( j � 2).

The case x1 	 0, x2 	 0, u1 	 0 enables one to delete these nonzero multipliers from con-
ditions 2( j � 1), 2( j � 2), and 4, which then enables deletion of conditions 1( j � 1),
1( j � 2), and 3 as redundant, as summarized next.

KKT Conditions for the Case x1 	 0, x2 	 0, u1 	 0

1( j � 1). �
x1 �

1
1

� � 2u1 � 0.

2( j � 2). 1 � u1 � 0.
4. 2x1 � x2 � 3 � 0.
(All the other conditions are redundant.)

Therefore, u1 � 1, so x1 � ��
1
2

�, which contradicts x1 	 0.
Now suppose that the case x1 � 0, x2 	 0, u1 	 0 is tried next.

KKT Conditions for the Case x1 � 0, x2 	 0, u1 	 0

1( j � 1). �
0 �

1
1

� � 2u1 � 0.

2( j � 2). 1 � u1 � 0.
4. 0 � x2 � 3 � 0.
(All the other conditions are redundant.)

Therefore, x1 � 0, x2 � 3, u1 � 1. Having found a solution, we know that no additional
cases need be considered.

If you would like to see another example of using the KKT conditions to solve for an
optimal solution, one is provided in the Worked Examples section of the book’s website.

For problems more complicated than the above example, it may be difficult, if not
essentially impossible, to derive an optimal solution directly from the KKT conditions.
Nevertheless, these conditions still provide valuable clues as to the identity of an optimal
solution, and they also permit us to check whether a proposed solution may be optimal.

There also are many valuable indirect applications of the KKT conditions. One of
these applications arises in the duality theory that has been developed for nonlinear pro-
gramming to parallel the duality theory for linear programming presented in Chap. 6. In
particular, for any given constrained maximization problem (call it the primal problem),
the KKT conditions can be used to define a closely associated dual problem that is a
constrained minimization problem. The variables in the dual problem consist of both the
Lagrange multipliers ui (i � 1, 2, . . . , m) and the primal variables xj ( j � 1, 2, . . . , n).
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12.7 QUADRATIC PROGRAMMING 567

14For a unified survey of various approaches to duality in nonlinear programming, see A. M. Geoffrion, “Dual-
ity in Nonlinear Programming: A Simplified Applications-Oriented Development,” SIAM Review, 13: 1–37, 1971.

■ 12.7 QUADRATIC PROGRAMMING

As indicated in Sec. 12.3, the quadratic programming problem differs from the linear pro-
gramming problem only in that the objective function also includes xj

2 and xixj (i � j)
terms. Thus, if we use matrix notation like that introduced at the beginning of Sec. 5.2,
the problem is to find x so as to

Maximize f (x) � cx � �
1
2

�xTQx,

subject to

Ax � b and x � 0,
where c is a row vector, x and b are column vectors, Q and A are matrices, and the
superscript T denotes the transpose (see Appendix 4). The qij (elements of Q) are given
constants such that qij � qji (which is the reason for the factor of �

1
2

� in the objective
function). By performing the indicated vector and matrix multiplications, the objective
function then is expressed in terms of these qij, the cj (elements of c), and the vari-
ables as follows:

f (x) � cx � �
1
2

�xTQx � �
n

j�1
cjxj � �

1
2

� �
n

i�1
�
n

j�1
qijxixj.

For each term where i � j in this double summation, xixj � xj
2, so ��

1
2

�qjj is the coefficient
of xj

2. When i � j, then ��
1
2

�(qijxixj � qjixjxi) � �qijxixj, so �qij is the total coefficient for
the product of xi and xj.

To illustrate this notation, consider the following example of a quadratic program-
ming problem.

Maximize f (x1, x2) � 15x1 � 30x2 � 4x1x2 � 2x1
2 � 4x2

2,

subject to

x1 � 2x2 � 30

and

x1 � 0, x2 � 0.

In the special case where the primal problem is a linear programming problem, the xj vari-
ables drop out of the dual problem and it becomes the familiar dual problem of linear pro-
gramming (where the ui variables here correspond to the yi variables in Chap. 6). When
the primal problem is a convex programming problem, it is possible to establish rela-
tionships between the primal problem and the dual problem that are similar to those for
linear programming. For example, the strong duality property of Sec. 6.1, which states
that the optimal objective function values of the two problems are equal, also holds here.
Furthermore, the values of the ui variables in an optimal solution for the dual problem can
again be interpreted as shadow prices (see Secs. 4.7 and 6.2); i.e., they give the rate at
which the optimal objective function value for the primal problem could be increased by
(slightly) increasing the right-hand side of the corresponding constraint. Because duality
theory for nonlinear programming is a relatively advanced topic, the interested reader is
referred elsewhere for further information.14

You will see another indirect application of the KKT conditions in the next section.
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In this case,

c � [15 30], x � 	 
, Q � 	 
,

A � [1 2], b � [30].

Note that

xTQx � [x1 x2] 	 
	 

� [(4x1 � 4x2) (�4x1 � 8x2)]	 

� 4x1

2 � 4x2x1 � 4x1x2 � 8x2
2

� q11x1
2 � q21x2x1 � q12x1x2 � q22x2

2.

Multiplying through by ��
1
2

� gives

��
1
2

�xTQx � �2x1
2 � 4x1x2 � 4x2

2,

which is the nonlinear portion of the objective function for this example. Since q11 � 4
and q22 � 8, the example illustrates that ��

1
2

�qjj is the coefficient of xj
2 in the objective func-

tion. The fact that q12 � q21 � �4 illustrates that both �qij and �qji give the total coef-
ficient of the product of xi and xj.

Several algorithms have been developed for the special case of the quadratic pro-
gramming problem where the objective function is a concave function. (A way to verify
that the objective function is concave is to verify the equivalent condition that

xTQx � 0

for all x, that is, Q is a positive semidefinite matrix.) We shall describe one15 of these al-
gorithms, the modified simplex method, that has been quite popular because it requires 
using only the simplex method with a slight modification. The key to this approach is to
construct the KKT conditions from the preceding section and then to reexpress these con-
ditions in a convenient form that closely resembles linear programming. Therefore, be-
fore describing the algorithm, we shall develop this convenient form.

The KKT Conditions for Quadratic Programming

For concreteness, let us first consider the above example. Starting with the form given in
the preceding section, its KKT conditions are the following.

1( j � 1). 15 � 4x2 � 4x1 � u1 � 0.
2( j � 1). x1(15 � 4x2 � 4x1 � u1) � 0.
1( j � 2). 30 � 4x1 � 8x2 � 2u1 � 0.
2( j � 2). x2(30 � 4x1 � 8x2 � 2u1) � 0.
3. x1 � 2x2 � 30 � 0.
4. u1(x1 � 2x2 � 30) � 0.
5. x1 � 0, x2 � 0.
6. u1 � 0.

To begin reexpressing these conditions in a more convenient form, we move the con-
stants in conditions 1( j � 1), 1( j � 2), and 3 to the right-hand side and then introduce

x1

x2

x1

x2

�4

8

4

�4

�4

8

4

�4
x1

x2
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15P. Wolfe, “The Simplex Method for Quadratic Programming,” Econometrics, 27: 382–398, 1959. This paper
develops both a short form and a long form of the algorithm. We present a version of the short form, which as-
sumes further that either c � 0 or the objective function is strictly concave.
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nonnegative slack variables (denoted by y1, y2, and v1, respectively) to convert these in-
equalities to equations.

1( j � 1). �4x1 � 4x2 � u1 � y1 � �15
1( j � 2). 4x1 � 8x2 � 2u1 � y2 � �30
3. x1 � 2x2 � v1 � �30

Note that condition 2( j � 1) can now be reexpressed as simply requiring that either 
x1 � 0 or y1 � 0; that is,

2( j � 1). x1y1 � 0.

In just the same way, conditions 2( j � 2) and 4 can be replaced by

2( j � 2). x2y2 � 0,
4. u1v1 � 0.

For each of these three pairs—(x1, y1), (x2, y2), (u1, v1)—the two variables are called 
complementary variables, because only one of the two variables can be nonzero. These
new forms of conditions 2( j � 1), 2( j � 2), and 4 can be combined into one constraint,

x1y1 � x2y2 � u1v1 � 0,

called the complementarity constraint.
After multiplying through the equations for conditions 1( j � 1) and 1( j � 2) by �1

to obtain nonnegative right-hand sides, we now have the desired convenient form for the
entire set of conditions shown here:

�4x1 � 4x2 � u1 � y1 � 15
�4x1 � 8x2 � 2u1 � y2 � 30
�4x1 � 2x2 � v1 � 30
x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0
x1y1 � x2y2 � u1v1 � 0

This form is particularly convenient because, except for the complementarity constraint,
these conditions are linear programming constraints.

For any quadratic programming problem, its KKT conditions can be reduced to this
same convenient form containing just linear programming constraints plus one comple-
mentarity constraint. In matrix notation again, this general form is

Qx � ATu � y � cT,
Ax � v � b,

x � 0, u � 0, y � 0, v � 0,
xTy � uTv � 0,

where the elements of the column vector u are the ui of the preceding section and the el-
ements of the column vectors y and v are slack variables.

Because the objective function of the original problem is assumed to be concave
and because the constraint functions are linear and therefore convex, the corollary to
the theorem of Sec. 12.6 applies. Thus, x is optimal if and only if there exist values of
y, u, and v such that all four vectors together satisfy all these conditions. The original
problem is thereby reduced to the equivalent problem of finding a feasible solution to
these constraints.

It is of interest to note that this equivalent problem is one example of the linear com-
plementarity problem introduced in Sec. 12.3 (see Prob. 12.3-6), and that a key constraint
for the linear complementarity problem is its complementarity constraint.

12.7 QUADRATIC PROGRAMMING 569
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The Modified Simplex Method

The modified simplex method exploits the key fact that, with the exception of the com-
plementarity constraint, the KKT conditions in the convenient form obtained above are
nothing more than linear programming constraints. Furthermore, the complementarity con-
straint simply implies that it is not permissible for both complementary variables of any
pair to be (nondegenerate) basic variables (the only variables 	 0) when (nondegenerate)
BF solutions are considered. Therefore, the problem reduces to finding an initial BF so-
lution to any linear programming problem that has these constraints, subject to this addi-
tional restriction on the identity of the basic variables. (This initial BF solution may be
the only feasible solution in this case.)

As we discussed in Sec. 4.6, finding such an initial BF solution is relatively straight-
forward. In the simple case where cT � 0 (unlikely) and b � 0, the initial basic variables
are the elements of y and v (multiply through the first set of equations by �1), so that
the desired solution is x � 0, u � 0, y � �cT, v � b. Otherwise, you need to revise the
problem by introducing an artificial variable into each of the equations where cj 	 0 (add
the variable on the left) or bi � 0 (subtract the variable on the left and then multiply
through by �1) in order to use these artificial variables (call them z1, z2, and so on) as
initial basic variables for the revised problem. (Note that this choice of initial basic vari-
ables satisfies the complementarity constraint, because as nonbasic variables x � 0 and 
u � 0 automatically.)

Next, use phase 1 of the two-phase method (see Sec. 4.6) to find a BF solution for
the real problem; i.e., apply the simplex method (with one modification) to the following
linear programming problem

Minimize Z � �
j

zj,

subject to the linear programming constraints obtained from the KKT conditions, but with
these artificial variables included.

The one modification in the simplex method is the following change in the procedure
for selecting an entering basic variable.

Restricted-Entry Rule: When you are choosing an entering basic variable, ex-
clude from consideration any nonbasic variable whose complementary variable
already is a basic variable; the choice should be made from the other nonbasic
variables according to the usual criterion for the simplex method.

This rule keeps the complementarity constraint satisfied throughout the course of the
algorithm. When an optimal solution

x*, u*, y*, v*, z1 � 0, . . . , zn � 0

is obtained for the phase 1 problem, x* is the desired optimal solution for the original
quadratic programming problem. Phase 2 of the two-phase method is not needed.

Example. We shall now illustrate this approach on the example given at the beginning of
the section. As can be verified from the results in Appendix 2 (see Prob. 12.7-1a), f(x1, x2)
is strictly concave; i.e.,

Q � 	 

is positive definite, so the algorithm can be applied.

�4

8

4

�4

hil76299_ch12_537-606.qxd  11/19/08  08:34 AM  Page 570



Rev.Confirming Pages

12.7 QUADRATIC PROGRAMMING 571

The starting point for solving this example is its KKT conditions in the convenient
form obtained earlier in the section. After the needed artificial variables are introduced,
the linear programming problem to be addressed explicitly by the modified simplex method
then is

Minimize Z � z1 � z2,

subject to

4x1 � 4x2 � u1 � y1 � z1 � 15
�4x1 � 8x2 � 2u1 � y2 � z2 � 30

x1 � 2x2 � v1 � 30

and

x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0,
z1 � 0, z2 � 0.

The additional complementarity constraint

x1y1 � x2y2 � u1v1 � 0,

is not included explicitly, because the algorithm automatically enforces this constraint be-
cause of the restricted-entry rule. In particular, for each of the three pairs of complementary
variables—(x1, y1), (x2, y2), (u1,v1)—whenever one of the two variables already is a basic
variable, the other variable is excluded as a candidate for the entering basic variable. Re-
member that the only nonzero variables are basic variables. Because the initial set of ba-
sic variables for the linear programming problem—z1, z2, v1—gives an initial BF solution
that satisfies the complementarity constraint, there is no way that this constraint can be
violated by any subsequent BF solution.

Table 12.5 shows the results of applying the modified simplex method to this
problem. The first simplex tableau exhibits the initial system of equations after con-
verting from minimizing Z to maximizing �Z and algebraically eliminating the ini-
tial basic variables from Eq. (0), just as was done for the radiation therapy example
in Sec. 4.6. The three iterations proceed just as for the regular simplex method, ex-
cept for eliminating certain candidates for the entering basic variable because of the
restricted-entry rule. In the first tableau, u1 is eliminated as a candidate because its
complementary variable (v1) already is a basic variable (but x2 would have been cho-
sen anyway because �4 � �3). In the second tableau, both u1 and y2 are eliminated
as candidates (because v1 and x2 are basic variables), so x1 automatically is chosen
as the only candidate with a negative coefficient in row 0 (whereas the regular sim-
plex method would have permitted choosing either x1 or u1 because they are tied for
having the largest negative coefficient). In the third tableau, both y1 and y2 are elim-
inated (because x1 and x2 are basic variables). However, u1 is not eliminated because
�v1 no longer is a basic variable, so u1 is chosen as the entering basic variable in the
usual way.

The resulting optimal solution for this phase 1 problem is x1 � 12, x2 � 9, u1 � 3,
with the rest of the variables zero. (Problem 12.7-1c asks you to verify that this solution
is optimal by showing that x1 � 12, x2 � 9, u1 � 3 satisfy the KKT conditions for the
original problem when they are written in the form given in Sec. 12.6.) Therefore, the op-
timal solution for the quadratic programming problem (which includes only the x1 and x2

variables) is (x1, x2) � (12, 9).
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The Worked Examples section of the book’s website include another example that
illustrates the application of the modified simplex method to a quadratic programming
problem. The KKT conditions also are applied to this example.

Some Software Options

Your IOR Tutorial includes an interactive procedure for the modified simplex method to help
you learn this algorithm efficiently. In addition, Excel, LINGO, LINDO, and MPL/CPLEX
all can solve quadratic programming problems.

The procedure for using Excel is almost the same as with linear programming. The
one crucial difference is that the equation entered for the cell that contains the value of
the objective function now needs to be a quadratic equation. To illustrate, consider again
the example introduced at the beginning of the section, which has the objective function

f (x1, x2) � 15x1 � 30x2 � 4x1x2 � 2x1
2 � 4x2

2.

Suppose that the values of x1 and x2 are in cells B4 and C4 of the Excel spreadsheet,
and that the value of the objective function is in cell F4. Then the equation for cell F4
needs to be

F4 � 15*B4 � 30*C4 � 4*B4*C4 � 2*(B4^2) � 4*(C4^2),

572 CHAPTER 12 NONLINEAR PROGRAMMING

■ TABLE 12.5 Application of the modified simplex method to the quadratic
programming example

Basic Right
Iteration Variable Eq. Z x1 x2 u1 y1 y2 v1 z1 z2 Side

Z (0) �1 0 �4 �3 1 1 0 0 0 �45�
1
4

�

z1 (1) 0 4 �4 1 �1 0 0 1 0 15�
1
4

�
0

z2 (2) 0 �4 8 2 0 �1 0 0 1 30�
1
4

�

v1 (3) 0 1 2 0 0 0 1 0 0 30�
1
4

�

Z (0) �1 �2 0 �2 1 �
1
2

� 0 0 �
1
2

� �30�
1
4

�

z1 (1) 0 2 0 2 �1 ��
1
2

� 0 1 �
1
2

� 30�
1
4

�

1
x2 (2) 0 ��

1
2

� 1 �
1
4

� 0 ��
1
8

� 0 0 �
1
8

� 3�
3
4

�

v1 (3) 0 2 0 ��
1
2

� 0 �
1
4

� 1 0 ��
1
4

� 22�
1
2

�

Z (0) �1 0 0 ��
5
2

� 1 �
3
4

� 1 0 �
1
4

� �7�
1
2

�

z1 (1) 0 0 0 �
5
2

� �1 ��
3
4

� �1 1 �
3
4

� 7�
1
2

�

2
x2 (2) 0 0 1 �

1
8

� 0 ��
1
1
6
� �

1
4

� 0 �
1
1
6
� 9�

3
8

�

x1 (3) 0 1 0 ��
1
4

� 0 �
1
8

� �
1
2

� 0 ��
1
8

� 11�
1
4

�

Z (0) �1 0 0 0 0 0 0 1 1 0�
1
4

�

u1 (1) 0 0 0 1 ��
2
5

� ��
1
3
0
� ��

2
5

� �
2
5

� �
1
3
0
� 3�

1
4

�

3
x2 (2) 0 0 1 0 �

2
1
0
� ��

4
1
0
� �

1
3
0
� ��

2
1
0
� �

4
1
0
� 9�

1
4

�

x1 (3) 0 1 0 0 ��
1
1
0
� �

2
1
0
� �

2
5

� �
1
1
0
� ��

2
1
0
� 12�

1
4

�
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where the symbol ^2 indicates an exponent of 2. Before solving the model, you should
click on the Option button and make sure that the Assume Linear Model option is not se-
lected (since this is not a linear programming model).

When using MPL/CPLEX, you should set the model type to Quadratic by adding the
following statement at the beginning of the model file.

OPTIONS

ModelType � Quadratic

(Alternatively, you can select the Quadratic Models option from the MPL Language
option dialogue box, but then you will need to remember to change the setting when
dealing with linear programming problems again.) Otherwise, the procedure is the same
as with linear programming except that the expression for the objective function now
is a quadratic function. Thus, for the example, the objective function would be ex-
pressed as

15x1 � 30x2 � 4x1*x2 � 2(x1^2) � 4(x2^2).

Nothing more needs to be done when calling CPLEX, since it will automatically recog-
nize the model as being a quadratic programming problem.

This objective function would be expressed in this same way for a LINGO model.
LINGO then will automatically call its nonlinear solver to solve the model.

In fact, the Excel, MPL/CPLEX, and LINGO/LINDO files for this chapter in your
OR Courseware all demonstrate their procedures by showing the details for how these
software packages set up and solve this example.

Some of these software packages also can be applied to more complicated kinds
of nonlinear programming problems than quadratic programming. Although CPLEX
cannot, the professional version of MPL does support some other solvers that can.
The student version of MPL on the book’s website includes one such solver called
CONOPT (a product of ARKI Consulting) that is designed for solving convex pro-
gramming problems. It can be used by adding the following statement at the begin-
ning of the model file. 

OPTIONS

ModelType � Nonlinear

Both Excel and LINGO include versatile nonlinear solvers. However, be aware that the
Excel Solver is not guaranteed to find an optimal solution for complicated problems, es-
pecially nonconvex programming problems (the subject of Sec. 12.10). On the other hand,
LINGO contains a global optimizer that will find a globally optimal solution for suffi-
ciently small nonconvex programming problems. MPL also supports a global optimizer
called LGO as one of its solvers provided on the book’s website.

12.8 SEPARABLE PROGRAMMING 573

■ 12.8 SEPARABLE PROGRAMMING

The preceding section showed how one class of nonlinear programming problems can be
solved by an extension of the simplex method. We now consider another class, called sep-
arable programming, that actually can be solved by the simplex method itself, because
any such problem can be approximated as closely as desired by a linear programming
problem with a larger number of variables.

As indicated in Sec. 12.3, in separable programming it is assumed that the objective func-
tion f(x) is concave, that each of the constraint functions gi(x) is convex, and that all these
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functions are separable functions (functions where each term involves just a single variable).
However, to simplify the discussion, we focus here on the special case where the convex and
separable gi(x) are, in fact, linear functions, just as for linear programming. (We will turn to
the general case briefly at the end of this section.) Thus, only the objective function requires
special treatment for this special case.

Under the preceding assumptions, the objective function can be expressed as a sum
of concave functions of individual variables

f (x) � �
n

j�1
fj(xj),

so that each fj(xj) has a shape16 such as the one shown in Fig. 12.15 (either case) over the
feasible range of values of xj. Because f (x) represents the measure of performance (say,
profit) for all the activities together, fj(xj) represents the contribution to profit from activ-
ity j when it is conducted at level xj. The condition of f (x) being separable simply implies
additivity (see Sec. 3.3); i.e., there are no interactions between the activities (no cross-
product terms) that affect total profit beyond their independent contributions. The as-
sumption that each fj(xj) is concave says that the marginal profitability (slope of the profit
curve) either stays the same or decreases (never increases) as xj is increased.

Concave profit curves occur quite frequently. For example, it may be possible to sell a
limited amount of some product at a certain price, then a further amount at a lower price,
and perhaps finally a further amount at a still lower price. Similarly, it may be necessary to
purchase raw materials from increasingly expensive sources. In another common situation,
a more expensive production process must be used (e.g., overtime rather than regular-time
work) to increase the production rate beyond a certain point.

These kinds of situations can lead to either type of profit curve shown in Fig. 12.15.
In case 1, the slope decreases only at certain breakpoints, so that fj(xj) is a piecewise lin-
ear function (a sequence of connected line segments). For case 2, the slope may decrease
continuously as xj increases, so that fj(xj) is a general concave function. Any such function
can be approximated as closely as desired by a piecewise linear function, and this kind of
approximation is used as needed for separable programming problems. (Figure 12.15 shows
an approximating function that consists of just three line segments, but the approximation
can be made even better just by introducing additional breakpoints.) This approximation is
very convenient because a piecewise linear function of a single variable can be rewritten
as a linear function of several variables, with one special restriction on the values of these
variables, as described next.

Reformulation as a Linear Programming Problem

The key to rewriting a piecewise linear function as a linear function is to use a separate
variable for each line segment. To illustrate, consider the piecewise linear function fj(xj)
shown in Fig. 12.15, case 1 (or the approximating piecewise linear function for case 2),
which has three line segments over the feasible range of values of xj. Introduce the three
new variables xj1, xj2, and xj3 and set

xj � xj1 � xj2 � xj3,

where

0 � xj1 � uj1, 0 � xj2 � uj2, 0 � xj3 � uj3.

574 CHAPTER 12 NONLINEAR PROGRAMMING

16f (x) is concave if and only if every fj(xj) is concave.
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Case 1
fj(xj) is concave and piecewise linear
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Case 2
fj(xj) is just concave
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■ FIGURE 12.15
Shape of profit curves for
separable programming.
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Then use the slopes sj1, sj2, and sj3 to rewrite fj(xj) as

fj(xj) � sj1xj1 � sj2xj2 � sj3xj3,

with the special restriction that

xj2 � 0 whenever xj1 � uj1,
xj3 � 0 whenever xj2 � uj2.

To see why this special restriction is required, suppose that xj � 1, where ujk 	 1 
(k � 1, 2, 3), so that fj(1) � sj1. Note that

xj1 � xj2 � xj3 � 1

permits

xj1 � 1, xj2 � 0, xj3 � 0 ⇒ fj(1) � sj1,
xj1 � 0, xj2 � 1, xj3 � 0 ⇒ fj(1) � sj2,
xj1 � 0, xj2 � 0, xj3 � 1 ⇒ fj(1) � sj3,

and so on, where

sj1 	 sj2 	 sj3.

However, the special restriction permits only the first possibility, which is the only one
giving the correct value for fj(1).

Unfortunately, the special restriction does not fit into the required format for linear
programming constraints, so some piecewise linear functions cannot be rewritten in a lin-
ear programming format. However, our fj(xj) are assumed to be concave, so sj1 	 sj2 	 


,
so that an algorithm for maximizing f (x) automatically gives the highest priority to using
xj1 when (in effect) increasing xj from zero, the next highest priority to using xj2, and so
on, without even including the special restriction explicitly in the model. This observa-
tion leads to the following key property.

Key Property of Separable Programming. When f (x) and the gi(x) satisfy the as-
sumptions of separable programming, and when the resulting piecewise linear functions
are rewritten as linear functions, deleting the special restriction gives a linear program-
ming model whose optimal solution automatically satisfies the special restriction.

We shall elaborate further on the logic behind this key property later in this section
in the context of a specific example. (Also see Prob. 12.8-6a).

To write down the complete linear programming model in the above notation, let nj

be the number of line segments in fj(xj) (or the piecewise linear function approximating it),
so that

xj � �
nj

k�1
xjk

would be substituted throughout the original model and

fj(xj) � �
nj

k�1
sjkxjk

would be substituted17 into the objective function for j � 1, 2, . . . , n. The resulting model is

Maximize Z � �
n

j�1
��

nj

k�1
sjkxjk�,

576 CHAPTER 12 NONLINEAR PROGRAMMING

17If one or more of the fj(xj) already are linear functions fj(xj) � cjxj, then nj � 1 so neither of these substitu-
tions will be made for j.
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subject to

�
n

j�1
aij��

nj

k�1
xjk� � bi , for i � 1, 2, . . . , m

xjk � ujk, for k � 1, 2, . . . , nj; j � 1, 2, . . . , n

and

xjk � 0, for k � 1, 2, . . . , nj; j � 1, 2, . . . , n.

(The �nj
k�1 xjk � 0 constraints are deleted because they are ensured by the xjk � 0 con-

straints.) If some original variable xj has no upper bound, then ujnj
� �, so the constraint

involving this quantity will be deleted.
An efficient way of solving this model18 is to use the streamlined version of the sim-

plex method for dealing with upper bound constraints (described in Sec. 7.3). After ob-
taining an optimal solution for this model, you then would calculate

xj � �
nj

k�1
xjk,

for j � 1, 2, . . . , n in order to identify an optimal solution for the original separable pro-
gramming problem (or its piecewise linear approximation).

Example. The Wyndor Glass Co. (see Sec. 3.1) has received a special order for hand-
crafted goods to be made in Plants 1 and 2 throughout the next 4 months. Filling this order
will require borrowing certain employees from the work crews for the regular products, so
the remaining workers will need to work overtime to utilize the full production capacity of
the plant’s machinery and equipment for these regular products. In particular, for the two
new regular products discussed in Sec. 3.1, overtime will be required to utilize the last 25
percent of the production capacity available in Plant 1 for product 1 and for the last 50
percent of the capacity available in Plant 2 for product 2. The additional cost of using
overtime work will reduce the profit for each unit involved from $3 to $2 for product 1
and from $5 to $1 for product 2, giving the profit curves of Fig. 12.16, both of which fit
the form for case 1 of Fig. 12.15.

Management has decided to go ahead and use overtime work rather than hire addi-
tional workers during this temporary situation. However, it does insist that the work crew
for each product be fully utilized on regular time before any overtime is used. Furthermore,
it feels that the current production rates (x1 � 2 for product 1 and x2 � 6 for product 2)
should be changed temporarily if this would improve overall profitability. Therefore, it has
instructed the OR team to review products 1 and 2 again to determine the most profitable
product mix during the next 4 months.

Formulation. To refresh your memory, the linear programming model for the original
Wyndor Glass Co. problem in Sec. 3.1 is

Maximize Z � 3x1 � 5x2,

subject to

x1 � 4
2x2 � 12

3x1 � 2x2 � 18

12.8 SEPARABLE PROGRAMMING 577

18For a specialized algorithm for solving this model very efficiently, see R. Fourer, “A Specialized Algorithm
for Piecewise-Linear Programming III: Computational Analysis and Applications,” Mathematical Programming,
53: 213–235, 1992. Also see A. M. Geoffrion, “Objective Function Approximations in Mathematical Program-
ming,” Mathematical Programming, 13: 23–37, 1977.
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and

x1 � 0, x2 � 0.

We now need to modify this model to fit the new situation described above. For this pur-
pose, let the production rate for product 1 be x1 � x1R � x1O, where x1R is the production
rate achieved on regular time and x1O is the incremental production rate from using over-
time. Define x2 � x2R � x2O in the same way for product 2. Thus, in the notation of the
general linear programming model for separable programming given just before this ex-
ample, n � 2, n1 � 2, and n2 � 2. Plugging the data given in Fig. 12.16 (including max-
imum rates of production on regular time and on overtime) into this general model gives
the specific model for this application. In particular, the new linear programming prob-
lem is to determine the values of x1R, x1O, x2R, and x2O so as to

Maximize Z � 3x1R � 2x1O � 5x2R � x2O,

subject to

x1R � x1O � 4
2(x2R � x2O) � 12

3(x1R � x1O) � 2(x2R � x2O) � 18
x1R � 3, x1O � 1, x2R � 3, x2O � 3

and

x1R � 0, x1O � 0, x2R � 0, x2O � 0.

(Note that the upper bound constraints in the next-to-last row of the model make the
first two functional constraints redundant, so these two functional constraints can be
deleted.)

However, there is one important factor that is not taken into account explicitly in this
formulation. Specifically, there is nothing in the model that requires all available regular
time for a product to be fully utilized before any overtime is used for that product. In
other words, it may be feasible to have x1O 	 0 even when x1R � 3 and to have x2O 	 0
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Profit data during the next 
4 months for the Wyndor
Glass Co.
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even when x2R � 3. Such solutions would not, however, be acceptable to management.
(Prohibiting such solutions is the special restriction discussed earlier in this section.)

Now we come to the key property of separable programming. Even though the model
does not take this factor into account explicitly, the model does take it into account im-
plicitly! Despite the model’s having excess “feasible” solutions that actually are unaccept-
able, any optimal solution for the model is guaranteed to be a legitimate one that does not
replace any available regular-time work with overtime work. (The reasoning here is analo-
gous to that for the Big M method discussed in Sec. 4.6, where excess feasible but nonop-
timal solutions also were allowed in the model as a matter of convenience.) Therefore, the
simplex method can be safely applied to this model to find the most profitable acceptable
product mix. The reasons are twofold. First, the two decision variables for each product
always appear together as a sum, x1R � x1O or x2R � x2O, in each functional constraint other
than the upper bound constraints on individual variables. Therefore, it always is possible
to convert an unacceptable feasible solution to an acceptable one having the same total pro-
duction rates, x1 � x1R � x1O and x2 � x2R � x2O, merely by replacing overtime produc-
tion by regular-time production as much as possible. Second, overtime production is less
profitable than regular-time production (i.e., the slope of each profit curve in Fig. 12.16 is
a monotonic decreasing function of the rate of production), so converting an unacceptable
feasible solution to an acceptable one in this way must increase the total rate of profit Z.
Consequently, any feasible solution that uses overtime production for a product when
regular-time production is still available cannot be optimal with respect to the model.

For example, consider the unacceptable feasible solution x1R � 1, x1O � 1, x2R � 1,
x2O � 3, which yields a total rate of profit Z � 13. The acceptable way of achieving the
same total production rates x1 � 2 and x2 � 4 is x1R � 2, x1O � 0, x2R � 3, x2O � 1. This
latter solution is still feasible, but it also increases Z by (3 � 2)(1) � (5 � 1)(2) � 9 to a
total rate of profit Z � 22.

Similarly, the optimal solution for this model turns out to be x1R � 3, x1O � 1,
x2R � 3, x2O � 0, which is an acceptable feasible solution.

Another example that illustrates the application of separable programming is in-
cluded in the Worked Examples section of the book’s website.

Extensions

Thus far we have focused on the special case of separable programming where the only
nonlinear function is the objective function f (x). Now consider briefly the general case
where the constraint functions gi(x) need not be linear but are convex and separable, so
that each gi(x) can be expressed as a sum of functions of individual variables

gi(x) � �
n

j�1
gij(xj),

where each gij(xj) is a convex function. Once again, each of these new functions may be
approximated as closely as desired by a piecewise linear function (if it is not already in
that form). The one new restriction is that for each variable xj ( j � 1, 2, . . . , n), all the
piecewise linear approximations of the functions of this variable [ fj(xj), g1j(xj), . . . , gmj(xj)]
must have the same breakpoints so that the same new variables (xj1, xj2, . . . , xjnj

) can be
used for all these piecewise linear functions. This formulation leads to a linear program-
ming model just like the one given for the special case except that for each i and j, the
xjk variables now have different coefficients in constraint i [where these coefficients are
the corresponding slopes of the piecewise linear function approximating gij(xj)]. Because the
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■ 12.9 CONVEX PROGRAMMING

We already have discussed some special cases of convex programming in Secs. 12.4 and 12.5
(unconstrained problems), 12.7 (quadratic objective function with linear constraints), and 12.8
(separable functions). You also have seen some theory for the general case (necessary and
sufficient conditions for optimality) in Sec. 12.6. In this section, we briefly discuss some types
of approaches used to solve the general convex programming problem [where the objective
function f(x) to be maximized is concave and the gi(x) constraint functions are convex], and
then we present one example of an algorithm for convex programming.

There is no single standard algorithm that always is used to solve convex program-
ming problems. Many different algorithms have been developed, each with its own ad-
vantages and disadvantages, and research continues to be active in this area. Roughly
speaking, most of these algorithms fall into one of the following three categories.

The first category is gradient algorithms, where the gradient search procedure of
Sec. 12.5 is modified in some way to keep the search path from penetrating any constraint
boundary. For example, one popular gradient method is the generalized reduced gradient
(GRG) method. The Excel Solver uses the GRG method for solving convex programming
problems. (As discussed in the next section, Premium Solver also includes an Evolution-
ary Solver option that is well suited for dealing with nonconvex programming problems.)

The second category—sequential unconstrained algorithms—includes penalty
function and barrier function methods. These algorithms convert the original constrained
optimization problem to a sequence of unconstrained optimization problems whose opti-
mal solutions converge to the optimal solution for the original problem. Each of these un-
constrained optimization problems can be solved by the kinds of procedures described in
Sec. 12.5. This conversion is accomplished by incorporating the constraints into a penalty
function (or barrier function) that is subtracted from the objective function in order to im-
pose large penalties for violating constraints (or even being near constraint boundaries).
In the latter part of this section, we will describe an algorithm from the 1960s, called the
sequential unconstrained minimization technique (or SUMT for short), that pioneered
this category of algorithms. (SUMT also helped to motivate some of the interior-point
methods for linear programming.)

The third category—sequential-approximation algorithms—includes linear approx-
imation and quadratic approximation methods. These algorithms replace the nonlinear ob-
jective function by a succession of linear or quadratic approximations. For linearly constrained
optimization problems, these approximations allow repeated application of linear or quadratic
programming algorithms. This work is accompanied by other analysis that yields a se-
quence of solutions that converges to an optimal solution for the original problem. Although
these algorithms are particularly suitable for linearly constrained optimization problems,

19R. R. Meyer, “Two-Segment Separable Programming,” Management Science, 25: 385–395, 1979.

gij(xj) are required to be convex, essentially the same logic as before implies that the key
property of separable programming still must hold. (See Prob. 12.8-6b.)

One drawback of approximating functions by piecewise linear functions as described in
this section is that achieving a close approximation requires a large number of line segments
(variables), whereas such a fine grid for the breakpoints is needed only in the immediate
neighborhood of an optimal solution. Therefore, more sophisticated approaches that use a
succession of two-segment piecewise linear functions have been developed19 to obtain suc-
cessively closer approximations within this immediate neighborhood. This kind of approach
tends to be both faster and more accurate in closely approximating an optimal solution.
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some also can be extended to problems with nonlinear constraint functions by the use of
appropriate linear approximations.

As one example of a sequential-approximation algorithm, we present here the
Frank-Wolfe algorithm20 for the case of linearly constrained convex programming (so
the constraints are Ax � b and x � 0 in matrix form). This procedure is particularly
straightforward; it combines linear approximations of the objective function (enabling
us to use the simplex method) with a procedure for one-variable unconstrained opti-
mization (such as described in Sec. 12.4).

A Sequential Linear Approximation Algorithm (Frank-Wolfe)

Given a feasible trial solution x
, the linear approximation used for the objective function
f (x) is the first-order Taylor series expansion of f (x) around x � x
, namely,

f (x
) � f (x
) � �
n

j�1
(xj � x
j) � f (x
) � �f (x
)(x � x
),

where these partial derivatives are evaluated at x � x
. Because f (x
) and �f (x
)x
 have
fixed values, they can be dropped to give an equivalent linear objective function

g(x) � �f (x
)x � �
n

j�1
cjxj, where cj � at x � x
.

The simplex method (or the graphical procedure if n � 2) then is applied to the resulting
linear programming problem [maximize g(x) subject to the original constraints, Ax � b
and x � 0] to find its optimal solution xLP. Note that the linear objective function neces-
sarily increases steadily as one moves along the line segment from x� to xLP (which is on
the boundary of the feasible region). However, the linear approximation may not be a par-
ticularly close one for x far from x�, so the nonlinear objective function may not continue
to increase all the way from x� to xLP. Therefore, rather than just accepting xLP as the next
trial solution, we choose the point that maximizes the nonlinear objective function along
this line segment. This point may be found by conducting a procedure for one-variable un-
constrained optimization of the kind presented in Sec. 12.4, where the one variable for pur-
poses of this search is the fraction t of the total distance from x� to xLP. This point then
becomes the new trial solution for initiating the next iteration of the algorithm, as just de-
scribed. The sequence of trial solutions generated by repeated iterations converges to an
optimal solution for the original problem, so the algorithm stops as soon as the successive
trial solutions are close enough together to have essentially reached this optimal solution.

Summary of the Frank-Wolfe Algorithm

Initialization: Find a feasible initial trial solution x(0), for example, by applying linear
programming procedures to find an initial BF solution. Set k � 1.

Iteration k:

1. For j � 1, 2, . . . , n, evaluate

at x � x(k�1)

and set cj equal to this value.

�f (x)
�

�xj

�f (x)
�

�xj

�f (x
)
�

�xj

12.9 CONVEX PROGRAMMING 581

20M. Frank and P. Wolfe, “An Algorithm for Quadratic Programming,” Naval Research Logistics Quarterly,
3: 95–110, 1956. Although originally designed for quadratic programming, this algorithm is easily adapted to
the case of a general concave objective function considered here.
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2. Find an optimal solution x(k)
LP for the following linear programming problem.

Maximize g(x) � �
n

j�1
cjxj,

subject to

Ax � b and x � 0.

3. For the variable t (0 � t � 1), set

h(t) � f (x) for x � x(k�1) � t(x
LP

(k) � x(k�1)),

so that h(t) gives the value of f (x) on the line segment between x(k�1) (where t � 0)
and x(k)

LP (where t � 1). Use some procedure for one-variable unconstrained optimiza-
tion (see Sec. 12.4) to maximize h(t) over 0 � t � 1, and set x(k) equal to the corre-
sponding x. Go to the stopping rule.

Stopping rule: If x(k�1) and x(k) are sufficiently close, stop and use x(k) (or some extrap-
olation of x(0), x(1), . . . , x(k�1), x(k)) as your estimate of an optimal solu-
tion. Otherwise, reset k � k � 1 and perform another iteration.

Now let us illustrate this procedure.

Example. Consider the following linearly constrained convex programming problem:

Maximize f (x) � 5x1 � x2
1 � 8x2 � 2x2

2,

subject to

3x1 � 2x2 � 6

and

x1 � 0, x2 � 0.

Note that

� 5 � 2x1, � 8 � 4x2,

so that the unconstrained maximum x � (�
5
2

�, 2) violates the functional constraint. Thus,
more work is needed to find the constrained maximum.

Iteration 1: Because x � (0, 0) is clearly feasible (and corresponds to the initial BF
solution for the linear programming constraints), let us choose it as the ini-
tial trial solution x(0) for the Frank-Wolfe algorithm. Plugging x1 � 0 and x2 � 0
into the expressions for the partial derivatives gives c1 � 5 and c2 � 8, so that
g(x) � 5x1 � 8x2 is the initial linear approximation of the objective function.
Graphically, solving this linear programming problem (see Fig. 12.17a) yields
x(1)

LP � (0, 3). For step 3 of the first iteration, the points on the line segment
between (0, 0) and (0, 3) shown in Fig. 12.17a are expressed by

(x1, x2) � (0, 0) � t[(0, 3) � (0, 0)] for 0 � t � 1
� (0, 3t)

as shown in the sixth column of Table 12.6. This expression then gives

h(t) � f (0, 3t) � 8(3t) � 2(3t)2

� 24t � 18t2,

�f
�
�x2

�f
�
�x1
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so that the value t � t* that maximizes h(t) over 0 � t � 1 may be obtained in this case
by setting

� 24 � 36t � 0,

so that t* � �
2
3

�. This result yields the next trial solution

x(1) � (0, 0) � �
2
3

�[(0, 3) � (0, 0)]

� (0, 2),

which completes the first iteration.

Iteration 2: To sketch the calculations that lead to the results in the second row of
Table 12.6, note that x(1) � (0, 2) gives

c1 � 5 � 2(0) � 5,
c2 � 8 � 4(2) � 0.

For the objective function g(x) � 5x1, graphically solving the problem over the feasible
region in Fig. 12.17a gives x(2)

LP � (2, 0). Therefore, the expression for the line segment
between x(1) and x(2)

LP (see Fig. 12.17a) is

x � (0, 2) � t[(2, 0) � (0, 2)]
� (2t, 2 � 2t),

dh(t)
�

dt
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■ TABLE 12.6 Application of the Frank-Wolfe algorithm to the example

k x(k�1) c1 c2 xLP
(k) x for h(t) h(t) t* x(k)

1 (0, 0) 5 8 (0, 3) (0, 3t) 24t � 18t2 �
2
3

� (0, 2)

2 (0, 2) 5 0 (2, 0) (2t, 2 � 2t) 8 � 10t � 12t2 �
1
5
2
� ��

5
6

�, �
7
6

��

x2

1 2 x1

1

2

3

0

x(0)

x(1)

x(2)

x(2)
LP

x(1)
LP

24 � 5x1 � 8x2

(a)

x2

1 2 x1

1

2

3

0

x(0)

x(1)

x(2)

x(3)

x(5)

x(4)

(b)

Optimal solution

■ FIGURE 12.17
Illustration of the Frank-Wolfe
algorithm.
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so that

h(t) � f (2t, 2 � 2t)
� 5(2t) � (2t)2 � 8(2 � 2t) � 2(2 � 2t)2

� 8 � 10t � 12t2.

Setting

� 10 � 24t � 0

yields t* � �
1
5
2
�. Hence,

x(2) � (0, 2) � �
1
5
2
�[(2, 0) � (0, 2)]

� ��
5
6

�, �
7
6

��,

which completes the second iteration.
Figure 12.17b shows the trial solutions that are obtained from iterations 3, 4, and 5 as

well. You can see how these trial solutions keep alternating between two trajectories that
appear to intersect at approximately the point x � (1, �

3
2

�). This point is, in fact, the optimal
solution, as can be verified by applying the KKT conditions from Sec. 12.6.

This example illustrates a common feature of the Frank-Wolfe algorithm, namely, that
the trial solutions alternate between two (or more) trajectories. When they alternate in this
way, we can extrapolate the trajectories to their approximate point of intersection to esti-
mate an optimal solution. This estimate tends to be better than using the last trial solu-
tion generated. The reason is that the trial solutions tend to converge rather slowly toward
an optimal solution, so the last trial solution may still be quite far from optimal.

If you would like to see another example of the application of the Frank-Wolfe
algorithm, one is included in the Worked Examples section of the book’s website. Your
OR Tutor provides an additional example as well. IOR Tutorial also includes an interactive
procedure for this algorithm.

Some Other Algorithms

We should emphasize that the Frank-Wolfe algorithm is just one example of sequential-
approximation algorithms. Many of these algorithms use quadratic instead of linear ap-
proximations at each iteration because quadratic approximations provide a considerably
closer fit to the original problem and thus enable the sequence of solutions to converge con-
siderably more rapidly toward an optimal solution than was the case in Fig. 12.17b. For this
reason, even though sequential linear approximation methods such as the Frank-Wolfe al-
gorithm are relatively straightforward to use, sequential quadratic approximation methods
now are generally preferred in actual applications. Popular among these are the quasi-
Newton (or variable metric) methods. As already mentioned in Sec. 12.5, these methods use
a fast approximation of Newton’s method and then further adapt this method to take the con-
straints of the problem into account. To speed up the algorithm, quasi-Newton methods com-
pute a quadratic approximation to the curvature of a nonlinear function without explicitly
calculating second (partial) derivatives. (For linearly constrained optimization problems, this
nonlinear function is just the objective function; whereas with nonlinear constraints, it is
the Lagrangian function described in Appendix 3.) Some quasi-Newton algorithms do not
even explicitly form and solve an approximating quadratic programming problem at each
iteration, but instead incorporate some of the basic ingredients of gradient algorithms. (See
Selected Reference 2 for further details about sequential-approximation algorithms.)

dh(t)
�

dt
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We turn now from sequential-approximation algorithms to sequential unconstrained
algorithms. As mentioned at the beginning of the section, algorithms of the latter type
solve the original constrained optimization problem by instead solving a sequence of un-
constrained optimization problems.

A particularly prominent sequential unconstrained algorithm that has been widely used
since its development in the 1960s is the sequential unconstrained minimization technique
(or SUMT for short).21 There actually are two main versions of SUMT, one of which is an
exterior-point algorithm that deals with infeasible solutions while using a penalty function to
force convergence to the feasible region. We shall describe the other version, which is an
interior-point algorithm that deals directly with feasible solutions while using a barrier func-
tion to force staying inside the feasible region. Although SUMT was originally presented as
a minimization technique, we shall convert it to a maximization technique in order to be con-
sistent with the rest of the chapter. Therefore, we continue to assume that the problem is in
the form given at the beginning of the chapter and that all the functions are differentiable.

Sequential Unconstrained Minimization Technique (SUMT)

As the name implies, SUMT replaces the original problem by a sequence of unconstrained
optimization problems whose solutions converge to a solution (local maximum) of the
original problem. This approach is very attractive because unconstrained optimization
problems are much easier to solve (see Sec. 12.5) than those with constraints. Each of the
unconstrained problems in this sequence involves choosing a (successively smaller) strictly
positive value of a scalar r and then solving for x so as to

Maximize P(x; r) � f (x) � rB(x).

Here B(x) is a barrier function that has the following properties (for x that are feasible
for the original problem):

1. B(x) is small when x is far from the boundary of the feasible region.
2. B(x) is large when x is close to the boundary of the feasible region.
3. B(x) � � as the distance from the (nearest) boundary of the feasible region � 0.

Thus, by starting the search procedure with a feasible initial trial solution and then at-
tempting to increase P(x; r), B(x) provides a barrier that prevents the search from ever
crossing (or even reaching) the boundary of the feasible region for the original problem.

The most common choice of B(x) is

B(x) � �
m

i�1
� �

n

j�1
.

For feasible values of x, note that the denominator of each term is proportional to the dis-
tance of x from the constraint boundary for the corresponding functional or nonnegativity
constraint. Consequently, each term is a boundary repulsion term that has all the preced-
ing three properties with respect to this particular constraint boundary. Another attractive
feature of this B(x) is that when all the assumptions of convex programming are satisfied,
P(x; r) is a concave function.

Because B(x) keeps the search away from the boundary of the feasible region, you
probably are asking the very legitimate question: What happens if the desired solution lies
there? This concern is the reason that SUMT involves solving a sequence of these un-
constrained optimization problems for successively smaller values of r approaching zero
(where the final trial solution from each one becomes the initial trial solution for the next).
For example, each new r might be obtained from the preceding one by multiplying by a

1
�
xj

1
��
bi � gi(x)
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21See Selected Reference 1.
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constant � (0 � � � 1), where a typical value is � � 0.01. As r approaches 0, P(x; r) 
approaches f(x), so the corresponding local maximum of P(x; r) converges to a local max-
imum of the original problem. Therefore, it is necessary to solve only enough unconstrained
optimization problems to permit extrapolating their solutions to this limiting solution.

How many are enough to permit this extrapolation? When the original problem sat-
isfies the assumptions of convex programming, useful information is available to guide
us in this decision. In particular, if x� is a global maximizer of P(x; r), then

f (x�) � f (x*) � f (x�) � rB(x�),

where x* is the (unknown) optimal solution for the original problem. Thus, rB(x�) is the max-
imum error (in the value of the objective function) that can result by using x� to approximate
x*, and extrapolating beyond x� to increase f(x) further decreases this error. If an error toler-
ance is established in advance, then you can stop as soon as rB(x�) is less than this quantity.

Summary of SUMT

Initialization: Identify a feasible initial trial solution x(0) that is not on the boundary of
the feasible region. Set k � 1 and choose appropriate strictly positive val-
ues for the initial r and for � � 1 (say, r � 1 and � � 0.01).22

Iteration k: Starting from x(k�1), apply a multivariable unconstrained optimization pro-
cedure (e.g., the gradient search procedure) such as described in Sec. 12.5 to
find a local maximum x(k) of

P(x; r) � f (x) � r 	�
m

i�1
� �

n

j�1

.

Stopping rule: If the change from x(k�1) to x(k) is negligible, stop and use x(k) (or an ex-
trapolation of x(0), x(1), . . . , x(k�1), x(k)) as your estimate of a local max-
imum of the original problem. Otherwise, reset k � k � 1 and r � �r and
perform another iteration.

Finally, we should note that SUMT also can be extended to accommodate equality
constraints gi(x) � bi. One standard way is as follows. For each equality constraint,

replaces

in the expression for P(x; r) given under “Summary of SUMT,” and then the same pro-
cedure is used. The numerator �[bi � gi(x)]2 imposes a large penalty for deviating sub-
stantially from satisfying the equality constraint, and then the denominator tremendously
increases this penalty as r is decreased to a tiny amount, thereby forcing the sequence of
trial solutions to converge toward a point that satisfies the constraint.

SUMT has been widely used because of its simplicity and versatility. However, numer-
ical analysts have found that it is relatively prone to numerical instability, so considerable
caution is advised. For further information on this issue as well as similar analyses for alter-
native algorithms, see Selected Reference 3.

Example. To illustrate SUMT, consider the following two-variable problem:

Maximize f (x) � x1x2,

subject to

x2
1 � x2 � 3

�r
��
bi � gi(x)

�[bi � gi(x)]2

��
�r�

1
�
xj

1
��
bi � gi(x)

22A reasonable criterion for choosing the initial r is one that makes rB(x) about the same order of magnitude
as f (x) for feasible solutions x that are not particularly close to the boundary.
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and

x1 � 0, x2 � 0.

Even though g1(x) � x2
1 � x2 is convex (because each term is convex), this problem is a

nonconvex programming problem because f (x) � x1x2 is not concave (see Appendix 2).
However, the problem is close enough to being a convex programming problem that SUMT
necessarily will still converge to an optimal solution in this case. (We will discuss non-
convex programming further, including the role of SUMT in dealing with such problems,
in the next section.)

For the initialization, (x1, x2) � (1, 1) is one obvious feasible solution that is not on
the boundary of the feasible region, so we can set x(0) � (1, 1). Reasonable choices for r
and � are r � 1 and � � 0.01.

For each iteration,

P(x; r) � x1x2 � r � � � �.

With r � 1, applying the gradient search procedure starting from (1, 1) to maximize this
expression eventually leads to x(1) � (0.90, 1.36). Resetting r � 0.01 and restarting the
gradient search procedure from (0.90, 1.36) then lead to x(2) � (0.983, 1.933). One more
iteration with r � 0.01(0.01) � 0.0001 leads from x(2) to x(3) � (0.998, 1.994). This sequence
of points, summarized in Table 12.7, quite clearly is converging to (1, 2). Applying the
KKT conditions to this solution verifies that it does indeed satisfy the necessary condi-
tion for optimality. Graphical analysis demonstrates that (x1, x2) � (1, 2) is, in fact, a
global maximum (see Prob. 12.9-13b).

For this problem, there are no local maxima other than (x1, x2) � (1, 2), so reapply-
ing SUMT from various feasible initial trial solutions always leads to this same solution.23

The Worked Examples section of the book’s website provides another example that
illustrates the application of SUMT to a convex programming problem in minimization
form. You also can go to your OR Tutor to see an additional example. An automatic pro-
cedure for executing SUMT is included in IOR Tutorial.

Some Software Options for Convex Programming

As indicated at the end of Sec. 12.7, both Excel and LINGO can solve convex pro-
gramming problems, but the student version of LINDO and CPLEX cannot except for
the special case of quadratic programming (which includes the first example in this

1
�
x2

1
�
x1

1
��
3 � x2

1 � x2
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23The technical reason is that f(x) is a (strictly) quasiconcave function that shares the property of concave func-
tions that a local maximum always is a global maximum. For further information, see M. Avriel, W. E. Diewert,
S. Schaible, and I. Zang, Generalized Concavity, Plenum, New York, 1985.

■ TABLE 12.7 Illustration of SUMT

k r x1
(k) x2

(k)

0 1 1
1 1 0.90 1.36
2 10�2 0.987 1.925
3 10�4 0.998 1.993

 
↓ ↓
1. 2
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■ 12.10 NONCONVEX PROGRAMMING (WITH SPREADSHEETS)
The assumptions of convex programming (the function f(x) to be maximized is concave
and all the gi(x) constraint functions are convex) are very convenient ones, because they
ensure that any local maximum also is a global maximum. (If the objective is to minimize
f(x) instead, then convex programming assumes that f(x) is convex, and so on, which en-
sures that a local minimum also is a global minimum.) Unfortunately, the nonlinear pro-
gramming problems that arise in practice frequently fail to satisfy these assumptions. What
kind of approach can be used to deal with such nonconvex programming problems?

The Challenge of Solving Nonconvex Programming Problems

There is no single answer to the above question because there are so many different types
of nonconvex programming problems. Some are much more difficult to solve than oth-
ers. For example, a maximization problem where the objective function is nearly convex
generally is much more difficult than one where the objective function is nearly concave.
(The SUMT example in Sec. 12.9 illustrated a case where the objective function was so
close to being concave that the problem could be treated as if it were a convex program-
ming problem.) Similarly, having a feasible region that is not a convex set (because some
of the gi(x) functions are not convex) generally is a major complication. Dealing with
functions that are not differentiable, or perhaps not even continuous, also tends to be a
major complication.

The goal of much ongoing research is to develop efficient global optimization pro-
cedures for finding a globally optimal solution for various types of nonconvex program-
ming problems, and some progress has been made. As one example, LINDO Systems
(which produces LINDO, LINGO, and What’s Best) now has incorporated a global opti-
mizer into its advanced solver that is shared by some of its software products. In particu-
lar, LINGO and What’s Best have a multistart option to automatically generate a number
of starting points for their nonlinear programming solver in order to quickly find a good
solution. If the global option is checked, they next employ the global optimizer. The global
optimizer converts a nonconvex programming problem (including even those whose for-
mulation includes logic functions such as IF, AND, OR, and NOT) into several subprob-
lems that are convex programming relaxations of portions of the original problem. The
branch-and-bound technique then is used to exhaustively search over the subproblems. Once
the procedure runs to completion, the solution found is guaranteed to be a globally opti-
mal solution. (The other possible conclusion is that the problem has no feasible solutions.)
The student version of this global optimizer is included in the version of LINGO that is
provided on the book’s website. However, it is limited to relatively small problems (a max-
imum of five nonlinear variables out of 500 variables total). The professional version of
the global optimizer has successfully solved some much larger problems.

Similarly, MPL now supports a global optimizer called LGO. The student version of
LGO is available to you as one of the MPL solvers provided on the book’s website. LGO
also can be used to solve convex programming problems.

section). Details for this example are given in the Excel and LINGO files for this chapter
in your OR Courseware. The professional version of MPL supports a large number of solvers,
including some that can handle convex programming. One of these, called CONOPT, is
included with the student version of MPL that is on the book’s website. The convex pro-
gramming examples that are formulated in this chapter’s MPL file have been solved with
this solver after setting the model type to Nonlinear (as described at the end of Sec. 12.7).
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■ FIGURE 12.18
The profit graph for a
nonconvex programming
example.

A variety of approaches to global optimization (such as the one incorporated into
LINGO described above) are being tried. We will not attempt to survey this advanced
topic in any depth. (See Selected Reference 5 for some details.) We instead will begin
with a simple case and then introduce a more general approach at the end of the section.
We will illustrate our methodology with spreadsheets and Excel software, but other soft-
ware packages also can be used.

Using the Excel Solver to Find Local Optima

We now will focus on straightforward approaches to relatively simple types of non-
convex programming problems. In particular, we will consider (maximization) problems
where the objective function is nearly concave either over the entire feasible region or
within major portions of the feasible region. We also will ignore the added complexity
of having nonconvex constraint functions gi(x) by simply using linear constraints. We
will begin by illustrating what can be accomplished by simply applying some algorithm
for convex programming to such problems. Although any such algorithm (such as those
described in Sec. 12.9) could be selected, we will use the convex programming algo-
rithm that is employed by the Excel Solver for nonlinear programming problems.

For example, consider the following one-variable nonconvex programming problem:

Maximize Z � 0.5x5 � 6x4 � 24.5x3 � 39x2 � 20x,

subject to

x � 5
x � 0,

where Z represents the profit in dollars. Figure 12.18 shows a plot of the profit over the fea-
sible region that demonstrates how highly nonconvex this function is. However, if this graph
were not available, it might not be immediately clear that this is not a convex program-
ming problem since a little analysis is required to verify that the objective function is not
concave over the feasible region. Therefore, suppose that the Excel Solver, which is de-
signed for solving convex programming problems, is applied to this example. Figure 12.19
demonstrates what a difficult time the Excel Solver has in attempting to cope with this

■ FIGURE 12.19
An example of a nonconvex programming problem (depicted in Fig. 12.18) where the Excel Solver obtains three
different solutions when it starts with three different initial solutions.
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problem. The model is straightforward to formulate in a spreadsheet, with x (C5) as the
changing cell and Profit (C8) as the target cell. (Note that the Solver option, Assume
Linear Model, is not chosen in this case because this is not a linear programming model.)
When x � 0 is entered as the initial value in the changing cell, the left spreadsheet in
Fig. 12.19 shows that the solver then indicates that x � 0.371 is the optimal solution with
Profit � $3.19. However, if x � 3 is entered as the initial value instead, as in the middle
spreadsheet in Fig. 12.19, Solver obtains x � 3.126 as the optimal solution with Profit � $6.13.
Trying still another initial value of x � 4.7 in the right spreadsheet, Solver now indicates an
optimal solution of x � 5 with Profit � $0. What is going on here?

Figure 12.18 helps to explain Solver’s difficulties with this problem. Starting at x � 0,
the profit graph does indeed climb to a peak at x � 0.371, as reported in the left spreadsheet
of Fig. 12.19. Starting at x � 3 instead, the graph climbs to a peak at x � 3.126, which is the
solution found in the middle spreadsheet. Using the right spreadsheet’s starting solution of
x � 4.7, the graph climbs until it reaches the boundary imposed by the x � 5 constraint, so
x � 5 is the peak in that direction. These three peaks are the local maxima (or local optima)
because each one is a maximum of the graph within a local neighborhood of that point. How-
ever, only the largest of these local maxima is the global maximum, that is, the highest point
on the entire graph. Thus, the middle spreadsheet in Fig. 12.19 did succeed in finding the
globally optimal solution at x � 3.126 with Profit � $6.13.

The Excel Solver uses the generalized reduced gradient method, which adapts the gradi-
ent search method described in Sec. 12.5 to solve convex programming problems. Therefore,
this algorithm can be thought of as a hill-climbing procedure. It starts at the initial solution
entered into the changing cells and then begins climbing that hill until it reaches the peak (or
is blocked from climbing further by reaching the boundary imposed by the constraints). The
procedure terminates when it reaches this peak (or boundary) and reports this solution. It has
no way of detecting whether there is a taller hill somewhere else on the profit graph.

The same thing would happen with any other hill-climbing procedure, such as SUMT
(described in Sec. 12.9), that stops when it finds a local maximum. Thus, if SUMT were
to be applied to this example with each of the three initial trial solutions used in Fig. 12.19,
it would find the same three local maxima found by the Excel Solver.

A More Systematic Approach to Finding Local Optima

A common approach to “easy” nonconvex programming problems is to apply some algorith-
mic hill-climbing procedure that will stop when it finds a local maximum and then to restart
it a number of times from a variety of initial trial solutions (either chosen randomly or as a
systematic cross-section) in order to find as many distinct local maxima as possible. The best
of these local maxima is then chosen for implementation. Normally, the hill-climbing proce-
dure is one that has been designed to find a global maximum when all the assumptions of con-
vex programming hold, but it also can operate to find a local maximum when they do not.

When employing the Excel Solver, a systematic way of applying this approach is to
use the Solver Table add-in that is provided in your OR Courseware. To demonstrate, we
will continue to use the spreadsheet model shown in Fig. 12.19. Figure 12.20 displays how
the Solver Table is used to try six different starting points (0, 1, 2, 3, 4, and 5) as the 
initial trial solutions for this model by executing the following steps. In the first row of the
table, enter formulas that refer to the changing cell, x (C5), and the target cell, Profit (C8).
The different starting points are entered in the first column of the table (G8:G13). Then,
select the entire table (G7:I13) and choose Solver Table from the Add-Ins tab (for Excel
2007) or the Tools menu (for earlier versions of Excel). The column input cell entered in
the Solver Table dialogue box is the changing cell x (C5), since this is where we want the
different starting points in the first column of the table to be entered. (No row input cell is
entered in this dialogue box since only a column is being used to list the starting points.)
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Clicking OK then causes the Solver Table to re-solve the problem for all these starting
points in the first column and fill in the corresponding results (the local maximum for x
and Profit referred to in the first row) in the other columns of the table.

The example has only one variable and so only one changing cell. However, the Solver
Table also can be used to try multiple starting points for problems with two variables (chang-
ing cells). This is done by using the first row and first column of the table to specify dif-
ferent starting points for the two changing cells. Enter an equation referring to the 
target cell in the upper left-hand corner of the table. Select the entire table and choose Solver
Table from the Add-Ins tab or Tools menu, with the two changing cells selected as the col-
umn input cell and row input cell. The Solver Table then re-solves the problem for each com-
bination of starting points of the two changing cells and fills in the body of the table with the
objective function value of the solution that is found (a local optimum) for each of these com-
binations. (See Sec. 6.8 for more details about setting up a two-dimensional Solver Table.)

For problems with more than two variables (changing cells), this same approach still
can be used to try multiple starting points for any two of the changing cells at a time.
However, this becomes a very cumbersome way of trying a broad range of starting points
for all the changing cells when there are more than three or four of these cells.

Unfortunately, there generally is no guarantee of finding a globally optimal solution,
no matter how many different starting points are tried. Also, if the profit graphs are not
smooth (e.g., if they have discontinuities or kinks), then Solver may not even be able to
find local optima. Fortunately, Excel’s Premium Solver provides another search procedure,
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■ FIGURE 12.20
An application of the Solver Table (an Excel add-in provided in your OR Courseware) to the example considered in 
Figs. 12.18 and 12.19.
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called Evolutionary Solver, to attempt to solve these somewhat more difficult nonconvex
programming problems.

Evolutionary Solver

Frontline Systems, the developer of the standard Solver included with Excel, has devel-
oped Premium versions of Solver. One version of Premium Solver (Premium Solver for
Education) is available in your OR courseware (but not included with standard Excel).
Every version of Premium Solver, including this one, adds a search procedure called 
Evolutionary Solver in the set of tools available to search for an optimal solution for a
model. The philosophy of Evolutionary Solver is based on genetics, evolution, and the
survival of the fittest. Hence, this type of algorithm is sometimes called a genetic 
algorithm. We will devote Sec. 13.4 to describing how genetic algorithms operate.

Evolutionary Solver has three crucial advantages over the standard Solver (or any other
convex programming algorithm) for solving nonconvex programming problems. First, the
complexity of the objective function does not impact Evolutionary Solver. As long as the
function can be evaluated for a given trial solution, it does not matter if the function has
kinks or discontinuities or many local optima. Second, the complexity of the given con-
straints (including even nonconvex constraints) also doesn’t substantially impact Evolu-
tionary Solver (although the number of constraints does). Third, because it evaluates whole
populations of trial solutions that aren’t necessarily in the same neighborhood as the cur-
rent best trial solution, Evolutionary Solver keeps from getting trapped at a local optimum.
In fact, Evolutionary Solver is guaranteed to eventually find a globally optimal solution for
any nonlinear programming problem (including nonconvex programming problems), if it
is run forever (which is impractical of course). Therefore, Evolutionary Solver is well suited
for dealing with many relatively small nonconvex programming problems.

On the other hand, it must be pointed out that Evolutionary Solver is not a panacea.
First, it can take much longer than the standard Solver to find a final solution. Second,
Evolutionary Solver does not perform well on models that have many constraints. Third,
Evolutionary Solver is a random process, so running it again on the same model usually
will yield a different final solution. Finally, the best solution found typically is not quite
optimal (although it may be very close). Evolutionary Solver does not continuously move
toward better solutions. Rather it is more like an intelligent search engine, trying out dif-
ferent random solutions. Thus, while it is quite likely to end up with a solution that is
very close to optimal, it almost never returns the exact globally optimal solution on most
types of nonlinear programming problems. Consequently, if often can be beneficial to run
the standard Solver (GRG Nonlinear option) after the Evolutionary Solver, starting with the
final solution obtained by the Evolutionary Solver, to see if this solution can be improved
by searching around its neighborhood.

592 CHAPTER 12 NONLINEAR PROGRAMMING

■ 12.11 CONCLUSIONS

Practical optimization problems frequently involve nonlinear behavior that must be taken
into account. It is sometimes possible to reformulate these nonlinearities to fit into a lin-
ear programming format, as can be done for separable programming problems. However,
it is frequently necessary to use a nonlinear programming formulation.

In contrast to the case of the simplex method for linear programming, there is no ef-
ficient all-purpose algorithm that can be used to solve all nonlinear programming prob-
lems. In fact, some of these problems cannot be solved in a very satisfactory manner by
any method. However, considerable progress has been made for some important classes
of problems, including quadratic programming, convex programming, and certain special
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types of nonconvex programming. A variety of algorithms that frequently perform well
are available for these cases. Some of these algorithms incorporate highly efficient pro-
cedures for unconstrained optimization for a portion of each iteration, and some use a
succession of linear or quadratic approximations to the original problem.

There has been a strong emphasis in recent years on developing high-quality, re-
liable software packages for general use in applying the best of these algorithms. For
example, several powerful software packages have been developed in the Systems Op-
timization Laboratory at Stanford University. These packages are widely used else-
where for solving many of the types of problems discussed in this chapter (as well as
linear programming problems). The steady improvements being made in both algo-
rithmic techniques and software now are bringing some rather large problems into the
range of computational feasibility.

Research in nonlinear programming remains very active.
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Examples for Chapter 12

Demonstration Examples in OR Tutor:

Gradient Search Procedure
Frank-Wolfe Algorithm
Sequential Unconstrained Minimization Technique—SUMT

Interactive Procedures in IOR Tutorial:

Interactive One-Dimensional Search Procedure
Interactive Gradient Search Procedure
Interactive Modified Simplex Method
Interactive Frank-Wolfe Algorithm

Automatic Procedures in IOR Tutorial:

Automatic Gradient Search Procedure
Sequential Unconstrained Minimization Technique—SUMT
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Excel Add-ins:

Premium Solver for Education
Solver Table

“Ch. 12—Nonlinear Programming” Files for Solving the Examples:

Excel Files
LINGO/LINDO File
MPL/CPLEX/CONOPT/LGO File

Glossary for Chapter 12

See Appendix 1 for documentation of the software.
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■ PROBLEMS
The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The corresponding demonstration example just listed in
Learning Aids may be helpful.

I: We suggest that you use the corresponding interactive rou-
tine just listed (the printout records your work).

C: Use the computer with any of the software options avail-
able to you (or as instructed by your instructor) to solve
the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

12.1-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 12.1.
Briefly describe how nonlinear programming was applied in this
study. Then list the various financial and nonfinancial benefits that
resulted from this study.

12.1-2. Consider the product mix problem described in Prob. 3.1-11.
Suppose that this manufacturing firm actually encounters price elas-
ticity in selling the three products, so that the profits would be dif-
ferent from those stated in Chap. 3. In particular, suppose that
the unit costs for producing products 1, 2, and 3 are $25, $10,
and $15, respectively, and that the prices required (in dollars) in
order to be able to sell x1, x2, and x3 units are (35 � 100x1

��
1
3

�

),
(15 � 40x2

��
1
4

�

), and (20 � 50x3
��

1
2

�

), respectively.
Formulate a nonlinear programming model for the problem

of determining how many units of each product the firm should
produce to maximize profit.

12.1-3. For the P & T Co. problem described in Sec. 8.1, suppose
that there is a 10 percent discount in the shipping cost for all 
truckloads beyond the first 40 for each combination of cannery and
warehouse. Draw figures like Figs. 12.3 and 12.4, showing the mar-
ginal cost and total cost for shipments of truckloads of peas from
cannery 1 to warehouse 1. Then describe the overall nonlinear pro-
gramming model for this problem.

12.1-4. A stockbroker, Richard Smith, has just received a call
from his most important client, Ann Hardy. Ann has $50,000 to
invest, and wants to use it to purchase two stocks. Stock 1 is a
solid blue-chip security with a respectable growth potential and
little risk involved. Stock 2 is much more speculative. It is being
touted in two investment newsletters as having outstanding
growth potential, but also is considered very risky. Ann would
like a large return on her investment, but also has considerable
aversion to risk. Therefore, she has instructed Richard to analyze
what mix of investments in the two stocks would be appropriate
for her.

Ann is used to talking in units of thousands of dollars and
1,000-share blocks of stocks. Using these units, the price per
block is 20 for stock 1 and 30 for stock 2. After doing some re-
search, Richard has made the following estimates. The expected
return per block is 5 for stock 1 and 10 for stock 2. The vari-
ance of the return on each block is 4 for stock 1 and 100 for
stock 2. The covariance of the return on one block each of the
two stocks is 5.

Without yet assigning a specific numerical value to the min-
imum acceptable expected return, formulate a nonlinear program-
ming model for this problem.

12.2-1. Reconsider Prob. 12.1-2. Verify that this problem is a con-
vex programming problem.

12.2-2. Reconsider Prob. 12.1-4. Show that the model formulated
is a convex programming problem by using the test in Appendix 2
to show that the objective function being minimized is convex.

12.2-3. Consider the variation of the Wyndor Glass Co. example rep-
resented in Fig. 12.5, where the second and third functional con-
straints of the original problem (see Sec. 3.1) have been replaced 
by 9x1

2 � 5x2
2 � 216. Demonstrate that (x1, x2) � (2, 6) with 

Z � 36 is indeed optimal by showing that the objective function line
36 � 3x1 � 5x2 is tangent to this constraint boundary at (2, 6). (Hint:
Express x2 in terms of x1 on this boundary, and then differentiate this
expression with respect to x1 to find the slope of the boundary.)
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12.2-4. Consider the variation of the Wyndor Glass Co. problem
represented in Fig. 12.6, where the original objective function (see
Sec. 3.1) has been replaced by Z � 126x1 � 9x1

2 � 182x2 � 13x2
2.

Demonstrate that (x1, x2) � (�
8
3

�, 5) with Z � 857 is indeed optimal
by showing that the ellipse 857 � 126x1 � 9x1

2 � 182x2 � 13x2
2 is

tangent to the constraint boundary 3x1 � 2x2 � 18 at (�
8
3

�, 5). 
(Hint: Solve for x2 in terms of x1 for the ellipse, and then differ-
entiate this expression with respect to x1 to find the slope of the
ellipse.)

12.2-5. Consider the following function:

f (x) � 240x � 300x2 � 10x3.

(a) Use the first and second derivatives to find the local maxima
and local minima of f (x).

(b) Use the first and second derivatives to show that f (x) has nei-
ther a global maximum nor a global minimum because it is
unbounded in both directions.

12.2-6. For each of the following functions, show whether it is
convex, concave, or neither.
(a) f (x) � 10x � x2

(b) f (x) � x4 � 6x2 � 12x
(c) f (x) � 2x3 � 3x2

(d) f (x) � x4 � x2

(e) f (x) � x3 � x4

12.2-7.* For each of the following functions, use the test given in
Appendix 2 to determine whether it is convex, concave, or neither.
(a) f (x) � x1x2 � x2

1 � x2
2

(b) f (x) � 3x1 � 2x2
1 � 4x2 � x2

2 � 2x1x2

(c) f (x) � x2
1 � 3x1x2 � 2x2

2

(d) f (x) � 20x1 � 10x2

(e) f (x) � x1x2

12.2-8. Consider the following function:

f (x) � 5x1 � 2x2
2 � x2

3 � 3x3x4 � 4x2
4 � 2x4

5 � x2
5

� 3x5x6 � 6x2
6 � 3x6x7 � x2

7.

Show that f (x) is convex by expressing it as a sum of functions of
one or two variables and then showing (see Appendix 2) that all
these functions are convex.

12.2-9. Consider the following nonlinear programming problem:

Maximize f (x) � x1 � x2,

subject to

x2
1 � x2

2 � 1

and

x1 � 0, x2 � 0.

(a) Verify that this is a convex programming problem.
(b) Solve this problem graphically.

12.2-10. Consider the following nonlinear programming problem:

Minimize Z � x4
1 � 2x2

2,

subject to

x2
1 � x2

2 � 2.
(No nonnegativity constraints.)

(a) Use geometric analysis to determine whether the feasible re-
gion is a convex set.

(b) Now use algebra and calculus to determine whether the feasi-
ble region is a convex set.

12.3-1. Reconsider Prob. 12.1-3. Show that this problem is a non-
convex programming problem.

12.3-2. Consider the following constrained optimization problem:

Maximize f (x) � �120x � 15x2 � 10x3,

subject to

x � 0.

Use just the first and second derivatives of f (x) to derive an opti-
mal solution.

12.3-3. Consider the following nonlinear programming problem:

Minimize Z � x1
4 � 2x1

2 � 2x1x2 � 4x2
2,

subject to

2x1 � x2 � 10
x1 � 2x2 � 10

and

x1 � 0, x2 � 0.

(a) Of the special types of nonlinear programming problems de-
scribed in Sec. 12.3, to which type or types can this particular
problem be fitted? Justify your answer.

(b) Now suppose that the problem is changed slightly by replacing
the nonnegativity constraints by x1 � 1 and x2 � 1. Convert this
new problem to an equivalent problem that has just two functional
constraints, two variables, and two nonnegativity constraints.

12.3-4. Consider the following geometric programming problem:

Minimize f (x) � 2x1
�2x2

�1 � x2
�2,

subject to

4x1x2 � x1
2x2

2 � 12

and

x1 � 0, x2 � 0.

(a) Transform this problem to an equivalent convex programming
problem.

(b) Use the test given in Appendix 2 to verify that the model for-
mulated in part (a) is indeed a convex programming problem.

12.3-5. Consider the following linear fractional programming
problem:

Maximize f (x) � ,
10x1 � 20x2 � 10
��
3x1 � 4x2 � 20

PROBLEMS 595
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subject to

x1 � 3x2 � 50
3x1 � 2x2 � 80

and

x1 � 0, x2 � 0.

(a) Transform this problem to an equivalent linear programming
problem.

C (b) Use the computer to solve the model formulated in part (a).
What is the resulting optimal solution for the original
problem?

12.3-6. Consider the expressions in matrix notation given in Sec.
12.7 for the general form of the KKT conditions for the quadratic
programming problem. Show that the problem of finding a feasi-
ble solution for these conditions is a linear complementarity prob-
lem, as introduced in Sec. 12.3, by identifying w, z, q, and M in
terms of the vectors and matrices in Sec. 12.7.

12.4-1.* Consider the following problem:

Maximize f (x) � x3 � 2x � 2x2 � 0.25x4.

I (a) Apply the bisection method to (approximately) solve this
problem. Use an error tolerance � � 0.04 and initial bounds
x
�

� 0, x� � 2.4.
(b) Apply Newton’s method, with � � 0.001 and x1 � 1.2, to this

problem.

I 12.4-2. Use the bisection method with an error tolerance � � 0.04
and with the following initial bounds to interactively solve (ap-
proximately) each of the following problems.
(a) Maximize f (x) � 6x � x2, with x

�
� 0, x� � 4.8.

(b) Minimize f (x) � 6x � 7x2 � 4x3 � x4, with x
�

� �4,
x� � 1.

12.4-3. Consider the following problem:

Maximize f (x) � 48x5 � 42x3 � 3.5x � 16x6

� 61x4 � 16.5x2.

I (a) Apply the bisection method to (approximately) solve this
problem. Use an error tolerance � � 0.08 and initial bounds
x
�

� �1, x� � 4.
(b) Apply Newton’s method, with � � 0.001 and x1 � 1, to this

problem.

12.4-4. Consider the following problem:

Maximize f (x) �10x3 � 60x � 2x6 � 3x4 � 12x2.

I (a) Apply the bisection method to (approximately) solve this
problem. Use an error tolerance � � 0.07 and find appropri-
ate initial bounds by inspection.

(b) Apply Newton’s method, with � � 0.001 and x1 � 1, to this
problem.

12.4-5. Consider the following convex programming problem:

Minimize Z � x4 � x2 � 4x,

subject to

x � 2 and x � 0.

(a) Use one simple calculation just to check whether the opti-
mal solution lies in the interval 0 � x � 1 or the interval 
1 � x � 2. (Do not actually solve for the optimal solution
in order to determine in which interval it must lie.) Explain
your logic.

I (b) Use the bisection method with initial bounds x
�

� 0, x� � 2
and with an error tolerance � � 0.02 to interactively solve
(approximately) this problem.

(c) Apply Newton’s method, with � � 0.0001 and x1 � 1, to this
problem.

12.4-6. Consider the problem of maximizing a differentiable func-
tion f(x) of a single unconstrained variable x. Let x

�0 and x�0, respec-
tively, be a valid lower bound and upper bound on the same global
maximum (if one exists). Prove the following general properties of
the bisection method (as presented in Sec. 12.4) for attempting to
solve such a problem.
(a) Given x

�0, x�0, and � � 0, the sequence of trial solutions selected
by the midpoint rule must converge to a limiting solution.
[Hint: First show that limn��(x�n � x

�n) � 0, where x�n and x
�n

are the upper and lower bounds identified at iteration n.]
(b) If f (x) is concave [so that df (x)/dx is a monotone decreasing

function of x], then the limiting solution in part (a) must be a
global maximum.

(c) If f (x) is not concave everywhere, but would be concave if its
domain were restricted to the interval between x

�0 and x�0, then
the limiting solution in part (a) must be a global maximum.

(d) If f(x) is not concave even over the interval between x
�0 and x�0,

then the limiting solution in part (a) need not be a global maxi-
mum. (Prove this by graphically constructing a counterexample.)

(e) If df (x)/dx � 0 for all x, then no x
�0 exists. If df (x)/dx 	 0 for

all x, then no x�0 exists. In either case, f (x) does not possess a
global maximum.

(f) If f(x) is concave and lim
x���

df (x)/dx � 0, then no x
�0 exists. If f(x)

is concave and lim
x��

df(x)/dx 	 0, then no x�0 exists. In either case,
f (x) does not possess a global maximum.

I 12.4-7. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f (x) � 32x1 � 50x2 � 10x2
2 � x2

3 � x1
4 � x2

4,

subject to

3x1 � x2 � 11
2x1 � 5x2 � 16

and

x1 � 0, x2 � 0.

Ignore the constraints and solve the resulting two one-variable un-
constrained optimization problems. Use calculus to solve the prob-
lem involving x1 and use the bisection method with � � 0.001 and
initial bounds 0 and 4 to solve the problem involving x2. Show that
the resulting solution for (x1, x2) satisfies all of the constraints, so
it is actually optimal for the original problem.
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12.5-1. Consider the following unconstrained optimization problem:

Maximize f (x) � 2x1x2 � x2 � x1
2 � 2x2

2.

D,I (a) Starting from the initial trial solution (x1, x2) � (1, 1), in-
teractively apply the gradient search procedure with � � 0.25
to obtain an approximate solution.

(b) Solve the system of linear equations obtained by setting 
�f (x) � 0 to obtain the exact solution.

(c) Referring to Fig 12.14 as a sample for a similar problem,
draw the path of trial solutions you obtained in part (a). Then
show the apparent continuation of this path with your best
guess for the next three trial solutions [based on the pattern
in part (a) and in Fig. 12.14]. Also show the exact solution
from part (b) toward which this sequence of trial solutions is
converging.

C (d) Apply the automatic routine for the gradient search proce-
dure (with � � 0.01) in your IOR Tutorial to this problem.

D,I,C 12.5-2. Starting from the initial trial solution (x1, x2) � (1, 1),
interactively apply two iterations of the gradient search procedure
to begin solving the following problem, and then apply the auto-
matic routine for this procedure (with � � 0.01).

Maximize f (x) � 60x1x2 � 15x1
2 � 80x2

2.

Then solve �f (x) � 0 directly to obtain the exact solution.

D,I,C 12.5-3.* Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply the gradient search procedure with � � 0.3 to
obtain an approximate solution for the following problem, and then
apply the automatic routine for this procedure (with � � 0.01).

Maximize f (x) � 8x1 � x1
2 � 12x2 � 2x2

2 � 2x1x2.

Then solve �f (x) � 0 directly to obtain the exact solution.

D,I,C 12.5-4. Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply two iterations of the gradient search procedure
to begin solving the following problem, and then apply the auto-
matic routine for this procedure (with � � 0.01).

Maximize f (x) � 6x1 � 2x1x2 � 2x2 � 2x1
2 � x2

2.

Then solve �f (x) � 0 directly to obtain the exact solution.

12.5-5. Starting from the initial trial solution (x1, x2) � (0, 0), ap-
ply one iteration of the gradient search procedure to the following
problem by hand:

Maximize f (x) � 4x1 � 2x2 � x1
2 � x1

4 � 2x1x2 � x2
2.

To complete this iteration, approximately solve for t* by manu-
ally applying two iterations of the bisection method with initial
bounds t

�
� 0, t� � 1.

12.5-6. Consider the following unconstrained optimization problem:

Maximize f (x) � 3x1x2 � 3x2x3 � x1
2 � 6x2

2 � x3
2.

(a) Describe how solving this problem can be reduced to solving
a two-variable unconstrained optimization problem.

D,I (b) Starting from the initial trial solution (x1, x2, x3) � (1, 1, 1),
interactively apply the gradient search procedure with 

� � 0.05 to solve (approximately) the two-variable problem
identified in part (a).

C (c) Repeat part (b) with the automatic routine for this procedure
(with � � 0.005).

D,I,C 12.5-7.* Starting from the initial trial solution (x1, x2) � (0, 0),
interactively apply the gradient search procedure with � � 1 to
solve (approximately) the following problem, and then apply the
automatic routine for this procedure (with � � 0.01).

Maximize f (x) � x1x2 � 3x2 � x1
2 � x2

2.

12.6-1. Reconsider the one-variable convex programming model
given in Prob. 12.4-5. Use the KKT conditions to derive an opti-
mal solution for this model.

12.6-2. Reconsider Prob. 12.2-9. Use the KKT conditions to check
whether (x1, x2) � (1/�2�, 1/�2�) is optimal.

12.6-3.* Reconsider the model given in Prob. 12.3-3. What are the
KKT conditions for this model? Use these conditions to determine
whether (x1, x2) � (0, 10) can be optimal.

12.6-4. Consider the following convex programming problem:

Maximize f (x) � 12x1 � x1
2 � 50x2 � x2

2,

subject to

x1 � 10,
x2 � 15,

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions for this problem to derive an optimal
solution.

(b) Decompose this problem into two separate constrained opti-
mization problems involving just x1 and just x2, respectively. For
each of these two problems, plot the objective function over the
feasible region in order to demonstrate that the value of x1 or x2

derived in part (a) is indeed optimal. Then prove that this value
is optimal by using just the first and second derivatives of the ob-
jective function and the constraints for the respective problems.

12.6-5. Consider the following linearly constrained optimization
problem:

Maximize f (x) � ln(x1 � 1) � x2
2,

subject to

x1 � 2x2 � 3

and

x1 � 0, x2 � 0,

where ln denotes the natural logarithm,
(a) Verify that this problem is a convex programming problem.
(b) Use the KKT conditions to derive an optimal solution.
(c) Use intuitive reasoning to demonstrate that the solution ob-

tained in part (b) is indeed optimal.
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12.6-6.* Consider the nonlinear programming problem given in
Prob. 10.3-11. Determine whether (x1, x2) � (1, 2) can be optimal
by applying the KKT conditions.

12.6-7. Consider the following nonlinear programming problem:

Maximize f (x) � �
x2

x
�
1

1
�,

subject to

x1 � x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to demonstrate that (x1, x2) � (4, 2)
is not optimal.

(b) Derive a solution that does satisfy the KKT conditions.
(c) Show that this problem is not a convex programming problem.
(d) Despite the conclusion in part (c), use intuitive reasoning to

show that the solution obtained in part (b) is, in fact, optimal.
[The theoretical reason is that f (x) is pseudo-concave.]

(e) Use the fact that this problem is a linear fractional program-
ming problem to transform it into an equivalent linear pro-
gramming problem. Solve the latter problem and thereby
identify the optimal solution for the original problem. (Hint:
Use the equality constraint in the linear programming prob-
lem to substitute one of the variables out of the model, and
then solve the model graphically.)

12.6-8.* Use the KKT conditions to derive an optimal solution for
each of the following problems.

(a) Maximize f (x) � x1 � 2x2 � x2
3,

subject to

x1 � x2 � 1

and

x1 � 0, x2 � 0.

(b) Maximize f (x) � 20x1 � 10x2,

subject to

x1
2 � x2

2 � 1
x1 � 2x2 � 2

and

x1 � 0, x2 � 0.

12.6-9. What are the KKT conditions for nonlinear programming
problems of the following form?

Minimize f (x),

subject to

gi(x) � bi, for i � 1, 2, . . . , m

and

x � 0.

(Hint: Convert this form to our standard form assumed in this chap-
ter by using the techniques presented in Sec. 4.6 and then apply-
ing the KKT conditions as given in Sec. 12.6.)

12.6-10. Consider the following nonlinear programming problem:

Minimize Z � 2x1
2 � x2

2,

subject to

x1 � x2 � 10

and

x1 � 0, x2 � 0.

(a) Of the special types of nonlinear programming problems de-
scribed in Sec. 12.3, to which type or types can this particular
problem be fitted? Justify your answer. (Hint: First convert this
problem to an equivalent nonlinear programming problem that
fits the form given in the second paragraph of the chapter, with
m � 2 and n � 2.)

(b) Obtain the KKT conditions for this problem.
(c) Use the KKT conditions to derive an optimal solution.

12.6-11. Consider the following linearly constrained programming
problem:

Minimize f (x) � x1
3 � 4x2

2 � 16x3,

subject to

x1 � x2 � x3 � 5

and

x1 � 1, x2 � 1, x3 � 1.

(a) Convert this problem to an equivalent nonlinear programming
problem that fits the form given at the beginning of the chap-
ter (second paragraph), with m � 2 and n � 3.

(b) Use the form obtained in part (a) to construct the KKT con-
ditions for this problem.

(c) Use the KKT conditions to check whether (x1, x2, x3) � (2, 1, 2)
is optimal.

12.6-12. Consider the following linearly constrained convex pro-
gramming problem:

Minimize Z � x1
2 � 6x1 � x2

3 � 3x2,

subject to

x1 � x2 � 1

and

x1 � 0, x2 � 0.

(a) Obtain the KKT conditions for this problem.
(b) Use the KKT conditions to check whether (x1, x2) � (�

1
2

�, �
1
2

�) is
an optimal solution.

(c) Use the KKT conditions to derive an optimal solution.

12.6-13. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f (x) � 8x1 � x1
2 � 2x2 � x3,
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subject to

x1 � 3x2 � 2x3 � 12

and

x1 � 0, x2 � 0, x3 � 0.

(a) Use the KKT conditions to demonstrate that (x1, x2, x3) �
(2, 2, 2) is not an optimal solution.

(b) Use the KKT conditions to derive an optimal solution. (Hint:
Do some preliminary intuitive analysis to determine the most
promising case regarding which variables are nonzero and
which are zero.)

12.6-14. Use the KKT conditions to determine whether (x1, x2,
x3) � (1, 1, 1) can be optimal for the following problem:

Minimize Z � 2x1 � x2
3 � x3

2,

subject to

x1
2 � 2x2

2 � x3
2 � 4

and

x1 � 0, x2 � 0, x3 � 0.

12.6-15. Reconsider the model given in Prob. 12.2-10. What are
the KKT conditions for this problem? Use these conditions to de-
termine whether (x1, x2) � (1, 1) can be optimal.

12.6-16. Reconsider the linearly constrained convex programming
model given in Prob. 12.4-7. Use the KKT conditions to determine
whether (x1, x2) � (2, 2) can be optimal.

12.7-1. Consider the quadratic programming example presented in
Sec. 12.7.
(a) Use the test given in Appendix 2 to show that the objective

function is strictly concave.
(b) Verify that the objective function is strictly concave by demon-

strating that Q is a positive definite matrix; that is, xTQx 	 0
for all x � 0. (Hint: Reduce xTQx to a sum of squares.)

(c) Show that x1 � 12, x2 � 9, and u1 � 3 satisfy the KKT con-
ditions when they are written in the form given in Sec. 12.6.

12.7-2.* Consider the following quadratic programming problem:

Maximize f (x) � 8x1 � x1
2 � 4x2 � x2

2,

subject to

x1 � x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to derive an optimal solution.
(b) Now suppose that this problem is to be solved by the modified

simplex method. Formulate the linear programming problem
that is to be addressed explicitly, and then identify the addi-
tional complementarity constraint that is enforced automatically
by the algorithm.

I (c)Apply the modified simplex method to the problem as for-
mulated in part (b).

C (d) Use the computer to solve the quadratic programming prob-
lem directly.

12.7-3. Consider the following quadratic programming problem:

Maximize f(x) � 250x1 � 25x1
2 � 100x2 � 100x2

2 � 90x1x2,

subject to

20x1 � 5x2 � 90
10x1 � 10x2 � 60

and

x1 � 0, x2 � 0.

Suppose that this problem is to be solved by the modified simplex
method.
(a) Formulate the linear programming problem that is to be 

addressed explicitly, and then identify the additional com-
plementarity constraint that is enforced automatically by the
algorithm.

I (b) Apply the modified simplex method to the problem as for-
mulated in part (a).

12.7-4. Consider the following quadratic programming problem.

Maximize f (x) � 2x1 � 3x2 � x1
2 � x2

2,

subject to

x1 � x2 � 2

and

x1 � 0, x2 � 0.

(a) Use the KKT conditions to derive an optimal solution directly.
(b) Now suppose that this problem is to be solved by the modi-

fied simplex method. Formulate the linear programming prob-
lem that is to be addressed explicitly, and then identify the ad-
ditional complementarity constraint that is enforced
automatically by the algorithm.

(c) Without applying the modified simplex method, show that the
solution derived in part (a) is indeed optimal (Z � 0) for the
equivalent problem formulated in part (b).

I (d) Apply the modified simplex method to the problem as for-
mulated in part (b).

C (e) Use the computer to solve the quadratic programming problem
directly.

12.7-5. Reconsider the first quadratic programming variation of
the Wyndor Glass Co. problem presented in Sec. 12.2 (see 
Fig. 12.6). Analyze this problem by following the instructions of
parts (a), (b), and (c) of Prob. 12.7-4.

C 12.7-6. Reconsider Prob. 12.1-4 and its quadratic programming
model.
(a) Display this model [including the values of R(x) and V(x)] on

an Excel spreadsheet.
(b) Solve this model for four cases: minimum acceptable expected

return � 13, 14, 15, 16.
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(c) For typical probability distributions (with mean � and variance
�2) of the total return from the entire portfolio, the probabil-
ity is fairly high (about 0.8 or 0.9) that the return will exceed
� � �, and the probability is extremely high (often close to
0.999) that the return will exceed � � 3�. Calculate � � �
and � � 3� for the four portfolios obtained in part (b). Which
portfolio will give the highest � among those that also give 
� � � � 0?

12.8-1. The MFG Corporation is planning to produce and market
three different products. Let x1, x2, and x3 denote the number of
units of the three respective products to be produced. The prelim-
inary estimates of their potential profitability are as follows.

For the first 15 units produced of Product 1, the unit profit
would be approximately $500. The unit profit would be only $60
for any additional units of Product 1. For the first 20 units pro-
duced of Product 2, the unit profit is estimated at $400. The unit
profit would be $200 for each of the next 20 units and $100 for
any additional units. For the first 20 units of Product 3, the unit
profit would be $600. The unit profit would be $400 for each of
the next 10 units and $200 for any additional units.

Certain limitations on the use of needed resources impose the
following constraints on the production of the three products:

2x1 � 3x2 � 4x3 � 180
3x1 � x2 � 150

x1 � x2 � 3x3 � 100.

Management wants to know what values of x1, x2 and x3 should
be chosen to maximize the total profit.
(a) Plot the profit graph for each of the three products.
(b) Use separable programming to formulate a linear programming

model for this problem.
C (c) Solve the model. What is the resulting recommendation to

management about the values of x1, x2, and x3 to use?
(d) Now suppose that there is an additional constraint that the profit

from products 1 and 2 must total at least $20,000. Use the tech-
nique presented in the “Extensions” subsection of Sec. 12.8 to
add this constraint to the model formulated in part (b).

C (e) Repeat part (c) for the model formulated in part (d ).

12.8-2.* The Dorwyn Company has two new products that will
compete with the two new products for the Wyndor Glass Co.
(described in Sec. 3.1). Using units of hundreds of dollars for
the objective function, the linear programming model shown be-
low has been formulated to determine the most profitable prod-
uct mix.

Maximize Z � 4x1 � 6x2,

subject to

x1 � 3x2 � 8
5x1 � 2x2 � 14

and

x1 � 0, x2 � 0.

However, because of the strong competition from Wyndor, Dorwyn
management now realizes that the company will need to make a strong

marketing effort to generate substantial sales of these products. In
particular, it is estimated that achieving a production and sales rate
of x1 units of Product 1 per week will require weekly marketing costs
of x1

3 hundred dollars. The corresponding marketing costs for Prod-
uct 2 are estimated to be 2x2

2 hundred dollars. Thus, the objective
function in the model should be Z � 4x1 � 6x2 � x1

3 � 2x2
2.

Dorwyn management now would like to use the revised model
to determine the most profitable product mix.
(a) Verify that (x1, x2) � (2/�3�, �

3
2

�) is an optimal solution by ap-
plying the KKT conditions.

(b) Construct tables to show the profit data for each product when
the production rate is 0, 1, 2, 3.

(c) Draw a figure like Fig. 12.15b that plots the weekly profit points
for each product when the production rate is 0, 1, 2, 3. Connect
the pairs of consecutive points with (dashed) line segments.

(d) Use separable programming based on this figure to formulate
an approximate linear programming model for this problem.

C (e) Solve the model. What does this say to Dorwyn manage-
ment about which product mix to use?

12.8-3. The B. J. Jensen Company specializes in the production of
power saws and power drills for home use. Sales are relatively stable
throughout the year except for a jump upward during the Christmas
season. Since the production work requires considerable work and ex-
perience, the company maintains a stable employment level and then
uses overtime to increase production in November. The workers also
welcome this opportunity to earn extra money for the holidays.

B. J. Jensen, Jr., the current president of the company, is
overseeing the production plans being made for the upcoming
November. He has obtained the following data.

However, Mr. Jensen now has learned that, in addition to the
limited number of labor hours available, two other factors will limit
the production levels that can be achieved this November. One is
that the company’s vendor for power supply units will only be able
to provide 40,000 of these units for November (8,000 more than
his usual monthly shipment). Each power saw and each power drill
requires one of these units. Second, the vendor who supplies a key
part for the gear assemblies will only be able to provide 60,000 for
November (16,000 more than for other months). Each power saw
requires two of these parts and each power drill requires one.

Mr. Jensen now wants to determine how many power saws
and how many power drills to produce in November to maximize
the company’s total profit.
(a) Draw the profit graph for each of these two products.
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Maximum Monthly Profit per 
Production* Unit Produced

Regular Regular
Time Overtime Time Overtime

Power saws 12,000 8,000 $240 $80
Power drills 20,000 12,000 $160 $120

*Assuming adequate supplies of materials from the company’s
vendors.
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(b) Use separable programming to formulate a linear programming
model for this problem.

C (c) Solve the model. What does this say about how many power
saws and how many power drills to produce in November?

12.8-4. Reconsider the linearly constrained convex programming
model given in Prob. 12.4-7.
(a) Use the separable programming technique presented in Sec. 12.8

to formulate an approximate linear programming model for this
problem. Use x1 � 0, 1, 2, 3 and x2 � 0, 1, 2, 3 as the break-
points of the piecewise linear functions.

C (b) Use the simplex method to solve the model formulated in
part (a). Then reexpress this solution in terms of the origi-
nal variables of the problem.

12.8-5. Suppose that the separable programming technique has
been applied to a certain problem (the “original problem”) to con-
vert it to the following equivalent linear programming problem:

Maximize Z � 5x11 � 4x12 � 2x13 � 4x21 � x22,

subject to

3x11 � 3x12 � 3x13 � 2x21 � 2x22 � 25
2x11 � 2x12 � 2x13 � x21 � x22 � 10

and

0 � x11 � 2 0 � x21 � 3
0 � x12 � 3 0 � x22 � 1.
0 � x13

What was the mathematical model for the original problem?
(You may define the objective function either algebraically or
graphically, but express the constraints algebraically.)

12.8-6. For each of the following cases, prove that the key prop-
erty of separable programming given in Sec. 12.8 must hold. (Hint:
Assume that there exists an optimal solution that violates this prop-
erty, and then contradict this assumption by showing that there ex-
ists a better feasible solution.)
(a) The special case of separable programming where all the gi(x)

are linear functions.
(b) The general case of separable programming where all the func-

tions are nonlinear functions of the designated form. [Hint:
Think of the functional constraints as constraints on resources,
where gij(xj) represents the amount of resource i used by 
running activity j at level xj, and then use what the convexity
assumption implies about the slopes of the approximating
piece-wise linear function.]

12.8-7. The MFG Company produces a certain subassembly in
each of two separate plants. These subassemblies are then brought
to a third nearby plant where they are used in the production of a
certain product. The peak season of demand for this product is ap-
proaching, so to maintain the production rate within a desired
range, it is necessary to use temporarily some overtime in making
the subassemblies. The cost per subassembly on regular time (RT)
and on overtime (OT) is shown in the following table for both
plants, along with the maximum number of subassemblies that can
be produced on RT and on OT each day.

Let x1 and x2 denote the total number of subassemblies pro-
duced per day at plants 1 and 2, respectively. The objective is to
maximize Z � x1 � x2, subject to the constraint that the total daily
cost not exceed $270,000. Note that the mathematical programming
formulation of this problem (with x1 and x2 as decision variables)
has the same form as the main case of the separable programming
model described in Sec. 12.8, except that the separable functions
appear in a constraint function rather than the objective function.
However, the same approach can be used to reformulate the prob-
lem as a linear programming model where it is feasible to use OT
even when the RT capacity at that plant is not fully used.
(a) Formulate this linear programming model.
(b) Explain why the logic of separable programming also applies

here to guarantee that an optimal solution for the model for-
mulated in part (a) never uses OT unless the RT capacity at
that plant has been fully used.

12.8-8. Consider the following nonlinear programming problem:

Maximize Z � 5x1 � x2,

subject to

2x1
2 � x2 � 13

x1
2 � x2 � 9

and

x1 � 0, x2 � 0.

(a) Show that this problem is a convex programming problem.
(b) Use the separable programming technique discussed at the end

of Sec. 12.8 to formulate an approximate linear programming
model for this problem. Use the integers as the breakpoints of
the piecewise linear function.

C (c) Use the computer to solve the model formulated in part (b).
Then reexpress this solution in terms of the original vari-
ables of the problem.

12.8-9. Consider the following convex programming problem:

Maximize Z � 32x1 � x1
4 � 4x2 � x2

2,

subject to

x1
2 � x2

2 � 9

and

x1 � 0, x2 � 0.

(a) Apply the separable programming technique discussed at the
end of Sec. 12.8, with x1 � 0, 1, 2, 3 and x2 � 0, 1, 2, 3 
as the breakpoint of the piecewise linear functions, to for-
mulate an approximate linear programming model for this
problem.

PROBLEMS 601

Unit Cost Capacity

RT OT RT OT

Plant 1 $23 $38 6,000 3,000
Plant 2 $24 $36 3,000 1,500
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C (b) Use the computer to solve the model formulated in part (a).
Then reexpress this solution in terms of the original vari-
ables of the problem.

(c) Use the KKT conditions to determine whether the solution for
the original variables obtained in part (b) actually is optimal
for the original problem (not the approximate model).

12.8-10. Reconsider the integer nonlinear programming model
given in Prob. 10.3-9.
(a) Show that the objective function is not concave.
(b) Formulate an equivalent pure binary integer linear programming

model for this problem as follows. Apply the separable pro-
gramming technique with the feasible integers as the breakpoints
of the piecewise linear functions, so that the auxiliary variables
are binary variables. Then add some linear programming con-
straints on these binary variables to enforce the special restric-
tion of separable programming. (Note that the key property of
separable programming does not hold for this problem because
the objective function is not concave.)

C (c) Use the computer to solve this problem as formulated in part
(b). Then reexpress this solution in terms of the original vari-
ables of the problem.

D,I 12.9-1. Reconsider the linearly constrained convex program-
ming model given in Prob. 12.6-5. Starting from the initial trial
solution (x1, x2) � (0, 0), use one iteration of the Frank-Wolfe al-
gorithm to obtain exactly the same solution you found in part (b)
of Prob. 12.6-5, and then use a second iteration to verify that it is
an optimal solution (because it is replicated exactly).

D,I 12.9-2. Reconsider the linearly constrained convex program-
ming model given in Prob. 12.6-12. Starting from the initial trial
solution (x1, x2) � (0, 0), use one iteration of the Frank-Wolfe al-
gorithm to obtain exactly the same solution you found in part (c)
of Prob. 12.6-12, and then use a second iteration to verify that it
is an optimal solution (because it is replicated exactly). Explain
why exactly the same results would be obtained on these two it-
erations with any other trial solution.

D,I 12.9-3. Reconsider the linearly constrained convex program-
ming model given in Prob. 12.6-13. Starting from the initial trial
solution (x1, x2, x3) � (0, 0, 0), apply two iterations of the Frank-
Wolfe algorithm.

D,I 12.9-4. Consider the quadratic programming example presented
in Sec. 12.7. Starting from the initial trial solution (x1, x2) � (5, 5),
apply eight iterations of the Frank-Wolfe algorithm.

12.9-5. Reconsider the quadratic programming model given in
Prob. 12.7-4.
D,I (a) Starting from the initial trial solution (x1, x2) � (0, 0), use

the Frank-Wolfe algorithm (six iterations) to solve the
problem (approximately).

(b) Show graphically how the sequence of trial solutions obtained
in part (a) can be extrapolated to obtain a closer approxima-
tion of an optimal solution. What is your resulting estimate of
this solution?

D,I 12.9-6. Reconsider the linearly constrained convex pro-
gramming model given in Prob. 12.4-7. Starting from the initial
trial solution (x1, x2) � (0, 0), use the Frank-Wolfe algorithm
(four iterations) to solve this model (approximately).

D,I 12.9-7. Consider the following linearly constrained convex
programming problem:

Maximize f (x) � 3x1x2 � 40x1 � 30x2 � 4x1
2 � x1

4

� 3x2
2 � x2

4,

subject to

4x1 � 3x2 � 12
x1 � 2x2 � 4

and

x1 � 0, x2 � 0.

Starting from the initial trial solution (x1, x2) � (0, 0), apply two
iterations of the Frank-Wolfe algorithm.

D,I 12.9-8.* Consider the following linearly constrained convex
programming problem:

Maximize f (x) � 3x1 � 4x2 � x1
3 � x2

2,

subject to

x1 � x2 � 1

and

x1 � 0, x2 � 0.

(a) Starting from the initial trial solution (x1, x2) � (�
1
4

�, �
1
4

�), apply
three iterations of the Frank-Wolfe algorithm.

(b) Use the KKT conditions to check whether the solution obtained
in part (a) is, in fact, optimal.

12.9-9. Consider the following linearly constrained convex pro-
gramming problem:

Maximize f (x) � 4x1 � x1
4 � 2x2 � x2

2,

subject to

4x1 � 2x2 � 5

and

x1 � 0, x2 � 0.

(a) Starting from the initial trial solution (x1, x2) � (�
1
2

�, �
1
2

�), apply
four iterations of the Frank-Wolfe algorithm.

(b) Show graphically how the sequence of trial solutions obtained
in part (a) can be extrapolated to obtain a closer approxima-
tion of an optimal solution. What is your resulting estimate of
this solution?

(c) Use the KKT conditions to check whether the solution you ob-
tained in part (b) is, in fact, optimal. If not, use these condi-
tions to derive the exact optimal solution.

12.9-10. Reconsider the linearly constrained convex programming
model given in Prob. 12.9-8.
(a) If SUMT were to be applied to this problem, what would be

the unconstrained function P(x; r) to be maximized at each
iteration?
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(b) Setting r � 1 and using (�
1
4

�, �
1
4

�) as the initial trial solution, manually
apply one iteration of the gradient search procedure (except stop
before solving for t*) to begin maximizing the function P(x; r)
you obtained in part (a).

D,C (c) Beginning with the same initial trial solution as in part (b),
use the automatic procedure in your IOR Tutorial to ap-
ply SUMT to this problem with r � 1, 10�2, 10�4.

(d) Compare the final solution obtained in part (c) to the true op-
timal solution for Prob. 12.9-8 given in the back of the book.
What is the percentage error in x1, in x2, and in f (x)?

12.9-11. Reconsider the linearly constrained convex programming
model given in Prob. 12.9-9. Follow the instructions of parts (a), (b),
and (c) of Prob. 12.9-10 for this model, except use (x1, x2) � (�

1
2

�, �
1
2

�)
as the initial trial solution and use r � 1, 10�2, 10�4, 10�6.

12.9-12. Reconsider the model given in Prob. 12.3-3.
(a) If SUMT were to be applied directly to this problem, what

would be the unconstrained function P(x; r) to be minimized
at each iteration?

(b) Setting r � 100 and using (x1, x2) � (5, 5) as the initial trial
solution, manually apply one iteration of the gradient search
procedure (except stop before solving for t*) to begin mini-
mizing the function P(x; r) you obtained in part (a).

D,C (c) Beginning with the same initial trial solution as in part (b),
use the automatic procedure in your IOR Tutorial to ap-
ply SUMT to this problem with r � 100, 1, 10�2, 10�4.
(Hint: The computer routine assumes that the problem has
been converted to maximization form with the functional
constraints in � form.)

12.9-13. Consider the example for applying SUMT given in Sec. 12.9.
(a) Show that (x1, x2) � (1, 2) satisfies the KKT conditions.
(b) Display the feasible region graphically, and then plot the lo-

cus of points x1x2 � 2 to demonstrate that (x1, x2) � (1, 2) with
f (1, 2) � 2 is, in fact, a global maximum.

12.9-14.* Consider the following convex programming problem:

Maximize f (x) � �2x1 � (x2 � 3)2,

subject to

x1 � 3 and x2 � 3.

(a) If SUMT were applied to this problem, what would be 
the unconstrained function P(x; r) to be maximized at each
iteration?

(b) Derive the maximizing solution of P(x; r) analytically, and then
give this solution for r � 1, 10�2, 10�4, 10�6.

D,C (c) Beginning with the initial trial solution (x1, x2) � (4, 4),
use the automatic procedure in your IOR Tutorial to ap-
ply SUMT to this problem with r � 1, 10�2, 10�4, 10�6.

D,C 12.9-15. Consider the following convex programming problem:

Maximize f (x) � x1x2 � x1 � x1
2 � x2 � x2

2,

subject to

x2 � 0.

Beginning with the initial trial solution (x1, x2) � (1, 1), use the
automatic procedure in your IOR Tutorial to apply SUMT to this
problem with r � 1, 10�2, 10�4.

D,C 12.9-16. Reconsider the quadratic programming model given
in Prob. 12.7-4. Beginning with the initial trial solution (x1, x2) �
(�

1
2

�, �
1
2

�), use the automatic procedure in your IOR Tutorial to apply
SUMT to this model with r � 1, 10�2, 10�4, 10�6.

D,C 12.9-17. Reconsider the first quadratic programming variation
of the Wyndor Glass Co. problem presented in Sec. 12.2 (see 
Fig. 12.6). Beginning with the initial trial solution (x1, x2) � (2, 3),
use the automatic procedure in your IOR Tutorial to apply SUMT
to this problem with r � 102, 1, 10�2, 10�4.

12.9-18. Reconsider the convex programming model with an
equality constraint given in Prob. 12.6-11.
(a) If SUMT were to be applied to this model, what would be 

the unconstrained function P(x; r) to be minimized at each
iteration?

D,C (b) Starting from the initial trial solution (x1, x2, x3) � (�
3
2

�, �
3
2

�, 2),
use the automatic procedure in your IOR Tutorial to apply
SUMT to this model with r � 10�2, 10�4, 10�6, 10�8.

C (c) Use the standard Excel Solver to solve this problem.
C (d) Use Evolutionary Solver to solve this problem.
C (e) Use LINGO to solve this problem.

12.10-1. Consider the following nonconvex programming problem:

Maximize f (x) � 1,000x � 400x2 � 40x3 � x4,

subject to

x2 � x � 500

and

x � 0.

(a) Identify the feasible values for x. Obtain general expressions for
the first three derivatives of f(x). Use this information to help you
draw a rough sketch of f(x) over the feasible region for x. With-
out calculating their values, mark the points on your graph that
correspond to local maxima and minima.

I (b) Use the bisection method with � � 0.05 to find each of the
local maxima. Use your sketch from part (a) to identify ap-
propriate initial bounds for each of these searches. Which of
the local maxima is a global maximum?

(c) Starting with x � 3 and x � 15 as the initial trial solutions,
use Newton’s method with � � 0.001 to find each of the lo-
cal maxima.

D,C (d) Use the automatic procedure in your IOR Tutorial to ap-
ply SUMT to this problem with r � 103, 102, 10, 1 to find
each of the local maxima. Use x � 3 and x � 15 as the ini-
tial trial solutions for these searches. Which of the local
maxima is a global maximum?

C (e) Formulate this problem in a spreadsheet, where f(x) repre-
sents profit, and then use the Solver Table to generate the so-
lutions with the following starting points: x � 0, 5, 10, 15,
20, 25. Include the value of x and the profit as output cells
in the Solver Table.

C (f) Use Evolutionary Solver to solve this problem.

PROBLEMS 603
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C (g) Use the global optimizer feature of LINGO to solve this
problem.

C (h) Use MPL and its global optimizer LGO to solve this problem.

12.10-2. Consider the following nonconvex programming problem:

Maximize f (x) � 3x1x2 � 2x1
2 � x2

2,

subject to

x1
2 � 2x2

2 � 4
2x1 � x2 � 3

x1x2
2 � x1

2x2 � 2

and

x1 � 0, x2 � 0.

(a) If SUMT were to be applied to this problem, what would 
be the unconstrained function P(x; r) to be maximized at each
iteration?

D,C (b) Starting from the initial trial solution (x1, x2) � (1, 1), use
the automatic procedure in your IOR Tutorial to apply
SUMT to this problem with r � 1, 10�2, 10�4.

C (c) Use Evolutionary Solver to solve this problem.
C (d) Use the global optimizer feature of LINGO to solve this

problem.
C (e) Use MPL and its global optimizer LGO to solve this

problem.

12.10-3. Consider the following nonconvex programming problem.

Minimize f (x) � sin 3x1 � cos 3x2 � sin(x1 � x2),

subject to

x1
2 � 10x2 � �1

10x1 � x2
2 � 100

and

x1 � 0, x2 � 0.

(a) If SUMT were applied to this problem, what would be the un-
constrained function P(x; r) to be minimized at each iteration?

(b) Describe how SUMT should be applied to attempt to obtain a
global minimum. (Do not actually solve.)

C (c) Use the global optimizer feature of LINGO to solve this
problem.

C (d) Use MPL and its global optimizer LGO to solve this problem.

C 12.10-4. Consider the following nonconvex programming problem:

Maximize Profit � x5 � 13x4 � 59x3 � 107x2 � 61x,

subject to

0 � x � 5.

(a) Formulate this problem in a spreadsheet, and then use the
Solver Table to solve this problem with the following starting
points: x � 0, 1, 2, 3, 4, and 5. Include the value of x and the
profit as output cells in the Solver Table.

(b) Use Evolutionary Solver to solve this problem.

C 12.10-5. Consider the following nonconvex programming
problem:

Maximize Profit � 100x6 � 1,359x5 � 6,836x4

� 15,670x3 � 15,870x2 � 5,095x,

subject to

0 � x � 5.

(a) Formulate this problem in a spreadsheet, and then use the
Solver Table to solve this problem with the following starting
points: x � 0, 1, 2, 3, 4, and 5. Include the value of x and the
profit as output cells in the Solver Table.

(b) Use Evolutionary Solver to solve this problem.

C 12.10-6. Because of population growth, the state of Washington
has been given an additional seat in the House of Representatives,
making a total of 10. The state legislature, which is currently con-
trolled by the Republicans, needs to develop a plan for redistricting
the state. There are 18 major cities in the state of Washington that
need to be assigned to one of the 10 congressional districts. The table
below gives the numbers of registered Democrats and registered Re-
publicans in each city. Each district must contain between 150,000
and 350,000 of these registered voters. Use Evolutionary Solver to
assign each city to one of the 10 congressional districts in order to
maximize the number of districts that have more registered Repub-
licans than registered Democrats. (Hint: Use the SUMIF function.)

12.10-7. Reconsider the Wyndor Glass Co. problem introduced in
Sec. 3.1.
C (a) Solve this problem using the standard Excel Solver.
C (b) Starting with an initial solution of producing 0 batches of

doors and 0 batches of windows, solve this problem using
Evolutionary Solver.

(c) Comment on the performance of the two approaches.

12.11-1. Consider the following problem:

Maximize Z � 4x1 � x1
2 � 10x2 � x2

2,

subject to

x1
2 � 4x2

2 � 16

Democrats Republicans
City (Thousands) (Thousands)

1 152 62
2 81 59
3 75 83
4 34 52
5 62 87
6 38 87
7 48 69
8 74 49
9 98 62

10 66 72
11 83 75
12 86 82
13 72 83
14 28 53
15 112 98
16 45 82
17 93 68
18 72 98
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and

x1 � 0, x2 � 0.

(a) Is this a convex programming problem? Answer yes or no, and
then justify your answer.

(b) Can the modified simplex method be used to solve this prob-
lem? Answer yes or no, and then justify your answer (but do
not actually solve.)

(c) Can the Frank-Wolfe algorithm be used to solve this problem?
Answer yes or no, and then justify your answer (but do not ac-
tually solve).

(d) What are the KKT conditions for this problem? Use these
conditions to determine whether (x1, x2) � (1, 1) can be 
optimal.

(e) Use the separable programming technique to formulate an
approximate linear programming model for this problem. Use

the feasible integers as the breakpoints for each piecewise
linear function.

C (f) Use the simplex method to solve the problem as formulated
in part (e).

(g) Give the function P(x; r) to be maximized at each iteration when
applying SUMT to this problem. (Do not actually solve.)

D,C (h) Use SUMT (the automatic procedure in your IOR Tutor-
ial) to solve the problem as formulated in part (g). Begin
with the initial trial solution (x1, x2) � (2, 1) and use r � 1,
10�2, 10�4, 10�6.

C (i) Formulate this problem in a spreadsheet, and then use the
standard Excel Solver to solve this problem.

C (j) Use Evolutionary Solver to solve this problem.
C (k) Use LINGO to solve this problem.

CASES 605

■ CASES

Case 12.1 Savvy Stock Selection
Ever since the day she took her first economics class in
high school, Lydia wondered about the financial practices
of her parents. They worked very hard to earn enough
money to live a comfortable middle-class life, but they
never made their money work for them. They simply de-
posited their hard-earned paychecks in savings accounts
earning a nominal amount of interest. (Fortunately, there
always was enough money when it came time to pay her
college bills.) She promised herself that when she became
an adult, she would not follow the same financially con-
servative practices as her parents.

And Lydia kept this promise. Every morning while get-
ting ready for work, she watches the CNN financial reports.
She plays investment games on the World Wide Web, find-
ing portfolios that maximize her return while minimizing
her risk. She reads The Wall Street Journal and Financial
Times with a thirst she cannot quench.

Lydia also reads the investment advice columns of the
financial magazines, and she has noticed that on average,
the advice of the investment advisers turns out to be very
good. Therefore, she decides to follow the advice given in
the latest issue of one of the magazines. In his monthly col-
umn the editor Jonathan Taylor recommends three stocks that
he believes will rise far above market average. In addition,
the well-known mutual fund guru Donna Carter advocates
the purchase of three more stocks that she thinks will out-
perform the market over the next year.

BIGBELL (ticker symbol on the stock exchange: BB), one
of the nation’s largest telecommunications companies, trades at
a price-earnings ratio well below market average. Huge in-
vestments over the last 8 months have depressed earnings con-
siderably. However, with their new cutting edge technology, the

company is expected to significantly raise their profit margins.
Taylor predicts that the stock will rise from its current price of
$60 per share to $72 per share within the next year.

LOTSOFPLACE (LOP) is one of the leading hard drive
manufacturers in the world. The industry recently underwent
major consolidation, as fierce price wars over the last few
years were followed by many competitors going bankrupt or
being bought by LOTSOFPLACE and its competitors. Due
to reduced competition in the hard drive market, revenues and
earnings are expected to rise considerably over the next year.
Taylor predicts a one-year increase of 42 percent in the stock
of LOTSOFPLACE from the current price of $127 per share.

INTERNETLIFE (ILI) has survived the many ups and
downs of Internet companies. With the next Internet frenzy
just around the corner, Taylor expects a doubling of this com-
pany’s stock price from $4 to $8 within a year.

HEALTHTOMORROW (HEAL) is a leading biotech-
nology company that is about to get approval for several new
drugs from the Food and Drug Administration, which will
help earnings to grow 20 percent over the next few years. In
particular a new drug to significantly reduce the risk of heart
attacks is supposed to reap huge profits. Also, due to several
new great-tasting medications for children, the company has
been able to build an excellent image in the media. This pub-
lic relations coup will surely have positive effects for the sale
of its over-the-counter medications. Carter is convinced that
the stock will rise from $50 to $75 per share within a year.

QUICKY (QUI) is a fast-food chain which has been
vastly expanding its network of restaurants all over the
United States. Carter has followed this company closely
since it went public some 15 years ago when it had only a few
dozen restaurants on the west coast of the United States. Since
then the company has expanded, and it now has restaurants in
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every state. Due to its emphasis on healthy foods, it is cap-
turing a growing market share. Carter believes that the stock
will continue to perform well above market average for an
increase of 46 percent in one year from its current stock
price of $150.

AUTOMOBILE ALLIANCE (AUA) is a leading car man-
ufacturer from the Detroit area that just recently introduced

two new models. These models show very strong initial sales,
and therefore the company’s stock is predicted to rise from
$20 to $26 over the next year.

On the World Wide Web Lydia found data about the risk
involved in the stocks of these companies. The historical
variances of return of the six stocks and their covariances
are shown below.

606 CHAPTER 12 NONLINEAR PROGRAMMING

CASE 12.2 International Investments
A financial analyst is holding some German bonds that of-
fer increasing interest rates if they are kept until their full
maturity in three more years. They also can be redeemed
at any time to obtain the original principal plus the ac-
crued interest. The German federal government has just
introduced a capital gains tax on interest income above a
certain level, so holding the bonds to maturity now is less
attractive. Therefore, the analyst needs to determine his
optimal investment strategy regarding how many bonds to
sell during each of the next three years under a few dif-
ferent scenarios.

Covariances LOP ILI HEAL QUI AUA

BB 0.005 0.03 �0.031 �0.027 0.01

LOP 0.085 �0.07 �0.05 0.02

ILI �0.11 �0.02 0.042

HEAL 0.05 �0.06

QUI �0.02

Company BB LOP ILI HEAL QUI AUA

Variance 0.032 0.1 0.333 0.125 0.065 0.08 

(a) At first, Lydia wants to ignore the risk of all the investments.
Given this strategy, what is her optimal investment portfolio;
that is, what fraction of her money should she invest in each of
the six different stocks? What is the total risk of her portfolio?

(b) Lydia decides that she doesn’t want to invest more than 40 per-
cent in any individual stock. While still ignoring risk, what is
her new optimal investment portfolio? What is the total risk of
her new portfolio?

(c) Now Lydia wants to take into account the risk of her investment
opportunities. For use in the following parts, formulate a quadratic
programming model that will minimize her risk (measured by the
variance of the return from her portfolio), while ensuring that

her expected return is at least as large as her choice of a mini-
mum acceptable value.

(d) Lydia wants to ensure that she receives an expected return of
at least 35 percent. She wants to reach this goal at minimum
risk. What investment portfolio allows her to do that?

(e) What is the minimum risk Lydia can achieve if she wants an
expected return of at least 25 percent? Of at least 40 percent?

(f) Do you see any problems or disadvantages with Lydia’s ap-
proach to her investment strategy?

(Note: A data file for this case is provided on the book’s website
for your convenience.)

CASE 12.3 Promoting a Breakfast
Cereal, Revisited
This case continues Case 3.4 involving an advertising cam-
paign for Super Grain Corporation’s new breakfast cereal. The
analysis requested for Case 3.4 leads to the application of lin-
ear programming. However, certain assumptions of linear pro-
gramming are quite questionable in this situation. In particular,
the assumption that the total profit from the introduction of
the breakfast cereal is proportional to the total number of ex-
posures from the advertising campaign clearly is only a rough
approximation. To refine the analysis, both a general nonlin-
ear programming model and a separable programming model
need to be formulated, applied, and compared.
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13C H A P T E R

Metaheuristics

Several of the preceding chapters have described algorithms that can be used to obtain
an optimal solution for various kinds of OR models, including certain types of linear

programming, integer programming, and nonlinear programming models. These algo-
rithms have proven to be invaluable for addressing a wide variety of practical problems.
However, this approach doesn’t always work. Some problems (and the corresponding OR
models) are so complicated that it may not be possible to solve for an optimal solution.
In such situations, it still is important to find a good feasible solution that is at least rea-
sonably close to being optimal. Heuristic methods commonly are used to search for such
a solution.

A heuristic method is a procedure that is likely to discover a very good feasible so-
lution, but not necessarily an optimal solution, for the specific problem being considered.
No guarantee can be given about the quality of the solution obtained, but a well-designed
heuristic method usually can provide a solution that is at least nearly optimal (or conclude
that no such solutions exist). The procedure also should be sufficiently efficient to deal
with very large problems. The procedure often is a full-fledged iterative algorithm, where
each iteration involves conducting a search for a new solution that might be better than
the best solution found previously. When the algorithm is terminated after a reasonable
time, the solution it provides is the best one that was found during any iteration.

Heuristic methods often are based on relatively simple common-sense ideas for how
to search for a good solution. These ideas need to be carefully tailored to fit the spe-
cific problem of interest. Thus, heuristic methods tend to be ad hoc in nature. That is,
each method usually is designed to fit a specific problem type rather than a variety of
applications.

For many years, this meant that an OR team would need to start from scratch to de-
velop a heuristic method to fit the problem at hand, whenever an algorithm for finding an
optimal solution was not available. This all has changed in relatively recent years with the
development of powerful metaheuristics. A metaheuristic is a general solution method
that provides both a general structure and strategy guidelines for developing a specific
heuristic method to fit a particular kind of problem. Metaheuristics have become one of
the most important techniques in the toolkit of OR practitioners.

This chapter provides an elementary introduction to metaheuristics. After describing
the general nature of metaheuristics in the first section, the following three sections will
introduce and illustrate the three most commonly used metaheuristics.
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To illustrate the nature of metaheuristics, let us begin with an example of a small but mod-
estly difficult nonlinear programming problem.

An Example: A Nonlinear Programming Problem 
with Multiple Local Optima

Consider the following problem.

Maximize f(x) � 12x5 � 975x4 � 28,000x3 � 345,000x2 � 1,800,000x,

subject to

0 � x � 31.

Figure 13.1 graphs the objective function f(x) over the feasible values of the single vari-
able x. This plot reveals that the problem has three local optima, one at x � 5, another at
x � 20, and the third at x � 31, where the global optimum is at x � 20.

The objective function f(x) is sufficiently complicated that it would be difficult to de-
termine where the global optimum lies without the benefit of viewing the plot in Fig. 13.1.
Calculus could be used, but this would require solving a polynomial equation of the fourth
degree (after setting the first derivative equal to zero) to determine where the critical points
lie. It would even be difficult to ascertain that f(x) has multiple local optima rather than
just a global optimum.

This problem is an example of a nonconvex programming problem, a special type of
nonlinear programming problem that typically has multiple local optima. Section 12.10

■ 13.1 THE NATURE OF METAHEURISTICS
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■ FIGURE 13.1
A plot of the value of the
objective function over the
feasible range, 0 � x � 31,
for the nonlinear
programming example. The
local optima are at x � 5,
x � 20, and x � 31, but only
x � 20 is a global optimum.

hil76299_ch13_607-650.qxd  11/19/08  08:34 AM  Page 608



Rev.Confirming Pages

13.1 THE NATURE OF METAHEURISTICS 609

discusses nonconvex programming and even introduces a software package (Evolutionary
Solver) that uses the kind of metaheuristic described in Sec. 13.4.

For nonlinear programming problems that appear to be somewhat difficult, like this
one, a simple heuristic method is to conduct a local improvement procedure. Such a
procedure starts with an initial trial solution and then, at each iteration, searches in the
neighborhood of the current trial solution to find a better trial solution. This process con-
tinues until no improved solution can be found in the neighborhood of the current trial
solution. Thus, this kind of procedure can be viewed as a hill-climbing procedure that
keeps climbing higher on the plot of the objective function (assuming the objective is max-
imization) until it essentially reaches the top of the hill. A well-designed local improve-
ment procedure usually will be successful in converging to a local optimum (the top of a
hill), but it then will stop even if this local optimum is not a global optimum (the top of
the tallest hill).

For example, the gradient search procedure described in Sec. 12.5 is a local im-
provement procedure. If it were to start with, say, x � 0 as the initial trial solution in
Fig. 13.1, it would climb up the hill by trying successively larger values of x until it es-
sentially reaches the top of the hill at x � 5, at which point it would stop. Figure 13.2
shows a typical sequence of values of f(x) that would be obtained by such a local im-
provement procedure when starting from far down the hill.

Since the nonlinear programming example depicted in Fig. 13.1 involves only a sin-
gle variable, the bisection method described in Sec. 12.4 also could be applied to this par-
ticular problem. This procedure is another example of a local improvement procedure,
since each iteration starts from the current trial solution to search in its neighborhood
(defined by a current lower bound and upper bound on the value of the variable) for a
better solution. For example, if the search were to begin with a lower bound of x � 0 and
an upper bound of x � 6 in Fig. 13.1, the sequence of trial solutions obtained by the bi-
section method would be x � 3, x � 4.5, x � 5.25, x � 4.875, and so forth as it converges
to x � 5. The corresponding values of the objective function for these four trial solutions
are 2.975 million, 3.286 million, 3.300 million, and 3.302 million, respectively. Thus, the
second iteration provides a relatively large improvement over the first one (311,000), the
third iteration gives a considerably smaller improvement (14,000), and the fourth itera-
tion yields only a very small improvement (2000). As depicted in Fig. 13.2, this pattern
is rather typical of local improvement procedures (although with some variation in the
rate of convergence to the local maximum).

Iteration

f (x)

1 2 3 4

A large
improvement

A smaller
improvement A very small

improvement

■ FIGURE 13.2
A typical sequence of
objective function values for
the solutions obtained by a
local improvement procedure
as it converges to a local
optimum when it is applied
to a maximization problem.
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610 CHAPTER 13 METAHEURISTICS

Just as with the gradient search procedure, this search with the bisection method
would get trapped at the local optimum at x � 5, so it never would find the global
optimum at x � 20. Like other local improvement procedures, both the gradient search
procedure and the bisection method are designed only to keep improving on the cur-
rent trial solutions within the local neighborhood of those solutions. Once they climb
to the top of a hill, they must stop because they cannot climb any higher within the
local neighborhood of the trial solution at the top of the hill. This illustrates the draw-
back of any local improvement procedure.

The drawback of a local improvement procedure: When a well-designed local
improvement procedure is applied to an optimization problem with multiple local
optima, the procedure will converge to one local optimum and then stop. Which
local optimum it finds depends on where the procedure begins the search. Thus,
the procedure will find the global optimum only if it happens to begin the search
in the neighborhood of this global optimum.

To try to overcome this drawback, one can restart the local improvement procedure a
number of times from randomly selected initial trial solutions. Restarting from a new part
of the feasible region often will lead to a new local optimum. Repeating this a number of
times increases the chance that the best of the local optima obtained actually will be the
global optimum. This approach works well on small problems, like the one-variable non-
linear programming example depicted in Fig. 13.1. However, it is much less successful on
large problems with many variables and a complicated feasible region. When the feasible
region has numerous “nooks and crannies” and restarting a local improvement procedure
from only one of them will lead to the global optimum, restarting from randomly selected
initial trial solutions becomes a very haphazard way to reach the global optimum.

What is needed instead is a more structured approach that uses the information be-
ing gathered to guide the search toward the global optimum. This is the role that a meta-
heuristic plays.

The nature of metaheuristics: A metaheuristic is a general kind of solution
method that orchestrates the interaction between local improvement procedures
and higher level strategies to create a process that is capable of escaping from
local optima and performing a robust search of a feasible region.

Thus, one key feature of a metaheuristic is its ability to escape from a local optimum.
After reaching (or nearly reaching) a local optimum, different metaheuristics execute this
escape in different ways. However, a common characteristic is that the trial solutions that
immediately follow a local optimum are allowed to be inferior to this local optimum.
Consequently, when a metaheuristic is applied to a maximization problem (such as the
example depicted in Fig. 13.1), the objective function values for the sequence of trial so-
lutions obtained typically would follow a pattern similar to that shown in Fig. 13.3. As
with Fig. 13.2, the process begins by using a local improvement procedure to climb to the
top of the current hill (iteration 4). However, rather than stopping there, the metaheuris-
tic might guide the search a little way down the other side of this hill until it can start
climbing to the top of the tallest hill (iteration 8). To verify that this appears to be the
global optimum, a metaheuristic continues exploring further before stopping (iteration 12).

Figure 13.3 illustrates both an advantage and a disadvantage of a well-designed meta-
heuristic. The advantage is that it tends to move relatively quickly toward very good solu-
tions, so it provides a very efficient way of dealing with large complicated problems. The
disadvantage is that there is no guarantee that the best solution found will be an optimal
solution or even a nearly optimal solution. Therefore, whenever a problem can be solved
by an algorithm that can guarantee optimality, that should be done instead. The role of
metaheuristics is to deal with problems that are too large and complicated to be solved by
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exact algorithms. All the examples in this chapter are too small to require the use of
metaheuristics, since they are intended only to illustrate in a straightforward way how
metaheuristics can approach far more complicated problems.

Section 13.3 will illustrate the application of a particular metaheuristic to the non-
linear programming example depicted in Fig. 13.1. Section 13.4 then will apply another
metaheuristic to the integer programming version of this same example.

Although metaheuristics sometimes are applied to difficult nonlinear programming
and integer programming problems, a more common area of application is to combinato-
rial optimization problems. Our next example is of this type.

An Example: A Traveling Salesman Problem

Perhaps the most famous classic combinatorial optimization problem is called the travel-
ing salesman problem. It has been given this picturesque name because it can be described
in terms of a salesman (or saleswoman) who must travel to a number of cities during one
tour. Starting from his (or her) home city, the salesman wishes to determine which route
to follow to visit each city exactly once before returning to his home city so as to mini-
mize the total length of the tour.

Figure 13.4 shows an example of a small traveling salesman problem with seven cities.
City 1 is the salesman’s home city. Therefore, starting from this city, the salesman must
choose a route to visit each of the other cities exactly once before returning to city 1. The
number next to each link between each pair of cities represents the distance (or cost or
time) between these cities. We assume that the distance is the same in either direction.
(This is referred to as a symmetric traveling salesman problem.) Although there commonly
is a direct link between every pair of cities, we are simplifying this example by assum-
ing that the only direct links are those shown in the figure. The objective is to determine
which route will minimize the total distance that the salesman must travel.

There have been a number of applications of traveling salesman problems that have
nothing to do with salesmen. For example, when a truck leaves a distribution center to
deliver goods to a number of locations, the problem of determining the shortest route for

2 4 6 8 10 12 Iteration

■ FIGURE 13.3
A typical sequence of
objective function values for
the solutions obtained by a
metaheuristic as it first
converges to a local
optimum (iteration 4) and
then escapes to converge to
(hopefully) the global
optimum (iteration 8) of a
maximization problem before
concluding its search
(iteration 12).
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612 CHAPTER 13 METAHEURISTICS

doing this is a traveling salesman problem. Another example involves the manufacture of
printed circuit boards for wiring chips and other components. When many holes need to
be drilled into a printed circuit board, the problem of finding the most efficient drilling
sequence is a traveling salesman problem.

The difficulty of traveling salesman problems increases rapidly as the number of cities
increases. For a problem with n cities and a link between every pair of cities, the number
of feasible routes to be considered is (n � 1)!/2 since there are (n � 1) possibilities for
the first city after the home city, (n � 2) possibilities for the next city, and so forth. The
denominator of 2 arises because every route has an equivalent reverse route with exactly
the same distance. Thus, while a 10-city traveling salesman problem has less than 200,000
feasible solutions to be considered, a 20-city problem has roughly 1016 feasible solutions,
while a 50-city problem has about 1062.

Surprisingly, powerful algorithms based on the branch-and-cut approach introduced
in Sec. 11.8 have succeeded in solving to optimality certain huge traveling salesman prob-
lems with many hundreds (or even thousands) of cities. However, because of the enor-
mous difficulty of solving large traveling salesman problems, heuristic methods guided
by metaheuristics continue to be a popular way of addressing such problems.

These heuristic methods commonly involve generating a sequence of feasible trial so-
lutions, where each new trial solution is obtained by making a certain type of small adjust-
ment in the current trial solution. Several methods have been suggested for how to adjust
the current trial solution. Because of its ease of implementation, one popular method uses
the following type of adjustment.

A sub-tour reversal adjusts the sequence of cities visited in the current trial so-
lution by selecting a subsequence of the cities and simply reversing the order in
which that subsequence of cities is visited. (The subsequence being reversed can
consist of as few as two cities, but also can have more.)
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■ FIGURE 13.4
The example of a traveling
salesman problem that will
be used for illustrative
purposes throughout this
chapter.
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To illustrate a sub-tour reversal, suppose that the initial trial solution for our example
in Fig. 13.4  is to visit the cities in numerical order:

1-2-3-4-5-6-7-1 Distance � 69

If we select, say, the subsequence 3-4 and reverse it, we obtain the following new trial
solution:

1-2-4-3-5-6-7-1 Distance � 65

Thus, this particular sub-tour reversal has succeeded in reducing the distance for the com-
plete tour from 69 to 65.

Figure 13.5 depicts this sub-tour reversal, which leads from the initial trial solution on
the left to the new trial solution on the right. The dashed lines indicate the links that are
deleted from the tour (on the left) or added to the tour (on the right) by sub-tour reversal.
Note that the new trial solution deletes exactly two links from the previous tour and re-
places them by exactly two new links to form the new tour. This is a characteristic of any
sub-tour reversal (including those where the subsequence of cities being reversed consists
of more than two cities). Thus, a particular sub-tour reversal is possible only if the cor-
responding two new links actually exist.

This success in obtaining an improved tour by simply performing a sub-tour reversal
suggests the following heuristic method for seeking a good feasible solution for any trav-
eling salesman problem.

The Sub-Tour Reversal Algorithm

Initialization. Start with any feasible tour as the initial trial solution.

Iteration. For the current trial solution, consider all possible ways of performing a sub-
tour reversal (except exclude the reversal of the entire tour). Select the one that provides
the largest decrease in the distance traveled to be the new trial solution. (Ties may be
broken arbitrarily.)
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■ FIGURE 13.5
A sub-tour reversal that replaces the tour on the left (the initial trial solution) by the tour on the right (the new trial
solution) by reversing the order in which cities 3 and 4 are visited. This sub-tour reversal results in replacing the dashed
lines on the left by the dashed lines on the right as the links that are traversed in the new tour.
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Stopping rule. Stop when no sub-tour reversal will improve the current trial solution.
Accept this solution as the final solution.

Now let us apply this algorithm to the example, starting with 1-2-3-4-5-6-7-1 as the
initial trial solution. There are four possible sub-tour reversals that would improve upon
this solution, as listed in the second, third, fourth, and fifth rows below.

1-2-3-4-5-6-7-1 Distance � 69
Reverse 2-3: 1-3-2-4-5-6-7-1 Distance � 68
Reverse 3-4: 1-2-4-3-5-6-7-1 Distance � 65
Reverse 4-5: 1-2-3-5-4-6-7-1 Distance � 65
Reverse 5-6: 1-2-3-4-6-5-7-1 Distance � 66

The two solutions with Distance � 65 tie for providing the largest decrease in the
distance traveled, so suppose that the first of these, 1-2-4-3-5-6-7-1 (as shown on the right
side of Fig. 13.5), is chosen arbitrarily to be the next trial solution. This completes the
first iteration.

The second iteration begins with the tour on the right side of Fig. 13.5 as the current
trial solution. For this solution, there is only one sub-tour reversal that will provide an im-
provement, as listed in the second row below:

1-2-4-3-5-6-7-1 Distance � 65
Reverse 3-5-6: 1-2-4-6-5-3-7-1 Distance � 64

Figure 13.6 shows this sub-tour reversal, where the entire subsequence of cities 3-5-6 on
the left now is visited in reverse order (6-5-3) on the right. Thus, the tour on the right now
traverses the link 4-6 instead of 4-3, as well as the link 3-7 instead of 6-7, in order to use
the reverse order 6-5-3 between cities 4 and 7. This completes the second iteration.

We next try to find a sub-tour reversal that will improve upon this new trial solution.
However, there is none, so the sub-tour reversal algorithm stops with this trial solution as
the final solution.

Is 1-2-4-6-5-3-7-1 the optimal solution? Unfortunately, no. The optimal solution turns
out to be

1-2-4-6-7-5-3-1 Distance � 63
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■ FIGURE 13.6
The sub-tour reversal of 3-5-6 that leads from the trial solution on the left to an improved trial solution on the right.
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Tabu search is a widely used metaheuristic that uses some common-sense ideas to enable
the search process to escape from a local optimum. After introducing its basic concepts,
we will go through a simple example and then return to the traveling salesman example.

Basic Concepts

Any application of tabu search includes as a subroutine a local search procedure that
seems appropriate for the problem being addressed. (A local search procedure operates
just like a local improvement procedure except that it may not require that each new trial
solution must be better than the preceding trial solution.) The process begins by using this
procedure as a local improvement procedure in the usual way (i.e., only accepting an im-
proved solution at each iteration) to find a local optimum. A key strategy of tabu search
is that it then continues the search by allowing non-improving moves to the best solutions
in the neighborhood of the local optimum. Once a point is reached where better solutions
can be found in the neighborhood of the current trial solution, the local improvement pro-
cedure is reapplied to find a new local optimum.

Using the analogy of hill climbing, this process is sometimes referred to as the steepest
ascent/mildest descent approach because each iteration selects the available move that
goes furthest up the hill, or, when an upward move is not available, selects a move that
drops least down the hill. If all goes well, the process will follow a pattern like that shown
in Fig. 13.3, where a local optimum is left behind in order to climb to the global optimum.

The danger with this approach is that after moving away from a local optimum, the
process will cycle right back to the same local optimum. To avoid this, a tabu search tem-
porarily forbids moves that would return to (or perhaps toward) a solution recently visited.
A tabu list records these forbidden moves, which are referred to as tabu moves. (The only
exception to forbidding such a move is if it is found that a tabu move actually is better
than the best feasible solution found so far.)

This use of memory to guide the search by using tabu lists to record some of the re-
cent history of the search is a distinctive feature of tabu search. This feature has roots in
the field of artificial intelligence.

Tabu search also can incorporate some more advanced concepts. One is intensifi-
cation, which involves exploring a portion of the feasible region more thoroughly than
usual after it has been identified as a particularly promising portion for containing very
good solutions. Another concept is diversification, which involves forcing the search
into previously unexplored areas of the feasible region. (Long-term memory is used to
help implement both concepts.) However, we will focus on the basic form of tabu search
summarized next without delving into these additional concepts.

■ 13.2 TABU SEARCH

(or 1-3-5-7-6-4-2-1 by reversing the direction of this entire tour)

However, this solution cannot be reached by performing a sub-tour reversal that improves
1-2-4-6-5-3-7-1.

The sub-tour reversal algorithm is another example of a local improvement procedure.
It improves upon the current trial solution at each iteration. When it can no longer find a
better solution, it stops because the current trial solution is a local optimum. In this case,
1-2-4-6-5-3-7-1 is indeed a local optimum because there is no better solution within its
local neighborhood that can be reached by performing a sub-tour reversal.

What is needed to provide a better chance of reaching a global optimum is to use a
metaheuristic that will enable the process to escape from a local optimum. You will see how
three different metaheuristics do this with this same example in the next three sections.
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Outline of a Basic Tabu Search Algorithm

Initialization. Start with a feasible initial trial solution.

Iteration. Use an appropriate local search procedure to define the feasible moves into
the local neighborhood of the current trial solution. Eliminate from consideration any move
on the current tabu list unless that move would result in a better solution than the best trial
solution found so far. Determine which of the remaining moves provides the best solution.
Adopt this solution as the next trial solution, regardless of whether it is better or worse
than the current trial solution. Update the tabu list to forbid cycling back to what had been
the current trial solution. If the tabu list already had been full, delete the oldest member
of the tabu list to provide more flexibility for future moves.

Stopping rule. Use some stopping criterion, such as a fixed number of iterations, a
fixed amount of CPU time, or a fixed number of consecutive iterations without an im-
provement in the best objective function value. (The latter criterion is a particularly pop-
ular one.) Also stop at any iteration where there are no feasible moves into the local
neighborhood of the current trial solution. Accept the best trial solution found on any
iteration as the final solution.

Founded in 1886, Sears, Roebuck and Company
(now commonly referred to as just Sears) grew to
become the largest multiline retailer in the United
States by the mid-20th century. It continues today to
rank among the largest retailers in the world selling
merchandise and services. It also provides the largest
home-delivery service of furniture and appliances in
the United States with over 4 million deliveries a year.
Sears manages a U.S. fleet of over 1,000 delivery vehi-
cles that includes contract carriers and Sears-owned
vehicles. It also operates a U.S. fleet of about 12,500
service vehicles and the associated technicians, who
make approximately 15 million on-site service calls
annually to repair and install appliances and provide
home improvement.

The cost of operating this huge home-delivery and
home-service business runs in the billions of dollars per
year. With many thousands of vehicles being used to
make many tens of thousands of calls on customers daily,
the efficiency of this operation has a major impact on the
company’s profitability.

With so many calls on customers to be made with so
many vehicles, a huge number of decisions must be made
each day. Which stops should be assigned to each vehi-
cle’s route? What should the order of the stops be (which
considerably impacts the total distance and time for the
route) for each vehicle? How can all these decisions be

made so as to minimize total operational costs while pro-
viding satisfactory service to the customers?

It became clear that operations research was needed
to address this problem. The natural formulation is as a
vehicle-routing problem with time windows (VRPTW),
for which both exact and heuristic algorithms have been
developed. Unfortunately, the Sears problem is so huge
that it is a very difficult combinatorial optimization
problem that is beyond the reach of standard algo-
rithms for VRPTW. Therefore, a new algorithm was
developed that was based on using tabu search for
making both the decisions on which vehicle’s route
serves which stops and what the sequence is of stops
within a route.

The resulting new vehicle-routing-and-scheduling sys-
tem, based largely on tabu search, led to over $9 million in
one-time savings and over $42 million in annual savings
for Sears. It also provided a number of intangible bene-
fits, including (most importantly) improved service to
customers.

Source: D. Weigel, and B. Cao: “Applying GIS and OR Tech-
niques to Solve Sears Technician-Dispatching and Home-
Delivery Problems,” Interfaces, 29(1): 112–130, Jan.–Feb.
1999. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette
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This outline leaves a number of questions unanswered.

1. Which local search procedure should be used?
2. How should that procedure define the neighborhood structure that specifies which solutions

are immediate neighbors (reachable in a single iteration) of any current trial solution?
3. What is the form in which tabu moves should be represented on the tabu list?
4. Which tabu move should be added to the tabu list in each iteration?
5. How long should a tabu move be retained on the tabu list?
6. Which stopping rule should be used?

These all are important details that need to be worked out to fit the specific type of prob-
lem being addressed, as illustrated by the following examples. Tabu search only provides
a general structure and strategy guidelines for developing a specific heuristic method to
fit a specific situation. The selection of its parameters is a key part of developing a suc-
cessful heuristic method.

The following examples illustrate the use of tabu search.

A Minimum Spanning Tree Problem with Constraints

Section 9.4 describes the minimum spanning tree problem. In brief, starting with a net-
work that has its nodes but no links between the nodes yet, the problem is to determine
which links should be inserted into the network. The objective is to minimize the total
cost (or length) of the inserted links that will provide a path between every pair of nodes.
For a network with n nodes, (n � 1) links (with no cycles) are needed to provide a path
between every pair of nodes. Such a network is referred to as a spanning tree.

The left-hand side of Fig. 13.7 shows a network with five nodes, where the dashed
lines represent the potential links that could be inserted into the network and the number
next to each dashed line represents the cost associated with inserting that particular link.
Thus, the problem is to determine which four of these links (with no cycles) should be in-
serted into the network to minimize the total cost of these links. The right-hand side of the
figure shows the desired minimum spanning tree, where the dark lines represent the links
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■ FIGURE 13.7
(a) The data for a minimum spanning tree problem before choosing the links to be included in the network and (b) the
optimal solution for this problem where the dark lines represent the chosen links.
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that have been inserted into the network with a total cost of 50. This optimal solution is
obtained easily by applying the “greedy” algorithm presented in Sec. 9.4.

To illustrate the use of tabu search, let us now add a couple complications to this
example by supposing that the following constraints also must be observed when choos-
ing the links to include in the network.

Constraint 1: Link AD can be included only if link DE also is included.
Constraint 2: At most one of the three links—AD, CD, and AB—can be included.

Note that the previously optimal solution on the right-hand side of Fig. 13.7 violates both
of these constraints because (1) link AD is included even though DE is not and (2) both
AD and AB are included.

By imposing such constraints, the greedy algorithm presented in Sec. 9.4 can no
longer be used to find the new optimal solution. For such a small problem, this solution
probably could be found rather quickly by inspection. However, let us see how tabu search
could be used on either this problem or much larger problems to search for an optimal
solution.

The easiest way to take the constraints into account is to charge a huge penalty, such
as the following, for violating them.

1. Charge a penalty of 100 if constraint 1 is violated.
2. Charge a penalty of 100 if two of the three links specified in constraint 2 are included.

Increase this penalty to 200 if all three of the links are included.

A penalty of 100 is large enough to ensure that the constraints will not be violated for a
spanning tree that minimizes the total cost, including the penalty, provided only that there
exist some feasible solutions. Doubling this penalty if constraint 2 is badly violated pro-
vides an incentive for at least reducing how many of the three links are included during
an iteration of the tabu search.

There are a variety of ways to answer the six questions that are needed to specify
how the tabu search will be conducted. (See the list of questions that follows the out-
line of a basic tabu search algorithm.) Here is one straightforward way of answering
the questions.

1. Local search procedure: At each iteration, choose the best immediate neighbor of the
current trial solution that is not ruled out by its tabu status.

2. Neighborhood structure: An  immediate neighbor of the current trial solution is one
that is reached by adding a single link and then deleting one of the other links in the
cycle that is formed by the addition of this link. (The deleted link must come from this
cycle in order to still have a spanning tree.)

3. Form of tabu moves: List the links that should not be deleted.
4. Addition of a tabu move: At each iteration, after choosing the link to be added to the

network, also add this link to the tabu list.
5. Maximum size of tabu list: Two. Whenever a tabu move is added to a full list, delete

the older of the two tabu moves that already were on the list. (Since a spanning tree for
the problem being considered only includes four links, the tabu list must be kept very
small to provide some flexibility in choosing the link to be deleted at each iteration.)

6. Stopping rule: Stop after three consecutive iterations without an  improvement in the
best objective function value. (Also stop at any iteration where the current trial solu-
tion has no immediate neighbors that are not ruled out by their tabu status.)

Having specified these details, we now can proceed to apply the tabu search algo-
rithm to the example. To get started, a reasonable choice for the initial trial solution is the
optimal solution for the unconstrained version of the problem that is shown in Fig. 13.7(b).
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■ TABLE 13.1 The options for adding a link and 
deleting another link in iteration 1

Add Delete Cost

BE CE 75 � 200 � 275
BE AC 70 � 200 � 270
BE AB 60 � 100 � 160

CD AD 60 � 100 � 160
CD AC 65 � 300 � 365

DE CE 85 � 100 � 185
DE AC 80 � 100 � 180
DE AD 75 � 0   � 75 ← Minimum

13.2 TABU SEARCH 619

Because this solution violates both of the constraints (but with the inclusion of only two
of the three links specified in constraint 2), penalties of 100 need to be imposed twice.
Therefore, the total cost of this solution is

Cost � 20 � 10 � 5 � 15 � 200 (constraint penalties)
� 250.

Iteration 1. The three options for adding a link to the network in Fig. 13.7(b) are BE,
CD, and DE. If BE were to be chosen, the cycle formed would be BE-CE-AC-AB, so the
three options for deleting a link would be CE, AC, and AB. (At this point, no links have
yet been added to the tabu list.) If CE were to be deleted, the change in the cost would
be 30 � 5 � 25 with no change in the constraint penalties, so the total cost would in-
crease from 250 to 275. Similarly, if AC were to be deleted instead, the total cost would
increase from 250 to 250 � (30 � 10) � 270. However, if link AB were to be the one
deleted, the link costs would change by 30 � 20 � 10 and the constraint penalties would
decrease from 200 to 100 because constraint 2 would no longer be violated, so the total
cost would become 50 � 10 � 100 � 160. These results are summarized in the first three
rows of Table 13.1.

The next two rows summarize the calculations if CD were to be the link that is
added to the network. In this case, the cycle created is CD-AD-AC, so AD and AC are
the only options for deleting a link. AC would be a particularly bad choice because
constraint 1 would still be violated (a penalty of 100), and a penalty of 200 now would
need to be charged for violating constraint 2 since all three of the links specified in
the constraint would be included in the network. Deleting AD instead would have the
virtue of satisfying constraint 1 and not increasing the extent to which constraint 2 is
violated.

The last three rows of the table show the options if DE were the added link. The cy-
cle created by adding this link would be DE-CE-AC-AD, so CE, AC, and AD would be
the options for deletion. All three would satisfy constraint 1, but deleting AD would satisfy
constraint 2 as well. By completely eliminating constraint penalties, the total cost for this
option would become only 50 � (40 � 15) � 75. Since this is the smallest cost for all
eight available options for moving to an immediate neighbor of the current trial solution,
we choose this particular move by adding DE and deleting AD. This choice is indicated
in the iteration 1 portion of Fig. 13.8 and the resulting spanning tree for beginning itera-
tion 2 is shown to the right.

To complete the iteration, since DE was added to the network, it becomes the first
link placed on the tabu list. This will prevent deleting DE next and cycling back to the
trial solution that began this iteration.

hil76299_ch13_607-650.qxd  11/19/08  08:34 AM  Page 619



Rev.Confirming Pages

620 CHAPTER 13 METAHEURISTICS

A

B

C E

D

20

10

15 25 40

5

30

A

B

C E

D

20

10

15 25 40

5

30

A

B

C E

D

20

10

15 25 40

5

30

A

B

C E

D

20

10

15 25 40

5

30

Iteration 1 Iteration 2

Iteration 3 Optimal Solution

Cost = 50 + 200 (constraint penalties) Cost = 75

Delete Add

Delete
Add

Tabu

New cost = 75
(Local optimum)

New cost = 85
(Escape local optimum)

Cost = 85

Tabu

Tabu
Delete

Cost = 70

New cost = 70
(Override tabu status)

Additional iterations only
find inferior solutions.

Add

■ FIGURE 13.8
Application of a tabu search algorithm to the minimum spanning tree problem shown in Fig. 13.7
after also adding two constraints.

To summarize, the following decisions have been made during this first iteration.

Add link DE to the network.
Delete link AD from the network.
Add link DE to the tabu list.
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■ TABLE 13.2 The options for adding a link and 
deleting another link in iteration 2

Add Delete Cost

AD DE* (Tabu move)
AD CE 85 � 100 � 185
AD AC 80 � 100 � 180

BE CE 100 � 0    � 100
BE AC 95 � 0    � 95
BE AB 85 � 0    � 85 ← Minimum

CD DE* 60 � 100 � 160
CD CE 95 � 100 � 195

*A tabu move. Will be considered only if it would result in a 
better solution than the best trial solution found previously.
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Iteration 2. The upper right-hand portion of Fig. 13.8 indicates that the corresponding
decisions made during iteration 2 are the following.

Add link BE to the network.
Automatically place this added link on the tabu list.
Delete link AB from the network.

Table 13.2 summarizes the calculations that led to these decisions by finding that the move
in the sixth row provides the smallest cost.

The moves listed in the first and seventh rows of the table involve deleting DE, which
is on the tabu list. Therefore, these moves would have been considered only if they would
result in a better solution than the best trial solution found so far, which has a cost of 75.
The calculation in the seventh row shows that this move would not provide a better solu-
tion. A calculation is not even needed for the first row because this move would cycle
back to the preceding trial solution.

Note that the move in the sixth row is made even though it results in a new trial so-
lution that has a larger cost (85) than for the preceding trial solution (75) that initiated
iteration 2. What this means is that the preceding trial solution was a local optimum because
all of its immediate neighbors (those that can be reached by making one of the moves listed
in Table 13.2) have a larger cost. However, moving to the best of the immediate neighbors
allows us to escape the local optimum and continue the search for the global optimum.

Before moving to iteration 3, we should interject an observation about what more ad-
vanced forms of tabu search might do here when selecting the best immediate neighbor.
More general tabu search methods can change the meaning of a “best neighbor,” depending
on history, by using additional forms of memory to support intensification and diversifi-
cation processes. As mentioned earlier, intensification focuses the search in a particularly
promising region of solutions identified previously and diversification drives the search
into promising new regions.

Iteration 3. The lower left-hand portion of Fig. 13.8 summarizes the decisions made
during iteration 3.

Add link CD to the network.
Automatically place this added link on the tabu list.
Delete link DE from the network.

Table 13.3 shows that this move leads to the best immediate neighbor of the trial solution
that initiated this iteration.
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An interesting feature of this move is that it is made even though it is a tabu move.
The reason it is made is that, in addition to being the best immediate neighbor, it also re-
sults in a solution that is better (a cost of 70) than the best trial solution found previously
(a cost of 75). This enables the tabu status of the move to be overridden. (Tabu search
also can incorporate a variety of more advanced criteria for overriding tabu status.)

One more adjustment needs to be made in the tabu list before beginning the next
iteration.

Delete link DE from the tabu list.

This is done for two reasons. First, the tabu list consists of links that normally should not
be deleted from the network during the current iteration (with the exception noted above),
but DE is no longer in the network. Second, since the size of the tabu list has been set at
two and two other links (BE and CD) have been added to the list more recently, DE au-
tomatically would have been deleted from the list at this point anyway.

Continuation. The current trial solution shown in the lower right-hand portion of
Fig. 13.8 is, in fact, the optimal solution (the global optimum) for the problem. However,
the tabu search algorithm has no way of knowing this, so it would continue on for a
while. Iteration 4 would begin with this trial solution and with links BE and CD on the
tabu list. After completing this iteration and two more, the algorithm would terminate
because three consecutive iterations did not improve on the best previous objective func-
tion value (a cost of 70).

With a well-designed tabu search algorithm, the best trial solution found after the
algorithm has run a modest number of iterations is likely to be a good feasible solution.
It might even be an optimal solution, but no such guarantee can be given. Selecting a
stopping rule that provides a relatively long run of the algorithm increases the chance of
reaching the global optimum.

Having gotten our feet wet by designing and applying a tabu search algorithm to this
small example, let us now apply a similar tabu search algorithm to the example of a trav-
eling salesman problem presented in Sec. 13.1.

The Traveling Salesman Problem Example

There are some close parallels between a minimum spanning tree problem and a travel-
ing salesman problem. In both cases, the problem is to choose which links to include in
the solution. (Recall that a solution for a traveling salesman problem can be described

■ TABLE 13.3 The options for adding a link and
deleting another link in iteration 3

Add Delete Cost

AB BE* (Tabu move)
AB CE 100 � 0 � 100
AB AC 95 � 0 � 95

AD DE* 60 � 100 � 160
AD CE 95 � 0 � 95
AD AC 90 � 0 � 90

CD DE* 70 � 0 �   70 ← Minimum
CD CE 105 � 0 � 105

*A tabu move. Will be considered only if it would result in a
better solution than the best trial solution found previously.
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as the sequence of links that the salesman traverses in the tour of the cities.) In both
cases, the objective is to minimize the total cost or distance associated with the fixed
number of links that are included in the solution. And in both cases, there is an intuitive
local search procedure available that involves adding and deleting links in the current
trial solution to obtain the new trial solution.

For minimum spanning tree problems, the local search procedure described in the
preceding subsection involves adding and deleting only a single link at each iteration. The
corresponding procedure described in Sec. 13.1 for traveling salesman problems involves
using sub-tour reversals to add and delete a pair of links at each iteration.

Because of the close parallels between these two types of problems, the design of a
tabu search algorithm for traveling salesman problems can be quite similar to the one just
described for the minimum spanning problem example. In particular, using the outline of
a basic tabu search algorithm presented earlier, the six questions following the outline can
be answered in a similar way below.

1. Local search algorithm: At each iteration, choose the best immediate neighbor of the
current trial solution that is not ruled out by its tabu status.

2. Neighborhood structure: An immediate neighbor of the current trial solution is one
that is reached by making a sub-tour reversal, as described in Sec. 13.1 and illustrated
in Fig. 13.5. Such a reversal requires adding two links and deleting two other links
from the current trial solution. (We rule out a sub-tour reversal that simply reverses the
direction of the tour provided by the current trial solution.)

3. Form of tabu moves: List the links such that a particular sub-tour reversal would be
tabu if both links to be deleted in this reversal are on the list. (This will prevent quickly
cycling back to a previous trial solution.)

4. Addition of a tabu move: At each iteration, after choosing the two links to be added
to the current trial solution, also add these two links to the tabu list.

5. Maximum size of tabu list: Four (two from each of the two most recent iterations).
Whenever a pair of links is added to a full list, delete the two links that already have
been on the list the longest.

6. Stopping rule: Stop after three consecutive iterations without an improvement in the
best objective function value. (Also stop at any iteration where the current trial solution
has no immediate neighbors that are not ruled out by their tabu status.)

To apply this tabu search algorithm to our example (see Fig. 13.4), let us begin with
the same initial trial solution, 1-2-3-4-5-6-7-1, as in Sec. 13.1. Recall how starting the
sub-tour reversal algorithm (a local improvement algorithm) with this initial trial solution
led in two iterations (see Figs. 13.5 and 13.6) to a local optimum at 1-2-4-6-5-3-7-1, at
which point that algorithm stopped. Except for adding a tabu list, the tabu search algo-
rithm starts off in exactly the same way, as summarized below.

Initial trial solution: 1-2-3-4-5-6-7-1 Distance � 69
Tabu list: Blank at this point.

Iteration 1: Choose to reverse 3-4 (see Fig. 13.5).
Deleted links: 2-3 and 4-5
Added links: 2-4 and 3-5
Tabu list: Links 2-4 and 3-5
New trial solution: 1-2-4-3-5-6-7-1 Distance � 65

Iteration 2: Choose to reverse 3-5-6 (see Fig. 13.6).
Deleted links: 4-3 and 6-7 (OK since not on tabu list)
Added links: 4-6 and 3-7
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Tabu list: Links 2-4, 3-5, 4-6, and 3-7
New trial solution: 1-2-4-6-5-3-7-1 Distance � 64

However, rather than terminating, the tabu search algorithm now escapes from this local
optimum (shown on the right side of Fig. 13.6 and the left side of Fig. 13.9) by moving
next to the best immediate neighbor of the current trial solution even though its distance
is longer. Considering the limited availability of links between pairs of nodes (cities) in
Fig. 13.4, the current trial solution has only the two immediate neighbors listed below.

Reverse 6-5-3: 1-2-4-3-5-6-7-1 Distance � 65
Reverse 3-7: 1-2-4-6-5-7-3-1 Distance � 66

(We are ruling out reversing 2-4-6-5-3-7 to obtain 1-7-3-5-6-4-2-1 because this is simply
the same tour in the opposite direction.) However, we must rule out the first of these im-
mediate neighbors because it would require deleting links 4-6 and 3-7, which is tabu since
both of these links are on the tabu list. (This move could still be allowed if it would im-
prove upon the best trial solution found so far, but it does not.) Ruling out this immediate
neighbor prevents us from simply cycling back to the preceding trial solution. Therefore,
by default, the second of these immediate neighbors is chosen to be the next trial solution,
as summarized below.

Iteration 3: Choose to reverse 3-7 (see Fig. 13.9).
Deleted links: 5-3 and 7-1
Added links: 5-7 and 3-1
Tabu list: 4-6, 3-7, 5-7, and 3-1

(2-4 and 3-5 are now deleted from the list.)
New trial solution: 1-2-4-6-5-7-3-1 Distance � 66

The sub-tour reversal for this iteration can be seen in Fig. 13.9, where the dashed lines
show the links being deleted (on the left) and added (on the right) to obtain the new trial
solution. Note that one of the deleted links is 5-3 even though it was on the tabu list at
the end of iteration 2. This is OK since a sub-tour reversal is tabu only if both of the deleted
links are on the tabu list. Also note that the updated tabu list at the end of iteration 3 has
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■ FIGURE 13.9
The sub-tour reversal of 3-7 in iteration 3 that leads from the trial solution on the left to the new trial solution on the right.
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deleted the two links that had been on the list the longest (the ones added during iteration 1)
since the maximum size of the tabu list has been set at four.

The new trial solution has the four immediate neighbors listed below.

Reverse 2-4-6-5-7: 1-7-5-6-4-2-3-1 Distance � 65
Reverse 6-5: 1-2-4-5-6-7-3-1 Distance � 69
Reverse 5-7: 1-2-4-6-5-7-3-1 Distance � 63
Reverse 7-3: 1-2-4-6-5-3-7-1 Distance � 64

However, the second of these immediate neighbors is tabu because both of the deleted
links (4-6 and 5-7) are on the tabu list. The fourth immediate neighbor (which is the pre-
ceding trial solution) also is tabu for the same reason. Thus, the only viable options are
the first and third immediate neighbors. Since the latter neighbor has the shorter distance,
it becomes the next trial solution, as summarized below.

Iteration 4: Choose to reverse 5-7 (see Fig. 13.10).
Deleted links: 6-5 and 7-3
Added links: 6-7 and 5-3
Tabu list: 5-7, 3-1, 6-7, and 5-3

(4-6 and 3-7 are now deleted from the list.)
New trial solution: 1-2-4-6-7-5-3-1 Distance � 63

Figure 13.10 shows this sub-tour reversal. The tour for the new trial solution on the right
has a distance of only 63, which is less than for any of the preceding trial solutions. In
fact, this new solution happens to be the optimal solution.

Not knowing this, the tabu search algorithm would attempt to execute more itera-
tions. However, the only immediate neighbor of the current trial solution is the trial
solution that was obtained at the preceding iteration. This would require deleting links
6-7 and 5-3, both of which are on the tabu list, so we are prevented from cycling back
to the preceding trial solution. Since no other immediate neighbors are available, the
stopping rule terminates the algorithm at this point with 1-2-4-6-7-5-3-1 (the best of
the trial solutions) as the final solution. Although there is no guarantee that the algo-
rithm’s final solution is an optimal solution, we are fortunate that it turned out to be
optimal in this case.

The metaheuristics area in your IOR Tutorial includes a procedure for applying this
particular tabu search algorithm to other small traveling salesman problems.

This particular algorithm is just one example of a possible tabu search algorithm for
traveling salesman problems. Various details of the algorithm could be modified in a num-
ber of reasonable ways. For example, the method typically doesn’t stop when all avail-
able moves are forbidden by their tabu status, but instead just selects a “least tabu” move.
Also, an important feature of general tabu search methods includes the use of multiple
neighborhoods, relying on basic neighborhoods as long as they bring progress, and then
including more advanced neighborhoods when the rate of finding improved solutions di-
minishes. The most significant additional element of tabu search is its use of intensifica-
tion and diversification strategies, as mentioned earlier. But the general outline of a basic
“short-term memory” tabu search approach would remain roughly the same as we have
illustrated.

Both examples considered in this section fall into the category of combinatorial op-
timization problems involving networks. This is a particularly common area of applica-
tion for tabu search algorithms. The general outline of these algorithms incorporates the
principles presented in this section, but the details are worked out to fit the structure of
the specific problems being considered.
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■ FIGURE 13.10
The sub-tour reversal of 5-7 in iteration 4 that leads from the trial solution on the left to the new trial solution on the
right (which happens to be the optimal solution).

■ 13.3 SIMULATED ANNEALING

Simulated annealing is another widely used metaheuristic that enables the search process
to escape from a local optimum. To better compare and contrast it with tabu search, we
will apply it to the same traveling salesman problem example before returning to the non-
linear programming example introduced in Sec. 13.1. But first, let us examine the basic
concepts of simulated annealing.

Basic Concepts

Figure 13.1 in Sec. 13.1 introduced the concept that finding the global optimum of a com-
plicated maximization problem is analogous to determining which of a number of hills is the
tallest hill and then climbing to the top of that particular hill. Unfortunately, a mathematical
search process does not have the benefit of keen eyesight that would enable spotting a tall
hill in the distance. Instead, it is like hiking in a dense fog where the only clue for the di-
rection to take next is how much the next step in any direction would take you up or down.

One approach, adopted into tabu search, is to climb the current hill in the steepest di-
rection until reaching its top and then start climbing slowly downward while searching
for another hill to climb. The drawback is that a lot of time (iterations) is spent climbing
each hill encountered rather than searching for the tallest hill.

Instead, the approach used in simulated annealing is to focus mainly on searching for
the tallest hill. Since the tallest hill can be anywhere in the feasible region, the early em-
phasis is on taking steps in random directions (except for rejecting some, but not all, steps
that would go downward rather than upward) in order to explore as much of the feasible
region as possible. Because most of the accepted steps are upward, the search will gradually
gravitate toward those parts of the feasible region containing the tallest hills. Therefore,
the search process gradually increases the emphasis on climbing upward by rejecting an
increasing proportion of steps that go downward. Given enough time, the process often
will reach and climb to the top of the tallest hill.

To be more specific, each iteration of the simulated annealing search process moves
from the current trial solution to an immediate neighbor in the local neighborhood of this
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■ TABLE 13.4 Some sample probabilities that the move
selection rule will accept a downward
step when the objective is maximization

x � �
Zn �

T
Zc� Prob{acceptance} � ex

�0.01 0.990
�0.1 0.905
�0.25 0.779
�0.5 0.607
�1 0.368
�2 0.135
�3 0.050
�4 0.018
�5 0.007
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solution, just as for tabu search. However, the difference from tabu search lies in how an
immediate neighbor is selected to be the next trial solution. Let

Zc � objective function value for the current trial solution,
Zn � objective function value for the current candidate to be the next trial solution,
T � a parameter that measures the tendency to accept the current candidate to be

the next trial solution if this candidate is not an improvement on the current
trial solution.

The rule for selecting which immediate neighbor will be the next trial solution is the
following.

Move selection rule: Among all the immediate neighbors of the current trial so-
lution, select one randomly to become the current candidate to be the next trial
solution. Assuming the objective is maximization of the objective function, ac-
cept or reject this candidate to be the next trial solution as follows:

If Zn � Zc, always accept this candidate.
If Zn � Zc, accept the candidate with the following probability:

Prob{acceptance} � ex where x � �
Zn �

T
Zc�

(If the objective is minimization instead, reverse Zn and Zc in the above formulas.) If
this candidate is rejected, repeat this process with a new randomly selected immedi-
ate neighbor of the current trial solution. (If no immediate neighbors remain, termi-
nate the algorithm.)

Thus, if the current candidate under consideration is better than the current trial solution,
it always is accepted to be the next trial solution. If it is worse, the probability of accep-
tance depends on how much worse it is (and on the size of T). Table 13.4 shows a sam-
pling of these probability values, ranging from a very high probability when the current
candidate is only slightly worse (relative to T) than the current trial solution to an ex-
tremely small probability when it is much worse. In other words, the move selection rule
usually will accept a step that is only slightly downhill, but seldom will accept a steep
downward step. Starting with a relatively large value of T (as simulated annealing does)
makes the probability of acceptance relatively large, which enables the search to proceed
in almost random directions. Gradually decreasing the value of T as the search continues
(as simulated annealing does) gradually decreases the probability of acceptance, which
increases the emphasis on mostly climbing upward. Thus, the choice of the values of T
over time controls the degree of randomness in the process for allowing downward steps.
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This random component, not present in basic tabu search, provides more flexibility for
moving toward another part of the feasible region in the hope of finding a taller hill.

The usual method of implementing the move selection rule to determine whether a par-
ticular downward step will be accepted is to compare a random number between 0 and 1
to the probability of acceptance. Such a random number can be thought of as a random ob-
servation from a uniform distribution between 0 and 1. (All references to random numbers
throughout the chapter will be to such random numbers.) There are a number of methods
of generating these random numbers (as will be described in Sec. 20.3). For example, the
Excel function RAND() generates such random numbers upon request. (The beginning of
the Problems section also describes how you can use the random digits given in Table 20.3
to obtain the random numbers you will need for some of your homework problems.)

If random number � Prob{acceptance}, accept a downward step.
Otherwise, reject the step.

Why does simulated annealing use the particular formula for Prob{acceptance} spec-
ified by the move selection rule? The reason is that simulated annealing is based on the
analogy to a physical annealing process. This process initially involves melting a metal
or glass at a high temperature and then slowly cooling the substance until it reaches a
low-energy stable state with desirable physical properties. At any given temperature T dur-
ing this process, the energy level of the atoms in the substance is fluctuating but tending
to decrease. A mathematical model of how the energy level fluctuates assumes that changes
occur randomly except that only some of the increases are accepted. In particular, the
probability of accepting an increase when the temperature is T has the same form as for
Prob{acceptance} in the move selection rule for simulated annealing.

The analogy for an optimization problem in minimization form is that the energy level
of the substance at the current state of the system corresponds to the objective function value
at the current feasible solution of the problem. The objective of having the substance reach
a stable state with an energy level that is as small as possible corresponds to having the prob-
lem reach a feasible solution with an objective function value that is as small as possible.

Just as for a physical annealing process, a key question when designing a simulated
annealing algorithm for an optimization problem is to select an appropriate temperature
schedule to use. (Because of the analogy to physical annealing, we now are referring to
T in a simulated annealing algorithm as the temperature.) This schedule needs to specify
the initial, relatively large value of T, as well as the subsequent progressively smaller val-
ues. It also needs to specify how many moves (iterations) should be made at each value
of T. The selection of these parameters to fit the problem under consideration is a key fac-
tor in the effectiveness of the algorithm. Some preliminary experimentation can be used
to guide this selection of the parameters of the algorithm. We later will specify one spe-
cific temperature schedule that seems reasonable for the two examples considered in this
section, but many others could be considered as well.

With this background, we now can provide an outline of a basic simulated annealing
algorithm.

Outline of a Basic Simulated Annealing Algorithm

Initialization. Start with a feasible initial trial solution.

Iteration. Use the move selection rule to select the next trial solution. (If none of the
immediate neighbors of the current trial solution are accepted, the algorithm is terminated.)

Check the temperature schedule. When the desired number of iterations have been
performed at the current value of T, decrease T to the next value in the temperature sched-
ule and resume performing iterations at this next value.
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Stopping rule. When the desired number of iterations have been performed at the
smallest value of T in the temperature schedule (or when none of the immediate neigh-
bors of the current trial solution are accepted), stop. Accept the best trial solution found
at any iteration (including for larger values of T) as the final solution.

Before applying this algorithm to any particular problem, a number of details need
to be worked out to fit the structure of the problem.

1. How should the initial trial solution be selected?
2. What is the neighborhood structure that specifies which solutions are immediate neigh-

bors (reachable in a single iteration) of any current trial solution?
3. What device should be used in the move selection rule to randomly select one of the

immediate neighbors of the current trial solution to become the current candidate to
be the next trial solution?

4. What is an appropriate temperature schedule?

We will illustrate some reasonable ways of addressing these questions in the context
of applying the simulated annealing algorithm to the following two examples.

The Traveling Salesman Problem Example

We now return to the particular traveling salesman problem that was introduced in Sec. 13.1
and displayed in Fig. 13.4.

The metaheuristics area in your IOR Tutorial includes a procedure for applying the
basic simulated annealing algorithm to small traveling salesman problems like this ex-
ample. This procedure answers the four questions in the following way.

1. Initial trial solution: You may enter any feasible solution (sequence of cities on the
tour), perhaps by randomly generating the sequence, but it is helpful to enter one that
appears to be a good feasible solution. For the example, the feasible solution 1-2-3-4-
5-6-7-1 is a reasonable choice.

2. Neighborhood structure: An immediate neighbor of the current trial solution is one
that is reached by making a sub-tour reversal, as described in Sec. 13.1 and illustrated
in Fig. 13.5. (However, the sub-tour reversal that simply reverses the direction of the
tour provided by the current trial solution is ruled out.)

3. Random selection of an immediate neighbor: Selecting a sub-tour to be reversed re-
quires selecting the slot in the current sequence of cities where the sub-tour currently
begins and then the slot where the sub-tour currently ends. The beginning slot can be
anywhere except the first and last slots (reserved for the home city) and the next-to-last
slot. The ending slot must be somewhere after the beginning slot, excluding the last slot.
(Both beginning in the second slot and ending in the next-to-last slot also is ruled out
since this would simply reverse the direction of the tour.) As will be illustrated shortly,
random numbers are used to give equal probabilities to selecting any of the eligible be-
ginning slots and then any of the eligible ending slots. If this selection of the beginning
and ending slots turns out to be infeasible (because the links needed to complete the sub-
tour reversal are not available), this process is repeated until a feasible selection is made.

4. Temperature schedule: Five iterations are performed at each of five values of T (T1, T2,
T3, T4, T5) in turn, where

T1 � 0.2Zc when Zc is the objective function value for the initial trial solution,
T2 � 0.5T1,
T3 � 0.5T2,
T4 � 0.5T3,
T5 � 0.5T4.
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This particular temperature schedule is only illustrative of what could be used. T1 �
0.2Zc is a reasonable choice because T1 should tend to be fairly large compared to typical
values of Zn � Zc, which will encourage an almost random search through the feasible
region to find where the search should be focused. However, by the time the value of T
is reduced to T5, almost no nonimproving moves will be accepted, so the emphasis will
be on improving the value of the objective function.

When dealing with larger problems, more than five iterations probably would be per-
formed at each value of T. Furthermore, the values of T would probably be reduced more
slowly than with the temperature schedule prescribed above.

Now let us elaborate on how the random selection of an immediate neighbor is made.
Suppose we are dealing with the initial trial solution of 1-2-3-4-5-6-7-1 in our example.

Initial trial solution: 1-2-3-4-5-6-7-1 Zc � 69 T1 � 0.2Zc � 13.8

The sub-tour that will be reversed  can begin anywhere between the second slot (currently
designating city 2) and the sixth slot (currently designating city 6). These five slots can
be given equal probabilities by having the following values of a random number between
0 and 1 correspond to choosing the slot indicated below.

0.0000–0.1999: Sub-tour begins in slot 2.
0.2000–0.3999: Sub-tour begins in slot 3.
0.4000–0.5999: Sub-tour begins in slot 4.
0.6000–0.7999: Sub-tour begins in slot 5.
0.8000–0.9999: Sub-tour begins in slot 6.

Suppose that the random number generated happens to be 0.2779.

0.2779: Choose a sub-tour that begins in slot 3.

By beginning in slot 3, the sub-tour that will be reversed needs to end somewhere be-
tween slots 4 and 7. These four slots are given equal probabilities by using the following
correspondence with a random number.

0.0000–0.2499: Sub-tour ends in slot 4.
0.2500–0.4999: Sub-tour ends in slot 5.
0.5000–0.7499: Sub-tour ends in slot 6.
0.7500–0.9999: Sub-tour ends in slot 7.

Suppose that the random number generated for this purpose happens to be 0.0461.

0.0461: Choose to end the sub-tour in slot 4.

Since slots 3 and 4 currently designate that cities 3 and 4 are the third and fourth cities
visited in the tour, the sub-tour of cities 3-4 will be reversed.

Reverse 3-4 (see Fig. 13.5): 1-2-4-3-5-6-7-1 Zn � 65

This immediate neighbor of the current (initial) trial solution becomes the current candi-
date to be the next trial solution. Since

Zn � 65 � Zc � 69,

this candidate is better than the current trial solution (remember that the objective here is
to minimize the total distance of the tour), so this candidate is automatically accepted to
be next trial solution.

This choice of a sub-tour reversal was a fortunate one because it led to a feasible so-
lution. This does not always happen in traveling salesman problems like our example
where certain pairs of cities are not directly connected by a link. For example, if the ran-
dom numbers had called for reversing 2-3-4-5 to obtain the tour 1-5-4-3-2-6-7-1, Fig. 13.4
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shows that this is an infeasible solution because there is no link between cities 1 and 5 as
well as no link between cities 2 and 6. When this happens, new pairs of random numbers
would need to be generated until a feasible solution is obtained. (A more sophisticated
procedure also can be constructed to generate random numbers only for relevant links.)

To illustrate a case where the current candidate to be the next trial solution is worse
than the current trial solution, suppose that the second iteration results in reversing 3-5-6
(as in Fig. 13.6) to obtain 1-2-4-6-5-3-7-1, which has a total distance of 64. Then suppose
that the third iteration begins by reversing 3-7 (as in Fig. 13.9) to obtain 1-2-4-6-5-7-3-1
(which has a total distance of 66) as the current candidate to be the next trial solution.
Since 1-2-4-6-5-3-7-1 (with a total distance of 64) is the current trial solution for itera-
tion 3, we now have

Zc � 64, Zn � 66, T1 � 13.8.

Therefore, since the objective here is minimization, the probability of accepting 1-2-4-6-
5-7-3-1 as the next trial solution is

Prob{acceptance} � e(Zc�Zn)/T1

� e�2/13.8

� 0.865.

If the next random number generated is less than 0.865, this candidate solution will be
accepted as the next trial solution. Otherwise, it will be rejected.

Table 13.5 shows the results of using IOR Tutorial to apply the complete simulated
annealing algorithm to this problem. Note that iterations 14 and 16 tie for finding the best

■ TABLE 13.5 One application of the simulated annealing algorithm in 
IOR Tutorial to the traveling salesman problem example

Iteration T Trial Solution Obtained Distance

0 1-2-3-4-5-6-7-1 69
1 13.8 1-3-2-4-5-6-7-1 68
2 13.8 1-2-3-4-5-6-7-1 69
3 13.8 1-3-2-4-5-6-7-1 68
4 13.8 1-3-2-4-6-5-7-1 65
5 13.8 1-2-3-4-6-5-7-1 66
6 6.9 1-2-3-4-5-6-7-1 69
7 6.9 1-3-2-4-5-6-7-1 68
8 6.9 1-2-3-4-5-6-7-1 69
9 6.9 1-2-3-5-4-6-7-1 65

10 6.9 1-2-3-4-5-6-7-1 69
11 3.45 1-2-3-4-6-5-7-1 66
12 3.45 1-3-2-4-6-5-7-1 65
13 3.45 1-3-7-5-6-4-2-1 66
14 3.45 1-3-5-7-6-4-2-1 63 ← Minimum
15 3.45 1-3-7-5-6-4-2-1 66
16 1.725 1-3-5-7-6-4-2-1 63 ← Minimum
17 1.725 1-3-7-5-6-4-2-1 66
18 1.725 1-3-2-4-6-5-7-1 65
19 1.725 1-2-3-4-6-5-7-1 66
20 1.725 1-3-2-4-6-5-7-1 65
21 0.8625 1-3-7-5-6-4-2-1 66
22 0.8625 1-3-2-4-6-5-7-1 65
23 0.8625 1-2-3-4-6-5-7-1 66
24 0.8625 1-3-2-4-6-5-7-1 65
25 0.8625 1-3-7-5-6-4-2-1 66
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trial solution, 1-3-5-7-6-4-2-1 (which happens to be the optimal solution along with the
equivalent tour in the reverse direction, 1-2-4-6-7-5-3-1), so this solution is accepted as
the final solution. You might find it interesting to apply this software to the same problem
yourself. Due to the randomness built into the algorithm, the sequence of trial solutions
obtained will be different each time. Because of this feature, practitioners sometimes will
reapply a simulated annealing algorithm to the same problem several times to increase the
chance of finding an optimal solution. (Problem 13.3-2 asks you to do this for this same
example.) The initial trial solution also may be changed each time to help facilitate a more
thorough exploration of the entire feasible region.

If you would like to see another example of how random numbers are used to per-
form an iteration of the basic simulated annealing algorithm for a traveling salesman prob-
lem, one is provided in the Worked Examples section of the book’s website.

Before going on to the next example, we should pause at this point to mention a cou-
ple of ways in which advanced features of tabu search can be combined fruitfully with
simulated annealing. One way is by applying the strategic oscillation feature of tabu search
to the temperature schedule of simulated annealing. Strategic oscillation adjusts the tem-
perature schedule by decreasing the temperatures more rapidly than usual but then strate-
gically moving the temperatures back and forth across levels where the best solutions were
found. Another way involves applying the candidate-list strategies of tabu search to the
move selection rule of simulated annealing. The idea here is to scan multiple neighbors
to see if an improving move is found before applying the randomized rule for accepting
or rejecting the current candidate to be the next trial solution. These changes have some-
times produced significant improvements.

As these ideas for applying features of tabu search to simulated annealing suggest, a
hybrid algorithm that combines the ideas of different metaheuristics can sometimes per-
form better than an algorithm that is based solely on a single metaheuristic. Although we
are presenting the three most commonly used metaheuristics separately in this chapter,
experienced  practitioners occasionally will pick and choose among the ideas of these and
other metaheuristics in designing their heuristic methods.

The Nonlinear Programming Example

Now reconsider the example of a small nonlinear programming problem (only a single
variable) that was introduced in Sec. 13.1. The problem is to

Maximize f(x) � 12x5 � 975x4 � 28,000x3 � 345,000x2 � 1,800,000x,

subject to

0 � x � 31.

The graph of f(x) in Fig. 13.1 reveals that there are local optima at x � 5, x � 20, and
x � 31, but only x � 20 is a global optimum.

The metaheuristics area in IOR Tutorial includes a procedure for applying the simu-
lated annealing algorithm to small nonlinear programming problems of the form,

Maximize f(x1, . . . , xn)

subject to

Lj � xj � Uj, for j � 1, . . . , n,

632 CHAPTER 13 METAHEURISTICS
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where n � 1 or 2, and where Lj and Uj are constants (0 � Lj � Uj � 63) represent-
ing the bounds on xj. (Having relatively tight bounds on the individual variables is
highly desirable for the efficiency of a simulated annealing algorithm, as well as for
genetic algorithms discussed in the next section.) One or two linear functional con-
straints on the variables x � (x1, . . . , xn) also can be included when n � 2. For the
example, we have

n � 1, L1 � 0, U1 � 31,

with no linear functional constraints.
This procedure in IOR Tutorial designs the details of the simulated annealing algo-

rithm for such nonlinear programming problems as follows.

1. Initial trial solution: You may enter any feasible solution, but it is helpful to enter one
that appears to be a good feasible solution. In the absence of any clues about where
the good feasible solutions might lie, it is reasonable to set each variable xj midway
between its lower bound Lj and upper bound Uj in order to start the search in the middle
of the feasible region. (For this reason, x � 15.5 is a reasonable choice for the initial trial
solution for the example.)

2. Neighborhood structure: Any feasible solution is considered to be an immediate
neighbor of the current trial solution. However, the method described below for se-
lecting an immediate neighbor to become the current candidate to be the next trial so-
lution gives a preference to feasible solutions that are relatively close to the current
trial solution, while still allowing for the possibility of moving to a different part of
the feasible region to continue the search.

3. Random selection of an immediate neighbor: Set

�j � �
Uj �

6

Lj
�, for j � 1, . . . , n.

Then, given the current trial solution (x1, . . . , xn),

reset xj � xj � N(0, �j), for j = 1, . . . , n,

where N(0, �j) is a random observation from a normal distribution with mean zero and
standard deviation �j. If this does not result in a feasible solution, then repeat this
process (starting again from the current trial solution) as many times as needed to ob-
tain a feasible solution.

4. Temperature schedule: As for traveling salesman problems, five iterations are per-
formed at each of five values of T (T1, T2, T3, T4, T5) in turn, where

T1 � 0.2Zc when Zc is the objective function value for the initial trial solution,
T2 � 0.5T1,
T3 � 0.5T2,
T4 � 0.5T3,
T5 � 0.5T4.

The reason for setting �j � (Uj � Lj)/6 when selecting an immediate neighbor is that
when the variable xj is midway between Lj and Uj, any new feasible value of the variable
is within three standard deviations of the current value. This gives a significant probabil-
ity that the new value will move most of the way to one of its bounds even though there
is a much higher probability that the new value will be relatively close to the current value.
There are a number of methods for generating a random observation N(0, �j) from a normal
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distribution (as will be discussed briefly in Sec. 20.4). For example, the Excel function,
NORMINV(RAND(),0,�j), generates such a random observation. For your homework, here
is a straightforward way of generating the random observations you need. Obtain a ran-
dom number r and then use the normal table in Appendix 5 to find the value of N(0, �j)
such that P{X � N(0, �j)} � r when X is a normal random variable with mean 0 and stan-
dard deviation �j.

To illustrate how the algorithm designed in this way would be applied to the example,
let us start with x � 15.5 as the initial trial solution. Thus,

Zc � f(15.5) � 3,741,121 and T1 � 0.2Zc � 748,224.

Since

� � �
U �

6
L

� � �
31

6
� 0
� � 5.167,

the next step is to generate a random observation N(0, 5.167) from a normal distribution
with mean zero and this standard deviation. To do this, we first obtain a random number,
which happens to be 0.0735. Going to the normal table in Appendix 5, P{standard nor-
mal � �1.45} � 0.0735, so N(0, 5.167) � �1.45(5.167) � �7.5. The current candidate
to be the next trial solution then is obtained by resetting x as

x � 15.5 � N(0, 5.167) � 15.5 � 7.5
� 8,

so that

Zn � f(x) � 3,055,616.

Because

�
Zn �

T
Zc� � � �0.916

the probability of accepting x � 8 as the next trial solution is

Prob{acceptance} � e�0.916 � 0.400.

Therefore, x � 8 will be accepted only if the corresponding random number between
0 and 1 happens to be less than 0.400. Thus, x � 8 is fairly likely to be rejected. (In
somewhat later iterations when T is much smaller, x � 8 would almost certainly be re-
jected.) This is fortunate since Fig. 13.1 reveals that the search should focus on the
portion of the feasible region between x � 10 and x � 30 in order to start climbing the
tallest hill.

Table 13.6 provides the results that were obtained by using IOR Tutorial to apply the
complete simulated annealing algorithm to this nonlinear programming problem. Note
how the trial solutions obtained vary fairly widely over the feasible region during the early
iterations, but then start approaching the top of the tallest hill more consistently during
the later iterations when T has been reduced to much smaller values. Therefore, of the 25
iterations, the best trial solution of x � 20.031 (as compared to the optimal solution of
x � 20) was not obtained until iteration 21.

Once again, you might find it interesting to apply this software to the same prob-
lem yourself to see what is yielded by new sequences of random numbers and random
observations from normal distributions. (Problem 13.3-6 asks you to do this several
times.)

3,055,616 � 3,741,121
���

748,224
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Genetic algorithms provide a third type of metaheuristic that is quite different from the
first two. This type tends to be particularly effective at exploring various parts of the fea-
sible region and gradually evolving toward the best feasible solutions.

After introducing the basic concepts for this type of metaheuristic, we will apply a
basic genetic algorithm to the same nonlinear programming example just considered above
with the additional constraint that the variable is restricted to integer values. We then will
apply this approach to the same traveling salesman problem example considered in each
of the preceding sections. 

Basic Concepts

Just as simulated annealing is based on an analogy to a natural phenomenon (the physical
annealing process), genetic algorithms are greatly influenced by another form of a natural
phenomenon. In this case, the analogy is to the biological theory of evolution formulated by
Charles Darwin in the mid-19th century. Each species of plants and animals has great indi-
vidual variation. Darwin observed that those individuals with variations that impart a sur-
vival advantage through improved adaptation to the environment are most likely to survive
to the next generation. This phenomenon has since been referred to as survival of the fittest.

The modern field of genetics provides a further explanation of this process of evo-
lution and the natural selection involved in the survival of the fittest. In any species that

■ 13.4 GENETIC ALGORITHMS

■ TABLE 13.6 One application of the simulated annealing algorithm in IOR Tutorial
to the nonlinear programming example

Iteration T Trial Solution Obtained f(x)

0 x � 15.5 3,741,121.0
1 748,224 x � 17.557 4,167,533.956
2 748,224 x � 14.832 3,590,466.203
3 748,224 x � 17.681 4,188,641.364
4 748,224 x � 16.662 3,995,966.078
5 748,224 x � 18.444 4,299,788.258
6 374,112 x � 19.445 4,386,985.033
7 374,112 x � 21.437 4,302,136.329
8 374,112 x � 18.642 4,322,687.873
9 374,112 x � 22.432 4,113,901.493

10 374,112 x � 21.081 4,345,233.403
11 187,056 x � 20.383 4,393,306.255
12 187,056 x � 21.216 4,330,358.125
13 187,056 x � 21.354 4,313,392.276
14 187,056 x � 20.795 4,370,624.01
15 187,056 x � 18.895 4,348,060.727
16 93,528 x � 21.714 4,259,787.734
17 93,528 x � 19.463 4,387,360.1
18 93,528 x � 20.389 4,393,076.988
19 93,528 x � 19.83 4,398,710.575
20 93,528 x � 20.68 4,378,591.085
21 46,764 x � 20.031 4,399,955.913 ← Maximum
22 46,764 x � 20.184 4,398,462.299
23 46,764 x � 19.9 4,399,551.462
24 46,764 x � 19.677 4,395,385.618
25 46,764 x � 19.377 4,383,048.039
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reproduces by sexual reproduction, each offspring inherits some of the chromosomes from
each of the two parents, where the genes within the chromosomes determine the indi-
vidual features of the child. A child who happens to inherit the better features of the par-
ents is slightly more likely to survive into adulthood and then become a parent who passes
on some of these features to the next generation. The population tends to improve slowly
over time by this process. A second factor that contributes to this process is a random,
low-level mutation rate in the DNA of the chromosomes. Thus, a mutation occasionally
occurs that changes the features of a chromosome that a child inherits from a parent.
Although most mutations have no effect or are disadvantageous, some mutations provide
desirable improvements. Children with desirable mutations are slightly more likely to
survive and contribute to the future gene pool of the species.

These ideas transfer over to dealing with optimization problems in a rather natural way.
Feasible solutions for a particular problem correspond to members of a particular species,
where the fitness of each member now is measured by the value of the objective function.
Rather than processing a single trial solution at a time (as with basic forms of tabu search
and simulated annealing), we now work with an entire population of trial solutions.1 For
each iteration (generation) of a genetic algorithm, the current population consists of the set
of trial solutions currently under consideration. These trial solutions are thought of as the
currently living members of the species. Some of the youngest members of the population
(including especially the fittest members) survive into adulthood and become parents (paired
at random) who then have children (new trial solutions) who share some of the features
(genes) of both parents. Since the fittest members of the population are more likely to be-
come parents than others, a genetic algorithm tends to generate improving populations of
trial solutions as it proceeds. Mutations occasionally occur so that certain children also can
acquire features (sometimes desirable features) that are not possessed by either parent. This
helps a genetic algorithm to explore a new, perhaps better part of the feasible region than
previously considered. Eventually, survival of the fittest should tend to lead a genetic algo-
rithm to a trial solution (the best of any considered) that is at least nearly optimal.

Although the analogy of the process of biological evolution defines the core of any
genetic algorithm, it is not necessary to adhere rigidly to this analogy in every detail. For
example, some genetic algorithms (including the one outlined below) allow the same trial
solution to be a parent repeatedly over multiple generations (iterations). Thus, the anal-
ogy needs to be only a starting point for defining the details of the algorithm to best fit
the problem under consideration.

Here is a rather typical outline of a genetic algorithm that we will employ for the two
examples.

Outline of a Basic Genetic Algorithm

Initialization. Start with an initial population of feasible trial solutions, perhaps by
generating them randomly. Evaluate the fitness (the value of the objective function) for
each member of this current population.

Iteration. Use a random process that is biased toward the more fit members of the cur-
rent population to select some of the members (an even number) to become parents. Pair up
the parents randomly and then have each pair of parents give birth to two children (new fea-
sible trial solutions) whose features (genes) are a random mixture of the features of the par-
ents, except for occasional mutations. (Whenever the random mixture of features and any
mutations result in an infeasible solution, this is a miscarriage, so the process of attempting

1One of the intensification strategies of tabu search also maintains a population of best solutions. The popula-
tion is used to create linking paths between its members and to relaunch the search along these paths.
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to give birth then is repeated until a child is born that corresponds to a feasible solution.)
Retain the children and enough of the best members of the current population to form the new
population of the same size for the next iteration. (Discard the other members of the current
population.) Evaluate the fitness for each new member (the children) in the new population.

Stopping rule. Use some stopping rule, such as a fixed number of iterations, a fixed
amount of CPU time, or a fixed number of consecutive iterations without any improvement
in the best trial solution found so far. Use the best trial solution found on any iteration as
the final solution.

Before this algorithm can be implemented the following questions need to be answered.

1. What should the population size be?
2. How should the members of the current population be selected to become parents?
3. How should the features of the children be derived from the features of the parents?
4. How should mutations be injected into the features of the children?
5. Which stopping rule should be used?

The answers to these questions depend greatly on the structure of the specific prob-
lem being addressed. The metaheuristics area in the IOR Tutorial does include two ver-
sions of the algorithm. One is for very small integer nonlinear programming problems like
the example considered next. The other is for small traveling salesman problems. Both
versions answer some of the questions in the same way, as described below.

1. Population size: Ten. (This size is reasonable for the small problems for which this soft-
ware is designed, but much larger populations commonly are used for large problems.)

2. Selection of parents: From among the five most fit members of the population (ac-
cording to the value of the objective function), select four randomly to become par-
ents. From among the five least fit members, select two randomly to become parents.
Pair up the six parents randomly to form three couples.

3. Passage of features (genes) from parents to children: This process is highly prob-
lem dependent and so differs for the two versions of the algorithm in the software, as
described later for the two examples.

4. Mutation rate: The probability that an inherited feature of a child mutates into an op-
posite feature is set at 0.1 in the software. (Much smaller mutation rates commonly are
used for large problems.)

5. Stopping rule: Stop after five consecutive iterations without any improvement in the
best trial solution found so far.

Now we are ready to apply the algorithm to the two examples.

The Integer Version of the Nonlinear Programming Example

We return again to the small nonlinear programming problem that was introduced in Sec. 13.1
(see Fig. 13.1) and then addressed using a simulated annealing algorithm at the end of the pre-
ceding section. However, we now add the additional constraint that the problem’s single vari-
able x must have an integer value. Because the problem already has the constraint that 0 � x
� 31, this means that the problem has 32 feasible solutions, x � 0, 1, 2, . . . , 31. (Having
such bounds is very important for a genetic algorithm, since it reduces the search space to the
relevant region.) Thus, we now are dealing with an integer nonlinear programming problem.

When applying a genetic algorithm, strings of binary digits often are used to repre-
sent the solutions of the problem. Such an encoding of the solutions is a particularly
convenient one for the various steps of a genetic algorithm, including the process of parents
giving birth to children. This encoding is easy to do for our particular problem because we
simply can write each value of x in base 2. Since 31 is the maximum feasible value of x,
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only five binary digits are required to write any feasible value. We always will include all
five binary digits even when the leading digit or digits are zeroes. Thus, for example,

x � 3    is    00011 in base 2,
x � 10    is    01010 in base 2,
x � 25    is    11001 in base 2.

Each of the five binary digits is referred to as one of the genes of the solution, where the
two possible values of the binary digit describe which of two possible features is being
carried in that gene to help form the overall genetic makeup. When both parents have the
same feature, it will be passed down to each child (except when a mutation occurs). How-
ever, when the two parents carry opposite features on the same gene, which feature a child
will inherit becomes random.

For example, suppose that the two parents are

P1: 00011 and
P2: 01010.

Since the first, third, and fourth digits agree, the children then automatically become
(barring mutations)

C1: 0x01x and
C2: 0x01x,

where x indicates that this particular digit is not known yet. Random numbers are used to
identify these unknown digits, where a natural correspondence is

0.0000–0.4999 corresponds to the digit being 0,
0.5000–0.9999 corresponds to the digit being 1.

For example, suppose that the next four random numbers generated are 0.7265, 0.5190, 0.0402,
and 0.3639 so that the two unknown digits for the first child are both 1s and the two un-
known digits for the second child are both 0s. The children then become (barring mutations)

C1: 01011 and
C2: 00010.

This particular method of generating the children from the parents is known as uni-
form crossover. It is perhaps the most intuitive of the various alternative methods that have
been proposed.

We now need to consider the possibility of mutations that would affect the genetic
makeup of the children.

Since the probability of a mutation in any gene (flipping the binary digit to the op-
posite value) has been set at 0.1 for our algorithm, we can let the random numbers

0.0000–0.0999 correspond to a mutation,
0.1000–0.9999 correspond to no mutation.

For example, suppose that in the next 10 random numbers generated, only the eighth one
is less than 0.1000. This indicates that no mutation occurs in the first child, but the third
gene (digit) in the second child flips its value. Therefore, the final conclusion is that the
two children are

C1: 01011 and
C2: 00110.

Returning to base 10, the two parents correspond to the solutions, x � 3 and x � 10,
whereas their children would have been (barring mutations) x � 11 and x � 2. However,
because of the mutation, the children become x � 11 and x � 6.
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For this particular example, any integer value of x such that 0 � x �31 (in base 10) is
a feasible solution, so every 5-digit number in base 2 also is a feasible solution. Therefore,
the above process of creating children never results in a miscarriage (an infeasible solution).
However, if the upper bound on x were, say, x � 25 instead, then miscarriages would oc-
cur occasionally. Whenever a miscarriage occurs, the solution is discarded and the entire
process of creating a child is repeated until a feasible solution is obtained.

This example includes only a single variable. For a nonlinear programming problem
with multiple variables, each member of the population again would use base 2 to show
the value of each variable. The above process of generating children from parents then
would be done in the same way one variable at a time.

Table 13.7 shows the application of the complete algorithm to this example through
both the initialization step (part a of the table) and iteration 1 (part b of the table). In the
initialization step, each of the members of the initial population were generated by gen-
erating five random numbers and using the correspondence between a random number
and a binary digit given earlier to obtain the five binary digits in turn. The corresponding
value of x in base 10 then is plugged into the objective function given at the beginning of
Sec. 13.1 to evaluate the fitness of that member of the population.

The five members of the initial population that have the highest degree of fitness (in
order) are members 10, 8, 4, 1, and 7. To randomly select four of these members to become
parents, a random number is used to select one member to be rejected, where 0.0000– 0.1999
corresponds to ejecting the first member listed (member 10), 0.2000–0.3999 corresponds to
rejecting the second member, and so forth. In this case, the random number was 0.9665, so
the fifth member listed (member 7) does not become a parent.

From among the five less fit members of the initial population (members 2, 1, 6, 5,
and 9), random numbers now are used to select which two of these members will become
parents. In this case, the random numbers were 0.5634 and 0.1270. For the first random

■ TABLE 13.7 Application of the genetic algorithm to the integer nonlinear
programming example through (a) the initialization step 
and (b) iteration 1

Member Initial Population Value of x Fitness

1 0 1 1 1 1 15 3,628,125
2 0 0 1 0 0 4 3,234,688
3 0 1 0 0 0 8 3,055,616
4 1 0 1 1 1 23 3,962,091

(a) 5 0 1 0 1 0 10 2,950,000
6 0 1 0 0 1 9 2,978,613
7 0 0 1 0 1 5 3,303,125
8 1 0 0 1 0 18 4,239,216
9 1 1 1 1 0 30 1,350,000

10 1 0 1 0 1 21 4,353,187

Member Parents Children Value of x Fitness

10 1 0 1 0 1 0 0 1 0 1 5 3,303,125
2 0 0 1 0 0 1 0 0 0 1 17 4,064,259

(b) 8 1 0 0 1 0 1 0 0 1 1 19 4,357,164
4 1 0 1 1 1 1 0 1 0 0 20 4,400,000

1 0 1 1 1 1 0 1 0 1 1 11 2,980,637
6 0 1 0 0 1 0 1 1 1 1 15 3,628,125
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number, 0.0000–0.1999 corresponds to selecting the first member listed (member 2),
0.2000–0.3999 corresponds to selecting the second member, and so forth, so the third
member listed (member 6) is the one selected in this case. Since only four members
(2, 1, 5, and 9) now remain for selecting the last parent, the corresponding intervals
for the second random number are 0.0000–0.2499, 0.2500–0.4999, 0.5000–0.7499, and
0.7500–0.9999. Because 0.1270 falls in the first of these intervals, the first remaining
member listed (member 2) is selected to be a parent.

The next step is to pair up the six parents—members 10, 8, 4, 1, 6, and 2. Let us begin
by using a random number to determine the mate of the first member listed (member 10).
The random number 0.8204 indicated that it should be paired up with the fifth of the other
five parents listed (member 2). To pair up the next member listed (member 8), the next ran-
dom number was 0.0198, which is in the interval 0.0000–0.3333, so the first of the three re-
maining parents listed (member 4) is chosen to be the mate of member 8. This then leaves
the two remaining parents (members 1 and 6) to become the last couple.

Part (b) of Table 13.7 shows the children that were reproduced by these parents by us-
ing the process illustrated earlier in this subsection. Note that mutations occurred in the third
gene of the second child and the fourth gene of the fourth child. By and large, the six children
have a relatively high degree of fitness. In fact, for each pair of parents, both of the children
turned out to be more fit than one of the parents. This does not always occur, but is fairly
common. In the case of the second pair of parents, both of the children happen to be more
fit than both parents. Fortuitously, both of these children (x � 19 and x � 20) actually are su-
perior to any of the members of the preceding population given in part (a) of the table. To
form the new population for the next iteration, all six children are retained along with the
four most fit members of the preceding population (members 10, 8, 4, and 1).

Subsequent iterations would proceed in a similar fashion. Since we know from the
discussion in Sec. 13.1 (see Fig. 13.1) that x � 20 (the best trial solution generated in it-
eration 1) actually is the optimal solution for this example, subsequent iterations would
not provide any further improvement. Therefore, the stopping rule would terminate the al-
gorithm after five more iterations and provide x = 20 as the final solution.

Your IOR Tutorial includes a procedure for applying this same genetic algorithm to
other very small integer nonlinear programming problems. (The form and size restrictions
are the same as specified in Sec. 13.3 for nonlinear programming problems.)

You might find it interesting to apply this procedure in IOR Tutorial to this same ex-
ample. Because of the randomness inherent in the algorithm, different intermediate results
are obtained each time that it is applied. (Problem 13.4-3 asks you to apply the algorithm
to this example several times.)

Although this was a discrete example, genetic algorithms can also be applied to continu-
ous problems such as a nonlinear programming problem without an integer constraint. In this
case, the value of a continuous variable would be represented (or closely approximated) by a
decimal number in base 2. For example, x � 23�

5
8

� is 10111.10100 in base 2, and x � 23.66 is
closely approximated by 10111.10101 in base 2. All the binary digits on both sides of the dec-
imal point can be treated just as before to have parents reproduce children, and so forth.

The Traveling Salesman Problem Example

Sections 13.2 and 13.3 illustrated how a tabu search algorithm and a simulated annealing
algorithm would be applied to the particular traveling salesman problem introduced in
Sec. 13.1 (see Fig. 13.4). Now let us see how our genetic algorithm can be applied using
this same example.

Rather than using binary digits in this case, we will continue to represent each so-
lution (tour) in the natural way as a sequence of cities visited. For example, the first
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solution considered in Sec. 13.1 is the tour of the cities in the following order: 1-2-3-4-5-6-
7-1, where city 1 is the home base where the tour must begin and end. We should point out,
however, that genetic algorithms for traveling salesman problems frequently use other meth-
ods for encoding solutions. In general, clever methods of representing solutions (often by
using strings of binary digits) can make it easier to generate children, create mutations, main-
tain feasibility, and so forth, in a natural way. The development of an appropriate encoding
scheme is a key part of developing an effective genetic algorithm for any application.

A complication with this particular example is that, in a sense, it is too easy. Because
of the rather limited number of links between pairs of cities in Fig. 13.4, this problem barely
has 10 distinct feasible solutions if we rule out a tour that is simply a previously considered
tour in the reverse direction. Therefore, it is not possible to have an initial population with
10 distinct trial solutions such that the resulting six parents then reproduce distinct children
that also are distinct from the members of the initial population (including the parents).

Fortunately, a genetic algorithm can still operate reasonably well when there is a
modest amount of duplication in the trial solutions in a population or in two consecutive
populations. For example, even when both parents in a couple are identical, it still is pos-
sible for their children to differ from the parents because of mutations.

The genetic algorithm for traveling salesman problems in your IOR Tutorial does not do
anything to avoid duplication in the trial solutions considered. Each of the 10 trial solutions
in the initial population is generated in turn as follows. Starting from the home base city, ran-
dom numbers are used to select the next city from among those that have a link to the home
base city (cities 2, 3, and 7 in Fig. 13.4). Random numbers then are used to select the third
city from among the remaining cities that have a link to the second city. This process is con-
tinued until either every city is included once in the tour (plus a return to the home base city
from the last city) or a dead end is reached because there is no link from the current city to
any of the remaining cities that still need to be visited. In the latter case, the entire process
for generating a trial solution is restarted from the beginning with new random numbers.

Random numbers are also used to reproduce children from a pair of parents. To il-
lustrate this process, consider the following pair of parents.

P1: 1-2-3-4-5-6-7-1
P2: 1-2-4-6-5-7-3-1

As we describe the process of generating a child from these parents, we also summarize
the results in Table 13.8 to help you follow the progression.

■ TABLE 13.8 Illustration of the process of generating a child for the traveling
salesman problem example

Parent P1: 1-2-3-4-5-6-7-1
Parent P2: 1-2-4-6-5-7-3-1

Link Options Random Selection Tour

1 1-2, 1-7, 1-2, 1-3 1-2 1-2
2 2-3, 2-4 2-4 1-2-4
3 4-3, 4-5, 4-6 4-3 1-2-4-3
4 3-5*, 3-7 3-5* 1-2-4-3-5
5 5-6, 5-6, 5-7 5-6 1-2-4-3-5-6
6 6-7 6-7 1-2-4-3-5-6-7
7 7-1 7-1 1-2-4-3-5-6-7-1

*A link that completes a sub-tour reversal
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Ignoring the possibility of mutations for the time being, here is the main idea for how
to generate a child. 

Inheriting Links: Genes correspond to the links in a tour. Therefore, each of the
links (genes) inherited by a child should come from one parent or the other (or
both). (One other possibility described later is that a parent also can pass down a
sub-tour reversal.) These links being inherited are randomly selected one at a time
until a complete tour (the child) has been generated.

To start this process with the above parents, since a tour must begin in city 1, a child’s
initial link must come from one of the parent’s links that connect city 1 to another city.
For parent P1, these are links 1-2 and 1-7. (Link 1-7 qualifies since it is equivalent to take
the tour in either direction.) For parent P2, the corresponding links are 1-2 (again) and 1-3.
The fact that both parents have link 1-2 doubles the probability that it will be inherited by
a child. Therefore, when using a random number to determine which link the child will
inherit, the interval 0.0000–0.4999 (or any interval of this size) corresponds to inheriting
link 1-2 whereas the intervals 0.50000–0.7499 and 0.7500–0.9999 then would correspond
to the choice of link 1-7 and link 1-3, respectively. Suppose 1-2 is selected, as shown in
the first row of Table 13.8. After 1-2, one parent next uses link 2-3 whereas the other uses
2-4. Therefore, in generating the child, a random choice should be made between these
two options. Suppose 2-4 is selected. (See the second row of Table 13.8.) There now are
three options for the link to follow 1-2-4 because the first parent uses two links (4-3 and
4-5) to connect city 4 in its tour and the second parent uses link 4-6 (link 4-2 is ignored
because city 2 already is in the child’s tour). When randomly selecting one of these op-
tions, suppose 4-3 is chosen to form 1-2-4-3 as the beginning of the child’s tour thus far,
as shown in the third row of Table 13.8.

We now come to an additional feature of this process for generating a child’s tour,
namely, using a sub-tour reversal from a parent. 

Inheriting a Sub-Tour Reversal: One other possibility for a link inherited by
a child is a link that is needed to complete a sub-tour reversal that the child’s
tour is making in a portion of a parent’s tour.

To illustrate how this possibility can arise, note that the next city beyond 1-2-4-3 needs
to be one of the cities not yet visited (city 5, 6, or 7), but the first parent does not have a
link from city 3 to any of these other cities. The reason is that the child is using a sub-
tour reversal (reversing 3-4) of this parent’s tour, 1-2-3-4-5-6-7-1. Completing this sub-
tour reversal requires adding the link 3-5, so this becomes one of the options for the next
link in the child’s tour. The other option is link 3-7 provided by the second parent (link 3-1
is not an option because city 1 must come at the very end of the tour). One of these two op-
tions is selected randomly. Suppose the choice is link 3-5, which provides 1-2-4-3-5 as the
child’s tour thus far, as shown in the fourth row of Table 13.8.

To continue this tour, the options for the next link are 5-6 (provided by both parents)
and 5-7 (provided by the second parent). Suppose that the random choice among 5-6, 5-6,
and 5-7 is 5-6, so that the tour thus far is 1-2-4-3-5-6. (See the fifth row of Table 13.8.)
Since the only city not yet visited is city 7, link 6-7 is automatically added next, followed
by link 7-1 to return to home base. Thus, as shown in the last row of Table 13.8, the com-
plete tour for the child is

C1: 1-2-4-3-5-6-7-1

Figure 13.5 in Sec. 13.1 displays how closely this child resembles the first parent, since
the only difference is the sub-tour reversal obtained by reversing 3-4 in the parent.

If link 5-7 had been chosen instead to follow 1-2-4-3-5, the tour would have been com-
pleted automatically as 1-2-4-3-5-7-6-1. However, there is no link 6-1 (see Fig. 13.4), so
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a dead end is reached at city 6. When this happens, a miscarriage occurs and the entire
process needs to be restarted from the beginning with new random numbers until a child
with a complete tour is obtained. Then this process is repeated to obtain the second child.

We now need to add one more feature—the possibility of mutations—to complete the
description of the process of generating children. 

Mutations of Inherited Links: Whenever a particular link normally would be
inherited from a parent of a child, there is a small possibility that a mutation will
occur that will reject that link and instead randomly select one of the other links
from the current city to another city not already on the tour, regardless of whether
that link is used by either parent.

Our genetic algorithm for traveling salesman problems implemented in your IOR Tu-
torial uses a probability of 0.1 that a mutation will occur each time the next link in the
child’s tour needs to be selected. Thus, whenever the corresponding random number is
less than 0.1000, the choice of the link made in the normal manner described above is
rejected (if any other possible choice exists). Instead, all the other links from the cur-
rent city to a city not already in the tour (including links not provided by either parent)
are identified, and one of these links is randomly selected to be the next link in the tour.
For example, suppose that a mutation occurs when generating the very first link for the
child. Even though 1-2 had been the random choice as the first link, this link now would
be rejected because of the mutation. Since city 1 also has links to cities 3 and 7 (see
Fig. 13.4), either link 1-3 or link 1-7 would be randomly selected to be the first tour.
(Since the parents end their tours by using one or the other of these links, this can be
viewed in this case as starting the child’s tour by reversing the direction of one of the
parents’ tours.)

We now can outline the general procedure for generating a child from a pair of parents.

Procedure for Generating a Child

1. Initialization: To start, designate the home base city as the current city.
2. Options for the next link: Identify all the links from the current city to another city

not already in the child’s tour that are used by either parent in either direction. Also,
add any link that is needed to complete a sub-tour reversal that the child’s tour is mak-
ing in a portion of a parent’s tour.

3. Selection of the next link: Use a random number to randomly select one of the op-
tions identified in step 2.

4. Check for a mutation: If the next random number is less than 0.1000, a mutation oc-
curs and the link selected in step 3 is rejected (unless there is no other link from the
current city to another city not already in the tour). If the link is rejected, identify all
the other links from the current city to another city not already in the tour (including
links not used by either parent). Use a random number to randomly select one of these
other links.

5. Continuation: Add the link selected in step 3 (if no mutation occurs) or in step 4 (if
a mutation occurs) to the end of the child’s current incomplete tour and redesignate
the city at the end of this link as the current city. If there still remains more than one
city not included on the tour (plus the return to the home base city), return to steps
2–4 to select the next link. Otherwise, go to step 6.

6. Completion: With only one city remaining that has not yet been added to the child’s
tour, add the link from the current city to this remaining city. Then add the link from
this last city back to the home base city to complete the tour for the child. However,
if the needed link does not exist, a miscarriage occurs and the procedure must restart
again from step 1.
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This procedure is applied for each pair of parents to obtain each of their two children.
The genetic algorithm for traveling salesman problems in your IOR Tutorial incorpo-

rates this procedure for generating children as part of the overall algorithm outlined near the
beginning of this section. Table 13.9 shows the results from applying this algorithm to the
example through the initialization step and the first iteration of the overall algorithm. Be-
cause of the randomness built into the algorithm, its intermediate results (and perhaps the
final best solution as well) will vary each time the algorithm is run to its completion. (To
explore this further, Prob. 13.4-7 asks you to use your IOR Tutorial to apply the complete
algorithm to this example several times.) 

The fact that the example has only a relatively small number of distinct feasible so-
lutions is reflected in the results shown in Table 13.9. Members 1, 4, 6, and 10 are iden-
tical, as are members 2, 7, and 9 (except that member 2 takes its tour in the reverse
direction). Therefore, the random generation of the 10 members of the initial population
resulted in only five distinct feasible solutions. Similarly, four of the six children gener-
ated (members 12, 14, 15, and 16) are identical to one of its parents (except that member
14 takes its tour in the opposite direction of its first parent). Two of the children (members
12 and 15) have a better fitness (shorter distance) than one of its parents, but neither im-
proved upon both of its parents. None of these children provide an optimal solution (which
has a distance of 63). This illustrates the fact that a genetic algorithm may require many
generations (iterations) on some problems before the survival-of-the-fittest phenomenon re-
sults in clearly superior populations.

The Worked Examples section of the book’s website provides another example
of applying this genetic algorithm to a traveling salesman problem. This problem has
a somewhat larger number of distinct feasible solutions than the above example, so
there is a greater diversity in its initial population, the resulting parents, and their 
children.

■ TABLE 13.9 One application of the genetic algorithm in IOR Tutorial to the
traveling salesman problem example through (a) the initialization
step and (b) iteration 1

Member Initial Population Distance

1 1-2-4-6-5-3-7-1 64
2 1-2-3-5-4-6-7-1 65
3 1-7-5-6-4-2-3-1 65
4 1-2-4-6-5-3-7-1 64

(a) 5 1-3-7-5-6-4-2-1 66
6 1-2-4-6-5-3-7-1 64
7 1-7-6-4-5-3-2-1 65
8 1-3-7-6-5-4-2-1 69
9 1-7-6-4-5-3-2-1 65

10 1-2-4-6-5-3-7-1 64

Member Parents Children Member Distance

1 1-2-4-6-5-3-7-1 1-2-4-5-6-7-3-1 11 69
7 1-7-6-4-5-3-2-1 1-2-4-6-5-3-7-1 12 64

(b) 2 1-2-3-5-4-6-7-1 1-2-4-5-6-7-3-1 13 69
6 1-2-4-6-5-3-7-1 1-7-6-4-5-3-2-1 14 65

4 1-2-4-6-5-3-7-1 1-2-4-6-5-3-7-1 15 64
5 1-3-7-5-6-4-2-1 1-3-7-5-6-4-2-1 16 66
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■ 13.5 CONCLUSIONS

Some optimization problems (including various combinatorial optimization problems) are
sufficiently complex that it may not be possible to solve for an optimal solution with the
kinds of exact algorithms presented in previous chapters. In such cases, heuristic methods
are commonly used to search for a good (but not necessarily optimal) feasible solution.
Several metaheuristics are available that provide a general structure and strategy guidelines
for designing a specific heuristic method to fit a particular problem. A key feature of these
metaheuristic procedures is their ability to escape from local optima and perform a robust
search of a feasible region.

This chapter has introduced the three most prominent types of metaheuristics. Tabu
search moves from the current trial solution to the best neighboring trial solution at each
iteration, much like a local improvement procedure, except that it allows a nonimproving
move when an improving move is not available. It then incorporates short-term memory
of the past search to encourage moving toward new parts of the feasible region rather
than cycling back to previously considered solutions. In addition, it may employ in-
tensification and diversification strategies based on long-term memory to focus the
search on promising continuations. Simulated annealing also moves from the current
trial solution to a neighboring trial solution at each iteration while occasionally al-
lowing nonimproving moves. However, it selects the neighboring trial solution ran-
domly and then uses the analogy to a physical annealing process to determine if this
neighbor should be rejected as the next trial solution if it is not as good as the current
trial solution. The third type of metaheuristic, genetic algorithms, works with an en-
tire population of trial solutions at each iteration. It then uses the analogy to the bio-
logical theory of evolution, including the concept of survival of the fittest, to discard
some of the trial solutions (especially the poorer ones) and replace them by some new
ones. This replacement process has pairs of surviving members of the population pass
on some of their features to pairs of new members just as if they were parents repro-
ducing children.

For the sake of concreteness, we have described one basic algorithm for each meta-
heuristic and then adapted this algorithm to two specific types of problems (including
the traveling salesman problem), using simple examples. However, many variations of
each algorithm also have been developed by researchers and used by practitioners to bet-
ter fit the characteristics of the complex problems being addressed. For example, liter-
ally dozens of variations of the basic genetic algorithm for traveling salesman problems
presented in Sec. 13.4 (including different procedures for generating children) have been
proposed, and research is continuing to determine what is most effective. (Some of the
best methods for traveling salesman problems use special “k-opt” and “ejection chain”
strategies that are carefully tailored to take advantage of the problem structure.) There-
fore, the important lessons from this chapter are the basic concepts and intuition incor-
porated into each metaheuristic rather than the details of the particular algorithms
presented here.

There are several other important types of metaheuristics in addition to the three that
are featured in this chapter. These include, for example, ant colony optimization, scatter
search, and artificial neural networks. (These suggestive names give a hint of the key idea
that drives each of these metaheuristics.) Selected Reference 4 provides a thorough cov-
erage of both these other metaheuristics and the three presented here. (Michel Gendreau
and Jean-Yves Potvin are preparing a second edition to update this important reference.)

Some heuristic algorithms actually are a hybrid of different types of metaheuristics in
order to combine their better features. For example, short-term tabu search (without a di-
versification component) is very good at finding local optima but not as good at thoroughly
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exploring the various parts of a feasible region to find the part containing the global
optimum, whereas a genetic algorithm has the opposite characteristics. Therefore, an
improved algorithm sometimes can be obtained by beginning with a genetic algorithm
to try to find the tallest hills (when the objective is maximization) and then switch to
a basic tabu search at the very end to climb quickly to the top of these hills. The key
for designing an effective heuristic algorithm is to incorporate whatever ideas work
best for the problem at hand rather than adhering rigidly to the philosophy of a par-
ticular metaheuristic.
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Simulated Annealing Algorithm for Nonlinear Programming Problems
Genetic Algorithm for Integer Nonlinear Programming Problems
Genetic Algorithm for Traveling Salesman Problems

Glossary for Chapter 13

See Appendix 1 for documentation of the software.

■ PROBLEMS
The symbol A to the left of some of the problems (or their parts)
has the following meaning.

A: You should use the corresponding automatic procedure in
IOR Tutorial. The printout will record the results obtained
at each iteration.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

Instructions for Obtaining Random Numbers
For each problem or its part where random numbers are needed,
obtain them from the consecutive random digits in Table 20.3 in
Sec. 20.3 as follows. Start from the front of the top row of the table
and form five-digit random numbers by placing a decimal point in
front of each group of five random digits (0.09656, 0.96657, etc.)
in the order that you need random numbers. Always restart from
the front of the top row for each new problem or its part.

13.1-1. Consider the traveling salesman problem shown below,
where city 1 is the home city.

(d) Apply the sub-tour reversal algorithm to this problem when
starting with 1-4-2-3-5-1 as the initial trial solution.

13.1-2. Reconsider the example of a traveling salesman problem
shown in Fig. 13.4.
(a) When the sub-tour reversal algorithm was applied to this prob-

lem in Sec. 13.1, the first iteration resulted in a tie for which
of two sub-tour reversals (reversing 3-4 or 4-5) provided the
largest decrease in the distance of the tour, so the tie was bro-
ken arbitrarily in favor of the first reversal. Determine what
would have happened if the second of these reversals (revers-
ing 4-5) had been chosen instead.

(b) Apply the sub-tour reversal algorithm to this problem when
starting with 1-2-4-5-6-7-3-1 as the initial trial solution.

13.1-3. Consider the traveling salesman problem shown below,
where city 1 is the home city.

2

5

3

4

1

8

11

4

8

5

7

4 6

3

6

(a) List all the possible tours, except exclude those that are sim-
ply the reverse of previously listed tours. Calculate the distance
of each of these tours and thereby identify the optimal tour.

(b) Starting with 1-2-3-4-5-1 as the initial trial solution, apply the
sub-tour reversal algorithm to this problem.

(c) Apply the sub-tour reversal algorithm to this problem when
starting with 1-2-4-3-5-1 as the initial trial solution.

2

5

3

4
1 6

11

9

6

5 5

10

12

10

7

6

5 7

(a) List all the possible tours, except exclude those that are sim-
ply the reverse of previously listed tours. Calculate the dis-
tance of each of these tours and thereby identify the optimal
solution.

(b) Starting with 1-2-3-4-5-6-1 as the initial trial solution, apply
the sub-tour reversal algorithm to this problem.

(c) Apply the sub-tour reversal algorithm to this problem when
starting with 1-2-5-4-3-6-1 as the initial trial solution.

13.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 13.2.
Briefly describe how tabu search was applied in this study. Then
list the various financial and nonfinancial benefits that resulted
from this study.
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City 2 3 4 5 6 7 8

1 14 15 — — — — 17
2 13 14 20 — — 21
3 11 21 17 9 9
4 11 10 8 20
5 15 18 —
6 9 —
7 13

13.2-2.* Consider the minimum spanning tree problem depicted
below, where the dashed lines represent the potential links that
could be inserted into the network and the number next to each
dashed line represents the cost associated with inserting that
particular link.

City 1 is the home city. Starting with each of the initial trial solu-
tions listed below, apply the basic tabu search algorithm in your
IOR Tutorial to this problem. In each case, count the number of
times that the algorithm makes a nonimproving move. Also point
out any tabu moves that are made anyway because they result in
the best trial solution found so far. 
(a) Use 1-2-3-4-5-6-7-8-1 as the initial trial solution.
(b) Use 1-2-5-6-7-4-8-3-1 as the initial trial solution.
(c) Use 1-3-2-5-6-4-7-8-1 as the initial trial solution.

A 13.2-7. Consider the 10-city traveling salesman problem
whose links have the associated distances shown in the follow-
ing table.

A

B

C D

E

12

4

16 24

0

36
18

This problem also has the following two constraints:

Constraint 1: No more than one of the three links—AB, BC,
and AE—can be included.

Constraint 2: Link AB can be included only if link BD also
is included.

Starting with the initial trial solution where the inserted links are
AB, AC, AE, and CD, apply the basic tabu search algorithm pre-
sented in Sec. 13.2 to this problem.

13.2-3. Reconsider the example of a constrained minimum span-
ning tree problem presented in Sec. 13.2 (see Fig. 13.7(a) for the
data before introducing the constraints). Starting with a different
initial trial solution, namely, the one with links AB, AD, BE, and
CD, apply the basic tabu search algorithm again to this problem.

13.2-4. Reconsider the example of an unconstrained minimum
spanning tree problem given in Sec. 9.4. Suppose that the follow-
ing constraints are added to the problem.

Constraint 1: Either link AD or link ET must be included.

Constraint 2: At most one of the three links—AO, BC, and
DE—can be included.

Starting with the optimal solution for the unconstrained problem
given at the end of Sec. 9.4 as the initial trial solution, apply the
basic tabu search algorithm to this problem.

13.2-5. Reconsider the traveling salesman problem shown in Prob.
13.1-1. Starting with 1-5-3-2-4-1 as the initial trial solution, apply
the basic tabu search algorithm by hand to this problem.

A 13.2-6. Consider the 8-city traveling salesman problem whose
links have the associated distances shown in the following table
(where a dash indicates the absence of a link).

City 2 3 4 5 6 7 8 9 10

1 13 25 15 21 9 19 18 8 15
2 26 21 29 21 31 23 16 10
3 11 18 23 28 44 34 35
4 10 13 19 34 24 29
5 12 11 37 27 36
6 10 25 14 25
7 32 23 35
8 10 16
9 14

City 1 is the home city. Starting with each of the initial trial solu-
tions listed below, apply the basic tabu search algorithm in your
IOR Tutorial to this problem. In each case, count the number of
times that the algorithm makes a nonimproving move. Also point
out any tabu moves that are made anyway because they result in
the best trial solution found so far.
(a) Use 1-2-3-4-5-6-7-8-9-10-1 as the initial trial solution.
(b) Use 1-3-4-5-7-6-9-8-10-2-1 as the initial trial solution.
(c) Use 1-9-8-10-2-4-3-6-7-5-1 as the initial trial solution.

13.3-1. While applying a simulated annealing algorithm to a cer-
tain problem, you have come to an iteration where the current value
of T is T � 2 and the value of the objective function for the current
trial solution is 30. This trial solution has four immediate neighbors
and their objective function values are 29, 34, 31, and 24. For each
of these four immediate neighbors in turn, you wish to determine the
probability that the move selection rule would accept this immediate
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neighbor if it is randomly selected to become the current candidate
to be the next trial solution.
(a) Determine this probability for each of the immediate neigh-

bors when the objective is maximization of the objective
function.

(b) Determine this probability for each of the immediate neighbors
when the objective is minimization of the objective function.

A 13.3-2. Because of its use of random numbers, a simulated an-
nealing algorithm will provide slightly different results each time
it is run. Table 13.5 shows one application of the basic simulated
annealing algorithm in IOR Tutorial to the example of a traveling
salesman problem depicted in Fig. 13.4. Starting with the same ini-
tial trial solution (1-2-3-4-5-6-7-1), use your IOR Tutorial to apply
this same algorithm to this same example five more times. How many
times does it again find the optimal solution (1-3-5-7-6-4-2-1 or,
equivalently, 1-2-4-6-7-5-3-1)?

13.3-3. Reconsider the traveling salesman problem shown in
Prob. 13.1-1. Using 1-4-2-3-5-1 as the initial trial solution, you
are to follow the instructions below for applying the basic sim-
ulated annealing algorithm presented in Sec. 13.3 to this 
problem.
(a) Perform the first iteration by hand. Follow the instructions

given at the beginning of the Problems section to obtain the
needed random numbers. Show your work, including the use
of the random numbers.

A (b) Use your IOR Tutorial to apply this algorithm. Observe the
progress of the algorithm and record for each iteration how
many (if any) candidates to be the next trial solution are re-
jected before one is accepted. Also count the number of it-
erations where a nonimproving move is accepted.

A 13.3-4. Follow the instructions of Prob. 13.3-3 for the traveling
salesman problem described in Prob. 13.2-6, using 1-2-3-4-5-6-7-8-1
as the initial trial solution.

A 13.3-5. Follow the instructions of Prob. 13.3-3 for the traveling
salesman problem described in Prob. 13.2-7, using 1-9-8-10-2-4-
3-6-7-5-1 as the initial trial solution.

A 13.3-6. Because of its use of random numbers, a simulated an-
nealing algorithm will provide slightly different results each time
it is run. Table 13.6 shows one application of the basic simulated
annealing algorithm in IOR Tutorial to the nonlinear programming
example introduced in Sec. 13.1. Starting with the same initial trial
solution (x � 15.5), use your IOR Tutorial to apply this same al-
gorithm to this same example five more times. What is the best so-
lution found in these five applications? Is it closer to the optimal
solution (x � 20 with f(x) � 4,400,000) than the best solution
shown in Table 13.6?

13.3-7. Consider the following nonconvex programming problem.

Maximize f(x) � x3 � 60x2 � 900x � 100,

subject to

0 � x � 31.

(a) Use the first and second derivatives of f(x) to determine the
critical points (along with the end points of the feasible region)
where x is either a local maximum or a local minimum.

(b) Roughly plot the graph of f(x) by hand over the feasible region.
(c) Using x � 15.5 as the initial trial solution, perform the first

iteration of the basic simulated annealing algorithm pre-
sented in Sec. 13.3 by hand. Follow the instructions given
at the beginning of the Problems section to obtain the needed
random numbers. Show your work, including the use of the
random numbers.

A (d) Use your IOR Tutorial to apply this algorithm, starting with
x � 15.5 as the initial trial solution. Observe the progress of
the algorithm and record for each iteration how many (if any)
candidates to be the next trial solution are rejected before
one is accepted. Also count the number of iterations where
a nonimproving move is accepted.

13.3-8. Consider the example of a nonconvex programming prob-
lem presented in Sec. 12.10 and depicted in Fig. 12.18.
(a) Using x � 2.5 as the initial trial solution, perform the first it-

eration of the basic simulated annealing algorithm presented in
Sec. 13.3 by hand. Follow the instructions given at the beginning
of the Problems section to obtain the random numbers. Show
your work, including the use of the random numbers.

A (b) Use your IOR Tutorial to apply this algorithm, starting with
x � 2.5 as the initial trial solution. Observe the progress of
the algorithm and record for each iteration how many (if
any) candidates to be the next trial solution are rejected be-
fore one is accepted. Also count the number of iterations
where a nonimproving move is accepted.

A 13.3-9. Follow the instructions of Prob. 13.3-8 for the follow-
ing nonconvex programming problem when starting with x � 25
as the initial trial solution.

Maximize f(x) � x6 � 140x5 � 7000x4 � 160,000x3

� 1,600,000x2 � 5,000,000x,

subject to

0 � x � 50.

A 13.3-10. Follow the instructions of Prob. 13.3-8 for the follow-
ing nonconvex programming problem when starting with (x1, x2) �
(18, 25) as the initial trial solution.

Maximize f(x1, x2) � x5
1 � 81x4

1 � 2330x3
1 � 28,750x2

1

� 150,000x1 � 0.5x5
2 � 65x4

2

� 2950x3
2 � 53,500x2

2 � 305,000x2,

subject to

x1 � 2x2 � 110
3x1 � x2 � 120

and

0 � x1 � 36, 0 � x2 � 50.

13.4-1. For each of the following pairs of parents, generate their
two children when applying the basic genetic algorithm presented
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in Sec. 13.4 to an integer nonlinear programming problem involv-
ing only a single variable x, which is restricted to integer values
over the interval 0 � x � 63. (Follow the instructions given at the
beginning of the Problems section to obtain the needed random
numbers, and then show your use of these random numbers.)
(a) The parents are 010011 and 100101.
(b) The parents are 000010 and 001101.
(c) The parents are 100000 and 101000.

13.4-2.* Consider an 8-city traveling salesman problem (cities 1,
2, . . . , 8) where city 1 is the home city and links exist between
all pairs of cities. For each of the following pairs of parents, gen-
erate their two children when applying the basic genetic algorithm
presented in Sec. 13.4. (Follow the instructions given at the be-
ginning of the Problems section to obtain the needed random num-
bers, and then show your use of these random numbers.)
(a) The parents are 1-2-3-4-7-6-5-8-1 and 1-5-3-6-7-8-2-4-1.
(b) The parents are 1-6-4-7-3-8-2-5-1 and 1-2-5-3-6-8-4-7-1.
(c) The parents are 1-5-7-4-6-2-3-8-1 and 1-3-7-2-5-6-8-4-1.

A 13.4-3. Table 13.7 shows the application of the basic genetic al-
gorithm described in Sec. 13.4 to an integer nonlinear program-
ming example through the initialization step and the first iteration.
(a) Use your IOR Tutorial to apply this same algorithm to this

same example, starting from another randomly selected initial
population and proceeding to the end of the algorithm. Does
this application again obtain the optimal solution (x � 20), just
as was found during the first iteration in Table 13.7?

(b) Because of its use of random numbers, a genetic algorithm will
provide slightly different results each time it is run. Use your
IOR Tutorial to apply the basic genetic algorithm described in
Sec. 13.4 to this same example five more times. How many
times does it again find the optimal solution (x � 20)?

13.4-4. Reconsider the nonconvex programming problem shown in
Prob. 13.3-7. Suppose now that the variable x is restricted to be an
integer.
(a) Perform the initialization step and the first iteration of the

basic genetic algorithm presented in Sec. 13.4 by hand. Fol-
low the instructions given at the beginning of the Problems
section to obtain the needed random numbers. Show your
work, including the use of the random numbers.

A (b) Use your IOR Tutorial to apply this algorithm. Observe the
progress of the algorithm and record the number of times that
a pair of parents give birth to a child whose fitness is better
than for both parents. Also count the number of iterations where
the best solution found is better than any previously found.

A 13.4-5. Follow the instructions of Prob. 13.4-4 for the noncon-
vex programming problem shown in Prob. 13.3-9 when the vari-
able x is restricted to be an integer.

A 13.4-6. Follow the instructions of Prob. 13.4-4 for the noncon-
vex programming problem shown in Prob. 13.3-10 when both of
the variables x1 and x2 are restricted to be integer.

A 13.4-7. Table 13.9 shows the application of the basic genetic al-
gorithm described in Sec. 13.4 to the example of a traveling sales-
man problem depicted in Fig. 13.4 through the initialization step
and first iteration of the algorithm.
(a) Use your IOR Tutorial to apply this same algorithm to this

same example, starting from another randomly selected initial
population and proceeding to the end of the algorithm. Does
this application find the optimal solution (1-3-5-7-6-4-2-1 or,
equivalently, 1-2-4-6-7-5-3-1)?

(b) Because of its use of random numbers, a genetic algorithm will
provide slightly different results each time it is run. Use your
IOR Tutorial to apply the basic genetic algorithm described in
Sec. 13.4 to this same example five more times. How many
times does it find the optimal solution?

13.4-8. Reconsider the traveling salesman problem shown in
Prob. 13.1-1.
(a) Perform the initialization step and the first iteration of the

basic genetic algorithm presented in Sec. 13.4 by hand. Fol-
low the instructions given at the beginning of the Problems
section to obtain the needed random numbers. Show your
work, including the use of the random numbers.

A (b) Use your IOR Tutorial to apply this algorithm. Observe the
progress of the algorithm and record the number of times
that a pair of parents gives birth to a child whose tour has
a shorter distance than for both parents. Also count the num-
ber of iterations where the best solution found has a shorter
distance than any previously found.

A 13.4-9. Follow the instructions of Prob. 13.4-8 for the traveling
salesman problem described in Prob. 13.2-6.

A 13.4-10. Follow the instructions of Prob. 13.4-8 for the travel-
ing salesman problem described in Prob. 13.2-7.

A 13.5-1. Use your IOR Tutorial to apply the basic algorithm for
all three metaheuristics presented in this chapter to the traveling
salesman problem described in Prob. 13.2-6. (Use 1-2-3-4-5-6-7-
8-1 as the initial trial solution for the tabu search and simulated
annealing algorithms.) Which metaheuristic happened to provide
the best solution on this particular problem?

A 13.5-2. Use your IOR Tutorial to apply the basic algorithm for
all three metaheuristics presented in this chapter to the traveling
salesman problem described in Prob. 13.2-7. (Use 1-2-3-4-5-6-7-8-
9-10-1 as the initial trial solution for the tabu search and simulated
annealing algorithms.) Which metaheuristic happened to provide
the best solution on this particular problem?
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Game Theory

L ife is full of conflict and competition. Numerous examples involving adversaries in
conflict include parlor games, military battles, political campaigns, advertising and

marketing campaigns by competing business firms, and so forth. A basic feature in many
of these situations is that the final outcome depends primarily upon the combination of
strategies selected by the adversaries. Game theory is a mathematical theory that deals
with the general features of competitive situations like these in a formal, abstract way. It
places particular emphasis on the decision-making processes of the adversaries.

Because competitive situations are so ubiquitous, game theory has applications in a
variety of areas, including in business and economics. For example, Selected Reference 3
presents various business applications of game theory and Selected Reference 1 focuses on
its applications to economics. The 1994 Nobel Prize for Economic Sciences was won by
John F. Nash, Jr. (whose story is told in the movie A Beautiful Mind ), John C. Harsanyi,
and Reinhard Selton for their analysis of equilibria in the theory of noncooperative games.
Then Robert J. Aumann and Thomas C. Schelling won the 2005 Nobel Prize for Eco-
nomic Sciences for enhancing our understanding of conflict and cooperation through game-
theory analysis.

As briefly surveyed in Sec. 14.6, research on game theory continues to delve into
rather complicated types of competitive situations. However, the focus in this chapter is
on the simplest case, called two-person, zero-sum games. As the name implies, these
games involve only two adversaries or players (who may be armies, teams, firms, and so
on). They are called zero-sum games because one player wins whatever the other one
loses, so that the sum of their net winnings is zero.

Section 14.1 introduces the basic model for two-person, zero-sum games, and the next
four sections describe and illustrate different approaches to solving such games. The chap-
ter concludes by mentioning some other kinds of competitive situations that are dealt with
by other branches of game theory.

■ 14.1 THE FORMULATION OF TWO-PERSON, ZERO-SUM GAMES

To illustrate the basic characteristics of two-person, zero-sum games, consider the game
called odds and evens. This game consists simply of each player simultaneously showing
either one finger or two fingers. If the number of fingers matches, so that the total number
for both players is even, then the player taking evens (say, player 1) wins the bet (say, $1)

651
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from the player taking odds (player 2). If the number does not match, player 1 pays $1 to
player 2. Thus, each player has two strategies: to show either one finger or two fingers.
The resulting payoff to player 1 in dollars is shown in the payoff table given in Table 14.1.

In general, a two-person game is characterized by

1. The strategies of player 1.
2. The strategies of player 2.
3. The payoff table.

Before the game begins, each player knows the strategies she or he has available, the ones
the opponent has available, and the payoff table. The actual play of the game consists of
each player simultaneously choosing a strategy without knowing the opponent’s choice.

A strategy may involve only a simple action, such as showing a certain number of
fingers in the odds and evens game. On the other hand, in more complicated games in-
volving a series of moves, a strategy is a predetermined rule that specifies completely
how one intends to respond to each possible circumstance at each stage of the game. For
example, a strategy for one side in chess would indicate how to make the next move for
every possible position on the board, so the total number of possible strategies would be
astronomical. Applications of game theory normally involve far less complicated com-
petitive situations than chess does, but the strategies involved can be fairly complex.

The payoff table shows the gain (positive or negative) for player 1 that would result
from each combination of strategies for the two players. It is given only for player 1 because
the table for player 2 is just the negative of this one, due to the zero-sum nature of the game.

The entries in the payoff table may be in any units desired, such as dollars, provided
that they accurately represent the utility to player 1 of the corresponding outcome. How-
ever, utility is not necessarily proportional to the amount of money (or any other commod-
ity) when large quantities are involved. For example, $2 million (after taxes) is probably
worth much less than twice as much as $1 million to a poor person. In other words, given
the choice between (1) a 50 percent chance of receiving $2 million rather than nothing
and (2) being sure of getting $1 million, a poor person probably would much prefer the
latter. On the other hand, the outcome corresponding to an entry of 2 in a payoff table
should be “worth twice as much” to player 1 as the outcome corresponding to an entry
of 1. Thus, given the choice, he or she should be indifferent between a 50 percent chance
of receiving the former outcome (rather than nothing) and definitely receiving the latter
outcome instead.1

A primary objective of game theory is the development of rational criteria for se-
lecting a strategy. Two key assumptions are made:

1. Both players are rational.
2. Both players choose their strategies solely to promote their own welfare (no compas-

sion for the opponent).

■ TABLE 14.1 Payoff table for 
the odds and 
evens game

Player 2

Strategy 1 2

Player 1
1 1 �1
2 �1 1

1See Sec. 15.6 for a further discussion of the concept of utility.
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Game theory contrasts with decision analysis (see Chap. 15), where the assumption
is that the decision maker is playing a game with a passive opponent—nature—which
chooses its strategies in some random fashion.

We shall develop the standard game theory criteria for choosing strategies by means
of illustrative examples. In particular, the end of the next section describes how game the-
ory says the odds and evens game should be played. (Problems 14.3-1, 14.4-1, and 14.5-1
also invite you to apply the techniques developed in this chapter to solve for the optimal
way to play this game.) In addition, the next section presents a prototype example that il-
lustrates the formulation of a two-person, zero-sum game and its solution in some simple
situations. A more complicated variation of this game is then carried into Sec. 14.3 to de-
velop a more general criterion. Sections 14.4 and 14.5 describe a graphical procedure and
a linear programming formulation for solving such games.

14.2 SOLVING SIMPLE GAMES—A PROTOTYPE EXAMPLE 653

2We use only his or only her in some examples and problems for ease of reading: we do not mean to imply that
only men or only women are engaged in the various activities.

■ 14.2 SOLVING SIMPLE GAMES—A PROTOTYPE EXAMPLE

Two politicians are running against each other for the U.S. Senate. Campaign plans must
now be made for the final two days, which are expected to be crucial because of the close-
ness of the race. Therefore, both politicians want to spend these days campaigning in two
key cities, Bigtown and Megalopolis. To avoid wasting campaign time, they plan to travel
at night and spend either one full day in each city or two full days in just one of the cities.
However, since the necessary arrangements must be made in advance, neither politician
will learn his (or her)2 opponent’s campaign schedule until after he has finalized his own.
Therefore, each politician has asked his campaign manager in each of these cities to as-
sess what the impact would be (in terms of votes won or lost) from the various possible
combinations of days spent there by himself and by his opponent. He then wishes to use
this information to choose his best strategy on how to use these two days.

Formulation as a Two-Person, Zero-Sum Game

To formulate this problem as a two-person, zero-sum game, we must identify the two
players (obviously the two politicians), the strategies for each player, and the payoff table.

As the problem has been stated, each player has the following three strategies:

Strategy 1 � spend one day in each city.
Strategy 2 � spend both days in Bigtown.
Strategy 3 � spend both days in Megalopolis.

By contrast, the strategies would be more complicated in a different situation where each
politician learns where his opponent will spend the first day before he finalizes his own plans
for his second day. In that case, a typical strategy would be: Spend the first day in Bigtown;
if the opponent also spends the first day in Bigtown, then spend the second day in Bigtown;
however, if the opponent spends the first day in Megalopolis, then spend the second day in
Megalopolis. There would be eight such strategies, one for each combination of the two first-
day choices, the opponent’s two first-day choices, and the two second-day choices.

Each entry in the payoff table for player 1 represents the utility to player 1 (or the
negative utility to player 2) of the outcome resulting from the corresponding strategies
used by the two players. From the politician’s viewpoint, the objective is to win votes,
and each additional vote (before he learns the outcome of the election) is of equal value
to him. Therefore, the appropriate entries for the payoff table for politician 1 are the
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total net votes won from the opponent (i.e., the sum of the net vote changes in the two
cities) resulting from these two days of campaigning. Using units of 1,000 votes, this
formulation is summarized in Table 14.2. Game theory assumes that both players are
using the same formulation (including the same payoffs for player 1) for choosing their
strategies.

However, we should also point out that this payoff table would not be appropriate if
additional information were available to the politicians. In particular, assume that they
know exactly how the populace is planning to vote two days before the election, so that
each politician knows exactly how many net votes (positive or negative) he needs to switch
in his favor during the last two days of campaigning to win the election. Consequently,
the only significance of the data prescribed by Table 14.2 would be to indicate which
politician would win the election with each combination of strategies. Because the ulti-
mate goal is to win the election and because the size of the plurality is relatively incon-
sequential, the utility entries in the table then should be some positive constant (say, �1)
when politician 1 wins and �1 when he loses. Even if only a probability of winning can
be determined for each combination of strategies, the appropriate entries would be the
probability of winning minus the probability of losing because they then would represent
expected utilities. However, sufficiently accurate data to make such determinations usu-
ally are not available, so this example uses the thousands of total net votes won by politi-
cian 1 as the entries in the payoff table.

Using the form given in Table 14.2, we give three alternative sets of data for the payoff
table to illustrate how to solve three different kinds of games.

Variation 1 of the Example

Given that Table 14.3 is the payoff table for player 1 (politician 1), which strategy should
each player select?

654 CHAPTER 14 GAME THEORY

■ TABLE 14.2 Form of the payoff table for 
politician 1 for the political 
campaign problem

Total Net Votes Won
by Politician 1

(in Units of 1,000 Votes)

Politician 2

Strategy 1 2 3

1
Politician 1 2

3

■ TABLE 14.3 Payoff table for player 1 for
variation 1 of the political
campaign problem

Player 2

Strategy 1 2 3

1 1 2 4
Player 1 2 1 0 5

3 0 1 �1
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This situation is a rather special one, where the answer can be obtained just by
applying the concept of dominated strategies to rule out a succession of inferior strate-
gies until only one choice remains.

A strategy is dominated by a second strategy if the second strategy is always at
least as good (and sometimes better) regardless of what the opponent does. A
dominated strategy can be eliminated immediately from further consideration.

At the outset, Table 14.3 includes no dominated strategies for player 2. However, for
player 1, strategy 3 is dominated by strategy 1 because the latter has larger payoffs 
(1 � 0, 2 � 1, 4 � �1) regardless of what player 2 does. Eliminating strategy 3 from fur-
ther consideration yields the following reduced payoff table:

Because both players are assumed to be rational, player 2 also can deduce that player 1
has only these two strategies remaining under consideration. Therefore, player 2 now
does have a dominated strategy—strategy 3, which is dominated by both strategies 1
and 2 because they always have smaller losses for player 2 (payoffs to player 1) in this
reduced payoff table (for strategy 1: 1 � 4, 1 � 5; for strategy 2: 2 � 4, 0 � 5). Elim-
inating this strategy yields

At this point, strategy 2 for player 1 becomes dominated by strategy 1 because the
latter is better in column 2 (2 � 0) and equally good in column 1 (1 � 1). Eliminating
the dominated strategy leads to

Strategy 2 for player 2 now is dominated by strategy 1 (1 � 2), so strategy 2 should be
eliminated.

Consequently, both players should select their strategy 1. Player 1 then will receive
a payoff of 1 from player 2 (that is, politician 1 will gain 1,000 votes from politician 2).

If you would like to see another example of solving a game by using the concept
of dominated strategies, one is provided in the Worked Examples section of the book’s
website.

In general, the payoff to player 1 when both players play optimally is referred to as
the value of the game. A game that has a value of 0 is said to be a fair game. Since this
particular game has a value of 1, it is not a fair game.

The concept of a dominated strategy is a very useful one for reducing the size of
the payoff table that needs to be considered and, in unusual cases like this one, actu-
ally identifying the optimal solution for the game. However, most games require an-
other approach to at least finish solving, as illustrated by the next two variations of the
example.

14.2 SOLVING SIMPLE GAMES—A PROTOTYPE EXAMPLE 655

1 2 3

1 1 2 4
2 1 0 5

1 2

1 1 2
2 1 0

1 2

1 1 2
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Variation 2 of the Example

Now suppose that the current data give Table 14.4 as the payoff table for player 1 (politi-
cian 1). This game does not have dominated strategies, so it is not obvious what the play-
ers should do. What line of reasoning does game theory say they should use?

Consider player 1. By selecting strategy 1, he could win 6 or could lose as much as 3.
However, because player 2 is rational and thus will seek a strategy that will protect him-
self from large payoffs to player 1, it seems likely that player 1 would incur a loss by
playing strategy 1. Similarly, by selecting strategy 3, player 1 could win 5, but more probably
his rational opponent would avoid this loss and instead administer a loss to player 1 which
could be as large as 4. On the other hand, if player 1 selects strategy 2, he is guaranteed
not to lose anything and he could even win something. Therefore, because it provides the
best guarantee (a payoff of 0), strategy 2 seems to be a “rational” choice for player 1
against his rational opponent. (This line of reasoning assumes that both players are averse
to risking larger losses than necessary, in contrast to those individuals who enjoy gam-
bling for a large payoff against long odds.)

Now consider player 2. He could lose as much as 5 or 6 by using strategy 1 or 3,
but is guaranteed at least breaking even with strategy 2. Therefore, by the same rea-
soning of seeking the best guarantee against a rational opponent, his apparent choice is
strategy 2.

If both players choose their strategy 2, the result is that both break even. Thus, in this
case, neither player improves upon his best guarantee, but both also are forcing the op-
ponent into the same position. Even when the opponent deduces a player’s strategy, the
opponent cannot exploit this information to improve his position. Stalemate.

The end product of this line of reasoning is that each player should play in such a
way as to minimize his maximum losses whenever the resulting choice of strategy cannot
be exploited by the opponent to then improve his position. This so-called minimax cri-
terion is a standard criterion proposed by game theory for selecting a strategy. In effect,
this criterion says to select a strategy that would be best even if the selection were being
announced to the opponent before the opponent chooses a strategy. In terms of the pay-
off table, it implies that player 1 should select the strategy whose minimum payoff is
largest, whereas player 2 should choose the one whose maximum payoff to player 1 is the
smallest. This criterion is illustrated in Table 14.4, where strategy 2 is identified as the max-
imin strategy for player 1 and strategy 2 is the minimax strategy for player 2. The result-
ing payoff of 0 is the value of the game, so this is a fair game.

Notice the interesting fact that the same entry in this payoff table yields both the max-
imin and minimax values. The reason is that this entry is both the minimum in its row
and the maximum of its column. The position of any such entry is called a saddle point.

656 CHAPTER 14 GAME THEORY

■ TABLE 14.4 Payoff table for player 1 for variation 2 of the political 
campaign problem

Player 2

Strategy 1 2 3 Minimum

1 �3 �2 �6 �3
Player 1 2 �2 �0 �2 �0 ← Maximin value

3 �5 �2 �4 �4

Maximum: 5 �0 �6
↑
Minimax value
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The fact that this game possesses a saddle point was actually crucial in determining
how it should be played. Because of the saddle point, neither player can take advantage
of the opponent’s strategy to improve his own position. In particular, when player 2 pre-
dicts or learns that player 1 is using strategy 2, player 2 would incur a loss instead of
breaking even if he were to change from his original plan of using his strategy 2. Simi-
larly, player 1 would only worsen his position if he were to change his plan. Thus, nei-
ther player has any motive to consider changing strategies, either to take advantage of his
opponent or to prevent the opponent from taking advantage of him. Therefore, since this
is a stable solution (also called an equilibrium solution), players 1 and 2 should exclu-
sively use their maximin and minimax strategies, respectively.

As the next variation illustrates, some games do not possess a saddle point, in which
case a more complicated analysis is required.

Variation 3 of the Example

Late developments in the campaign result in the final payoff table for player 1 (politician 1)
given by Table 14.5. How should this game be played?

Suppose that both players attempt to apply the minimax criterion in the same way as in
variation 2. Player 1 can guarantee that he will lose no more than 2 by playing strategy 1.
Similarly, player 2 can guarantee that he will lose no more than 2 by playing strategy 3.

However, notice that the maximin value (�2) and the minimax value (2) do not coin-
cide in this case. The result is that there is no saddle point.

What are the resulting consequences if both players plan to use the strategies just
derived? It can be seen that player 1 would win 2 from player 2, which would make
player 2 unhappy. Because player 2 is rational and can therefore foresee this outcome,
he would then conclude that he can do much better, actually winning 2 rather than los-
ing 2, by playing strategy 2 instead. Because player 1 is also rational, he would an-
ticipate this switch and conclude that he can improve considerably, from �2 to 4, by
changing to strategy 2. Realizing this, player 2 would then consider switching back to
strategy 3 to convert a loss of 4 to a gain of 3. This possibility of a switch would cause
player 1 to consider again using strategy 1, after which the whole cycle would start
over again. Therefore, even though this game is being played only once, any tentative
choice of a strategy leaves that player with a motive to consider changing strategies,
either to take advantage of his opponent or to prevent the opponent from taking ad-
vantage of him.

In short, the originally suggested solution (player 1 to play strategy 1 and player 2 to
play strategy 3) is an unstable solution, so it is necessary to develop a more satisfactory
solution. But what kind of solution should it be?

14.2 SOLVING SIMPLE GAMES—A PROTOTYPE EXAMPLE 657

■ TABLE 14.5 Payoff table for player 1 for variation 3 of the political 
campaign problem

Player 2

Strategy 1 2 3 Minimum

1 �0 �2 �2 �2
Player 1 2 �5 �4 �3 �3

← Maximin value

3 �2 �3 �4 �4

Maximum: 5 �4 �2
↑
Minimax value
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■ 14.3 GAMES WITH MIXED STRATEGIES

Whenever a game does not possess a saddle point, game theory advises each player to as-
sign a probability distribution over her set of strategies. To express this mathematically, let

xi � probability that player 1 will use strategy i (i � 1, 2, . . . , m),
yj � probability that player 2 will use strategy j ( j � 1, 2, . . . , n),

where m and n are the respective numbers of available strategies. Thus, player 1 would
specify her plan for playing the game by assigning values to x1, x2, . . . , xm. Because these
values are probabilities, they would need to be nonnegative and add to 1. Similarly, the
plan for player 2 would be described by the values she assigns to her decision variables
y1, y2, . . . , yn. These plans (x1, x2, . . . , xm) and (y1, y2, . . . , yn) are usually referred to
as mixed strategies, and the original strategies are then called pure strategies.

When the game is actually played, it is necessary for each player to use one of her
pure strategies. However, this pure strategy would be chosen by using some random de-
vice to obtain a random observation from the probability distribution specified by the mixed
strategy, where this observation would indicate which particular pure strategy to use.

To illustrate, suppose that players 1 and 2 in variation 3 of the political campaign problem
(see Table 14.5) select the mixed strategies (x1, x2, x3) � (�

1
2

�, �
1
2

�, 0) and (y1, y2, y3) � (0, �
1
2

�, �
1
2

�),
respectively. This selection would say that player 1 is giving an equal chance (probabil-
ity of �

1
2

�) of choosing either (pure) strategy 1 or 2, but he is discarding strategy 3 entirely.
Similarly, player 2 is randomly choosing between his last two pure strategies. To play
the game, each player could then flip a coin to determine which of his two acceptable
pure strategies he will actually use.

The key fact seems to be that whenever one player’s strategy is predictable, the op-
ponent can take advantage of this information to improve his position. Therefore, an es-
sential feature of a rational plan for playing a game such as this one is that neither player
should be able to deduce which strategy the other will use. Hence, in this case, rather than
applying some known criterion for determining a single strategy that will definitely be
used, it is necessary to choose among alternative acceptable strategies on some kind of
random basis. By doing this, neither player knows in advance which of his own strategies
will be used, let alone what his opponent will do.

The same situation arises with the odds and evens game introduced in Sec. 14.1. The
payoff table for this game shown in Table 14.1 does not have a saddle point, so the game
does not have a stable solution regarding which strategy (show one finger or two fingers)
each player should choose for each play of the game. In fact, it would be foolish for a
player to always show the same number of fingers, since then the opponent could begin to
always show the number of fingers that would win every time. Even if a player’s strategy
were to become only somewhat predictable because of past tendencies or patterns, the op-
ponent can take advantage of this information to improve his chances of winning. Ac-
cording to game theory, the rational way to play the odds and evens game is to make the
choice of the strategy completely randomly each time. This can be done, for example, by
flipping a coin (without showing the result to the opponent) and then showing, say, one
finger if the coin comes up heads and showing two fingers if the coin comes up tails.

This suggests, in very general terms, the kind of approach that is required for games
lacking a saddle point. In the next section we discuss the approach more fully. Given this
foundation, the following two sections will develop procedures for finding an optimal way
of playing such games. Variation 3 of the political campaign problem will continue to be
used to illustrate these ideas as they are developed.
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Although no completely satisfactory measure of performance is available for evalu-
ating mixed strategies, a very useful one is the expected payoff. By applying the proba-
bility theory definition of expected value, this quantity is

Expected payoff for player 1 � �
m

i�1
�
n

j�1
pijxiyj,

where pij is the payoff if player 1 uses pure strategy i and player 2 uses pure strategy j. In
the example of mixed strategies just given, there are four possible payoffs (�2, 2, 4, �3),
each occurring with a probability of �

1
4

�, so the expected payoff is �
1
4

�(�2 � 2 � 4 � 3) � �
1
4

�.
Thus, this measure of performance does not disclose anything about the risks involved in
playing the game, but it does indicate what the average payoff will tend to be if the game
is played many times.

By using this measure, game theory extends the concept of the minimax criterion to
games that lack a saddle point and thus need mixed strategies. In this context, the minimax
criterion says that a given player should select the mixed strategy that minimizes the maxi-
mum expected loss to himself. Equivalently, when we focus on payoffs (player 1) rather than
losses (player 2), this criterion says to maximin instead, i.e., maximize the minimum expected
payoff to the player. By the minimum expected payoff we mean the smallest possible expected
payoff that can result from any mixed strategy with which the opponent can counter. Thus,
the mixed strategy for player 1 that is optimal according to this criterion is the one that pro-
vides the guarantee (minimum expected payoff) that is best (maximal). (The value of this best
guarantee is the maximin value, denoted by v

�
.) Similarly, the optimal strategy for player 2 is

the one that provides the best guarantee, where best now means minimal and guarantee refers
to the maximum expected loss that can be administered by any of the opponent’s mixed strate-
gies. (This best guarantee is the minimax value, denoted by v�.)

Recall that when only pure strategies were used, games not having a saddle point
turned out to be unstable (no stable solutions). The reason was essentially that v

�
� v�, so

that the players would want to change their strategies to improve their positions. 
Similarly, for games with mixed strategies, it is necessary that v

�
� v� for the optimal so-

lution to be stable. Fortunately, according to the minimax theorem of game theory, this
condition always holds for such games.

Minimax theorem: If mixed strategies are allowed, the pair of mixed strategies
that is optimal according to the minimax criterion provides a stable solution with
v
�

� v� � v (the value of the game), so that neither player can do better by uni-
laterally changing her or his strategy.

One proof of this theorem is included in Sec. 14.5.
Although the concept of mixed strategies becomes quite intuitive if the game is played

repeatedly, it requires some interpretation when the game is to be played just once. In this
case, using a mixed strategy still involves selecting and using one pure strategy (randomly
selected from the specified probability distribution), so it might seem more sensible to ig-
nore this randomization process and just choose the one “best” pure strategy to be used.
However, when a game does not have a saddle point, we have already illustrated in the pre-
ceding section for both variation 3 of the political campaign problem and the odds and evens
game that a player must not allow the opponent to deduce what his strategy will be (i.e., the
solution procedure under the rules of game theory must not definitely identify which pure
strategy will be used when the game is unstable). Furthermore, even if the opponent is able
to use only his knowledge of the tendencies of the first player to deduce probabilities (for
the pure strategy chosen) that are different from those for the optimal mixed strategy, then
the opponent still can take advantage of this knowledge to reduce the expected payoff to the
first player. Therefore, the only way to guarantee attaining the optimal expected payoff v is

14.3 GAMES WITH MIXED STRATEGIES 659
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■ TABLE 14.6 Reduced payoff table for player 1 for variation 3 of the political
campaign problem

Player 2

Probability y1 y2 y3

Pure
Probability Strategy 1 2 3

x1 1 0 �2 �2
Player 1

1 � x1 2 5 �4 �3 

(y1, y2, y3) Expected Payoff

(1, 0, 0) 0x1 � 5(1 � x1) � 5 � 5x1

(0, 1, 0) �2x1 � 4(1 � x1) � 4 � 6x1

(0, 0, 1) 2x1 � 3(1 � x1) � �3 � 5x1

to randomly select the pure strategy to be used from the probability distribution for the op-
timal mixed strategy. (Valid statistical procedures for making such a random selection are
discussed in Sec. 20.4.)

Now we need to show how to find the optimal mixed strategy for each player. There
are several methods of doing this. One is a graphical procedure that may be used when-
ever one of the players has only two (undominated) pure strategies; this approach is described
in the next section. When larger games are involved, the usual method is to transform the
problem to a linear programming problem that then can be solved by the simplex method
on a computer; Sec. 14.5 discusses this approach.

■ 14.4 GRAPHICAL SOLUTION PROCEDURE

Consider any game with mixed strategies such that, after dominated strategies are elimi-
nated, one of the players has only two pure strategies. To be specific, let this player be
player 1. Because her mixed strategies are (x1, x2) and x2 � 1 � x1, it is necessary for her
to solve only for the optimal value of x1. However, it is straightforward to plot the ex-
pected payoff as a function of x1 for each of her opponent’s pure strategies. This graph
can then be used to identify the point that maximizes the minimum expected payoff. The
opponent’s minimax mixed strategy can also be identified from the graph.

To illustrate this procedure, consider variation 3 of the political campaign problem
(see Table 14.5). Notice that the third pure strategy for player 1 is dominated by her second,
so the payoff table can be reduced to the form given in Table 14.6. Therefore, for each of
the pure strategies available to player 2, the expected payoff for player 1 will be:

Now plot these expected-payoff lines on a graph, as shown in Fig. 14.1. For any given
values of x1 and (y1, y2, y3), the expected payoff will be the appropriate weighted aver-
age of the corresponding points on these three lines. In particular,

Expected payoff for player 1 � y1(5 � 5x1) � y2(4 � 6x1) � y3(�3 � 5x1).

Remember that player 2 wants to minimize this expected payoff for player 1. Given x1,
player 2 can minimize this expected payoff by choosing the pure strategy that corresponds
to the “bottom” line for that x1 in Fig. 14.1 (either �3 � 5x1 or 4 � 6x1, but never 
5 � 5x1). According to the minimax (or maximin) criterion, player 1 wants to maximize

hil76299_ch14_651-671.qxd  11/4/08  12:05 PM  Page 660



Rev.Confirming Pages

this minimum expected payoff. Consequently, player 1 should select the value of x1 where
the bottom line peaks, i.e., where the (�3 � 5x1) and (4 � 6x1) lines intersect, which yields
an expected payoff of

v
�

� v � max {min{�3 � 5x1, 4 � 6x1}}.
0�x1�1

To solve algebraically for this optimal value of x1 at the intersection of the two lines 
�3 � 5x1 and 4 � 6x1, we set

�3 � 5x1 � 4 � 6x1,

which yields x1 � �
1
7
1
�. Thus, (x1, x2) � (�

1
7
1
�, �

1
4
1
�) is the optimal mixed strategy for player 1, and

v
�

� v � �3 � 5��
1
7
1
�� � �

1
2
1
�

is the value of the game.
To find the corresponding optimal mixed strategy for player 2, we now reason as fol-

lows. According to the definition of the minimax value v� and the minimax theorem, the
expected payoff resulting from the optimal strategy (y1, y2, y3) � (y*1, y*2, y*3) will satisfy
the condition

y*1(5 � 5x1) � y*2(4 � 6x1) � y*3(�3 � 5x1) � v� � v � �
1
2
1
�

for all values of x1 (0 � x1 � 1). Furthermore, when player 1 is playing optimally (that
is, x1 � �

1
7
1
�), this inequality will be an equality (by the minimax theorem), so that

�
2
1
0
1
�y*1 � �

1
2
1
�y*2 � �

1
2
1
�y*3 � v � �

1
2
1
�.

Because (y1, y2, y3) is a probability distribution, it is also known that

y*1 � y*2 � y*3 � 1.

Therefore, y*1 � 0 because y*1 � 0 would violate the next-to-last equation; i.e., the ex-
pected payoff on the graph at x1 � �

1
7
1
� would be above the maximin point. (In general, any
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■ FIGURE 14.1
Graphical procedure 
for solving games.
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line that does not pass through the maximin point must be given a zero weight to avoid
increasing the expected payoff above this point.)

Hence,

y*2 (4 � 6x1) � y*3 (�3 � 5x1) 

But y*2 and y*3 are numbers, so the left-hand side is the equation of a straight line, which
is a fixed weighted average of the two “bottom” lines on the graph. Because the ordinate
of this line must equal �

1
2
1
� at x1 � �

1
7
1
�, and because it must never exceed �

1
2
1
�, the line neces-

sarily is horizontal. (This conclusion is always true unless the optimal value of x1 is ei-
ther 0 or 1, in which case player 2 also should use a single pure strategy.) Therefore,

y*2(4 � 6x1) � y*3(�3 � 5x1) � �
1
2
1
�, for 0 � x1 � 1.

Hence, to solve for y*2 and y*3, select two values of x1 (say, 0 and 1), and solve the result-
ing two simultaneous equations. Thus,

�4y*2 � 3y*3 � �
1
2
1
�,

�2y*2 � 2y*3 � �
1
2
1
�,

which has a simultaneous solution of y*2 � �
1
5
1
� and y*3 � �

1
6
1
�. Therefore, the optimal mixed

strategy for player 2 is (y1, y2, y3) � (0, �
1
5
1
�, �

1
6
1
�).

If, in another problem, there should happen to be more than two lines passing
through the maximin point, so that more than two of the y*j values can be greater than
zero, this condition would imply that there are many ties for the optimal mixed strat-
egy for player 2. One such strategy can then be identified by setting all but two of these
y*j values equal to zero and solving for the remaining two in the manner just described.
For the remaining two, the associated lines must have positive slope in one case and
negative slope in the other.

Although this graphical procedure has been illustrated for only one particular prob-
lem, essentially the same reasoning can be used to solve any game with mixed strategies
that has only two undominated pure strategies for one of the players. The Worked 
Examples section of the book’s website provides another example where, in this case, it
is player 2 that has only two undominated strategies, so the graphical solution procedure
is applied initially from the viewpoint of that player.

for 0 � x1 � 1,

for x1 � �
1
7
1
�.

� �
1
2
1
�

� �
1
2
1
�






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■ 14.5 SOLVING BY LINEAR PROGRAMMING

Any game with mixed strategies can be solved by transforming the problem to a linear
programming problem. As you will see, this transformation requires little more than ap-
plying the minimax theorem and using the definitions of the maximin value v

�
and mini-

max value v�.
First, consider how to find the optimal mixed strategy for player 1. As indicated in

Sec. 14.3,

Expected payoff for player 1 � �
m

i�1
�
n

j�1
pijxiyj
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and the strategy (x1, x2, . . . , xm) is optimal if

�
m

i�1
�
n

j�1
pijxiyj � v

�
� v

for all opposing strategies (y1, y2, . . . , yn). Thus, this inequality will need to hold, e.g., for
each of the pure strategies of player 2, that is, for each of the strategies (y1, y2, . . . , yn)
where one yj � 1 and the rest equal 0. Substituting these values into the inequality yields

�
m

i�1
pijxi � v for j � 1, 2, . . . , n,

so that the inequality implies this set of n inequalities. Furthermore, this set of n inequalities
implies the original inequality (rewritten)

�
n

j�1
yj��

m

i�1
pijxi� � �

n

j�1
yjv � v,

since

�
n

j�1
yj � 1.

Because the implication goes in both directions, it follows that imposing this set of n lin-
ear inequalities is equivalent to requiring the original inequality to hold for all strategies
(y1, y2, . . . , yn). But these n inequalities are legitimate linear programming constraints,
as are the additional constraints

x1 � x2 � 			 � xm � 1
xi � 0, for i � 1, 2, . . . , m

that are required to ensure that the xi are probabilities. Therefore, any solution (x1, x2,
. . . , xm) that satisfies this entire set of linear programming constraints is the desired
optimal mixed strategy.

Consequently, the problem of finding an optimal mixed strategy has been reduced to
finding a feasible solution for a linear programming problem, which can be done as de-
scribed in Chap. 4. The two remaining difficulties are that (1) v is unknown and (2) the
linear programming problem has no objective function. Fortunately, both these difficul-
ties can be resolved at one stroke by replacing the unknown constant v by the variable
xm�1 and then maximizing xm�1, so that xm�1 automatically will equal v (by definition)
at the optimal solution for the linear programming problem!

The Linear Programming Formulation

To summarize, player 1 would find his optimal mixed strategy by using the simplex method
to solve the linear programming problem:

Maximize xm�1,

subject to

p11x1 � p21x2 � 			 � pm1xm � xm�1 � 0
p12x1 � p22x2 � 			 � pm2xm � xm�1 � 0
																																																			
p1nx1 � p2nx2 � 			 � pmnxm � xm�1 � 0

x1 � x2 � 			 � xm � 1
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and

xi � 0, for i � 1, 2, . . . , m.

Note that xm�1 is not restricted to be nonnegative, whereas the simplex method can be
applied only after all the variables have nonnegativity constraints. However, this matter
can be easily rectified, as will be discussed shortly.

Now consider player 2. He could find his optimal mixed strategy by rewriting the
payoff table as the payoff to himself rather than to player 1 and then by proceeding 
exactly as just described. However, it is enlightening to summarize his formulation in
terms of the original payoff table. By proceeding in a way that is completely analogous
to that just described, player 2 would conclude that his optimal mixed strategy is given
by an optimal solution to the linear programming problem:

Minimize yn�1,

subject to

p11y1 � p12y2 � 			 � p1nyn � yn�1 � 0
p21y1 � p22y2 � 			 � p2nyn � yn�1 � 0
																																																				
pm1y1 � pm2y2 � 			 � pmnyn � yn�1 � 0

y1 � y2 � 			 � yn � 1

and

yj � 0, for j � 1, 2, . . . , n.

It is easy to show (see Prob. 14.5-6 and its hint) that this linear programming problem and
the one given for player 1 are dual to each other in the sense described in Secs. 6.1 and 6.4.
This fact has several important implications. One implication is that the optimal mixed strate-
gies for both players can be found by solving only one of the linear programming problems
because the optimal dual solution is an automatic by-product of the simplex method calcula-
tions to find the optimal primal solution. A second implication is that this brings all duality
theory (described in Chap. 6) to bear upon the interpretation and analysis of games.

A related implication is that this provides a simple proof of the minimax theorem.
Let x*m�1 and y*n�1 denote the value of xm�1 and yn�1 in the optimal solution of the re-
spective linear programming problems. It is known from the strong duality property given
in Sec. 6.1 that �x*m�1 � �y*n�1, so that x*m�1 � y*n�1. However, it is evident from the
definition of v

�
and v� that v

�
� x*m�1 and v� � y*n�1, so it follows that v

�
� v�, as claimed by

the minimax theorem.
One remaining loose end needs to be tied up, namely, what to do about xm�1 and

yn�1 being unrestricted in sign in the linear programming formulations. If it is clear that
v � 0 so that the optimal values of xm�1 and yn�1 are nonnegative, then it is safe to in-
troduce nonnegativity constraints for these variables for the purpose of applying the sim-
plex method. However, if v � 0, then an adjustment needs to be made. One possibility is
to use the approach described in Sec. 4.6 for replacing a variable without a nonnegativity
constraint by the difference of two nonnegative variables. Another is to reverse players 1
and 2 so that the payoff table would be rewritten as the payoff to the original player 2,
which would make the corresponding value of v positive. A third, and the most commonly
used, procedure is to add a sufficiently large fixed constant to all the entries in the pay-
off table that the new value of the game will be positive. (For example, setting this con-
stant equal to the absolute value of the largest negative entry will suffice.) Because this
same constant is added to every entry, this adjustment cannot alter the optimal mixed
strategies in any way, so they can now be obtained in the usual manner. The indicated
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value of the game would be increased by the amount of the constant, but this value can
be readjusted after the solution has been obtained.

Application to Variation 3 of the Political Campaign Problem

To illustrate this linear programming approach, consider again variation 3 of the political
campaign problem after dominated strategy 3 for player 1 is eliminated (see Table 14.6).
Because there are some negative entries in the reduced payoff table, it is unclear at the
outset whether the value of the game v is nonnegative (it turns out to be). For the mo-
ment, let us assume that v � 0 and proceed without making any of the adjustments dis-
cussed in the preceding paragraph.

To write out the linear programming model for player 1 for this example, note that
pij in the general model is the entry in row i and column j of Table 14.6, for i � 1, 2 and
j � 1, 2, 3. The resulting model is

Maximize x3,

subject to

5x2 � x3 � 0
�2x1 � 4x2 � x3 � 0

2x1 � 3x2 � x3 � 0
x1 � x2 � 1

and

x1 � 0, x2 � 0.

Applying the simplex method to this linear programming problem (after adding the
constraint x3 � 0) yields x*1 � �

1
7
1
�, x*2 � �

1
4
1
�, x*3 � �

1
2
1
� as the optimal solution. (See Probs. 14.5-8

and 14.5-9.) Consequently, just as was found by the graphical procedure in the preceding
section, the optimal mixed strategy for player 1 according to the minimax criterion is 
(x1, x2) � (�

1
7
1
�, �

1
4
1
�), and the value of the game is v � x*3 � �

1
2
1
�. The simplex method also yields

the optimal solution for the dual (given next) of this problem, namely, y*1 � 0, y*2 � �
1
5
1
�,

y*3 � �
1
6
1
�, y*4 � �

1
2
1
�, so the optimal mixed strategy for player 2 is (y1, y2, y3) � (0, �

1
5
1
�, �

1
6
1
�).

The dual of the preceding problem is just the linear programming model for 
player 2 (the one with variables y1, y2, . . . , yn, yn�1) shown earlier in this section. (See
Prob. 14.5-7.) By plugging in the values of pij from Table 14.6, this model is

Minimize y4,

subject to

� 2y2 � 2y3 � y4 � 0
5y1 � 4y2 � 3y3 � y4 � 0
y1 � y2 � y3 � 1

and

y1 � 0, y2 � 0, y3 � 0.

Applying the simplex method directly to this model (after adding the constraint y4 � 0)
yields the optimal solution: y*1 � 0, y*2 � �

1
5
1
�, y*3 � �

1
6
1
�, y*4 � �

1
2
1
� (as well as the optimal

dual solution x*1 � �
1
7
1
�, x*2 � �

1
4
1
�, x*3 � �

1
2
1
�). Thus, the optimal mixed strategy for player 2

is (y1, y2, y3) � (0, �
1
5
1
�, �

1
6
1
�), and the value of the game is again seen to be v � y*4 � �

1
2
1
�.

Because we already had found the optimal mixed strategy for player 2 while dealing
with the first model, we did not have to solve the second one. In general, you always can
find optimal mixed strategies for both players by choosing just one of the models (either
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one) and then using the simplex method to solve for both an optimal solution and an op-
timal dual solution.

When the simplex method was applied to both of these linear programming models,
a nonnegativity constraint was added that assumed that v � 0. If this assumption were vi-
olated, both models would have no feasible solutions, so the simplex method would stop
quickly with this message. To avoid this risk, we could have added a positive constant,
say, 3 (the absolute value of the largest negative entry), to all the entries in Table 14.6.
This then would increase by 3 all the coefficients of x1, x2, y1, y2, and y3 in the inequal-
ity constraints of the two models. (See Prob. 14.5-2.)

■ 14.6 EXTENSIONS

Although this chapter has considered only two-person, zero-sum games with a finite num-
ber of pure strategies, game theory extends far beyond this kind of game. In fact, exten-
sive research has been done on a number of more complicated types of games, including
the ones summarized in this section.

The simplest generalization is to the two-person, constant-sum game. In this case, the
sum of the payoffs to the two players is a fixed constant (positive or negative) regardless
of which combination of strategies is selected. The only difference from a two-person, zero-
sum game is that, in the latter case, the constant must be zero. A nonzero constant may
arise instead because, in addition to one player winning whatever the other one loses, the
two players may share some reward (if the constant is positive) or some cost (if the con-
stant is negative) for participating in the game. Adding this fixed constant does nothing to
affect which strategies should be chosen. Therefore, the analysis for determining optimal
strategies is exactly the same as described in this chapter for two-person, zero-sum games.

A more complicated extension is to the n-person game, where more than two play-
ers may participate in the game. This generalization is particularly important because, in
many kinds of competitive situations, frequently more than two competitors are involved.
This may occur, for example, in competition among business firms, in international diplo-
macy, and so forth. Unfortunately, the existing theory for such games is less satisfactory
than it is for two-person games.

Another generalization is the nonzero-sum game, where the sum of the payoffs to the
players need not be 0 (or any other fixed constant). This case reflects the fact that many com-
petitive situations include noncompetitive aspects that contribute to the mutual advantage or
mutual disadvantage of the players. For example, the advertising strategies of competing com-
panies can affect not only how they will split the market but also the total size of the market
for their competing products. However, in contrast to a constant-sum game, the size of the
mutual gain (or loss) for the players depends on the combination of strategies chosen.

Because mutual gain is possible, nonzero-sum games are further classified in terms
of the degree to which the players are permitted to cooperate. At one extreme is the non-
cooperative game, where there is no preplay communication between the players. At the
other extreme is the cooperative game, where preplay discussions and binding agreements
are permitted. For example, competitive situations involving trade regulations between
countries, or collective bargaining between labor and management, might be formulated
as cooperative games. When there are more than two players, cooperative games also allow
some of or all the players to form coalitions.

Still another extension is to the class of infinite games, where the players have an infi-
nite number of pure strategies available to them. These games are designed for the kind of
situation where the strategy to be selected can be represented by a continuous decision vari-
able. For example, this decision variable might be the time at which to take a certain action,
or the proportion of one’s resources to allocate to a certain activity, in a competitive situation.
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■ 14.7 CONCLUSIONS

The general problem of how to make decisions in a competitive environment is a very com-
mon and important one. The fundamental contribution of game theory is that it provides a
basic conceptual framework for formulating and analyzing such problems in simple situa-
tions. However, there is a considerable gap between what the theory can handle and the
complexity of most competitive situations arising in practice. Therefore, the conceptual tools
of game theory usually play just a supplementary role in dealing with these situations.

Because of the importance of the general problem, research is continuing with some
success to extend the theory to more complex situations.
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Winning Chip Payoff ($)

Red beats white 90
White beats blue 70
Blue beats red 50
Matching colors 0

Player 2

Strategy 1 2 3

1 �3 1 �2
Player 1 2 �1 2 �1

3 �1 0 �2

Player 2

Strategy 1 2 3 4

1 �5 �7 �2 2
Player 1 2 �2 �2 �5 5

3 �2 �5 �2 7

The symbol to the left of some of the problems (or their parts) has
the following meaning.

C: Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

14.1-1. The labor union and management of a particular company
have been negotiating a new labor contract. However, negotiations
have now come to an impasse, with management making a “final”
offer of a wage increase of $1.10 per hour and the union making
a “final” demand of a $1.60 per hour increase. Therefore, both
sides have agreed to let an impartial arbitrator set the wage in-
crease somewhere between $1.10 and $1.60 per hour (inclusively).

The arbitrator has asked each side to submit to her a confi-
dential proposal for a fair and economically reasonable wage in-
crease (rounded to the nearest dime). From past experience, both
sides know that this arbitrator normally accepts the proposal of the
side that gives the most from its final figure. If neither side changes
its final figure, or if they both give in the same amount, then the
arbitrator normally compromises halfway between ($1.35 in this
case). Each side now needs to determine what wage increase to
propose for its own maximum advantage.

Formulate this problem as a two-person, zero-sum game.

14.1-2. Two manufacturers currently are competing for sales in
two different but equally profitable product lines. In both cases the
sales volume for manufacturer 2 is three times as large as that for
manufacturer 1. Because of a recent technological breakthrough,
both manufacturers will be making a major improvement in both
products. However, they are uncertain as to what development and
marketing strategy to follow.

If both product improvements are developed simultaneously,
either manufacturer can have them ready for sale in 12 months.
Another alternative is to have a “crash program” to develop only one
product first to try to get it marketed ahead of the competition. By
doing this, manufacturer 2 could have one product ready for sale
in 9 months, whereas manufacturer 1 would require 10 months
(because of previous commitments for its production facilities).
For either manufacturer, the second product could then be ready
for sale in an additional 9 months.

For either product line, if both manufacturers market their im-
proved models simultaneously, it is estimated that manufacturer 1
would increase its share of the total future sales of this product by
8 percent of the total (from 25 to 33 percent). Similarly, manufac-
turer 1 would increase its share by 20, 30, and 40 percent of the
total if it marketed the product sooner than manufacturer 2 by 2,
6, and 8 months, respectively. On the other hand, manufacturer 1
would lose 4, 10, 12, and 14 percent of the total if manufacturer 2
marketed it sooner by 1, 3, 7, and 10 months, respectively.

Formulate this problem as a two-person, zero-sum game, and
then determine which strategy the respective manufacturers should
use according to the minimax criterion.

14.1-3. Consider the following parlor game to be played between
two players. Each player begins with three chips: one red, one
white, and one blue. Each chip can be used only once.

To begin, each player selects one of her chips and places it
on the table, concealed. Both players then uncover the chips and
determine the payoff to the winning player. In particular, if both
players play the same kind of chip, it is a draw; otherwise, the fol-
lowing table indicates the winner and how much she receives from
the other player. Next, each player selects one of her two remain-
ing chips and repeats the procedure, resulting in another payoff ac-
cording to the following table. Finally, each player plays her one
remaining chip, resulting in the third and final payoff.

Formulate this problem as a two-person, zero-sum game by iden-
tifying the form of the strategies and payoffs.

14.2-1. Reconsider Prob. 14.1-1.
(a) Use the concept of dominated strategies to determine the best

strategy for each side.
(b) Without eliminating dominated strategies, use the minimax cri-

terion to determine the best strategy for each side.

14.2-2.* For the game having the following payoff table, determine
the optimal strategy for each player by successively eliminating
dominated strategies. (Indicate the order in which you eliminated
strategies.)

14.2-3. Consider the game having the following payoff table.

Determine the optimal strategy for each player by successively elim-
inating dominated strategies. Give a list of the dominated strategies

■ PROBLEMS
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(and the corresponding dominating strategies) in the order in which
you were able to eliminate them.

14.2-4. Find the saddle point for the game having the following
payoff table.

Use the minimax criterion to find the best strategy for each player.
Does this game have a saddle point? Is it a stable game?

14.2-5. Find the saddle point for the game having the following
payoff table.

Use the minimax criterion to find the best strategy for each player.
Does this game have a saddle point? Is it a stable game?

14.2-6. Two companies share the bulk of the market for a partic-
ular kind of product. Each is now planning its new marketing plans
for the next year in an attempt to wrest some sales away from the
other company. (The total sales for the product are relatively fixed,
so one company can increase its sales only by winning them away
from the other.) Each company is considering three possibilities:
(1) better packaging of the product, (2) increased advertising, and
(3) a slight reduction in price. The costs of the three alternatives
are quite comparable and sufficiently large that each company will
select just one. The estimated effect of each combination of alter-
natives on the increased percentage of the sales for company 1 is
as follows:

Each company must make its selection before learning the deci-
sion of the other company.
(a) Without eliminating dominated strategies, use the minimax (or

maximin) criterion to determine the best strategy for each
company.

(b) Now identify and eliminate dominated strategies as far as pos-
sible. Make a list of the dominated strategies, showing the or-
der in which you were able to eliminate them. Then show the
resulting reduced payoff table with no remaining dominated
strategies.

14.2-7.* Two politicians soon will be starting their campaigns
against each other for a certain political office. Each must now se-
lect the main issue she will emphasize as the theme of her cam-
paign. Each has three advantageous issues from which to choose,
but the relative effectiveness of each one would depend upon the
issue chosen by the opponent. In particular, the estimated increase
in the vote for politician 1 (expressed as a percentage of the total
vote) resulting from each combination of issues is as follows:

However, because considerable staff work is required to research
and formulate the issue chosen, each politician must make her own
choice before learning the opponent’s choice. Which issue should
she choose?

For each of the situations described here, formulate this prob-
lem as a two-person, zero-sum game, and then determine which
issue should be chosen by each politician according to the speci-
fied criterion.
(a) The current preferences of the voters are very uncertain, so

each additional percent of votes won by one of the politicians
has the same value to her. Use the minimax criterion.

(b) A reliable poll has found that the percentage of the voters cur-
rently preferring politician 1 (before the issues have been
raised) lies between 45 and 50 percent. (Assume a uniform dis-
tribution over this range.) Use the concept of dominated strate-
gies, beginning with the strategies for politician 1.

(c) Suppose that the percentage described in part (b) actually were
45 percent. Should politician 1 use the minimax criterion?
Explain. Which issue would you recommend? Why?

14.2-8. Briefly describe what you feel are the advantages and dis-
advantages of the minimax criterion.

14.3-1. Consider the odds and evens game introduced in Sec. 14.1
and whose payoff table is shown in Table 14.1.
(a) Show that this game does not have a saddle point.
(b) Write an expression for the expected payoff for player 1 (the

evens player) in terms of the probabilities of the two players
using their respective pure strategies. Then show what this ex-
pression reduces to for the following three cases: (i) Player 2
definitely uses his first strategy, (ii) player 2 definitely uses his
second strategy, (iii) player 2 assigns equal probabilities to us-
ing his two strategies.

(c) Repeat part (b) when player 1 becomes the odds player instead.

PROBLEMS 669

Player 2

Strategy 1 2 3 4

1 �3 �3 �2 �4
Player 1 2 �4 �2 �1 �1

3 �1 �1 �2 �0

Player 2

Strategy 1 2 3

1 2 �3 �1
Player 1 2 1 �4 �0

3 3 �2 �1

Player 2

Strategy 1 2 3

1 �3 �1 3
Player 1 2 �3 �1 7

3 �7 �3 5

Issue for
Politician 2

1 2 3

1 �7 �1 �3
Issue for

2 �1 �0 �2
Politician 1

3 �5 �3 �1
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A. J. Swim Team G. N. Swim Team

Entry Entry

1 2 John Mark 1 2

Butterfly
stroke 1:01.6 59.1 57.5 58.4 1:03.2 59.8

Backstroke 1:06.8 1:05.6 1:03.3 1:02.6 1:04.9 1:04.1
Breaststroke 1:13.9 1:12.5 1:04.7 1:06.1 1:15.3 1:11.8

Player 2

Strategy 1 2

1 �5 �4
Player 1

2 �2 �3

of the game and the optimal mixed strategy for each player ac-
cording to the minimax criterion.

14.4-5. The A. J. Swim Team soon will have an important swim
meet with the G. N. Swim Team. Each team has a star swimmer
(John and Mark, respectively) who can swim very well in the 100-
yard butterfly, backstroke, and breaststroke events. However, the
rules prevent them from being used in more than two of these
events. Therefore, their coaches now need to decide how to use
them to maximum advantage.

Each team will enter three swimmers per event (the maximum
allowed). For each event, the following table gives the best time
previously achieved by John and Mark as well as the best time for
each of the other swimmers who will definitely enter that event.
(Whichever event John or Mark does not swim, his team’s third
entry for that event will be slower than the two shown in the table.)

The points awarded are 5 points for first place, 3 points for
second place, 1 point for third place, and none for lower places.
Both coaches believe that all swimmers will essentially equal their
best times in this meet. Thus, John and Mark each will definitely
be entered in two of these three events.
(a) The coaches must submit all their entries before the meet with-

out knowing the entries for the other team, and no changes are
permitted later. The outcome of the meet is very uncertain, so
each additional point has equal value for the coaches. Formu-
late this problem as a two-person, zero-sum game. Eliminate
dominated strategies, and then use the graphical procedure de-
scribed in Sec. 14.4 to find the optimal mixed strategy for each
team according to the minimax criterion.

(b) The situation and assignment are the same as in part (a), ex-
cept that both coaches now believe that the A. J. team will win
the swim meet if it can win 13 or more points in these three
events, but will lose with less than 13 points. [Compare the re-
sulting optimal mixed strategies with those obtained in part (a).]

(c) Now suppose that the coaches submit their entries during the
meet one event at a time. When submitting his entries for an
event, the coach does not know who will be swimming that
event for the other team, but he does know who has swum in

14.3-2. Consider the following parlor game between two players. It
begins when a referee flips a coin, notes whether it comes up heads
or tails, and then shows this result to player 1 only. Player 1 may
then (i) pass and thereby pay $5 to player 2 or (ii) bet. If player 1
passes, the game is terminated. However, if he bets, the game con-
tinues, in which case player 2 may then either (i) pass and thereby
pay $5 to player 1 or (ii) call. If player 2 calls, the referee then shows
him the coin; if it came up heads, player 2 pays $10 to player 1;
if it came up tails, player 2 receives $10 from player 1.
(a) Give the pure strategies for each player. (Hint: Player 1 will

have four pure strategies, each one specifying how he would
respond to each of the two results the referee can show him;
player 2 will have two pure strategies, each one specifying how
he will respond if player 1 bets.)

(b) Develop the payoff table for this game, using expected values
for the entries when necessary. Then identify and eliminate any
dominated strategies.

(c) Show that none of the entries in the resulting payoff table are
a saddle point. Then explain why any fixed choice of a pure
strategy for each of the two players must be an unstable solu-
tion, so mixed strategies should be used instead.

(d) Write an expression for the expected payoff for player 1 in terms
of the probabilities of the two players using their respective pure
strategies. Then show what this expression reduces to for the fol-
lowing three cases: (i) Player 2 definitely uses his first strategy,
(ii) player 2 definitely uses his second strategy, (iii) player 2 as-
signs equal probabilities to using his two strategies.

14.4-1. Consider the odds and evens game introduced in Sec. 14.1
and whose payoff table is shown in Table 14.1. Use the graphical
procedure described in Sec. 14.4 from the viewpoint of player 1
(the evens player) to determine the optimal mixed strategy for each
player according to the minimax criterion. Then do this again from
the viewpoint of player 2 (the odds player). Also give the corre-
sponding value of the game.

14.4-2. Reconsider Prob. 14.3-2. Use the graphical procedure de-
scribed in Sec. 14.4 to determine the optimal mixed strategy for
each player according to the minimax criterion. Also give the cor-
responding value of the game.

14.4-3. Consider the game having the following payoff table.

Use the graphical procedure described in Sec. 14.4 to determine
the value of the game and the optimal mixed strategy for each
player according to the minimax criterion. Check your answer for
player 2 by constructing his payoff table and applying the graph-
ical procedure directly to this table.

14.4-4.* For the game having the following payoff table, use the
graphical procedure described in Sec. 14.4 to determine the value

Player 2

Strategy 1 2 3

1 4 3 1
Player 1

2 0 1 2
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preceding events. The three key events just discussed are swum
in the order listed in the table. Once again, the A. J. team needs
13 points in these events to win the swim meet. Formulate this
problem as a two-person, zero-sum game. Then use the con-
cept of dominated strategies to determine the best strategy for
the G. N. team that actually “guarantees” it will win under the
assumptions being made.

(d) The situation is the same as in part (c). However, now assume
that the coach for the G. N. team does not know about game
theory and so may, in fact, choose any of his available strate-
gies that have Mark swimming two events. Use the concept of
dominated strategies to determine the best strategies from
which the coach for the A. J. team should choose. If this coach
knows that the other coach has a tendency to enter Mark in the
butterfly and the backstroke more often than in the breaststroke,
which strategy should she choose?

14.5-1. Consider the odds and evens game introduced in Sec. 14.1
and whose payoff table is shown in Table 14.1.
(a) Use the approach described in Sec. 14.5 to formulate the prob-

lem of finding optimal mixed strategies according to the mini-
max criterion as two linear programming problems, one for
player 1 (the evens player) and the other for player 2 (the odds
player) as the dual of the first problem.

C (b) Use the simplex method to find these optimal mixed strategies.

14.5-2. Refer to the last paragraph of Sec. 14.5. Suppose that 3 were
added to all the entries of Table 14.6 to ensure that the correspond-
ing linear programming models for both players have feasible solu-
tions with x3 � 0 and y4 � 0. Write out these two models. Based on
the information given in Sec. 14.5, what are the optimal solutions
for these two models? What is the relationship between x*3 and y*4?
What is the relationship between the value of the original game v
and the values of x*3 and y*4?

14.5-3.* Consider the game having the following payoff table.

(a) Use the approach described in Sec. 14.5 to formulate the prob-
lem of finding optimal mixed strategies according to the mini-
max criterion as a linear programming problem.

C (b) Use the simplex method to find these optimal mixed strategies.

14.5-4. Follow the instructions of Prob. 14.5-3 for the game having
the following payoff table.

14.5-5. Follow the instructions of Prob. 14.5-3 for the game having
the following payoff table.

14.5-6. Section 14.5 presents a general linear programming for-
mulation for finding an optimal mixed strategy for player 1 and for
player 2. Using Table 6.14, show that the linear programming prob-
lem given for player 2 is the dual of the problem given for player 1.
(Hint: Remember that a dual variable with a nonpositivity con-
straint yi
 � 0 can be replaced by yi � �yi
 with a nonnegativity
constraint yi � 0.)

14.5-7. Consider the linear programming models for players 1
and 2 given near the end of Sec. 14.5 for variation 3 of the polit-
ical campaign problem (see Table 14.6). Follow the instructions of
Prob. 14.5-6 for these two models.

14.5-8. Consider variation 3 of the political campaign problem
(see Table 14.6). Refer to the resulting linear programming model
for player 1 given near the end of Sec. 14.5. Ignoring the objec-
tive function variable x3, plot the feasible region for x1 and x2

graphically (as described in Sec. 3.1). (Hint: This feasible region
consists of a single line segment.) Next, write an algebraic expres-
sion for the maximizing value of x3 for any point in this feasible
region. Finally, use this expression to demonstrate that the optimal
solution must, in fact, be the one given in Sec. 14.5.

C 14.5-9. Consider the linear programming model for player 1
given near the end of Sec. 14.5 for variation 3 of the political cam-
paign problem (see Table 14.6). Verify the optimal mixed strate-
gies for both players given in Sec. 14.5 by applying an automatic
routine for the simplex method to this model to find both its opti-
mal solution and its optimal dual solution.

14.5-10. Consider the general m � n, two-person, zero-sum game.
Let pij denote the payoff to player 1 if he plays his strategy 
i (i � 1, . . . , m) and player 2 plays her strategy j ( j � 1, . . . , n).
Strategy 1 (say) for player 1 is said to be weakly dominated by
strategy 2 (say) if p1j � p2j for j � 1, . . . , n and p1j � p2j for one
or more values of j.
(a) Assume that the payoff table possesses one or more saddle

points, so that the players have corresponding optimal pure
strategies under the minimax criterion. Prove that eliminating
weakly dominated strategies from the payoff table cannot elim-
inate all these saddle points and cannot produce any new ones.

(b) Assume that the payoff table does not possess any saddle
points, so that the optimal strategies under the minimax crite-
rion are mixed strategies. Prove that eliminating weakly dom-
inated pure strategies from the payoff table cannot eliminate
all optimal mixed strategies and cannot produce any new ones.

PROBLEMS 671

Player 2

Strategy 1 2 3 4

1 5 0 3 1
Player 1 2 2 4 3 2

3 3 2 0 4

Player 2

Strategy 1 2 3

1 �7 3 �5
Player 1 2 �1 0 �5

3 �3 5 �3

Player 2

Strategy 1 2 3 4 5

1 �1 �3 �2 �2 �1
2 �2 �3 �0 �3 �2

Player 1
3 �0 �4 �1 �3 �2
4 �4 �0 �2 �2 �1
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15C H A P T E R

Decision Analysis

The previous chapters have focused mainly on decision making when the conse-
quences of alternative decisions are known with a reasonable degree of certainty.

This decision-making environment enabled formulating helpful mathematical models
(linear programming, integer programming, nonlinear programming, etc.) with objec-
tive functions that specify the estimated consequences of any combination of decisions.
Although these consequences usually cannot be predicted with complete certainty, they
could at least be estimated with enough accuracy to justify using such models (along
with sensitivity analysis, etc.).

However, decisions often must be made in environments that are much more fraught
with uncertainty. Here are a few examples.

1. A manufacturer introducing a new product into the marketplace. What will be the re-
action of potential customers? How much should be produced? Should the product be
test marketed in a small region before deciding upon full distribution? How much ad-
vertising is needed to launch the product successfully?

2. A financial firm investing in securities. Which are the market sectors and individual
securities with the best prospects? Where is the economy headed? How about interest
rates? How should these factors affect the investment decisions?

3. A government contractor bidding on a new contract. What will be the actual costs of
the project? Which other companies might be bidding? What are their likely bids?

4. An agricultural firm selecting the mix of crops and livestock for the upcoming sea-
son. What will be the weather conditions? Where are prices headed? What will
costs be?

5. An oil company deciding whether to drill for oil in a particular location. How likely
is oil there? How much? How deep will they need to drill? Should geologists investi-
gate the site further before drilling?

These are the kinds of decision making in the face of great uncertainty that decision
analysis is designed to address. Decision analysis provides a framework and methodol-
ogy for rational decision making when the outcomes are uncertain.

Chapter 14 describes how game theory also can be used for certain kinds of decision
making in the face of uncertainty. There are some similarities in the approaches used by
game theory and decision analysis. However, there also are differences because they are
designed for different kinds of applications. We will describe these similarities and dif-
ferences in Sec. 15.2.

672
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15.1 A PROTOTYPE EXAMPLE 673

Frequently, one question to be addressed with decision analysis is whether to make
the needed decision immediately or to first do some testing (at some expense) to reduce
the level of uncertainty about the outcome of the decision. For example, the testing
might be field testing of a proposed new product to test consumer reaction before mak-
ing a decision on whether to proceed with full-scale production and marketing of the
product. This testing is referred to as performing experimentation. Therefore, decision
analysis divides decision making between the cases of without experimentation and with
experimentation.

The first section introduces a prototype example that will be carried throughout the
chapter for illustrative purposes. Sections 15.2 and 15.3 then present the basic principles
of decision making without experimentation and decision making with experimentation. We
next describe decision trees, a useful tool for depicting and analyzing the decision process
when a series of decisions needs to be made. Section 15.5 then discusses how spreadsheets
are used to perform sensitivity analysis on decision trees. Section 15.6 introduces utility
theory, which provides a way of calibrating the possible outcomes of the decision to re-
flect the true value of these outcomes to the decision maker. We then conclude the chap-
ter by discussing the practical application of decision analysis and summarizing a variety
of applications that have been very beneficial to the organizations involved.

■ TABLE 15.1 Prospective profits for the Goferbroke Company

Status Payoff

Alternative
of Land

Oil Dry

Drill for oil $700,000 �$100,000
Sell the land $ 90,000 �$ 90,000

Chance of status 1 in 4 3 in 4 

■ 15.1 A PROTOTYPE EXAMPLE

The GOFERBROKE COMPANY owns a tract of land that may contain oil. A consulting
geologist has reported to management that she believes there is one chance in four of oil.

Because of this prospect, another oil company has offered to purchase the land for
$90,000. However, Goferbroke is considering holding the land in order to drill for oil
itself. The cost of drilling is $100,000. If oil is found, the resulting expected revenue
will be $800,000, so the company’s expected profit (after deducting the cost of drilling)
will be $700,000. A loss of $100,000 (the drilling cost) will be incurred if the land is
dry (no oil).

Table 15.1 summarizes these data. Section 15.2 discusses how to approach the deci-
sion of whether to drill or sell based just on these data. (We will refer to this as the first
Goferbroke Co. problem.)

However, before deciding whether to drill or sell, another option is to conduct a de-
tailed seismic survey of the land to obtain a better estimate of the probability of finding
oil. (This more involved decision process will be referred to as the full Goferbroke prob-
lem.) Section 15.3 discusses this case of decision making with experimentation, at which
point the necessary additional data will be provided.

This company is operating without much capital, so a loss of $100,000 would be quite
serious. In Sec. 15.6, we describe how to refine the evaluation of the consequences of the
various possible outcomes.

hil76299_ch15_672-722.qxd  11/27/08  07:17 PM  Page 673



Confirming Pages

674 CHAPTER 15 DECISION ANALYSIS

Before seeking a solution to the first Goferbroke Co. problem, we will formulate a gen-
eral framework for decision making.

In general terms, the decision maker must choose an alternative from a set of pos-
sible decision alternatives. The set contains all the feasible alternatives under consideration
for how to proceed with the problem of concern.

This choice of an alternative must be made in the face of uncertainty, because the
outcome will be affected by random factors that are outside the control of the decision
maker. These random factors determine what situation will be found at the time that the
decision alternative is executed. Each of these possible situations is referred to as a pos-
sible state of nature.

For each combination of a decision alternative and a state of nature, the decision
maker knows what the resulting payoff would be. The payoff is a quantitative measure of
the value to the decision maker of the consequences of the outcome. For example, the
payoff frequently is represented by the net monetary gain (profit), although other mea-
sures also can be used (as described in Sec. 15.6). If the consequences of the outcome do
not become completely certain even when the state of nature is given, then the payoff be-
comes an expected value (in the statistical sense) of the measure of the consequences. A
payoff table commonly is used to provide the payoff for each combination of an action
and a state of nature.

If you previously studied game theory (Chap. 14), we should point out an interesting
analogy between this decision analysis framework and the two-person, zero-sum games
described in Chap. 14. The decision maker and nature can be viewed as the two players
of such a game. The alternatives and the possible states of nature can then be viewed as
the available strategies for these respective players, where each combination of strategies
results in some payoff to player 1 (the decision maker). From this viewpoint, the decision
analysis framework can be summarized as follows:

1. The decision maker needs to choose one of the decision alternatives.
2. Nature then would choose one of the possible states of nature.
3. Each combination of a decision alternative and state of nature would result in a payoff,

which is given as one of the entries in a payoff table.
4. This payoff table should be used to find an optimal alternative for the decision maker

according to an appropriate criterion.

Soon we will present three possibilities for this criterion, where the first one (the max-
imin payoff criterion) comes from game theory.

However, this analogy to two-person, zero-sum games breaks down in one important
respect. In game theory, both players are assumed to be rational and choosing their strate-
gies to promote their own welfare. This description still fits the decision maker, but cer-
tainly not nature. By contrast, nature now is a passive player that chooses its strategies
(states of nature) in some random fashion. This change means that the game theory cri-
terion for how to choose an optimal strategy (alternative) will not appeal to many deci-
sion makers in the current context.

One additional element needs to be added to the decision analysis framework. The
decision maker generally will have some information that should be taken into account
about the relative likelihood of the possible states of nature. Such information can usually
be translated to a probability distribution, acting as though the state of nature is a random
variable, in which case this distribution is referred to as a prior distribution. Prior dis-
tributions are often subjective in that they may depend upon the experience or intuition

■ 15.2 DECISION MAKING WITHOUT EXPERIMENTATION
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of an individual. The probabilities for the respective states of nature provided by the prior
distribution are called prior probabilities.

Formulation of the Prototype Example in This Framework

As indicated in Table 15.1, the Goferbroke Co. has two possible decision alternatives un-
der consideration: drill for oil or sell the land. The possible states of nature are that the
land contains oil and that it does not, as designated in the column headings of Table 15.1
by oil and dry. Since the consulting geologist has estimated that there is one chance in
four of oil (and so three chances in four of no oil), the prior probabilities of the two states
of nature are 0.25 and 0.75, respectively. Therefore, with the payoff in units of thousands
of dollars of profit, the payoff table can be obtained directly from Table 15.1, as shown
in Table 15.2.

We will use this payoff table next to find the optimal alternative according to each of
the three criteria described below.

The Maximin Payoff Criterion

If the decision maker’s problem were to be viewed as a game against nature, then game
theory would say to choose the decision alternative according to the minimax criterion

Following the merger of Conoco Inc. and the Phillips
Petroleum Company in 2002, ConocoPhillips became
the third-largest integrated energy company in the United
States with $160 billion in assets and 38,000 employees.
Like any company in this industry, the management of
ConocoPhillips must grapple continually with decisions
about the allocation of limited investment capital across
a set of risky petroleum exploration projects. These de-
cisions have a great impact on the profitability of the
company.

In the early 1990s, the then Phillips Petroleum Com-
pany became an industry leader in the application of
sophisticated OR methodology to aid these decisions by
developing a decision analysis software package called
DISCOVERY. The user interface allows a geologist or en-
gineer to model the uncertainties associated with a project
and then the software interprets the inputs and constructs
a decision tree that shows all the decision nodes (including

opportunities to obtain additional seismic information) and
the intervening event nodes. A key feature of the software
is the use of an exponential utility function (to be intro-
duced in Sec. 15.6) to incorporate management’s attitudes
about financial risk. An intuitive questionnaire is used to
measure corporate risk preferences in order to determine
an appropriate value of the risk tolerance parameter for this
utility function.

Management uses the software to (1) evaluate petro-
leum exploration projects with a consistent risk-taking
policy across the company, (2) rank projects in terms of
overall preference, (3) identify the firm’s appropriate level of
participation in these projects, and (4) stay within budget.

Source: M. R. Walls, G. T. Morahan, and J. S. Dyer: “Decision
Analysis of Exploration Opportunities in the Onshore US at
Phillips Petroleum Company,” Interfaces, 25(6): 39–56, Nov.–Dec.
1995. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette

■ TABLE 15.2 Payoff table for the decision analysis 
formulation of the first Goferbroke Co. problem

State of Nature

Alternative Oil Dry

1. Drill for oil 700 �100
2. Sell the land 90 90

Prior probability 0.25 0.75
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(as described in Sec. 14.2). From the viewpoint of player 1 (the decision maker), this cri-
terion is more aptly named the maximin payoff criterion, as summarized below.

Maximin payoff criterion: For each possible decision alternative, find the
minimum payoff over all possible states of nature. Next, find the maximum of
these minimum payoffs. Choose the alternative whose minimum payoff gives
this maximum.

Table 15.3 shows the application of this criterion to the prototype example. Thus, since
the minimum payoff for selling (90) is larger than that for drilling (�100), the former al-
ternative (sell the land) will be chosen.

The rationale for this criterion is that it provides the best guarantee of the payoff that
will be obtained. Regardless of what the true state of nature turns out to be for the ex-
ample, the payoff from selling the land cannot be less than 90, which provides the best
available guarantee. Thus, this criterion takes the pessimistic viewpoint that, regardless of
which alternative is selected, the worst state of nature for that alternative is likely to oc-
cur, so we should choose the alternative which provides the best payoff with its worst
state of nature.

This rationale is quite valid when one is competing against a rational and malevolent
opponent. However, this criterion is not often used in games against nature because it is
an extremely conservative criterion in this context. In effect, it assumes that nature is a
conscious opponent that wants to inflict as much damage as possible on the decision maker.
Nature is not a malevolent opponent, and the decision maker does not need to focus solely
on the worst possible payoff from each alternative. This is especially true when the worst
possible payoff from an alternative comes from a relatively unlikely state of nature.

Thus, this criterion normally is of interest only to a very cautious decision maker.

The Maximum Likelihood Criterion

The next criterion focuses on the most likely state of nature, as summarized below.

Maximum likelihood criterion: Identify the most likely state of nature (the one
with the largest prior probability). For this state of nature, find the decision al-
ternative with the maximum payoff. Choose this decision alternative.

Applying this criterion to the example, Table 15.4 indicates that the Dry state has the
largest prior probability. In the Dry column, the sell alternative has the maximum payoff,
so the choice is to sell the land.

The appeal of this criterion is that the most important state of nature is the most
likely one, so the alternative chosen is the best one for this particularly important state
of nature. Basing the decision on the assumption that this state of nature will occur tends
to give a better chance of a favorable outcome than assuming any other state of nature.

■ TABLE 15.3 Application of the maximin payoff criterion to the first 
Goferbroke Co. problem

State of Nature

Alternative Oil Dry Minimum

1. Drill for oil 700 �100 �100
2. Sell the land 90 90 90 ← Maximin value

Prior probability 0.25 0.75 
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Furthermore, the criterion does not rely on questionable subjective estimates of the prob-
abilities of the respective states of nature other than identifying the most likely state.

The major drawback of the criterion is that it completely ignores much relevant in-
formation. No state of nature is considered other than the most likely one. In a problem
with many possible states of nature, the probability of the most likely one may be quite
small, so focusing on just this one state of nature is quite unwarranted. Even in the 
example, where the prior probability of the Dry state is 0.75, this criterion ignores the ex-
tremely attractive payoff of 700 if the company drills and finds oil. In effect, the criterion
does not permit gambling on a low-probability big payoff, no matter how attractive the
gamble may be.

Bayes’ Decision Rule1

Our third criterion, and the one commonly chosen, is Bayes’ decision rule, described below.

Bayes’ decision rule: Using the best available estimates of the probabilities of
the respective states of nature (currently the prior probabilities), calculate the ex-
pected value of the payoff for each of the possible decision alternatives. Choose
the decision alternative with the maximum expected payoff.

For the prototype example, these expected payoffs are calculated directly from
Table 15.2 as follows:

E[Payoff (drill)] � 0.25(700) � 0.75(�100)
� 100.

E[Payoff (sell)] � 0.25(90) � 0.75(90)
� 90.

Since 100 is larger than 90, the alternative selected is to drill for oil.
Note that this choice contrasts with the selection of the sell alternative under each of

the two preceding criteria.
The big advantage of Bayes’ decision rule is that it incorporates all the available in-

formation, including all the payoffs and the best available estimates of the probabilities
of the respective states of nature.

15.2 DECISION MAKING WITHOUT EXPERIMENTATION 677

1The origin of this name is that this criterion is often credited to the Reverend Thomas Bayes, a nonconform-
ing 18th-century English minister who won renown as a philosopher and mathematician. (The same basic idea
has even longer roots in the field of economics.) This decision rule also is sometimes called the expected mon-
etary value (EMF ) criterion, although this is a misnomer for those cases where the measure of the payoff is
something other than monetary value (as in Sec. 15.6).

■ TABLE 15.4 Application of the maximum likelihood criterion to the first
Goferbroke Co. problem

State of Nature

Alternative Oil Dry

1. Drill for oil 700 �100 �100
2. Sell the land 90 90 90 ← Maximum in this column

Prior probability 0.25 0.75

↑
Maximum
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It is sometimes argued that these estimates of the probabilities necessarily are largely
subjective and so are too shaky to be trusted. There is no accurate way of predicting the
future, including a future state of nature, even in probability terms. This argument has
some validity. The reasonableness of the estimates of the probabilities should be assessed
in each individual situation.

Nevertheless, under many circumstances, past experience and current evidence enable
one to develop reasonable estimates of the probabilities. Using this information should
provide better grounds for a sound decision than ignoring it. Furthermore, experimentation
frequently can be conducted to improve these estimates, as described in the next section. There-
fore, we will be using only Bayes’ decision rule throughout the remainder of the chapter.

To assess the effect of possible inaccuracies in the prior probabilities, it often is help-
ful to conduct sensitivity analysis, as described below.

Sensitivity Analysis with Bayes’ Decision Rule

Sensitivity analysis commonly is used with various applications of operations research to
study the effect if some of the numbers included in the mathematical model are not cor-
rect. In this case, the mathematical model is represented by the payoff table shown in
Table 15.2. The numbers in this table that are most questionable are the prior probabili-
ties. We will focus the sensitivity analysis on these numbers, although a similar approach
could be applied to the payoffs given in the table.

The sum of the two prior probabilities must equal 1, so increasing one of these prob-
abilities automatically decreases the other one by the same amount, and vice versa. Gofer-
broke’s management feels that the true chances of having oil on the tract of land are likely
to lie somewhere between 15 and 35 percent. In other words, the true prior probability of
having oil is likely to be in the range from 0.15 to 0.35, so the corresponding prior prob-
ability of the land being dry would range from 0.85 to 0.65.

Letting

p � prior probability of oil,

the expected payoff from drilling for any p is

E[Payoff (drill)] � 700p � 100(1 � p)
� 800p � 100.

The slanting line in Fig. 15.1 shows the plot of this expected payoff versus p. Since the
payoff from selling the land would be 90 for any p, the flat line in Fig. 15.1 gives E[Payoff
(sell)] versus p.

The four dots in Fig. 15.1 show the expected payoff for the two decision alternatives
when p � 0.15 or p � 0.35. When p � 0.15, the decision swings over to selling the land by a
wide margin (an expected payoff of 90 versus only 20 for drilling). However, when p � 0.35,
the decision is to drill by a wide margin (expected payoff � 180 versus only 90 for selling).
Thus, the decision is very sensitive to p. This sensitivity analysis has revealed that it is 
important to do more, if possible, to develop a more precise estimate of the true value of p.

The point in Fig. 15.1 where the two lines intersect is the crossover point where the
decision shifts from one alternative (sell the land) to the other (drill for oil) as the prior
probability increases. To find this point, we set

E[Payoff (drill)] � E[Payoff (sell)]
800p � 100 � 90

p � �
1
8
9
0
0
0

� � 0.2375

Conclusion: Should sell the land if p � 0.2375.
Should drill for oil if p � 0.2375.
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Thus, when trying to refine the estimate of the true value of p, the key question is whether
it is smaller or larger than 0.2375.

For other problems that have more than two decision alternatives, the same kind of
analysis can be applied. The main difference is that there now would be more than two
lines (one per alternative) in the graphical display corresponding to Fig. 15.1. However,
the top line for any particular value of the prior probability still indicates which alterna-
tive should be chosen. With more than two lines, there might be more than one crossover
point where the decision shifts from one alternative to another.

You can see another example of performing this kind of analysis with three decision
alternatives in the Worked Examples section of the book’s website. (This same example
also illustrates the application of all three decision criteria considered in this section.)

For a problem with more than two possible states of nature, the most straightforward
approach is to focus the sensitivity analysis on only two states at a time as described above.
This again would involve investigating what happens when the prior probability of one
state increases as the prior probability of the other state decreases by the same amount,
holding fixed the prior probabilities of the remaining states. This procedure then can be
repeated for as many other pairs of states as desired.

Practitioners sometimes use software to assist them in performing this kind of sensi-
tivity analysis, including generating the graphs. For example, an Excel add-in in your OR
Courseware called SensIt is designed specifically for conducting sensitivity analysis with
probabilistic models such as when applying Bayes’ decision rule. Complete documenta-
tion for SensIt is included on the book’s website. Section 15.5 will describe and illustrate
the application of SensIt.

Because the decision the Goferbroke Co. should make depends so critically on the true
probability of oil, serious consideration should be given to conducting a seismic survey to
estimate this probability more closely. We will explore this option in the next two sections.

15.2 DECISION MAKING WITHOUT EXPERIMENTATION 679
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■ FIGURE 15.1
Graphical display of how the
expected payoff for each
decision alternative changes
when the prior probability of
oil changes for the first
Goferbroke Co. problem.
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■ 15.3 DECISION MAKING WITH EXPERIMENTATION

Frequently, additional testing (experimentation) can be done to improve the preliminary
estimates of the probabilities of the respective states of nature provided by the prior proba-
bilities. These improved estimates are called posterior probabilities.

We first update the Goferbroke Co. example to incorporate experimentation, then
describe how to derive the posterior probabilities, and finally discuss how to decide whether
it is worthwhile to conduct experimentation.

Continuing the Prototype Example

As mentioned at the end of Sec. 15.1, an available option before making a decision is to
conduct a detailed seismic survey of the land to obtain a better estimate of the probabil-
ity of oil. The cost is $30,000.

A seismic survey obtains seismic soundings that indicate whether the geological struc-
ture is favorable to the presence of oil. We will divide the possible findings of the survey
into the following two categories:

USS: Unfavorable seismic soundings; oil is fairly unlikely.
FSS: Favorable seismic soundings; oil is fairly likely.

Based on past experience, if there is oil, then the probability of unfavorable seismic 
soundings is

P(USSState � Oil) � 0.4, so P(FSSState � Oil) � 1 � 0.4 � 0.6.

Similarly, if there is no oil (i.e., the true state of nature is Dry), then the probability of
unfavorable seismic soundings is estimated to be

P(USSState � Dry) � 0.8, so P(FSSState � Dry) � 1 � 0.8 � 0.2.

We soon will use these data to find the posterior probabilities of the respective states
of nature given the seismic soundings.

Posterior Probabilities

Proceeding now in general terms, we let

n � number of possible states of nature;

P(State � state i) � prior probability that true state of nature is
state i, for i � 1, 2, . . . , n;

Finding � finding from experimentation (a random
variable);

Finding j � one possible value of finding;

P(State � state iFinding � finding j) � posterior probability that true state of nature
is state i, given that Finding � finding j, for
i � 1, 2, . . . , n.

The question currently being addressed is the following:

Given P(State � state i) and P(Finding � finding jState � state i),
for i � 1, 2, . . . , n, what is P(State � state iFinding � finding j)?

This question is answered by combining the following standard formulas of proba-
bility theory:

P(State � state iFinding � finding j) �
P(State � state i, Finding � finding j)
����

P(Finding � finding j)

hil76299_ch15_672-722.qxd  11/6/08  02:02 PM  Page 680



Confirming Pages

P(Finding � finding j) � �
n

k�1
P(State � state k, Finding � finding j)

P(State � state i, Finding � finding j) �
P(Finding � finding jState � state i) P(State � state i).

Therefore, for each i � 1, 2, . . . , n, the desired formula for the corresponding posterior
probability is

P(State � state iFinding � finding j) �

(This formula often is referred to as Bayes’ theorem because it was developed by Thomas
Bayes, the same 18th-century mathematician who is credited with developing Bayes’ de-
cision rule.)

Now let us return to the prototype example and apply this formula. If the finding of the
seismic survey is unfavorable seismic soundings (USS), then the posterior probabilities are

P(State � OilFinding � USS) � � �
1
7

�,

P(State � DryFinding � USS) � 1 � �
1
7

� � �
6
7

�.

Similarly, if the seismic survey gives favorable seismic soundings (FSS), then

P(State � OilFinding � FSS) � � �
1
2

�,

P(State � DryFinding � FSS) � 1 � �
1
2

� � �
1
2

�.

0.6(0.25)
���
0.6(0.25) � 0.2(0.75)

0.4(0.25)
���
0.4(0.25) � 0.8(0.75)

P(Finding � finding jState � state i) P(State � state i)
�������

�
n

k�1
P(Finding � finding jState � state k) P(State � state k)

The Workers’ Compensation Board (WCB) of British
Columbia, Canada is responsible for the occupational
health and safety, rehabilitation, and compensation interests
of this province’s workers and employers. The WCB serves
more than 165,000 employers who employ about 1.8 mil-
lion workers in British Columbia. It spends approximately
US$1 billion annually on compensation and rehabilitation.

A key factor in controlling WCB costs is to identify
those short-term disability claims that pose a potentially
high financial risk of converting into a far more expen-
sive long-term disability claim unless there is intensive
early claim-management intervention to provide the
needed medical treatment and rehabilitation. The ques-
tion was how to accurately identify these high-risk claims
so as to minimize the expected total cost of claim com-
pensation and claim-management intervention.

An OR team was formed to study this problem by
applying decision analysis. For each of numerous cate-
gories of injury claims, based on the nature of the injury,
the gender and age of the worker, etc., a decision tree

was used to evaluate whether that category should be clas-
sified as low risk (not requiring intervention) or high risk
(requiring intervention), depending on the severity of the
injury. For each category, a calculation was made of the
cutoff point on the critical number of short-term disabil-
ity claim days paid that would trigger claim-management
intervention, so as to minimize the expected cost of claim
payments and intervention. A key in making this calcu-
lation was assessing the posterior probability that a claim
would become a long-term disability claim, given the
number of short-term disability claim days paid.

This application of decision analysis with decision
trees is now saving WCB approximately US $4 million
per year while also enabling some injured workers to re-
turn to work sooner.

Source: E. Urbanovich, E. E. Young, M. L. Puterman, and
S. O. Fattedad: “Early Detection of High-Risk Claims at the
Workers’Compensation Board of British Columbia,” Interfaces,
33(4): 15–26, July–Aug. 2003. (A link to this article is provided
on our website, www.mhhe.com/hillier.)

An Application Vignette
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The probability tree diagram in Fig. 15.2 shows a nice way of organizing these
calculations in an intuitive manner. The prior probabilities in the first column and the con-
ditional probabilities in the second column are part of the input data for the problem. Mul-
tiplying each probability in the first column by a probability in the second column gives the
corresponding joint probability in the third column. Each joint probability then becomes the
numerator in the calculation of the corresponding posterior probability in the fourth column.
Cumulating the joint probabilities with the same finding (as shown at the bottom of the fig-
ure) provides the denominator for each posterior probability with this finding. (If you would
like to see another example of using a probability tree diagram to determine the posterior
probabilities, one is included in the Worked Examples section of the book’s website.)

Your OR Courseware also includes an Excel template for computing these posterior
probabilities, as shown in Fig. 15.3.

After these computations have been completed, Bayes’ decision rule can be applied
just as before, with the posterior probabilities now replacing the prior probabilities. Again,
by using the payoffs (in units of thousands of dollars) from Table 15.2 and subtracting
the cost of the experimentation, we obtain the results shown below.

Expected payoffs if finding is unfavorable seismic soundings (USS):

E[Payoff (drillFinding � USS)] � �
1
7

�(700) � �
6
7

�(�100) � 30

� �15.7.

E[Payoff (sellFinding � USS)] � �
1
7

�(90) � �
6
7

�(90) � 30

� 60.

Prior
Probabilities

P(state)

Conditional
Probabilities

P(finding|state)

Joint
Probabilities

P(state and finding)

Posterior
Probabilities

P(state|finding)

0.25(0.6) = 0.15

0.25(0.4) = 0.1

0.75(0.2) = 0.15

0.75(0.8) = 0.6

0.15
0.3

= 0.5

0.1
0.7

= 0.14

0.15
0.3

= 0.5

0.6
0.7

= 0.86

Oil and USS

Dry and FSS

Dry and USS Dry, given USS

Dry, given FSS

Oil, given USS

Oil and FSS Oil, given FSS

FSS, given Oil0.6

USS, given Oil

USS, given Dry

FSS, given Dry0.2 

 O
il0.2

5

0.75Dry

0.4

0.8

Unconditional probabilities:  
P(finding)                

P(FSS) = 0.15 + 0.15 =  0.3
P(USS)      = 0.1 + 0.6 = 0.7

■ FIGURE 15.2
Probability tree diagram for
the full Goferbroke Co.
problem showing all the
probabilities leading to the
calculation of each posterior
probability of the state of
nature given the finding of
the seismic survey.
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Expected payoffs if finding is favorable seismic soundings (FSS):

E[Payoff (drillFinding � FSS)] � �
1
2

�(700) � �
1
2

�(�100) � 30

� 270.

E[Payoff (sellFinding � FSS)] � �
1
2

�(90) � �
1
2

�(90) � 30

� 60.

Since the objective is to maximize the expected payoff, these results yield the optimal pol-
icy shown in Table 15.5.

However, what this analysis does not answer is whether it is worth spending $30,000
to conduct the experimentation (the seismic survey). Perhaps it would be better to forgo

15.3 DECISION MAKING WITH EXPERIMENTATION 683

■ TABLE 15.5 The optimal policy with experimentation, under Bayes’ decision
rule, for the full Goferbroke Co. problem

Finding from Optimal Expected Payoff Expected Payoff Including
Seismic Survey Alternative Excluding Cost of Survey Cost of Survey

USS Sell the land 90 60
FSS Drill for oil 300 270

■ FIGURE 15.3
This posterior probabilities
template in your OR
Courseware enables efficient
calculation of posterior
probabilities, as illustrated
here for the full Goferbroke
Co. problem.
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this major expense and just use the optimal solution without experimentation (drill for oil,
with an expected payoff of $100,000). We address this issue next.

The Value of Experimentation

Before performing any experiment, we should determine its potential value. We present
two complementary methods of evaluating its potential value.

The first method assumes (unrealistically) that the experiment will remove all uncer-
tainty about what the true state of nature is, and then this method makes a very quick cal-
culation of what the resulting improvement in the expected payoff would be (ignoring the
cost of the experiment). This quantity, called the expected value of perfect information, pro-
vides an upper bound on the potential value of the experiment. Therefore, if this upper
bound is less than the cost of the experiment, the experiment definitely should be forgone.

However, if this upper bound exceeds the cost of the experiment, then the second
(slower) method should be used next. This method calculates the actual improvement in
the expected payoff (ignoring the cost of the experiment) that would result from per-
forming the experiment. Comparing this improvement (called the expected value of ex-
perimentation) with the cost indicates whether the experiment should be performed.

Expected Value of Perfect Information. Suppose now that the experiment could
definitely identify what the true state of nature is, thereby providing “perfect” informa-
tion. Whichever state of nature is identified, you naturally choose the action with the
maximum payoff for that state. We do not know in advance which state of nature will be
identified, so a calculation of the expected payoff with perfect information (ignoring
the cost of the experiment) requires weighting the maximum payoff for each state of na-
ture by the prior probability of that state of nature.

This calculation is shown at the bottom of Table 15.6 for the full Goferbroke Co.
problem, where the expected value of perfect information is 242.5. Thus, if the Goferbroke
Co. could learn before choosing its action whether the land contains oil, the expected pay-
off as of now (before acquiring this information) would be $242,500 (excluding the cost
of the experiment generating the information.)

To evaluate whether the experiment should be conducted, we now use this quantity
to calculate the expected value of perfect information.

The expected value of perfect information, abbreviated EVPI, is calculated as

EVPI � expected payoff with perfect information � expected payoff without
experimentation.2

■ TABLE 15.6 Expected payoff with perfect information 
for the full Goferbroke Co. problem

State of Nature

Alternative Oil Dry     

1. Drill for oil 700 �100
2. Sell the land 90 90

Maximum payoff 700 90
Prior probability 0.25 0.75

Expected payoff with perfect information � 0.25(700) � 0.75(90) � 242.5

2The value of perfect information is a random variable equal to the payoff with perfect information minus the
payoff without experimentation. EVPI is the expected value of this random variable.
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Thus, since experimentation usually cannot provide perfect information, EVPI provides
an upper bound on the expected value of experimentation.

For this same example, we found in Sec. 15.2 that the expected payoff without ex-
perimentation (under Bayes’ decision rule) is 100. Therefore,

EVPI � 242.5 � 100 � 142.5.

Since 142.5 far exceeds 30, the cost of experimentation (a seismic survey), it may be
worthwhile to proceed with the seismic survey. To find out for sure, we now go to the
second method of evaluating the potential benefit of experimentation.

Expected Value of Experimentation. Rather than just obtain an upper bound on the
expected increase in payoff (excluding the cost of the experiment) due to performing ex-
perimentation, we now will do somewhat more work to calculate this expected increase
directly. This quantity is called the expected value of experimentation. (It also is some-
times called the expected value of sample information.)

Calculating this quantity requires first computing the expected payoff with experimen-
tation (excluding the cost of the experiment). Obtaining this latter quantity requires doing
all the work described earlier to find all the posterior probabilities, the resulting optimal pol-
icy with experimentation, and the corresponding expected payoff (excluding the cost of the
experiment) for each possible finding from the experiment. Then each of these expected
payoffs needs to be weighted by the probability of the corresponding finding, that is,

Expected payoff with experimentation � �
j

P(Finding � finding j)
E[payoffFinding � finding j ],

where the summation is taken over all possible values of j.
For the prototype example, we have already done all the work to obtain the terms on

the right side of this equation. The values of P(Finding � finding j) for the two possible
findings from the seismic survey—unfavorable (USS) and favorable (FSS)—were calculated
at the bottom of the probability tree diagram in Fig. 15.2 as

P(USS) � 0.7, P(FSS) � 0.3.

For the optimal policy with experimentation, the corresponding expected payoff (exclud-
ing the cost of the seismic survey) for each finding was obtained in the third column of
Table 15.5 as

E(PayoffFinding � USS) � 90,

E(PayoffFinding � FSS) � 300.

With these numbers,

Expected payoff with experimentation � 0.7(90) � 0.3(300)

� 153.

Now we are ready to calculate the expected value of experimentation.

The expected value of experimentation, abbreviated EVE, is calculated as

EVE � expected payoff with experimentation � expected payoff without experimentation.

Thus, EVE identifies the potential value of experimentation.

For the Goferbroke Co.,

EVE � 153 � 100 � 53.

15.3 DECISION MAKING WITH EXPERIMENTATION 685
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■ FIGURE 15.4
The decision tree (before
including any numbers) for
the full Goferbroke Co.
problem.

Since this value exceeds 30, the cost of conducting a detailed seismic survey (in units of
thousands of dollars), this experimentation should be done.

■ 15.4 DECISION TREES

Decision trees provide a useful way of visually displaying the problem and then organiz-
ing the computational work already described in the preceding two sections. These trees
are especially helpful when a sequence of decisions must be made.

Constructing the Decision Tree

The prototype example involves a sequence of two decisions:

1. Should a seismic survey be conducted before an action is chosen?
2. Which action (drill for oil or sell the land) should be chosen?

The corresponding decision tree (before adding numbers and performing computations)
is displayed in Fig. 15.4.

The junction points in the decision tree are referred to as nodes (or forks), and the
lines are called branches.

A decision node, represented by a square, indicates that a decision needs to be
made at that point in the process. An event node (or chance node), represented
by a circle, indicates that a random event occurs at that point.
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The Westinghouse Science and Technology Center is the
Westinghouse Electric Corporation’s main research and de-
velopment (R&D) arm to develop new technology. The
process of evaluating R&D projects to decide which ones
should be initiated and then which ones should be contin-
ued as progress is made (or not made) is particularly chal-
lenging for management because of the great uncertainties
and very long time horizons involved. The actual launch
date for an embryonic technology may be years, even
decades, removed from its inception as a modest R&D pro-
posal to investigate the technology’s potential.

As the Center came under increasing pressure to re-
duce costs and deliver high-impact technology quickly,
the Center’s controller funded an operations research pro-
ject to improve this evaluation process. The OR team de-
veloped a decision tree approach to analyzing any R&D
proposal while considering its complete sequence of key
decision points. The first decision point is whether to fund

the proposed embryonic project for the first year or so.
If its early technical milestones are reached, the next de-
cision point is whether to continue funding the project
for some period. This may then be repeated one or more
times. If the late technical milestones are reached, the next
decision point is whether to prelaunch because the inno-
vation still meets strategic business objectives. If a strate-
gic fit is achieved, the final decision point is whether to
commercialize the innovation now or to delay its launch,
or to abandon it altogether. A decision tree with a pro-
gression of decision nodes and intervening event nodes
provides a natural way of depicting and analyzing such
an R&D project.

Source: R. K. Perdue, W. J. McAllister, P. V. King, and 
B. G. Berkey: “Valuation of R and D Projects Using Options
Pricing and Decision Analysis Models,” Interfaces, 29(6):
57–74, Nov.–Dec. 1999. (A link to this article is provided on
our website, www.mhhe.com/hillier.)

An Application Vignette

Thus, in Fig. 15.4, the first decision is represented by decision node a. Node b is an
event node representing the random event of the outcome of the seismic survey. The two
branches emanating from event node b represent the two possible outcomes of the survey.
Next comes the second decision (nodes c, d, and e) with its two possible choices. If the
decision is to drill for oil, then we come to another event node (nodes f, g, and h), where
its two branches correspond to the two possible states of nature.

Note that the path followed from node a to reach any terminal branch (except the
bottom one) is determined both by the decisions made and by random events that are out-
side the control of the decision maker. This is characteristic of problems addressed by
decision analysis.

The next step in constructing the decision tree is to insert numbers into the tree as shown
in Fig. 15.5. The numbers under or over the branches that are not in parentheses are the cash
flows (in thousands of dollars) that occur at those branches. For each path through the tree
from node a to a terminal branch, these same numbers then are added to obtain the result-
ing total payoff shown in boldface to the right of that branch. The last set of numbers is the
probabilities of random events. In particular, since each branch emanating from an event
node represents a possible random event, the probability of this event occurring from this
node has been inserted in parentheses along this branch. From event node h, the probabili-
ties are the prior probabilities of these states of nature, since no seismic survey has been
conducted to obtain more information in this case. However, event nodes f and g lead out
of a decision to do the seismic survey (and then to drill). Therefore, the probabilities from
these event nodes are the posterior probabilities of the states of nature, given the finding from
the seismic survey, where these numbers are given in Figs. 15.2 and 15.3. Finally, we have the
two branches emanating from event node b. The numbers here are the probabilities of these
findings from the seismic survey, Favorable (FSS) or Unfavorable (USS), as given under-
neath the probability tree diagram in Fig. 15.2 or in cells C15:C16 of Fig. 15.3.

Performing the Analysis

Having constructed the decision tree, including its numbers, we now are ready to analyze
the problem by using the following procedure.
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1. Start at the right side of the decision tree and move left one column at a time. For each
column, perform either step 2 or step 3 depending upon whether the nodes in that col-
umn are event nodes or decision nodes.

2. For each event node, calculate its expected payoff by multiplying the expected payoff
of each branch (shown in boldface to the right of the branch) by the probability of that
branch and then summing these products. Record this expected payoff for each decision
node in boldface next to the node, and designate this quantity as also being the ex-
pected payoff for the branch leading to this node.

3. For each decision node, compare the expected payoffs of its branches and choose the
alternative whose branch has the largest expected payoff. In each case, record the choice
on the decision tree by inserting a double dash as a barrier through each rejected branch.

To begin the procedure, consider the rightmost column of nodes, namely, event nodes
f, g, and h. Applying step 2, their expected payoffs (EP) are calculated as

EP � �
1
7

�(670) � �
6
7

�(�130) � �15.7, for node f,

EP � �
1
2

�(670) � �
1
2

�(�130) � 270, for node g,

EP � �
1
4

�(700) � �
3
4

�(�100) � 100, for node h.
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■ FIGURE 15.5
The decision tree in Fig. 15.4
after adding both the
probabilities of random
events and the payoffs.
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These expected payoffs then are placed above these nodes, as shown in Fig. 15.6.
Next, we move one column to the left, which consists of decision nodes c, d, and e.

The expected payoff for a branch that leads to an event node now is recorded in boldface
over that event node. Therefore, step 3 can be applied as follows.

Node c: Drill alternative has EP � �15.7.
Sell alternative has EP � 60.

60 � �15.7, so choose the Sell alternative.

Node d: Drill alternative has EP � 270.
Sell alternative has EP � 60.

270 � 60, so choose the Drill alternative.

Node e: Drill alternative has EP � 100.
Sell alternative has EP � 90.

100 � 90, so choose the Drill alternative.

The expected payoff for each chosen alternative now would be recorded in boldface over
its decision node, as already shown in Fig. 15.6. The chosen alternative also is indicated
by inserting a double dash as a barrier through each rejected branch.

Next, moving one more column to the left brings us to node b. Since this is an
event node, step 2 of the procedure needs to be applied. The expected payoff for each

15.4 DECISION TREES 689
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■ FIGURE 15.6
The final decision tree that
records the analysis for the
full Goferbroke Co. problem
when using monetary
payoffs.
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■ 15.5 USING SPREADSHEETS TO PERFORM SENSITIVITY 
ANALYSIS ON DECISION TREES

Some helpful spreadsheet software now is available for constructing and analyzing de-
cision trees on spreadsheets. One popular Excel add-in of this type is TreePlan, which
is shareware developed by Professor Michael Middleton. The academic version of
TreePlan (along with accompanying documentation) is included in your OR Courseware,
along with Professor Middleton’s companion shareware SensIt. (If you want to continue
to use either software package after this course, you will need to register and pay the
shareware fee.) As mentioned at the end of Sec. 15.2, SensIt is designed for conducting
sensitivity analysis.

Before turning to SensIt, we will describe how TreePlan is used to create a decision
tree. To simplify this discussion, we will begin by illustrating the construction of a small
decision tree for the first Goferbroke Co. problem (no consideration of conducting a seis-
mic survey) before considering the full problem.

of its branches is recorded over the following decision node. Therefore, the expected
payoff is

EP � 0.7(60) � 0.3(270) � 123, for node b,

as recorded over this node in Fig. 15.6.
Finally, we move left to node a, a decision node. Applying step 3 yields

Node a: Do seismic survey has EP � 123.
No seismic survey has EP � 100.

123 � 100, so choose Do seismic survey.

This expected payoff of 123 now would be recorded over the node, and a double dash in-
serted to indicate the rejected branch, as already shown in Fig. 15.6.

This procedure has moved from right to left for analysis purposes. However, having
completed the decision tree in this way, the decision maker now can read the tree from
left to right to see the actual progression of events. The double dashes have closed off the
undesirable paths. Therefore, given the payoffs for the final outcomes shown on the right
side, Bayes’ decision rule says to follow only the open paths from left to right to achieve
the largest possible expected payoff.

Following the open paths from left to right in Fig. 15.6 yields the following optimal
policy, according to Bayes’ decision rule.

Optimal policy:
Do the seismic survey.
If the result is unfavorable, sell the land.
If the result is favorable, drill for oil.
The expected payoff (including the cost of the seismic survey) is 123 ($123,000).

This (unique) optimal solution naturally is the same as that obtained in the preceding sec-
tion without the benefit of a decision tree. (See the optimal policy with experimentation
given in Table 15.5 and the conclusion at the end of Sec. 15.3 that experimentation is
worthwhile.)

For any decision tree, this backward induction procedure always will lead to the
optimal policy (or policies) after the probabilities are computed for the branches emanat-
ing from an event node.

Another example of solving a decision tree in this way is included in the Worked
Examples section of the book’s website.
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■ FIGURE 15.7
The default decision tree
created by TreePlan by
selecting Decision Tree from
the Add-Ins tab or Tools
menu, clicking on New Tree,
and then entering the Drill
and Sell labels for the two
decision alternatives.

How TreePlan Constructs the Decision Tree 
for the First Goferbroke Co. Problem

Consider the first Goferbroke Co. problem (no seismic survey) as summarized earlier in
Table 15.2. To begin creating the corresponding decision tree using TreePlan (after installing
this add-in in Excel), select Decision Tree from the Add-Ins tab (for Excel 2007) or Tools
menu (for earlier versions of Excel) and click on New Tree. This creates the default deci-
sion tree shown in Fig. 15.7 with a single (square) decision node with two branches. It so
happens that this is exactly what is needed for the first node in the current problem. How-
ever, even if something else were needed, it is easy to make changes to a node in TreePlan.
Simply select the cell containing the node (B5 in Fig. 15.7) and choose Decision Tree from
the Add-Ins tab or Tools menu. This brings up a dialogue box that allows you to change the
type of node (e.g., from a decision node to an event node) or add more branches.

By default, the labels for the decisions (cells D2 and D7 in Fig. 15.7) are “Deci-
sion 1,” “Decision 2,” and so on. These labels are changed by clicking on them and typ-
ing a new label. In Fig. 15.7, these labels have already been changed to “Drill” and
“Sell,” respectively.

If the decision is to drill, the next event is to learn whether or not the land contains
oil. To create an event node, click on the cell containing the triangle terminal node at the
end of the drill branch (cell F3 in Fig. 15.7), and choose Decision Tree from the Add-Ins
tab or Tools menu. This brings up the TreePlan Acad.-Terminal Node dialogue box shown
second from the top in Fig. 15.8. Choose the “Change to event node” option on the left
and select the two branches option on the right and then click OK. This results in the deci-
sion tree with the nodes and branches shown in Fig. 15.9 (after replacing the default labels
“Event 1” and “Event 2” with “Oil” and “Dry,” respectively).

At any time, you also can click on any existing decision node (a square) or event
node (a circle) and choose Decision Tree from the Add-Ins tab or Tools menu to bring up
the corresponding dialogue box—“TreePlan Acad.-Decision Node” or “TreePlan Acad.-
Event Node”—to make any of the modifications listed in Fig. 15.8 at that node.

Initially, each branch would show a default value of 0 for the net cash flow being gen-
erated there (the numbers appear below the branch labels: D6, D14, H4, and H9 in Fig. 15.9).
Also, each of the two branches leading from the event node would display default values of
0.5 for their prior probabilities (the probabilities are just above the corresponding labels:
H1 and H6 in Fig. 15.9). Therefore, you next should click on these default values and re-
place them with the correct numbers, namely,
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■ FIGURE 15.9
The decision tree constructed and solved by TreePlan for the first Goferbroke Co. problem as presented in Table 15.2,
where the 1 in cell B9 indicates that the top branch (the Drill alternative) should be chosen.

■ FIGURE 15.8
The dialogue boxes used by TreePlan for constructing a decision tree.
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D6 � –100 (the cost of drilling is $100,000),
D14 � 90 (the profit from selling is $90,000),
H1 � 0.25 (the prior probability of oil is 0.25),
H4 � 800 (the net revenue after finding oil is $800,000),
H6 � 0.75 (the prior probability of dry is 0.75),
H9 � 0 (the net revenue after finding dry is 0),

as shown in the figure.
At each stage in constructing a decision tree, TreePlan automatically solves for the

optimal policy with the current tree when using Bayes’ decision rule. The number inside
each decision node indicates which branch should be chosen (assuming the branches em-
anating from that node are numbered consecutively from top to bottom). Thus, for the fi-
nal decision tree in Fig. 15.9, the number 1 in cell B9 specifies that the first branch (the
Drill alternative) should be chosen. The number on both sides of each terminal node is
the payoff if that node is reached. The number 100 in cells A10 and E6 is the expected
payoff at those stages in the process.

We think that you will find this procedure with TreePlan quite intuitive when you ex-
ecute it on a computer. If you spend considerable time with TreePlan, you also will find
that it has many helpful features that haven’t been described in this brief introduction.

The Decision Tree for the Full Goferbroke Co. Problem

Now consider the full Goferbroke Co. problem, where the first decision to be made is
whether to conduct a seismic survey. Continuing the procedure described above,
TreePlan would be used to construct and solve the decision tree shown in Fig. 15.10.
Although the form is somewhat different, note that this decision tree is completely equiv-
alent to the one in Fig. 15.6. Besides the convenience of constructing the tree directly
on a spreadsheet, TreePlan also provides the key advantage of automatically solving the
decision tree. Rather than relying on hand calculations as in Fig. 15.6, TreePlan in-
stantaneously calculates all the expected payoffs at each stage of the tree, as shown next
to each node, as soon as the decision tree is constructed. Instead of using double dashes,
TreePlan puts a number inside each decision node indicating which branch should be
chosen (assuming the branches emanating from that node are numbered consecutively
from top to bottom).

Organizing the Spreadsheet to Perform Sensitivity Analysis

The end of Sec. 15.2 illustrated how sensitivity analysis can be performed on a small
problem (the first Goferbroke Co. problem), where only a single decision (drill or sell)
needs to be made. In that case, the analysis was quite straightforward because the ex-
pected payoff for each decision alternative could be expressed as a simple function of
the model parameter (the prior probability of oil) being considered. By contrast, when
a sequence of decisions needs to be made, as for the full Goferbroke Co. problem,
sensitivity analysis becomes somewhat more involved. There now are more model pa-
rameters (the various costs, revenues, and probabilities) that might have sufficient un-
certainty to warrant performing sensitivity analysis. Furthermore, finding the maximum
expected payoff for any particular values of the model parameters now requires solving
a decision tree. Therefore, using spreadsheet software such as TreePlan that automat-
ically solves the decision tree becomes very helpful. Adding software that is specifically
designed for conducting sensitivity analysis, such as SensIt, then quickly provides fur-
ther insights.
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Beginning with the spreadsheet that already contains the decision tree, the next step
is to expand and organize this spreadsheet for performing sensitivity analysis. We now
will illustrate this for the full Goferbroke Co. problem by starting with the spreadsheet in
Fig. 15.10 that contains the decision tree constructed by TreePlan.

It is helpful to begin by consolidating the data and results into a new section, as shown
on the right-hand side of Fig. 15.11. All the data cells in the decision tree now would need
to make reference to the consolidated data cells (cells V4:V11), as illustrated by the 
formulas shown for cells P6 and P11 at the bottom of the figure. Similarly, the summarized
results to the right of the decision tree make reference to the output cells within the de-
cision tree (the decision nodes in cells B29, F41, J11, and J26, as well as the expected
payoff in cell A30) by using the formulas for cells U19, V15, V26, and W19:W20 dis-
played at the bottom of Fig. 15.11.

The probability data in the decision tree are complicated by the fact that the poste-
rior probabilities will need to be updated any time a change is made in any of the prior
probability data. Fortunately, the template for calculating posterior probabilities (as shown
in Fig. 15.3) can be used to do these calculations. The relevant portion of this template
(B3:H19) has been copied (using the Copy and Paste commands in the Edit menu) to the
spreadsheet in Fig. 15.11 (now appearing in U30:AA46). The data for the template refer
to the probability data in the data cells PriorProbabilityOfOil (V9), ProbFSSGivenOil
(V10), and ProbUSSGivenDry (V11), as shown in the formulas for cells V33:X34 at the

694 CHAPTER 15 DECISION ANALYSIS

■ FIGURE 15.10
The decision tree constructed
and solved by TreePlan for
the full Goferbroke Co.
problem that also considers
whether to do a seismic
survey.
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■ FIGURE 15.11
In preparation for
performing sensitivity
analysis on the full
Goferbroke problem, the
data and results have been
consolidated on the
spreadsheet to the right of
the decision tree.

bottom of Fig. 15.11. The template automatically calculates the probability of each find-
ing and the posterior probabilities (in cells V42:X43) based on these data. The decision
tree then refers to these calculated probabilities when they are needed, as shown in the
formulas for cells P3:P11 in Fig. 15.11.

Consolidating the data and results offers a couple of advantages. First, it assures
that each piece of data is in only one place. Each time that piece of data is needed in
the decision tree, a reference is made to the single data cell. This greatly simplifies
sensitivity analysis. To change a piece of data, you need to change it in only one place
rather than searching through the entire tree to find and change all occurrences of that
piece of data. A second advantage of consolidating the data and results is that it makes
it easy for anyone to interpret the model. It is not necessary to understand TreePlan or
how to read a decision tree in order to see what data were used in the model or what
the suggested plan of action and expected payoff are.

While it takes some time and effort to consolidate the data and results, including all
the necessary cross-referencing, this step is truly essential for performing sensitivity analy-
sis. Many pieces of data are used in several places on the decision tree. For example, the
revenue if Goferbroke finds oil appears in cells P6, P21, and L36. Performing sensitivity
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analysis on this piece of data now requires changing its value in only one place (cell V6)
rather than three (cells P6, P21, and L36). The benefits of consolidation are even more
important for the probability data. Changing any prior probability may cause all the pos-
terior probabilities to change. By including the posterior probability template, you can
change the prior probability in one place, and then all the other probabilities are calcu-
lated and updated appropriately.

After making any change in the cost data, revenue data, or probability data in Fig. 15.11,
the spreadsheet nicely summarizes the new results after the actual work to obtain these
results is instantly done by the posterior probability template and the decision tree. There-
fore, experimenting with alternative data values in a trial-and-error manner is one useful
way of performing sensitivity analysis.

However, it would be desirable to have another method of performing sensitivity
analysis more systematically. This is where SensIt becomes very helpful. It provides an
easy way to systematically create informative sensitivity analysis graphs that display the
effect of changing the number in the respective data cells of interest. SensIt is designed
to be integrated with TreePlan (although it also can perform other types of sensitivity
analysis that don’t require the use of TreePlan).

Using SensIt to Create Three Types of Sensitivity Analysis Graphs

Installing SensIt adds a Sensitivity Analysis menu item to the Add-Ins tab (for Excel 2007)
or Tools menu (for earlier versions of Excel). This menu item has a submenu giving a
choice of two different kinds of sensitivity analysis: (1) plotting a graph of a single output
(such as expected payoff) versus a single input (such as the prior probability of oil) or
(2) generating charts that simultaneously compare the effect of multiple inputs on a
single output. We will now describe these two kinds of sensitivity analysis in turn.

Choosing the option of plotting a graph of a single output versus a single input brings
up the dialogue box shown in Fig. 15.12. The top half of this dialogue box is used to spec-
ify the data cell that will be varied (the prior probability of oil in cell V9) and the output cell
of interest (the expected payoff in cell V26). Optionally, the cells containing the labels for
these cells may also be specified (cells U9 and V24, respectively). These labels are used to

■ FIGURE 15.12
The dialogue box used by
SensIt to plot a graph of a
single output versus a single
input. 
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■ FIGURE 15.13
The graph generated 
by SensIt for the full
Goferbroke Co. problem 
to show how the expected
payoff (when using Bayes’
decision rule) depends on
the prior probability of oil.

label the axes of the graph that is created. The bottom half of the dialogue box is used to
specify the range of values to be considered for the single data cell (the prior probability of
oil). In this case, all values between 0 and 1 (at intervals of 0.05) will be considered. Click-
ing OK then generates the graph shown in Fig. 15.13 that reveals the relationship between
the prior probability of oil and the expected payoff that results from using the optimal pol-
icy given this probability.

This graph indicates that the expected payoff starts increasing when the prior proba-
bility is a little over 0.15 and then starts increasing more rapidly when this probability is
around 0.3. This suggests that the optimal policy changes at roughly these values of the
prior probability. To check this out, the spreadsheet in Fig. 15.11 can be used to see how
the results change when the prior probability of oil is slowly increased in the vicinity of
these values. This kind of trial-and-error analysis soon leads to the following conclusions
about how the optimal policy depends on this probability.

Optimal Policy

Let p � Prior probability of oil.

If p � 0.168, then sell the land (no seismic survey).

If 0.169 � p � 0.308, then do the survey: drill if favorable and sell if not.

If p � 0.309, then drill for oil (no seismic survey).

This sensitivity analysis has focused so far on investigating the effect if the true proba-
bility of finding oil is different from the original prior probability of 0.25. Similar analysis
could be done with respect to the probabilities in cells V10:V11 of Fig. 15.11. However, since
there is significant uncertainty about the cost and revenue data in cells V4:V7, we turn next
to performing sensitivity analysis with respect to these data.

Suppose we want to investigate how the expected payoff would change if any one of
the costs or revenues in cells V4:V7 were to change. This requires making some additions
to the original spreadsheet (Fig. 15.11). As shown in Fig. 15.14, three columns are added
for each data cell that will be varied, indicating the lowest value, base value, and highest
value. Suppose that the cost of the survey and the revenue if the land is sold are fairly
predictable (thus varying over a small range of 28–32 and 85–95, respectively), while the
cost of drilling and the revenue if oil is struck are more variable (thus varying over a large
range of 75–140 and 600–1,000, respectively).
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■ FIGURE 15.15
The dialogue box used by
SensIt to simultaneously
investigate the effect of
changing any one of several
inputs on a single output.

■ FIGURE 15.14
Expansion of the spreadsheet
in Fig. 15.11 to prepare for
using SensIt to investigate
the effect of changing any
cost or revenue values on the
expected payoff.

Since we want to investigate how the expected payoff would change if any one of the
costs or revenues in cells V4:V7 were to change, we now have four inputs (these costs
and revenues) and one output (the expected payoff). Therefore, after expanding the spread-
sheet as shown in Fig. 15.14, the next step is to bring up the SensIt dialogue box for
“many inputs, one output.” This dialogue box (called by choosing the corresponding item
in the Sensitivity Analysis menu on the Add-Ins tab for Excel 2007 or under the Tools
menu for earlier versions of Excel) is shown in Fig. 15.15. It is used to specify which
contiguous data cells will be varied, which output cell will be examined, and the location
of the cells specifying the range (low, base, and high) for the data cells. The Step Percent
box is used to specify the desired step size (as a percentage of the base value) in each in-
put value at which the expected payoff will be recalculated until the low and high values
of the input are reached. The lower right-hand side of the dialogue box gives a choice of
three charts for displaying the effect of alternative values of any one of these inputs on
the output. Suppose that the “single-factor spider chart” option is chosen (as shown in
Fig. 15.16). Clicking OK then generates the spider chart shown in Fig. 15.17.

Each line in the spider chart in this figure plots the expected payoff as one of the se-
lected data cells (V4:V7) is changed from its original value by being multiplied by the
percentage indicated along the bottom of the graph. (The cost of survey line lies on top
of the cost of drilling line, but is much shorter than the latter line since it only extends to
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93.3% on its left side and to 106.7% on its right side.) The fact that the revenue if oil line
is the steepest one reveals that the expected payoff is particularly sensitive to the esti-
mate of the revenue if oil is found, so any additional work on refining the estimates
should focus the most attention on this one.

Now suppose that the “single-factor tornado chart” option in Fig. 15.15 is chosen in-
stead. Clicking OK then generates the tornado chart shown in Fig. 15.17. Each bar in

■ FIGURE 15.16
The spider chart
generated by SensIt for
the full Goferbroke Co.
problem to show how 
the expected payoff
(when using Bayes’
decision rule) varies with
changes in any one of the
cost or revenue estimates.
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■ FIGURE 15.17
The tornado chart generated SensIt for the full Goferbroke Co. problem to show how much the expected payoff (when
using Bayes’ decision rule) can vary over the entire range of likely values of any one of the cost or revenue estimates.
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Thus far, when applying Bayes’ decision rule, we have assumed that the expected payoff
in monetary terms is the appropriate measure of the consequences of taking an action.
However, in many situations this assumption is inappropriate.

For example, suppose that an individual is offered the choice of (1) accepting a 50:50
chance of winning $100,000 or nothing or (2) receiving $40,000 with certainty. Many peo-
ple would prefer the $40,000 even though the expected payoff on the 50:50 chance of
winning $100,000 is $50,000. A company may be unwilling to invest a large sum of money
in a new product even when the expected profit is substantial if there is a risk of losing
its investment and thereby becoming bankrupt. People buy insurance even though it is a
poor investment from the viewpoint of the expected payoff.

Do these examples invalidate Bayes’ decision rule? Fortunately, the answer is no,
because there is a way of transforming monetary values to an appropriate scale that
reflects the decision maker’s preferences. This scale is called the utility function for
money.

Utility Functions for Money

Figure 15.18 shows a typical utility function U(M ) for money M. It indicates that an in-
dividual having this utility function would value obtaining $30,000 twice as much as
$10,000 and would value obtaining $100,000 twice as much as $30,000. This reflects the
fact that the person’s highest-priority needs would be met by the first $10,000. Having
this decreasing slope of the function as the amount of money increases is referred to as
having a decreasing marginal utility for money. Such an individual is referred to as be-
ing risk-averse.

However, not all individuals have a decreasing marginal utility for money. Some peo-
ple are risk seekers instead of risk-averse, and they go through life looking for the “big
score.” The slope of their utility function increases as the amount of money increases, so
they have an increasing marginal utility for money.

The intermediate case is that of a risk-neutral individual, who prizes money at its
face value. Such an individual’s utility for money is simply proportional to the amount of
money involved. Although some people appear to be risk-neutral when only small amounts
of money are involved, it is unusual to be truly risk-neutral with very large amounts.

It also is possible to exhibit a mixture of these kinds of behavior. For example, an in-
dividual might be essentially risk-neutral with small amounts of money, then become a risk
seeker with moderate amounts, and then turn risk-averse with large amounts. In addition,
one’s attitude toward risk can shift over time depending upon circumstances.

■ 15.6 UTILITY THEORY

the graph shows the range of change in the expected payoff as the corresponding cost or
revenue is varied over the range of values indicated numerically at the ends of each bar.
The width of each bar in the graph measures how sensitive the expected payoff is to
changes in that bar’s cost or revenue. Once again, revenue if oil stands out as causing
much more sensitivity than the other costs or revenues.

The spider chart in Fig. 15.16 and the tornado chart in Fig. 15.17 actually provide
the same information in complementary ways. Which one conveys this information more
vividly is largely a matter of taste.

We will not discuss the third option (a “two-factor tornado chart”) in Fig. 15.15. Fur-
ther information and complete documentation for SensIt (as for TreePlan) is provided in
a Users Guide on the book’s website.
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$10,000 $30,000 $60,000 $100,000 M

1

0.75

0.5

0.25

0

■ FIGURE 15.18
A typical utility function for
money, where U(M) is the
utility of obtaining an
amount of money M.

An individual’s attitude toward risk also may be different when dealing with one’s
personal finances than when making decisions on behalf of an organization. For example,
managers of a business firm need to consider the company’s circumstances and the col-
lective philosophy of top management in determining the appropriate attitude toward risk
when making managerial decisions.3

The fact that different people have different utility functions for money has an im-
portant implication for decision making in the face of uncertainty.

When a utility function for money is incorporated into a decision analysis approach to a
problem, this utility function must be constructed to fit the preferences and values of the
decision maker involved. (The decision maker can be either a single individual or a group
of people.)

The scale of the utility function is irrelevant. In other words, it doesn’t matter
whether the value of U(M) at the dashed lines in Fig. 15.18 are 0.25, 0.5, 0.75, 1 (as
shown) or 10,000, 20,000, 30,000, 40,000, or whatever. All the utilities can be multi-
plied by any positive constant without affecting which alternative course of action will

3For a survey of the shape of the utility function for 332 owner-managers and the impact of this shape on or-
ganizational behavior, see J. M. E. Pennings and A. Smidts, “The Shape of Utility Functions and Organizational
Behavior,” Management Science, 49: 1251–1263, 2003.
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have the largest expected utility. It also is possible to add the same constant (positive
or negative) to all the utilities without affecting which course of action will have the
largest expected utility.

For these reasons, we have the liberty to set the value of U(M) arbitrarily for two
values of M, so long as the higher monetary value has the higher utility. It is partic-
ularly convenient (although certainly not necessary) to set U(M) � 0 for the smallest
value of M under consideration and to set U(M) � 1 for the largest M, as was done
in Fig. 15.18. By assigning a utility of 0 to the worst outcome and a utility of 1 to
the best outcome, and then determining the utilities of the other outcomes accord-
ingly, it becomes easy to see the relative utility of each outcome along the scale from
worst to best.

The key to constructing the utility function for money to fit the decision maker is the
following fundamental property of utility functions.

Fundamental Property: Under the assumptions of utility theory, the decision
maker’s utility function for money has the property that the decision maker is in-
different between two alternative courses of action if the two alternatives have
the same expected utility.

To illustrate, suppose that the decision maker has the utility function shown in Fig. 15.19.
Further suppose that the decision maker is offered the following opportunity.
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■ FIGURE 15.19
The utility function for
money of the owner 
of the Goferbroke Co.

hil76299_ch15_672-722.qxd  11/6/08  02:02 PM  Page 702



Confirming Pages

Offer: An opportunity to obtain either $100,000 (utility � 1) with probability
p or nothing (utility � 0) with probability (1 � p).

Thus,

E(utility) � p, for this offer.

Therefore, for each of the following three pairs of alternatives, the decision maker is in-
different between the first and second alternatives:

1. The offer with p � 0.25 [E(utility) � 0.25] or definitely obtaining $10,000 (utility �
0.25)

2. The offer with p � 0.5 [E(utility) � 0.5] or definitely obtaining $30,000 (utility � 0.5)
3. The offer with p � 0.75 [E(utility) � 0.75] or definitely obtaining $60,000 (utility �

0.75)

This example also illustrates one way in which the decision maker’s utility function
for money can be constructed in the first place. The decision maker would be made the
same hypothetical offer to obtain either a large amount of money (for example, $100,000)
with probability p or nothing. Then, for each of a few smaller amounts of money (for ex-
ample, $10,000, $30,000, and $60,000), the decision maker would be asked to choose a
value of p that would make him or her indifferent between the offer and definitely ob-
taining that amount of money. The utility of the smaller amount of money then is p times
the utility of the large amount. This procedure, called the equivalent lottery method for
determining utilities, is outlined below.

Equivalent Lottery Method

1. Determine the largest potential payoff, M � maximum, and assign it some utility, e.g.,
U(maximum) � 1.

2. Determine the smallest potential payoff, M � minimum, and assign it some utility
smaller than in step 1, e.g., U(minimum) � 0.

3. To determine the utility of another potential payoff M, the decision maker is offered
the following two hypothetical alternatives:

A1: Obtain a payoff of maximum with probability p,
Obtain a payoff of minimum with probability 1 � p.

A2: Definitely obtain a payoff of M.

Question to the decision maker: What value of p makes you indifferent between these
two alternatives? The resulting utility of M then is

U(M) � p U(maximum) � (1 � p) U(minimum),

which simplifies to

U(M) � p, if U(minimum) � 0, U(maximum) � 1.

Now we are ready to summarize the basic role of utility functions in decision analysis.

When the decision maker’s utility function for money is used to measure the relative worth
of the various possible monetary outcomes, Bayes’ decision rule replaces monetary pay-
offs by the corresponding utilities. Therefore, the optimal action (or series of actions) is
the one which maximizes the expected utility.

Only utility functions for money have been discussed here. However, we should men-
tion that utility functions can sometimes still be constructed when some of or all the
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important consequences of the alternative courses of action are not monetary. (For example,
the consequences of a doctor’s decision alternatives in treating a patient involve the future
health of the patient.) Nevertheless, under these circumstances, it is important to incorpo-
rate such value judgments into the decision process. This is not necessarily easy, since it
may require making value judgments about the relative desirability of rather intangible con-
sequences. Nevertheless, under these circumstances, it is important to incorporate such value
judgments into the decision process.

Applying Utility Theory to the Full Goferbroke Co. Problem

At the end of Sec. 15.1, we mentioned that the Goferbroke Co. was operating without
much capital, so a loss of $100,000 would be quite serious. The owner of the company
already has gone heavily into debt to keep going. The worst-case scenario would be to
come up with $30,000 for a seismic survey and then still lose $100,000 by drilling when
there is no oil. This scenario would not bankrupt the company at this point, but definitely
would leave it in a precarious financial position.

On the other hand, striking oil is an exciting prospect, since earning $700,000 finally
would put the company on a fairly solid financial footing.

To apply the owner’s (decision maker’s) utility function for money to the problem as
described in Secs. 15.1 and 15.3, it is necessary to identify the utilities for all the pos-
sible monetary payoffs. In units of thousands of dollars, these possible payoffs and the
corresponding utilities are given in Table 15.7. We now will discuss how these utilities
were obtained.

As a starting point in constructing the utility function, since we have the liberty to
set the value of U(M) arbitrarily for two values of M (so long as the higher monetary
value has the higher utility), it was convenient to set U(�130) � 0 and U(700) � 1.
Then the equivalent lottery method was applied to determine the utility for another of
the possible monetary payoffs, M � 90, by posing the following question to the deci-
sion maker (the owner of the Goferbroke Co.).

Suppose you have only the following two alternatives. In units of thousands of dollars,
alternative 1 is to obtain a payoff of 700 with probability p and a payoff of �130 (loss
of 130) with probability 1 � p. Alternative 2 is to definitely obtain a payoff of 90. What
value of p makes you indifferent between these two alternatives?

The decision maker’s choice: p � 1–
3, so U(90) � 0.333. 

Next, the equivalent lottery method was applied in the same way to M � �100. In
this case, the decision maker’s point of indifference was p � 1—

20, so U(�100) � 0.05.
At this point, a smooth curve was drawn through U(�130), U(�100), U(90), and U(700)

to obtain the decision maker’s utility function for money shown in Fig. 15.19. The values on

■ TABLE 15.7 Utilities for the full
Goferbroke Co. problem

Monetary Payoff Utility

�130 0
�100 0.05

60 0.30
90 0.333

670 0.97
700 1
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this curve at M � 60 and M � 670 provide the corresponding utilities, U(60) � 0.30 and
U(670) � 0.97, which completes the list of utilities given in the right column of Table 15.7.
The shape of this curve indicates that the owner of the Goferbroke Co. is moderately risk
averse. By contrast, the dashed line drawn at 45° in Fig. 15.19 shows what his utility
function would have been if he were risk-neutral.

By nature, the owner of the Goferbroke Co. actually is inclined to be a risk seeker.
However, the difficult financial circumstances of his company, which he badly wants to
keep solvent, have forced him to adopt a moderately risk-averse stance in addressing his
current decisions.

Another Approach for Estimating U(M)

The above procedure for constructing U(M ) asks the decision maker to repeatedly make
a difficult decision about which probability would make him or her indifferent between
two alternatives. Many individuals would be uncomfortable with making this kind of
decision. Therefore, an alternative approach is sometimes used instead to estimate the util-
ity function for money.

This approach is to assume that the utility function has a certain mathematical form,
and then adjust this form to fit the decision maker’s attitude toward risk as closely as pos-
sible. For example, one particularly popular form to assume (because of its relative sim-
plicity) is the exponential utility function,

U(M ) � R�1 � e��MR��,

where R is the decision maker’s risk tolerance. This utility function has a decreasing mar-
ginal utility for money, so it is designed to fit a risk-averse individual. A great aversion
to risk corresponds to a small value of R (which would cause the utility function curve to
bend sharply), whereas a small aversion to risk corresponds to a large value of R (which
gives a much more gradual bend in the curve).

Since the owner of the Goferbroke Co. has a relatively small aversion to risk, the
utility function curve in Fig. 15.19 bends quite slowly. It bends particularly slowly for
the large values of M near the right side of Fig. 15.19, so the corresponding value of R
in this region is approximately R � 2000. On the other hand, the owner becomes much
more risk-averse when large losses can occur, since this now would threaten bankruptcy,
so the utility function curve has considerably more curvature in this region where M has
large negative values. Therefore, the corresponding value of R is considerably smaller, only
about R � 500, in this region.

Unfortunately, it is not possible to use two different values of R for the same utility
function. A drawback of the exponential utility function is that it assumes a constant
aversion to risk (a fixed value of R), regardless of how much (or how little) money the
decision maker currently has. This doesn’t fit the Goferbroke Co. situation, since the cur-
rent shortage of money makes the owner much more concerned than usual about incur-
ring a large loss.

In other situations where the consequences of the potential losses are not as severe,
assuming an exponential utility function may provide a reasonable approximation. In such
a case, here is an easy (slightly approximate) way of estimating the appropriate value of R.
The decision maker would be asked to choose the number R that would make him (or her)
indifferent between the following two alternatives.

A1: A 50-50 gamble where he would gain R dollars with probability 0.5 and lose �
R
2

�
dollars with probability 0.5.

A2: Neither gain nor lose anything.
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■ FIGURE 15.20
The final decision tree for the
full Goferbroke Co. problem,
using the owner’s utility
function for money to
maximize expected utility.

TreePlan includes the option of using the exponential utility function. First, the value
of R needs to be specified on the spreadsheet. The cell containing this value then needs
to be given a range name of RT (TreePlan refers to this term as the risk tolerance). Then
click on the Options button in the TreePlan dialogue box and select the “Use Exponen-
tial Utility Function” option. Clicking OK then revises the decision tree to incorporate the
exponential utility function.

Using a Decision Tree to Analyze the Goferbroke Co. 
Problem with Utilities

Now that the utility function for money of the owner of the Goferbroke Co. has been ob-
tained in Table 15.7 (and Fig. 15.19), this information can be used with a decision tree as
summarized next.

The procedure for using a decision tree to analyze the problem now is identical to that 
described in the preceding section except for substituting utilities for monetary payoffs. There-
fore, the value obtained to evaluate each node of the tree now is the expected utility there
rather than the expected (monetary) payoff. Consequently, the optimal decisions selected by
Bayes’ decision rule maximize the expected utility for the overall problem.

Thus, our final decision tree shown in Fig. 15.20 closely resembles the one in
Fig. 15.6 given in Sec. 15.4. The nodes and branches are exactly the same, as are the
probabilities for the branches emanating from the event nodes. For informational purposes,
the total monetary payoffs still are given to the right of the terminal branches (but we no
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longer bother to show the individual monetary payoffs next to any of the branches). How-
ever, we now have added the utilities on the right side. It is these numbers that have been
used to compute the expected utilities given next to all the nodes.

These expected utilities lead to the same decisions at nodes a, c, and d as in Fig. 15.6,
but the decision at node e now switches to sell instead of drill. However, the backward
induction procedure still leaves node e on a closed path. Therefore, the overall optimal
policy remains the same as given at the end of Sec. 15.4 (do the seismic survey; sell if
the result is unfavorable; drill if the result is favorable).

The approach used in the preceding sections of maximizing the expected monetary
payoff amounts to assuming that the decision maker is risk-neutral, so that U(M ) � M.
By using utility theory, the optimal solution now reflects the decision maker’s attitude
about risk. Because the owner of the Goferbroke Co. adopted only a moderately risk-averse
stance, the optimal policy did not change from before. For a somewhat more risk-averse
owner, the optimal solution would switch to the more conservative approach of immedi-
ately selling the land (no seismic survey). (See Prob. 15.6-1.)

The current owner is to be commended for incorporating utility theory into a deci-
sion analysis approach to his problem. Utility theory helps to provide a rational approach
to decision making in the face of uncertainty. However, many decision makers are not suf-
ficiently comfortable with the relatively abstract notion of utilities, or with working with
probabilities to construct a utility function, to be willing to use this approach. Conse-
quently, utility theory is not yet used very widely in practice.

■ 15.7 THE PRACTICAL APPLICATION OF DECISION ANALYSIS

In one sense, this chapter’s prototype example (the Goferbroke Co. problem) is a very
typical application of decision analysis. Like other applications, management needed to
make some decisions (Do a seismic survey? Drill for oil or sell the land?) in the face of
great uncertainty. The decisions were difficult because their payoffs were so unpredictable.
The outcome depended on factors that were outside management’s control (does the land
contain oil or is it dry?). Therefore, management needed a framework and methodology
for rational decision making in this uncertain environment. These are the usual charac-
teristics of applications of decision analysis.

However, in other ways, the Goferbroke problem is not such a typical application. It
was oversimplified to include only two possible states of nature (Oil and Dry), whereas there
actually would be a considerable number of distinct possibilities. For example, the actual
state might be dry, a small amount of oil, a moderate amount, a large amount, and a huge
amount, plus different possibilities concerning the depth of the oil and soil conditions that
impact the cost of drilling to reach the oil. Management also was considering only two al-
ternatives for each of two decisions. Real applications commonly involve more decisions,
more alternatives to be considered for each one, and many possible states of nature.

When dealing with larger problems, the decision tree can explode in size, with per-
haps many thousand terminal branches. In this case, it clearly would not be feasible to
construct the tree by hand, including computing posterior probabilities, and calculating
the expected payoffs (or utilities) for the various nodes, and then identifying the optimal
decisions. Fortunately, some excellent software packages (mainly for personal computers)
are available specifically for doing this work. (See Selected Reference 9 for a survey of
these software packages.) Furthermore, special algebraic techniques are being developed
and incorporated into the computer solvers for dealing with ever larger problems.4

4For example, see C. W. Kirkwood, “An Algebraic Approach to Formulating and Solving Large Models for
Sequential Decisions under Uncertainty,” Management Science, 39: 900–913, July 1993.
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5For further information, see T. G. Eschenbach, “Spiderplots versus Tornado Diagrams for Sensitivity Analysis,”
Interfaces, 22: 40–46, Nov.–Dec. 1992.
6For example, see C. Bielza and P. P. Shenoy, “A Comparison of Graphical Techniques for Asymmetric Deci-
sion Problems,” Management Science, 45(11): 1552–1569, Nov. 1999.
7For further information, see the two articles on decision conferencing in the November–December 1992 issue
of Interfaces, where one describes an application in Australia and the other summarizes the experience of 26
decision conferences in Hungary.

Sensitivity analysis also can become unwieldy on large problems. Although it normally
is supported by the computer software, the amount of data generated can easily overwhelm
an analyst or decision maker. Therefore, some graphical techniques, such as tornado charts,
have been developed to organize the data in a readily understandable way.5

Other kinds of graphical techniques also are available to complement the decision tree
in representing and solving decision analysis problems. One that has become quite popu-
lar is called the influence diagram, and researchers continue to develop others as well.6

Many strategic business decisions are made collectively by several members of man-
agement. One technique for group decision making is called decision conferencing. This
is a process where the group comes together for discussions in a decision conference with
the help of an analyst and a group facilitator. The facilitator works directly with the group
to help it structure and focus discussions, think creatively about the problem, bring as-
sumptions to the surface, and address the full range of issues involved. The analyst uses
decision analysis to assist the group in exploring the implications of the various decision
alternatives. With the assistance of a computerized group decision support system, the an-
alyst builds and solves models on the spot, and then performs sensitivity analysis to re-
spond to what-if questions from the group.7

Applications of decision analysis commonly involve a partnership between the man-
agerial decision maker (whether an individual or a group) and an analyst (whether an in-
dividual or a team) with training in OR. Some companies do not have a staff member who
is qualified to serve as the analyst. Therefore, a considerable number of management con-
sulting firms specializing in decision analysis have been formed to fill this role. 

If you would like to do more reading about the practical application of decision analy-
sis, a good place to begin would be the November–December 1992 issue of Interfaces.
This is a special issue devoted entirely to decision analysis and the related area of risk
analysis. It includes many interesting articles, including descriptions of basic methods,
sensitivity analysis, and decision conferencing. Also included are several articles on ap-
plications. Then, for a more recent perspective on the practical application of decision
analysis, we suggest that you turn to Selected Reference 8. This article was the leadoff
paper in the first issue of the new journal Decision Analysis that focuses on applied re-
search in decision analysis. The article provides a detailed discussion of various publica-
tions that present applications of decision analysis.

■ 15.8 CONCLUSIONS

Decision analysis has become an important technique for decision making in the face of
uncertainty. It is characterized by enumerating all the available decision alternatives, iden-
tifying the payoffs for all possible outcomes, and quantifying the subjective probabilities
for all the possible random events. When these data are available, decision analysis be-
comes a powerful tool for determining an optimal course of action.

One option that can be readily incorporated into the analysis is to perform experi-
mentation to obtain better estimates of the probabilities of the possible states of nature.
Decision trees are a useful visual tool for analyzing this option or any series of decisions.
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Utility theory provides a way of incorporating the decision maker’s attitude toward
risk into the analysis.

Good software (including TreePlan and SensIt in your OR Courseware) is becoming
widely available for performing decision analysis. (Selected Reference 9 provides a sur-
vey of such software.)

■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)

Worked Examples:

Examples for Chapter 15

“Ch. 15—Decision Analysis” Excel Files:

Template for Posterior Probabilities
TreePlan Decision Tree for First Goferbroke Co. Problem
TreePlan Decision Tree for Full Goferbroke Problem (with SensIt Graphs)

“Ch. 15—Decision Analysis” LINGO File for Selected Examples

Excel Add-Ins:

TreePlan (academic version)
SensIt (academic version)

Glossary for Chapter 15

See Appendix 1 for documentation of the software.
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■ PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

T: The Excel template just listed can be helpful.
A: The corresponding Excel add-in just listed can be used.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

15.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 15.2.
Briefly describe how decision analysis was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

15.2-2.* Silicon Dynamics has developed a new computer chip that
will enable it to begin producing and marketing a personal computer
if it so desires. Alternatively, it can sell the rights to the computer
chip for $15 million. If the company chooses to build computers, the
profitability of the venture depends upon the company’s ability to
market the computer during the first year. It has sufficient access to
retail outlets that it can guarantee sales of 10,000 computers. On the
other hand, if this computer catches on, the company can sell 100,000
machines. For analysis purposes, these two levels of sales are taken
to be the two possible outcomes of marketing the computer, but it
is unclear what their prior probabilities are. If the decision is to go
ahead with producing and marketing the computer, the company will
produce as many chips as it finds it will be able to sell, but not more.
The cost of setting up the assembly line is $6 million. The differ-
ence between the selling price and the variable cost of each com-
puter is $600.
(a) Develop a decision analysis formulation of this problem by

identifying the decision alternatives, the states of nature, and
the payoff table.

(b) Develop a graph that plots the expected payoff for each of the
decision alternatives versus the prior probability of selling
10,000 computers.

(c) Referring to the graph developed in part (b), use algebra to
solve for the crossover point. Explain the significance of this
point.

A (d) Develop a graph that plots the expected payoff (when using
Bayes’ decision rule) versus the prior probability of selling
10,000 computers.

(e) Assuming the prior probabilities of the two levels of sales are
both 0.5, which decision alternative should be chosen?

15.2-3. Jean Clark is the manager of the Midtown Saveway Grocery
Store. She now needs to replenish her supply of strawberries. Her
regular supplier can provide as many cases as she wants. However,
because these strawberries already are very ripe, she will need to sell
them tomorrow and then discard any that remain unsold. Jean esti-
mates that she will be able to sell 12, 13, 14, or 15 cases tomorrow.
She can purchase the strawberries for $7 per case and sell them for
$18 per case. Jean now needs to decide how many cases to purchase.

Jean has checked the store’s records on daily sales of straw-
berries. On this basis, she estimates that the prior probabilities are
0.1, 0.3, 0.4, and 0.2 for being able to sell 12, 13, 14, and 15 cases
of strawberries tomorrow.
(a) Develop a decision analysis formulation of this problem by

identifying the decision alternatives, the states of nature, and
the payoff table.

(b) How many cases of strawberries should Jean purchase if she
uses the maximin payoff criterion?

(c) How many cases should be purchased according to the maxi-
mum likelihood criterion?

(d) How many cases should be purchased according to Bayes’ deci-
sion rule?

(e) Jean thinks she has the prior probabilities just about right for sell-
ing 12 cases and selling 15 cases, but is uncertain about how to
split the prior probabilities for 13 cases and 14 cases. Reapply
Bayes’ decision rule when the prior probabilities of 13 and 
14 cases are (i) 0.2 and 0.5, (ii) 0.4 and 0.3, and (iii) 0.5 and 0.2.

15.2-4.* Warren Buffy is an enormously wealthy investor who has
built his fortune through his legendary investing acumen. He cur-
rently has been offered three major investments and he would like
to choose one. The first one is a conservative investment that would
perform very well in an improving economy and only suffer a small
loss in a worsening economy. The second is a speculative investment
that would perform extremely well in an improving economy but
would do very badly in a worsening economy. The third is a counter-
cyclical investment that would lose some money in an improving
economy but would perform well in a worsening economy.

Warren believes that there are three possible scenarios over
the lives of these potential investments: (1) an improving economy,
(2) a stable economy, and (3) a worsening economy. He is pes-
simistic about where the economy is headed, and so has assigned
prior probabilities of 0.1, 0.5, and 0.4, respectively, to these three
scenarios. He also estimates that his profits under these respective
scenarios are those given by the following table:

Which investment should Warren make under each of the fol-
lowing criteria?
(a) Maximin payoff criterion.
(b) Maximum likelihood criterion.
(c) Bayes’ decision rule.

Improving Stable Worsening
Economy Economy Economy

Conservative 
investment �$30 million $ 5 million �$10 million

Speculative 
investment �$40 million $10 million �$30 million

Countercyclical 
investment �$10 million 0 �$15 million

Prior probability 0.1 0.5 0.4
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15.2-5. Reconsider Prob. 15.2-4. Warren Buffy decides that Bayes’
decision rule is his most reliable decision criterion. He believes
that 0.1 is just about right as the prior probability of an improving
economy, but is quite uncertain about how to split the remaining
probabilities between a stable economy and a worsening economy.
Therefore, he now wishes to do sensitivity analysis with respect to
these latter two prior probabilities.
(a) Reapply Bayes’ decision rule when the prior probability of a

stable economy is 0.3 and the prior probability of a worsening
economy is 0.6.

(b) Reapply Bayes’ decision rule when the prior probability of a
stable economy is 0.7 and the prior probability of a worsening
economy is 0.2.

(c) Graph the expected profit for each of the three investment
alternatives versus the prior probability of a stable economy
(with the prior probability of an improving economy fixed
at 0.1). Use this graph to identify the crossover points where
the decision shifts from one investment to another.

(d) Use algebra to solve for the crossover points identified in part
(c).

A (e) Develop a graph that plots the expected profit (when using
Bayes’ decision rule) versus the prior probability of a stable
economy.

15.2-6. You are given the following payoff table (in units of thou-
sands of dollars) for a decision analysis problem:

(a) Which alternative should be chosen under the maximin payoff
criterion?

(b) Which alternative should be chosen under the maximum like-
lihood criterion?

(c) Which alternative should be chosen under Bayes’ decision rule?
(d) Using Bayes’ decision rule, do sensitivity analysis graphi-

cally with respect to the prior probabilities of states S1 and
S2 (without changing the prior probability of state S3) to de-
termine the crossover point where the decision shifts from
one alternative to the other. Then use algebra to calculate this
crossover point.

(e) Repeat part (d ) for the prior probabilities of states S1 and S3.
(f) Repeat part (d ) for the prior probabilities of states S2 and S3.
(g) If you feel that the true probabilities of the states of nature are

within 10 percent of the given prior probabilities, which alter-
native would you choose?

15.2-7. Dwight Moody is the manager of a large farm with
1,000 acres of arable land. For greater efficiency, Dwight always

devotes the farm to growing one crop at a time. He now needs
to make a decision on which one of four crops to grow during
the upcoming growing season. For each of these crops, Dwight
has obtained the following estimates of crop yields and net in-
comes per bushel under various weather conditions.

After referring to historical meteorological records, Dwight also
estimated the following prior probabilities for the weather during
the growing season:

(a) Develop a decision analysis formulation of this problem by
identifying the decision alternatives, the states of nature, and
the payoff table.

(b) Use Bayes’ decision rule to determine which crop to grow.
(c) Using Bayes’ decision rule, do sensitivity analysis with respect

to the prior probabilities of moderate weather and damp
weather (without changing the prior probability of dry weather)
by re-solving when the prior probability of moderate weather
is 0.2, 0.3, 0.4, and 0.6.

15.2-8.* A new type of airplane is to be purchased by the Air
Force, and the number of spare engines to be ordered must be de-
termined. The Air Force must order these spare engines in batches
of five, and it can choose among only 15, 20, or 25 spares. The
supplier of these engines has two plants, and the Air Force must
make its decision prior to knowing which plant will be used. How-
ever, the Air Force knows from past experience that two-thirds of
all types of airplane engines are produced in Plant A, and only
one-third are produced in Plant B. The Air Force also knows that
the number of spare engines required when production takes place
at Plant A is approximated by a Poisson distribution with mean
� � 21, whereas the number of spare engines required when pro-
duction takes place at Plant B is approximated by a Poisson dis-
tribution with mean � � 24. The cost of a spare engine purchased
now is $400,000, whereas the cost of a spare engine purchased at
a later date is $900,000. Spares must always be supplied if they are
demanded, and unused engines will be scrapped when the airplanes
become obsolete. Holding costs and interest are to be neglected.
From these data, the total costs (negative payoffs) have been com-
puted as follows:

State of Nature

Alternative S1 S2 S3

A1 220 170 110
A2 200 180 150

Prior probability 0.6 0.3 0.1

Expected Yield, Bushels/Acre

Weather Crop 1 Crop 2 Crop 3 Crop 4

Dry 30 25 40 60
Moderate 50 30 35 60
Damp 60 40 35 60

Net income per bushel $3.00 $4.50 $3.00 $1.50 

Dry 0.2
Moderate 0.5
Damp 0.3

PROBLEMS 711

hil76299_ch15_672-722.qxd  11/6/08  02:03 PM  Page 711



Confirming Pages

712 CHAPTER 15 DECISION ANALYSIS

State of Nature

Alternative S1 S2 S3

A1 6 1 1
A2 1 3 0
A3 4 1 2

Prior probability 0.3 0.4 0.3

Determine the optimal alternative under Bayes’ decision rule.

15.3-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 15.3.
Briefly describe how decision analysis was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

15.3-2.* Reconsider Prob. 15.2-2. Management of Silicon Dy-
namics now is considering doing full-fledged market research at a
cost of $1 million to predict which of the two levels of demand is
likely to occur. Previous experience indicates that such market re-
search is correct two-thirds of the time.
(a) Find EVPI for this problem.
(b) Does the answer in part (a) indicate that it might be worth-

while to perform this market research?
(c) Develop a probability tree diagram to obtain the posterior prob-

abilities of the two levels of demand for each of the two pos-
sible outcomes of the market research.

T (d) Use the corresponding Excel template to check your answers
in part (c).

(e) Find EVE. Is it worthwhile to perform the market research?

15.3-3. You are given the following payoff table (in units of thou-
sands of dollars) for a decision analysis problem:

(a) According to Bayes’ decision rule, which alternative should be
chosen?

(b) Find EVPI.
(c) You are given the opportunity to spend $1,000 to obtain more in-

formation about which state of nature is likely to occur. Given
your answer to part (b), might it be worthwhile to spend this
money?

15.3-4.* Betsy Pitzer makes decisions according to Bayes’ deci-
sion rule. For her current problem, Betsy has constructed the fol-
lowing payoff table (in units of dollars):

State of Nature

Alternative S1 S2 S3

A1 �20 3 25
A2 �3 5 10
A3 �4 2 15

Prior probability 0.3 0.3 0.4

State of Nature

Alternative � � 21 � � 24

Order 15 1.155 	 107 1.414 	 107

Order 20 1.012 	 107 1.207 	 107

Order 25 1.047 	 107 1.135 	 107

(a) Which alternative should Betsy choose?
(b) Find EVPI.
(c) What is the most that Betsy should consider paying to obtain

more information about which state of nature will occur?

15.3-5. Using Bayes’ decision rule, consider the decision analysis
problem having the following payoff table (in units of thousands
of dollars):

(a) Which alternative should be chosen? What is the resulting ex-
pected payoff?

(b) You are offered the opportunity to obtain information which
will tell you with certainty whether the first state of nature
S1 will occur. What is the maximum amount you should pay
for the information? Assuming you will obtain the informa-
tion, how should this information be used to choose an al-
ternative? What is the resulting expected payoff (excluding
the payment)?

(c) Now repeat part (b) if the information offered concerns S2

instead of S1.
(d) Now repeat part (b) if the information offered concerns S3

instead of S1.
(e) Now suppose that the opportunity is offered to provide infor-

mation which will tell you with certainty which state of nature
will occur (perfect information). What is the maximum amount
you should pay for the information? Assuming you will obtain
the information, how should this information be used to choose
an alternative? What is the resulting expected payoff (exclud-
ing the payment)?

(f) If you have the opportunity to do some testing that will give
you partial additional information (not perfect information)
about the state of nature, what is the maximum amount you
should consider paying for this information?

15.3-6. Reconsider the Goferbroke Co. prototype example, in-
cluding its analysis in Sec. 15.3. With the help of a consulting

State of Nature

Alternative S1 S2 S3

A1 50 100 �100
A2 0 10 �10
A3 20 40 �40

Prior probability 0.5 0.3 0.2
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geologist, some historical data have been obtained that provide
more precise information on the likelihood of obtaining favor-
able seismic soundings on similar tracts of land. Specifically,
when the land contains oil, favorable seismic soundings are ob-
tained 80 percent of the time. This percentage changes to 40 per-
cent when the land is dry.
(a) Revise Fig. 15.2 to find the new posterior probabilities.
T (b) Use the corresponding Excel template to check your answers

in part (a).
(c) What is the resulting optimal policy?

15.3-7. You are given the following payoff table (in units of dollars):

You have the option of paying $100 to have research done to bet-
ter predict which state of nature will occur. When the true state of
nature is S1, the research will accurately predict S1 60 percent of
the time (but will inaccurately predict S2 40 percent of the time).
When the true state of nature is S2, the research will accurately
predict S2 80 percent of the time (but will inaccurately predict S1

20 percent of the time).
(a) Given that the research is not done, use Bayes’ decision rule

to determine which decision alternative should be chosen.
(b) Find EVPI. Does this answer indicate that it might be worth-

while to do the research?
(c) Given that the research is done, find the joint probability of

each of the following pairs of outcomes: (i) the state of nature
is S1 and the research predicts S1, (ii) the state of nature is S1

and the research predicts S2, (iii) the state of nature is S2 and
the research predicts S1, and (iv) the state of nature is S2 and
the research predicts S2.

(d) Find the unconditional probability that the research predicts
S1. Also find the unconditional probability that the research
predicts S2.

(e) Given that the research is done, use your answers in parts
(c) and (d ) to determine the posterior probabilities of the
states of nature for each of the two possible predictions of
the research.

T (f) Use the corresponding Excel template to obtain the answers
for part (e).

(g) Given that the research predicts S1, use Bayes’ decision rule to
determine which decision alternative should be chosen and the
resulting expected payoff.

(h) Repeat part (g) when the research predicts S2.
(i) Given that research is done, what is the expected payoff when

using Bayes’ decision rule?
(j) Use the preceding results to determine the optimal policy re-

garding whether to do the research and the choice of the de-
cision alternative.

15.3-8.* Reconsider Prob. 15.2-8. Suppose now that the Air Force
knows that a similar type of engine was produced for an earlier
version of the type of airplane currently under consideration. The
order size for this earlier version was the same as for the current
type. Furthermore, the probability distribution of the number of
spare engines required, given the plant where production takes
place, is believed to be the same for this earlier airplane model
and the current one. The engine for the current order will be pro-
duced in the same plant as the previous model, although the Air
Force does not know which of the two plants this is. The Air Force
does have access to the data on the number of spares actually re-
quired for the older version, but the supplier has not revealed the
production location.
(a) How much money is it worthwhile to pay for perfect infor-

mation on which plant will produce these engines?
(b) Assume that the cost of the data on the old airplane model is

free and that 30 spares were required. You are given that the
probability of 30 spares, given a Poisson distribution with mean
�, is 0.013 for � � 21 and 0.036 for � � 24. Find the optimal
action under Bayes’ decision rule.

15.3-9.* Vincent Cuomo is the credit manager for the Fine Fabrics
Mill. He is currently faced with the question of whether to extend
$100,000 credit to a potential new customer, a dress manufacturer.
Vincent has three categories for the credit-worthiness of a company:
poor risk, average risk, and good risk, but he does not know which
category fits this potential customer. Experience indicates that
20 percent of companies similar to this dress manufacturer are poor
risks, 50 percent are average risks, and 30 percent are good risks.
If credit is extended, the expected profit for poor risks is �$15,000,
for average risks $10,000, and for good risks $20,000. If credit is
not extended, the dress manufacturer will turn to another mill.
Vincent is able to consult a credit-rating organization for a fee of
$5,000 per company evaluated. For companies whose actual
credit record with the mill turns out to fall into each of the three
categories, the following table shows the percentages that were
given each of the three possible credit evaluations by the credit-
rating organization.

(a) Develop a decision analysis formulation of this problem by iden-
tifying the decision alternatives, the states of nature, and the pay-
off table when the credit-rating organization is not used.

(b) Assuming the credit-rating organization is not used, use Bayes’
decision rule to determine which decision alternative should
be chosen.

(c) Find EVPI. Does this answer indicate that consideration should
be given to using the credit-rating organization?

State of Nature

Alternative S1 S2

A1 400 �100
A2 0 �100

Prior probability 0.4 0.6

Actual Credit Record

Credit Evaluation Poor Average Good

Poor 50% 40% 20%
Average 40% 50% 40%
Good 10% 10% 40%
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(d) Assume now that the credit-rating organization is used. De-
velop a probability tree diagram to find the posterior proba-
bilities of the respective states of nature for each of the three
possible credit evaluations of this potential customer.

T (e) Use the corresponding Excel template to obtain the answers
for part (d ).

(f) Determine Vincent’s optimal policy.

15.3-10. An athletic league does drug testing of its athletes,
15 percent of whom use drugs. This test, however, is only 97
percent reliable. That is, a drug user will test positive with prob-
ability 0.97 and negative with probability 0.03, and a nonuser
will test negative with probability 0.97 and positive with prob-
ability 0.03.

Develop a probability tree diagram to determine the poste-
rior probability of each of the following outcomes of testing an
athlete.
(a) The athlete is a drug user, given that the test is positive.
(b) The athlete is not a drug user, given that the test is positive.
(c) The athlete is a drug user, given that the test is negative.
(d) The athlete is not a drug user, given that the test is negative.
T (e) Use the corresponding Excel template to check your answers

in the preceding parts.

15.3-11. Management of the Telemore Company is considering de-
veloping and marketing a new product. It is estimated to be twice
as likely that the product would prove to be successful as unsuc-
cessful. It it were successful, the expected profit would be $1,500,000.
If unsuccessful, the expected loss would be $1,800,000. A mar-
keting survey can be conducted at a cost of $300,000 to predict
whether the product would be successful. Past experience with
such surveys indicates that successful products have been pre-
dicted to be successful 80 percent of the time, whereas unsuccessful
products have been predicted to be unsuccessful 70 percent of the
time.
(a) Develop a decision analysis formulation of this problem by

identifying the decision alternatives, the states of nature, and
the payoff table when the market survey is not conducted.

(b) Assuming the market survey is not conducted, use Bayes’ de-
cision rule to determine which decision alternative should be
chosen.

(c) Find EVPI. Does this answer indicate that consideration should
be given to conducting the market survey?

T (d) Assume now that the market survey is conducted. Find
the posterior probabilities of the respective states of na-
ture for each of the two possible predictions from the mar-
ket survey.

(e) Find the optimal policy regarding whether to conduct the
market survey and whether to develop and market the new
product.

15.3-12. The Hit-and-Miss Manufacturing Company produces
items that have a probability p of being defective. These items
are produced in lots of 150. Past experience indicates that p for
an entire lot is either 0.05 or 0.25. Furthermore, in 80 percent of
the lots produced, p equals 0.05 (so p equals 0.25 in 20 percent

of the lots). These items are then used in an assembly, and ulti-
mately their quality is determined before the final assembly leaves
the plant. Initially the company can either screen each item in a
lot at a cost of $10 per item and replace defective items or use
the items directly without screening. If the latter action is cho-
sen, the cost of rework is ultimately $100 per defective item. Be-
cause screening requires scheduling of inspectors and equipment,
the decision to screen or not screen must be made 2 days before
the screening is to take place. However, one item can be taken
from the lot and sent to a laboratory for inspection, and its qual-
ity (defective or nondefective) can be reported before the
screen/no screen decision must be made. The cost of this initial
inspection is $125.
(a) Develop a decision analysis formulation of this problem by

identifying the decision alternatives, the states of nature,
and the payoff table if the single item is not inspected in
advance.

(b) Assuming the single item is not inspected in advance, use
Bayes’ decision rule to determine which decision alternative
should be chosen.

(c) Find EVPI. Does this answer indicate that consideration should
be given to inspecting the single item in advance?

T (d) Assume now that the single item is inspected in advance.
Find the posterior probabilities of the respective states 
of nature for each of the two possible outcomes of this 
inspection.

(e) Find EVE. Is inspecting the single item worthwhile?
(f) Determine the optimal policy.

T 15.3-13.* Consider two weighted coins. Coin 1 has a probabil-
ity of 0.3 of turning up heads, and coin 2 has a probability of 0.6
of turning up heads. A coin is tossed once; the probability that coin
1 is tossed is 0.6, and the probability that coin 2 is tossed is 0.4.
The decision maker uses Bayes’ decision rule to decide which coin
is tossed. The payoff table is as follows:

(a) What is the optimal alternative before the coin is tossed?
(b) What is the optimal alternative after the coin is tossed if the

outcome is heads? If it is tails?

15.3-14. There are two biased coins with probabilities of landing
heads of 0.7 and 0.3, respectively. One coin is chosen at random
(each with probability �

1
2

�) to be tossed twice. You are to receive
$250 if you correctly predict how many heads will occur in two
tosses.
(a) Using Bayes’ decision rule, what is the optimal prediction, and

what is the corresponding expected payoff?

State of Nature

Alternative Coin 1 Tossed Coin 2 Tossed

Say coin 1 tossed �0 �1
Say coin 2 tossed �1 �0

Prior probability 0.6 0.4
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T (b) Suppose now that you may observe a practice toss of the
chosen coin before predicting. Use the corresponding Excel
template to find the posterior probabilities for which coin is
being tossed.

(c) Determine your optimal prediction after observing the practice
toss. What is the resulting expected payoff?

(d) Find EVE for observing the practice toss. If you must pay $75
to observe the practice toss, what is your optimal policy?

15.4-1. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec. 15.4.
Briefly describe how decision analysis was applied in this study.
Then list the various financial and nonfinancial benefits that re-
sulted from this study.

15.4-2.* Reconsider Prob. 15.3-2. The management of Silicon 
Dynamics now wants to see a decision tree displaying the entire
problem. Construct and solve this decision tree by hand.

15.4-3. You are given the decision tree below, where the numbers
in parentheses are probabilities and the numbers on the far right
are payoffs at these terminal points. Analyze this decision tree to
obtain the optimal policy.

15.4-4.* The Athletic Department of Leland University is con-
sidering whether to hold an extensive campaign next year to raise
funds for a new athletic field. The response to the campaign de-
pends heavily upon the success of the football team this fall. In
the past, the football team has had winning seasons 60 percent of
the time. If the football team has a winning season (W) this fall,
then many of the alumnae and alumni will contribute and the cam-
paign will raise $3 million. If the team has a losing season (L),

few will contribute and the campaign will lose $2 million. If no
campaign is undertaken, no costs are incurred. On September 1,
just before the football season begins, the Athletic Department
needs to make its decision about whether to hold the campaign
next year.
(a) Develop a decision analysis formulation of this problem by

identifying the decision alternatives, the states of nature, and
the payoff table.

(b) According to Bayes’ decision rule, should the campaign be 
undertaken?

(c) What is EVPI?
(d) A famous football guru, William Walsh, has offered his ser-

vices to help evaluate whether the team will have a winning
season. For $100,000, he will carefully evaluate the team
throughout spring practice and then throughout preseason
workouts. William then will provide his prediction on Sep-
tember 1 regarding what kind of season, W or L, the team
will have. In similar situations in the past when evaluating
teams that have winning seasons 50 percent of the time, his
predictions have been correct 75 percent of the time. Con-
sidering that this team has more of a winning tradition, if
William predicts a winning season, what is the posterior
probability that the team actually will have a winning sea-
son? What is the posterior probability of a losing season?
If Williams predicts a losing season instead, what is the pos-
terior probability of a winning season? Of a losing season?
Show how these answers are obtained from a probability
tree diagram.

T (e) Use the corresponding Excel template to obtain the answers
requested in part (d ).

(f ) Draw the decision tree for this entire problem by hand. An-
alyze this decision tree to determine the optimal policy re-
garding whether to hire William and whether to undertake the
campaign.

15.4-5. The comptroller of the Macrosoft Corporation has 
$100 million of excess funds to invest. She has been instructed
to invest the entire amount for one year in either stocks or bonds
(but not both) and then to reinvest the entire fund in either stocks
or bonds (but not both) for one year more. The objective is to
maximize the expected monetary value of the fund at the end of
the second year.

The annual rates of return on these investments depend on the
economic environment, as shown in the following table:

The probabilities of growth, recession, and depression for the first
year are 0.7, 0.3, and 0, respectively. If growth occurs in the first
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Rate of Return

Economic Environment Stocks Bonds

Growth �20% 5%
Recession �10% 10%
Depression �50% 20%
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year, these probabilities remain the same for the second year. How-
ever, if a recession occurs in the first year, these probabilities
change to 0.2, 0.7, and 0.1, respectively, for the second year.
(a) Construct the decision tree for this problem by hand.
(b) Analyze the decision tree to identify the optimal policy.

15.4-6 On Monday, a certain stock closed at $10 per share. On
Tuesday, you expect the stock to close at $9, $10, or $11 per
share, with respective probabilities 0.3, 0.3, and 0.4. On Wednes-
day, you expect the stock to close 10 percent lower, unchanged,
or 10 percent higher than Tuesday’s close, with the following
probabilities:

On Tuesday, you are directed to buy 100 shares of the stock be-
fore Thursday. All purchases are made at the end of the day, at
the known closing price for that day, so your only options are to
buy at the end of Tuesday or at the end of Wednesday. You wish
to determine the optimal strategy for whether to buy on Tuesday
or defer the purchase until Wednesday, given the Tuesday clos-
ing price, to minimize the expected purchase price. Develop and
evaluate a decision tree by hand for determining the optimal
strategy.

15.4-7. Use the scenario given in Prob. 15.3-9.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

event nodes.
(c) Apply the backward induction procedure, and identify the re-

sulting optimal policy.

15.4-8. Use the scenario given in Prob. 15.3.-11.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

event nodes.
(c) Apply the backward induction procedure, and identify the re-

sulting optimal policy.

15.4-9. Use the scenario given in Prob. 15.3-12.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.
T (b) Find the probabilities for the branches emanating from the

event nodes.
(c) Apply the backward induction procedure, and identify the re-

sulting optimal policy.

15.4-10. Use the scenario given in Prob. 15.3-13.
(a) Draw and properly label the decision tree. Include all the pay-

offs but not the probabilities.

T (b) Find the probabilities for the branches emanating from the
event nodes.

(c) Apply the backward induction procedure, and identify the re-
sulting optimal policy.

A 15.4-11. The executive search being conducted for Western
Bank by Headhunters Inc. may finally be bearing fruit. The posi-
tion to be filled is a key one—Vice President for Information
Processing—because this person will have responsibility for de-
veloping a state-of-the-art management information system that
will link together Western’s many branch banks. However, Head-
hunters feels they have found just the right person, Matthew Fenton,
who has an excellent record in a similar position for a midsized
bank in New York.

After a round of interviews, Western’s president believes that
Matthew has a probability of 0.75 of designing the management
information system successfully. If Matthew is successful, the com-
pany will realize a profit of $4 million (net of Matthew’s salary,
training, recruiting costs, and expenses). If he is not successful, the
company will realize a net loss of $900,000.

For an additional fee of $35,000, Headhunters will provide
a detailed investigative process (including an extensive back-
ground check, a battery of academic and psychological tests, etc.)
that will further pinpoint Matthew’s potential for success. This
process has been found to be 90 percent reliable; i.e., a candidate
who would successfully design the management information sys-
tem will pass the test with probability 0.9, and a candidate who
would not successfully design the system will fail the test with
probability 0.9.

Western’s top management needs to decide whether to hire
Matthew and whether to have Headhunters conduct the detailed in-
vestigative process before making this decision.
(a) Construct the decision tree for this problem.
T (b) Find the probabilities for the branches emanating from the

event nodes.
(c) Analyze the decision tree to identify the optimal policy.
(d) Now suppose that the Headhunters’ fee for administering its

detailed investigative process is negotiable. What is the maxi-
mum amount that Western Bank should pay?

A 15.5-1. Reconsider the original version of the Silicon Dynamics
problem described in Prob. 15.2-2.
(a) Assuming the prior probabilities of the two levels of sales are

both 0.5, use TreePlan to construct and solve the decision tree
for this problem. According to this analysis, which decision al-
ternative should be chosen?

(b) Use SensIt to develop a graph that plots the expected payoff
(when using Bayes’ decision rule) versus the prior probability
of selling 10,000 computers.

A 15.5-2. Now reconsider the expanded version of the Silicon 
Dynamics problem described in Probs. 15.3-2 and 15.4-2.
(a) Use TreePlan to construct and solve the decision tree for this

problem.
(b) There is some uncertainty in the financial data ($15 million,

$6 million, and $600) stated in Prob. 15.2.2. Each could vary

Today’s Close 10% Lower Unchanged 10% Higher

$ 9 0.4 0.3 0.3
$10 0.2 0.2 0.6
$11 0.1 0.2 0.7
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from its base value by as much as 10 percent. For each one,
perform sensitivity analysis to find what would happen if its
value were at either end of this range of variability (without
any change in the other two pieces of data) by adjusting the
values in the data cells accordingly. Then do the same for the
eight cases where all these pieces of data are at one end or 
the other of their ranges of variability.

(c) Because of the uncertainty described in part (b), use SensIt to
generate a graph that plots the expected profit over the range
of variability for each piece of financial data (without any
change in the other two pieces of data).

(d) Generate the corresponding spider chart and tornado chart.

A 15.5-3. Reconsider the decision tree given in Prob. 15.4-3. Use
TreePlan to construct and solve this decision tree.

A 15.5-4. Reconsider Prob. 15.4-5. Use TreePlan to construct and
solve the decision tree for this problem.

A 15.5-5. Reconsider Prob. 15.4-6. Use TreePlan to construct and
solve the decision tree for this problem.

A 15.5-6. Jose Morales manages a large outdoor fruit stand in one
of the less affluent neighborhoods of San Jose, California. To 
replenish his supply, Jose buys boxes of fruit early each morning
from a grower south of San Jose. About 85 percent of the boxes
of fruit turn out to be of satisfactory quality, but the other 15 per-
cent are unsatisfactory. A satisfactory box contains 90 percent ex-
cellent fruit and will earn $600 profit for Jose. An unsatisfactory
box contains 40 percent excellent fruit and will produce a loss of
$2,000. Before Jose decides to accept a box, he is given the op-
portunity to sample one piece of fruit to test whether it is excellent.
Based on that sample, he then has the option of rejecting the box
without paying for it. Jose wonders (1) whether he should continue
buying from this grower, (2) if so, whether it is worthwhile sam-
pling just one piece of fruit from a box, and (3) if so, whether he
should be accepting or rejecting the box based on the outcome of
this sampling.

Use TreePlan (and the Excel template for posterior probabil-
ities) to construct and solve the decision tree for this problem.

A 15.5-7.* The Morton Ward Company is considering the intro-
duction of a new product that is believed to have a 50-50 chance
of being successful. One option is to try out the product in a test
market, at a cost of $5 million, before making the introduction de-
cision. Past experience shows that ultimately successful products
are approved in the test market 80 percent of the time, whereas ul-
timately unsuccessful products are approved in the test market only
25 percent of the time. If the product is successful, the net profit
to the company will be $40 million; if unsuccessful, the net loss
will be $15 million.
(a) Discarding the option of trying out the product in a test mar-

ket, develop a decision analysis formulation of the problem by
identifying the decision alternatives, states of nature, and pay-
off table. Then apply Bayes’ decision rule to determine the op-
timal decision alternative.

(b) Find EVPI.
A (c) Now include the option of trying out the product in a test

market. Use TreePlan (and the Excel template for posterior
probabilities) to construct and solve the decision tree for this
problem.

A (d) There is some uncertainty in the stated profit and loss fig-
ures ($40 million and $15 million). Either could vary from
its base by as much as 25 percent in either direction. Use
TreePlan calculations to generate a graph for each that plots
the expected profit over this range of variability.

A (e) Because of the uncertainty described in part (d), use SensIt
to generate a graph that plots the expected profit over the
range of variability for each of the two financial figures
(without any change in the other figure).

A (f) Generate the corresponding spider chart and tornado chart.
Interpret each one. 

A 15.5-8. Chelsea Bush is an emerging candidate for her party’s
nomination for President of the United States. She now is consid-
ering whether to run in the high-stakes Super Tuesday primaries.
If she enters the Super Tuesday (S.T.) primaries, she and her ad-
visers believe that she will either do well (finish first or second)
or do poorly (finish third or worse) with probabilities 0.4 and 0.6,
respectively. Doing well on Super Tuesday will net the candidate’s
campaign approximately $16 million in new contributions, whereas
a poor showing will mean a loss of $10 million after numerous TV
ads are paid for. Alternatively, she may choose not to run at all on
Super Tuesday and incur no costs.

Chelsea’s advisers realize that her chances of success on Super
Tuesday may be affected by the outcome of the smaller New Hamp-
shire (N.H.) primary occurring three weeks before Super Tuesday.
Political analysts feel that the results of New Hampshire’s primary
are correct two-thirds of the time in predicting the results of the
Super Tuesday primaries. Among Chelsea’s advisers is a decision
analysis expert who uses this information to calculate the follow-
ing probabilities:

P{Chelsea does well in S.T. primaries, given she does well in
N.H.} � �

4
7

�

P{Chelsea does well in S.T. primaries, given she does poorly
in N.H.} � �

1
4

�

P{Chelsea does well in N.H. primary} � �
1
7
5
�

The cost of entering and campaigning in the New Hampshire pri-
mary is estimated to be $1.6 million.

Chelsea feels that her chance of winning the nomination de-
pends largely on having substantial funds available after the Super
Tuesday primaries to carry on a vigorous campaign the rest of the
way. Therefore, she wants to choose the strategy (whether to run
in the New Hampshire primary and then whether to run in the 
Super Tuesday primaries) that will maximize her expected funds
after these primaries.
(a) Construct and solve the decision tree for this problem.
(b) There is some uncertainty in the estimates of a gain of $16

million or a loss of $10 million depending on the showing on
Super Tuesday. Either amount could differ from this estimate

PROBLEMS 717
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718 CHAPTER 15 DECISION ANALYSIS

by as much as 25 percent in either direction. For each of these
two financial figures, perform sensitivity analysis to check how
the results in part (a) would change if the value of the finan-
cial figure were at either end of this range of variability (with-
out any change in the value of the other financial figure). Then
do the same for the four cases where both financial figures are
at one end or the other of their ranges of variability.

A (c) Because of the uncertainty described in part (b), use SensIt to
generate a graph that plots Chelsea’s expected funds after
these primaries over the range of variability for each of the
two financial figures (without any change in the other figure).

A (d) Generate the corresponding spider chart and tornado chart.
Interpret each one.

15.6-1. Reconsider the Goferbroke Co. prototype example, in-
cluding the application of utilities in Sec. 15.6. The owner now has
decided that, given the company’s precarious financial situation,
he needs to take a much more risk-averse approach to the prob-
lem. Therefore, he has revised the utilities given in Table 15.7 as
follows: U(�130) � 0, U(�100) � 0.1, U(60) � 0.4, U(90) �
0.45, U(670) � 0.985, and U(700) � 1.
(a) Analyze the revised decision tree corresponding to Fig. 15.20

by hand to obtain the new optimal policy.
A (b) Use TreePlan to construct and solve this revised decision tree.

15.6-2.* You live in an area that has a possibility of incurring a
massive earthquake, so you are considering buying earthquake in-
surance on your home at an annual cost of $180. The probability
of an earthquake damaging your home during one year is 0.001.
If this happens, you estimate that the cost of the damage (fully cov-
ered by earthquake insurance) will be $160,000. Your total assets
(including your home) are worth $250,000.
(a) Apply Bayes’ decision rule to determine which alternative

(take the insurance or not) maximizes your expected assets
after one year.

(b) You now have constructed a utility function that measures how
much you value having total assets worth x dollars (x � 0). This
utility function is U(x) � �x�. Compare the utility of reducing
your total assets next year by the cost of the earthquake insur-
ance with the expected utility next year of not taking the earth-
quake insurance. Should you take the insurance?

15.6-3. For your graduation present from college, your parents are
offering you your choice of two alternatives. The first alternative
is to give you a money gift of $19,000. The second alternative is
to make an investment in your name. This investment will quickly
have the following two possible outcomes:

Your utility for receiving M thousand dollars is given by the util-
ity function U(M) � �M � 6�. Which choice should you make to
maximize expected utility?

15.6-4.* Reconsider Prob. 15.6-3. You now are uncertain about
what your true utility function for receiving money is, so you
are in the process of constructing this utility function. So far,
you have found that U(19) � 16.7 and U(30) � 20 are the util-
ity of receiving $19,000 and $30,000, respectively. You also have
concluded that you are indifferent between the two alternatives
offered to you by your parents. Use this information to find
U(10).

15.6-5. You wish to construct your personal utility function U(M )
for receiving M thousand dollars. After setting U(0) � 0, you next
set U(1) � 1 as your utility for receiving $1,000. You next want to
find U(10) and then U(5).
(a) You offer yourself the following two hypothetical alternatives:

A1: Obtain $10,000 with probability p.
Obtain 0 with probability (1 � p).

A2: Definitely obtain $1,000.

You then ask yourself the question: What value of p makes you
indifferent between these two alternatives? Your answer is 
p � 0.125. Find U(10).

(b) You next repeat part (a) except for changing the second alter-
native to definitely receiving $5,000. The value of p that
makes you indifferent between these two alternatives now is
p � 0.5625. Find U(5).

(c) Repeat parts (a) and (b), but now use your personal choices
for p.

15.6-6. You are given the following payoff table:

(a) Assume that your utility function for the payoffs is U(x) �
�x�. Plot the expected utility of each alternative versus the
value of p on the same graph. For each alternative, find the
range of values of p over which this alternative maximizes
the expected utility.

A (b) Now assume that your utility function is the exponential util-
ity function with a risk tolerance of R � 50. Use TreePlan
to construct and solve the resulting decision tree in turn for 
p � 0.25, p � 0.5, and p � 0.75.

Outcome Probability

Receive $10,000 0.3
Receive $30,000 0.7

State of Nature

Alternative S1 S2

A1 36 49
A2 144 0
A3 0 81

Prior probability p 1 � p
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15.6-7. Dr. Switzer has a seriously ill patient but has had trouble
diagnosing the specific cause of the illness. The doctor now has nar-
rowed the cause down to two alternatives: disease A or disease B.
Based on the evidence so far, she feels that the two alternatives are
equally likely.

Beyond the testing already done, there is no test available to
determine if the cause is disease B. One test is available for dis-
ease A, but it has two major problems. First, it is very expensive.
Second, it is somewhat unreliable, giving an accurate result only
80 percent of the time. Thus, it will give a positive result (indicat-
ing disease A) for only 80 percent of patients who have disease A,
whereas it will give a positive result for 20 percent of patients who
actually have disease B instead.

Disease B is a very serious disease with no known treatment.
It is sometimes fatal, and those who survive remain in poor health
with a poor quality of life thereafter. The prognosis is similar for
victims of disease A if it is left untreated. However, there is a fairly
expensive treatment available that eliminates the danger for those
with disease A, and it may return them to good health. Unfortu-
nately, it is a relatively radical treatment that always leads to death
if the patient actually has disease B instead.

The probability distribution for the prognosis for this patient
is given for each case in the following table, where the column
headings (after the first one) indicate the disease for the patient.

The patient has assigned the following utilities to the possible 
outcomes:

In addition, these utilities should be incremented by �2 if the 
patient incurs the cost of the test for disease A and by �1 if the pa-
tient (or the patient’s estate) incurs the cost of the treatment for dis-
ease A.

Use decision analysis with a complete decision tree to deter-
mine if the patient should undergo the test for disease A and then
how to proceed (receive the treatment for disease A?) to maximize
the patient’s expected utility.

15.6-8. You want to choose between decision alternatives A1 and A2

in the following decision tree, but you are uncertain about the value
of the probability p, so you need to perform sensitivity analysis of p
as well.

Your utility function for money (the payoff received) is

U(M) � �
(a) For p � 0.25, determine which alternative is optimal in the

sense that it maximizes the expected utility of the payoff.
(b) Determine the range of values of the probability p (0 � p �

0.5) for which this same alternative remains optimal.

M2 if M � 0
M2 if M � 0.

PROBLEMS 719

Outcome Probabilities

No Treatment
Receive Treatment

for Disease A

Outcome A B A B

Die 0.2 0.5 0 1.0
Survive with 
poor health 0.8 0.5 0.5 0

Return to 
good health 0 0 0.5 0

Outcome Utility

Die 0
Survive with poor health 10
Return to good health 30

Payoff

10

�5

3

�2

2

0

A1

A2

p

2p

1 � p

1 � 2p

0.5

0.5
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CASE 15.1 Brainy Business
While El Niño is pouring its rain on northern California, Char-
lotte Rothstein, CEO, major shareholder and founder of Cere-
brosoft, sits in her office, contemplating the decision she faces
regarding her company’s newest proposed product, Brainet.
This has been a particularly difficult decision. Brainet might
catch on and sell very well. However, Charlotte is concerned
about the risk involved. In this competitive market, market-
ing Brainet also could lead to substantial losses. Should she
go ahead anyway and start the marketing campaign? Or just
abandon the product? Or perhaps buy additional marketing
research information from a local market research company
before deciding whether to launch the product? She has to
make a decision very soon and so, as she slowly drinks from
her glass of high protein-power multivitamin juice, she re-
flects on the events of the past few years.

Cerebrosoft was founded by Charlotte and two friends
after they had graduated from business school. The company
is located in the heart of Silicon Valley. Charlotte and her
friends managed to make money in their second year in busi-
ness and continued to do so every year since. Cerebrosoft
was one of the first companies to sell software over the World
Wide Web and to develop PC-based software tools for the
multimedia sector. Two of the products generate 80 percent
of the company’s revenues: Audiatur and Videatur. Each
product has sold more than 100,000 units during the past
year. Business is done over the Web: customers can down-
load a trial version of the software, test it, and if they are
satisfied with what they see, they can purchase the product
(by using a password that enables them to disable the time
counter in the trial version). Both products are priced at
$75.95 and are exclusively sold over the Web.

Although the World Wide Web is a network of com-
puters of different types, running different kinds of software,
a standardized protocol between the computers enables them
to communicate. Users can “surf” the Web and visit com-
puters many thousand miles away, accessing information
available at the site. Users can also make files available on
the Web, and this is how Cerebrosoft generates its sales.
Selling software over the Web eliminates many of the tra-
ditional cost factors of consumer products: packaging, stor-
age, distribution, sales force, and so on. Instead, potential
customers can download a trial version, take a look at it
(that is, use the product) before its trial period expires, and
then decide whether to buy it. Furthermore, Cerebrosoft can
always make the most recent files available to the customer,
avoiding the problem of having outdated software in the
distribution pipeline.

720 CHAPTER 15 DECISION ANALYSIS

■ CASES

Charlotte is interrupted in her thoughts by the arrival of
Jeannie Korn. Jeannie is in charge of marketing for on-line
products and Brainet has had her particular attention from
the beginning. She is more than ready to provide the advice
that Charlotte has requested. “Charlotte, I think we should
really go ahead with Brainet. The software engineers have
convinced me that the current version is robust and we want
to be on the market with this as soon as possible! From the
data for our product launches during the past two years we
can get a rather reliable estimate of how the market will re-
spond to the new product, don’t you think? And look!” She
pulls out some presentation slides. “During that time period
we launched 12 new products altogether and 4 of them sold
more than 30,000 units during the first 6 months alone! Even
better: the last two we launched even sold more than 40,000
copies during the first two quarters!” Charlotte knows these
numbers as well as Jeannie does. After all, two of these
launches have been products she herself helped to develop.
But she feels uneasy about this particular product launch.
The company has grown rapidly during the past three years
and its financial capabilities are already rather stretched. A
poor product launch for Brainet would cost the company a
lot of money, something that isn’t available right now due
to the investments Cerebrosoft has recently made.

Later in the afternoon, Charlotte meets with Reggie
Ruffin, a jack-of-all-trades and the production manager.
Reggie has a solid track record in his field and Charlotte
wants his opinion on the Brainet project.

“Well, Charlotte, quite frankly I think that there are
three main factors that are relevant to the success of this pro-
ject: competition, units sold, and cost—ah, and of course
our pricing. Have you decided on the price yet?”

“I am still considering which of the three strategies
would be most beneficial to us. Selling for $50.00 and try-
ing to maximize revenues—or selling for $30.00 and trying
to maximize market share. Of course, there is still your third
alternative; we could sell for $40.00 and try to do both.”

At this point Reggie focuses on the sheet of paper in
front of him. “And I still believe that the $40.00 alternative
is the best one. Concerning the costs, I checked the records;
basically we have to amortize the development costs we in-
curred for Brainet. So far we have spent $800,000 and we
expect to spend another $50,000 per year for support and
shipping the CDs to those who want a hardcopy on top of
their downloaded software.” Reggie next hands a report to
Charlotte. “Here we have some data on the industry. I just
received that yesterday, hot off the press. Let’s see what we
can learn about the industry here.” He shows Charlotte some
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of the highlights. Reggie then agrees to compile the most
relevant information contained in the report and have it ready
for Charlotte the following morning. It takes him long into
the night to gather the data from the pages of the report, but
in the end he produces three tables, one for each of the three
alternative pricing strategies. Each table shows the corre-
sponding probability of various amounts of sales given the
level of competition (high, medium, or low) that develops
from other companies.

The next morning Charlotte is sipping from another
power drink. Jeannie and Reggie will be in her office any
moment now and, with their help, she will have to decide
what to do with Brainet. Should they launch the product? If
so, at what price?

When Jeannie and Reggie enter the office, Jeannie im-
mediately bursts out: “Guys, I just spoke to our marketing
research company. They say that they could do a study for
us about the competitive situation for the introduction of
Brainet and deliver the results within a week.”

“How much do they want for the study?”
“I knew you’d ask that, Reggie. They want $10,000 and

I think it’s a fair deal.”
At this point Charlotte steps into the conversation. “Do

we have any data on the quality of the work of this mar-
keting research company?”

“Yes, I do have some reports here. After analyzing them,
I have come to the conclusion that the marketing research
company is not very good in predicting the competitive en-
vironment for medium or low pricing. Therefore, we should
not ask them to do the study for us if we decide on one of
these two pricing strategies. However, in the case of high
pricing, they do quite well: given that the competition turned
out to be high, they predicted it correctly 80 percent of the
time, while 15 percent of the time they predicted medium
competition in that setting. Given that the competition turned
out to be medium, they predicted high competition 15 per-
cent of the time and medium competition 80 percent of the
time. Finally, for the case of low competition, the numbers

■ TABLE 1 Probability distribution of unit sales, given a high price ($50)

Level of Competition

Sales High Medium Low

50,000 units 0.2 0.25 0.3
30,000 units 0.25 0.3 0.35
20,000 units 0.55 0.45 0.35 

■ TABLE 2 Probability distribution of unit sales, given a medium price ($40)

Level of Competition

Sales High Medium Low

50,000 units 0.25 0.30 0.40
30,000 units 0.35 0.40 0.50
20,000 units 0.40 0.30 0.10

■ TABLE 3 Probability distribution of unit sales, given a low price ($30)

Level of Competition

Sales High Medium Low

50,000 units 0.35 0.40 0.50
30,000 units 0.40 0.50 0.45
20,000 units 0.25 0.10 0.05
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CASE 15.2 Smart Steering Support
The CEO of Bay Area Automobile Gadgets is contem-
plating whether to add a road scanning device to the com-
pany’s driver support system. A series of decisions need to
be made. Should basic research into the road scanning de-
vice be undertaken? If the research is successful, should
the company develop the product or sell the technology?
In the case of successful product development, should the
company market the product or sell the product concept?
Decision analysis needs to be applied to address these is-
sues. Part of the analysis will involve using the CEO’s util-
ity function.

CASE 15.3  Who Wants to be a
Millionaire?
You are a contestant on “Who Wants to be a Millionaire?”
and have just answered the $250,000 question correctly. If
you decide to go on to the $500,000 question and then to

the $1,000,000 question, you still have the option available
of using the “phone a friend” lifeline on one of the ques-
tions to improve your chances of answering correctly. You
now want to use decision analysis (including a decision tree
and utility theory) to decide how to proceed.

CASE 15.4  University Toys and the
Engineering Professor Action Figures
University Toys has developed a series of Engineering Pro-
fessor Action Figures for the local engineering school and
management needs to decide how to market the dolls in the
face of uncertainty about the demand. One option is to im-
mediately ramp up for full production, advertising, and sales.
Another option is to test-market the product first. A com-
plication with this option is a rumor that a competitor is
about to enter the market with a similar product. Decision
analysis (including a decision tree and sensitivity analysis)
now needs to be used to decide how to proceed.

722 CHAPTER 15 DECISION ANALYSIS

were 90 percent of the time a correct prediction, 7 percent
of the time a ‘medium’ prediction and 3 percent of the time
a ‘high’ prediction.”

Charlotte feels that all these numbers are too much for
her. “Don’t we have a simple estimate of how the market
will react?”

“Some prior probabilities, you mean? Sure, from our
past experience, the likelihood of facing high competition is
20 percent, whereas it is 70 percent for medium competi-
tion and 10 percent for low competition,” Jeannie has her
numbers always ready when needed.

All that is left to do now is to sit down and make sense
of all this. . . . 

(a) For the initial analysis, ignore the opportunity of obtaining
more information by hiring the marketing research company.
Identify the decision alternatives and the states of nature. Con-
struct the payoff table. Then formulate the decision problem
in a decision tree. Clearly distinguish between decision and
event nodes and include all the relevant data.

(b) What is Charlotte’s decision if she uses the maximum likeli-
hood criterion? The maximin payoff criterion?

(c) What is Charlotte’s decision if she uses Bayes’ decision rule?
(d) Now consider the possibility of doing the market research. De-

velop the corresponding decision tree. Calculate the relevant
probabilities and analyze the decision tree. Should Cerebrosoft
pay the $10,000 for the marketing research? What is the over-
all optimal policy?

■ PREVIEW OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)
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16C H A P T E R

Markov Chains

Chapter 15 focused on decision making in the face of uncertainty about one future
event (learning the true state of nature). However, some decisions need to take into

account uncertainty about many future events. We now begin laying the groundwork for
decision making in this broader context.

In particular, this chapter presents probability models for processes that evolve over
time in a probabilistic manner. Such processes are called stochastic processes. After briefly
introducing general stochastic processes in the first section, the remainder of the chapter
focuses on a special kind called a Markov chain. Markov chains have the special prop-
erty that probabilities involving how the process will evolve in the future depend only on
the present state of the process, and so are independent of events in the past. Many
processes fit this description, so Markov chains provide an especially important kind of
probability model.

For example, you will see in the next chapter that continuous-time Markov chains
(described in Sec. 16.8) are used to formulate most of the basic models of queueing the-
ory. Markov chains also provide the foundation for the study of Markov decision models
in Chapter 19. There are a wide variety of other applications of Markov chains as well.
A considerable number of books and articles present some of these applications. One is
Selected Reference 4, which describes applications in such diverse areas as the classifi-
cation of customers, DNA sequencing, the analysis of genetic networks, the estimation
of sales demand over time, and credit rating. You also will see an application vignette in
Sec. 16.2 that involves credit rating, as well as an application vignette in Sec. 16.8 that
involves machine maintenance. Selected Reference 6 focuses on applications in finance
and Selected Reference 3 describes applications for analyzing baseball strategy. The list
goes on and on, but let us turn now to a description of stochastic processes in general
and Markov chains in particular.

■ 16.1 STOCHASTIC PROCESSES
A stochastic process is defined to be an indexed collection of random variables {Xt},
where the index t runs through a given set T. Often T is taken to be the set of non-
negative integers, and Xt represents a measurable characteristic of interest at time t.
For example, Xt might represent the inventory level of a particular product at the end
of week t.

hil76299_ch16_723-758.qxd  11/4/08  12:06 PM  Page 723



Confirming Pages

Stochastic processes are of interest for describing the behavior of a system operating
over some period of time. A stochastic process often has the following structure.

The current status of the system can fall into any one of M � 1 mutually exclusive cate-
gories called states. For notational convenience, these states are labeled 0, 1, . . . , M. The
random variable Xt represents the state of the system at time t, so its only possible values
are 0, 1, . . . , M. The system is observed at particular points of time, labeled t � 0,
1, 2, . . . . Thus, the stochastic process {Xt} � {X0, X1, X2, . . .} provides a mathematical
representation of how the status of the physical system evolves over time.

This kind of process is referred to as being a discrete time stochastic process with a finite
state space. Except for Sec. 16.8, this will be the only kind of stochastic process con-
sidered in this chapter. (Section 16.8 describes a certain continuous time stochastic
process.)

A Weather Example

The weather in the town of Centerville can change rather quickly from day to day. However,
the chances of being dry (no rain) tomorrow are somewhat larger if it is dry today than if
it rains today. In particular, the probability of being dry tomorrow is 0.8 if it is dry today,
but is only 0.6 if it rains today. These probabilities do not change if information about the
weather before today is also taken into account.

The evolution of the weather from day to day in Centerville is a stochastic process.
Starting on some initial day (labeled as day 0), the weather is observed on each day t, for
t � 0, 1, 2, . . . . The state of the system on day t can be either

State 0 � Day t is dry

or

State 1 � Day t has rain.

Thus, for t � 0, 1, 2, . . . , the random variable Xt takes on the values,

Xt � �
The stochastic process {Xt} � {X0, X1, X2, . . .} provides a mathematical representation
of how the status of the weather in Centerville evolves over time.

An Inventory Example

Dave’s Photography Store has the following inventory problem. The store stocks a par-
ticular model camera that can be ordered weekly. Let D1, D2, . . . represent the demand
for this camera (the number of units that would be sold if the inventory is not depleted)
during the first week, second week, . . . , respectively, so the random variable Dt (for
t � 1, 2, . . .) is

Dt � number of cameras that would be sold in week t if the inventory is not
depleted. (This number includes lost sales when the inventory is depleted.)

It is assumed that the Dt are independent and identically distributed random variables hav-
ing a Poisson distribution with a mean of 1. Let X0 represent the number of cameras on
hand at the outset, X1 the number of cameras on hand at the end of week 1, X2 the num-
ber of cameras on hand at the end of week 2, and so on, so the random variable Xt (for
t � 0, 1, 2, . . .) is

Xt � number of cameras on hand at the end of week t.

if day t is dry
if day t has rain.

0
1

724 CHAPTER 16 MARKOV CHAINS
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Assume that X0 � 3, so that week 1 begins with three cameras on hand.

{Xt} � {X0, X1, X2, . . .}

is a stochastic process where the random variable Xt represents the state of the system at
time t, namely,

State at time t � number of cameras on hand at the end of week t.

As the owner of the store, Dave would like to learn more about how the status of this sto-
chastic process evolves over time while using the current ordering policy described below.

At the end of each week t (Saturday night), the store places an order that is delivered in
time for the next opening of the store on Monday. The store uses the following order policy:

If Xt � 0, order 3 cameras.
If Xt � 0, do not order any cameras.

Thus, the inventory level fluctuates between a minimum of zero cameras and a maximum
of three cameras, so the possible states of the system at time t (the end of week t) are

Possible states � 0, 1, 2, or 3 cameras on hand.

Since each random variable Xt (t � 0, 1, 2, . . .) represents the state of the system at the end
of week t, its only possible values are 0, 1, 2, or 3. The random variables Xt are dependent
and may be evaluated iteratively by the expression

Xt�1 � �
for t � 0, 1, 2, . . . .

These examples are used for illustrative purposes throughout many of the following
sections. Section 16.2 further defines the particular type of stochastic process considered
in this chapter.

if Xt � 0
if Xt � 1,

max{3 � Dt�1, 0}
max{Xt � Dt�1, 0}

■ 16.2 MARKOV CHAINS

Assumptions regarding the joint distribution of X0, X1, . . . are necessary to obtain ana-
lytical results. One assumption that leads to analytical tractability is that the stochastic
process is a Markov chain, which has the following key property:

A stochastic process {Xt} is said to have the Markovian property if P{Xt�1 � jX0 � k0,
X1 � k1, . . . , Xt�1 � kt�1, Xt � i} � P{Xt�1 � jXt � i}, for t � 0, 1, . . . and every sequence
i, j, k0, k1, . . . , kt�1.

In words, this Markovian property says that the conditional probability of any future
“event,” given any past “events” and the present state Xt � i, is independent of the past
events and depends only upon the present state.

A stochastic process {Xt} (t � 0, 1, . . .) is a Markov chain if it has the Markovian
property.

The conditional probabilities P{Xt�1 � jXt � i} for a Markov chain are called (one-
step) transition probabilities. If, for each i and j,

P{Xt�1 � jXt � i} � P{X1 � jX0 � i}, for all t � 1, 2, . . . ,

then the (one-step) transition probabilities are said to be stationary. Thus, having 
stationary transition probabilities implies that the transition probabilities do not change
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1For n � 0, pij
(0) is just P{X0 � jX0 � i} and hence is 1 when i � j and is 0 when i � j.

over time. The existence of stationary (one-step) transition probabilities also implies that,
for each i, j, and n (n � 0, 1, 2, . . .),

P{Xt�n � jXt � i} � P{Xn � jX0 � i}

for all t � 0, 1, . . . . These conditional probabilities are called n-step transition probabilities.
To simplify notation with stationary transition probabilities, let

pij � P{Xt�1 � jXt � i},

pij
(n) � P{Xt�n � jXt � i}.

Thus, the n-step transition probability pij
(n) is just the conditional probability that the sys-

tem will be in state j after exactly n steps (time units), given that it starts in state i at any
time t. When n � 1, note that pij

(1) � pij.
1

Because the pij
(n) are conditional probabilities, they must be nonnegative, and since

the process must make a transition into some state, they must satisfy the properties

pij
(n) � 0, for all i and j; n � 0, 1, 2, . . . ,

and

�
M

j�0
pij

(n) � 1 for all i; n � 0, 1, 2, . . . .

A convenient way of showing all the n-step transition probabilities is the n-step
transition matrix

State 0 1 … M

P(n) �

Note that the transition probability in a particular row and column is for the transition
from the row state to the column state. When n � 1, we drop the superscript n and sim-
ply refer to this as the transition matrix.

The Markov chains to be considered in this chapter have the following properties:

1. A finite number of states.
2. Stationary transition probabilities.

We also will assume that we know the initial probabilities P{X0 � i} for all i.

Formulating the Weather Example as a Markov Chain

For the weather example introduced in the preceding section, recall that the evolution of
the weather in Centerville from day to day has been formulated as a stochastic process
{Xt} (t � 0, 1, 2, . . .) where

Xt � �0 if day t is dry
1 if day t has rain.








p(n)
0M

p(n)
1M

…
p(n)

MM

…
…
…
…

p01
(n)

p11
(n)

…
p(n)

M1

p00
(n)

p10
(n)

…
p(n)

M0








0

1

�

M

hil76299_ch16_723-758.qxd  11/4/08  12:06 PM  Page 726



Confirming Pages

P{Xt�1 � 0Xt � 0} � 0.8,

P{Xt�1 � 0Xt � 1} � 0.6.

Furthermore, because these probabilities do not change if information about the weather
before today (day t) is also taken into account,

P{Xt�1 � 0X0 � k0, X1 � k1, . . . , Xt�1 � kt�1, Xt � 0} � P{Xt�1 � 0Xt � 0}
P{Xt�1 � 0X0 � k0, X1 � k1, . . . , Xt�1 � kt�1, Xt � 1} � P{Xt�1 � 0Xt � 1}

for t � 0, 1, . . . and every sequence k0, k1, . . . , kt�1. These equations also must hold if
Xt�1 � 0 is replaced by Xt�1 � 1. (The reason is that states 0 and 1 are mutually exclusive
and the only possible states, so the probabilities of the two states must sum to 1.) There-
fore, the stochastic process has the Markovian property, so the process is a Markov chain.

Using the notation introduced in this section, the (one-step) transition probabilities are

p00 � P{Xt�1 � 0Xt � 0} � 0.8,
p10 � P{Xt�1 � 0Xt � 1} � 0.6

for all t � 1, 2, . . . , so these are stationary transition probabilities. Furthermore,

p00 � p01 � 1, so p01 � 1 – 0.8 � 0.2,
p10 � p11 � 1, so p11 � 1 – 0.6 � 0.4.

Therefore, the (one-step) transition matrix is

P � � � � � �
1

0.2
0.4

0
0.8
0.6

State
0
1

1
p01

p11

0
p00

p10

State
0
1

Merrill Lynch is a leading full-service financial service
firm. It provides brokerage, investment, and banking ser-
vices to individual retail clients and small businesses
while also helping major corporations and institutions
around the world raise capital. One of Merrill Lynch’s
affiliates, Merrill Lynch (ML) Bank USA, has assets of
over $60 billion obtained by accepting deposits from
Merrill Lynch retail customers and using these deposits
to fund loans and make investments. 

In 2000, ML Bank USA began to establish revolving
credit lines for client companies. Within a few years, the
bank had developed a portfolio of about $13 billion in
credit-line commitments with over 100 institutions. Long
before this point was reached, Merrill Lynch’s outstand-
ing OR group was asked to guide the management of this
growing portfolio by using OR techniques to assess the
liquidity risk (the bank’s potential inability to meet its
cash obligations) associated with its current and prospec-
tive credit-line commitments.

The OR group developed a simulation model (the
topic of Chap. 20) for this purpose. However, the most
important input to this model is a Markov chain that
describes the evolution of each customer’s credit rating
over time. The states of the Markov chain are the various

possible credit ratings (ranging from highest investment
grade to default) that are assigned to major companies
by such credit-rating agencies as Standard and Poor’s
and Moody’s. The transition probability from state i to
state j in the transition matrix for a given company is the
probability that the credit-rating agency will shift its
rating of the company from state i to state j from one
month to the next, based on historical patterns for simi-
lar companies.

This application of operations research, including
Markov chains, enabled ML Bank USA to free up about
$4 billion of liquidity for other use, as well as to expand its
portfolio of credit-line commitments by over 60 percent in
less than two years. Other benefits include the ability to
evaluate extreme-risk scenarios and to perform long-range
planning. This outstanding work led to Merrill Lynch win-
ning the prestigious Wagner Prize for Excellence in Oper-
ations Research Practice for 2004.

Source: Duffy, T., M. Hatzakis, W. Hsu, R. Labe, B. Liao, X. Luo,
J. Oh, A. Setya, and L. Yang: “Merrill Lynch Improves Liquidity
Risk Management for Revolving Credit Lines,” Interfaces, 35(5):
353–369, Sept.–Oct. 2005. (A link to this article is provided on
our website, www.mhhe.com/hillier.)

An Application Vignette
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728 CHAPTER 16 MARKOV CHAINS

where these transition probabilities are for the transition from the row state to the column
state. Keep in mind that state 0 means that the day is dry, whereas state 1 signifies that
the day has rain, so these transition probabilities give the probability of the state the weather
will be in tomorrow, given the state of the weather today.

The state transition diagram in Fig. 16.1 graphically depicts the same information
provided by the transition matrix. The two nodes (circle) represent the two possible states
for the weather, and the arrows show the possible transitions (including back to the same
state) from one day to the next. Each of the transition probabilities is given next to the
corresponding arrow.

The n-step transition matrices for this example will be shown in the next section.

Formulating the Inventory Example as a Markov Chain

Returning to the inventory example developed in the preceding section, recall that Xt is the
number of cameras in stock at the end of week t (before ordering any more), so Xt represents
the state of the system at time t (the end of week t). Given that the current state is Xt � i, the
expression at the end of Sec. 16.1 indicates that Xt�1 depends only on Dt�1 (the demand in
week t � 1) and Xt. Since Xt�1 is independent of any past history of the inventory system prior
to time t, the stochastic process {Xt} (t � 0, 1, . . .) has the Markovian property and so is a
Markov chain.

Now consider how to obtain the (one-step) transition probabilities, i.e., the elements
of the (one-step) transition matrix

P �

given that Dt�1 has a Poisson distribution with a mean of 1. Thus,

P{Dt�1 � n} � �
(1)

n

ne
!

�1

�, for n � 0, 1, . . . ,

so (to three significant digits)

P{Dt�1 � 0} � e�1 � 0.368,
P{Dt�1 � 1} � e�1 � 0.368,

P{Dt�1 � 2} � �
1
2

�e�1 � 0.184,

P{Dt�1 � 3} � 1 � P{Dt�1 � 2} � 1 � (0.368 � 0.368 � 0.184) � 0.080.








3

p03

p13

p23

p33

2

p02

p12

p22

p32

1

p01

p11

p21

p31

0

p00

p10

p20

p30








State

0

1

2

3

10

0.2

0.6

0.8 0.4

■ FIGURE 16.1
The state transition diagram
for the weather example.
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16.2 MARKOV CHAINS 729

For the first row of P, we are dealing with a transition from state Xt � 0 to some state
Xt�1. As indicated at the end of Sec. 16.1,

Xt�1 � max{3 � Dt�1, 0} if Xt � 0.

Therefore, for the transition to Xt�1 � 3 or Xt�1 � 2 or Xt�1 � 1,

p03 � P{Dt�1 � 0} � 0.368,
p02 � P{Dt�1 � 1} � 0.368,
p01 � P{Dt�1 � 2} � 0.184.

A transition from Xt � 0 to Xt�1 � 0 implies that the demand for cameras in week t � 1 is 3
or more after 3 cameras are added to the depleted inventory at the beginning of the week, so

p00 � P{Dt�1 � 3} � 0.080.

For the other rows of P, the formula at the end of Sec. 16.1 for the next state is

Xt�1 � max {Xt � Dt�1, 0} if Xt � 1.

This implies that Xt�1 � Xt, so p12 � 0, p13 � 0, and p23 � 0. For the other transitions,

p11 � P{Dt�1 � 0} � 0.368,
p10 � P{Dt�1 � 1) � 1 � P{Dt�1 � 0} � 0.632,
p22 � P{Dt�1 � 0} � 0.368,
p21 � P{Dt�1 � 1} � 0.368,
p20 � P{Dt�1 � 2} � 1 � P{Dt�1 � 1} � 1 � (0.368 � 0.368) � 0.264.

For the last row of P, week t � 1 begins with 3 cameras in inventory, so the calculations
for the transition probabilities are exactly the same as for the first row. Consequently, the
complete transition matrix (to three significant digits) is

P �

The information given by this transition matrix can also be depicted graphically with
the state transition diagram in Fig. 16.2. The four possible states for the number of cameras








3

0.368

0

0

0.368

2

0.368

0

0.368

0.368

1

0.184

0.368

0.368

0.184

0

0.080

0.632

0.264

0.080








State

0

1

2

3

0 1

2 3

0.080

0.080

0.184

0.368

0.368

0.368

0.3680.264 0.184

0.632

0.368

0.368

0.368

■ FIGURE 16.2
The state transition diagram
for the inventory example.
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on hand at the end of a week are represented by the four nodes (circles) in the diagram. The
arrows show the possible transitions from one state to another, or sometimes from a
state back to itself, when the camera store goes from the end of one week to the end of
the next week. The number next to each arrow gives the probability of that particular
transition occurring next when the camera store is in the state at the base of the arrow.

Additional Examples of Markov Chains

A Stock Example. Consider the following model for the value of a stock. At the end of
a given day, the price is recorded. If the stock has gone up, the probability that it will go up
tomorrow is 0.7. If the stock has gone down, the probability that it will go up tomorrow is
only 0.5. (For simplicity, we will count the stock staying the same as a decrease.) This is a
Markov chain, where the possible states for each day are as follows:

State 0: The stock increased on this day.
State 1: The stock decreased on this day.

The transition matrix that shows each probability of going from a particular state today
to a particular state tomorrow is given by

P � � �
The form of the state transition diagram for this example is exactly the same as for

the weather example shown in Fig. 16.1, so we will not repeat it here. The only differ-
ence is that the transition probabilities in the diagram are slightly different (0.7 replaces
0.8, 0.3 replaces 0.2, and 0.5 replaces both 0.6 and 0.4 in Fig. 16.1).

A Second Stock Example. Suppose now that the stock market model is changed so that
the stock’s going up tomorrow depends upon whether it increased today and yesterday. In
particular, if the stock has increased for the past two days, it will increase tomorrow with
probability 0.9. If the stock increased today but decreased yesterday, then it will increase
tomorrow with probability 0.6. If the stock decreased today but increased yesterday, then it
will increase tomorrow with probability 0.5. Finally, if the stock decreased for the past two
days, then it will increase tomorrow with probability 0.3. If we define the state as repre-
senting whether the stock goes up or down today, the system is no longer a Markov chain.
However, we can transform the system to a Markov chain by defining the states as follows:2

State 0: The stock increased both today and yesterday.
State 1: The stock increased today and decreased yesterday.
State 2: The stock decreased today and increased yesterday.
State 3: The stock decreased both today and yesterday.

This leads to a four-state Markov chain with the following transition matrix:

P �








3

0

0

0.5

0.7

2

0.1

0.4

0

0

1

0

0

0.5

0.3

0

0.9

0.6

0

0








State

0

1

2

3

1

0.3

0.5

0

0.7

0.5

State

0

1

730 CHAPTER 16 MARKOV CHAINS

2We again are counting the stock staying the same as a decrease. This example demonstrates that Markov chains
are able to incorporate arbitrary amounts of history, but at the cost of significantly increasing the number of states.
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16.2 MARKOV CHAINS 731

Figure 16.3 shows the state transition diagram for this example. An interesting feature of
the example revealed by both this diagram and all the values of 0 in the transition matrix is
that so many of the transitions from state i to state j are impossible in one step. In other words,
pij � 0 for 8 of the 16 entries in the transition matrix. However, check out how it always is
possible to go from any state i to any state j (including j � i) in two steps. The same holds
true for three steps, four steps, and so forth. Thus, pij

(n) � 0 for n � 2, 3, . . . for all i and j.

A Gambling Example. Another example involves gambling. Suppose that a player
has $1 and with each play of the game wins $1 with probability p � 0 or loses $1 with
probability 1 � p � 0. The game ends when the player either accumulates $3 or goes
broke. This game is a Markov chain with the states representing the player’s current hold-
ing of money, that is, 0, $1, $2, or $3, and with the transition matrix given by

P �

The state transition diagram for this example is shown in Fig. 16.4. This diagram
demonstrates that once the process enters either state 0 or state 3, it will stay in that state








3

0

0

p

1

2

0

p

0

0

1

0

0

1 � p

0

0

1

1 � p

0

0








State

0

1

2

3

2 3

0.5

0.4

0.5

0.30.1

0.7

0 1
0.6

0.9

2 3 1

0 1
1-r

1-r

r

r

1

■ FIGURE 16.3
The state transition diagram
for the second stock
example.

■ FIGURE 16.4
The state transition diagram
for the gambling example.
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■ 16.3 CHAPMAN-KOLMOGOROV EQUATIONS

Section 16.2 introduced the n-step transition probability pij
(n). The following Chapman-

Kolmogorov equations provide a method for computing these n-step transition probabilities:

pij
(n) � �

M

k�0
pik

(m)pkj
(n�m), for all i � 0, 1, . . . , M,

j � 0, 1, . . . , M,
and any m � 1, 2, . . . , n � 1,

n � m � 1, m � 2, . . . .3

These equations point out that in going from state i to state j in n steps, the process
will be in some state k after exactly m (less than n) steps. Thus, pik

(m) pkj
(n�m) is just the con-

ditional probability that, given a starting point of state i, the process goes to state k after
m steps and then to state j in n � m steps. Therefore, summing these conditional proba-
bilities over all possible k must yield pij

(n). The special cases of m � 1 and m � n � 1 lead
to the expressions

pij
(n) � �

M

k�0
pikpkj

(n�1)

and

pij
(n) � �

M

k�0
pik

(n�1)pkj,

for all states i and j. These expressions enable the n-step transition probabilities to be obtained
from the one-step transition probabilities recursively. This recursive relationship is best
explained in matrix notation (see Appendix 4). For n � 2, these expressions become

pij
(2) � �

M

k�0
pikpkj, for all states i and j,

where the pij
(2) are the elements of a matrix P(2). Also note that these elements are obtained

by multiplying the matrix of one-step transition probabilities by itself; i.e.,

P(2) � P � P � P2.

In the same manner, the above expressions for pij
(n) when m � 1 and m � n � 1 indicate

that the matrix of n-step transition probabilities is

P(n) � PP(n�1) � P(n�1)P
� PPn�1 � Pn�1P
� Pn.

3These equations also hold in a trivial sense when m � 0 or m � n, but m � 1, 2, . . . , n � 1 are the only
interesting cases.

forever after, since p00 � 1 and p33 � 1. States 0 and 3 are examples of what are called
an absorbing state (a state that is never left once the process enters that state). We will
focus on analyzing absorbing states in Sec. 16.7.

Note that in both the inventory and gambling examples, the numeric labeling of the states
that the process reaches coincides with the physical expression of the system—i.e., actual in-
ventory levels and the player’s holding of money, respectively—whereas the numeric label-
ing of the states in the weather and stock examples has no physical significance.
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Thus, the n-step transition probability matrix Pn can be obtained by computing the nth
power of the one-step transition matrix P.

n-Step Transition Matrices for the Weather Example

For the weather example introduced in Sec. 16.1, we now will use the above formulas to
calculate various n-step transition matrices from the (one-step) transition matrix P that
was obtained in Sec. 16.2. To start, the two-step transition matrix is

P(2) � P 	 P � � � � � � � �.

Thus, if the weather is in state 0 (dry) on a particular day, the probability of being in state 0
two days later is 0.76 and the probability of being in state 1 (rain) then is 0.24. Similarly, if
the weather is in state 1 now, the probability of being in state 0 two days later is 0.72 whereas
the probability of being in state 1 then is 0.28.

The probabilities of the state of the weather three, four, or five days into the future
also can be read in the same way from the three-step, four-step, and five-step transition
matrices calculated to three significant digits below.

P(3) � P3 � P � P2 � � � � � � � �
P(4) � P4 � P � P3 � � � � � � � �
P(5) � P5 � P � P4 � � � � � � � �
Note that the five-step transition matrix has the interesting feature that the two rows

have identical entries (after rounding to three significant digits). This reflects the fact that
the probability of the weather being in a particular state is essentially independent of the
state of the weather five days before. Thus, the probabilities in either row of this five-step
transition matrix are referred to as the steady-state probabilities of this Markov chain.

We will expand further on the subject of the steady-state probabilities of a Markov
chain, including how to derive them more directly, at the beginning of Sec. 16.5.

n-Step Transition Matrices for the Inventory Example

Returning to the inventory example included in Sec. 16.1, we now will calculate its n-step
transition matrices to three decimal places for n = 2, 4, and 8. To start, its one-step transition
matrix P obtained in Sec. 16.2 can be used to calculate the two-step transition matrix P(2) as
follows:

P(2) � P2 �

� .








0.165

0.233

0.097

0.165

0.300

0.233

0.233

0.300

0.286

0.252

0.319

0.286

0.249

0.283

0.351

0.249















0.368

0

0

0.368

0.368

0

0.368

0.368

0.184

0.368

0.368

0.184

0.080

0.632

0.264

0.080















0.368

0

0

0.368

0.368

0

0.368

0.368

0.184

0.368

0.368

0.184

0.080

0.632

0.264

0.080








0.75 0.25
0.75 0.25

0.75 0.25
0.749 0.251

0.8 0.2
0.6 0.4

0.75 0.25
0.749 0.251

0.752 0.248
0.744 0.256

0.8 0.2
0.6 0.4

0.752 0.248
0.744 0.256

0.76 0.24
0.72 0.28

0.8 0.2
0.6 0.4

0.76 0.24
0.72 0.28

0.8 0.2
0.6 0.4

0.8 0.2
0.6 0.4
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For example, given that there is one camera left in stock at the end of a week, the proba-
bility is 0.283 that there will be no cameras in stock 2 weeks later, that is, p10

(2) � 0.283.
Similarly, given that there are two cameras left in stock at the end of a week, the proba-
bility is 0.097 that there will be three cameras in stock 2 weeks later, that is, p23

(2) � 0.097.
The four-step transition matrix can also be obtained as follows:

P(4) � P4 � P(2) 	 P(2)

�

� .

For example, given that there is one camera left in stock at the end of a week, the prob-
ability is 0.282 that there will be no cameras in stock 4 weeks later, that is, p10

(4) � 0.282.
Similarly, given that there are two cameras left in stock at the end of a week, the proba-
bility is 0.171 that there will be three cameras in stock 4 weeks later, that is, p23

(4) � 0.171.
The transition probabilities for the number of cameras in stock 8 weeks from now

can be read in the same way from the eight-step transition matrix calculated below.

P(8) � P8 � P(4) 	 P(4)

�

�   

Like the five-step transition matrix for the weather example, this matrix has the interesting
feature that its rows have identical entries (after rounding). The reason once again is that
probabilities in any row are the steady-state probabilities for this Markov chain, i.e., the
probabilities of the state of the system after enough time has elapsed that the initial state is
no longer relevant.

Your IOR Tutorial includes a procedure for calculating P(n) � Pn for any positive
integer n � 99.

Unconditional State Probabilities

Recall that one- or n-step transition probabilities are conditional probabilities; for example,
P{Xn � jX0 � i} � pij

(n). Assume that n is small enough that these conditional probabilities
are not yet steady-state probabilities. In this case, if the unconditional probability P{Xn � j}
is desired, it is necessary to specify the probability distribution of the initial state, namely,
P{X0 � i} for i � 0, 1, . . . , M. Then

P{Xn � j} � P{X0 � 0} p0j
(n) � P{X0 � 1}p1j

(n) � 			 � P{X0 � M}pMj
(n).
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0.285
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
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0.164
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0.286

0.285
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0.286

0.289
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0.289















0.164

0.166

0.171

0.164
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0.268

0.263

0.261

0.286

0.285
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0.286
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0.289















0.165

0.233

0.097

0.165

0.300

0.233

0.233

0.300

0.286

0.252
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0.286

0.249

0.283

0.351
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













0.165

0.233

0.097

0.165

0.300

0.233

0.233

0.300
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In the inventory example, it was assumed that initially there were 3 units in stock,
that is, X0 � 3. Thus, P{X0 � 0} � P{X0 � 1} � P{X0 � 2} � 0 and P{X0 � 3} � 1.
Hence, the (unconditional) probability that there will be three cameras in stock 2 weeks
after the inventory system began is P{X2 � 3} � (1)p33

(2) � 0.165.

■ 16.4 CLASSIFICATION OF STATES OF A MARKOV CHAIN

We have just seen near the end of the preceding section that the n-step transition probabil-
ities for the inventory example converge to steady-state probabilities after a sufficient num-
ber of steps. However, this is not true for all Markov chains. The long-run properties of a
Markov chain depend greatly on the characteristics of its states and transition matrix. To fur-
ther describe the properties of Markov chains, it is necessary to present some concepts
and definitions concerning these states.

State j is said to be accessible from state i if pij
(n) � 0 for some n � 0. (Recall that pij

(n)

is just the conditional probability of being in state j after n steps, starting in state i.) Thus,
state j being accessible from state i means that it is possible for the system to enter state j even-
tually when it starts from state i. This is clearly true for the weather example (see Fig. 16.1)
since pij � 0 for all i and j. In the inventory example (see Fig. 16.2), pij

(2) � 0 for all i and j,
so every state is accessible from every other state. In general, a sufficient condition for all
states to be accessible is that there exists a value of n for which pij

(n) � 0 for all i and j.
In the gambling example given at the end of Sec. 16.2 (see Fig. 16.4), state 2 is not

accessible from state 3. This can be deduced from the context of the game (once the player
reaches state 3, the player never leaves this state), which implies that p32

(n) � 0 for all n � 0.
However, even though state 2 is not accessible from state 3, state 3 is accessible from state 2
since, for n � 1, the transition matrix given at the end of Sec. 16.2 indicates that p23 � p � 0.

If state j is accessible from state i and state i is accessible from state j, then states i
and j are said to communicate. In both the weather and inventory examples, all states
communicate. In the gambling example, states 2 and 3 do not. (The same is true of states
1 and 3, states 1 and 0, and states 2 and 0.) In general,

1. Any state communicates with itself (because pii
(0) � P{X0 � iX0 � i} � 1).

2. If state i communicates with state j, then state j communicates with state i.
3. If state i communicates with state j and state j communicates with state k, then state i

communicates with state k.

Properties 1 and 2 follow from the definition of states communicating, whereas property
3 follows from the Chapman-Kolmogorov equations.

As a result of these three properties of communication, the states may be parti-
tioned into one or more separate classes such that those states that communicate with
each other are in the same class. (A class may consist of a single state.) If there is only
one class, i.e., all the states communicate, the Markov chain is said to be irreducible.
In both the weather and inventory examples, the Markov chain is irreducible. In both
of the stock examples in Sec. 16.2, the Markov chain also is irreducible. However, the
gambling example contains three classes. Observe in Fig. 16.4 how state 0 forms a
class, state 3 forms a class, and states 1 and 2 form a class.

Recurrent States and Transient States

It is often useful to talk about whether a process entering a state will ever return to this
state. Here is one possibility.

A state is said to be a transient state if, upon entering this state, the process might never
return to this state again. Therefore, state i is transient if and only if there exists a state j
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( j � i) that is accessible from state i but not vice versa, that is, state i is not accessible
from state j.

Thus, if state i is transient and the process visits this state, there is a positive probability
(perhaps even a probability of 1) that the process will later move to state j and so will
never return to state i. Consequently, a transient state will be visited only a finite number
of times. To illustrate, consider the gambling example presented at the end of Sec. 16.2.
Its state transition diagram shown in Fig. 16.4 indicates that both states 1 and 2 are tran-
sient states since the process will leave these states sooner or later to enter either state 0
or state 3 and then will remain in that state forever.

When starting in state i, another possibility is that the process definitely will return
to this state.

A state is said to be a recurrent state if, upon entering this state, the process definitely
will return to this state again. Therefore, a state is recurrent if and only if it is not transient.

Since a recurrent state definitely will be revisited after each visit, it will be visited infi-
nitely often if the process continues forever. For example, all the states in the state tran-
sition diagrams shown in Figs. 16.1, 16.2, and 16.3 are recurrent states because the process
always will return to each of these states. Even for the gambling example, states 0 and 3
are recurrent states because the process will keep returning immediately to one of these
states forever once the process enters that state. Note in Fig. 16.4 how the process even-
tually will enter either state 0 or state 3 and then will never leave that state again.

If the process enters a certain state and then stays in this state at the next step, this
is considered a return to this state. Hence, the following kind of state is a special type of
recurrent state.

A state is said to be an absorbing state if, upon entering this state, the process never will
leave this state again. Therefore, state i is an absorbing state if and only if pii � 1.

As just noted, both states 0 and 3 for the gambling example fit this definition, so they
both are absorbing states as well as a special type of recurrent state. We will discuss
absorbing states further in Sec. 16.7.

Recurrence is a class property. That is, all states in a class are either recurrent or
transient. Furthermore, in a finite-state Markov chain, not all states can be transient.
Therefore, all states in an irreducible finite-state Markov chain are recurrent. Indeed,
one can identify an irreducible finite-state Markov chain (and therefore conclude that
all states are recurrent) by showing that all states of the process communicate. It has
already been pointed out that a sufficient condition for all states to be accessible (and
therefore communicate with each other) is that there exists a value of n for which pij

(n) � 0
for all i and j. Thus, all states in the inventory example (see Fig. 16.2) are recurrent, since
pij

(2) is positive for all i and j. Similarly, both the weather example and the first stock
example contain only recurrent states, since pij is positive for all i and j. By calculat-
ing pij

(2) for all i and j in the second stock example in Sec. 16.2 (see Fig. 16.3), it fol-
lows that all states are recurrent since pij

(2) � 0 for all i and j.
As another example, suppose that a Markov chain has the following transition matrix:

P �
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


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0

0

0

0

0
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0
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�
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�
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�
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Note that state 2 is an absorbing state (and hence a recurrent state) because if the process
enters state 2 (row 3 of the matrix), it will never leave. State 3 is a transient state because
if the process is in state 3, there is a positive probability that it will never return. The prob-
ability is �

1
3

� that the process will go from state 3 to state 2 on the first step. Once the process
is in state 2, it remains in state 2. State 4 also is a transient state because if the process
starts in state 4, it immediately leaves and can never return. States 0 and 1 are recurrent
states. To see this, observe from P that if the process starts in either of these states, it can
never leave these two states. Furthermore, whenever the process moves from one of these
states to the other one, it always will return to the original state eventually.

Periodicity Properties

Another useful property of Markov chains is periodicities. The period of state i is defined
to be the integer t (t � 1) such that pii

(n) � 0 for all values of n other than t, 2t, 3t, . . . and
t is the smallest integer with this property. In the gambling example (end of Section 16.2),
starting in state 1, it is possible for the process to enter state 1 only at times 2, 4, . . . , so
state 1 has period 2. The reason is that the player can break even (be neither winning nor
losing) only at times 2, 4, . . . , which can be verified by calculating p11

(n) for all n and not-
ing that p11

(n) � 0 for n odd. You also can see in Fig. 16.4 that the process always takes
two steps to return to state 1 until the process gets absorbed in either state 0 or state 3.
(The same conclusion also applies to state 2.)

If there are two consecutive numbers s and s � 1 such that the process can be in state i
at times s and s � 1, the state is said to have period 1 and is called an aperiodic state.

Just as recurrence is a class property, it can be shown that periodicity is a class prop-
erty. That is, if state i in a class has period t, then all states in that class have period t. In
the gambling example, state 2 also has period 2 because it is in the same class as state 1
and we noted above that state 1 has period 2.

It is possible for a Markov chain to have both a recurrent class of states and a transient
class of states where the two classes have different periods greater than 1. If you would like
to see a Markov chain where this occurs, another example of this type is provided in the
Worked Examples section of the book’s website.

In a finite-state Markov chain, recurrent states that are aperiodic are called ergodic
states. A Markov chain is said to be ergodic if all its states are ergodic states. You will see
next that a key long-run property of a Markov chain that is both irreducible and ergodic is
that its n-step transition probabilities will converge to steady-state probabilities as n grows
large.

■ 16.5 LONG-RUN PROPERTIES OF MARKOV CHAINS

Steady-State Probabilities

While calculating the n-step transition probabilities for both the weather and inventory
examples in Sec. 16.3, we noted an interesting feature of these matrices. If n is large enough
(n � 5 for the weather example and n � 8 for the inventory example), all the rows of the
matrix have identical entries, so the probability that the system is in each state j no longer
depends on the initial state of the system. In other words, there is a limiting probability that
the system will be in each state j after a large number of transitions, and this probability is
independent of the initial state. These properties of the long-run behavior of finite-state
Markov chains do, in fact, hold under relatively general conditions, as summarized below.

For any irreducible ergodic Markov chain, lim
n→�

pij
(n) exists and is independent of i. 
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Furthermore,

lim
n→�

pij
(n) � �j � 0,

where the �j uniquely satisfy the following steady-state equations

�j � �
M

i�0
�ipij, for j � 0, 1, . . . , M,

�
M

j�0
�j � 1. 

If you prefer to work with a system of equations in matrix form, this system (excluding
the sum = 1 equation) also can be expressed as

� � �P,

where � = (�0, �1, . . . , �M). 
The �j are called the steady-state probabilities of the Markov chain. The term steady-

state probability means that the probability of finding the process in a certain state, say j,
after a large number of transitions tends to the value �j, independent of the probability
distribution of the initial state. It is important to note that the steady-state probability does
not imply that the process settles down into one state. On the contrary, the process con-
tinues to make transitions from state to state, and at any step n the transition probability
from state i to state j is still pij.

The �j can also be interpreted as stationary probabilities (not to be confused with
stationary transition probabilities) in the following sense. If the initial probability of
being in state j is given by �j (that is, P{X0 � j} � �j) for all j, then the probabil-
ity of finding the process in state j at time n � 1, 2, . . . is also given by �j (that is,
P{Xn � j} � �j).

Note that the steady-state equations consist of M � 2 equations in M � 1 unknowns.
Because it has a unique solution, at least one equation must be redundant and can, there-
fore, be deleted. It cannot be the equation

�
M

j�0
�j � 1,

because �j � 0 for all j will satisfy the other M � 1 equations. Furthermore, the solu-
tions to the other M � 1 steady-state equations have a unique solution up to a multi-
plicative constant, and it is the final equation that forces the solution to be a probability
distribution.

Application to the Weather Example. The weather example introduced in Sec. 16.1
and formulated in Sec. 16.2 has only two states (dry and rain), so the above steady-state
equations become

�0 � �0p00 � �1p10,
�1 � �0p01 � �1p11,

1 � �0 � �1.

The intuition behind the first equation is that, in steady state, the probability of being in
state 0 after the next transition must equal (1) the probability of being in state 0 now and
then staying in state 0 after the next transition plus (2) the probability of being in state 1
now and next making the transition to state 0. The logic for the second equation is the
same, except in terms of state 1. The third equation simply expresses the fact that the
probabilities of these mutually exclusive states must sum to 1.

738 CHAPTER 16 MARKOV CHAINS
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Referring to the transition probabilities given in Sec. 16.2 for this example, these
equations become

�0 � 0.8�0 � 0.6�1, so 0.2�0 � 0.6�1,
�1 � 0.2�0 � 0.4�1, so 0.6�1 � 0.2�0,

1 � �0 � �1.

Note that one of the first two equations is redundant since both equations reduce to
�0 � 3�1. Combining this result with the third equation immediately yields the fol-
lowing steady-state probabilities:

�0 = 0.25, �1 = 0.75

These are the same probabilities as obtained in each row of the five-step transition matrix
calculated in Sec. 16.3 because five transitions proved enough to make the state probabil-
ities essentially independent of the initial state.

Application to the Inventory Example. The inventory example introduced in
Sec. 16.1 and formulated in Sec. 16.2 has four states. Therefore, in this case, the steady-
state equations can be expressed as

�0 � �0p00 � �1p10 � �2p20 � �3p30,
�1 � �0p01 � �1p11 � �2p21 � �3p31,
�2 � �0p02 � �1p12 � �2p22 � �3p32,
�3 � �0p03 � �1p13 � �2p23 � �3p33,

1 � �0 � �1 � �2 � �3.

Substituting values for pij (see the transition matrix in Sec. 16.2) into these equations leads
to the equations

�0 � 0.080�0 � 0.632�1 � 0.264�2 � 0.080�3,
�1 � 0.184�0 � 0.368�1 � 0.368�2 � 0.184�3,
�2 � 0.368�0 � 0.368�2 � 0.368�3,
�3 � 0.368�0 � 0.368�3,

1 � �0 � �1 � �2 � �3.

Solving the last four equations simultaneously provides the solution

�0 � 0.286, �1 � 0.285, �2 � 0.263, �3 � 0.166,

which is essentially the result that appears in matrix P(8) in Sec. 16.3. Thus, after many
weeks the probability of finding zero, one, two, and three cameras in stock at the end of
a week tends to 0.286, 0.285, 0.263, and 0.166, respectively.

More about Steady-State Probabilities. Your IOR Tutorial includes a procedure
for solving the steady-state equations to obtain the steady-state probabilities. In addition,
the Worked Examples section of our website includes another example of applying
steady-state probabilities (including using the technique described in the next subsection)
to determine the best of several alternatives on a cost basis.

There are other important results concerning steady-state probabilities. In particular,
if i and j are recurrent states belonging to different classes, then

pij
(n) � 0, for all n.

This result follows from the definition of a class.
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Similarly, if j is a transient state, then

lim
n→�

pij
(n) � 0, for all i.

Thus, the probability of finding the process in a transient state after a large number of
transitions tends to zero.

Expected Average Cost per Unit Time

The preceding subsection dealt with irreducible finite-state Markov chains whose states
were ergodic (recurrent and aperiodic). If the requirement that the states be aperiodic is
relaxed, then the limit

lim
n→�

pij
(n)

may not exist. To illustrate this point, consider the two-state transition matrix

P � � �.

If the process starts in state 0 at time 0, it will be in state 0 at times 2, 4, 6, . . . and in
state 1 at times 1, 3, 5, . . . . Thus, p00

(n) � 1 if n is even and p00
(n) � 0 if n is odd, so that

lim
n→�

p00
(n)

does not exist. However, the following limit always exists for an irreducible (finite-state)
Markov chain:

lim
n→� ��

1
n

� �
n

k�1
pij

(k)� � �j,

where the �j satisfy the steady-state equations given in the preceding subsection.
This result is important in computing the long-run average cost per unit time associated

with a Markov chain. Suppose that a cost (or other penalty function) C(Xt) is incurred when
the process is in state Xt at time t, for t � 0, 1, 2, . . . . Note that C(Xt) is a random vari-
able that takes on any one of the values C(0), C(1), . . . , C(M) and that the function C(�)
is independent of t. The expected average cost incurred over the first n periods is given by

E��
1
n

� �
n

t�1
C(Xt)�.

By using the result that

lim
n→���

1
n

� �
n

k�1
pij

(k)� � �j,

it can be shown that the (long-run) expected average cost per unit time is given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � �

M

j�0
�jC( j).

Application to the Inventory Example. To illustrate, consider the inventory exam-
ple introduced in Sec. 16.1, where the solution for the �j was obtained in an earlier
subsection. Suppose the camera store finds that a storage charge is being allocated for

1

1

0

0

0

1

State

0

1
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each camera remaining on the shelf at the end of the week. The cost is charged as
follows:

C(xt) �

Using the steady-state probabilities found earlier in this section, the long-run expected
average storage cost per week can then be obtained from the preceding equation, i.e.,

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � 0.286(0) � 0.285(2) � 0.263(8) � 0.166(18) � 5.662.

Note that an alternative measure to the (long-run) expected average cost per unit time
is the (long-run) actual average cost per unit time. It can be shown that this latter mea-
sure also is given by

lim
n→� ��

1
n

� �
n

t�1
C(Xt)� � �

M

j�0
�jC( j)

for essentially all paths of the process. Thus, either measure leads to the same result. These
results can also be used to interpret the meaning of the �j. To do so, let

C(Xt) � �
The (long-run) expected fraction of times the system is in state j is then given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � lim

n→�
E(fraction of times system is in state j ) � �j.

Similarly, �j can also be interpreted as the (long-run) actual fraction of times that the sys-
tem is in state j.

Expected Average Cost per Unit Time for Complex Cost Functions

In the preceding subsection, the cost function was based solely on the state that the
process is in at time t. In many important problems encountered in practice, the cost may
also depend upon some other random variable.

For example, in the inventory example introduced in Sec. 16.1, suppose that the costs
to be considered are the ordering cost and the penalty cost for unsatisfied demand (stor-
age costs are so small they will be ignored). It is reasonable to assume that the number
of cameras ordered to arrive at the beginning of week t depends only upon the state of
the process Xt�1 (the number of cameras in stock) when the order is placed at the end of
week t � 1. However, the cost of unsatisfied demand in week t will also depend upon the
demand Dt. Therefore, the total cost (ordering cost plus cost of unsatisfied demand) for
week t is a function of Xt�1 and Dt, that is, C(Xt�1, Dt).

Under the assumptions of this example, it can be shown that the (long-run) expected
average cost per unit time is given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt�1, Dt)� � �

M

j�0
k( j) �j,

if Xt � j
if Xt � j.

1
0

xt � 0

xt � 1

xt � 2

xt � 3

if

if

if

if

0

2

8

18








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where

k( j ) � E[C( j, Dt)],

and where this latter (conditional) expectation is taken with respect to the probability distri-
bution of the random variable Dt, given the state j. Similarly, the (long-run) actual average
cost per unit time is given by

lim
n→� ��

1
n

� �
n

t�1
C(Xt�1, Dt)� � �

M

j�0
k( j)�j.

Now let us assign numerical values to the two components of C(Xt�1, Dt) in this
example, namely, the ordering cost and the penalty cost for unsatisfied demand. If z � 0
cameras are ordered, the cost incurred is (10 � 25z) dollars. If no cameras are ordered,
no ordering cost is incurred. For each unit of unsatisfied demand (lost sales), there is a
penalty of $50. Therefore, given the ordering policy described in Sec. 16.1, the cost in
week t is given by

C(Xt�1, Dt) � �
for t � 1, 2, . . . . Hence,

C(0, Dt) � 85 � 50 max{Dt � 3, 0},

so that

k(0) � E[C(0, Dt)] � 85 � 50E(max{Dt � 3, 0})
� 85 � 50[PD(4) � 2PD(5) � 3PD(6) � 			],

where PD(i) is the probability that the demand equals i, as given by a Poisson distribu-
tion with a mean of 1, so that PD(i) becomes negligible for i larger than about 6. Since
PD(4) � 0.015, PD(5) � 0.003, and PD(6) � 0.001, we obtain k(0) � 86.2. Also using
PD(2) � 0.184 and PD(3) � 0.061, similar calculations lead to the results

k(1) � E[C(1, Dt)] � 50E(max{Dt � 1, 0})
� 50[PD(2) � 2PD(3) � 3PD(4) � 			]
� 18.4,

k(2) � E[C(2, Dt)] � 50E(max{Dt � 2, 0})
� 50[PD(3) � 2PD(4) � 3PD(5) � 			]
� 5.2,

and

k(3) � E[C(3, Dt)] � 50E(max{Dt � 3, 0})
� 50[PD(4) � 2PD(5) � 3PD(6) � 			]
� 1.2.

Thus, the (long-run) expected average cost per week is given by

�
3

j�0
k( j)�j � 86.2(0.286) � 18.4(0.285) � 5.2(0.263) � 1.2(0.166) � $31.46.

This is the cost associated with the particular ordering policy described in Sec. 16.1.
The cost of other ordering policies can be evaluated in a similar way to identify the pol-
icy that minimizes the expected average cost per week.

if Xt�1 � 0
if Xt�1 � 1,

10 � (25)(3) � 50 max{Dt � 3, 0}
50 max {Dt � Xt�1, 0}
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The results of this subsection were presented only in terms of the inventory example.
However, the (nonnumerical) results still hold for other problems as long as the follow-
ing conditions are satisfied:

1. {Xt} is an irreducible (finite-state) Markov chain.
2. Associated with this Markov chain is a sequence of random variables {Dt} which are

independent and identically distributed.
3. For a fixed m � 0, 
1, 
2, . . . , a cost C(Xt, Dt�m) is incurred at time t, for t � 0, 1,

2, . . . .
4. The sequence X0, X1, X2, . . . , Xt must be independent of Dt�m

In particular, if these conditions are satisfied, then

lim
n→�

E��
1
n

� �
n

t�1
C(Xt, Dt�m)� � �

M

j�0
k( j)�j,

where

k( j) � E[C( j, Dt�m)],

and where this latter conditional expectation is taken with respect to the probability dis-
tribution of the random variable Dt, given the state j. Furthermore,

lim
n→� ��

1
n

� �
n

t�1
C(Xt, Dt�m)� � �

M

j�0
k( j)�j

for essentially all paths of the process.

■ 16.6 FIRST PASSAGE TIMES

Section 16.3 dealt with finding n-step transition probabilities from state i to state j. It is
often desirable to also make probability statements about the number of transitions made
by the process in going from state i to state j for the first time. This length of time is called
the first passage time in going from state i to state j. When j � i, this first passage time
is just the number of transitions until the process returns to the initial state i. In this case,
the first passage time is called the recurrence time for state i.

To illustrate these definitions, reconsider the inventory example introduced in Sec. 16.1,
where Xt is the number of cameras on hand at the end of week t, where we start with X0 � 3.
Suppose that it turns out that

X0 � 3, X1 � 2, X2 � 1, X3 � 0, X4 � 3, X5 � 1.

In this case, the first passage time in going from state 3 to state 1 is 2 weeks, the first passage
time in going from state 3 to state 0 is 3 weeks, and the recurrence time for state 3 is 4 weeks.

In general, the first passage times are random variables. The probability distributions
associated with them depend upon the transition probabilities of the process. In particu-
lar, let f ij

(n) denote the probability that the first passage time from state i to j is equal to n.
For n � 1, this first passage time is n if the first transition is from state i to some state 
k (k � j) and then the first passage time from state k to state j is n � 1. Therefore, these
probabilities satisfy the following recursive relationships:

f ij
(1) � pij

(1) � pij,

f ij
(2) � �

k�j

pik f kj
(1),

f ij
(n) � �

k�j

pik f kj
(n�1).
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Thus, the probability of a first passage time from state i to state j in n steps can be computed
recursively from the one-step transition probabilities.

In the inventory example, the probability distribution of the first passage time in going
from state 3 to state 0 is obtained from these recursive relationships as follows:

f 30
(1) � p30 � 0.080,

f 30
(2) � p31 f 10

(1) � p32 f 20
(1) � p33 f 30

(1)

� 0.184(0.632) � 0.368(0.264) � 0.368(0.080) � 0.243,
�

where the p3k and f k0
(1) � pk0 are obtained from the (one-step) transition matrix given in

Sec. 16.2.
For fixed i and j, the f ij

(n) are nonnegative numbers such that

�
�

n�1
f ij

(n) � 1.

Unfortunately, this sum may be strictly less than 1, which implies that a process initially
in state i may never reach state j. When the sum does equal 1, f ij

(n) (for n � 1, 2, . . .) can
be considered as a probability distribution for the random variable, the first passage time.

Although obtaining f ij
(n) for all n may be tedious, it is relatively simple to obtain the

expected first passage time from state i to state j. Denote this expectation by �ij, which
is defined by

� if �
�

n�1
f ij

(n) � 1

�ij � � �
�

n�1
nf ij

(n) if �
�

n�1
f ij

(n) � 1.

Whenever

�
�

n�1
f ij

(n) � 1,

�ij uniquely satisfies the equation

�ij � 1 � �
k�j

pik�kj.

This equation recognizes that the first transition from state i can be to either state j or
to some other state k. If it is to state j, the first passage time is 1. Given that the first
transition is to some state k (k � j) instead, which occurs with probability pik, the con-
ditional expected first passage time from state i to state j is 1 � �kj. Combining these
facts, and summing over all the possibilities for the first transition, leads directly to this
equation.

For the inventory example, these equations for the �ij can be used to compute the
expected time until the cameras are out of stock, given that the process is started when
three cameras are available. This expected time is just the expected first passage time
�30. Since all the states are recurrent, the system of equations leads to the expressions

�30 � 1 � p31�10 � p32�20 � p33�30,
�20 � 1 � p21�10 � p22�20 � p23�30,
�10 � 1 � p11�10 � p12�20 � p13�30,
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■ 16.7 ABSORBING STATES

It was pointed out in Sec. 16.4 that a state k is called an absorbing state if pkk � 1, so that
once the chain visits k it remains there forever. If k is an absorbing state, and the process
starts in state i, the probability of ever going to state k is called the probability of absorption
into state k, given that the system started in state i. This probability is denoted by fik.

When there are two or more absorbing states in a Markov chain, and it is evident that
the process will be absorbed into one of these states, it is desirable to find these probabilities
of absorption. These probabilities can be obtained by solving a system of linear equations
that considers all the possibilities for the first transition and then, given the first transition,
considers the conditional probability of absorption into state k. In particular, if the state k is
an absorbing state, then the set of absorption probabilities fik satisfies the system of equations

fik � �
M

j�0
pij fjk, for i � 0, 1, . . . , M,

subject to the conditions

fkk � 1,
fik � 0, if state i is recurrent and i � k.

Absorption probabilities are important in random walks. A random walk is a Markov
chain with the property that if the system is in a state i, then in a single transition the sys-
tem either remains at i or moves to one of the two states immediately adjacent to i. For
example, a random walk often is used as a model for situations involving gambling.

or

�30 � 1 � 0.184�10 � 0.368�20 � 0.368�30,
�20 � 1 � 0.368�10 � 0.368�20,
�10 � 1 � 0.368�10.

The simultaneous solution to this system of equations is

�10 � 1.58 weeks,
�20 � 2.51 weeks,
�30 � 3.50 weeks,

so that the expected time until the cameras are out of stock is 3.50 weeks. Thus, in mak-
ing these calculations for �30, we also obtain �20 and �10.

For the case of �ij where j � i, �ii is the expected number of transitions until the
process returns to the initial state i, and so is called the expected recurrence time for
state i. After obtaining the steady-state probabilities (�0, �1, . . . , �M) as described in the
preceding section, these expected recurrence times can be calculated immediately as

�ii � �
�
1

i
�, for i � 0, 1, . . . , M.

Thus, for the inventory example, where �0 � 0.286, �1 � 0.285, �2 � 0.263, and �3 � 0.166,
the corresponding expected recurrence times are

�00 � �
�
1

0
� � 3.50 weeks, �22 � �

�
1

2
� � 3.80 weeks,

�11 � �
�
1

1
� � 3.51 weeks, �33 � �

�
1

3
� � 6.02 weeks.
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A Second Gambling Example. To illustrate the use of absorption probabilities in a
random walk, consider a gambling example similar to that presented in Sec. 16.2. How-
ever, suppose now that two players (A and B), each having $2, agree to keep playing the
game and betting $1 at a time until one player is broke. The probability of A winning a
single bet is �

1
3

�, so B wins the bet with probability �
2
3

�. The number of dollars that player A
has before each bet (0, 1, 2, 3, or 4) provides the states of a Markov chain with transition
matrix

P � .

Starting from state 2, the probability of absorption into state 0 (A losing all her money)
can be obtained by solving for f20 from the system of equations given at the beginning of
this section,

f00 � 1 (since state 0 is an absorbing state),

f10 � �
2
3

� f00 � �
1
3

� f20,

f20 � �
2
3

� f10 � �
1
3

� f30,

f30 � �
2
3

� f20 � �
1
3

� f40,

f40 � 0 (since state 4 is an absorbing state).

This system of equations yields

f20 � �
2
3

���
2
3

� � �
1
3

� f20� � �
1
3

���
2
3

� f20� � �
4
9

� � �
4
9

� f20,

which reduces to f20 � �
4
5

� as the probability of absorption into state 0.
Similarly, the probability of A finishing with $4 (B going broke) when starting with

$2 (state 2) is obtained by solving for f24 from the system of equations,

f04 � 0 (since state 0 is an absorbing state),

f14 � �
2
3

� f04 � �
1
3

� f24,

f24 � �
2
3

� f14 � �
1
3

� f34,

f34 � �
2
3

� f24 � �
1
3

� f44,

f44 � 1 (since state 0 is an absorbing state).

This yields

f24 � �
2
3

���
1
3

� f24� � �
1
3

���
2
3

�f24 � �
1
3

�� � �
4
9

� f24 � �
1
9

�,

so f24 � �
1
5

� is the probability of absorption into state 4.

A Credit Evaluation Example. There are many other situations where absorbing states
play an important role. Consider a department store that classifies the balance of a customer’s









4

0

0

0
�
1
3

�

1

3

0

0
�
1
3

�

0

0

2

0
�
1
3

�

0
�
2
3

�

0

1

0

0
�
2
3

�

0

0

0

1
�
2
3

�

0

0

0



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
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1

2
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4
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bill as fully paid (state 0), 1 to 30 days in arrears (state 1), 31 to 60 days in arrears
(state 2), or bad debt (state 3). The accounts are checked monthly to determine the state
of each customer. In general, credit is not extended and customers are expected to pay
their bills promptly. Occasionally, customers miss the deadline for paying their bill. If
this occurs when the balance is within 30 days in arrears, the store views the customer
as being in state 1. If this occurs when the balance is between 31 and 60 days in arrears,
the store views the customer as being in state 2. Customers that are more than 60 days in
arrears are put into the bad-debt category (state 3), and then bills are sent to a collection
agency.

After examining data over the past several years on the month by month progression
of individual customers from state to state, the store has developed the following transi-
tion matrix:4

Although each customer ends up in state 0 or 3, the store is interested in determining the
probability that a customer will end up as a bad debt given that the account belongs to
the 1 to 30 days in arrears state, and similarly, given that the account belongs to the 31
to 60 days in arrears state.

To obtain this information, the set of equations presented at the beginning of this sec-
tion must be solved to obtain f13 and f23. By substituting, the following two equations are
obtained:

f13 � p10 f03 � p11 f13 � p12 f23 � p13 f33,
f23 � p20 f03 � p21 f13 � p22 f23 � p23 f33.

Noting that f03 � 0 and f33 � 1, we now have two equations in two unknowns, namely,

(1 � p11) f13 � p13 � p12 f23,
(1 � p22) f23 � p23 � p21 f13.

Substituting the values from the transition matrix leads to

0.8f13 � 0.1 f23,
0.8f23 � 0.2 � 0.1 f13,

and the solution is

f13 � 0.032,
f23 � 0.254.

4Customers who are fully paid (in state 0) and then subsequently fall into arrears on new purchases are viewed
as “new” customers who start in state 1.

State 1: 1 to 30 Days 2: 31 to 60 Days
State 0: Fully Paid in Arrears in Arrears 3: Bad Debt

0: fully paid 1 0 0 0
1: 1 to 30 days 0.7 0.2 0.1 0
in arrears

2: 31 to 60 days 0.5 0.1 0.2 0.2
in arrears

3: bad debt 0 0 0 1
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Thus, approximately 3 percent of the customers whose accounts are 1 to 30 days in arrears
end up as bad debts, whereas about 25 percent of the customers whose accounts are 31 to
60 days in arrears end up as bad debts.

In all the previous sections, we assumed that the time parameter t was discrete (that is,
t � 0, 1, 2, . . .). Such an assumption is suitable for many problems, but there are certain
cases (such as for some queueing models considered in Chap. 17) where a continuous time
parameter (call it t
) is required, because the evolution of the process is being observed
continuously over time. The definition of a Markov chain given in Sec. 16.2 also extends
to such continuous processes. This section focuses on describing these “continuous time
Markov chains” and their properties.

Formulation

As before, we label the possible states of the system as 0, 1, . . . , M. Starting at time 0
and letting the time parameter t
 run continuously for t
 � 0, we let the random variable
X(t
) be the state of the system at time t
. Thus, X(t
) will take on one of its possible 
(M � 1) values over some interval, 0 � t
 � t1, then will jump to another value over the
next interval, t1 � t
 � t2, etc., where these transit points (t1, t2, . . .) are random points
in time (not necessarily integer).

Now consider the three points in time (1) t
 � r (where r � 0), (2) t
 � s (where 
s � r), and (3) t
 � s � t (where t � 0), interpreted as follows:

t
 � r is a past time,
t
 � s is the current time,
t
 � s � t is t time units into the future.

Therefore, the state of the system now has been observed at times t
 � s and t
 � r. Label
these states as

X(s) � i and X(r) � x(r).

Given this information, it now would be natural to seek the probability distribution of the
state of the system at time t
 � s � t. In other words, what is

P{X(s � t) � jX(s) � i and X(r) � x(r)}, for j � 0, 1, . . . , M?

Deriving this conditional probability often is very difficult. However, this task is con-
siderably simplified if the stochastic process involved possesses the following key property.

A continuous time stochastic process {X(t
); t
 � 0} has the Markovian 
property if

P{X(t � s) � jX(s) � i and X(r) � x(r)} � P{X(t � s) � jX(s) � i},

for all i, j � 0, 1, . . . , M and for all r � 0, s � r, and t � 0.

Note that P{X(t � s) � jX(s) � i} is a transition probability, just like the transi-
tion probabilities for discrete time Markov chains considered in the preceding sections,
where the only difference is that t now need not be an integer.

If the transition probabilities are independent of s, so that

P{X(t � s) � jX(s) � i} � P{X(t) � jX(0) � i}

for all s � 0, they are called stationary transition probabilities.

■ 16.8 CONTINUOUS TIME MARKOV CHAINS
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Based  in France, PSA Peugeot Citroën is one of the
largest carmakers in the world. When the decision was
made to introduce 25 new models between 2001 and
2004, PSA management decided to redesign its body
shops so that the bodies of various  car models could be
assembled in each shop. An OR team was assigned the
task of guiding the design process by developing tools for
evaluating in advance the efficiency of the production
lines for any given shop design.

The OR team developed both quick approximate
methods and longer detailed methods for doing this.
However, a key factor that needed to be incorporated
into all the methods was the frequency with which each
of the machines in the shop would go down and require
repair, thereby disrupting the flow of work in the shop.
The OR team used a continuous-time Markov chain to
represent the evolution of each type of machine in going
back and forth between being operational (up) and
needing repair (down). Thus, the Markov chain has just
two states, up and down, with some (small) transition

rate for going from up to down and some (much larger)
transition rate for going from down to up. The team con-
cluded that the transition rate for going from up to down
is essentially the same regardless of whether the
machine currently is actually being operated or is idle,
so it is not necessary to divide the up state into operat-
ing and idle states.

This application of operations research, including
this simple, continuous-time Markov chain, had a dra-
matic impact on the company. By substantially improv-
ing the efficiency of the production lines in PSA body
shops with minimal capital investment and no compro-
mise in quality, it is credited with contributing $130 mil-
lion to PSA profits (about 6.5 percent of the total profit)
in the first year alone.

Source: A. Patchong, T. Lemoine, and G. Kern: “Improving
Car Body Production at PSA Peugeot Citroën,” Interfaces,
33(1): 36–49, Jan.–Feb. 2003. (A link to this article is provided
on our website, www.mhhe.com/hillier.)

An Application Vignette

To simplify notation, we shall denote these stationary transition probabilities by

pij(t) � P{X(t) � jX(0) � i},

where pij(t) is referred to as the continuous time transition probability function. We
assume that

lim
t→0

pij(t) � �
Now we are ready to define the continuous time Markov chains to be considered in

this section.

A continuous time stochastic process {X(t�); t� � 0} is a continuous time Markov chain
if it has the Markovian property.

We shall restrict our consideration to continuous time Markov chains with the following
properties:

1. A finite number of states.
2. Stationary transition probabilities.

Some Key Random Variables

In the analysis of continuous time Markov chains, one key set of random variables is the
following.

Each time the process enters state i, the amount of time it spends in that state before mov-
ing to a different state is a random variable Ti, where i � 0, 1, . . . , M.

Suppose that the process enters state i at time t� � s. Then, for any fixed amount of time
t � 0, note that Ti � t if and only if X(t�) � i for all t� over the interval s � t� � s � t.
Therefore, the Markovian property (with stationary transition probabilities) implies that

P{Ti � t � sTi � s} � P{Ti � t}.

if i � j
if i � j.

1
0
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This is a rather unusual property for a probability distribution to possess. It says that the
probability distribution of the remaining time until the process transits out of a given state
always is the same, regardless of how much time the process has already spent in that state.
In effect, the random variable is memoryless; the process forgets its history. There is only
one (continuous) probability distribution that possesses this property—the exponential
distribution. The exponential distribution has a single parameter, call it q, where the mean
is 1/q and the cumulative distribution function is

P{Ti � t} � 1 � e�qt, for t � 0.

(We shall describe the properties of the exponential distribution in detail in Sec. 17.4.)
This result leads to an equivalent way of describing a continuous time Markov chain:

1. The random variable Ti has an exponential distribution with a mean of 1/qi.
2. When leaving state i, the process moves to a state j with probability pij, where the pij

satisfy the conditions

pii � 0 for all i,

and

�
M

j�0
pij � 1 for all i.

3. The next state visited after state i is independent of the time spent in state i.

Just as the one-step transition probabilities played a major role in describing discrete
time Markov chains, the analogous role for a continuous time Markov chain is played by
the transition intensities.

The transition intensities are

qi � ��
d
d
t
�pii(0) � lim

t→0
�
1 �

t
pii(t)�, for i � 0, 1, 2, . . . , M,

and

qij � �
d
d
t
�pij(0) � lim

t→0
�
pij

t
(t)
� � qipij, for all j � i,

where pij(t) is the continuous time transition probability function introduced at the beginning
of the section and pij is the probability described in property 2 of the preceding paragraph.
Furthermore, qi as defined here turns out to still be the parameter of the exponential distrib-
ution for Ti as well (see property 1 of the preceding paragraph).

The intuitive interpretation of the qi and qij is that they are transition rates. In par-
ticular, qi is the transition rate out of state i in the sense that qi is the expected number
of times that the process leaves state i per unit of time spent in state i. (Thus, qi is the
reciprocal of the expected time that the process spends in state i per visit to state i; that
is, qi � 1/E[Ti].) Similarly, qij is the transition rate from state i to state j in the sense that
qij is the expected number of times that the process transits from state i to state j per unit
of time spent in state i. Thus,

qi � �
j�i

qij.

Just as qi is the parameter of the exponential distribution for Ti, each qij is the para-
meter of an exponential distribution for a related random variable described below.

750 CHAPTER 16 MARKOV CHAINS
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Each time the process enters state i, the amount of time it will spend in state i before a
transition to state j occurs (if a transition to some other state does not occur first) is a ran-
dom variable Tij, where i, j � 0, 1, . . . , M and j � i. The Tij are independent random vari-
ables, where each Tij has an exponential distribution with parameter qij, so E[Tij] � 1/qij.
The time spent in state i until a transition occurs (Ti) is the minimum (over j � i) of the
Tij. When the transition occurs, the probability that it is to state j is pij � qij/qi.

Steady-State Probabilities

Just as the transition probabilities for a discrete time Markov chain satisfy the Chapman-
Kolmogorov equations, the continuous time transition probability function also satisfies these
equations. Therefore, for any states i and j and nonnegative numbers t and s (0 � s � t),

pij(t) � �
M

k�0
pik(s)pkj(t � s).

A pair of states i and j are said to communicate if there are times t1 and t2 such that
pij(t1) � 0 and pji(t2) � 0. All states that communicate are said to form a class. If all
states form a single class, i.e., if the Markov chain is irreducible (hereafter assumed), then

pij(t) � 0, for all t � 0 and all states i and j.

Furthermore,

lim
t→�

pij(t) � �j

always exists and is independent of the initial state of the Markov chain, for j � 0, 1, . . . , M.
These limiting probabilities are commonly referred to as the steady-state probabilities (or
stationary probabilities) of the Markov chain.

The �j satisfy the equations

�j � �
M

i�0
�ipij(t), for j � 0, 1, . . . , M and every t � 0.

However, the following steady-state equations provide a more useful system of equa-
tions for solving for the steady-state probabilities:

�jqj � �
i�j

�iqij, for j � 0, 1, . . . , M.

and

�
M

j�0
�j � 1.

The steady-state equation for state j has an intuitive interpretation. The left-hand side
(�jqj) is the rate at which the process leaves state j, since �j is the (steady-state) proba-
bility that the process is in state j and qj is the transition rate out of state j given that the
process is in state j. Similarly, each term on the right-hand side (�iqij) is the rate at which
the process enters state j from state i, since qij is the transition rate from state i to state j
given that the process is in state i. By summing over all i � j, the entire right-hand side
then gives the rate at which the process enters state j from any other state. The overall
equation thereby states that the rate at which the process leaves state j must equal the rate
at which the process enters state j. Thus, this equation is analogous to the conservation of
flow equations encountered in many engineering and science courses.

Because each of the first M � 1 steady-state equations requires that two rates be in
balance (equal), these equations sometimes are called the balance equations.
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Example. A certain shop has two identical machines that are operated continuously except
when they are broken down. Because they break down fairly frequently, the top-priority
assignment for a full-time maintenance person is to repair them whenever needed.

The time required to repair a machine has an exponential distribution with a mean of
�
1
2

� day. Once the repair of a machine is completed, the time until the next breakdown of
that machine has an exponential distribution with a mean of 1 day. These distributions are
independent.

Define the random variable X(t
) as

X(t
) � number of machines broken down at time t
,

so the possible values of X(t
) are 0, 1, 2. Therefore, by letting the time parameter t
 run
continuously from time 0, the continuous time stochastic process {X(t
); t
 � 0} gives the
evolution of the number of machines broken down.

Because both the repair time and the time until a breakdown have exponential distri-
butions, {X(t
); t
 � 0} is a continuous time Markov chain5 with states 0, 1, 2. Conse-
quently, we can use the steady-state equations given in the preceding subsection to find
the steady-state probability distribution of the number of machines broken down. To do
this, we need to determine all the transition rates, i.e., the qi and qij for i, j � 0, 1, 2.

The state (number of machines broken down) increases by 1 when a breakdown
occurs and decreases by 1 when a repair occurs. Since both breakdowns and repairs
occur one at a time, q02 � 0 and q20 � 0. The expected repair time is �

1
2

� day, so the rate
at which repairs are completed (when any machines are broken down) is 2 per day, which
implies that q21 � 2 and q10 � 2. Similarly, the expected time until a particular operational
machine breaks down is 1 day, so the rate at which it breaks down (when operational) is
1 per day, which implies that q12 � 1. During times when both machines are operational,
breakdowns occur at the rate of 1 � 1 � 2 per day, so q01 � 2.

These transition rates are summarized in the rate diagram shown in Fig. 16.5. These
rates now can be used to calculate the total transition rate out of each state.

q0 � q01 � 2.
q1 � q10 � q12 � 3.
q2 � q21 � 2.

Plugging all the rates into the steady-state equations given in the preceding subsection
then yields

Balance equation for state 0: 2�0 � 2�1

Balance equation for state 1: 3�1 � 2�0 � 2�2

Balance equation for state 2: 2�2 � �1

Probabilities sum to 1: �0 � �1 � �2 � 1

Any one of the balance equations (say, the second) can be deleted as redundant, and the
simultaneous solution of the remaining equations gives the steady-state distribution as

(�0, �1, �2) � ��
2
5

�, �
2
5

�, �
1
5

��.

Thus, in the long run, both machines will be broken down simultaneously 20 percent of
the time, and one machine will be broken down another 40 percent of the time.

5Proving this fact requires the use of two properties of the exponential distribution discussed in Sec. 17.4 (lack
of memory and the minimum of exponentials is exponential), since these properties imply that the Tij random
variables introduced earlier do indeed have exponential distributions.
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210State:

q01 � 2 q12 � 1

q10 � 2 q21 � 2

■ FIGURE 16.5
The rate diagram for the
example of a continuous
time Markov chain.

The next chapter (on queueing theory) features many more examples of continuous
time Markov chains. In fact, most of the basic models of queueing theory fall into this
category. The current example actually fits one of these models (the finite calling popu-
lation variation of the M/M/s model included in Sec. 17.6).
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Examples for Chapter 16
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Chapman-Kolmogorov Equations
Steady-State Probabilities

“Ch. 16—Markov Chains” LINGO File for Selected Examples

Glossary for Chapter 16

See Appendix 1 for documentation of the software.
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■ PROBLEMS

The symbol to the left of some of the problems (or their parts) has
the following meaning.

C: Use the computer with the corresponding automatic procedures
just listed (or other equivalent routines) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

16.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 16.2.
Briefly describe how a Markov chain was applied in this study. Then
list the various financial and nonfinancial benefits that resulted from
this study.

16.2-2. Assume that the probability of rain tomorrow is 0.5 if it is
raining today, and assume that the probability of its being clear (no
rain) tomorrow is 0.9 if it is clear today. Also assume that these
probabilities do not change if information is also provided about
the weather before today.
(a) Explain why the stated assumptions imply that the Markovian

property holds for the evolution of the weather.
(b) Formulate the evolution of the weather as a Markov chain by

defining its states and giving its (one-step) transition matrix.

16.2-3. Consider the second version of the stock market model
presented as an example in Sec. 16.2. Whether the stock goes up
tomorrow depends upon whether it increased today and yesterday.
If the stock increased today and yesterday, it will increase tomor-
row with probability �1. If the stock increased today and decreased
yesterday, it will increase tomorrow with probability �2. If the stock
decreased today and increased yesterday, it will increase tomorrow
with probability �3. Finally, if the stock decreased today and yes-
terday, it will increase tomorrow with probability �4.
(a) Construct the (one-step) transition matrix of the Markov chain.
(b) Explain why the states used for this Markov chain cause the math-

ematical definition of the Markovian property to hold even though
what happens in the future (tomorrow) depends upon what hap-
pened in the past (yesterday) as well as the present (today).

16.2-4. Reconsider Prob. 16.2-3. .Suppose now that whether or not
the stock goes up tomorrow depends upon whether it increased to-
day, yesterday, and the day before yesterday. Can this problem be
formulated as a Markov chain? If so, what are the possible states?
Explain why these states give the process the Markovian property
whereas the states in Prob. 16.2-3 do not.

16.3-1. Reconsider Prob. 16.2-2.
C (a) Use the procedure Chapman-Kolmogorov Equations in

your IOR Tutorial to find the n-step transition matrix P(n)

for n � 2, 5, 10, 20.
(b) The probability that it will rain today is 0.5. Use the results

from part (a) to determine the probability that it will rain n
days from now, for n � 2, 5, 10, 20.

C (c) Use the procedure Steady-State Probabilities in your IOR
Tutorial to determine the steady-state probabilities of the
state of the weather. Describe how the probabilities in the
n-step transition matrices obtained in part (a) compare to
these steady-state probabilities as n grows large.

16.3-2. Suppose that a communications network transmits binary
digits, 0 or 1, where each digit is transmitted 10 times in succes-
sion. During each transmission, the probability is 0.995 that the
digit entered will be transmitted accurately. In other words, the
probability is 0.005 that the digit being transmitted will be
recorded with the opposite value at the end of the transmission.
For each transmission after the first one, the digit entered for trans-
mission is the one that was recorded at the end of the preceding
transmission. If X0 denotes the binary digit entering the system,
X1 the binary digit recorded after the first transmission, X2 the bi-
nary digit recorded after the second transmission, . . . , then {Xn}
is a Markov chain.
(a) Construct the (one-step) transition matrix.
C (b) Use your IOR Tutorial to find the 10-step transition matrix

P(10). Use this result to identify the probability that a digit
entering the network will be recorded accurately after the
last transmission.

C (c) Suppose that the network is redesigned to improve the prob-
ability that a single transmission will be accurate from 0.995
to 0.998. Repeat part (b) to find the new probability that a
digit entering the network will be recorded accurately after
the last transmission.

16.3-3.* A particle moves on a circle through points that have been
marked 0, 1, 2, 3, 4 (in a clockwise order). The particle starts at
point 0. At each step it has probability 0.5 of moving one point
clockwise (0 follows 4) and 0.5 of moving one point counter-
clockwise. Let Xn (n � 0) denote its location on the circle after
step n. {Xn} is a Markov chain.
(a) Construct the (one-step) transition matrix.
C (b) Use your IOR Tutorial to determine the n-step transition

matrix P(n) for n � 5, 10, 20, 40, 80.
C (c) Use your IOR Tutorial to determine the steady-state probabil-

ities of the state of the Markov chain. Describe how the prob-
abilities in the n-step transition matrices obtained in part (b)
compare to these steady-state probabilities as n grows large.

16.4-1.* Given the following (one-step) transition matrices of a
Markov chain, determine the classes of the Markov chain and
whether they are recurrent.

(a) P �







3
�
2
3

�

0

0

0
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1
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(b) P �

16.4-2. Given each of the following (one-step) transition matrices
of a Markov chain, determine the classes of the Markov chain and
whether they are recurrent.

(a) P �

(b) P �

16.4-3. Given the following (one-step) transition matrix of a
Markov chain, determine the classes of the Markov chain and
whether they are recurrent.

P �

16.4-4. Determine the period of each of the states in the Markov
chain that has the following (one-step) transition matrix.

P �

16.4-5. Consider the Markov chain that has the following (one-
step) transition matrix.

P �


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
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(a) Determine the classes of this Markov chain and, for each class,
determine whether it is recurrent or transient.

(b) For each of the classes identified in part (a), determine the
period of the states in that class.

16.5-1. Reconsider Prob. 16.2-2. Suppose now that the given
probabilities, 0.5 and 0.9, are replaced by arbitrary values, � and
�, respectively. Solve for the steady-state probabilities of the state
of the weather in terms of � and �.

16.5-2. A transition matrix P is said to be doubly stochastic if the
sum over each column equals 1; that is,

�
M

i�0
pij � 1, for all j.

If such a chain is irreducible, aperiodic, and consists of M � 1
states, show that

�j � �
M

1
� 1
�, for j � 0, 1, . . . , M.

16.5-3. Reconsider Prob. 16.3-3. Use the results given in 
Prob. 16.5-2 to find the steady-state probabilities for this Markov
chain. Then find what happens to these steady-state probabilities
if, at each step, the probability of moving one point clockwise
changes to 0.9 and the probability of moving one point counter-
clockwise changes to 0.1.

C 16.5-4. The leading brewery on the West Coast (labeled A) has
hired an OR analyst to analyze its market position. It is particularly
concerned about its major competitor (labeled B). The analyst believes
that brand switching can be modeled as a Markov chain using three
states, with states A and B representing customers drinking beer pro-
duced from the aforementioned breweries and state C representing
all other brands. Data are taken monthly, and the analyst has con-
structed the following (one-step) transition matrix from past data.

What are the steady-state market shares for the two major breweries?

16.5-5. Consider the following blood inventory problem facing a
hospital. There is need for a rare blood type, namely, type AB, Rh
negative blood. The demand D (in pints) over any 3-day period is
given by

P{D � 0} � 0.4, P{D � 1} � 0.3,
P{D � 2} � 0.2, P{D � 3} � 0.1.

Note that the expected demand is 1 pint, since E(D) � 0.3(1)
� 0.2(2) � 0.1(3) � 1. Suppose that there are 3 days between deliv-
eries. The hospital proposes a policy of receiving 1 pint at each
delivery and using the oldest blood first. If more blood is required
than is on hand, an expensive emergency delivery is made. Blood is

A B C

A 0.8 0.15 0.05
B 0.25 0.7 0.05
C 0.15 0.05 0.8
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discarded if it is still on the shelf after 21 days. Denote the state
of the system as the number of pints on hand just after a deliv-
ery. Thus, because of the discarding policy, the largest possible
state is 7.
(a) Construct the (one-step) transition matrix for this Markov chain.
C (b) Find the steady-state probabilities of the state of the Markov

chain.
(c) Use the results from part (b) to find the steady-state proba-

bility that a pint of blood will need to be discarded during a
3-day period. (Hint: Because the oldest blood is used first, a
pint reaches 21 days only if the state was 7 and then D � 0.)

(d) Use the results from part (b) to find the steady-state probabil-
ity that an emergency delivery will be needed during the 3-day
period between regular deliveries.

C 16.5-6. In the last subsection of Sec. 16.5, the (long-run) expected
average cost per week (based on just ordering costs and unsatisfied
demand costs) is calculated for the inventory example of Sec. 16.1.
Suppose now that the ordering policy is changed to the following.
Whenever the number of cameras on hand at the end of the week is
0 or 1, an order is placed that will bring this number up to 3. Other-
wise, no order is placed.

Recalculate the (long-run) expected average cost per week un-
der this new inventory policy.

16.5-7.* Consider the inventory example introduced in Sec. 16.1,
but with the following change in the ordering policy. If the num-
ber of cameras on hand at the end of each week is 0 or 1, two
additional cameras will be ordered. Otherwise, no ordering will
take place. Assume that the storage costs are the same as given
in the second subsection of Sec. 16.5.
C (a) Find the steady-state probabilities of the state of this Markov

chain.
(b) Find the long-run expected average storage cost per week.

16.5-8. Consider the following inventory policy for the certain prod-
uct. If the demand during a period exceeds the number of items avail-
able, this unsatisfied demand is backlogged; i.e., it is filled when the
next order is received. Let Zn (n � 0, 1, . . . ) denote the amount of
inventory on hand minus the number of units backlogged before or-
dering at the end of period n (Z0 � 0). If Zn is zero or positive, no or-
ders are backlogged. If Zn is negative, then �Zn represents the num-
ber of backlogged units and no inventory is on hand. At the end of
period n, if Zn � 1, an order is placed for 2m units, where m is the
smallest integer such that Zn � 2m � 1. Orders are filled immediately.

Let D1, D2, . . . , be the demand for the product in periods 1,
2, . . . , respectively. Assume that the Dn are independent and iden-
tically distributed random variables taking on the values, 0, 1, 2,
3, 4, each with probability �

1
5

�. Let Xn denote the amount of stock on
hand after ordering at the end of period n (where X0 � 2), so that

Xn � � (n � 1, 2, . . .),

when {Xn} (n � 0, 1, . . . ) is a Markov chain. It has only two
states, 1 and 2, because the only time that ordering will take place

if Xn�1 � Dn � 1
if Xn�1 � Dn � 1

Xn�1 � Dn � 2m
Xn�1 � Dn

is when Zn � 0, �1, �2, or �3, in which case 2, 2, 4, and 4 units
are ordered, respectively, leaving Xn � 2, 1, 2, 1, respectively.
(a) Construct the (one-step) transition matrix.
(b) Use the steady-state equations to solve manually for the steady-

state probabilities.
(c) Now use the result given in Prob. 16.5-2 to find the steady-

state probabilities.
(d) Suppose that the ordering cost is given by (2 � 2m) if an order

is placed and zero otherwise. The holding cost per period is Zn

if Zn � 0 and zero otherwise. The shortage cost per 
period is �4Zn if Zn � 0 and zero otherwise. Find the (long-
run) expected average cost per unit time.

16.5-9. An important unit consists of two components placed in par-
allel. The unit performs satisfactorily if one of the two components
is operating. Therefore, only one component is operated at a time,
but both components are kept operational (capable of being operated)
as often as possible by repairing them as needed. An operating com-
ponent breaks down in a given period with probability 0.2. When this
occurs, the parallel component takes over, if it is operational, at the
beginning of the next period. Only one component can be repaired
at a time. The repair of a component starts at the beginning of the
first available period and is completed at the end of the next period.
Let Xt be a vector consisting of two elements U and V, where U rep-
resents the number of components that are operational at the end of
period t and V represents the number of periods of repair that have
been completed on components that are not yet operational. Thus,
V � 0 if U � 2 or if U � 1 and the repair of the nonoperational com-
ponent is just getting under way. Because a repair takes two peri-
ods, V � 1 if U � 0 (since then one nonoperational component is
waiting to begin repair while the other one is entering its second
period of repair) or if U � 1 and the nonoperational component is
entering its second period of repair. Therefore, the state space con-
sists of the four states (2, 0), (1, 0), (0, 1), and (1, 1). Denote these
four states by 0, 1, 2, 3, respectively. {Xt} (t � 0, 1, . . .) is a Markov
chain (assume that X0 � 0) with the (one-step) transition matrix

P � .

C (a) What is the probability that the unit will be inoperable
(because both components are down) after n periods, for
n � 2, 5, 10, 20?

C (b) What are the steady-state probabilities of the state of this
Markov chain?

(c) If it costs $30,000 per period when the unit is inoperable (both
components down) and zero otherwise, what is the (long-run)
expected average cost per period?

16.6-1. A computer is inspected at the end of every hour. It is found
to be either working (up) or failed (down). If the computer is found
to be up, the probability of its remaining up for the next hour is 0.95.
If it is down, the computer is repaired, which may require more than
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State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

State Condition

0 Good as new
1 Operable—minimum deterioration
2 Operable—major deterioration
3 Inoperable and replaced by a good-as-new machine

1 hour. Whenever the computer is down (regardless of how long it has
been down), the probability of its still being down 1 hour later is 0.5.
(a) Construct the (one-step) transition matrix for this Markov chain.
(b) Use the approach described in Sec. 16.6 to find the �ij (the 

expected first passage time from state i to state j) for all i and j.

16.6-2. A manufacturer has a machine that, when operational at
the beginning of a day, has a probability of 0.1 of breaking down
sometime during the day. When this happens, the repair is done
the next day and completed at the end of that day.
(a) Formulate the evolution of the status of the machine as a Markov

chain by identifying three possible states at the end of each day,
and then constructing the (one-step) transition matrix.

(b) Use the approach described in Sec. 16.6 to find the �ij (the
expected first passage time from state i to state j) for all i and
j. Use these results to identify the expected number of full
days that the machine will remain operational before the next
breakdown after a repair is completed.

(c) Now suppose that the machine already has gone 20 full days
without a breakdown since the last repair was completed. How
does the expected number of full days hereafter that the machine
will remain operational before the next breakdown compare with
the corresponding result from part (b) when the repair had just
been completed? Explain.

16.6-3. Reconsider Prob. 16.6-2. Now suppose that the manufac-
turer keeps a spare machine that only is used when the primary
machine is being repaired. During a repair day, the spare machine
has a probability of 0.1 of breaking down, in which case it is repaired
the next day. Denote the state of the system by (x, y), where x and y,
respectively, take on the values 1 or 0 depending upon whether the
primary machine (x) and the spare machine (y) are operational (value
of 1) or not operational (value of 0) at the end of the day. [Hint:
Note that (0, 0) is not a possible state.]
(a) Construct the (one-step) transition matrix for this Markov chain.
(b) Find the expected recurrence time for the state (1, 0).

16.6-4. Consider the inventory example presented in Sec. 16.1 except
that demand now has the following probability distribution:

P{D � 0} � �
1
4

�, P{D � 2} � �
1
4

�,

P{D � 1} � �
1
2

�, P{D � 3} � 0.

The ordering policy now is changed to ordering just 2 cameras at
the end of the week if none are in stock. As before, no order is placed
if there are any cameras in stock. Assume that there is one camera
in stock at the time (the end of a week) the policy is instituted.
(a) Construct the (one-step) transition matrix.
C (b) Find the probability distribution of the state of this Markov

chain n weeks after the new inventory policy is instituted,
for n � 2, 5, 10.

(c) Find the �ij (the expected first passage time from state i to
state j) for all i and j.

C (d) Find the steady-state probabilities of the state of this Markov
chain.

(e) Assuming that the store pays a storage cost for each camera
remaining on the shelf at the end of the week according to the
function C(0) � 0, C(1) � $2, and C(2) � $8, find the long-
run expected average storage cost per week.

16.6-5. A production process contains a machine that deteriorates
rapidly in both quality and output under heavy usage, so that it is
inspected at the end of each day. Immediately after inspection, the
condition of the machine is noted and classified into one of four
possible states:

The process can be modeled as a Markov chain with its (one-step)
transition matrix P given by

C (a) Find the steady-state probabilities.
(b) If the costs of being in states 0, 1, 2, 3, are 0, $1,000, $3,000,

and $6,000, respectively, what is the long-run expected aver-
age cost per day?

(c) Find the expected recurrence time for state 0 (i.e., the ex-
pected length of time a machine can be used before it must be
replaced).

16.7-1. Consider the following gambler’s ruin problem. A gambler
bets $1 on each play of a game. Each time, he has a probability p
of winning and probability q � 1 � p of losing the dollar bet. He
will continue to play until he goes broke or nets a fortune of T dol-
lars. Let Xn denote the number of dollars possessed by the gambler
after the nth play of the game. Then

Xn�1 � �
Xn�1 � Xn,

{Xn} is a Markov chain. The gambler starts with X0 dollars, where
X0 is a positive integer less than T.
(a) Construct the (one-step) transition matrix of the Markov chain.
(b) Find the classes of the Markov chain.

for 0 � Xn � T,

for Xn � 0, or T.

with probability p
with probability q � 1� p

Xn � 1
Xn � 1
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(c) Let T � 3 and p � 0.3. Using the notation of Sec. 16.7, find
f10, f1T, f20, f2T.

(d) Let T � 3 and p � 0.7. Find f10, f1T, f20, f2T.

16.7-2. A video cassette recorder manufacturer is so certain of its
quality control that it is offering a complete replacement warranty
if a recorder fails within 2 years. Based upon compiled data, the
company has noted that only 1 percent of its recorders fail during
the first year, whereas 5 percent of the recorders that survive the
first year will fail during the second year. The warranty does not
cover replacement recorders.
(a) Formulate the evolution of the status of a recorder as a Markov

chain whose states include two absorption states that involve
needing to honor the warranty or having the recorder survive
the warranty period. Then construct the (one-step) transition
matrix.

(b) Use the approach described in Sec. 16.7 to find the probabil-
ity that the manufacturer will have to honor the warranty.

16.8-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 16.8.
Briefly describe how a continuous time Markov chain was applied

in this study. Then list the various financial and nonfinancial bene-
fits that resulted from this study.

16.8-2. Reconsider the example presented at the end of Sec. 16.8.
Suppose now that a third machine, identical to the first two, has
been added to the shop. The one maintenance person still must
maintain all the machines.
(a) Develop the rate diagram for this Markov chain.
(b) Construct the steady-state equations.
(c) Solve these equations for the steady-state probabilities.

16.8-3. The state of a particular continuous time Markov chain is
defined as the number of jobs currently at a certain work center,
where a maximum of two jobs are allowed. Jobs arrive individu-
ally. Whenever fewer than two jobs are present, the time until the
next arrival has an exponential distribution with a mean of 2 days.
Jobs are processed at the work center one at a time and then leave
immediately. Processing times have an exponential distribution
with a mean of 1 day.
(a) Construct the rate diagram for this Markov chain.
(b) Write the steady-state equations.
(c) Solve these equations for the steady-state probabilities.
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17C H A P T E R

Queueing Theory

Queues (waiting lines) are a part of everyday life. We all wait in queues to buy a movie
ticket, make a bank deposit, pay for groceries, mail a package, obtain food in a cafe-

teria, start a ride in an amusement park, etc. We have become accustomed to considerable
amounts of waiting, but still get annoyed by unusually long waits.

However, having to wait is not just a petty personal annoyance. The amount of time
that a nation’s populace wastes by waiting in queues is a major factor in both the quality
of life there and the efficiency of the nation’s economy.

Great inefficiencies also occur because of other kinds of waiting than people stand-
ing in line. For example, making machines wait to be repaired may result in lost pro-
duction. Vehicles (including ships and trucks) that need to wait to be unloaded may
delay subsequent shipments. Airplanes waiting to take off or land may disrupt later
travel schedules. Delays in telecommunication transmissions due to saturated lines may
cause data glitches. Causing manufacturing jobs to wait to be performed may disrupt
subsequent production. Delaying service jobs beyond their due dates may result in lost
future business.

Queueing theory is the study of waiting in all these various guises. It uses queueing
models to represent the various types of queueing systems (systems that involve queues
of some kind) that arise in practice. Formulas for each model indicate how the corre-
sponding queueing system should perform, including the average amount of waiting that
will occur, under a variety of circumstances.

Therefore, these queueing models are very helpful for determining how to oper-
ate a queueing system in the most effective way. Providing too much service capac-
ity to operate the system involves excessive costs. But not providing enough service
capacity results in excessive waiting and all its unfortunate consequences. The mod-
els enable finding an appropriate balance between the cost of service and the amount
of waiting.

After some general discussion, this chapter presents most of the more elementary
queueing models and their basic results. Section 17.10 discusses how the information pro-
vided by queueing theory can be used to design queueing systems that minimize the total
cost of service and waiting, and then Chap. 26 (on the book’s website) elaborates con-
siderably further on the application of queueing theory in this way.
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760 CHAPTER 17 QUEUEING THEORY

The emergency room of COUNTY HOSPITAL provides quick medical care for emergency
cases brought to the hospital by ambulance or private automobile. At any hour there is
always one doctor on duty in the emergency room. However, because of a growing ten-
dency for emergency cases to use these facilities rather than go to a private physician,
the hospital has been experiencing a continuing increase in the number of emergency room
visits each year. As a result, it has become quite common for patients arriving during peak
usage hours (the early evening) to have to wait until it is their turn to be treated by the doc-
tor. Therefore, a proposal has been made that a second doctor should be assigned to the
emergency room during these hours, so that two emergency cases can be treated simulta-
neously. The hospital’s management engineer has been assigned to study this question.

The management engineer began by gathering the relevant historical data and then
projecting these data into the next year. Recognizing that the emergency room is a queue-
ing system, she applied several alternative queueing theory models to predict the waiting
characteristics of the system with one doctor and with two doctors, as you will see in the
latter sections of this chapter (see Tables 17.2 and 17.3).

Input
source

Customers
Queue

Service
mechanism

Served
customers

Queueing system■ FIGURE 17.1
The basic queueing process.

■ 17.1 PROTOTYPE EXAMPLE

■ 17.2 BASIC STRUCTURE OF QUEUEING MODELS

The Basic Queueing Process

The basic process assumed by most queueing models is the following. Customers requir-
ing service are generated over time by an input source. These customers enter the queueing
system and join a queue. At certain times, a member of the queue is selected for service
by some rule known as the queue discipline. The required service is then performed for
the customer by the service mechanism, after which the customer leaves the queueing
system. This process is depicted in Fig. 17.1.

Many alternative assumptions can be made about the various elements of the queue-
ing process; they are discussed next.

Input Source (Calling Population)

One characteristic of the input source is its size. The size is the total number of customers
that might require service from time to time, i.e., the total number of distinct potential cus-
tomers. This population from which arrivals come is referred to as the calling popula-
tion. The size may be assumed to be either infinite or finite (so that the input source also
is said to be either unlimited or limited ). Because the calculations are far easier for the
infinite case, this assumption often is made even when the actual size is some relatively
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large finite number; and it should be taken to be the implicit assumption for any queue-
ing model that does not state otherwise. The finite case is more difficult analytically because
the number of customers in the queueing system affects the number of potential customers
outside the system at any time. However, the finite assumption must be made if the rate at
which the input source generates new customers is significantly affected by the number of
customers in the queueing system.

The statistical pattern by which customers are generated over time must also be spec-
ified. The common assumption is that they are generated according to a Poisson process;
i.e., the number of customers generated until any specific time has a Poisson distribution.
As we discuss in Sec. 17.4, this case is the one where arrivals to the queueing system occur
randomly but at a certain fixed mean rate, regardless of how many customers already are
there (so the size of the input source is infinite). An equivalent assumption is that the prob-
ability distribution of the time between consecutive arrivals is an exponential distribution.
(The properties of this distribution are described in Sec. 17.4.) The time between con-
secutive arrivals is referred to as the interarrival time.

Any unusual assumptions about the behavior of arriving customers must also be spec-
ified. One example is balking, where the customer refuses to enter the system and is lost
if the queue is too long.

Queue

The queue is where customers wait before being served. A queue is characterized by the
maximum permissible number of customers that it can contain. Queues are called infinite
or finite, according to whether this number is infinite or finite. The assumption of an 
infinite queue is the standard one for most queueing models, even for situations where there
actually is a (relatively large) finite upper bound on the permissible number of customers,
because dealing with such an upper bound would be a complicating factor in the analysis.
However, for queueing systems where this upper bound is small enough that it actually
would be reached with some frequency, it becomes necessary to assume a finite queue.

Queue Discipline

The queue discipline refers to the order in which members of the queue are selected for
service. For example, it may be first-come-first-served, random, according to some pri-
ority procedure, or some other order. First-come-first-served usually is assumed by queue-
ing models, unless it is stated otherwise.

Service Mechanism

The service mechanism consists of one or more service facilities, each of which contains
one or more parallel service channels, called servers. If there is more than one service
facility, the customer may receive service from a sequence of these (service channels in
series). At a given facility, the customer enters one of the parallel service channels and is
completely serviced by that server. A queueing model must specify the arrangement of
the facilities and the number of servers (parallel channels) at each one. Most elementary
models assume one service facility with either one server or a finite number of servers.

The time elapsed from the commencement of service to its completion for a customer
at a service facility is referred to as the service time (or holding time). A model of a par-
ticular queueing system must specify the probability distribution of service times for each
server (and possibly for different types of customers), although it is common to assume
the same distribution for all servers (all models in this chapter make this assumption). The
service-time distribution that is most frequently assumed in practice (largely because it is
far more tractable than any other) is the exponential distribution discussed in Sec. 17.4,
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and most of our models will be of this type. Other important service-time distributions
are the degenerate distribution (constant service time) and the Erlang (gamma) distribu-
tion, as illustrated by models in Sec. 17.7.

An Elementary Queueing Process

As we have already suggested, queueing theory has been applied to many different types
of waiting-line situations. However, the most prevalent type of situation is the following:
A single waiting line (which may be empty at times) forms in the front of a single ser-
vice facility, within which are stationed one or more servers. Each customer generated by
an input source is serviced by one of the servers, perhaps after some waiting in the queue
(waiting line). The queueing system involved is depicted in Fig. 17.2.

Notice that the queueing process in the prototype example of Sec. 17.1 is of this type.
The input source generates customers in the form of emergency cases requiring medical
care. The emergency room is the service facility, and the doctors are the servers.

A server need not be a single individual; it may be a group of persons, e.g., a repair
crew that combines forces to perform simultaneously the required service for a customer.
Furthermore, servers need not even be people. In many cases, a server can instead be a
machine, a vehicle, an electronic device, etc. By the same token, the customers in the
waiting line need not be people. For example, they may be items waiting for a certain
operation by a given type of machine, or they may be cars waiting in front of a tollbooth.

It is not necessary that there actually be a physical waiting line forming in front of a
physical structure that constitutes the service facility. The members of the queue may instead
be scattered throughout an area, waiting for a server to come to them, e.g., machines wait-
ing to be repaired. The server or group of servers assigned to a given area constitutes the
service facility for that area. Queueing theory still gives the average number waiting, the
average waiting time, and so on, because it is irrelevant whether the customers wait together
in a group. The only essential requirement for queueing theory to be applicable is that changes
in the number of customers waiting for a given service occur just as though the physical sit-
uation described in Fig. 17.2 (or a legitimate counterpart) prevailed.

Except for Sec. 17.9, all the queueing models discussed in this chapter are of the
elementary type depicted in Fig. 17.2. Many of these models further assume that all
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Service
facility

S
S
S
S

C
C
C
C

C   C   C   C   C   C   C

Queue

Served customers

Served customers

Queueing system

Customers

■ FIGURE 17.2
An elementary queueing
system (each customer is
indicated by a C and each
server by an S).
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interarrival times are independent and identically distributed and that all service times
are independent and identically distributed. Such models conventionally are labeled as
follows:

Distribution of service times

– / – / – Number of servers

Distribution of interarrival times,

where M � exponential distribution (Markovian), as described in Sec. 17.4,

D � degenerate distribution (constant times), as discussed in Sec. 17.7,

Ek � Erlang distribution (shape parameter � k), as described in Sec. 17.7,

G � general distribution (any arbitrary distribution allowed),1 as discussed in
Sec. 17.7.

For example, the M/M/s model discussed in Sec. 17.6 assumes that both interarrival times
and service times have an exponential distribution and that the number of servers is s (any
positive integer). The M/G/1 model discussed again in Sec. 17.7 assumes that interarrival
times have an exponential distribution, but it places no restriction on what the distribu-
tion of service times must be, whereas the number of servers is restricted to be exactly 1.
Various other models that fit this labeling scheme also are introduced in Sec. 17.7.

Terminology and Notation

Unless otherwise noted, the following standard terminology and notation will be used:

State of system � number of customers in queueing system.

Queue length � number of customers waiting for service to begin.

� state of system minus number of customers being served.

N(t) � number of customers in queueing system at time t (t � 0).

Pn(t) � probability of exactly n customers in queueing system at time t,
given number at time 0.

s � number of servers (parallel service channels) in queueing system.

�n � mean arrival rate (expected number of arrivals per unit time) of
new customers when n customers are in system.

�n � mean service rate for overall system (expected number of cus-
tomers completing service per unit time) when n customers are in
system. Note: �n represents combined rate at which all busy servers
(those serving customers) achieve service completions.

�, �, � � see following paragraph.

When �n is a constant for all n, this constant is denoted by �. When the mean service
rate per busy server is a constant for all n � 1, this constant is denoted by �. (In this case,
�n � s� when n � s, that is, when all s servers are busy.) Under these circumstances, 1/�
and 1/� are the expected interarrival time and the expected service time, respectively. Also,
� � �/(s�) is the utilization factor for the service facility, i.e., the expected fraction of
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1When we refer to interarrival times, it is conventional to replace the symbol G by GI � general independent
distribution.
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time the individual servers are busy, because �/(s�) represents the fraction of the system’s
service capacity (s�) that is being utilized on the average by arriving customers (�).

Certain notation also is required to describe steady-state results. When a queueing
system has recently begun operation, the state of the system (number of customers in the
system) will be greatly affected by the initial state and by the time that has since elapsed.
The system is said to be in a transient condition. However, after sufficient time has
elapsed, the state of the system becomes essentially independent of the initial state and
the elapsed time (except under unusual circumstances).2 The system has now essentially
reached a steady-state condition, where the probability distribution of the state of the
system remains the same (the steady-state or stationary distribution) over time. Queueing
theory has tended to focus largely on the steady-state condition, partially because the tran-
sient case is more difficult analytically. (Some transient results exist, but they are gener-
ally beyond the technical scope of this book.) The following notation assumes that the
system is in a steady-state condition:

Pn � probability of exactly n customers in queueing system.

L � expected number of customers in queueing system � �
�

n�0
nPn.

Lq � expected queue length (excludes customers being served) � �
�

n�s

(n � s)Pn.

� � waiting time in system (includes service time) for each individual customer.

W � E(�).

�q � waiting time in queue (excludes service time) for each individual customer.

Wq � E(�q).

Relationships between L, W, Lq, and Wq

Assume that �n is a constant � for all n. It has been proved that in a steady-state queue-
ing process,

L � �W.

(Because John D. C. Little provided the first rigorous proof, this equation sometimes is
referred to as Little’s formula.) Furthermore, the same proof also shows that

Lq � �Wq.

If the �n are not equal, then � can be replaced in these equations by ��, the average
arrival rate over the long run. (We shall show later how �� can be determined for some 
basic cases.)

Now assume that the mean service time is a constant, 1/� for all n � 1. It then fol-
lows that

W � Wq � �
�
1

�.

These relationships are extremely important because they enable all four of the
fundamental quantities—L, W, Lq, and Wq—to be immediately determined as soon as
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2When � and � are defined, these unusual circumstances are that � � 1, in which case the state of the system
tends to grow continually larger as time goes on.
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one is found analytically. This situation is fortunate because some of these quantities
often are much easier to find than others when a queueing model is solved from basic
principles.

17.3 EXAMPLES OF REAL QUEUEING SYSTEMS 765

■ 17.3 EXAMPLES OF REAL QUEUEING SYSTEMS

Our description of queueing systems in Sec. 17.2 may appear relatively abstract and
applicable to only rather special practical situations. On the contrary, queueing sys-
tems are surprisingly prevalent in a wide variety of contexts. To broaden your horizons
on the applicability of queueing theory, we shall briefly mention various examples of
real queueing systems that fall into several broad categories. We then will describe queue-
ing systems in several prominent companies (plus one city) and the award-winning stud-
ies that were conducted to design these systems.

Some Classes of Queueing Systems

One important class of queueing systems that we all encounter in our daily lives is com-
mercial service systems, where outside customers receive service from commercial or-
ganizations. Many of these involve person-to-person service at a fixed location, such as a
barber shop (the barbers are the servers), bank teller service, checkout stands at a grocery
store, and a cafeteria line (service channels in series). However, many others do not, such
as home appliance repairs (the server travels to the customers), a vending machine (the
server is a machine), and a gas station (the cars are the customers).

Another important class is transportation service systems. For some of these sys-
tems the vehicles are the customers, such as cars waiting at a tollbooth or traffic light
(the server), a truck or ship waiting to be loaded or unloaded by a crew (the server), and
airplanes waiting to land or take off from a runway (the server). (An unusual example
of this kind is a parking lot, where the cars are the customers and the parking spaces
are the servers, but there is no queue because arriving customers go elsewhere to park if
the lot is full.) In other cases, the vehicles, such as taxicabs, fire trucks, and elevators,
are the servers.

In recent years, queueing theory probably has been applied most to internal service
systems, where the customers receiving service are internal to the organization. Exam-
ples include materials-handling systems, where materials-handling units (the servers) move
loads (the customers); maintenance systems, where maintenance crews (the servers) repair
machines (the customers); and inspection stations, where quality control inspectors (the
servers) inspect items (the customers). Employee facilities and departments servicing
employees also fit into this category. In addition, machines can be viewed as servers
whose customers are the jobs being processed. A related example is a computer labo-
ratory, where each computer is viewed as the server.

There is now growing recognition that queueing theory also is applicable to social
service systems. For example, a judicial system is a queueing network, where the courts
are service facilities, the judges (or panels of judges) are the servers, and the cases
waiting to be tried are the customers. A legislative system is a similar queueing network,
where the customers are the bills waiting to be processed. Various health-care systems
also are queueing systems. You already have seen one example in Sec. 17.1 (a hospital
emergency room), but you can also view ambulances, X-ray machines, and hospital
beds as servers in their own queueing systems. Similarly, families waiting for low- and
moderate-income housing, or other social services, can be viewed as customers in a
queueing system.
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Although these are four broad classes of queueing systems, they still do not exhaust
the list. In fact, queueing theory first began early in the 20th century with applica-
tions to telephone engineering (the founder of queueing theory, A. K. Erlang, was an
employee of the Danish Telephone Company in Copenhagen), and telephone engi-
neering still is an important application. Furthermore, we all have our own personal
queues—homework assignments, books to be read, and so forth. However, these exam-
ples are sufficient to suggest that queueing systems do indeed pervade many areas of
society.

Some Award-Winning Studies to Design Queueing Systems

The prestigious Franz Edelman Awards for Management Science Achievement are
awarded annually by the Institute of Operations Research and the Management Sciences
(INFORMS) for the year’s best applications of OR. A rather substantial number of these
awards have been given for innovative applications of queueing theory to the design of
queueing systems.

Two of these award-winning applications of queueing theory are described in appli-
cation vignettes later in this chapter (Secs. 17.6 and 17.9). The selected references at the
end of the chapter also include a sampling of articles describing some other award-
winning applications. (A link to all these articles, including for the application vignettes,
is provided on the book’s website.) We briefly describe a few of these other applications
of queueing theory below.

As described in Selected Reference A1, one of the early first-prize winners of the
Edelman competition was the Xerox Corporation. The company had recently introduced
a major new duplicating system that was proving to be particularly valuable for its own-
ers. Consequently, these customers were demanding that Xerox’s tech reps reduce the
waiting times to repair the machines. An OR team then applied queueing theory to study
how to best meet the new service requirements. This resulted in replacing the previous
one-person tech rep territories by larger three-person tech rep territories. This change had
the dramatic effect of both substantially reducing the average waiting times of the cus-
tomers and increasing the utilization of the tech reps by over 50 percent. (Chapter 11 of
Selected Reference 9 presents a case study that is based on this application of queueing
theory by the Xerox Corporation.)

L.L. Bean, Inc., the large telemarketer and mail-order catalog house, relied mainly
on queueing theory for its award-winning study of how to allocate its telecommunica-
tions resources that is described in Selected Reference A4. The telephone calls coming
in to its call center to place orders are the customers in a large queueing system, with
the telephone agents as the servers. The key questions being asked during the study were
the following.

1. How many telephone trunk lines should be provided for incoming calls to the call
center?

2. How many telephone agents should be scheduled at various times?
3. How many hold positions should be provided for customers waiting for a telephone

agent? (Note that the limited number of hold positions causes the system to have a
finite queue.)

For each interesting combination of these three quantities, queueing models provide
the measures of performance of the queueing system. Given these measures, the OR team
carefully assessed the cost of lost sales due to making some customers either incur a busy
signal or be placed on hold too long. By adding the cost of the telemarketing resources,
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the team then was able to find the combination of the three quantities that minimizes the
expected total cost. This resulted in cost savings of $9 to $10 million per year.

Another first prize in the Edelman competition was won by AT&T for a study that
combined the use of queueing theory and simulation (the subject of Chap. 20). As described
in Selected Reference A2, the queueing models are of both AT&T’s telecommunication
network and the call center environment for the typical business customers of AT&T that
have such a center. The purpose of the study was to develop a user-friendly PC-based sys-
tem that AT&T’s business customers can use to guide them in how to design or redesign
their call centers. Since call centers comprise one of the United States’ fastest-growing
industries, this system had been used about 2,000 times by AT&T’s business customers
by the time of the article. This resulted in more than $750 million in annual profit for
these customers.

Hewlett-Packard (HP) is a leading multinational manufacturer of electronic equip-
ment. Some years ago, the company installed a mechanized assembly-line system for
manufacturing ink-jet printers at its plant in Vancouver, Washington, to meet the explod-
ing demand for such printers. It soon became apparent that the system installed would
not be fast enough or reliable enough to meet the company’s production goals. There-
fore, a joint team of management scientists from HP and the Massachusetts Institute
of Technology (MIT) was formed to study how to redesign the system to improve its
performance.

As described in Selected Reference A3 for this award-winning study, the HP/MIT team
quickly realized that the assembly-line system could be modeled as a special kind of
queueing system where the customers (the printers to be assembled) go through a series
of servers (assembly operations) in a fixed sequence. A special queueing model for this
kind of system quickly provided the analytical results that were needed to determine how
the system should be redesigned to achieve the required capacity in the most economical
way. The changes included adding some buffer storage space at strategic points to better
maintain the flow of work to the subsequent stations and to dampen the effect of machine
failures. The new design increased productivity about 50 percent and yielded incremen-
tal revenues of approximately $280 million in printer sales as well as additional revenue
from ancillary products. This innovative application of the special queueing model also
provided HP with a new method for creating rapid and effective system designs subse-
quently in other areas of the company.
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■ 17.4 THE ROLE OF THE EXPONENTIAL DISTRIBUTION

The operating characteristics of queueing systems are determined largely by two statisti-
cal properties, namely, the probability distribution of interarrival times (see “Input Source”
in Sec. 17.2) and the probability distribution of service times (see “Service Mechanism” in 
Sec. 17.2). For real queueing systems, these distributions can take on almost any form.
(The only restriction is that negative values cannot occur.) However, to formulate a queue-
ing theory model as a representation of the real system, it is necessary to specify the
assumed form of each of these distributions. To be useful, the assumed form should be
sufficiently realistic that the model provides reasonable predictions while, at the same
time, being sufficiently simple that the model is mathematically tractable. Based on
these considerations, the most important probability distribution in queueing theory is
the exponential distribution.

Suppose that a random variable T represents either interarrival or service times. 
(We shall refer to the occurrences marking the end of these times—arrivals or service
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fT(t)

0 t

�

E(T) � 1
�

■ FIGURE 17.3
Probability density function
for the exponential
distribution.

completions—as events.) This random variable is said to have an exponential distribution
with parameter � if its probability density function is

fT(t) � �
as shown in Fig. 17.3. In this case, the cumulative probabilities are

P{T � t} � 1 � e��t

(t � 0),
P{T � t} � e��t

and the expected value and variance of T are, respectively,

E(T ) � �
�
1

�,

var(T ) � �
�
1
2�.

What are the implications of assuming that T has an exponential distribution for a
queueing model? To explore this question, let us examine six key properties of the expo-
nential distribution.

Property 1: fT(t) is a strictly decreasing function of t (t � 0).

One consequence of Property 1 is that

P{0 � T � 	t} � P{t � T � t � 	t}

for any strictly positive values of 	t and t. [This consequence follows from the fact that
these probabilities are the area under the fT(t) curve over the indicated interval of length
	t, and the average height of the curve is less for the second probability than for the first.]
Therefore, it is not only possible but also relatively likely that T will take on a small value
near zero. In fact,

P�0 � T � �
1
2

� �
�
1

�� � 0.393

whereas

P��
1
2

� �
�
1

� � T � �
3
2

� �
�
1

�� � 0.383,

so that the value T takes on is more likely to be “small” [i.e., less than half of E(T )] than
“near” its expected value [i.e., no further away than half of E(T)], even though the second
interval is twice as wide as the first.

for t � 0
for t 
 0,

�e��t

0
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Is this really a reasonable property for T in a queueing model? If T represents service
times, the answer depends upon the general nature of the service involved, as discussed next.

If the service required is essentially identical for each customer, with the server always
performing the same sequence of service operations, then the actual service times tend to
be near the expected service time. Small deviations from the mean may occur, but usually
because of only minor variations in the efficiency of the server. A small service time far
below the mean is essentially impossible, because a certain minimum time is needed to
perform the required service operations even when the server is working at top speed. The
exponential distribution clearly does not provide a close approximation to the service-time
distribution for this type of situation.

On the other hand, consider the type of situation where the specific tasks required of
the server differ among customers. The broad nature of the service may be the same, but
the specific type and amount of service differ. For example, this is the case in the County
Hospital emergency room problem discussed in Sec. 17.1. The doctors encounter a wide
variety of medical problems. In most cases, they can provide the required treatment rather
quickly, but an occasional patient requires extensive care. Similarly, bank tellers and gro-
cery store checkout clerks are other servers of this general type, where the required
service is often brief but must occasionally be extensive. An exponential service-time dis-
tribution would seem quite plausible for this type of service situation.

If T represents interarrival times, Property 1 rules out situations where potential cus-
tomers approaching the queueing system tend to postpone their entry if they see another
customer entering ahead of them. On the other hand, it is entirely consistent with the com-
mon phenomenon of arrivals occurring “randomly,” described by subsequent properties.
Thus, when arrival times are plotted on a time line, they sometimes have the appearance
of being clustered with occasional large gaps separating clusters, because of the substan-
tial probability of small interarrival times and the small probability of large interarrival
times, but such an irregular pattern is all part of true randomness.

Property 2: Lack of memory.

This property can be stated mathematically as

P{T � t � 	tT � 	t} � P{T � t}

for any positive quantities t and 	t. In other words, the probability distribution of the
remaining time until the event (arrival or service completion) occurs always is the same,
regardless of how much time (	t) already has passed. In effect, the process “forgets” its
history. This surprising phenomenon occurs with the exponential distribution because

P{T � t � 	tT � 	t} �

�

� �
e�

e

�

�

(

�

t�

	

	

t

t)

�

� e��t

� P{T � t}.

For interarrival times, this property describes the common situation where the time
until the next arrival is completely uninfluenced by when the last arrival occurred. For
service times, the property is more difficult to interpret. We should not expect it to hold
in a situation where the server must perform the same fixed sequence of operations for
each customer, because then a long elapsed service should imply that probably little 

P{T � t � 	t}
��

P{T � 	t}

P{T � 	t, T � t � 	t}
���

P{T � 	t}
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remains to be done. However, in the type of situation where the required service opera-
tions differ among customers, the mathematical statement of the property may be quite
realistic. For this case, if considerable service has already elapsed for a customer, the only
implication may be that this particular customer requires more extensive service than most.

Property 3: The minimum of several independent exponential random variables
has an exponential distribution.

To state this property mathematically, let T1, T2, . . . , Tn be independent exponential
random variables with parameters �1, �2, . . . , �n, respectively. Also let U be the random
variable that takes on the value equal to the minimum of the values actually taken on by
T1, T2, . . . , Tn; that is,

U � min {T1, T2, . . . , Tn}.

Thus, if Ti represents the time until a particular kind of event occurs, then U represents
the time until the first of the n different events occurs. Now note that for any t � 0,

P{U 	 t} � P{T1 	 t, T2 	 t, . . . , Tn 	 t}
� P{T1 	 t}P{T2 	 t} ��� P{Tn 	 t}
� e��1te��2t ��� e��nt

� exp ���
n

i�1
�it�,

so that U indeed has an exponential distribution with parameter

� � �
n

i�1
�i.

This property has some implications for interarrival times in queueing models. In
particular, suppose that there are several (n) different types of customers, but the inter-
arrival times for each type (type i) have an exponential distribution with parameter �i

(i � 1, 2, . . . , n). By Property 2, the remaining time from any specified instant until
the next arrival of a customer of type i has this same distribution. Therefore, let Ti be
this remaining time, measured from the instant a customer of any type arrives. Property
3 then tells us that U, the interarrival times for the queueing system as a whole, has an
exponential distribution with parameter � defined by the last equation. As a result, you
can choose to ignore the distinction between customers and still have exponential inter-
arrival times for the queueing model.

However, the implications are even more important for service times in multiple-server
queueing models than for interarrival times. For example, consider the situation where all
the servers have the same exponential service-time distribution with parameter �. For this
case, let n be the number of servers currently providing service, and let Ti be the remaining
service time for server i (i � 1, 2, . . . , n), which also has an exponential distribution with
parameter �i � �. It then follows that U, the time until the next service completion from
any of these servers, has an exponential distribution with parameter � � n�. In effect, the
queueing system currently is performing just like a single-server system where service
times have an exponential distribution with parameter n�. We shall make frequent use of
this implication for analyzing multiple-server models later in the chapter.

When using this property, it sometimes is useful to also determine the probabilities
for which of the exponential random variables will turn out to be the one which has the
minimum value. For example, you might want to find the probability that a particular
server j will finish serving a customer first among n busy exponential servers. It is fairly
straightforward (see Prob. 17.4-9) to show that this probability is proportional to the 
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parameter �j. In particular, the probability that Tj will turn out to be the smallest of the n
random variables is

P{Tj � U} �
�j

�
n

i�1
�i

, for j � 1, 2, . . . , n.

Property 4: Relationship to the Poisson distribution.

Suppose that the time between consecutive occurrences of some particular kind of
event (e.g., arrivals or service completions by a continuously busy server) has an expo-
nential distribution with parameter �. Property 4 then has to do with the resulting impli-
cation about the probability distribution of the number of times this kind of event occurs
over a specified time. In particular, let X(t) be the number of occurrences by time t (t � 0),
where time 0 designates the instant at which the count begins. The implication is that

P{X(t) � n} � �
(�t)

n

n

!
e��t

�, for n � 0, 1, 2, . . . ;

that is, X(t) has a Poisson distribution with parameter �t. For example, with n � 0,

P{X(t) � 0} � e��t,

which is just the probability from the exponential distribution that the first event occurs
after time t. The mean of this Poisson distribution is

E{X(t)} � �t,

so that the expected number of events per unit time is �. Thus, � is said to be the mean rate
at which the events occur. When the events are counted on a continuing basis, the counting
process {X(t); t � 0} is said to be a Poisson process with parameter � (the mean rate).

This property provides useful information about service completions when service
times have an exponential distribution with parameter �. We obtain this information by
defining X(t) as the number of service completions achieved by a continuously busy server
in elapsed time t, where � � �. For multiple-server queueing models, X(t) can also be
defined as the number of service completions achieved by n continuously busy servers in
elapsed time t, where � � n�.

The property is particularly useful for describing the probabilistic behavior of arrivals
when interarrival times have an exponential distribution with parameter �. In this case,
X(t) is the number of arrivals in elapsed time t, where � � � is the mean arrival rate.
Therefore, arrivals occur according to a Poisson input process with parameter �. Such
queueing models also are described as assuming a Poisson input.

Arrivals sometimes are said to occur randomly, meaning that they occur in accor-
dance with a Poisson input process. One intuitive interpretation of this phenomenon is
that every time period of fixed length has the same chance of having an arrival regardless
of when the preceding arrival occurred, as suggested by the following property.

Property 5: For all positive values of t, P{T � t � 	tT � t} � � 	t, for small 	t.

Continuing to interpret T as the time from the last event of a certain type (arrival
or service completion) until the next such event, we suppose that a time t already has
elapsed without the event’s occurring. We know from Property 2 that the probability
that the event will occur within the next time interval of fixed length 	t is a constant
(identified in the next paragraph), regardless of how large or small t is. Property 5
goes further to say that when the value of 	t is small, this constant probability can
be approximated very closely by � 	t. Furthermore, when considering different small 
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values of 	t, this probability is essentially proportional to 	t, with proportionality fac-
tor �. In fact, � is the mean rate at which the events occur (see Property 4), so that
the expected number of events in the interval of length 	t is exactly � 	t. The only
reason that the probability of an event’s occurring differs slightly from this value is
the possibility that more than one event will occur, which has negligible probability
when 	t is small.

To see why Property 5 holds mathematically, note that the constant value of our prob-
ability (for a fixed value of 	t � 0) is just

P{T � t � 	tT � t} � P{T � 	t}
� 1 � e�� 	t,

for any t � 0. Therefore, because the series expansion of ex for any exponent x is

ex � 1 � x � �
�

n�2
�
n
xn

!
�,

it follows that

P{T � t � 	tT � t} � 1 � 1 � � 	t � �
�

n�2
�
(��

n!
	t)n

�

� � 	t, for small 	t,3

because the summation terms become relatively negligible for sufficiently small values 
of � 	t.

Because T can represent either interarrival or service times in queueing models, this
property provides a convenient approximation of the probability that the event of interest
occurs in the next small interval (	t) of time. An analysis based on this approximation
also can be made exact by taking appropriate limits as 	t � 0.

Property 6: Unaffected by aggregation or disaggregation.

This property is relevant primarily for verifying that the input process is Poisson.
Therefore, we shall describe it in these terms, although it also applies directly to the ex-
ponential distribution (exponential interarrival times) because of Property 4.

We first consider the aggregation (combining) of several Poisson input processes into one
overall input process. In particular, suppose that there are several (n) different types of cus-
tomers, where the customers of each type (type i) arrive according to a Poisson input process
with parameter �i (i � 1, 2, . . . , n). Assuming that these are independent Poisson processes,
the property says that the aggregate input process (arrival of all customers without regard to
type) also must be Poisson, with parameter (mean arrival rate) � � �1 � �2 � � � � � �n. In
other words, having a Poisson process is unaffected by aggregation.

This part of the property follows directly from Properties 3 and 4. The latter prop-
erty implies that the interarrival times for customers of type i have an exponential distri-
bution with parameter �i. For this identical situation, we already discussed for Property 3
that it implies that the interarrival times for all customers also must have an exponential
distribution, with parameter � � �1 � �2 � � � � � �n. Using Property 4 again then im-
plies that the aggregate input process is Poisson.

The second part of Property 6 (“unaffected by disaggregation”) refers to the reverse
case, where the aggregate input process (the one obtained by combining the input processes
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3More precisely,

lim
	t→0

� �.P{T � t � 	tT � t}
���

	t
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for several customer types) is known to be Poisson with parameter �, but the question
now concerns the nature of the disaggregated input processes (the individual input
processes for the individual customer types). Assuming that each arriving customer has a
fixed probability pi of being of type i (i � 1, 2, . . . , n), with

�i � pi� and �
n

i�1
pi � 1,

the property says that the input process for customers of type i also must be Poisson with
parameter �i. In other words, having a Poisson process is unaffected by disaggregation.

As one example of the usefulness of this second part of the property, consider the
following situation. Indistinguishable customers arrive according to a Poisson process with
parameter �. Each arriving customer has a fixed probability p of balking (leaving with-
out entering the queueing system), so the probability of entering the system is 1 � p. Thus,
there are two types of customers—those who balk and those who enter the system. The
property says that each type arrives according to a Poisson process, with parameters p�
and (1 � p)�, respectively. Therefore, by using the latter Poisson process, queueing models
that assume a Poisson input process can still be used to analyze the performance of the
queueing system for those customers who enter the system.

Another example in the Worked Examples section of the books’website illustrates
the application of several of the properties of the exponential distribution presented in
this section.
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■ 17.5 THE BIRTH-AND-DEATH PROCESS

Most elementary queueing models assume that the inputs (arriving customers) and outputs
(leaving customers) of the queueing system occur according to the birth-and-death process.
This important process in probability theory has applications in various areas. However,
in the context of queueing theory, the term birth refers to the arrival of a new customer
into the queueing system, and death refers to the departure of a served customer. The state
of the system at time t (t � 0), denoted by N(t), is the number of customers in the queue-
ing system at time t. The birth-and-death process describes probabilistically how N(t)
changes as t increases. Broadly speaking, it says that individual births and deaths occur
randomly, where their mean occurrence rates depend only upon the current state of the sys-
tem. More precisely, the assumptions of the birth-and-death process are the following:

Assumption 1. Given N(t) � n, the current probability distribution of the remaining
time until the next birth (arrival) is exponential with parameter �n (n � 0, 1, 2, . . .).

Assumption 2. Given N(t) � n, the current probability distribution of the remaining time
until the next death (service completion) is exponential with parameter �n (n � 1, 2, . . .).

Assumption 3. The random variable of assumption 1 (the remaining time until the next
birth) and the random variable of assumption 2 (the remaining time until the next death)
are mutually independent. The next transition in the state of the process is either

n � n � 1 (a single birth)

or

n � n � 1 (a single death),

depending on whether the former or latter random variable is smaller.
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For a queueing system, �n and �n respectively represent the mean arrival rate and
the mean rate of service completions, when there are n customers in the system. For
some queueing systems, the values of the �n will be the same for all values of n, and
the �n also will be the same for all n except for such small n (e.g., n � 0) that a server
is idle. However, the �n and the �n also can vary considerably with n for some queue-
ing systems.

For example, one of the ways in which �n can be different for different values of n
is if potential arriving customers become increasingly likely to balk (refuse to enter the
system) as n increases. Similarly, �n can be different for different n because customers in
the queue become increasingly likely to renege (leave without being served) as the queue
size increases. Another example in the Worked Examples section of the books’website
illustrates a queueing system where both balking and reneging occur. This example then
demonstrates how the general results for the birth-and-death process lead directly to var-
ious measures of performance for this queueing system.

Analysis of the Birth-and-Death Process

Because of its assumptions, the birth-and-death process is a special type of continuous
time Markov chain. (See Sec. 16.8 for a description of continuous time Markov chains
and their properties, including an introduction to the general procedure for finding steady-
state probabilities that will be applied in the remainder of this section.) Queueing models
that can be represented by a continuous time Markov chain are far more tractable analyt-
ically than any other.

Because Property 4 for the exponential distribution (see Sec. 17.4) implies that the
�n and �n are mean rates, we can summarize these assumptions by the rate diagram shown
in Fig. 17.4. The arrows in this diagram show the only possible transitions in the state of
the system (as specified by assumption 3), and the entry for each arrow gives the mean
rate for that transition (as specified by assumptions 1 and 2) when the system is in the
state at the base of the arrow.

Except for a few special cases, analysis of the birth-and-death process is very dif-
ficult when the system is in a transient condition. Some results about the probability
distribution of N(t) have been obtained, but they are too complicated to be of much
practical use. On the other hand, it is relatively straightforward to derive this distrib-
ution after the system has reached a steady-state condition (assuming that this condi-
tion can be reached). This derivation can be done directly from the rate diagram, as
outlined next.

Consider any particular state of the system n (n � 0, 1, 2, . . .). Starting at time 0,
suppose that a count is made of the number of times that the process enters this state and
the number of times it leaves this state, as denoted below:

En(t) � number of times that process enters state n by time t.

Ln(t) � number of times that process leaves state n by time t.
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 �0  �1  �2


1 
2 
3

0 1 2 3


n � 1 
n 
n � 1

�n � 2 �n � 1 �n

n � 2 n � 1 n � 1nState: .  .  . .  .  . 

■ FIGURE 17.4
Rate diagram for the birth-
and-death process.
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Because the two types of events (entering and leaving) must alternate, these two numbers
must always either be equal or differ by just 1; that is,

En(t) � Ln(t) � 1.

Dividing through both sides by t and then letting t � � gives

��En

t
(t)
� � �

Ln

t
(t)
�� � �

1
t
�, so lim

t→���En

t
(t)
� � �

Ln

t
(t)
�� � 0.

Dividing En(t) and Ln(t) by t gives the actual rate (number of events per unit time) at
which these two kinds of events have occurred, and letting t � � then gives the mean
rate (expected number of events per unit time):

lim
t→�

�
En

t
(t)
� � mean rate at which process enters state n.

lim
t→�

�
Ln

t
(t)
� � mean rate at which process leaves state n.

These results yield the following key principle:

Rate In � Rate Out Principle. For any state of the system n (n � 0, 1, 2, . . .),

mean entering rate � mean leaving rate.

The equation expressing this principle is called the balance equation for state n. After
constructing the balance equations for all the states in terms of the unknown Pn probabili-
ties, we can solve this system of equations (plus an equation stating that the probabilities
must sum to 1) to find these probabilities.

To illustrate a balance equation, consider state 0. The process enter this state only
from state 1. Thus, the steady-state probability of being in state 1 (P1) represents the pro-
portion of time that it would be possible for the process to enter state 0. Given that the
process is in state 1, the mean rate of entering state 0 is �1. (In other words, for each
cumulative unit of time that the process spends in state 1, the expected number of times
that it would leave state 1 to enter state 0 is �1.) From any other state, this mean rate is 0.
Therefore, the overall mean rate at which the process leaves its current state to enter state
0 (the mean entering rate) is

�1P1 � 0(1 � P1) � �1P1.

By the same reasoning, the mean leaving rate must be �0P0, so the balance equation for
state 0 is

�1P1 � �0P0.

For every other state there are two possible transitions both into and out of the state.
Therefore, each side of the balance equations for these states represents the sum of the
mean rates for the two transitions involved. Otherwise, the reasoning is just the same as
for state 0. These balance equations are summarized in Table 17.1.

Notice that the first balance equation contains two variables for which to solve (P0 and
P1), the first two equations contain three variables (P0, P1, and P2), and so on, so that there
always is one “extra” variable. Therefore, the procedure in solving these equations is to solve
in terms of one of the variables, the most convenient one being P0. Thus, the first equation
is used to solve for P1 in terms of P0; this result and the second equation are then used to
solve for P2 in terms of P0; and so forth. At the end, the requirement that the sum of all the
probabilities equal 1 can be used to evaluate P0.
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■ TABLE 17.1 Balance equations for the 
birth-and-death process

State Rate In � Rate Out

0 �1P1 � �0P0

1 �0P0 � �2P2 � (�1 � �1)P1

2 �1P1 � �3P3 � (�2 � �2)P2

� �

n � 1 �n�2Pn�2 � �nPn � (�n�1 � �n�1)Pn�1

n �n�1Pn�1 � �n�1Pn�1 � (�n � �n)Pn

� � 

Results for the Birth-and-Death Process

Applying this procedure yields the following results:

To simplify notation, let

Cn � , for n � 1, 2, . . . ,

and then define Cn � 1 for n � 0. Thus, the steady-state probabilities are

Pn � CnP0, for n � 0, 1, 2, . . . .

The requirement that

�
�

n�0
Pn � 1

implies that

��
�

n�0
Cn�P0 � 1,

so that

P0 � ��
�

n�0
Cn�

�1

.

�n�1�n�2 ��� �0
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State:

0: P1 � �
�
�0

1
�P0

1: P2 � �
�
�1

2
�P1 � �

�
1

2
�(�1P1 � �0P0) � �

�
�1

2
�P1 � �

�
�1

2

�
�

0

1
�P0

2: P3 � �
�
�2

3
�P2 � �

�
1

3
�(�2P2 � �1P1) � �

�
�2

3
�P2 � �

�
�

3

2

�
�1

2

�
�

0

1
�P0

� �

n � 1: Pn � �
�
�
n�

n

1�Pn�1 � �
�
1

n
�(�n�1Pn�1 � �n�2Pn�2) � �

�
�
n�

n

1�Pn�1 � �
�
�
n�

n�
1�

n�

n�

1

2

��
�
�
��

�
�

1

0�P0

n: Pn�1 � �
�

�

n�

n

1
�Pn � �

�n

1
�1
�(�nPn � �n�1Pn�1) � �

�
�

n�

n

1
�Pn � �

�
�

n

n

�

�n

1

�

�
1

n

�
�
�
�
�
�

�
�

0

1
�P0

� �

�n�n�1 ��� �1
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17.6 QUEUEING MODELS BASED ON THE BIRTH-AND-DEATH PROCESS 777

When a queueing model is based on the birth-and-death process, so the state of the
system n represents the number of customers in the queueing system, the key measures
of performance for the queueing system (L, Lq, W, and Wq) can be obtained immediately
after calculating the Pn from the above formulas. The definitions of L and Lq given in
Sec. 17.2 specify that

L � �
�

n�0
nPn, Lq � �

�

n�s

(n � s)Pn.

Furthermore, the relationships given at the end of Sec. 17.2 yield

W � �
L

��
�, Wq � �

L

��
q
�,

where �� is the average arrival rate over the long run. Because �n is the mean arrival rate
while the system is in state n (n � 0, 1, 2, . . .) and Pn is the proportion of time that the
system is in this state,

�� � �
�

n�0
�nPn.

Several of the expressions just given involve summations with an infinite number of
terms. Fortunately, these summations have analytic solutions for a number of interesting
special cases,4 as seen in the next section. Otherwise, they can be approximated by sum-
ming a finite number of terms on a computer.

These steady-state results have been derived under the assumption that the �n and �n

parameters have values such that the process actually can reach a steady-state condition.
This assumption always holds if �n � 0 for some value of n greater than the initial state,
so that only a finite number of states (those less than this n) are possible. It also always
holds when � and � are defined (see “Terminology and Notation” in Sec. 17.2) and 
� � �/(s�) 
 1. It does not hold if ��

n�1 Cn � �.
Section 17.6 describes several queueing models that are special cases of the birth-

and-death process. Therefore, the general steady-state results just given in boxes will be
used over and over again to obtain the specific steady-state results for these models.

■ 17.6 QUEUEING MODELS BASED ON THE BIRTH-AND-DEATH PROCESS

Because each of the mean rates �0, �1, . . . and �1, �2, . . . for the birth-and-death process
can be assigned any nonnegative value, we have great flexibility in modeling a queueing sys-
tem. Probably the most widely used models in queueing theory are based directly upon this
process. Because of assumptions 1 and 2 (and Property 4 for the exponential distribution),
these models are said to have a Poisson input and exponential service times. The models

4These solutions are based on the following known results for the sum of any geometric series:

�
N

n�0
xn � �

1
1
�

�
xN

x

�1

�, for any x � 1,

�
�

n�0
xn � �

1
1
�x
�, if x 
 1.
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differ only in their assumptions about how the �n and �n change with n. We present three of
these models in this section for three important types of queueing systems.

The M/M/s Model

As described in Sec. 17.2, the M/M/s model assumes that all interarrival times are inde-
pendently and identically distributed according to an exponential distribution (i.e., the input
process is Poisson), that all service times are independent and identically distributed
according to another exponential distribution, and that the number of servers is s (any
positive integer). Consequently, this model is just the special case of the birth-and-death
process where the queueing system’s mean arrival rate and mean service rate per busy
server are constant (� and �, respectively) regardless of the state of the system. When the
system has just a single server (s � 1), the implication is that the parameters for the birth-
and-death process are �n � � (n � 0, 1, 2, . . .) and �n � � (n � 1, 2, . . .). The result-
ing rate diagram is shown in Fig. 17.5a.

However, when the system has multiple servers (s � 1), the �n cannot be expressed
this simply, as explained below.

System Service Rate: The system service rate �n represents the mean rate of
service completions for the overall queueing system when there are n customers
in the system. With multiple servers and n � 1, �n is not the same as �, the mean
service rate per busy server. Instead,

�n = n� when n � s,
�n = s� when n � s.

Using these formulas for �n, the rate diagram for the birth-and-death process shown in
Fig. 17.4 reduces to the rate diagrams shown in Fig. 17.5 for the M/M/s model.

When s� exceeds the mean arrival rate �, that is, when

� � �
s
�
�
� 
 1,

a queueing system fitting this model will eventually reach a steady-state condition. In this
situation, the steady-state results derived in Sec. 17.5 for the general birth-and-death
process are directly applicable. However, these results simplify considerably for this model
and yield closed-form expressions for Pn, L, Lq, and so forth, as shown next.

778 CHAPTER 17 QUEUEING THEORY

0 1 2 n3 n � 2 n � 1 n � 1State: …

� � �


 
 


�




�
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0 1 2 s3 s � 2 s � 1 s � 1State: … …

� � �


 2
 3


�

(s � 1)


�

s


�

s


(a) Single-server case (s � 1)

(b) Multiple-server case (s � 1)

�n � �,   

n � 
,  

�n �   �,
  

n � 

n
,  
s
,   	

…

for n � 0, 1, 2, ...

for n � 1, 2, ..., s
for n � s, s � 1, ...

for n � 0, 1, 2, ...
for n � 1, 2, ...

■ FIGURE 17.5
Rate diagrams for the M/M/s
model.
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KeyCorp is a Fortune 500 company headquartered in
Cleveland, Ohio. It is the thirteenth-largest bank holding
company in the United States, with 19,000 employees,
assets of $93 billion, and annual revenues of $6.7 billion.
The company emphasizes consumer banking and has 2.4
million customers across more than 1,300 branch banks
and many additional affiliate offices.

To help grow its business, KeyCorp management ini-
tiated an extensive OR study to determine how to im-
prove customer service (defined primarily as reducing
customer waiting time before beginning service) while
also providing cost-effective staffing. A service-quality
goal was set that at least 90 percent of the customers
should have waiting times of less than 5 minutes.

The key tool in analyzing this problem was the M/M/s
queueing model, which proved to fit this application
very well. To apply this model, data were gathered that
revealed that the average service time required to
process a customer was a distressingly high 246 seconds.
With this average service time and typical mean arrival
rates, the model indicated that a 30 percent increase in the
number of tellers would be needed to meet the service-
quality goal. This prohibitively expensive option led

management to conclude that an extensive campaign
needed to be undertaken to drastically reduce the aver-
age service time by both reengineering the customer ses-
sion and providing better management of staff. Over a
period of three years, this campaign led to a reduction
in the average service time all the way down to 115 sec-
onds. Frequent reapplication of the M/M/s model then
revealed how the service-quality goal can be substan-
tially surpassed while actually reducing personnel lev-
els through improved scheduling of the personnel in the
various branch banks.

The net result has been savings of nearly $20 million
per year with vastly improved service that enables 96 per-
cent of the customers to wait less than 5 minutes. This
improvement extended throughout the company since the
percentage of branch banks who meet the service-quality
goal has increased from 42 percent to 94 percent. Surveys
also confirm a great increase in customer satisfaction.

Source: S. K. Kotha, M. P. Barnum, and D. A. Bowen: “KeyCorp
Service Excellence Management System,” Interfaces, 26(1):
54–74, Jan.–Feb. 1996. (A link to this article is provided on our
website, www.mhhe.com/hillier.)

An Application Vignette

Results for the Single-Server Case (M/M/1). For s � 1, the Cn factors for the
birth-and-death process reduce to

Cn � ��
�
�

��
n

� �n, for n � 0, 1, 2, . . . 

Therefore,

Pn � �nP0, for n � 0, 1, 2, . . . ,

where

P0 � ��
�

n�0
�n�

�1

� ��1 �
1

�
��

�1

� 1 � �.

Thus,

Pn � (1 � �)�n, for n � 0, 1, 2, . . . .

Consequently,

L � �
�

n�0
n(1 � �)�n

� (1 � �)� �
�

n�0
�
d
d
�
� (�n)
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� (1 � �)� �
d
d
�
� ��

�

n�0
�n�

� (1 � �)� �
d
d
�
� ��1 �

1
�

��
� �

1 �
�

�
� � �

� �
�

�
�.

Similarly,

Lq � �
�

n�1
(n � 1)Pn

� L � 1(1 � P0)

� �
�(�

�
�

2

�)
�.

When � � �, so that the mean arrival rate exceeds the mean service rate, the preceding
solution “blows up” (because the summation for computing P0 diverges). For this case, the
queue would “explode” and grow without bound. If the queueing system begins operation with
no customers present, the server might succeed in keeping up with arriving customers over a
short period of time, but this is impossible in the long run. (Even when � � �, the expected
number of customers in the queueing system slowly grows without bound over time because,
even though a temporary return to no customers present always is possible, the probabilities
of huge numbers of customers present become increasingly significant over time.)

Assuming again that � 
 �, we now can derive the probability distribution of the wait-
ing time in the system (so including service time) � for a random arrival when the queue
discipline is first-come-first-served. If this arrival finds n customers already in the system,
then the arrival will have to wait through n � 1 exponential service times, including his or
her own. (For the customer currently being served, recall the lack-of-memory property for
the exponential distribution discussed in Sec. 17.4.) Therefore, let T1, T2, . . . be independent
service-time random variables having an exponential distribution with parameter �, and let

Sn�1 � T1 � T2 � ��� � Tn�1, for n � 0, 1, 2, . . . ,

so that Sn�1 represents the conditional waiting time given n customers already in the sys-
tem. As discussed in Sec. 17.7, Sn�1 is known to have an Erlang distribution.5 Because the
probability that the random arrival will find n customers in the system is Pn, it follows that

P{� � t} � �
�

n�0
PnP{Sn�1 � t},

which reduces after considerable manipulation (see Prob. 17.6-17) to

P{� � t} � e��(1��)t, for t � 0.

The surprising conclusion is that � has an exponential distribution with parameter 
�(1 � �). Therefore,

W � E(�) � �
�(1

1
� �)
�

� �
� �

1
�

�.

780 CHAPTER 17 QUEUEING THEORY

5Outside queueing theory, this distribution is known as the gamma distribution.
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These results include service time in the waiting time. In some contexts (e.g., the County
Hospital emergency room problem described in Sec. 17.1), the more relevant waiting time
is just until service begins. Thus, consider the waiting time in the queue (so excluding ser-
vice time) �q for a random arrival when the queue discipline is first-come-first-served. If
this arrival finds no customers already in the system, then the arrival is served immediately,
so that

P{�q � 0} � P0 � 1 � �.

If this arrival finds n � 0 customers already there instead, then the arrival has to wait
through n exponential service times until his or her own service begins, so that

P{�q � t} � �
�

n�1
PnP{Sn � t}

� �
�

n�1
(1 � �)�nP{Sn � t}

� � �
�

n�0
PnP{Sn�1 � t}

� �P{� � t}
� �e��(1��)t, for t � 0.

Note that Wq does not quite have an exponential distribution, because P{�q � 0} � 0.
However, the conditional distribution of �q, given that �q � 0, does have an exponential
distribution with parameter �(1 � �), just as � does, because

P{�q � t�q � 0} � �
P

P

{

{

�

�

q

q

�

�

0

t}

}
� � e��(1��)t, for t � 0.

By deriving the mean of the (unconditional) distribution of �q (or applying either 
Lq � �Wq or Wq � W � 1/�),

Wq � E(�q) � �
�(�

�
� �)
�.

If you would like to see another example that applies the M/M/1 model to determine
which type of materials handling equipment a company should purchase, one is provided
in the Worked Examples section of the book’s website.

Results for the Multiple-Server Case (s � 1). When s � 1, the Cn factors become

�
(�

n
/�
!
)n

� for n � 1, 2, . . . , s
Cn �

�
(�

s
/�
!

)s

���
s
�
�
��

n�s

� �
(
s
�
!s
/�
n�

)n

s� for n � s, s � 1, . . . .

Consequently, if � 
 s� [so that � � �/(s�) 
 1], then

P0 � 1
�1 � �
s�1

n�1
�
(�

n
/�
!
)n

� � �
(�

s
/�
!

)s

� �
�

n�s
��

s
�
�
��

n�s

�
� 1
��

s�1

n�0
�
(�

n
/�
!
)n

� � �
(�

s
/�
!

)s

� �
1 � �

1
/(s�)
��,


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6When s � 1 � �/� � 0, (1 � e��t(s�1��/�))/(s � 1 � �/�) should be replaced by �t.

s!(1 � �)

where the n � 0 term in the last summation yields the correct value of 1 because of the
convention that n! � 1 when n � 0. These Cn factors also give

�
(�

n
/�
!
)n

�P0 if 0 � n � s
Pn �

�
(
s
�
!s
/�
n�

)n

s�P0 if n � s.

Furthermore,

Lq � �
�

n�s

(n � s)Pn

� �
�

j�0
jPs�j

� �
�

j�0
j �

(�
s
/�
!

)s

�� jP0

� P0�
(�

s
/�
!

)s

�� �
�

j�0
�
d
d
�
� (� j)

� P0�
(�

s
/�
!

)s

�� �
d
d
�
�� �

�

j�0
� j�

� P0�
(�

s
/�
!

)s

�� �
d
d
�
���1 �

1
�

��
� �

s
P
!
0

(1
(�

�
/�

�
)s

)
�
2�;

Wq � �
L

�
q
�;

W � Wq � �
�
1

�;

L � ��Wq � �
�
1

�� � Lq � �
�
�

�.

Figure 17.6 shows how L changes with � for various values of s.
The single-server method for finding the probability distribution of waiting times also

can be extended to the multiple-server case. This yields6 (for t � 0)

P{� � t} � e��t� � ��
and

P{�q � t} � (1 � P{�q � 0})e�s�(1��)t,

where

P{�q � 0} � �
s�1

n�0
Pn.

The above formulas for the various measures of performance (including the Pn) are
relatively imposing for hand calculations. However, this chapter’s Excel file in your OR

1 � e��t(s�1��/�)

��
s � 1 � �/�

1 � P0(�/�)s


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Courseware includes an Excel template that performs all these calculations simultaneously
for any values of t, s, �, and � you want, provided that � 
 s�.

If � � s�, so that the mean arrival rate exceeds the maximum mean rate of service
completions, then the queue grows without bound, so the preceding steady-state solutions
are not applicable.

The County Hospital Example with the M/M/s Model. For the County
Hospital emergency room problem (see Sec. 17.1), the management engineer has
concluded that the emergency cases arrive pretty much at random (a Poisson input
process), so that interarrival times have an exponential distribution. She also has
concluded that the time spent by a doctor treating the cases approximately follows an
exponential distribution. Therefore, she has chosen the M/M/s model for a preliminary
study of this queueing system.

By projecting the available data for the early evening shift into next year, she 
estimates that patients will arrive at an average rate of 1 every �

1
2

� hour. A doctor requires
an average of 20 minutes to treat each patient. Thus, with one hour as the unit of time,

�
�
1

� � �
1
2

� hour per customer
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■ FIGURE 17.6
Values for L for the M/M/s
model (Sec. 17.6).
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and

�
�
1

� � �
1
3

� hour per customer,

so that

� � 2 customers per hour

and

� � 3 customers per hour.

The two alternatives being considered are to continue having just one doctor during this
shift (s � 1) or to add a second doctor (s � 2). In both cases,

� � �
s
�
�
� 
 1,

so that the system should approach a steady-state condition. (Actually, because � is some-
what different during other shifts, the system will never truly reach a steady-state con-
dition, but the management engineer feels that steady-state results will provide a good
approximation.) Therefore, the preceding equations are used to obtain the results shown 
in Table 17.2.

784 CHAPTER 17 QUEUEING THEORY

■ TABLE 17.2 Steady-state results from the M/M/s
model for the County Hospital problem

s � 1 s � 2

� �
2
3

� �
1
3

�

P0 �
1
3

� �
1
2

�

P1 �
2
9

� �
1
3

�

Pn for n � 2 �
1
3

���
2
3

��
n

��
1
3

��
n

Lq �
4
3

� �
1
1
2
�

L 2 �
3
4

�

Wq �
2
3

� hour �
2
1
4
� hour

W 1 hour �
3
8

� hour

P{�q � 0} 0.667 0.167

P��q � �
1
2

�� 0.404 0.022

P{�q � 1} 0.245 0.003

P{�q � t} �
2
3

�e�t �
1
6

�e�4t

P{� � t} e�t �
1
2

�e�3t(3 � e�t)
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On the basis of these results, she tentatively concluded that a single doctor would
be inadequate next year for providing the relatively prompt treatment needed in a hos-
pital emergency room. You will see later (Sec. 17.8) how she checked this conclusion by
applying another queueing model that provides a better representation of the real queue-
ing system in one crucial way.

You can see another example of an application of the M/M/1 model in the Worked
Examples section of the book’s website, where the issue in this case is whether three
employees in a fast-food restaurant should work together as one fast server or separately
as three considerably slower servers.

The Finite Queue Variation of the M/M/s Model 
(Called the M/M/s/K Model)

We mentioned in the discussion of queues in Sec. 17.2 that queueing systems sometimes
have a finite queue; i.e., the number of customers in the system is not permitted to exceed
some specified number (denoted by K) so the queue capacity is K � s. Any customer that
arrives while the queue is “full” is refused entry into the system and so leaves forever. From
the viewpoint of the birth-and-death process, the mean input rate into the system becomes
zero at these times. Therefore, the one modification needed in the M/M/s model to intro-
duce a finite queue is to change the �n parameters to

�n � �
Because �n � 0 for some values of n, a queueing system that fits this model always will
eventually reach a steady-state condition, even when � � �/s� � 1.

This model commonly is labeled M/M/s/K, where the presence of the fourth sym-
bol distinguishes it from the M/M/s model. The single difference in the formulation
of these two models is that K is finite for the M/M/s/K model and K � � for the M/M/s
model.

The usual physical interpretation for the M/M/s/K model is that there is only limited
waiting room that will accommodate a maximum of K customers in the system. For exam-
ple, for the County Hospital emergency room problem, this system actually would have a
finite queue if there were only K cots for the patients and if the policy were to send arriv-
ing patients to another hospital whenever there were no empty cots.

Another possible interpretation is that arriving customers will leave and “take their
business elsewhere” whenever they find too many customers (K ) ahead of them in the
system because they are not willing to incur a long wait. This balking phenomenon is
quite common in commercial service systems. However, there are other models available
(e.g., see Prob. 17.5-5) that fit this interpretation even better.

The rate diagram for this model is identical to that shown in Fig. 17.5 for the M/M/s
model, except that it stops with state K.

Results for the Single-Server Case (M/M/1/K). For this case,

��
�
�

��
n

� �n for n � 0, 1, 2, . . . , K
Cn �

0 for n � K.



� for n � 0, 1, 2, . . . , K � 1
0 for n � K.
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Therefore, for � � 1,7

P0 � �
�K

n�0

1
(�/�)n�

� 1
� �
� �

1
1
�

�
�K

�
�1�,

so that

Pn � �
1

1
�

�
�K

�
�1� �n, for n � 0, 1, 2, . . . , K.

Hence,

L � �
K

n�0
nPn

� �
1

1
�

�
�K

�
�1� � �

K

n�0
�
d
d
�
�(�n)

� �
1

1
�

�
�K

�
�1� � �

d
d
�
���

K

n�0
�n�

� �
1

1
�

�
�K

�
�1� � �

d
d
�
���1 1

�
�
�K

�

�1

��
� �

� �
1 �

�
�

� � �
(K

1
�
�

1
�
)
K
�
�

K

1

�1

�.

As usual (when s � 1),

Lq � L � (1 � P0).

Notice that the preceding results do not require that � 
 � (i.e., that � 
 1).
When � 
 1, it can be verified that the second term in the final expression for L con-

verges to 0 as K � �, so that all the preceding results do indeed converge to the corre-
sponding results given earlier for the M/M/1 model.

The waiting-time distributions can be derived by using the same reasoning as for the
M/M/1 model (see Prob. 17.6-28). However, no simple expressions are obtained in this
case, so computer calculations are required. Fortunately, even though L � �W and 
Lq � �Wq for the current model because the �n are not equal for all n (see the end of
Sec. 17.2), the expected waiting times for customers entering the system still can be
obtained directly from the expressions given at the end of Sec. 17.5:

W � �
L

��
�, Wq � �

L

��
q
�,

�(K � 1)�K � K�K�1 � 1
���

(1 � �K�1)(1 � �)

1 � (�/�)K�1

��
1 � �/�
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7If � � 1, then Pn � 1/(K � 1) for n � 0, 1, 2, . . . , K, so that L � K/2.
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where

�� � �
�

n�0
�nPn

� �
K�1

n�0
�Pn

� �(1 � PK).

Results for the Multiple-Server Case (s � 1). Because this model does not allow
more than K customers in the system, K is the maximum number of servers that could
ever be used. Therefore, assume that s � K. In this case, Cn becomes

�
(�

n
/�
!
)n

� for n � 0, 1, 2, . . . , s

Cn �
�
(�

s
/�
!

)s

� ��
s
�
�
��

n�s

� �
(
s
�
!s
/�
n�

)n

s� for n � s, s � 1, . . . , K

0 for n � K.

Hence,

�
(�

n
/�
!
)n

�P0 for n � 1, 2, . . . , s

Pn �
�
(
s
�
!s
/�
n�

)n

s�P0 for n � s, s � 1, . . . , K

0 for n � K,

where

P0 � 1
��
s

n�0
�
(�

n
/�
!
)n

� � �
(�

s
/�
!

)s

� �
K

n�s�1
��

s
�
�
��

n�s

�.

(These formulas continue to use the convention that n! � 1 when n � 0.)
Adapting the derivation of Lq for the M/M/s model to this case yields

Lq � �
s
P
!
0

(
(
1
�
�
/�)

�

s

)
�
2� [1 � �K�s � (K � s)�K�s(1 � �)],

where � � �/(s�).8 It can then be shown that

L � �
s�1

n�0
nPn � Lq � s�1 � �

s�1

n�0
Pn�.

And W and Wq are obtained from these quantities just as shown for the single-server case.
This chapter’s Excel file includes an Excel template for calculating the above mea-

sures of performance (including the Pn) for this model.
One interesting special case of this model is where K � s so the queue capacity

is K � s � 0. In this case, customers who arrive when all servers are busy will leave














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8If � � 1, it is necessary to apply L’Hôpital’s rule twice to this expression for Lq. Otherwise, all these multiple-
server results hold for all � � 0. The reason that this queueing system can reach a steady-state condition even
when � � 1 is that �n � 0 for n � K, so that the number of customers in the system cannot continue to grow
indefinitely.
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immediately and be lost to the system. This would occur, for example, in a telephone
network with s trunk lines so callers get a busy signal and hang up when all the trunk
lines are busy. This kind of system (a “queueing system” with no queue) is referred
to as Erlang’s loss system because it was first studied in the early 20th century by 
A. K. Erlang, a Danish telephone engineer who is considered the founder of queue-
ing theory.

It is common now for the telephone system at a call center to provide some extra
trunk lines that place the caller on hold, but additional callers then get a busy signal. Such
a system also fits this model, where (K � s) is the number of extra trunk lines that place
the caller on hold. Another example in the Worked Examples section of the book’s web-
site illustrates the application of this model to such a system.

The Finite Calling Population Variation of the M/M/s Model

Now assume that the only deviation from the M/M/s model is that (as defined in Sec. 17.2)
the input source is limited; i.e., the size of the calling population is finite. For this case,
let N denote the size of the calling population. Thus, when the number of customers in
the queueing system is n (n � 0, 1, 2, . . . , N ), there are only N � n potential customers
remaining in the input source.

The most important application of this model has been to the machine repair prob-
lem, where one or more maintenance people are assigned the responsibility of main-
taining in operational order a certain group of N machines by repairing each one that
breaks down. (The example given at the end of Sec. 16.8 illustrates this application
when the general procedures for solving any continuous time Markov chain are used
rather than the specific formulas available for the birth-and-death process.) The main-
tenance people are considered to be individual servers in the queueing system if they
work individually on different machines, whereas the entire crew is considered to be a
single server if crew members work together on each machine. The machines constitute
the calling population. Each one is considered to be a customer in the queueing system
when it is down waiting to be repaired, whereas it is outside the queueing system while
it is operational.

Note that each member of the calling population alternates between being inside
and outside the queueing system. Therefore, the analog of the M/M/s model that fits this
situation assumes that each member’s outside time (i.e., the elapsed time from leaving
the system until returning for the next time) has an exponential distribution with para-
meter �. When n of the members are inside, and so N � n members are outside, the
current probability distribution of the remaining time until the next arrival to the queue-
ing system is the distribution of the minimum of the remaining outside times for the
latter N � n members. Properties 2 and 3 for the exponential distribution imply that
this distribution must be exponential with parameter �n � (N � n)�. Hence, this model
is just the special case of the birth-and-death process that has the rate diagram shown
in Fig. 17.7.

Because �n � 0 for n � N, any queueing system that fits this model will eventually
reach a steady-state condition. The available steady-state results are summarized as follows:

Results for the Single-Server Case (s � 1). When s � 1, the Cn factors in Sec. 17.5
reduce to

N(N � 1) ��� (N � n � 1)��
�
�

��
n

� �
(N

N
�

!
n)!

� ��
�
�

��
n

for n � N
Cn �

0 for n � N,




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for this model. Therefore, again using the convention that n! � 1 when n � 0,

P0 � 1
�
N

n�0
��(N N

�
!
n)!

���
�
�

��
n

�;

Pn � �
(N

N
�

!
n)!

���
�
�

��
n

P0, if n � 1, 2, . . . , N;

Lq � �
N

n�1
(n � 1)Pn,

which can be reduced to

Lq � N � �
� �

�
�

�(1 � P0);

L � �
N

n�0
nPn � Lq � 1 � P0

� N � �
�
�

�(1 � P0).

Finally,

W � �
L

��
� and Wq � �

L

��
q
�,

where

�� � �
�

n�0
�nPn � �

N

n�0
(N � n)�Pn � �(N � L).

At this point, you might find it helpful to refer back to the example at the end of
Sec. 16.8, because that example completely fits this model for the single-server case. In
particular, N � 2, �� 1, and � � 2 for that example, so P0 � 0.4, P1 � 0.4, P2 � 0.2,
and so forth.
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(N � 1)� (N � n � 2)� (N � n � 1)�

(N � s � 2)� (N � s � 1)�

�n �  	 (N � n)�,
 0,

for n � 0, 1, 2, ..., N
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�n �  	 (N � n)�,
 0,

for n � 0, 1, 2, ..., N
for n � N
for n � 1, 2, ..., s
for n � s, s � 1, ...


n �   
, for n � 1, 2, ...

■ FIGURE 17.7
Rate diagrams for the finite
calling population variation
of the M/M/s model.
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Results for the Multiple-Server Case (s � 1). For N � s � 1,

�
(N �

N
n
!
)!n!

���
�
�

��
n

for n � 0, 1, 2, . . . , s

Cn � ��
�
�

��
n

for n � s, s � 1, . . . , N

0 for n � N.

Hence,

�
(N �

N
n
!
)!n!

� ��
�
�

��
n

P0 if 0 � n � s

Pn � ��
�
�

��
n

P0 if s � n � N

0 if n � N,

where

P0 � 1
��
s�1

n�0
�
(N �

N
n
!
)!n!

���
�
�

��
n

� �
N

n�s
��

�
�

��
n

�.

Finally,

Lq � �
N

n�s

(n � s)Pn

and

L � �
s�1

n�0
nPn � Lq � s�1 � �

s�1

n�0
Pn�,

which then yield W and Wq by the same equations as in the single-server case.
This chapter’s Excel files include an Excel template for performing all the above

calculations.
Extensive tables of computational results also are available9 for this model for both

the single-server and multiple-server cases.
For both cases, it has been shown10 that the preceding formulas for Pn and P0 (and

so for Lq, L, W, and Wq) also hold for a generalization of this model. In particular, we can
drop the assumption that the times spent outside the queueing system by the members of
the calling population have an exponential distribution, even though this takes the model
outside the realm of the birth-and-death process. As long as these times are identically
distributed with mean 1/� (and the assumption of exponential service times still holds),
these outside times can have any probability distribution!

N!
��
(N � n)!s!sn�s

N!
��
(N � n)!s!sn�s









N!
��
(N � n)!s!sn�s








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9L. G. Peck and R. N. Hazelwood, Finite Queueing Tables, Wiley, New York, 1958.
10B. D. Bunday and R. E. Scraton, “The G/M/r Machine Interference Model,” European Journal of Operational
Research, 4: 399–402, 1980.

■ 17.7 QUEUEING MODELS INVOLVING 
NONEXPONENTIAL DISTRIBUTIONS

Because all the queueing theory models in the preceding section (except for one gen-
eralization) are based on the birth-and-death process, both their interarrival and service
times are required to have exponential distributions. As discussed in Sec. 17.4, this type
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of probability distribution has many convenient properties for queueing theory, but it
provides a reasonable fit for only certain kinds of queueing systems. In particular, the
assumption of exponential interarrival times implies that arrivals occur randomly (a Pois-
son input process), which is a reasonable approximation in many situations but not when
the arrivals are carefully scheduled or regulated. Furthermore, the actual service-time
distribution frequently deviates greatly from the exponential form, particularly when the
service requirements of the customers are quite similar. Therefore, it is important to
have available other queueing models that use alternative distributions.

Unfortunately, the mathematical analysis of queueing models with nonexponential
distributions is much more difficult. However, it has been possible to obtain some useful
results for a few such models. This analysis is beyond the level of this book, but in this
section we shall summarize the models and describe their results.

The M/G/1 Model

As introduced in Sec. 17.2, the M/G/1 model assumes that the queueing system has a sin-
gle server and a Poisson input process (exponential interarrival times) with a fixed mean
arrival rate �. As usual, it is assumed that the customers have independent service times
with the same probability distribution. However, no restrictions are imposed on what this
service-time distribution can be. In fact, it is only necessary to know (or estimate) the
mean 1/� and variance �2 of this distribution.

Any such queueing system can eventually reach a steady-state condition if � � �/� 
 1.
The readily available steady-state results11 for this general model are the following:

P0 � 1 � �,

Lq � �
�
2

2

(
�
1

2

�
�

�
�
)

2

�,

L � � � Lq,

Wq � �
L

�
q
�,

W � Wq � �
�
1

�.

Considering the complexity involved in analyzing a model that permits any service-time
distribution, it is remarkable that such a simple formula can be obtained for Lq. This for-
mula is one of the most important results in queueing theory because of its ease of use
and the prevalence of M/G/1 queueing systems in practice. This equation for Lq (or its
counterpart for Wq) commonly is referred to as the Pollaczek-Khintchine formula, named
after two pioneers in the development of queueing theory who derived the formula inde-
pendently in the early 1930s.

For any fixed expected service time 1/�, notice that Lq, L, Wq, and W all increase as
�2 is increased. This result is important because it indicates that the consistency of the
server has a major bearing on the performance of the service facility—not just the server’s
average speed. This key point is illustrated in the next subsection.

When the service-time distribution is exponential, � 2 � 1/�2, and the preceding
results will reduce to the corresponding results for the M/M/1 model given at the begin-
ning of Sec. 17.6.

17.7 QUEUEING MODELS INVOLVING NONEXPONENTIAL DISTRIBUTIONS 791

11A recursion formula also is available for calculating the probability distribution of the number of customers
in the system; see A. Hordijk and H. C. Tijms, “A Simple Proof of the Equivalence of the Limiting Distribu-
tion of the Continuous-Time and the Embedded Process of the Queue Size in the M/G/1 Queue,” Statistica Neer-
landica, 36: 97–100, 1976.
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The complete flexibility in the service-time distribution provided by this model is
extremely useful, so it is unfortunate that efforts to derive similar results for the multiple-
server case have been unsuccessful. However, some multiple-server results have been
obtained for the important special cases described by the following two models. (Excel
templates are available in this chapter’s Excel file for performing the calculations for
both the M/G/1 model and the two models considered below when s � 1.)

The M/D/s Model

When the service consists of essentially the same routine task to be performed for all cus-
tomers, there tends to be little variation in the service time required. The M/D/s model often
provides a reasonable representation for this kind of situation, because it assumes that all ser-
vice times actually equal some fixed constant (the degenerate service-time distribution) and
that we have a Poisson input process with a fixed mean arrival rate �.

When there is just a single server, the M/D/1 model is just the special case of the
M/G/1 model where �2 � 0, so that the Pollaczek-Khintchine formula reduces to

Lq � �
2(1

�
�

2

�)
�,

where L, Wq, and W are obtained from Lq as just shown. Notice that these Lq and Wq are
exactly half as large as those for the exponential service-time case of Sec. 17.6 (the M/M/1
model), where �2 � 1/�2, so decreasing �2 can greatly improve the measures of perfor-
mance of a queueing system.

For the multiple-server version of this model (M/D/s), a complicated method is avail-
able12 for deriving the steady-state probability distribution of the number of customers in
the system and its mean [assuming � � �/(s�) 
 1]. These results have been tabulated
for numerous cases,13 and the means (L) also are given graphically in Fig. 17.8.

The M/Ek/s Model

The M/D/s model assumes zero variation in the service times (� � 0), whereas the expo-
nential service-time distribution assumes a very large variation (� � 1/�). Between these
two rather extreme cases lies a long middle ground (0 
 � 
 1/�), where most actual service-
time distributions fall. Another kind of theoretical service-time distribution that fills this
middle ground is the Erlang distribution (named after the founder of queueing theory).

The probability density function for the Erlang distribution is

f (t) � �
(k

(�
�

k)
1

k

)!
� t k�1e�k�t, for t � 0,

where � and k are strictly positive parameters of the distribution and k is further restricted
to be integer. (Except for this integer restriction and the definition of the parameters, this
distribution is identical to the gamma distribution.) Its mean and standard deviation are

Mean � �
�
1

�

and

Standard deviation � ��

k�
1
��� �

�
1

� .

12See N. U. Prabhu: Queues and Inventories, Wiley, New York, 1965, pp. 32–34; also see pp. 286–288 in 
Selected Reference 5.
13F. S. Hillier and O. S. Yu, with D. Avis, L. Fossett, F. Lo, and M. Reiman, Queueing Tables and Graphs,
Elsevier North-Holland, New York, 1981.
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Thus, k is the parameter that specifies the degree of variability of the service times rela-
tive to the mean. It usually is referred to as the shape parameter.

The Erlang distribution is a very important distribution in queueing theory for two
reasons. To describe the first one, suppose that T1, T2, . . . , Tk are k independent random
variables with an identical exponential distribution whose mean is 1/(k�). Then their sum

T � T1 � T2 � ��� � Tk

has an Erlang distribution with parameters � and k. The discussion of the exponential dis-
tribution in Sec. 17.4 suggested that the time required to perform certain kinds of tasks
might well have an exponential distribution. However, the total service required by a cus-
tomer may involve the server’s performing not just one specific task but a sequence of k
tasks. If the respective tasks have an independent and identical exponential distribution
for their duration, the total service time will have an Erlang distribution. This will be the
case, e.g., if the server must perform the same exponential task k independent times for
each customer.

The Erlang distribution also is very useful because it is a large (two-parameter) fam-
ily of distributions permitting only nonnegative values. Hence, empirical service-time dis-
tributions can usually be reasonably approximated by an Erlang distribution. In fact, both
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■ FIGURE 17.8
Values of L for the M/D/s
model (Sec. 17.7).
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the exponential and the degenerate (constant) distributions are special cases of the Erlang
distribution, with k � 1 and k � �, respectively. Intermediate values of k provide inter-
mediate distributions with mean � 1/�, mode � (k � 1)/(k�), and variance � 1/(k�2), as
suggested by Fig. 17.9. Therefore, after estimating the mean and variance of an empiri-
cal service-time distribution, these formulas for the mean and variance can be used to
choose the integer value of k that matches the estimates most closely.

Now consider the M/Ek/1 model, which is just the special case of the M/G/1 model
where service times have an Erlang distribution with shape parameter � k. Applying the
Pollaczek-Khintchine formula with �2 � 1/(k�2) (and the accompanying results given for
M/G/1) yields

Lq � � �
1

2
�
k

k
� �

�(�
�
�

2

�)
�,

Wq � �
1

2
�
k

k
� �

�(�
�
� �)
�,

W � Wq � �
�
1

�,

L � �W.

With multiple servers (M/Ek/s), the relationship of the Erlang distribution to the 
exponential distribution just described can be exploited to formulate a modified birth-and-death
process (continuous time Markov chain) in terms of individual exponential service phases
(k per customer) rather than complete customers. However, it has not been possible to
derive a general steady-state solution [when � � �/(s�) 
 1] for the probability distrib-
ution of the number of customers in the system as we did in Sec. 17.5. Instead, advanced
theory is required to solve individual cases numerically. Once again, these results have
been obtained and tabulated for numerous cases.14 The means (L) also are given graph-
ically in Fig. 17.10 for some cases where s � 2.

The Worked Examples section of the book’s website includes another example that
applies the M/Ek/s model for both s � 1 and s � 2 to choose the less costly alternative.

�2/(k�2) � �2

��
2(1 � �)
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■ FIGURE 17.9
A family of Erlang
distributions with constant
mean 1/�.

14Ibid.
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Models without a Poisson Input

All the queueing models presented thus far have assumed a Poisson input process (expo-
nential interarrival times). However, this assumption is violated if the arrivals are sched-
uled or regulated in some way that prevents them from occurring randomly, in which case
another model is needed.

As long as the service times have an exponential distribution with a fixed parameter,
three such models are readily available. These models are obtained by merely reversing
the assumed distributions of the interarrival and service times in the preceding three mod-
els. Thus, the first new model (GI/M/s) imposes no restriction on what the interarrival
time distribution can be. In this case, there are some steady-state results available15 (par-
ticularly in regard to waiting-time distributions) for both the single-server and multiple-
server versions of the model, but these results are not nearly as convenient as the simple
expressions given for the M/G/1 model. The second new model (D/M/s) assumes that all
interarrival times equal some fixed constant, which would represent a queueing system
where arrivals are scheduled at regular intervals. The third new model (Ek /M/s) assumes
an Erlang interarrival time distribution, which provides a middle ground between 

17.7 QUEUEING MODELS INVOLVING NONEXPONENTIAL DISTRIBUTIONS 795
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■ FIGURE 17.10
Values of L for the M/Ek /2
model (Sec. 17.7).

15For example, see pp. 248–260 of Selected Reference 5.

hil76299_ch17_759-827.qxd  11/4/08  12:07 PM  Page 795



Confirming Pages

regularly scheduled (constant) and completely random (exponential) arrivals. Extensive
computational results have been tabulated16 for these latter two models, including the val-
ues of L given graphically in Figs. 17.11 and 17.12.

If neither the interarrival times nor the service times for a queueing system have an
exponential distribution, then there are three additional queueing models for which com-
putational results also are available.17 One of these models (Em/Ek /s) assumes an Erlang
distribution for both these times. The other two models (Ek /D/s and D/Ek /s) assume that
one of these times has an Erlang distribution and the other time equals some fixed constant.

Other Models

Although you have seen in this section a large number of queueing models that involve
nonexponential distributions, we have far from exhausted the list. For example, another dis-
tribution that occasionally is used for either interarrival times or service times is the 
hyperexponential distribution. The key characteristic of this distribution is that even
though only nonnegative values are allowed, its standard deviation � actually is larger than

796 CHAPTER 17 QUEUEING THEORY
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■ FIGURE 17.11
Values of L for the D/M/s
model (Sec. 17.7).

16Hillier and Yu, op. cit.
17Ibid.
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its mean 1/�. This characteristic is in contrast to the Erlang distribution, where � 
 1/� in
every case except k � 1 (exponential distribution), which has � � 1/�. To illustrate a typ-
ical situation where � � 1/� can occur, we suppose that the service involved in the queue-
ing system is the repair of some kind of machine or vehicle. If many of the repairs turn
out to be routine (small service times) but occasional repairs require an extensive overhaul
(very large service times), then the standard deviation of service times will tend to be quite
large relative to the mean, in which case the hyperexponential distribution may be used to
represent the service-time distribution. Specifically, this distribution would assume that
there are fixed probabilities, p and (1 � p), for which kind of repair will occur, that the
time required for each kind has an exponential distribution, but that the parameters for these
two exponential distributions are different. (In general, the hyperexponential distribution is
such a composite of two or more exponential distributions.)

Another family of distributions coming into general use consists of phase-type 
distributions (some of which also are called generalized Erlangian distributions). These
distributions are obtained by breaking down the total time into a number of phases, each
having an exponential distribution, where the parameters of these exponential distribu-
tions may be different and the phases may be either in series or in parallel (or both). A
group of phases being in parallel means that the process randomly selects one of the

17.7 QUEUEING MODELS INVOLVING NONEXPONENTIAL DISTRIBUTIONS 797

Utilization factor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1

1.0

10

100

L

� � �
s


m � 1

m � 2

m � 16
St

ea
dy

-s
ta

te
 e

xp
ec

te
d 

nu
m

be
r 

of
 c

us
to

m
er

s 
in

 th
e 

qu
eu

ei
ng

 s
ys

te
m

■ FIGURE 17.12
Values of L for the Ek /M/2
model (Sec. 17.7).
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phases to go through each time according to specified probabilities. This approach is, in
fact, how the hyperexponential distribution is derived, so this distribution is a special
case of the phase-type distributions. Another special case is the Erlang distribution, which
has the restrictions that all its k phases are in series and that these phases have the same
parameter for their exponential distributions. Removing these restrictions means that
phase-type distributions in general can provide considerably more flexibility than the Erlang
distribution in fitting the actual distribution of interarrival times or service times observed
in a real queueing system. This flexibility is especially valuable when using the actual
distribution directly in the model is not analytically tractable, and the ratio of the mean
to the standard deviation for the actual distribution does not closely match the available
ratios (
k� for k � 1, 2, . . .) for the Erlang distribution.

Since they are built up from combinations of exponential distributions, queueing mod-
els using phase-type distributions still can be represented by a continuous time Markov chain.
This Markov chain generally will have an infinite number of states, so solving for the steady-
state distribution of the state of the system requires solving an infinite system of linear equa-
tions that has a relatively complicated structure. Solving such a system is far from a routine
thing, but theoretical advances have enabled us to solve these queueing models numerically
in some cases. An extensive tabulation of these results for models with various phase-type
distributions (including the hyperexponential distribution) is available.18

798 CHAPTER 17 QUEUEING THEORY

■ 17.8 PRIORITY-DISCIPLINE QUEUEING MODELS

In priority-discipline queueing models, the queue discipline is based on a priority system.
Thus, the order in which members of the queue are selected for service is based on their
assigned priorities.

Many real queueing systems fit these priority-discipline models much more closely
than other available models. Rush jobs are taken ahead of other jobs, and important cus-
tomers may be given precedence over others. Therefore, the use of priority-discipline mod-
els often provides a very welcome refinement over the more usual queueing models.

We present two basic priority-discipline models here. Since both models make the
same assumptions, except for the nature of the priorities, we first describe the models to-
gether and then summarize their results separately.

The Models

Both models assume that there are N priority classes (class 1 has the highest priority and
class N has the lowest) and that whenever a server becomes free to begin serving a new
customer from the queue, the one customer selected is that member of the highest prior-
ity class represented in the queue who has waited longest. In other words, customers are se-
lected to begin service in the order of their priority classes, but on a first-come-first-served
basis within each priority class. A Poisson input process and exponential service times are
assumed for each priority class. Except for one special case considered later, the models
also make the somewhat restrictive assumption that the expected service time is the same
for all priority classes. However, the models do permit the mean arrival rate to differ among
priority classes.

The distinction between the two models is whether the priorities are nonpreemptive
or preemptive. With nonpreemptive priorities, a customer being served cannot be ejected
back into the queue (preempted) if a higher-priority customer enters the queueing system.

18L. P. Seelen, H. C. Tijms, and M. H. Van Hoorn, Tables for Multi-Server Queues, North-Holland, Amsterdam, 1985.
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17.8 PRIORITY-DISCIPLINE QUEUEING MODELS 799

Therefore, once a server has begun serving a customer, the service must be completed
without interruption. The first model assumes nonpreemptive priorities.

With preemptive priorities, the lowest-priority customer being served is preempted
(ejected back into the queue) whenever a higher-priority customer enters the queueing
system. A server is thereby freed to begin serving the new arrival immediately. (When a
server does succeed in finishing a service, the next customer to begin receiving service is
selected just as described at the beginning of this subsection, so a preempted customer
normally will get back into service again and, after enough tries, will eventually finish.)
Because of the lack-of-memory property of the exponential distribution (see Sec. 17.4),
we do not need to worry about defining the point at which service begins when a pre-
empted customer returns to service; the distribution of the remaining service time always
is the same. (For any other service-time distribution, it becomes important to distinguish
between preemptive-resume systems, where service for a preempted customer resumes at
the point of interruption, and preemptive-repeat systems, where service must start at the
beginning again.) The second model assumes preemptive priorities.

For both models, if the distinction between customers in different priority classes
were ignored, Property 6 for the exponential distribution (see Sec. 17.4) implies that all
customers would arrive according to a Poisson input process. Furthermore, all customers
have the same exponential distribution for service times. Consequently, the two models
actually are identical to the M/M/s model studied in Sec. 17.6 except for the order in which
customers are served. Therefore, when we count just the total number of customers in the
system, the steady-state distribution for the M/M/s model also applies to both models.
Consequently, the formulas for L and Lq also carry over, as do the expected waiting-time
results (by Little’s formula) W and Wq, for a randomly selected customer. What changes
is the distribution of waiting times, which was derived in Sec. 17.6 under the assumption
of a first-come-first-served queue discipline. With a priority discipline, this distribution
has a much larger variance, because the waiting times of customers in the highest prior-
ity classes tend to be much smaller than those under a first-come-first-served discipline,
whereas the waiting times in the lowest priority classes tend to be much larger. By the
same token, the breakdown of the total number of customers in the system tends to be
disproportionately weighted toward the lower-priority classes. But this condition is just
the reason for imposing priorities on the queueing system in the first place. We want to
improve the measures of performance for each of the higher-priority classes at the expense
of performance for the lower-priority classes. To determine how much improvement is being
made, we need to obtain such measures as expected waiting time in the system and expected
number of customers in the system for the individual priority classes. Expressions for these
measures are given next for the two models in turn.

Results for the Nonpreemptive Priorities Model

Let Wk be the steady-state expected waiting time in the system (including service time)
for a member of priority class k. Then

Wk � �
ABk

1
�1Bk
� � �

�
1

�, for k � 1, 2, . . . , N,

where A � s!�
s�

r
�
s

�
� �

s�1

j�0
�
r
j!

j

� � s�,

B0 � 1,

Bk � 1 � �
�k

i�

s�
1 �i�,
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s � number of servers,

� � mean service rate per busy server,

�i � mean arrival rate for priority class i,

� � �
N

i�1
�i,

r � �
�
�

�.

(This result assumes that

�
k

i�1
�i 
 s�,

so that priority class k can reach a steady-state condition.) Little’s formula still applies to
individual priority classes, so Lk, the steady-state expected number of members of prior-
ity class k in the queueing system (including those being served), is

Lk � �kWk, for k � 1, 2, . . . , N.

To determine the expected waiting time in the queue (excluding service time) for prior-
ity class k, merely subtract 1/� from Wk; the corresponding expected queue length is
again obtained by multiplying by �k. For the special case where s � 1, the expression
for A reduces to A � �2/�.

An Excel template is provided in your OR Courseware for performing the above
calculations.

The Worked Examples section of the book’s website provides an example that
illustrates the application of the nonpreemptive priorities model for determining how
many turret lathes a factory should have when the jobs fall into three priority classes.

A Single-Server Variation of the Nonpreemptive Priorities Model

The above assumption that the expected service time 1/� is the same for all priority classes
is a fairly restrictive one. In practice, this assumption sometimes is violated because of
differences in the service requirements for the different priority classes.

Fortunately, for the special case of a single server, it is possible to allow different ex-
pected service times and still obtain useful results. Let 1/�k denote the mean of the expo-
nential service-time distribution for priority class k, so

�k � mean service rate for priority class k, for k � 1, 2, . . . , N.

Then the steady-state expected waiting time in the system for a member of priority class k is

Wk � �
bk�

ak

1bk
� � �

�
1

k
�, for k � 1, 2, . . . , N,

where ak � �
k

i�1
�
�
�i

2
i

�,

b0 � 1,

bk � 1 � �
k

i�1
�
�
�i

i
�.

This result holds as long as

�
k

i�1
�
�
�i

i
� 
 1,

which enables priority class k to reach a steady-state condition. Little’s formula can be used
as described above to obtain the other main measures of performance for each priority class.
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Results for the Preemptive Priorities Model

For the preemptive priorities model, we need to reinstate the assumption that the expected
service time is the same for all priority classes. Using the same notation as for the origi-
nal nonpreemptive priorities model, having the preemption changes the total expected
waiting time in the system (including the total service time) to

Wk � �
Bk

1
�

/�
1Bk
�, for k � 1, 2, . . . , N,

for the single-server case (s � 1). When s � 1, Wk can be calculated by an iterative pro-
cedure that will be illustrated soon by the County Hospital example. The Lk continue to
satisfy the relationship

Lk � �kWk, for k � 1, 2, . . . , N.

The corresponding results for the queue (excluding customers in service) also can be ob-
tained from Wk and Lk as just described for the case of nonpreemptive priorities. Because
of the lack-of-memory property of the exponential distribution (see Sec. 17.4), preemp-
tions do not affect the service process (occurrence of service completions) in any way.
The expected total service time for any customer still is 1/�.

This chapter’s Excel files include an Excel template for calculating the above mea-
sures of performance for the single-server case.

The County Hospital Example with Priorities

For the County Hospital emergency room problem, the management engineer has noticed
that the patients are not treated on a first-come-first-served basis. Rather, the admitting
nurse seems to divide the patients into roughly three categories: (1) critical cases, where
prompt treatment is vital for survival; (2) serious cases, where early treatment is impor-
tant to prevent further deterioration; and (3) stable cases, where treatment can be delayed
without adverse medical consequences. Patients are then treated in this order of priority,
where those in the same category are normally taken on a first-come-first-served basis.
A doctor will interrupt treatment of a patient if a new case in a higher-priority category ar-
rives. Approximately 10 percent of the patients fall into the first category, 30 percent into
the second, and 60 percent into the third. Because the more serious cases will be sent to
the hospital for further care after receiving emergency treatment, the average treatment time
by a doctor in the emergency room actually does not differ greatly among these categories.

The management engineer has decided to use a priority-discipline queueing model as
a reasonable representation of this queueing system, where the three categories of patients
constitute the three priority classes in the model. Because treatment is interrupted by the
arrival of a higher-priority case, the preemptive priorities model is the appropriate one.
Given the previously available data (� � 3 and � � 2), the preceding percentages yield 
�1 � 0.2, �2 � 0.6, and �3 � 1.2. Table 17.3 gives the resulting expected waiting times in
the queue (so excluding treatment time) for the respective priority classes19 when there is
one (s � 1) or two (s � 2) doctors on duty. (The corresponding results for the nonpre-
emptive priorities model also are given in Table 17.3 to show the effect of preempting.)

Deriving the Preemptive Priority Results. These preemptive priority results for 
s � 2 were obtained as follows. Because the waiting times for priority class 1 customers
are completely unaffected by the presence of customers in the lower-priority classes, W1

17.8 PRIORITY-DISCIPLINE QUEUEING MODELS 801

19Note that these expected times can no longer be interpreted as the expected time before treatment begins when
k � 1, because treatment may be interrupted at least once, causing additional waiting time before service is 
completed.
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will be the same for any other values of �2 and �3, including �2 � 0 and �3 � 0. There-
fore, W1 must equal W for the corresponding one-class model (the M/M/s model in Sec. 17.6)
with s � 2, � � 3, and � � �1 � 0.2, which yields

W1 � W � 0.33370 hour, for � � 0.2

so

W1 � �
�
1

� � 0.33370 � 0.33333 � 0.00037 hour.

Now consider the first two priority classes. Again note that customers in these classes
are completely unaffected by lower-priority classes ( just priority class 3 in this case),
which can therefore be ignored in the analysis. Let W�1�2 be the expected waiting time in
the system (so including service time) of a random arrival in either of these two classes,
so the probability is �1/(�1 � �2) � �

1
4

� that this arrival is in class 1 and �2/(�1 � �2) � �
3
4

�

that it is in class 2. Therefore,

W�1�2 � �
1
4

�W1 � �
3
4

�W2.

Furthermore, because the expected waiting time is the same for any queue discipline, W�1�2

must also equal W for the M/M/s model in Sec. 17.6, with s � 2, � � 3, and � � �1 �
�2 � 0.8, which yields

W�1�2 � W � 0.33937 hour, for � � 0.8.

Combining these facts gives

W2 � �
4
3

� �0.33937 � �
1
4

� (0.33370)� � 0.34126 hour.

�W2 � �
�
1

� � 0.00793 hour.�
Finally, let W�1�3 be the expected waiting time in the system (so including service

time) for a random arrival in any of the three priority classes, so the probabilities are
0.1, 0.3, and 0.6 that it is in classes 1, 2, and 3, respectively. Therefore,

W�1�3 � 0.1W1 � 0.3W2 � 0.6W3.

802 CHAPTER 17 QUEUEING THEORY

■ TABLE 17.3 Steady-state results from the priority-discipline models 
for the County Hospital problem

Preemptive Nonpreemptive
Priorities Priorities

s � 1 s � 2 s � 1 s � 2

A — — 4.5 36
B1 0.933 — 0.933 0.967
B2 0.733 — 0.733 0.867
B3 0.333 — 0.333 0.667

W1 � �
�
1

� 0.024 hour 0.00037 hour 0.238 hour 0.029 hour

W2 � �
�
1

� 0.154 hour 0.00793 hour 0.325 hour 0.033 hour

W3 � �
�
1

� 1.033 hours 0.06542 hour 0.889 hour 0.048 hour
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Furthermore, W�1�3 must also equal W for the M/M/s model in Sec. 17.6, with s � 2,
� � 3, and � � �1 � �2 � �3 � 2, so that (from Table 17.2)

W�1�3 � W � 0.375 hour, for � � 2.

Consequently,

W3 � �
0
1
.6
� [0.375 � 0.1(0.33370) � 0.3(0.34126)]

� 0.39875 hour.

�W3 � �
�
1

� � 0.06542 hour.�
The corresponding Wq results for the M/M/s model in Sec. 17.6 also could have been

used in exactly the same way to derive the Wk � 1/� quantities directly.

Conclusions. When s � 1, the Wk � 1/� values in Table 17.3 for the preemptive prior-
ities case indicate that providing just a single doctor would cause critical cases to wait about
1�

1
2

� minutes (0.024 hour) on the average, serious cases to wait more than 9 minutes, and sta-
ble cases to wait more than 1 hour. (Contrast these results with the average wait of Wq � �

2
3

�

hour for all patients that was obtained in Table 17.2 under the first-come-first-served queue
discipline.) However, these values represent statistical expectations, so some patients have
to wait considerably longer than the average for their priority class. This wait would not
be tolerable for the critical and serious cases, where a few minutes can be vital. By con-
trast, the s � 2 results in Table 17.3 (preemptive priorities case) indicate that adding a sec-
ond doctor would virtually eliminate waiting for all but the stable cases. Therefore, the
management engineer recommended that there be two doctors on duty in the emergency
room during the early evening hours next year. The board of directors for County Hospi-
tal adopted this recommendation and simultaneously raised the charge for using the emer-
gency room!

17.9 QUEUEING NETWORKS 803

■ 17.9 QUEUEING NETWORKS

Thus far we have considered only queueing systems that have a single service facility with
one or more servers. However, queueing systems encountered in OR studies are sometimes
actually queueing networks, i.e., networks of service facilities where customers must re-
ceive service at some of or all these facilities. For example, orders being processed through
a job shop must be routed through a sequence of machine groups (service facilities). It is
therefore necessary to study the entire network to obtain such information as the expected
total waiting time, expected number of customers in the entire system, and so forth.

Because of the importance of queueing networks, research into this area has been
very active. However, this is a difficult area, so we limit ourselves to a brief introduction.

One result is of such fundamental importance for queueing networks that this find-
ing and its implications warrant special attention here. This fundamental result is the fol-
lowing equivalence property for the input process of arriving customers and the output
process of departing customers for certain queueing systems.

Equivalence property: Assume that a service facility with s servers and an
infinite queue has a Poisson input with parameter � and the same exponential
service-time distribution with parameter � for each server (the M/M/s model),
where s� � �. Then the steady-state output of this service facility is also a
Poisson process with parameter �.
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For many decades, General Motors Corporation (GM)
has enjoyed its position as the world’s largest automotive
manufacturer, before being overtaken recently by Toyota.
It has manufacturing operations in 32 countries, employs
over 300,000 people worldwide, and generates annual rev-
enues of close to $200 billion. However, ever since the
late 1980s, when the productivity of GM’s plants ranked
near the bottom in the industry, the company’s market po-
sition has been steadily eroding due to ever-increasing for-
eign competition.

To counter this foreign competition, GM management
initiated a long-term operations research project many
years ago to predict and improve the throughput perfor-
mance of the company’s several hundred production lines
throughout the world. The goal was to greatly increase
the company’s productivity throughout its manufacturing
operations and thereby provide GM with a strategic com-
petitive advantage. 

The most important analytical tool used in this pro-
ject has been a complicated queueing model that uses a
simple single-server model as a building block. The over-
all model begins by considering a two-station production
line where each station is modeled as a single-server
queueing system with constant interarrival times and con-
stant service times with the following exceptions. The
server (commonly a machine) at each station occasion-
ally breaks down and does not resume serving until a re-
pair is completed. The server  at the first station also shuts
down when it completes a service and the buffer between

the stations is full. The server at the second station shuts
down when it completes a service and has not yet re-
ceived a job from the first station.

The next step in the analysis is to extend this queueing
model for a two-station production line to one for a pro-
duction line with any number of stations. This larger queue-
ing model then is used to analyze how production lines
should be designed to maximize their throughput. (The
technique of simulation described in Chap. 20 also is used
for this purpose for relatively complex production lines.)

This application of queueing theory (and simula-
tion), along with supporting data-collection systems,
has reaped remarkable benefits for GM. According to
impartial industry sources, its plants, which once were
among the least productive in the industry, now rank
among the very best. The resulting improvements in
production throughput in over 30 vehicle plants and 10
countries has yielded over $2.1 billion in documented
savings and increased revenue. These dramatic results
led to General Motors winning the prestigious First
Prize in the 2005 international competition for the
Franz Edelman Award for Achievement in Operations
Research and the Management Sciences.

Source: J. M. Alden, L. D. Burns, T. Costy, R. D. Hutton,
C. A. Jackson, D. S. Kim, K. A. Kohls, J. H. Owen,
M. A. Turnquist, and D. J. Vander Veen: “General Motors
Increases Its Production Throughput,” Interfaces, 36(1): 6–25,
Jan.–Feb. 2006. (A link to this article is provided on our web-
site, www.mhhe.com/hillier.)

An Application Vignette

Notice that this property makes no assumption about the type of queue discipline used.
Whether it is first-come-first-served, random, or even a priority discipline as in Sec. 17.8,
the served customers will leave the service facility according to a Poisson process. The cru-
cial implication of this fact for queueing networks is that if these customers must then go
to another service facility for further service, this second facility also will have a Poisson
input. With an exponential service-time distribution, the equivalence property will hold for
this facility as well, which can then provide a Poisson input for a third facility, etc. We dis-
cuss the consequences for two basic kinds of networks next.

Infinite Queues in Series

Suppose that customers must all receive service at a series of m service facilities in a fixed
sequence. Assume that each facility has an infinite queue (no limitation on the number of
customers allowed in the queue), so that the series of facilities form a system of infinite
queues in series. Assume further that the customers arrive at the first facility according to
a Poisson process with parameter � and that each facility i (i � 1, 2, . . . , m) has an ex-
ponential service-time distribution with parameter �i for its si servers, where si�i � �. It
then follows from the equivalence property that (under steady-state conditions) each ser-
vice facility has a Poisson input with parameter �. Therefore, the elementary M/M/s model
of Sec. 17.6 (or its priority-discipline counterparts in Sec. 17.8) can be used to analyze
each service facility independently of the others!
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Being able to use the M/M/s model to obtain all measures of performance for each facil-
ity independently, rather than analyzing interactions between facilities, is a tremendous sim-
plification. For example, the probability of having n customers at a given facility is given by
the formula for Pn in Sec. 17.6 for the M/M/s model. The joint probability of n1 customers
at facility 1, n2 customers at facility 2, . . . , then, is the product of the individual probabili-
ties obtained in this simple way. In particular, this joint probability can be expressed as

P{(N1, N2, . . . , Nm) � (n1, n2, . . . , nm)} � Pn1
Pn2

���Pnm
.

(This simple form for the solution is called the product form solution.) Similarly, the
expected total waiting time and the expected number of customers in the entire sys-
tem can be obtained by merely summing the corresponding quantities obtained at the
respective facilities.

Unfortunately, the equivalence property and its implications do not hold for the case
of finite queues discussed in Sec. 17.6. This case is actually quite important in practice,
because there is often a definite limitation on the queue length in front of service facili-
ties in networks. For example, only a small amount of buffer storage space is typically
provided in front of each facility (station) in a production-line system. For such systems
of finite queues in series, no simple product form solution is available. The facilities must
be analyzed jointly instead, and only limited results have been obtained.

Jackson Networks

Systems of infinite queues in series are not the only queueing networks where the M/M/s
model can be used to analyze each service facility independently of the others. Another
prominent kind of network with this property (a product form solution) is the Jackson net-
work, named after the individual (James R. Jackson) who first characterized the network
and showed that this property holds a few decades ago.

The characteristics of a Jackson network are the same as assumed above for the sys-
tem of infinite queues in series, except now the customers visit the facilities in different
orders (and may not visit them all). For each facility, its arriving customers come from
both outside the system (according to a Poisson process) and the other facilities. These
characteristics are summarized below.

A Jackson network is a system of m service facilities where facility i (i � 1,
2, . . . , m) has

1. An infinite queue
2. Customers arriving from outside the system according to a Poisson input process with

parameter ai

3. si servers with an exponential service-time distribution with parameter �i.

A customer leaving facility i is routed next to facility j ( j � 1, 2, . . . , m) with probability
pij or departs the system with probability

qi � 1 � �
m

j�1
pij.

Any such network has the following key property.

Under steady-state conditions, each facility j ( j � 1, 2, . . . , m) in a Jackson network
behaves as if it were an independent M/M/s queueing system with arrival rate

�j � aj � �
m

i�1
�i pij,

where sj�j � �j.

17.9 QUEUEING NETWORKS 805
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This key property cannot be proved directly from the equivalence property this time
(the reasoning would become circular), but its intuitive underpinning is still provided by the
latter property. The intuitive viewpoint (not quite technically correct) is that, for each facility
i, its input processes from the various sources (outside and other facilities) are independent
Poisson processes, so the aggregate input process is Poisson with parameter �i (Property 6
in Sec. 17.4). The equivalence property then says that the aggregate output process for fa-
cility i must be Poisson with parameter �i. By disaggregating this output process (Prop-
erty 6 again), the process for customers going from facility i to facility j must be Poisson
with parameter �ipij. This process becomes one of the Poisson input processes for facility j,
thereby helping to maintain the series of Poisson processes in the overall system.

The equation given for obtaining �j is based on the fact that �i is the departure rate
as well as the arrival rate for all customers using facility i. Because pij is the proportion
of customers departing from facility i who go next to facility j, the rate at which cus-
tomers from facility i arrive at facility j is �ipij. Summing this product over all i, and then
adding this sum to aj, gives the total arrival rate to facility j from all sources.

To calculate �j from this equation requires knowing the �i for i � j, but these �i also
are unknowns given by the corresponding equations. Therefore, the procedure is to solve
simultaneously for �1, �2, . . . , �m by obtaining the simultaneous solution of the entire
system of linear equations for �j for j � 1, 2, . . . , m. Your IOR Tutorial includes an in-
teractive procedure for solving for the �j in this way.

To illustrate these calculations, consider a Jackson network with three service facili-
ties that have the parameters shown in Table 17.4. Plugging into the formula for �j for
j � 1, 2, 3, we obtain

�1 � 1 � 0.1�2 � 0.4�3

�2 � 4 � 0.6�1 � 0.4�3

�3 � 3 � 0.3�1 � 0.3�2.

(Reason through each equation to see why it gives the total arrival rate to the corresponding
facility.) The simultaneous solution for this system is

�1 � 5, �2 � 10, �3 � 7�
1
2

�.

Given this simultaneous solution, each of the three service facilities now can be ana-
lyzed independently by using the formulas for the M/M/s model given in Sec. 17.6. For ex-
ample, to obtain the distribution of the number of customers Ni � ni at facility i, note that

�
1
2

� for i � 1

�i � �
s
�

i�
i

i
� � �

1
2

� for i � 2

�
3
4

� for i � 3.







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■ TABLE 17.4 Data for the example of a Jackson network

pij

Facility j sj �j aj i � 1 i � 2 i � 3

j � 1 1 10 1 0 0.1 0.4
j � 2 2 10 4 0.6 0 0.4
j � 3 1 10 3 0.3 0.3 0
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Plugging these values (and the parameters in Table 17.4) into the formula for Pn gives

Pn1
� �

1
2

���
1
2

��
n1

for facility 1,

�
1
3

� for n2 � 0

Pn2
� �

1
3

� for n2 � 1 for facility 2,

�
1
3

���
1
2

��
n2�1

for n2 � 2

Pn3
� �

1
4

���
3
4

��
n3

for facility 3.

The joint probability of (n1, n2, n3) then is given simply by the product form solution

P{(N1, N2, N3) � (n1, n2, n3)} � Pn1
Pn2

Pn3
.

In a similar manner, the expected number of customers Li at facility i can be calcu-
lated from Sec. 17.6 as

L1 � 1, L2 � �
4
3

�, L3 � 3.

The expected total number of customers in the entire system then is

L � L1 � L2 � L3 � 5�
1
3

�.

Obtaining W, the expected total waiting time in the system (including service times)
for a customer, is a little trickier. You cannot simply add the expected waiting times at the
respective facilities, because a customer does not necessarily visit each facility exactly
once. However, Little’s formula can still be used, where the system arrival rate � is the
sum of the arrival rates from outside to the facilities, � � a1 � a2 � a3 � 8. Thus,

W � � �
2
3

�.

In conclusion, we should point out that there do exist other (more complicated) kinds
of queueing networks where the individual service facilities can be analyzed indepen-
dently from the others. In fact, finding queueing networks with a product form solution
has been the Holy Grail for research on queueing networks. Some sources of additional
information are Selected References 3 and 12.

L
��
a1 � a2 � a3







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■ 17.10 THE APPLICATION OF QUEUEING THEORY

Because of the wealth of information provided by queueing theory, it is widely used to
guide the design (or redesign) of queueing systems. We now turn our focus to how queue-
ing theory is applied in this way.

The most common decision that needs to be made when designing a queueing sys-
tem is how many servers to provide. However, a number of other decisions also may be
needed. The possible decisions include

1. Number of servers at a service facility.
2. Efficiency of the servers.
3. Number of service facilities.
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4. Amount of waiting space in the queue.
5. Any priorities for different categories of customers.

The two primary considerations in making these kinds of decisions typically are 
(1) the cost of the service capacity provided by the queueing system and (2) the consequences
of making the customers wait in the queueing system. Providing too much service capac-
ity causes excessive costs. Providing too little causes excessive waiting. Therefore, the goal
is to find an appropriate trade-off between the service cost and the amount of waiting.

Two basic approaches are available for seeking this trade-off. One is to establish one
or more criteria for a satisfactory level of service in terms of how much waiting would
be acceptable. For example, one possible criterion might be that the expected waiting time
in the system should not exceed a certain number of minutes. Another might be that at
least 95 percent of the customers should wait no longer than a certain number of minutes
in the system. Similar criteria in terms of the expected number of customers in the sys-
tem (or the probability distribution of this number) also could be used. The criteria also
might be stated in terms of the waiting time or the number of customers in the queue in-
stead of in the system. Once the criterion or criteria have been selected, it then is usually
straightforward to use trial and error to find the least costly design of the queueing sys-
tem that satisfies all the criteria.

The other basic approach for seeking the best trade-off involves assessing the costs
associated with the consequences of making customers wait. For example, suppose that
the queueing system is an internal service system ( as described in Sec. 17.3), where the
customers are the employees of a for-profit company. Making these employees wait at the
queueing system causes lost productivity, which results in lost profit. This lost profit is
the waiting cost associated with the queueing system. By expressing this waiting cost as
a function of the amount of waiting, the problem of determining the best design of the
queueing system can now be posed as minimizing the expected total cost (service cost
plus waiting cost) per unit time.

We spell out this latter approach below for the problem of determining the optimal
number of servers to provide.

How Many Servers Should Be Provided?

To formulate the objective function when the decision variable is the number of servers s, let

E(TC) � expected total cost per unit time,

E(SC) � expected service cost per unit time,

E(WC) � expected waiting cost per unit time.

Then the objective is to choose the number of servers so as to

Minimize E(TC) � E(SC) � E(WC).

When each server costs the same, the service cost is

E(SC) � Css,

where Cs is the marginal cost of a server per unit time. To evaluate WC for any value of
s, note that L � �W gives the expected total amount of waiting in the queueing system
per unit time. Therefore, when the waiting cost is proportional to the amount of waiting,
this cost can be expressed as

E(WC) � CwL,

808 CHAPTER 17 QUEUEING THEORY
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where Cw is the waiting cost per unit time for each customer in the queueing system. There-
fore, after estimating the constants, Cs and Cw, the goal is to choose the value of s so as to

Minimize E(TC) � Css � CwL.

By choosing the queueing model that fits the queueing system, the value of L can be ob-
tained for various values of s. Increasing s decreases L, at first rapidly and then gradually
more slowly.

Figure 17.13 shows the general shape of the E(SC), E(WC), and E(TC) curves ver-
sus the number of servers s. (For better conceptualization, we have drawn these as smooth
curves even though the only feasible values of s are s = 1, 2, . . . .) By calculating E(TC)
for consecutive values of s until E(TC) stops decreasing and starts increasing instead, it
is straightforward to find the number of servers that minimizes total cost. The following
example illustrates this process.

An Example

The Acme Machine Shop has a tool crib to store tools required by the shop mechanics. Two
clerks run the tool crib. The clerks hand out the tools as the mechanics arrive and request
them. The tools then are returned to the clerks when they are no longer needed. There have
been complaints from supervisors that their mechanics have had to waste too much time
waiting to be served at the tool crib, so it appears as if there should be more clerks. On the
other hand, management is exerting pressure to reduce overhead in the plant, and this 
reduction would lead to fewer clerks. To resolve these conflicting pressures, an OR study is
being conducted to determine just how many clerks the tool crib should have.

The tool crib constitutes a queueing system, with the clerks as its servers and the me-
chanics as its customers. After gathering some data on interarrival times and service times,
the OR team has concluded that the queueing model that fits this queueing system best is
the M/M/s model. The estimates of the mean arrival rate � and the mean service rate (per
server) � are

� � 120 customers per hour,
� � 80 customers per hour,

17.10 THE APPLICATION OF QUEUEING THEORY 809
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■ FIGURE 17.13
The shape of the expected
cost curves for determining
the number of servers to
provide.
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so the utilization factor for the two clerks is

� � �
s
�

�
� � �

2
1
(
2
8
0
0)
� � 0.75.

The total cost to the company of each tool crib clerk is about $20 per hour, so Cs � $20.
While a mechanic is busy, the value to the company of his or her output averages about
$48 per hour, so Cw � $48. Therefore, the OR team now needs to find the number of
servers (tool crib clerks) s that will

Minimize E(TC) � $20 s + $48 L.

An Excel template has been provided in your OR Courseware for calculating these
costs with the M/M/s model. All you need to do is enter the data for the model along with
the unit service cost Cs, the unit waiting cost Cw, and the number of servers s you want
to try. The template then calculates E(SC), E(WC), and E(TC). This is illustrated in 
Fig. 17.14 with s � 3 for this example. By repeatedly entering alternative values of s, the
template then can reveal which value minimizes E(TC) in a matter of seconds.

Table 17.5 shows the data that would be generated from this template by repeating these
calculations for s � 1, 2, 3, 4, and 5. Since the utilization factor for s � 1 is � � 1.5, a single
clerk would be unable to keep up with the customers, so this option is ruled out. All larger
values of s are feasible, but s � 3 has the smallest expected total cost. Furthermore, s � 3
would decrease the current expected total cost for s � 2 by $61 per hour. Therefore, despite
management’s current drive to reduce overhead (which includes the cost of tool crib clerks),
the OR team recommends that a third clerk be added to the tool crib. Note that this recom-
mendation would decrease the utilization factor for the clerks from an already modest 0.75 all
the way down to 0.5. However, because of the large improvement in the productivity of the
mechanics (who are much more expensive than the clerks) through decreasing their time wasted
waiting at the tool crib, management adopts the recommendation.

Other Issues

Chapter 26 on the book’s website expands considerably further on the application of queue-
ing theory, including how to deal with some other issues not considered above.

For example, the analysis displayed in Fig. 17.14 and Table 17.5 assumed that the
waiting cost is proportional to the amount of waiting, but this sometimes is not the case.
If a company has one or two of its employees in a queueing system, this may not be very
serious in terms of their lost productivity because others may be able to handle all of the
available productive work. However, having additional employees in the queueing system
may result in a sharp increase in lost productivity and the resulting lost profit, so the wait-
ing cost becomes a nonlinear function of the number in the system. Similarly, the conse-
quences to a commercial service system for making its customers wait may be minimal
for short waits but much more serious for long waits. In this case, the waiting cost be-
comes a nonlinear function of the waiting time. Section 26.3 describes the formulation of
nonlinear waiting-cost functions and then the calculation of E(WC) with such functions.

Section 26.4 discusses a decision model where the decision variables are both the
number of servers and the mean service rate for the servers. An interesting issue that arises
here is whether it is better have one fast server (several people working together to serve
each customer rapidly) or several slow servers (several people working separately to serve
different customers).

Section 26.4 also presents a decision model where the decision variables are the num-
ber of service facilities and the number of servers per facility to provide service to a call-
ing population of potential customers. Given the mean arrival rate for the entire calling
population, increasing the number of facilities enables decreasing the mean arrival rate
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Economic Analysis of Acme Machine Shop Example

Data Results
λ = 120 (mean arrival rate) L = 1.736842105
µ = 80 (mean service rate) Lq = 0.236842105
s = 3 (# servers)

W = 0.014473684
Pr(W > t) = 0.02581732 Wq = 0.001973684

when t = 0.05
ρ = 0.5

Prob(Wq > t) = 0.00058707
when t = 0.05 n Pn

1 0 0.210526316
2 Economic Analysis: 1 0.315789474
1 Cs = $20.00 (cost / server / unit time) 2 0.236842105
0 Cw = $48.00 (waiting cost / unit time) 3 0.118421053
0 4 0.059210526
0 Cost of Service $60.00 5 0.029605263
0 Cost of Waiting $83.37 6 0.014802632
0 Total Cost $143.37 7 0.007401316

18
19
20

B C
Cost of Service =Cs*s
Cost of Waiting =Cw*L

Total Cost =CostOfService+CostOfWaiting       

Range Name Cells
CostOfService C18
CostOfWaiting C19
Cs C15
Cw C16
L G4
s C6
TotalCost C20
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0 Cw = $48.00 (waiting cost / unit time) 3 0.118421053
0 4 0.059210526
0 Cost of Service $60.00 5 0.029605263
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■ FIGURE 17.14 
This Excel template for using economic analysis to choose the number of servers with the M/M/s model is applied here
to the Acme Machine Shop example with s � 3.

■ TABLE 17.5 Calculation of E(TC) for alternative s in the Acme Machine 
Shop example

s � L E(SC) � Css E(WC) � CwL E(TC) � E(SC) � E(WC)

1 1.50 � $20 � �

2 0.75 3.43 $40 $164.57 $204.57
3 0.50 1.74 $60 $83.37 $143.37
4 0.375 1.54 $80 $74.15 $154.15
5 0.30 1.51 $100 $72.41 $172.41
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Queueing systems are prevalent throughout society. The adequacy of these systems can
have an important effect on the quality of life and productivity.

Queueing theory studies queueing systems by formulating mathematical models of
their operation and then using these models to derive measures of performance. This analy-
sis provides vital information for effectively designing queueing systems that achieve an
appropriate balance between the cost of providing a service and the cost associated with
waiting for that service.

This chapter presented the most basic models of queueing theory for which particu-
larly useful results are available. However, many other interesting models could be con-
sidered if space permitted. In fact, several thousand research papers formulating and/or
analyzing queueing models have already appeared in the technical literature, and many
more are being published each year!

The exponential distribution plays a fundamental role in queueing theory for represent-
ing the distribution of interarrival and service times, because this assumption enables us to
represent the queueing system as a continuous time Markov chain. For the same reason, phase-
type distributions such as the Erlang distribution, where the total time is broken down into
individual phases having an exponential distribution, are very useful. Useful analytical results
have been obtained for only a relatively few queueing models making other assumptions.

Priority-discipline queueing models are useful for the common situation where some
categories of customers are given priority over others for receiving service.

In another common situation, customers must receive service at several different ser-
vice facilities. Models for queueing networks are gaining widespread use for such situa-
tions. This is an area of especially active ongoing research.

When no tractable model that provides a reasonable representation of the queueing
system under study is available, a common approach is to obtain relevant performance
data by developing a computer program for simulating the operation of the system. This
technique is discussed in Chap. 20.

Section 17.10 briefly describes how queueing theory can be used to help design ef-
fective queueing systems and then Chap. 26 (on the book’s website) expands consider-
ably further on this subject.
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■ 17.11 CONCLUSIONS

(workload) at each facility. The number of service facilities also affects how much time
each customer will need to spend in traveling to and from the nearest facility. The waiting
cost now needs to be a function of the total time lost by a customer by either waiting at a
service facility or traveling to and from the facility. Therefore, Sec. 26.5 presents some
travel-time models for determining the expected round-trip travel time for each customer.
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To the left of each of the following problems (or their parts), we
have inserted a T whenever one of the templates listed above can
be helpful. An asterisk on the problem number indicates that at
least a partial answer is given in the back of the book.

17.2-1.* Consider a typical barber shop. Demonstrate that it is a
queueing system by describing its components.

17.2-2.* Newell and Jeff are the two barbers in a barber shop they
own and operate. They provide two chairs for customers who are
waiting to begin a haircut, so the number of customers in the shop
varies between 0 and 4. For n � 0, 1, 2, 3, 4, the probability Pn

that exactly n customers are in the shop is P0 � �
1
1
6
�, P1 � �

1
4
6
�,

P2 � �
1
6
6
�, P3 � �

1
4
6
�, P4 � �

1
1
6
�.

(a) Calculate L. How would you describe the meaning of L to
Newell and Jeff?

(b) For each of the possible values of the number of customers in
the queueing system, specify how many customers are in the
queue. Then calculate Lq. How would you describe the mean-
ing of Lq to Newell and Jeff?

(c) Determine the expected number of customers being served.
(d) Given that an average of 4 customers per hour arrive and stay

to receive a haircut, determine W and Wq. Describe these two
quantities in terms meaningful to Newell and Jeff.

(e) Given that Newell and Jeff are equally fast in giving haircuts,
what is the average duration of a haircut?

17.2-3. Mom-and-Pop’s Grocery Store has a small adjacent park-
ing lot with three parking spaces reserved for the store’s customers.
During store hours, cars enter the lot and use one of the spaces at
a mean rate of 2 per hour. For n � 0, 1, 2, 3, the probability Pn

that exactly n spaces currently are being used is P0 � 0.1, P1 � 0.2,
P2 � 0.4, P3 � 0.3.

(a) Describe how this parking lot can be interpreted as being a
queueing system. In particular, identify the customers and the
servers. What is the service being provided? What constitutes
a service time? What is the queue capacity?

(b) Determine the basic measures of performance—L, Lq, W, and
Wq—for this queueing system.

(c) Use the results from part (b) to determine the average length
of time that a car remains in a parking space.

17.2-4. For each of the following statements about the queue in a
queueing system, label the statement as true or false and then jus-
tify your answer by referring to a specific statement in the chapter.
(a) The queue is where customers wait in the queueing system un-

til their service is completed.
(b) Queueing models conventionally assume that the queue can

hold only a limited number of customers.
(c) The most common queue discipline is first-come-first-served.

17.2-5. Midtown Bank always has two tellers on duty. Customers
arrive to receive service from a teller at a mean rate of 40 per hour.
A teller requires an average of 2 minutes to serve a customer. When
both tellers are busy, an arriving customer joins a single line to
wait for service. Experience has shown that customers wait in line
an average of 1 minute before service begins.
(a) Describe why this is a queueing system.
(b) Determine the basic measures of performance—Wq, W, Lq, and

L—for this queueing system. (Hint: We don’t know the prob-
ability distributions of interarrival times and service times for
this queueing system, so you will need to use the relationships
between these measures of performance to help answer the
question.)

■ PROBLEMS20

20See also the end of Chap. 26 (on the book’s website) for additional problems involving the application of queueing theory.

hil76299_ch17_759-827.qxd  11/4/08  12:07 PM  Page 814



Confirming Pages

17.2-6. Explain why the utilization factor � for the server in a
single-server queueing system must equal 1 � P0, where P0 is
the probability of having 0 customers in the system.

17.2-7. You are given two queueing systems, Q1 and Q2. The mean
arrival rate, the mean service rate per busy server, and the steady-
state expected number of customers for Q2 are twice the corre-
sponding values for Q1. Let Wi � the steady-state expected waiting
time in the system for Qi, for i � 1, 2. Determine W2/W1.

17.2-8. Consider a single-server queueing system with any service-
time distribution and any distribution of interarrival times (the
GI/G/1 model). Use only basic definitions and the relationships
given in Sec. 17.2 to verify the following general relationships:
(a) L � Lq � (1 � P0).
(b) L � Lq � �.
(c) P0 � 1 � �.

17.2-9. Show that

L � �
s�1

n�0
nPn � Lq � s�1 � �

s�1

n�0
Pn�

by using the statistical definitions of L and Lq in terms of the Pn.

17.3-1. Identify the customers and the servers in the queueing sys-
tem in each of the following situations:
(a) The checkout stand in a grocery store.
(b) A fire station.
(c) The toll booth for a bridge.
(d) A bicycle repair shop.
(e) A shipping dock.
(f) A group of semiautomatic machines assigned to one operator.
(g) The materials-handling equipment in a factory area.
(h) A plumbing shop.
(i) A job shop producing custom orders.
(j) A secretarial typing pool.

17.4-1. Suppose that a queueing system has two servers, an ex-
ponential interarrival time distribution with a mean of 2 hours, and
an exponential service-time distribution with a mean of 2 hours for
each server. Furthermore, a customer has just arrived at 12:00 noon.
(a) What is the probability that the next arrival will come (i) be-

fore 1:00 P.M., (ii) between 1:00 and 2:00 P.M., and (iii) after
2:00 P.M.?

(b) Suppose that no additional customers arrive before 1:00 P.M.
Now what is the probability that the next arrival will come be-
tween 1:00 and 2:00 P.M.?

(c) What is the probability that the number of arrivals between
1:00 and 2:00 P.M. will be (i) 0, (ii) 1, and (iii) 2 or more?

(d) Suppose that both servers are serving customers at 1:00 P.M.
What is the probability that neither customer will have service
completed (i) before 2:00 P.M., (ii) before 1:10 P.M., and 
(iii) before 1:01 P.M.?

17.4-2.* The jobs to be performed on a particular machine arrive
according to a Poisson input process with a mean rate of two per
hour. Suppose that the machine breaks down and will require 1 hour

to be repaired. What is the probability that the number of new jobs
that will arrive during this time is (a) 0, (b) 2, and (c) 5 or more?

17.4-3. The time required by a mechanic to repair a machine has
an exponential distribution with a mean of 4 hours. However, a
special tool would reduce this mean to 2 hours. If the mechanic
repairs a machine in less than 2 hours, he is paid $100; otherwise,
he is paid $80. Determine the mechanic’s expected increase in pay
per machine repaired if he uses the special tool.

17.4-4. A three-server queueing system has a controlled arrival
process that provides customers in time to keep the servers con-
tinuously busy. Service times have an exponential distribution with
mean 0.5.

You observe the queueing system starting up with all three
servers beginning service at time t � 0. You then note that the first
completion occurs at time t � 1. Given this information, determine
the expected amount of time after t � 1 until the next service com-
pletion occurs.

17.4-5. A queueing system has three servers with expected service
times of 30 minutes, 20 minutes, and 15 minutes. The service times
have an exponential distribution. Each server has been busy with
a current customer for 10 minutes. Determine the expected re-
maining time until the next service completion.

17.4-6. Consider a queueing system with two types of customers.
Type 1 customers arrive according to a Poisson process with a mean
rate of 5 per hour. Type 2 customers also arrive according to a Pois-
son process with a mean rate of 5 per hour. The system has two
servers, both of which serve both types of customers. For both types,
service times have an exponential distribution with a mean of 10
minutes. Service is provided on a first-come-first-served basis.
(a) What is the probability distribution (including its mean) of the

time between consecutive arrivals of customers of any type?
(b) When a particular type 2 customer arrives, she finds two type 1

customers there in the process of being served but no other
customers in the system. What is the probability distribution
(including its mean) of this type 2 customer’s waiting time in
the queue?

17.4-7. Consider a two-server queueing system where all service
times are independent and identically distributed according to an
exponential distribution with a mean of 10 minutes. Service is pro-
vided on a first-come-first-served basis. When a particular customer
arrives, he finds that both servers are busy and no one is waiting
in the queue.
(a) What is the probability distribution (including its mean and

standard deviation) of this customer’s waiting time in the queue?
(b) Determine the expected value and standard deviation of this

customer’s waiting time in the system.
(c) Suppose that this customer still is waiting in the queue 5 min-

utes after its arrival. Given this information, how does this
change the expected value and the standard deviation of this
customer’s total waiting time in the system from the answers
obtained in part (b)?

PROBLEMS 815
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17.4-8. For each of the following statements regarding service
times modeled by the exponential distribution, label the statement
as true or false and then justify your answer by referring to spe-
cific statements in the chapter.
(a) The expected value and variance of the service times are al-

ways equal.
(b) The exponential distribution always provides a good approxi-

mation of the actual service-time distribution when each cus-
tomer requires the same service operations.

(c) At an s-server facility, s � 1, with exactly s customers already
in the system, a new arrival would have an expected waiting
time before entering service of 1/� time units, where � is the
mean service rate for each busy server.

17.4-9. As for Property 3 of the exponential distribution, let T1,
T2, . . . , Tn be independent exponential random variables with
parameters �1, �2, . . . , �n, respectively, and let U � min{T1,
T2, . . . , Tn}. Show that the probability that a particular random
variable Tj will turn out to be smallest of the n random variables is

P{Tj � U} � �j
�
n

i�1
�i, for j � 1, 2, . . . , n.

(Hint: P{Tj � U} � �
0
� P{Ti � Tj for all i � jTj � t}�je

��jtdt.)

17.5-1. Consider the birth-and-death process with all �n � 2 (n �
1, 2, . . .), �0 � 3, �1 � 2, �2 � 1, and �n � 0 for n � 3, 4, . . . .
(a) Display the rate diagram.
(b) Calculate P0, P1, P2, P3, and Pn for n � 4, 5, . . . .
(c) Calculate L, Lq, W, and Wq.

17.5-2. Consider a birth-and-death process with just three attain-
able states (0, 1, and 2), for which the steady-state probabilities are
P0, P1, and P2, respectively. The birth-and-death rates are summa-
rized in the following table:

(a) Construct the rate diagram for this birth-and-death process.
(b) Develop the balance equations.
(c) Solve these equations to find P0, P1, and P2.
(d) Use the general formulas for the birth-and-death process to cal-

culate P0, P1, and P2. Also calculate L, Lq, W, and Wq.

17.5-3. Consider the birth-and-death process with the following
mean rates. The birth rates are �0 � 2, �1 � 3, �2 � 2, �3 � 1, and
�n � 0 for n � 3. The death rates are �1 � 3, �2 � 4, �3 � 1, and
�n � 2 for n � 4.
(a) Construct the rate diagram for this birth-and-death process.
(b) Develop the balance equations.
(c) Solve these equations to find the steady-state probability dis-

tribution P0, P1, . . . .

(d) Use the general formulas for the birth-and-death process to cal-
culate P0, P1, . . . . Also calculate L, Lq, W, and Wq.

17.5-4. Consider the birth-and-death process with all �n � 2 (n � 0,
1, . . .), �1 � 2, and �n � 4 for n � 2, 3, . . . .
(a) Display the rate diagram.
(b) Calculate P0 and P1. Then give a general expression for Pn in

terms of P0 for n � 2, 3, . . . .
(c) Consider a queueing system with two servers that fits this

process. What is the mean arrival rate for this queueing sys-
tem? What is the mean service rate for each server when it is
busy serving customers?

17.5-5.* A service station has one gasoline pump. Cars wanting
gasoline arrive according to a Poisson process at a mean rate of 15
per hour. However, if the pump already is being used, these po-
tential customers may balk (drive on to another service station). In
particular, if there are n cars already at the service station, the prob-
ability that an arriving potential customer will balk is n/3 for n � 1,
2, 3. The time required to service a car has an exponential distri-
bution with a mean of 4 minutes.
(a) Construct the rate diagram for this queueing system.
(b) Develop the balance equations.
(c) Solve these equations to find the steady-state probability dis-

tribution of the number of cars at the station. Verify that this
solution is the same as that given by the general solution for
the birth-and-death process.

(d) Find the expected waiting time (including service) for those
cars that stay.

17.5-6. A maintenance person has the job of keeping two machines
in working order. The amount of time that a machine works be-
fore breaking down has an exponential distribution with a mean of
10 hours. The time then spent by the maintenance person to repair
the machine has an exponential distribution with a mean of 8 hours.
(a) Show that this process fits the birth-and-death process by defin-

ing the states, specifying the values of the �n and �n, and then
constructing the rate diagram.

(b) Calculate the Pn.
(c) Calculate L, Lq, W, and Wq.
(d) Determine the proportion of time that the maintenance person

is busy.
(e) Determine the proportion of time that any given machine is

working.
(f) Refer to the nearly identical example of a continuous time

Markov chain given at the end of Sec. 16.8. Describe the re-
lationship between continuous time Markov chains and the
birth-and-death process that enables both to be applied to this
same problem.

17.5-7. Consider a single-server queueing system where interar-
rival times have an exponential distribution with parameter � and
service times have an exponential distribution with parameter �.
In addition, customers renege (leave the queueing system without
being served) if their waiting time in the queue grows too large. In
particular, assume that the time each customer is willing to wait in

816 CHAPTER 17 QUEUEING THEORY
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the queue before reneging has an exponential distribution with a
mean of 1/�.
(a) Construct the rate diagram for this queueing system.
(b) Develop the balance equations.

17.5-8.* A certain small grocery store has a single checkout stand
with a full-time cashier. Customers arrive at the stand “randomly”
(i.e., a Poisson input process) at a mean rate of 30 per hour. When
there is only one customer at the stand, she is processed by the
cashier alone, with an expected service time of 1.5 minutes. How-
ever, the stock boy has been given standard instructions that when-
ever there is more than one customer at the stand, he is to help the
cashier by bagging the groceries. This help reduces the expected
time required to process a customer to 1 minute. In both cases, the
service-time distribution is exponential.
(a) Construct the rate diagram for this queueing system.
(b) What is the steady-state probability distribution of the number

of customers at the checkout stand?
(c) Derive L for this system. (Hint: Refer to the derivation of L

for the M/M/1 model at the beginning of Sec. 17.6.) Use this
information to determine Lq, W, and Wq.

17.5-9. A department has one word-processing operator. Documents
produced in the department are delivered for word processing ac-
cording to a Poisson process with an expected interarrival time of 30
minutes. When the operator has just one document to process, the ex-
pected processing time is 20 minutes. When she has more than one
document, then editing assistance that is available reduces the ex-
pected processing time for each document to 15 minutes. In both
cases, the processing times have an exponential distribution.
(a) Construct the rate diagram for this queueing system.
(b) Find the steady-state distribution of the number of documents

that the operator has received but not yet completed.
(c) Derive L for this system. (Hint: Refer to the derivation of L

for the M/M/1 model at the beginning of Sec. 17.6.) Use this
information to determine Lq, W, and Wq.

17.5-10. Customers arrive at a queueing system according to a
Poisson process with a mean arrival rate of 2 customers per minute.
The service time has an exponential distribution with a mean of
1 minute. An unlimited number of servers are available as needed
so customers never wait for service to begin. Calculate the steady-
state probability that exactly 1 customer is in the system.

17.5-11. Suppose that a single-server queueing system fits all the
assumptions of the birth-and-death process except that customers
always arrive in pairs. The mean arrival rate is 2 pairs per hour 
(4 customers per hour) and the mean service rate (when the server
is busy) is 5 customers per hour.
(a) Construct the rate diagram for this queueing system.
(b) Develop the balance equations.
(c) For comparison purposes, display the rate diagram for the cor-

responding queueing system that completely fits the birth-and-
death process, i.e., where customers arrive individually at a
mean rate of 4 per hour.

17.5-12. Consider a single-server queueing system with a finite
queue that can hold a maximum of 2 customers excluding any 
being served. The server can provide batch service to 2 customers
simultaneously, where the service time has an exponential distri-
bution with a mean of 1 unit of time regardless of the number
being served. Whenever the queue is not full, customers arrive in-
dividually according to a Poisson process at a mean rate of 1 per
unit of time.
(a) Assume that the server must serve 2 customers simultane-

ously. Thus, if the server is idle when only 1 customer is in
the system, the server must wait for another arrival before
beginning service. Formulate the queueing model as a con-
tinuous time Markov chain by defining the states and then
constructing the rate diagram. Give the balance equations, but
do not solve further.

(b) Now assume that the batch size for a service is 2 only if 2 cus-
tomers are in the queue when the server finishes the preced-
ing service. Thus, if the server is idle when only 1 customer
is in the system, the server must serve this single customer,
and any subsequent arrivals must wait in the queue until ser-
vice is completed for this customer. Formulate the resulting
queueing model as a continuous time Markov chain by defin-
ing the states and then constructing the rate diagram. Give the
balance equations, but do not solve further.

17.5-13. Consider a queueing system that has two classes of cus-
tomers, two clerks providing service, and no queue. Potential cus-
tomers from each class arrive according to a Poisson process, with
a mean arrival rate of 10 customers per hour for class 1 and 5 cus-
tomers per hour for class 2, but these arrivals are lost to the sys-
tem if they cannot immediately enter service.

Each customer of class 1 that enters the system will receive
service from either one of the clerks that is free, where the service
times have an exponential distribution with a mean of 5 minutes.

Each customer of class 2 that enters the system requires the
simultaneous use of both clerks (the two clerks work together as a
single server), where the service times have an exponential distri-
bution with a mean of 5 minutes. Thus, an arriving customer of
this kind would be lost to the system unless both clerks are free to
begin service immediately.
(a) Formulate the queueing model as a continuous time Markov

chain by defining the states and constructing the rate diagram.
(b) Now describe how the formulation in part (a) can be fitted into

the format of the birth-and-death process.
(c) Use the results for the birth-and-death process to calculate the

steady-state joint distribution of the number of customers of
each class in the system.

(d) For each of the two classes of customers, what is the expected
fraction of arrivals who are unable to enter the system?

17.6-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 17.6.
Briefly describe how queueing theory was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.
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17.6-2.* The 4M Company has a single turret lathe as a key work
center on its factory floor. Jobs arrive at this work center accord-
ing to a Poisson process at a mean rate of 2 per day. The process-
ing time to perform each job has an exponential distribution with
a mean of �

1
4

� day. Because the jobs are bulky, those not being worked
on are currently being stored in a room some distance from the
machine. However, to save time in fetching the jobs, the produc-
tion manager is proposing to add enough in-process storage space
next to the turret lathe to accommodate 3 jobs in addition to the
one being processed. (Excess jobs will continue to be stored tem-
porarily in the distant room.) Under this proposal, what proportion
of the time will this storage space next to the turret lathe be ade-
quate to accommodate all waiting jobs?
(a) Use available formulas to calculate your answer.
T (b) Use the corresponding Excel template to obtain the proba-

bilities needed to answer the question.

17.6-3. Customers arrive at a single-server queueing system accord-
ing to a Poisson process at a mean rate of 30 per hour. If the server
works continuously, the number of customers that can be served in
an hour has a Poisson distribution with a mean of 50. Determine the
proportion of time during which no one is waiting to be served.

17.6-4. Consider the M/M/1 model, with � 
 �.
(a) Determine the steady-state probability that a customer’s actual

waiting time in the system is longer than the expected waiting
time in the system, i.e., P{� � W}.

(b) Determine the steady-state probability that a customer’s actual
waiting time in the queue is longer than the expected waiting
time in the queue, i.e., P{�q � Wq}.

17.6-5. Verify the following relationships for an M/M/1 queueing
system:

� � �
(1

W
�

qP
P

0

0)2

�, � � �
1
W
�

qP
P
0

0�.

17.6-6. It is necessary to determine how much in-process storage
space to allocate to a particular work center in a new factory. Jobs
arrive at this work center according to a Poisson process with a
mean rate of 4 per hour, and the time required to perform the nec-
essary work has an exponential distribution with a mean of 0.2
hour. Whenever the waiting jobs require more in-process storage
space than has been allocated, the excess jobs are stored tem-
porarily in a less convenient location. If each job requires 1 square
foot of floor space while it is in in-process storage at the work cen-
ter, how much space must be provided to accommodate all wait-
ing jobs (a) 50 percent of the time, (b) 90 percent of the time, and
(c) 99 percent of the time? Derive an analytical expression to an-
swer these three questions. Hint: The sum of a geometric series is

�
N

n�0
xn � �

1
1
�

�
xN

x

�1

�.

17.6-7. Consider the following statements about an M/M/1 queue-
ing system and its utilization factor �. Label each of the statements
as true or false, and then justify your answer.
(a) The probability that a customer has to wait before service be-

gins is proportional to �.

(b) The expected number of customers in the system is propor-
tional to �.

(c) If � has been increased from � � 0.9 to � � 0.99, the effect of
any further increase in � on L, Lq, W, and Wq will be relatively
small as long as � 
 1.

17.6-8. Customers arrive at a single-server queueing system in ac-
cordance with a Poisson process with an expected interarrival time
of 25 minutes. Service times have an exponential distribution with
a mean of 30 minutes.

Label each of the following statements about this system as
true or false, and then justify your answer.
(a) The server definitely will be busy forever after the first cus-

tomer arrives.
(b) The queue will grow without bound.
(c) If a second server with the same service-time distribution is

added, the system can reach a steady-state condition.

17.6-9. For each of the following statements about an M/M/1 queue-
ing system, label the statement as true or false and then justify your
answer by referring to specific statements in the chapter.
(a) The waiting time in the system has an exponential distribution.
(b) The waiting time in the queue has an exponential distribution.
(c) The conditional waiting time in the system, given the number

of customers already in the system, has an Erlang (gamma)
distribution.

17.6-10. The Friendly Neighbor Grocery Store has a single check-
out stand with a full-time cashier. Customers arrive randomly at
the stand at a mean rate of 20 per hour. The service-time distribu-
tion is exponential, with a mean of 2 minutes. This situation has
resulted in occasional long lines and complaints from customers.
Therefore, because there is no room for a second checkout stand,
the manager is considering the alternative of hiring another person
to help the cashier by bagging the groceries. This help would 
reduce the expected time required to process a customer to 1.5 min-
utes, but the distribution still would be exponential.

The manager would like to have the percentage of time that
there are more than two customers at the checkout stand down be-
low 25 percent. She also would like to have no more than 5 per-
cent of the customers needing to wait at least 5 minutes before
beginning service, or at least 7 minutes before finishing service.
(a) Use the formulas for the M/M/1 model to calculate L, W, Wq,

Lq, P0, P1, and P2 for the current mode of operation. What is
the probability of having more than two customers at the check-
out stand?

T (b) Use the Excel template for this model to check your answers
in part (a). Also find the probability that the waiting time
before beginning service exceeds 5 minutes, and the prob-
ability that the waiting time before finishing service exceeds
7 minutes.

(c) Repeat part (a) for the alternative being considered by the
manager.

(d) Repeat part (b) for this alternative.
(e) Which approach should the manager use to satisfy her criteria

as closely as possible?
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T 17.6-11. The Centerville International Airport has two runways,
one used exclusively for takeoffs and the other exclusively for land-
ings. Airplanes arrive in the Centerville air space to request land-
ing instructions according to a Poisson process at a mean rate of
10 per hour. The time required for an airplane to land after re-
ceiving clearance to do so has an exponential distribution with a
mean of 3 minutes, and this process must be completed before giv-
ing clearance to do so to another airplane. Airplanes awaiting clear-
ance must circle the airport.

The Federal Aviation Administration has a number of criteria
regarding the safe level of congestion of airplanes waiting to land.
These criteria depend on a number of factors regarding the airport
involved, such as the number of runways available for landing. For
Centerville, the criteria are (1) the average number of airplanes wait-
ing to receive clearance to land should not exceed 1, (2) 95 percent
of the time, the actual number of airplanes waiting to receive clear-
ance to land should not exceed 4, (3) for 99 percent of the airplanes,
the amount of time spent circling the airport before receiving clear-
ance to land should not exceed 30 minutes (since exceeding this
amount of time often would require rerouting the plane to another
airport for an emergency landing before its fuel runs out).
(a) Evaluate how well these criteria are currently being satisfied.
(b) A major airline is considering adding this airport as one of its

hubs. This would increase the mean arrival rate to 15 airplanes
per hour. Evaluate how well the above criteria would be satis-
fied if this happens.

(c) To attract additional business [including the major airline men-
tioned in part (b)], airport management is considering adding
a second runway for landings. It is estimated that this eventu-
ally would increase the mean arrival rate to 25 airplanes per
hour. Evaluate how well the above criteria would be satisfied
if this happens.

T 17.6-12. The Security & Trust Bank employs 4 tellers to serve
its customers. Customers arrive according to a Poisson process at
a mean rate of 2 per minute. However, business is growing and
management projects that the mean arrival rate will be 3 per minute
a year from now. The transaction time between the teller and cus-
tomer has an exponential distribution with a mean of 1 minute.

Management has established the following guidelines for a sat-
isfactory level of service to customers. The average number of cus-
tomers waiting in line to begin service should not exceed 1. At least
95 percent of the time, the number of customers waiting in line should
not exceed 5. For at least 95 percent of the customers, the time spent
in line waiting to begin service should not exceed 5 minutes.
(a) Use the M/M/s model to determine how well these guidelines

are currently being satisfied.
(b) Evaluate how well the guidelines will be satisfied a year from

now if no change is made in the number of tellers.
(c) Determine how many tellers will be needed a year from now

to completely satisfy these guidelines.

17.6-13. Consider the M/M/s model.
T (a) Suppose there is one server and the expected service time is

exactly 1 minute. Compare L for the cases where the mean
arrival rate is 0.5, 0.9, and 0.99 customers per minute, re-
spectively. Do the same for Lq, W, Wq, and P{� � 5}. What
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conclusions do you draw about the impact of increasing the
utilization factor � from small values (e.g., � � 0.5) to fairly
large values (e.g., � � 0.9) and then to even larger values
very close to 1 (e.g., � � 0.99)?

(b) Now suppose there are two servers and the expected service
time is exactly 2 minutes. Follow the instructions for part (a).

T 17.6-14. Consider the M/M/s model with a mean arrival rate of
10 customers per hour and an expected service time of 5 minutes.
Use the Excel template for this model to obtain and print out the
various measures of performance (with t � 10 and t � 0, respec-
tively, for the two waiting time probabilities) when the number of
servers is 1, 2, 3, 4, and 5. Then, for each of the following possi-
ble criteria for a satisfactory level of service (where the unit of time
is 1 minute), use the printed results to determine how many servers
are needed to satisfy this criterion.
(a) Lq � 0.25
(b) L � 0.9
(c) Wq � 0.1
(d) W � 6
(e) P{�q � 0} � 0.01
(f) P{� � 10} � 0.2

(g) �
s

n�0
Pn � 0.95

17.6-15. A gas station with only one gas pump employs the fol-
lowing policy: If a customer has to wait, the price is $3.50 per
gallon; if she does not have to wait, the price is $4.00 per gallon.
Customers arrive according to a Poisson process with a mean rate
of 20 per hour. Service times at the pump have an exponential dis-
tribution with a mean of 2 minutes. Arriving customers always wait
until they can eventually buy gasoline. Determine the expected
price of gasoline per gallon.

17.6-16. You are given an M/M/1 queueing system with mean ar-
rival rate � and mean service rate �. An arriving customer receives
n dollars if n customers are already in the system. Determine the
expected cost in dollars per customer.

17.6-17. Section 17.6 gives the following equations for the M/M/1
model:

(1) P{� � t} � �
�

n�0
PnP{Sn�1 � t}.

(2) P{� � t} � e��(1��)t.

Show that Eq. (1) reduces algebraically to Eq. (2). (Hint: Use dif-
ferentiation, algebra, and integration.)

17.6-18. Derive Wq directly for the following cases by developing
and reducing an expression analogous to Eq. (1) in Prob. 17.6-17.
(Hint: Use the conditional expected waiting time in the queue given
that a random arrival finds n customers already in the system.)
(a) The M/M/1 model
(b) The M/M/s model

T 17.6-19. Consider an M/M/2 queueing system with � � 3 and 
� � 2. Determine the mean rate at which service completions
occur during the periods when no customers are waiting in the queue.
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T 17.6-20. You are given an M/M/2 queueing system with � � 4
per hour and � � 6 per hour. Determine the probability that an ar-
riving customer will wait more than 30 minutes in the queue, given
that at least 2 customers are already in the system.

17.6-21.* In the Blue Chip Life Insurance Company, the deposit
and withdrawal functions associated with a certain investment prod-
uct are separated between two clerks, Clara and Clarence. Deposit
slips arrive randomly (a Poisson process) at Clara’s desk at a mean
rate of 16 per hour. Withdrawal slips arrive randomly (a Poisson
process) at Clarence’s desk at a mean rate of 14 per hour. The time
required to process either transaction has an exponential distribu-
tion with a mean of 3 minutes. To reduce the expected waiting
time in the system for both deposit slips and withdrawal slips, the
actuarial department has made the following recommendations:
(1) Train each clerk to handle both deposits and withdrawals, and
(2) put both deposit and withdrawal slips into a single queue that
is accessed by both clerks.
(a) Determine the expected waiting time in the system under cur-

rent procedures for each type of slip. Then combine these results
to calculate the expected waiting time in the system for a ran-
dom arrival of either type of slip.

T (b) If the recommendations are adopted, determine the expected
waiting time in the system for arriving slips.

T (c) Now suppose that adopting the recommendations would re-
sult in a slight increase in the expected processing time. Use
the Excel template for the M/M/s model to determine by trial
and error the expected processing time (within 0.001 hour)
that would cause the expected waiting time in the system for
a random arrival to be essentially the same under current
procedures and under the recommendations.

17.6-22. People’s Software Company has just set up a call center
to provide technical assistance on its new software package. Two
technical representatives are taking the calls, where the time re-
quired by either representative to answer a customer’s questions has
an exponential distribution with a mean of 8 minutes. Calls are ar-
riving according to a Poisson process at a mean rate of 10 per hour.

By next year, the mean arrival rate of calls is expected to de-
cline to 5 per hour, so the plan is to reduce the number of techni-
cal representatives to one then.
T (a) Assuming that � will continue to be 7.5 calls per hour for

next year’s queueing system, determine L, Lq, W, and Wq for
both the current system and next year’s system. For each of
these four measures of performance, which system yields
the smaller value?

(b) Now assume that � will be adjustable when the number of
technical representatives is reduced to one. Solve algebraically
for the value of � that would yield the same value of W as for
the current system.

(c) Repeat part (b) with Wq instead of W.

17.6-23. Consider a generalization of the M/M/1 model where the
server needs to “warm up” at the beginning of a busy period, and
so serves the first customer of a busy period at a slower rate than
other customers. In particular, if an arriving customer finds the

server idle, the customer experiences a service time that has an ex-
ponential distribution with parameter �1. However, if an arriving
customer finds the server busy, that customer joins the queue and
subsequently experiences a service time that has an exponential
distribution with parameter �2, where �1 
 �2. Customers arrive
according to a Poisson process with mean rate �.
(a) Formulate this model as a continuous time Markov chain by

defining the states and constructing the rate diagram accordingly.
(b) Develop the balance equations.
(c) Suppose that numerical values are specified for �1, �2, and �,

and that � 
 �2 (so that a steady-state distribution exists).
Since this model has an infinite number of states, the steady-
state distribution is the simultaneous solution of an infinite
number of balance equations (plus the equation specifying that
the sum of the probabilities equals 1). Suppose that you are
unable to obtain this solution analytically, so you wish to use
a computer to solve the model numerically. Considering that
it is impossible to solve an infinite number of equations nu-
merically, briefly describe what still can be done with these
equations to obtain an approximation of the steady-state dis-
tribution. Under what circumstances will this approximation
be essentially exact?

(d) Given that the steady-state distribution has been obtained, give
explicit expressions for calculating L, Lq, W, and Wq.

(e) Given this steady-state distribution, develop an expression for
P{� � t} that is analogous to Eq. (1) in Prob. 17.6-17.

17.6-24. For each of the following models, write the balance equa-
tions and show that they are satisfied by the solution given in Sec.
17.6 for the steady-state distribution of the number of customers
in the system.
(a) The M/M/1 model.
(b) The finite queue variation of the M/M/1 model, with K � 2.
(c) The finite calling population variation of the M/M/1 model,

with N � 2.

T 17.6-25. Consider a telephone system with three lines. Calls ar-
rive according to a Poisson process at a mean rate of 6 per hour.
The duration of each call has an exponential distribution with a
mean of 15 minutes. If all lines are busy, calls will be put on hold
until a line becomes available.
(a) Print out the measures of performance provided by the Excel

template for this queueing system (with t � 1 hour and t � 0,
respectively, for the two waiting time probabilities).

(b) Use the printed result giving P{�q � 0} to identify the steady-
state probability that a call will be answered immediately (not
put on hold). Then verify this probability by using the printed
results for the Pn.

(c) Use the printed results to identify the steady-state probability
distribution of the number of calls on hold.

(d) Print out the new measures of performance if arriving calls are
lost whenever all lines are busy. Use these results to identify
the steady-state probability that an arriving call is lost.

17.6-26.* Janet is planning to open a small car-wash operation, and
she must decide how much space to provide for waiting cars. Janet
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estimates that customers would arrive randomly (i.e., a Poisson in-
put process) with a mean rate of 1 every 4 minutes, unless the wait-
ing area is full, in which case the arriving customers would take
their cars elsewhere. The time that can be attributed to washing one
car has an exponential distribution with a mean of 3 minutes. Com-
pare the expected fraction of potential customers that will be lost
because of inadequate waiting space if (a) 0 spaces (not including
the car being washed), (b) 2 spaces, and (c) 4 spaces were provided.

17.6-27. Consider the finite queue variation of the M/M/s model.
Derive the expression for Lq given in Sec. 17.6 for this model.

17.6-28. For the finite queue variation of the M/M/1 model, de-
velop an expression analogous to Eq. (1) in Prob. 17.6-17 for the
following probabilities:
(a) P{� � t}.
(b) P{�q � t}.
[Hint: Arrivals can occur only when the system is not full, so the
probability that a random arrival finds n customers already there
is Pn /(1 � PK).]

17.6-29. George is planning to open a drive-through photo-
developing booth with a single service window that will be open
approximately 200 hours per month in a busy commercial area.
Space for a drive-through lane is available for a rental of $200 per
month per car length. George needs to decide how many car lengths
of space to provide for his customers.

Excluding this rental cost for the drive-through lane, George
believes that he will average a profit of $4 per customer served
(nothing for a drop off of film and $8 when the photographs are
picked up). He also estimates that customers will arrive randomly
(a Poisson process) at a mean rate of 20 per hour, although those
who find the drive-through lane full will be forced to leave. Half
of the customers who find the drive-through lane full wanted to
drop off film, and the other half wanted to pick up their pho-
tographs. The half who wanted to drop off film will take their busi-
ness elsewhere instead. The other half of the customers who find
the drive-through lane full will not be lost because they will keep
trying later until they can get in and pick up their photographs.
George assumes that the time required to serve a customer will
have an exponential distribution with a mean of 2 minutes.
T (a) Find L and the mean rate at which customers are lost when

the number of car lengths of space provided is 2, 3, 4, and 5.
(b) Calculate W from L for the cases considered in part (a).
(c) Use the results from part (a) to calculate the decrease in the

mean rate at which customers are lost when the number of car
lengths of space provided is increased from 2 to 3, from 3 to
4, and from 4 to 5. Then calculate the increase in expected
profit per hour (excluding space rental costs) for each of these
three cases.

(d) Compare the increases in expected profit found in part (c) with
the cost per hour of renting each car length of space. What
conclusion do you draw about the number of car lengths of
space that George should provide?

17.6-30. At the Forrester Manufacturing Company, one repair techni-
cian has been assigned the responsibility of maintaining three machines.

For each machine, the probability distribution of the running time be-
fore a breakdown is exponential, with a mean of 9 hours. The repair
time also has an exponential distribution, with a mean of 2 hours.
(a) Which queueing model fits this queueing system?
T (b) Use this queueing model to find the probability distribution

of the number of machines not running, and the mean of
this distribution.

(c) Use this mean to calculate the expected time between a machine
breakdown and the completion of the repair of that machine.

(d) What is the expected fraction of time that the repair technician
will be busy?

T (e) As a crude approximation, assume that the calling popula-
tion is infinite and that machine breakdowns occur randomly
at a mean rate of 3 every 9 hours. Compare the result from
part (b) with that obtained by making this approximation
while using (i) the M/M/s model and (ii) the finite queue
variation of the M/M/s model with K � 3.

T (f) Repeat part (b) when a second repair technician is made
available to repair a second machine whenever more than
one of these three machines require repair.

17.6-31. Reconsider the specific birth-and-death process described
in Prob. 17.5-1.
(a) Identify a queueing model (and its parameter values) in 

Sec. 17.6 that fits this process.
T (b) Use the corresponding Excel template to obtain the answers

for parts (b) and (c) of Prob. 17.5-1.

T 17.6-32.* The Dolomite Corporation is making plans for a new
factory. One department has been allocated 12 semiautomatic ma-
chines. A small number (yet to be determined) of operators will be
hired to provide the machines the needed occasional servicing (load-
ing, unloading, adjusting, setup, and so on). A decision now needs to
be made on how to organize the operators to do this. Alternative 1 is
to assign each operator to her own machines. Alternative 2 is to pool
the operators so that any idle operator can take the next machine need-
ing servicing. Alternative 3 is to combine the operators into a single
crew that will work together on any machine needing servicing.

The running time (time between completing service and the
machine’s requiring service again) of each machine is expected to
have an exponential distribution, with a mean of 150 minutes. The
service time is assumed to have an exponential distribution, with
a mean of 15 minutes (for Alternatives 1 and 2) or 15 minutes di-
vided by the number of operators in the crew (for Alternative 3).
For the department to achieve the required production rate, the ma-
chines must be running at least 89 percent of the time on average.
(a) For Alternative 1, what is the maximum number of machines

that can be assigned to an operator while still achieving the re-
quired production rate? What is the resulting utilization of each
operator?

(b) For Alternative 2, what is the minimum number of operators
needed to achieve the required production rate? What is the
resulting utilization of the operators?

(c) For Alternative 3, what is the minimum size of the crew needed
to achieve the required production rate? What is the resulting
utilization of the crew?
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17.6-33. A shop contains three identical machines that are subject
to a failure of a certain kind. Therefore, a maintenance system is
provided to perform the maintenance operation (recharging) required
by a failed machine. The time required by each operation has an ex-
ponential distribution with a mean of 30 minutes. However, with
probability �

1
3

�, the operation must be performed a second time (with
the same distribution of time) in order to bring the failed machine
back to a satisfactory operational state. The maintenance system
works on only one failed machine at a time, performing all the op-
erations (one or two) required by that machine, on a first-come-first-
served basis. After a machine is repaired, the time until its next 
failure has an exponential distribution with a mean of 3 hours.
(a) How should the states of the system be defined in order to for-

mulate this queueing system as a continuous time Markov
chain? (Hint: Given that a first operation is being performed
on a failed machine, completing this operation successfully and
completing it unsuccessfully are two separate events of inter-
est. Then use Property 6 regarding disaggregation for the 
exponential distribution.)

(b) Construct the corresponding rate diagram.
(c) Develop the balance equations.

17.7-1.* Consider the M/G/1 model.
(a) Compare the expected waiting time in the queue if the service-

time distribution is (i) exponential, (ii) constant, (iii) Erlang
with the amount of variation (i.e., the standard deviation)
halfway between the constant and exponential cases.

(b) What is the effect on the expected waiting time in the queue
and on the expected queue length if both � and � are doubled
and the scale of the service-time distribution is changed 
accordingly?

17.7-2. Consider the M/G/1 model with � � 0.2 and � � 0.25.
T (a) Use the Excel template for this model (or hand calculations)

to find the main measures of performance—L, Lq, W, Wq—for
each of the following values of �: 4, 3, 2, 1, 0.

(b) What is the ratio of Lq with � � 4 to Lq with � � 0? What
does this say about the importance of reducing the variability
of the service times?

(c) Calculate the reduction in Lq when � is reduced from 4 to 3,
from 3 to 2, from 2 to 1, and from 1 to 0. Which is the largest
reduction? Which is the smallest?

(d) Use trial and error with the template to see approximately how
much � would need to be increased with � � 4 to achieve the
same Lq as with � � 0.25 and � � 0.

17.7-3. Consider the following statements about an M/G/1 queue-
ing system, where �2 is the variance of service times. Label each
statement as true or false, and then justify your answer.
(a) Increasing �2 (with fixed � and �) will increase Lq and L, but

will not change Wq and W.
(b) When choosing between a tortoise (small � and �2) and a hare

(large � and �2) to be the server, the tortoise always wins by
providing a smaller Lq.

(c) With � and � fixed, the value of Lq with an exponential service-
time distribution is twice as large as with constant service times.
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(d) Among all possible service-time distributions (with � and �
fixed), the exponential distribution yields the largest value of Lq.

17.7-4. Marsha operates an expresso stand. Customers arrive ac-
cording to a Poisson process at a mean rate of 25 per hour. The
time needed by Marsha to serve a customer has an exponential dis-
tribution with a mean of 90 seconds.
(a) Use the M/G/1 model to find L, Lq, W, and Wq.
(b) Suppose Marsha is replaced by an expresso vending machine

that requires exactly 90 seconds for each customer to operate.
Find L, Lq, W, and Wq.

(c) What is the ratio of Lq in part (b) to Lq in part (a)?
T (d) Use trial and error with the Excel template for the M/G/1

model to see approximately how much Marsha would need
to reduce her expected service time to achieve the same Lq

as with the expresso vending machine.

17.7-5. Antonio runs a shoe repair store by himself. Customers ar-
rive to bring a pair of shoes to be repaired according to a Poisson
process at a mean rate of 1 per hour. The time Antonio requires to
repair each individual shoe has an exponential distribution with a
mean of 15 minutes.
(a) Consider the formulation of this queueing system where the

individual shoes (not pairs of shoes) are considered to be the
customers. For this formulation, construct the rate diagram and
develop the balance equations, but do not solve further.

(b) Now consider the formulation of this queueing system where
the pairs of shoes are considered to be the customers. Identify
the specific queueing model that fits this formulation.

(c) Calculate the expected number of pairs of shoes in the shop.
(d) Calculate the expected amount of time from when a customer

drops off a pair of shoes until they are repaired and ready to
be picked up.

T (e) Use the corresponding Excel template to check your answers
in parts (c) and (d ).

17.7-6.* The maintenance base for Friendly Skies Airline has fa-
cilities for overhauling only one airplane engine at a time. There-
fore, to return the airplanes to use as soon as possible, the policy
has been to stagger the overhauling of the four engines of each air-
plane. In other words, only one engine is overhauled each time an
airplane comes into the shop. Under this policy, airplanes have ar-
rived according to a Poisson process at a mean rate of 1 per day.
The time required for an engine overhaul (once work has begun)
has an exponential distribution with a mean of �

1
2

� day.
A proposal has been made to change the policy so that all four

engines are overhauled consecutively each time an airplane comes
into the shop. Although this would quadruple the expected service
time, each plane would need to come to the maintenance base only
one-fourth as often.

Management now needs to decide whether to continue the sta-
tus quo or adopt the proposal. The objective is to minimize the av-
erage amount of flying time lost by the entire fleet per day due to
engine overhauls.
(a) Compare the two alternatives with respect to the average

amount of flying time lost by an airplane each time it comes
to the maintenance base.
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(b) Compare the two alternatives with respect to the average num-
ber of airplanes losing flying time due to being at the mainte-
nance base.

(c) Which of these two comparisons is the appropriate one for
making management’s decision? Explain.

17.7-7. Reconsider Prob. 17.7-6. Management has adopted the
proposal but now wants further analysis conducted of this new
queueing system.
(a) How should the state of the system be defined in order to for-

mulate the queueing model as a continuous time Markov chain?
(b) Construct the corresponding rate diagram.

17.7-8. The McAllister Company factory currently has two tool
cribs, each with a single clerk, in its manufacturing area. One tool
crib handles only the tools for the heavy machinery; the second
one handles all other tools. However, for each crib the mechanics
arrive to obtain tools at a mean rate of 18 per hour, and the ex-
pected service time is 3 minutes.

Because of complaints that the mechanics coming to the tool
crib have to wait too long, it has been proposed that the two tool
cribs be combined so that either clerk can handle either kind of
tool as the demand arises. It is believed that the mean arrival rate
to the combined two-clerk tool crib would double to 36 per hour
and that the expected service time would continue to be 3 minutes.
However, information is not available on the form of the probabil-
ity distributions for interarrival and service times, so it is not clear
which queueing model would be most appropriate.

Compare the status quo and the proposal with respect to the
total expected number of mechanics at the tool crib(s) and the ex-
pected waiting time (including service) for each mechanic. Do this
by tabulating these data for the four queueing models considered
in Figs. 17.6, 17.8, 17.10, and 17.11 (use k � 2 when an Erlang
distribution is appropriate).

17.7-9.* Consider a single-server queueing system with a Poisson
input, Erlang service times, and a finite queue. In particular, sup-
pose that k � 2, the mean arrival rate is 2 customers per hour, the
expected service time is 0.25 hour, and the maximum permissible
number of customers in the system is 2. This system can be for-
mulated as a continuous time Markov chain by dividing each ser-
vice time into two consecutive phases, each having an exponential
distribution with a mean of 0.125 hour, and then defining the state
of the system as (n, p), where n is the number of customers in the
system (n � 0, 1, 2), and p indicates the phase of the customer be-
ing served (p � 0, 1, 2, where p � 0 means that no customer is
being served).
(a) Construct the corresponding rate diagram. Write the balance

equations, and then use these equations to solve for the steady-
state distribution of the state of this Markov chain.

(b) Use the steady-state distribution obtained in part (a) to iden-
tify the steady-state distribution of the number of customers in
the system (P0, P1, P2) and the steady-state expected number
of customers in the system (L).

(c) Compare the results from part (b) with the corresponding re-
sults when the service-time distribution is exponential.

17.7-10. Consider the E2/M/1 model with � � 4 and � � 5. This
model can be formulated as a continuous time Markov chain by di-
viding each interarrival time into two consecutive phases, each hav-
ing an exponential distribution with a mean of 1/(2�) � 0.125, and
then defining the state of the system as (n, p), where n is the num-
ber of customers in the system (n � 0, 1, 2, . . .) and p indicates
the phase of the next arrival (not yet in the system) ( p � 1, 2).

Construct the corresponding rate diagram (but do not solve
further).

17.7-11. A company has one repair technician to keep a large
group of machines in running order. Treating this group as an in-
finite calling population, individual breakdowns occur according
to a Poisson process at a mean rate of 1 per hour. For each break-
down, the probability is 0.9 that only a minor repair is needed, in
which case the repair time has an exponential distribution with a
mean of �

1
2

� hour. Otherwise, a major repair is needed, in which case
the repair time has an exponential distribution with a mean of 5
hours. Because both of these conditional distributions are expo-
nential, the unconditional (combined) distribution of repair times
is hyperexponential.
(a) Compute the mean and standard deviation of this hyperexponen-

tial distribution. [Hint: Use the general relationships from 
probability theory that, for any random variable X and any pair
of mutually exclusive events E1 and E2, E(X) � E(XE1)P(E1) �
E(XE2)P(E2) and var(X) � E(X2) � E(X)2.] Compare this stan-
dard deviation with that for an exponential distribution having
this mean.

(b) What are P0, Lq, L, Wq, and W for this queueing system?
(c) What is the conditional value of W, given that the machine

involved requires major repair? A minor repair? What is the
division of L between machines requiring the two types of
repairs? (Hint: Little’s formula still applies for the individual
categories of machines.)

(d) How should the states of the system be defined in order to for-
mulate this queueing system as a continuous time Markov
chain? (Hint: Consider what additional information must be
given, besides the number of machines down, for the condi-
tional distribution of the time remaining until the next event of
each kind to be exponential.)

(e) Construct the corresponding rate diagram.

17.7-12. Consider the finite queue variation of the M/G/1 model,
where K is the maximum number of customers allowed in the sys-
tem. For n � 1, 2, . . . , let the random variable Xn be the number
of customers in the system at the moment tn when the nth customer
has just finished being served. (Do not count the departing cus-
tomer.) The times {t1, t2, . . .} are called regeneration points. Fur-
thermore, {Xn} (n � 1, 2, . . .) is a discrete time Markov chain and
is known as an embedded Markov chain. Embedded Markov chains
are useful for studying the properties of continuous time stochas-
tic processes such as for an M/G/1 model.

Now consider the particular special case where K � 4, the ser-
vice time of successive customers is a fixed constant, say, 10 min-
utes, and the mean arrival rate is 1 every 50 minutes. Therefore,
{Xn} is an embedded Markov chain with states 0, 1, 2, 3. (Because
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there are never more than 4 customers in the system, there can
never be more than 3 in the system at a regeneration point.) Be-
cause the system is observed at successive departures, Xn can never
decrease by more than 1. Furthermore, the probabilities of transi-
tions that result in increases in Xn are obtained directly from the
Poisson distribution.
(a) Find the one-step transition matrix for the embedded Markov

chain. (Hint: In obtaining the transition probability from state
3 to state 3, use the probability of 1 or more arrivals rather than
just 1 arrival, and similarly for other transitions to state 3.)

(b) Use the corresponding routine in the Markov chains area of
your IOR Tutorial to find the steady-state probabilities for the
number of customers in the system at regeneration points.

(c) Compute the expected number of customers in the system at
regeneration points, and compare it to the value of L for the
M/D/1 model (with K � �) in Sec. 17.7.

17.8-1.* Southeast Airlines is a small commuter airline serving
primarily the state of Florida. Their ticket counter at a certain
airport is staffed by a single ticket agent. There are two sepa-
rate lines—one for first-class passengers and one for coach-class
passengers. When the ticket agent is ready for another customer,
the next first-class passenger is served if there are any in line.
If not, the next coach-class passenger is served. Service times
have an exponential distribution with a mean of 3 minutes for
both types of customers. During the 12 hours per day that the
ticket counter is open, passengers arrive randomly at a mean rate
of 2 per hour for first-class passengers and 10 per hour for coach-
class passengers.
(a) What kind of queueing model fits this queueing system?
T (b) Find the main measures of performance—L, Lq, W, and Wq—

for both first-class passengers and coach-class passengers.
(c) What is the expected waiting time before service begins for

first-class customers as a fraction of this waiting time for
coach-class customers?

(d) Determine the average number of hours per day that the ticket
agent is busy.

T 17.8-2. Consider the model with nonpreemptive priorities pre-
sented in Sec. 17.8. Suppose there are two priority classes, with 
�1 � 2 and �2 � 3. In designing this queueing system, you are of-
fered the choice between the following alternatives: (1) one fast
server (� � 6) and (2) two slow servers (� � 3).

Compare these alternatives with the usual four mean measures
of performance (W, L, Wq, Lq) for the individual priority classes
(W1, W2, L1, L2, and so forth). Which alternative is preferred if
your primary concern is expected waiting time in the system for
priority class 1 (W1)? Which is preferred if your primary concern
is expected waiting time in the queue for priority class 1?

17.8-3. Consider the single-server variation of the nonpreemptive
priorities model presented in Sec. 17.8. Suppose there are three
priority classes, with �1 � 1, �2 � 1, and �3 � 1. The expected
service times for priority classes 1, 2, and 3 are 0.4, 0.3, and 0.2,
respectively, so �1 � 2.5, �2 � 3�

1
3

�, and �3 � 5.

(a) Calculate W1, W2, and W3.
(b) Repeat part (a) when using the approximation of applying

the general model for nonpreemptive priorities presented in
Sec. 17.8 instead. Since this general model assumes that the
expected service time is the same for all priority classes, use
an expected service time of 0.3 so � � 3�

1
3

�. Compare the results
with those obtained in part (a) and evaluate how good an
approximation is provided by making this assumption.

T 17.8-4.* A particular work center in a job shop can be repre-
sented as a single-server queueing system, where jobs arrive ac-
cording to a Poisson process, with a mean rate of 8 per day. Although
the arriving jobs are of three distinct types, the time required to
perform any of these jobs has the same exponential distribution,
with a mean of 0.1 working day. The practice has been to work on
arriving jobs on a first-come-first-served basis. However, it is im-
portant that jobs of type 1 not wait very long, whereas the wait is
only moderately important for jobs of type 2 and is relatively unim-
portant for jobs of type 3. These three types arrive with a mean
rate of 2, 4, and 2 per day, respectively. Because all three types
have experienced rather long delays on average, it has been pro-
posed that the jobs be selected according to an appropriate prior-
ity discipline instead.

Compare the expected waiting time (including service) for each
of the three types of jobs if the queue discipline is (a) first-come-
first-served, (b) nonpreemptive priority, and (c) preemptive priority.

T 17.8-5. Reconsider the County Hospital emergency room prob-
lem as analyzed in Sec. 17.8. Suppose that the definitions of the
three categories of patients are tightened somewhat in order to
move marginal cases into a lower category. Consequently, only 5
percent of the patients will qualify as critical cases, 20 percent as
serious cases, and 75 percent as stable cases. Develop a table show-
ing the data presented in Table 17.3 for this revised problem.

17.8-6. Reconsider the queueing system described in Prob. 17.4-6.
Suppose now that type 1 customers are more important than type 2
customers. If the queue discipline were changed from first-come-
first-served to a priority system with type 1 customers being given
nonpreemptive priority over type 2 customers, would this increase,
decrease, or keep unchanged the expected total number of cus-
tomers in the system?
(a) Determine the answer without any calculations, and then pre-

sent the reasoning that led to your conclusion.
T (b) Verify your conclusion in part (a) by finding the expected

total number of customers in the system under each of these
two queue disciplines.

17.8-7. Consider the queueing model with a preemptive prior-
ity queue discipline presented in Sec. 17.8. Suppose that s � 1,
N � 2, and (�1 � �2) 
 �; and let Pij be the steady-state prob-
ability that there are i members of the higher-priority class and
j members of the lower-priority class in the queueing system 
(i � 0, 1, 2, . . . ; j � 0, 1, 2, . . .). Use a method analogous to
that presented in Sec. 17.5 to derive a system of linear equations

824 CHAPTER 17 QUEUEING THEORY
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PROBLEMS 825

pij

Facility j sj �j aj i � 1 i � 2 i � 3

j � 1 1 25 6 0 0.2 0.4
j � 2 1 30 8 0.5 0 0.3
j � 3 1 20 4 0.4 0.3 0

whose simultaneous solution is the Pij. Do not actually obtain
this solution.

17.9-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 17.9.
Briefly describe how queueing theory was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

17.9-2. Consider a queueing system with two servers, where the
customers arrive from two different sources. From source 1, the cus-
tomers always arrive 2 at a time, where the time between consecu-
tive arrivals of pairs of customers has an exponential distribution
with a mean of 20 minutes. Source 2 is itself a two-server queue-
ing system, which has a Poisson input process with a mean rate of
7 customers per hour, and the service time from each of these two
servers has an exponential distribution with a mean of 15 minutes.
When a customer completes service at source 2, he or she imme-
diately enters the queueing system under consideration for another
type of service. In the latter queueing system, the queue discipline
is preemptive priority where customers from source 1 always have
preemptive priority over customers from source 2. However, ser-
vice times are independent and identically distributed for both types
of customers according to an exponential distribution with a mean
of 6 minutes.
(a) First focus on the problem of deriving the steady-state distri-

bution of only the number of source 1 customers in the queue-
ing system under consideration. Using a continuous time
Markov chain formulation, define the states and construct the
rate diagram for most efficiently deriving this distribution (but
do not actually derive it).

(b) Now focus on the problem of deriving the steady-state distri-
bution of the total number of customers of both types in the
queueing system under consideration. Using a continuous time
Markov chain formulation, define the states and construct the
rate diagram for most efficiently deriving this distribution (but
do not actually derive it).

(c) Now focus on the problem of deriving the steady-state joint
distribution of the number of customers of each type in the
queueing system under consideration. Using a continuous time
Markov chain formulation, define the states and construct the
rate diagram for deriving this distribution (but do not actually
derive it).

17.9-3. Consider a system of two infinite queues in series,
where each of the two service facilities has a single server. All ser-
vice times are independent and have an exponential distribution,
with a mean of 3 minutes at facility 1 and 4 minutes at facility 2.
Facility 1 has a Poisson input process with a mean rate of 10 per
hour.
(a) Find the steady-state distribution of the number of customers

at facility 1 and then at facility 2. Then show the product form
solution for the joint distribution of the number at the respec-
tive facilities.

(b) What is the probability that both servers are idle?

(c) Find the expected total number of customers in the system and
the expected total waiting time (including service times) for a
customer.

17.9-4. Under the assumptions specified in Sec. 17.9 for a system
of infinite queues in series, this kind of queueing network actually
is a special case of a Jackson network. Demonstrate that this is true
by describing this system as a Jackson network, including speci-
fying the values of the aj and the pij, given � for this system.

17.9-5. Consider a Jackson network with three service facilities
having the parameter values shown below.

T (a) Find the total arrival rate at each of the facilities.
(b) Find the steady-state distribution of the number of customers

at facility 1, facility 2, and facility 3. Then show the product
form solution for the joint distribution of the number at the re-
spective facilities.

(c) What is the probability that all the facilities have empty queues
(no customers waiting to begin service)?

(d) Find the expected total number of customers in the system.
(e) Find the expected total waiting time (including service times)

for a customer.

T 17.10-1. When describing economic analysis of the number of
servers to provide in a queueing system, Sec. 17.10 introduces
a basic cost model where the objective is to minimize E(TC) �
Css � CwL. The purpose of this problem is to enable you to explore
the effect that the relative sizes of Cs and Cw have on the optimal
number of servers.

Suppose that the queueing system under consideration fits the
M/M/s model with � � 8 customers per hour and � � 10 customers
per hour. Use the Excel template in your OR Courseware for eco-
nomic analysis with the M/M/s model to find the optimal number
of servers for each of the following cases.
(a) Cs � $100 and Cw � $10.
(b) Cs � $100 and Cw � $100.
(c) Cs � $10 and Cw � $100.

T 17.10-2.* Jim McDonald, manager of the fast-food hamburger
restaurant McBurger, realizes that providing fast service is a key
to the success of the restaurant. Customers who have to wait very
long are likely to go to one of the other fast-food restaurants in
town next time. He estimates that each minute a customer has to
wait in line before completing service costs him an average of 30
cents in lost future business. Therefore, he wants to be sure that
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enough cash registers always are open to keep waiting to a mini-
mum. Each cash register is operated by a part-time employee who
obtains the food ordered by each customer and collects the pay-
ment. The total cost for each such employee is $9 per hour.

During lunch time, customers arrive according to a Poisson
process at a mean rate of 66 per hour. The time needed to serve a
customer is estimated to have an exponential distribution with a
mean of 2 minutes.

Determine how many cash registers Jim should have open dur-
ing lunch time to minimize his expected total cost per hour.

T 17.10-3. The Garrett-Tompkins Company provides three copy ma-
chines in its copying room for the use of its employees. However,
due to recent complaints about considerable time being wasted wait-
ing for a copier to become free, management is considering adding
one or more additional copy machines.

During the 2,000 working hours per year, employees arrive
at the copying room according to a Poisson process at a mean
rate of 40 per hour. The time each employee needs with a copy

machine is believed to have an exponential distribution with a
mean of 4 minutes. The lost productivity due to an employee
spending time in the copying room is estimated to cost the com-
pany an average of $40 per hour. Each copy machine is leased
for $4,000 per year.

Determine how many copy machines the company should
have to minimize its expected total cost per hour.

17.11-1. From the bottom part of the selected references given
at the end of the chapter, select one of these award-winning ap-
plications of queueing theory. Read this article and then write a
two-page summary of the application and the benefits (including
nonfinancial benefits) it provided.

17.11-2. From the bottom part of the selected references given at
the end of the chapter, select three of these award-winning appli-
cations of queueing theory. For each one, read the article and then
write a one-page summary of the application and the benefits (in-
cluding nonfinancial benefits) it provided.

826 CHAPTER 17 QUEUEING THEORY

■ CASES

CASE 17.1 Reducing In-Process
Inventory
Jim Wells, vice-president for manufacturing of the Northern
Airplane Company, is exasperated. His walk through the
company’s most important plant this morning has left him
in a foul mood. However, he now can vent his temper at
Jerry Carstairs, the plant’s production manager, who has just
been summoned to Jim’s office.

“Jerry, I just got back from walking through the plant,
and I am very upset.” “What is the problem, Jim?” “Well,
you know how much I have been emphasizing the need to
cut down on our in-process inventory.” “Yes, we’ve been
working hard on that,” responds Jerry. “Well, not hard
enough!” Jim raises his voice even higher. “Do you know
what I found by the presses?” “No.” “Five metal sheets still
waiting to be formed into wing sections. And then, right next
door at the inspection station, 13 wing sections! The in-
spector was inspecting one of them, but the other 12 were
just sitting there. You know we have a couple hundred thou-
sand dollars tied up in each of those wing sections. So be-
tween the presses and the inspection station, we have a few
million bucks worth of terribly expensive metal just sitting
there. We can’t have that!”

The chagrined Jerry Carstairs tries to respond. “Yes, Jim,
I am well aware that that inspection station is a bottleneck. It
usually isn’t nearly as bad as you found it this morning, but
it is a bottleneck. Much less so for the presses. You really
caught us on a bad morning.” “I sure hope so,” retorts Jim,
“but you need to prevent anything nearly this bad happening

even occasionally. What do you propose to do about it?” Jerry
now brightens noticeably in his response. “Well actually, I’ve
already been working on this problem. I have a couple pro-
posals on the table and I have asked an operations research
analyst on my staff to analyze these proposals and report back
with recommendations.” “Great,” responds Jim, “glad to see
you are on top of the problem. Give this your highest prior-
ity and report back to me as soon as possible.” “Will do,”
promises Jerry.

Here is the problem that Jerry and his OR analyst are
addressing. Each of 10 identical presses is being used to
form wing sections out of large sheets of specially
processed metal. The sheets arrive randomly to the group
of presses at a mean rate of 7 per hour. The time required
by a press to form a wing section out of a metal sheet has
an exponential distribution with a mean of 1 hour. When
finished, the wing sections arrive randomly at an inspec-
tion station at the same mean rate as the metal sheets ar-
rived at the presses (7 per hour). A single inspector has the
full-time job of inspecting these wing sections to make sure
they meet specifications. Each inspection takes her 7�

1
2

� minutes,
so she can inspect 8 wing sections per hour. This inspec-
tion rate has resulted in a substantial average amount of
in-process inventory at the inspection station (i.e., the aver-
age number of wing sheets waiting to complete inspection
is fairly large), in addition to that already found at the group
of machines.

The cost of this in-process inventory is estimated to be
$8 per hour for each metal sheet at the presses or each wing
section at the inspection station. Therefore, Jerry Carstairs
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has made two alternative proposals to reduce the average
level of in-process inventory.

Proposal 1 is to use slightly less power for the presses
(which would increase their average time to form a wing
section to 1.2 hours), so that the inspector can keep up with
their output better. This also would reduce the cost of the
power for running each machine from $7.00 to $6.50 per
hour. (By contrast, increasing to maximum power would in-
crease this cost to $7.50 per hour while decreasing the av-
erage time to form a wing section to 0.8 hour.)

Proposal 2 is to substitute a certain younger inspector for this
task. He is somewhat faster (albeit with some variability in his in-
spection times because of less experience), so he should keep up
better. (His inspection time would have an Erlang distribution
with a mean of 7.2 minutes and a shape parameter k � 2.) This
inspector is in a job classification that calls for a total compen-
sation (including benefits) of $19 per hour, whereas the current
inspector is in a lower job classification where the compensa-
tion is $17 per hour. (The inspection times for each of these
inspectors are typical of those in the same job classification.)

You are the OR analyst on Jerry Carstair’s staff who has
been asked to analyze this problem. He wants you to “use

the latest OR techniques to see how much each proposal
would cut down on in-process inventory and then make your
recommendations.”

(a) To provide a basis of comparison, begin by evaluating the
status quo. Determine the expected amount of in-process 
inventory at the presses and at the inspection station. Then
calculate the expected total cost per hour when considering
all of the following: the cost of the in-process inventory, the
cost of the power for runnng the presses, and the cost of
the inspector.

(b) What would be the effect of proposal 1? Why? Make specific
comparisons to the results from part (a). Explain this outcome
to Jerry Carstairs.

(c) Determine the effect of proposal 2. Make specific compar-
isons to the results from part (a). Explain this outcome to Jerry
Carstairs.

(d) Make your recommendations for reducing the average level
of in-process inventory at the inspection station and at the
group of machines. Be specific in your recommendations,
and support them with quantitative analysis like that done
in part (a). Make specific comparisons to the results from
part (a), and cite the improvements that your recommenda-
tions would yield.

PREVIEW OF AN ADDED CASE ON OUR WEBSITE 827

■ PREVIEW OF AN ADDED CASE ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 17.2 Queueing Quandary
Many angry customers are complaining about the long
waits needed to get through to a call center. It appears that
more service representatives are needed to answer the
calls. Another option is to train the service representatives

further to enable them to answer calls more efficiently.
Some possible criteria for satisfactory levels of service
have been proposed. Queueing theory needs to be applied
to determine how the operation of the call center should
be redesigned.
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828

18C H A P T E R

Inventory Theory 

“Sorry, we’re out of that item.” How often have you heard that during shopping trips?
In many of these cases, what you have encountered are stores that aren’t doing a

very good job of managing their inventories (stocks of goods being held for future use or
sale). They aren’t placing orders to replenish inventories soon enough to avoid shortages.
These stores could benefit from the kinds of techniques of scientific inventory manage-
ment that are described in this chapter.

It isn’t just retail stores that must manage inventories. In fact, inventories pervade
the business world. Maintaining inventories is necessary for any company dealing with
physical products, including manufacturers, wholesalers, and retailers. For example,
manufacturers need inventories of the materials required to make their products. They
also need inventories of the finished products awaiting shipment. Similarly, both whole-
salers and retailers need to maintain inventories of goods to be available for purchase
by customers.

The annual costs associated with storing (“carrying”) inventory are very large, per-
haps as much as a quarter of the value of the inventory. Therefore, the costs being in-
curred for the storage of inventory in the United States run into the hundreds of billions
of dollars annually. Reducing storage costs by avoiding unnecessarily large inventories
can enhance any firm’s competitiveness.

Some Japanese companies were pioneers in introducing the just-in-time inventory
system—a system that emphasizes planning and scheduling so that the needed materials
arrive “just-in-time” for their use. Huge savings are thereby achieved by reducing inven-
tory levels to a bare minimum.

Many companies in other parts of the world also have been revamping the way in
which they manage their inventories. The application of operations research techniques in
this area (sometimes called scientific inventory management) is providing a powerful tool
for gaining a competitive edge.

How do companies use operations research to improve their inventory policy for when
and how much to replenish their inventory? They use scientific inventory management
comprising the following steps:

1. Formulate a mathematical model describing the behavior of the inventory system.
2. Seek an optimal inventory policy with respect to this model.
3. Use a computerized information processing system to maintain a record of the current

inventory levels.
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4. Using this record of current inventory levels, apply the optimal inventory policy to sig-
nal when and how much to replenish inventory.

The mathematical inventory models used with this approach can be divided into two
broad categories—deterministic models and stochastic models—according to the pre-
dictability of demand involved. The demand for a product in inventory is the number of
units that will need to be withdrawn from inventory for some use (e.g., sales) during a
specific period. If the demand in future periods can be forecast with considerable preci-
sion, it is reasonable to use an inventory policy that assumes that all forecasts will always
be completely accurate. This is the case of known demand where a deterministic inven-
tory model would be used. However, when demand cannot be predicted very well, it be-
comes necessary to use a stochastic inventory model where the demand in any period is
a random variable rather than a known constant.

There are several basic considerations involved in determining an inventory policy that
must be reflected in the mathematical inventory model. These are illustrated in the examples
presented in the first section and then are described in general terms in Sec. 18.2. Section 18.3
develops and analyzes deterministic inventory models for situations where the inventory level
is under continuous review. Section 18.4 does the same for situations where the planning is
being done for a series of periods rather than continuously. Section 18.5 extends certain de-
terministic models to coordinate the inventories at various points along a company’s supply
chain. The following two sections present stochastic models, first under continuous review,
and then for dealing with a perishable product over a single period. (A supplement to this
chapter on the book’s website introduces stochastic periodic-review models for multiple pe-
riods.) Section 18.8 then introduces a relatively new area of inventory theory, called revenue
management, that is concerned with maximizing a company’s expected revenue when deal-
ing with the special kind of perishable product whose entire inventory must be provided to
customers at a designated point in time or be lost forever. (Certain service industries, such as
an airline company providing its entire inventory of seats on an particular flight at the des-
ignated time for the flight, now make extensive use of revenue management.)

■ 18.1 EXAMPLES

We present two examples in rather different contexts (a manufacturer and a wholesaler)
where an inventory policy needs to be developed.

EXAMPLE 1 Manufacturing Speakers for TV Sets

A television manufacturing company produces its own speakers, which are used in the pro-
duction of its television sets. The television sets are assembled on a continuous production
line at a rate of 8,000 per month, with one speaker needed per set. The speakers are pro-
duced in batches because they do not warrant setting up a continuous production line, and
relatively large quantities can be produced in a short time. Therefore, the speakers are placed
into inventory until they are needed for assembly into television sets on the production line.
The company is interested in determining when to produce a batch of speakers and how
many speakers to produce in each batch. Several costs must be considered:

1. Each time a batch is produced, a setup cost of $12,000 is incurred. This cost includes the
cost of “tooling up,” administrative costs, record keeping, and so forth. Note that the
existence of this cost argues for producing speakers in large batches.

2. The unit production cost of a single speaker (excluding the setup cost) is $10, inde-
pendent of the batch size produced. (In general, however, the unit production cost need
not be constant and may decrease with batch size.)
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3. The production of speakers in large batches leads to a large inventory. The estimated
holding cost of keeping a speaker in stock is $0.30 per month. This cost includes the
cost of capital tied up in inventory. Since the money invested in inventory cannot be
used in other productive ways, this cost of capital consists of the lost return (referred to
as the opportunity cost) because alternative uses of the money must be forgone. Other
components of the holding cost include the cost of leasing the storage space, the cost
of insurance against loss of inventory by fire, theft, or vandalism, taxes based on the
value of the inventory, and the cost of personnel who oversee and protect the inventory.

4. Company policy prohibits deliberately planning for shortages of any of its components.
However, a shortage of speakers occasionally crops up, and it has been estimated that
each speaker that is not available when required costs $1.10 per month. This shortage
cost includes the extra cost of installing speakers after the television set is fully as-
sembled otherwise, the interest lost because of the delay in receiving sales revenue, the
cost of extra record keeping, and so forth.

We will develop the inventory policy for this example with the help of the first in-
ventory model presented in Sec. 18.3.

EXAMPLE 2 Wholesale Distribution of Bicycles

A wholesale distributor of bicycles is having trouble with shortages of its most popular
model and is currently reviewing the inventory policy for this model. The distributor pur-
chases this model bicycle from the manufacturer monthly and then supplies it to various
bicycle shops in the western United States in response to purchase orders. What the total
demand from bicycle shops will be in any given month is quite uncertain. Therefore, the
question is, How many bicycles should be ordered from the manufacturer for any given
month, given the stock level leading into that month?

The distributor has analyzed her costs and has determined that the following are
important:

1. The ordering cost, i.e., the cost of placing an order plus the cost of the bicycles being
purchased, has two components: The administrative cost involved in placing an order is
estimated as $2,000, and the actual cost of each bicycle is $350 for this wholesaler.

2. The holding cost, i.e., the cost of maintaining an inventory, is $10 per bicycle remaining
at the end of the month. This cost represents the costs of capital tied up, warehouse
space, insurance, taxes, and so on.

3. The shortage cost is the cost of not having a bicycle on hand when needed. This par-
ticular model is easily reordered from the manufacturer, and stores usually accept a
delay in delivery. Still, although shortages are permissible, the distributor feels that she
incurs a loss, which she estimates to be $150 per bicycle per month of shortage. This
estimated cost takes into account the possible loss of future sales because of the loss
of customer goodwill. Other components of this cost include lost interest on delayed
sales revenue, and additional administrative costs associated with shortages. If some
stores were to cancel orders because of delays, the lost revenues from these lost sales
would need to be included in the shortage cost. Fortunately, such cancellations nor-
mally do not occur for this distributor.

We will return to a variation of this example again in Sec. 18.7.

These examples illustrate that there are two possibilities for how a firm replenishes in-
ventory, depending on the situation. One possibility is that the firm produces the needed
units itself (like the television manufacturer producing speakers). The other is that the firm
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orders the units from a supplier (like the bicycle distributor ordering bicycles from the manu-
facturer). Inventory models do not need to distinguish between these two ways of replen-
ishing inventory, so we will use such terms as producing and ordering interchangeably.

Both examples deal with one specific product (speakers for a certain kind of television
set or a certain bicycle model). In most inventory models, just one product is being consid-
ered at a time. All the inventory models presented in this chapter assume a single product.

Both examples indicate that there exists a trade-off between the costs involved. The
next section discusses the basic cost components of inventory models for determining the
optimal trade-off between these costs.

■ 18.2 COMPONENTS OF INVENTORY MODELS

Because inventory policies affect profitability, the choice among policies depends upon
their relative profitability. As already seen in Examples 1 and 2, some of the costs that
determine this profitability are (1) the ordering costs, (2) holding costs, and (3) shortage
costs. Other relevant factors include (4) revenues, (5) salvage costs, and (6) discount rates.
These six factors are described in turn below.

The cost of ordering an amount z (either through purchasing or producing this
amount) can be represented by a function c(z). The simplest form of this function is one
that is directly proportional to the amount ordered, that is, c � z, where c represents the
unit price paid. Another common assumption is that c(z) is composed of two parts: a term
that is directly proportional to the amount ordered and a term that is a constant K for z
positive and is 0 for z � 0. For this case,

c(z) � cost of ordering z units

� �
where K � setup cost and c � unit cost.

The constant K includes the administrative cost of ordering or, when producing, the
costs involved in setting up to start a production run.

There are other assumptions that can be made about the cost of ordering, but this
chapter is restricted to the cases just described.

In Example 1, the speakers are produced and the setup cost for a production run is
$12,000. Furthermore, each speaker costs $10, so that the production cost when ordering
a production run of z speakers is given by

c(z) � 12,000 � 10z, for z � 0.

In Example 2, the distributor orders bicycles from the manufacturer and the ordering cost
is given by

c(z) � 2,000 � 350z, for z � 0.

The holding cost (sometimes called the storage cost) represents all the costs associ-
ated with the storage of the inventory until it is sold or used. Included are the cost of cap-
ital tied up, space, insurance, protection, and taxes attributed to storage. The holding cost
can be assessed either continuously or on a period-by-period basis. In the latter case, the
cost may be a function of the maximum quantity held during a period, the average amount
held, or the quantity in inventory at the end of the period. The last viewpoint is usually
taken in this chapter.

In the bicycle example, the holding cost is $10 per bicycle remaining at the end of
the month. In the TV speakers example, the holding cost is assessed continuously as $0.30

if z � 0
if z � 0,

0
K � cz
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per speaker in inventory per month, so the average holding cost per month is $0.30 times
the average number of speakers in inventory.

The shortage cost (sometimes called the unsatisfied demand cost) is incurred when
the amount of the commodity required (demand) exceeds the available stock. This cost
depends upon which of the following two cases applies.

In one case, called backlogging, the excess demand is not lost, but instead is held un-
til it can be satisfied when the next normal delivery replenishes the inventory. For a firm
incurring a temporary shortage in supplying its customers (as for the bicycle example), the
shortage cost then can be interpreted as the loss of customers’ goodwill and the subsequent
reluctance to do business with the firm, the cost of delayed revenue, and the extra admin-
istrative costs. For a manufacturer incurring a temporary shortage in materials needed for
production (such as a shortage of speakers for assembly into television sets), the shortage
cost becomes the cost associated with delaying the completion of the production process.

In the second case, called no backlogging, if any excess of demand over available stock
occurs, the firm cannot wait for the next normal delivery to meet the excess demand. Either
(1) the excess demand is met by a priority shipment, or (2) it is not met at all because the
orders are canceled. For situation 1, the shortage cost can be viewed as the cost of the pri-
ority shipment. For situation 2, the shortage cost is the loss of current revenue from not
meeting the demand plus the cost of losing future business because of lost goodwill.1

Revenue may or may not be included in the model. If both the price and the demand
for the product are established by the market and so are outside the control of the com-
pany, the revenue from sales (assuming demand is met) is independent of the firm’s in-
ventory policy and may be neglected. However, if revenue is neglected in the model, the
loss in revenue must then be included in the shortage cost whenever the firm cannot meet
the demand and the sale is lost. Furthermore, even in the case where demand is backlogged,
the cost of the delay in revenue must also be included in the shortage cost. With these in-
terpretations, revenue will not be considered explicitly in the remainder of this chapter.

The salvage value of an item is the value of a leftover item when no further inven-
tory is desired. The salvage value represents the disposal value of the item to the firm,
perhaps through a discounted sale. The negative of the salvage value is called the salvage
cost. If there is a cost associated with the disposal of an item, the salvage cost may be
positive. We assume hereafter that any salvage cost is incorporated into the holding cost.

Finally, the discount rate takes into account the time value of money. When a firm
ties up capital in inventory, the firm is prevented from using this money for alternative pur-
poses. For example, it could invest this money in secure investments, say, government
bonds, and have a return on investment 1 year hence of, say, 7 percent. Thus, $1 invested
today would be worth $1.07 in year 1, or alternatively, a $1 profit 1 year hence is equiva-
lent to � � $1/$1.07 today. The quantity � is known as the discount factor. Thus, in adding
up the total profit from an inventory policy, the profit or costs 1 year hence should be multi-
plied by �; in 2 years hence by �2; and so on. (Units of time other than 1 year also can be
used.) The total profit calculated in this way normally is referred to as the net present value.

In problems having short time horizons, � may be assumed to be 1 (and thereby ne-
glected) because the current value of $1 delivered during this short time horizon does not
change very much. However, in problems having long time horizons, the discount factor
must be included.

1An analysis of situation 2 is provided by E. T. Anderson, G. J. Fitzsimons, and D. Simester, “Measuring and
Mitigating the Costs of Stockouts,” Management Science, 52(11): 1751–1763, Nov. 2006. For an analysis of
whether backlogging or no backlogging provides a less costly policy under various circumstances, see 
B. Janakiraman, S. Seshadri, and J. G. Shanthikumar, “A Comparison of the Optimal Costs of Two Canonical
Inventory Systems,” Operations Research, 55(5): 866–875, Sept.–Oct. 2007.
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In using quantitative techniques to seek optimal inventory policies, we use the crite-
rion of minimizing the total (expected) discounted cost. Under the assumptions that the
price and demand for the product are not under the control of the company and that the
lost or delayed revenue is included in the shortage penalty cost, minimizing cost is equiv-
alent to maximizing net income. Another useful criterion is to keep the inventory policy
simple, i.e., keep the rule for indicating when to order and how much to order both un-
derstandable and easy to implement. Most of the policies considered in this chapter pos-
sess this property.

As mentioned at the beginning of the chapter, inventory models are usually classified
as either deterministic or stochastic according to whether the demand for a period is known
or is a random variable having a known probability distribution. The production of batches
of speakers in Example 1 of Sec. 18.1 illustrates deterministic demand because the speak-
ers are used in television assemblies at a fixed rate of 8,000 per month. The bicycle shops’
purchases of bicycles from the wholesale distributor in Example 2 of Sec. 18.1 illustrates
random demand because the total monthly demand varies from month to month accord-
ing to some probability distribution. Another component of an inventory model is the lead
time, which is the amount of time between the placement of an order to replenish inven-
tory (through either purchasing or producing) and the receipt of the goods into inventory.
If the lead time always is the same (a fixed lead time), then the replenishment can be
scheduled just when desired. Most models in this chapter assume that each replenishment
occurs just when desired, either because the delivery is nearly instantaneous or because
it is known when the replenishment will be needed and there is a fixed lead time.

Another classification refers to whether the current inventory level is being monitored
continuously or periodically. In continuous review, an order is placed as soon as the stock
level falls down to the prescribed reorder point. In periodic review, the inventory level is
checked at discrete intervals, e.g., at the end of each week, and ordering decisions are
made only at these times even if the inventory level dips below the reorder point between
the preceding and current review times. (In practice, a periodic review policy can be used
to approximate a continuous review policy by making the time interval sufficiently small.)

■ 18.3 DETERMINISTIC CONTINUOUS-REVIEW MODELS

The most common inventory situation faced by manufacturers, retailers, and wholesalers
is that stock levels are depleted over time and then are replenished by the arrival of a batch
of new units. A simple model representing this situation is the following economic order
quantity model or, for short, the EOQ model. (It sometimes is also referred to as the
economic lot-size model.)

Units of the product under consideration are assumed to be withdrawn from inven-
tory continuously at a known constant rate, denoted by d; that is, the demand is d units
per unit time. It is further assumed that inventory is replenished when needed by order-
ing (through either purchasing or producing) a batch of fixed size (Q units), where all Q
units arrive simultaneously at the desired time. For the basic EOQ model to be presented
first, the only costs to be considered are

K � setup cost for ordering one batch,

c � unit cost for producing or purchasing each unit,

h � holding cost per unit per unit of time held in inventory.

The objective is to determine when and by how much to replenish inventory so as to min-
imize the sum of these costs per unit time.
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We assume continuous review, so that inventory can be replenished whenever the in-
ventory level drops sufficiently low. We shall first assume that shortages are not allowed
(but later we will relax this assumption). With the fixed demand rate, shortages can be
avoided by replenishing inventory each time the inventory level drops to zero, and this
also will minimize the holding cost. Figure 18.1 depicts the resulting pattern of inventory
levels over time when we start at time 0 by ordering a batch of Q units in order to in-
crease the initial inventory level from 0 to Q and then repeat this process each time the
inventory level drops back down to 0.

Example 1 in Sec. 18.1 (manufacturing speakers for TV sets) fits this model and will
be used to illustrate the following discussion.

The Basic EOQ Model

To summarize, in addition to the costs specified above, the basic EOQ model makes the
following assumptions.

Assumptions (Basic EOQ Model).

1. A known constant demand rate of d units per unit time.
2. The order quantity (Q) to replenish inventory arrives all at once just when desired,

namely, when the inventory level drops to 0.
3. Planned shortages are not allowed.

In regard to assumption 2, there usually is a lag between when an order is placed and
when it arrives in inventory. As indicated in Sec. 18.2, the amount of time between the
placement of an order and its receipt is referred to as the lead time. The inventory level
at which the order is placed is called the reorder point. To satisfy assumption 2, this re-
order point needs to be set at

Reorder point � (demand rate) � (lead time).

Thus, assumption 2 is implicitly assuming a constant lead time.
The time between consecutive replenishments of inventory (the vertical line segments

in Fig. 18.1) is referred to as a cycle. For the speaker example, a cycle can be viewed as
the time between production runs. Thus, if 24,000 speakers are produced in each pro-
duction run and are used at the rate of 8,000 per month, then the cycle length is
24,000/8,000 � 3 months. In general, the cycle length is Q/d.

The total cost per unit time T is obtained from the following components.

Production or ordering cost per cycle � K � cQ.

Inventory level

Batch size Q�Q

0 Q
d

2Q
d

Time t

Q �
 dt

■ FIGURE 18.1
Diagram of inventory level as
a function of time for the
basic EOQ model.
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The average inventory level during a cycle is (Q � 0)/2 � Q/2 units, and the corresponding
cost is hQ/2 per unit time. Because the cycle length is Q/d,

Holding cost per cycle � �
h
2
Q
d

2

�.

Therefore,

Total cost per cycle � K � cQ � �
h
2
Q
d

2

�,

so the total cost per unit time is

T � � �
d
Q
K
� � dc � �

h
2
Q
�.

The value of Q, say Q*, that minimizes T is found by setting the first derivative to
zero (and noting that the second derivative is positive), which yields

��
d
Q
K
2� � �

h
2

� � 0,

so that

Q* � ��
2d

h
K
��,

which is the well-known EOQ formula.2 (It also is sometimes referred to as the square
root formula.) The corresponding cycle time, say t*, is

t* � �
Q
d
*
� � ��

2
d
K
h
��.

It is interesting to observe that Q* and t* change in intuitively plausible ways when
a change is made in K, h, or d. As the setup cost K increases, both Q* and t* increase
(fewer setups). When the unit holding cost h increases, both Q* and t* decrease (smaller
inventory levels). As the demand rate d increases, Q* increases (larger batches) but t* de-
creases (more frequent setups).

These formulas for Q* and t* will now be applied to the speaker example. The ap-
propriate parameter values from Sec. 18.1 are

K � 12,000, h � 0.30, d � 8,000,

so that

Q* � ��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� � 25,298

and

t* � �
2
8
5
,
,
0
2
0
9
0
8

� � 3.2 months.

Hence, the optimal solution is to set up the production facilities to produce speakers once
every 3.2 months and to produce 25,298 speakers each time. (The total cost curve is rather

K � cQ � hQ2/(2d)
���

Q/d

2An interesting historical account of this model and formula, including a reprint of a 1913 paper that started it
all, is given by D. Erlenkotter, “Ford Whitman Harris and the Economic Order Quantity Model,” Operations
Research, 38: 937–950, 1990.
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flat near this optimal value, so any similar production run that might be more convenient,
say 24,000 speakers every 3 months, would be nearly optimal.)

The Worked Examples section of the book’s website includes another example of
applying the basic EOQ model when considerable sensitivity analysis also needs to be
performed.

The EOQ Model with Planned Shortages

One of the banes of any inventory manager is the occurrence of an inventory shortage
(sometimes referred to as a stockout)—demand that cannot be met currently because the
inventory is depleted. This causes a variety of headaches, including dealing with unhappy
customers and having extra record keeping to arrange for filling the demand later
(backorders) when the inventory can be replenished. By assuming that planned shortages
are not allowed, the basic EOQ model presented above satisfies the common desire of
managers to avoid shortages as much as possible. (Nevertheless, unplanned shortages can
still occur if the demand rate and deliveries do not stay on schedule.)

However, there are situations where permitting limited planned shortages makes sense
from a managerial perspective. The most important requirement is that the customers gen-
erally are able and willing to accept a reasonable delay in filling their orders if need be.
If so, the costs of incurring shortages described in Secs. 18.1 and 18.2 (including lost fu-
ture business) should not be exorbitant. If the cost of holding inventory is high relative to
these shortage costs, then lowering the average inventory level by permitting occasional
brief shortages may be a sound business decision.

The EOQ model with planned shortages addresses this kind of situation by replac-
ing only the third assumption of the basic EOQ model by the following new assumption.

Planned shortages now are allowed. When a shortage occurs, the affected customers will
wait for the product to become available again. Their backorders are filled immediately
when the order quantity arrives to replenish inventory.

Under these assumptions, the pattern of inventory levels over time has the appear-
ance shown in Fig. 18.2. The saw-toothed appearance is the same as in Fig. 18.1. How-
ever, now the inventory levels extend down to negative values that reflect the number of
units of the product that are backordered.

Let

p � shortage cost per unit short per unit of time short,

S � inventory level just after a batch of Q units is added to inventory,

Q � S � shortage in inventory just before a batch of Q units is added.

The total cost per unit time now is obtained from the following components.

Production or ordering cost per cycle � K � cQ.

Inventory level

Batch size Q� � S

S

0 Time t

S �
 dt

S
d

Q
d

■ FIGURE 18.2
Diagram of inventory level as
a function of time for the
EOQ model with planned
shortages.

hil76299_ch18_828-904.qxd  11/14/08  11:24 AM  Page 836



Confirming Pages

During each cycle, the inventory level is positive for a time S/d. The average inventory
level during this time is (S � 0)/2 � S/2 units, and the corresponding cost is hS/2 per unit
time. Hence,

Holding cost per cycle � �
h
2
S
� �

S
d

� � �
h
2
S
d

2

�.

Similarly, shortages occur for a time (Q � S)/d. The average amount of shortages during
this time is (0 � Q � S)/2 � (Q � S)/2 units, and the corresponding cost is p(Q � S)/2
per unit time. Hence,

Shortage cost per cycle � �
p(Q

2
� S)
� �

Q �
d

S
� � �

p(Q
2
�
d

S)2

�.

Therefore,

Total cost per cycle � K � cQ � �
h
2
S
d

2

� � �
p(Q

2
�
d

S)2

�,

and the total cost per unit time is

T � 

� �
d
Q
K
� � dc � �

h
2
S
Q

2

� � �
p(Q

2
�
Q

S)2

�.

In this model, there are two decision variables (S and Q), so the optimal values (S*
and Q*) are found by setting the partial derivatives �T/�S and �T/�Q equal to zero. Thus,

�
�
�
T
S
� � �

h
Q
S
� � �

p(Q
Q
� S)
� � 0.

�
�
�
Q
T
� � ��

d
Q
K
2� � �

2
h
Q
S2

2� � �
p(Q

Q
� S)
� � �

p(Q
2Q

�
2
S)2

� � 0.

Solving these equations simultaneously leads to

S* � ��
2d

h
K
�� ��

p �
p

h
��, Q* � ��

2d
h
K
�� ��

p �
p

h
��.

The optimal cycle length t* is given by

t* � �
Q
d
*
� � ��

2
d
K
h
�� ��

p �
p

h
��.

The maximum shortage is

Q* � S* � ��
2d

p
K
�� ��

p �
h

h
��.

In addition, from Fig. 18.2, the fraction of time that no shortage exists is given by

�
Q
S*

*
/
/
d
d

� � �
p �

p
h

�,

which is independent of K.
When either p or h is made much larger than the other, the above quantities behave

in intuitive ways. In particular, when p � � with h constant (so shortage costs domi-
nate holding costs), Q* � S* � 0 whereas both Q* and t* converge to their values for

K � cQ � hS2/(2d) � p(Q�S)2/(2d)
����

Q/d

18.3 DETERMINISTIC CONTINUOUS-REVIEW MODELS 837

hil76299_ch18_828-904.qxd  11/14/08  11:24 AM  Page 837



Confirming Pages

838 CHAPTER 18 INVENTORY THEORY

the basic EOQ model. Even though the current model permits shortages, p � � implies
that having them is not worthwhile.

On the other hand, when h � � with p constant (so holding costs dominate shortage
costs), S* � 0. Thus, having h � � makes it uneconomical to have positive inventory
levels, so each new batch of Q* units goes no further than removing the current shortage
in inventory.

If planned shortages are permitted in the speaker example, the shortage cost is esti-
mated in Sec. 18.1 as

p � 1.10.

As before,

K � 12,000, h � 0.30, d � 8,000,

so now

S* � ��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� ��

1.1
1
�
.1�0.3
�� � 22,424,

Q* � ��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� ��

1.1
1
�
.1�0.3
�� � 28,540,

and

t* � �
2
8
8
,
,
0
5
0
4
0
0

� � 3.6 months.

Hence, the production facilities are to be set up every 3.6 months to produce 28,540 speak-
ers. The maximum shortage is 6,116 speakers. Note that Q* and t* are not very different
from the no-shortage case. The reason is that p is much larger than h.

The EOQ Model with Quantity Discounts

When specifying their cost components, the preceding models have assumed that the unit
cost of an item is the same regardless of the quantity in the batch. In fact, this assump-
tion resulted in the optimal solutions being independent of this unit cost. The EOQ model
with quantity discounts replaces this assumption by the following new assumption.

The unit cost of an item now depends on the quantity in the batch. In particular, an in-
centive is provided to place a large order by replacing the unit cost for a small quantity
by a smaller unit cost for every item in a larger batch, and perhaps by even smaller unit
costs for even larger batches.

Otherwise, the assumptions are the same as for the basic EOQ model.
To illustrate this model, consider the TV speakers example introduced in Sec. 18.1.

Suppose now that the unit cost for every speaker is c1 � $11 if less than 10,000 speakers
are produced, c2 � $10 if production falls between 10,000 and 80,000 speakers, and 
c3 � $9.50 if production exceeds 80,000 speakers. What is the optimal policy? The solu-
tion to this specific problem will reveal the general method.

From the results for the basic EOQ model, the total cost per unit time Tj if the unit
cost is cj is given by

Tj � �
d
Q
K
� � dcj � �

h
2
Q
�, for j � 1, 2, 3.

(This expression assumes that h is independent of the unit cost of the items, but a com-
mon small refinement would be to make h proportional to the unit cost to reflect the fact
that the cost of capital tied up in inventory varies in this way.) A plot of Tj versus Q is
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shown in Fig. 18.3 for each j, where the solid part of each curve extends over the feasi-
ble range of values of Q for that discount category.

For each curve, the value of Q that minimizes Tj is found just as for the basic EOQ
model. For K � 12,000, h � 0.30, and d � 8,000, this value is

��(2)(8,0�0
0
0
.3
)(
0
12�,000)
�� � 25,298.

(If h were not independent of the unit cost of the items, then the minimizing value of Q
would be slightly different for the different curves.) This minimizing value of Q is a fea-
sible value for the cost function T2. For any fixed Q, T2 � T1, so T1 can be eliminated
from further consideration. However, T3 cannot be immediately discarded. Its minimum
feasible value (which occurs at Q � 80,000) must be compared to T2 evaluated at 25,298
(which is $87,589). Because T3 evaluated at 80,000 equals $89,200, it is better to pro-
duce in quantities of 25,298, so this quantity is the optimal value for this set of quantity
discounts.

If the quantity discount led to a unit cost of $9 (instead of $9.50) when production
exceeded 80,000, then T3 evaluated at 80,000 would equal $85,200, and the optimal pro-
duction quantity would become 80,000.

Although this analysis concerned a specific problem, the same approach is applica-
ble to any similar problem. Here is a summary of the general procedure.

1. For each available unit cost cj, use the EOQ formula for the EOQ model to calculate
its optimal order quantity Q*j.

2. For each cj where Q*j is within the feasible range of order quantities for cj, calculate
the corresponding total cost per unit time Tj.

3. For each cj where Q*j is not within this feasible range, determine the order quantity Qj

that is at the endpoint of this feasible range that is closest to Q*j. Calculate the total
cost per unit time Tj for Qj and cj.

4. Compare the Tj obtained for all the cj and choose the minimum Tj. Then choose the
order quantity Qj obtained in step 2 or 3 that gives this minimum Tj.

A similar analysis can be used for other types of quantity discounts, such as incre-
mental quantity discounts where a cost c0 is incurred for the first q0 units, c1 for the next
q1 units, and so on.
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82,500
10,000 25,000 80,000 Batch size Q

T1 (unit cost equals $11)

T2 (unit cost equals $10)

T3 (unit cost equals $9.50)

■ FIGURE 18.3
Total cost per unit time for
the speaker example with
quantity discounts.
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Some Useful Excel Templates

For your convenience, we have included five Excel templates for the EOQ models in this
chapter’s Excel file on the book’s website. Two of these templates are for the basic EOQ
model. In both cases, you enter basic data (d, K, and h), as well as the lead time for the
deliveries and the number of working days per year for the firm. The template then cal-
culates the firm’s total annual expenditures for setups and for holding costs, as well as the
sum of these two costs (the total variable cost). It also calculates the reorder point—the
inventory level at which the order needs to be placed to replenish inventory so the re-
plenishment will arrive when the inventory level drops to 0. One template (the Solver
version) enables you to enter any order quantity you want and then see what the annual
costs and reorder point would be. This version also enables you to use the Excel Solver
to solve for the optimal order quantity. The second template (the analytical version) uses
the EOQ formula to obtain the optimal order quantity.

The corresponding pair of templates also is provided for the EOQ model with planned
shortages. After entering the data (including the unit shortage cost p), each of these tem-
plates will obtain the various annual costs (including the annual shortage cost). With the
Solver version, you can either enter trial values of the order quantity Q and maximum
shortage Q � S or solve for the optimal values, whereas the analytical version uses the
formulas for Q* and Q* � S* to obtain the optimal values. The corresponding maximum
inventory level S* also is included in the results.

The final template is an analytical version for the EOQ model with quantity discounts.
This template includes the refinement that the unit holding cost h is proportional to the
unit cost c, so

h � Ic,

where the proportionality factor I is referred to as the inventory holding cost rate. Thus,
the data entered includes I along with d and K. You also need to enter the number of dis-
count categories (where the lowest-quantity category with no discount counts as one of
these), as well as the unit price and range of order quantities for each of the categories.
The template then finds the feasible order quantity that minimizes the total annual cost
for each category, and also shows the individual annual costs (including the annual pur-
chase cost) that would result. Using this information, the template identifies the overall
optimal order quantity and the resulting total annual cost.

All these templates can be helpful for calculating a lot of information quickly after
entering the basic data for the problem. However, perhaps a more important use is for per-
forming sensitivity analysis on these data. You can immediately see how the results would
change for any specific change in the data by entering the new data values in the spread-
sheet. Doing this repeatedly for a variety of changes in the data is a convenient way to
perform sensitivity analysis.

Observations about EOQ Models

1. If it is assumed that the unit cost of an item is constant throughout time, independent
of the batch size (as with the first two EOQ models), the unit cost does not appear in
the optimal solution for the batch size. This result occurs because no matter what in-
ventory policy is used, the same number of units is required per unit time, so this cost
per unit time is fixed.

2. The analysis of the EOQ models assumed that the batch size Q is constant from cycle
to cycle. The resulting optimal batch size Q* actually minimizes the total cost per unit
time for any cycle, so the analysis shows that this constant batch size should be used
from cycle to cycle even if a constant batch size is not assumed.
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3. The optimal inventory level at which inventory should be replenished can never be
greater than zero under these models. Waiting until the inventory level drops to zero
(or less than zero when planned shortages are permitted) reduces both holding costs
and the frequency of incurring the setup cost K. However, if the assumptions of a known
constant demand rate and the order quantity will arrive just when desired (because of
a constant lead time) are not completely satisfied, it may become prudent to plan to
have some “safety stock” left when the inventory is scheduled to be replenished. This
is accomplished by increasing the reorder point above that implied by the model.

4. The basic assumptions of the EOQ models are rather demanding ones. They seldom are
satisfied completely in practice. For example, even when a constant demand rate is planned
(as with the production line in the TV speakers example in Sec. 18.1), interruptions and
variations in the demand rate still are likely to occur. It also is very difficult to satisfy the
assumption that the order quantity to replenish inventory arrives just when desired.
Although the schedule may call for a constant lead time, variations in the actual lead times
often will occur. Fortunately, the EOQ models have been found to be robust in the sense
that they generally still provide nearly optimal results even when their assumptions are
only rough approximations of reality. This is a key reason why these models are so widely
used in practice. However, in those cases where the assumptions are significantly violated,
it is important to do some preliminary analysis to evaluate the adequacy of an EOQ model
before it is used. This preliminary analysis should focus on calculating the total cost per
unit time provided by the model for various order quantities and then assessing how this
cost curve would change under more realistic assumptions.

Different Types of Demand for a Product

Example 2 (wholesale distribution of bicycles) introduced in Sec. 18.1 focused on man-
aging the inventory of one model of bicycle. The demand for this product is generated by
the wholesaler’s customers (various retailers) who purchase these bicycles to replenish
their inventories according to their own schedules. The wholesaler has no control over this
demand. Because this model is sold separately from other models, its demand does not
even depend on the demand for any of the company’s other products. Such demand is re-
ferred to as independent demand.

The situation is different for the speaker example introduced in Sec. 18.1. Here, the
product under consideration—television speakers—is just one component being assem-
bled into the company’s final product—television sets. Consequently, the demand for the
speakers depends on the demand for the television set. The pattern of this demand for the
speakers is determined internally by the production schedule that the company establishes
for the television sets by adjusting the production rate for the production line producing
the sets. Such demand is referred to as dependent demand.

The television manufacturing company produces a considerable number of products—
various parts and subassemblies—that become components of the television sets. Like the
speakers, these various products also are dependent-demand products.

Because of the dependencies and interrelationships involved, managing the inven-
tories of dependent-demand products can be considerably more complicated than for in-
dependent-demand products. A popular technique for assisting in this task is material
requirements planning, abbreviated as MRP. MRP is a computer-based system for
planning, scheduling, and controlling the production of all the components of a final
product. The system begins by “exploding” the product by breaking it down into all its
subassemblies and then into all its individual component parts. A production schedule
is then developed, using the demand and lead time for each component to determine the de-
mand and lead time for the subsequent component in the process. In addition to a master
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production schedule for the final product, a bill of materials provides detailed information
about all its components. Inventory status records give the current inventory levels, num-
ber of units on order, etc., for all the components. When more units of a component need
to be ordered, the MRP system automatically generates either a purchase order to the ven-
dor or a work order to the internal department that produces the component.3

The Role of Just-In-Time (JIT) Inventory Management

When the basic EOQ model was used to calculate the optimal production lot size for the
speaker example, a very large quantity (25,298 speakers) was obtained. This enables hav-
ing relatively infrequent setups to initiate production runs (only once every 3.2 months).
However, it also causes large average inventory levels (12,649 speakers), which leads to
a large total holding cost per year of over $45,000.

The basic reason for this large cost is the high setup cost of K � $12,000 for each
production run. The setup cost is so sizable because the production facilities need to be
set up again from scratch each time. Consequently, even with less than four production
runs per year, the annual setup cost is over $45,000, just like the annual holding costs.

Rather than continuing to tolerate a $12,000 setup cost each time in the future, another
option for the company is to seek ways to reduce this setup cost. One possibility is to de-
velop methods for quickly transferring machines from one use to another. Another is to ded-
icate a group of production facilities to the production of speakers so they would remain set
up between production runs in preparation for beginning another run whenever needed.

Suppose the setup cost could be drastically reduced from $12,000 all the way down
to K � $120. This would reduce the optimal production lot size from 25,298 speakers
down to Q* � 2,530 speakers, so a new production run lasting only a brief time would
be initiated more than 3 times per month. This also would reduce both the annual setup
cost and the annual holding cost from over $45,000 down to only slightly over $4,500
each. By having such frequent (but inexpensive) production runs, the speakers would be
produced essentially just in time for their assembly into television sets.

Just in time actually is a well-developed philosophy for managing inventories. A just-
in-time (JIT) inventory system places great emphasis on reducing inventory levels to a
bare minimum, and so providing the items just in time as they are needed. This philoso-
phy was first developed in Japan, beginning with the Toyota Company in the late 1950s,
and is given part of the credit for the remarkable gains in Japanese productivity through
much of the late 20th century. The philosophy also has become popular in other parts of
the world, including the United States, in more recent years.4

Although the just-in-time philosophy sometimes is misinterpreted as being incom-
patible with using an EOQ model (since the latter gives a large order quantity when the
setup cost is large), they actually are complementary. A JIT inventory system focuses on
finding ways to greatly reduce the setup costs so that the optimal order quantity will be
small. Such a system also seeks ways to reduce the lead time for the delivery of an or-
der, since this reduces the uncertainty about the number of units that will be needed when
the delivery occurs. Another emphasis is on improving preventive maintenance so that the
required production facilities will be available to produce the units when they are needed.

3A series of articles on pp. 32–44 of the September 1996 issue of IIE Solutions provides further information
about MRP.
4For further information about applications of JIT in the United States, see R. E. White, J. N. Pearson, and
J. R. Wilson, “JIT Manufacturing: A Survey of Implementations in Small and Large U.S. Manufacturing,”
Management Science, 45: 1–15, 1999. Also see H. Chen, M. Z. Frank, and O. Q. Wu, “What Actually Hap-
pened to the Inventories of American Companies Between 1981 and 2000,” Management Science, 51(7):
1015–1031, July 2005.
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The preceding section explored the basic EOQ model and some of its variations. The results
were dependent upon the assumption of a constant demand rate. When this assumption is
relaxed, i.e., when the amounts that need to be withdrawn from inventory are allowed to vary
from period to period, the EOQ formula no longer ensures a minimum-cost solution.

Consider the following periodic-review model. Planning is to be done for the next
n periods regarding how much (if any) to produce or order to replenish inventory at the be-
ginning of each of the periods. (The order to replenish inventory can involve either purchas-
ing the units or producing them, but the latter case is far more common with applications of
this model, so we mainly will use the terminology of producing the units.) The demands for
the respective periods are known (but not the same in every period) and are denoted by

ri � demand in period i, for i � 1, 2, . . . , n.

These demands must be met on time. There is no stock on hand initially, but there is still
time for a delivery at the beginning of period 1.

The costs included in this model are similar to those for the basic EOQ model:

K � setup cost for producing or purchasing any units to replenish inventory at be-
ginning of period,

c � unit cost for producing or purchasing each unit,

h � holding cost for each unit left in inventory at end of period.

Note that this holding cost h is assessed only on inventory left at the end of a period.
There also are holding costs for units that are in inventory for a portion of the period be-
fore being withdrawn to satisfy demand. However, these are fixed costs that are indepen-
dent of the inventory policy and so are not relevant to the analysis. Only the variable costs
that are affected by which inventory policy is chosen, such as the extra holding costs that
are incurred by carrying inventory over from one period to the next, are relevant for se-
lecting the inventory policy.

By the same reasoning, the unit cost c is an irrelevant fixed cost because, over all the
time periods, all inventory policies produce the same number of units at the same cost.
Therefore, c will be dropped from the analysis hereafter.

The objective is to minimize the total cost over the n periods. This is accomplished
by ignoring the fixed costs and minimizing the total variable cost over the n periods, as
illustrated by the following example.

An Example

An airplane manufacturer specializes in producing small airplanes. It has just received an
order from a major corporation for 10 customized executive jet airplanes for the use of the
corporation’s upper management. The order calls for three of the airplanes to be delivered

■ 18.4 A DETERMINISTIC PERIODIC-REVIEW MODEL

Still another emphasis is on improving the production process to guarantee good quality.
Providing just the right number of units just in time does not provide any leeway for in-
cluding defective units.

In more general terms, the focus of the just-in-time philosophy is on avoiding waste
wherever it might occur in the production process. One form of waste is unnecessary in-
ventory. Others are unnecessarily large setup costs, unnecessarily long lead times,
production facilities that are not operational when they are needed, and defective items.
Minimizing these forms of waste is a key component of superior inventory management.

18.4 A DETERMINISTIC PERIODIC-REVIEW MODEL 843
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(and paid for) during the upcoming winter months (period 1), two more to be delivered
during the spring (period 2), three more during the summer (period 3), and the final two
during the fall (period 4).

Setting up the production facilities to meet the corporation’s specifications for these
airplanes requires a setup cost of $2 million. The manufacturer has the capacity to produce
all 10 airplanes within a couple of months, when the winter season will be under way.
However, this would necessitate holding seven of the airplanes in inventory, at a cost of
$200,000 per airplane per period, until their scheduled delivery times. To reduce or elim-
inate these substantial holding costs, it may be worthwhile to produce a smaller number of
these airplanes now and then to repeat the setup (again incurring the cost of $2 million) in
some or all of the subsequent periods to produce additional small numbers. Management
would like to determine the least costly production schedule for filling this order.

Thus, using the notation of the model, the demands for this particular airplane dur-
ing the four upcoming periods (seasons) are

r1 � 3, r2 � 2, r3 � 3, r4 � 2.

Using units of millions of dollars, the relevant costs are

K � 2, h � 0.2.

The problem is to determine how many airplanes to produce (if any) during the begin-
ning of each of the four periods in order to minimize the total variable cost.

The high setup cost K gives a strong incentive not to produce airplanes every period
and preferably just once. However, the significant holding cost h makes it undesirable to
carry a large inventory by producing the entire demand for all four periods (10 airplanes) at
the beginning. Perhaps the best approach would be an intermediate strategy where airplanes
are produced more than once but less than four times. For example, one such feasible so-
lution (but not an optimal one) is depicted in Fig. 18.4, which shows the evolution of the
inventory level over the next year that results from producing three airplanes at the begin-
ning of the first period, six airplanes at the beginning of the second period, and one airplane
at the beginning of the fourth period. The dots give the inventory levels after any produc-
tion at the beginning of the four periods.

How can the optimal production schedule be found? For this model in general, pro-
duction (or purchasing) is automatic in period 1, but a decision on whether to produce
must be made for each of the other n � 1 periods. Therefore, one approach to solving this
model is to enumerate, for each of the 2n�1 combinations of production decisions, the

Period

6

5

4

3

2

1

0 1 2 3 4 

Inventory
level

■ FIGURE 18.4
The inventory levels that
result from one sample
production schedule for the
airplane example.
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possible quantities that can be produced in each period where production is to occur. This
approach is rather cumbersome, even for moderate-sized n, so a more efficient method is
desirable. Such a method is described next in general terms, and then we will return to
finding the optimal production schedule for the example. Although the general method
can be used when either producing or purchasing to replenish inventory, we now will only
use the terminology of producing for definiteness.

An Algorithm

The key to developing an efficient algorithm for finding an optimal inventory policy (or
equivalently, an optimal production schedule) for the above model is the following insight
into the nature of an optimal policy.

An optimal policy (production schedule) produces only when the inventory level
is zero.

To illustrate why this result is true, consider the policy shown in Fig. 18.4 for the ex-
ample. (Call it policy A.) Policy A violates the above characterization of an optimal pol-
icy because production occurs at the beginning of period 4 when the inventory level is
greater than zero (namely, one airplane). However, this policy can easily be adjusted to
satisfy the above characterization by simply producing one less airplane in period 2 and
one more airplane in period 4. This adjusted policy (call it B) is shown by the dashed line
in Fig. 18.5 wherever B differs from A (the solid line). Now note that policy B must have
less total cost than policy A. The setup costs (and the production costs) for both policies
are the same. However, the holding cost is smaller for B than for A because B has less in-
ventory than A in periods 2 and 3 (and the same inventory in the other periods). There-
fore, B is better than A, so A cannot be optimal.

This characterization of optimal policies can be used to identify policies that are not
optimal. In addition, because it implies that the only choices for the amount produced at
the beginning of the ith period are 0, ri, ri � ri�1, . . . , or ri � ri�1 � 			 � rn, it can be
exploited to obtain an efficient algorithm that is related to the deterministic dynamic pro-
gramming approach described in Sec. 10.3.

In particular, define

Ci � total variable cost of an optimal policy for periods i, i � 1, . . . , n when
period i starts with zero inventory (before producing), for i � 1, 2, . . . , n.

Period

6

5

4

3

2

1

0 1 2 3 4 

Inventory
level

A

B

B

AA and B A and B

■ FIGURE 18.5
Comparison of two inventory
policies (production
schedules) for the airplane
example.
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By using the dynamic programming approach of solving backward period by period, these
Ci values can be found by first finding Cn, then finding Cn�1, and so on. Thus, after Cn,
Cn�1, . . . , Ci�1 are found, then Ci can be found from the recursive relationship

Ci � minimum {Cj�1 � K � h[ri�1 � 2ri�2 � 3ri�3 � 			 � ( j � i)rj]},
j�i, i�1, . . . , n

where j can be viewed as an index that denotes the (end of the) period when the inventory
reaches a zero level for the first time after production at the beginning of period i. In the
time interval from period i through period j, the term with coefficient h represents the total
holding cost over this interval. When j � n, the term Cn�1 � 0. The minimizing value of j
indicates that if the inventory level does indeed drop to zero upon entering period i, then the
production in period i should cover all demand from period i through this period j.

The algorithm for solving the model consists basically of solving for Cn, Cn�1, . . . , C1

in turn. For i � 1, the minimizing value of j then indicates that the production in period 1
should cover the demand through period j, so the second production will be in period j � 1.
For i � j � 1, the new minimizing value of j identifies the time interval covered by the sec-
ond production, and so forth to the end. We will illustrate this approach with the example.

The application of this algorithm is much quicker than the full dynamic programming
approach.5 As in dynamic programming, Cn, Cn�1, . . . , C2 must be found before C1 is
obtained. However, the number of calculations is much smaller, and the number of pos-
sible production quantities is greatly reduced.

Application of the Algorithm to the Example

Returning to the airplane example, first we consider the case of finding C4, the cost of
the optimal policy from the beginning of period 4 to the end of the planning horizon:

C4 � C5 � 2 � 0 � 2 � 2.

To find C3, we must consider two cases, namely, the first time after period 3 when
the inventory reaches a zero level occurs at (1) the end of the third period or (2) the end
of the fourth period. In the recursive relationship for C3, these two cases correspond to
(1) j � 3 and (2) j � 4. Denote the corresponding costs (the right-hand side of the recur-
sive relationship with this j ) by C3

(3) and C3
(4), respectively. The policy associated with

C3
(3) calls for producing only for period 3 and then following the optimal policy for pe-

riod 4, whereas the policy associated with C3
(4) calls for producing for periods 3 and 4.

The cost C3 is then the minimum of C3
(3) and C3

(4). These cases are reflected by the poli-
cies given in Fig. 18.6.

C3
(3) � C4 � 2 � 2 � 2 � 4.

C3
(4) � C5 � 2 � 0.2(2) � 0 � 2 � 0.4 � 2.4.

C3 � min{4, 2.4} � 2.4.

Therefore, if the inventory level drops to zero upon entering period 3 (so production
should occur then), the production in period 3 should cover the demand for both periods
3 and 4.

To find C2, we must consider three cases, namely, the first time after period 2 when
the inventory reaches a zero level occurs at (1) the end of the second period, (2) the end
of the third period, or (3) the end of the fourth period. In the recursive relationship for C2,

5The full dynamic programming approach is useful, however, for solving generalizations of the model (e.g.,
nonlinear production cost and holding cost functions) where the above algorithm is no longer applicable. (See
Probs. 18.4-3 and 18.4-4 for examples where dynamic programming would be used to deal with generalizations
of the model.)
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these cases correspond to (1) j � 2, (2) j � 3, and (3) j � 4, where the corresponding costs
are C2

(2), C2
(3), and C2

(4), respectively. The cost C2 is then the minimum of C2
(2), C2

(3), and C2
(4).

C2
(2) � C3 � 2 � 2.4 � 2 � 4.4.

C2
(3) � C4 � 2 � 0.2(3) � 2 � 2 � 0.6 � 4.6.

C2
(4) � C5 � 2 � 0.2[3 � 2(2)] � 0 � 2 � 1.4 � 3.4.

C2 � min{4.4, 4.6, 3.4} � 3.4.

Consequently, if production occurs in period 2 (because the inventory level drops to zero),
this production should cover the demand for all the remaining periods.

Finally, to find C1, we must consider four cases, namely, the first time after period 1
when the inventory reaches zero occurs at the end of (1) the first period, (2) the second
period, (3) the third period, or (4) the fourth period. These cases correspond to j � 1, 2,
3, 4 and to the costs C1

(1), C1
(2), C1

(3), C1
(4), respectively. The cost C1 is then the minimum

of C1
(1), C1

(2), C1
(3), and C1

(4).

C1
(1) � C2 � 2 � 3.4 � 2 � 5.4.

C1
(2) � C3 � 2 � 0.2(2) � 2.4 � 2 � 0.4 � 4.8.

C1
(3) � C4 � 2 � 0.2[2 � 2(3)] � 2 � 2 � 1.6 � 5.6.

C1
(4) � C5 � 2 � 0.2[2 � 2(3) � 3(2)] � 0 � 2 � 2.8 � 4.8.

C1 � min{5.4, 4.8, 5.6, 4.8} � 4.8.

Note that C1
(2) and C1

(4) tie as the minimum, giving C1. This means that the policies
corresponding to C1

(2) and C1
(4) tie as being the optimal policies. The C1

(4) policy says to pro-
duce enough in period 1 to cover the demand for all four periods. The C1

(2) policy covers only
the demand through period 2. Since the latter policy has the inventory level drop to zero at the
end of period 2, the C3 result is used next, namely, produce enough in period 3 to cover the
demand for periods 3 and 4. The resulting production schedules are summarized below.

Optimal Production Schedules

1. Produce 10 airplanes in period 1.

Total variable cost � $4.8 million.

2. Produce 5 airplanes in period 1 and 5 airplanes in period 3.

Total variable cost � $4.8 million.

3 4

1

2

3

4

5

0

Inventory level Schedule resulting in C3
(3)

Period 3 4

1

2

3

4

5

0

Inventory level Schedule resulting in C3
(4)

Period

■ FIGURE 18.6
Alternative production
schedules when production 
is required at the beginning
of period 3 for the airplane
example.
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■ 18.5 DETERMINISTIC MULTIECHELON INVENTORY MODELS
FOR SUPPLY CHAIN MANAGEMENT

Our growing global economy has caused a dramatic shift in inventory management in
recent years. Now, as never before, the inventory of many manufacturers is scattered
throughout the world. Even the inventory of an individual product may be dispersed
globally.

A manufacturer’s inventory may be stored initially at the point or points of manu-
facture (one echelon of the inventory system), then at national or regional warehouses (a
second echelon), then at field distribution centers (a third echelon), and so on. Thus, each
stage at which inventory is held in the progression through a multistage inventory system
is called an echelon of the inventory system. Such a system with multiple echelons of
inventory is referred to as a multiechelon inventory system. In the case of a fully inte-
grated corporation that both manufactures its products and sells them at the retail level,
its echelons will extend all the way to its retail outlets.

Some coordination is needed between the inventories of any particular product at the
different echelons. Since the inventory at each echelon (except the last one) is used to re-
plenish the inventory at the next echelon as needed, the inventory level currently needed
at an echelon is affected by how soon replenishment will be needed at the various loca-
tions for the next echelon.

The analysis of multiechelon inventory systems is a major challenge. However, con-
siderable innovative research (with roots tracing back to the middle of the 20th century)
has been conducted to develop tractable multiechelon inventory models. With the grow-
ing prominence of multiechelon inventory systems, this undoubtedly will continue to be
an active area of research.

Another key concept that has emerged in the global economy is that of supply chain
management. This concept pushes the management of a multiechelon inventory system
one step further by also considering what needs to happen to bring a product into the in-
ventory system in the first place. However, as with inventory management, the main pur-
pose still is to win the competitive battle against other companies in bringing the product
to the customers as promptly as possible.

A supply chain is a network of facilities that procure raw materials, transform them
into intermediate goods and then final products, and finally deliver the products to cus-
tomers through a distribution system that includes a multiechelon inventory system. Thus,
a supply chain spans procurement, manufacturing, and distribution. Since inventories are
needed at all these stages, effective inventory management is one key element in manag-
ing the supply chain. To fill orders efficiently, it is necessary to understand the linkages
and interrelationships of all the key elements of the supply chain. Therefore, integrated
management of the supply chain has become a key success factor for some of today’s
leading companies.

To aid in supply chain management, multiechelon inventory models now are likely
to include echelons that incorporate the early part of the supply chain as well as the ech-
elons for the distribution of the finished product. Thus, the first echelon might be the
inventory of raw materials or components that eventually will be used to produce the
product. A second echelon could be the inventory of subassemblies that are produced from
the raw materials or components in preparation for later assembling the subassemblies
into the final product. This might then lead into the echelons for the distribution of the

If you would like to see another example applying this algorithm, one is provided
in the Worked Examples section of the book’s website.
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Founded in 1837, Deere & Company is a leading world-
wide producer of equipment for agriculture, forestry, and
consumer use. The company employs approximately
43,000 people and sells its products through an inter-
national network of independently owned dealers and
retailers.

For decades, the Commercial and Consumer Equip-
ment (C&CE) Division of Deere pushed inventories to
the dealers, booked the revenues, and hoped that the deal-
ers had the right products to sell at the right time. How-
ever, the division had an inventory-to-annual-sales ratio
of 58 percent based on inventories at Deere and at its
dealers in 2001, so inventory costs were getting badly out
of control. Ironically, although dealers had large inven-
tories, they often did not have the right products in stock.

C&CE’s supply chain managers needed to cut in-
ventory levels while improving product availability and
delivery performance. They had read about inventory op-
timization successes in Fortune, so they hired a leading
OR consulting firm (SmartOps) to tackle this challenge.
With 300 products, 2,500 North American dealers, five

plants and associated warehouses, seven European ware-
houses, and several retailers’ consignment warehouses,
the coordination and optimization of C&CE’s supply
chain was indeed a formidable challenge.

However, SmartOps rose to this challenge very suc-
cessfully by applying state-of-the-art inventory opti-
mization techniques embedded in its multistage inventory
planning and optimization software product to set trust-
worthy targets. C&CE used these targets, together with
appropriate dealer incentives, to transform the operation
of its entire supply chain on an enterprise-wide basis. In
the process, Deere improved its factories’ on-time ship-
ments from 63 percent to 92 percent, while maintaining
customer service levels at 90 percent. By the end of 2004,
the C&CE Division also had exceeded its goal of $1 bil-
lion of inventory reduction or avoidance.

Source: Troyer, L., J. Smith, S. Marshall, E. Yaniv, S. Tayur, M.
Barkman, A. Kaya, and Y. Liu: “Improving Asset Management
and Order Fulfillment at Deere & Company’s C&CE Division,”
Interfaces, 35(1): 76–87, Jan.–Feb. 2005. (A link to this article
is provided on our website, www.mhhe.com/hillier.)

An Application Vignette

finished product, starting with storage at the point or points of manufacture, then at na-
tional or regional warehouses, then at field distribution centers, and so on.

The usual objective for a multiechelon inventory model is to coordinate the invento-
ries at the various echelons so as to minimize the total cost associated with the entire mul-
tiechelon inventory system. This is a natural objective for a fully integrated corporation
that operates this entire system. It might also be a suitable objective when certain eche-
lons are managed by either the suppliers or the customers of the company. The reason is
that a key concept of supply chain management is that a company should strive to develop
an informal partnership relationship with its suppliers and customers that enables them
jointly to maximize their total profit. This often leads to developing mutually beneficial
supply contracts that enable reducing the total cost of operating a jointly managed multi-
echelon inventory system.

The analysis of multiechelon inventory models tends to be considerably more com-
plicated than those for single-facility inventory models considered elsewhere in this
chapter. However, we present two relatively tractable multiechelon inventory models below
that illustrate the relevant concepts.

A Model for a Serial Two-Echelon System

The simplest possible multiechelon inventory system is one where there are only two ech-
elons and only a single installation at each echelon. Figure 18.7 depicts such a system,
where the inventory at installation 1 is used to periodically replenish the inventory at in-
stallation 2. For example, installation 1 might be a factory producing a certain product
with occasional production runs, and installation 2 might be the distribution center for
that product. Alternatively, installation 2 might be the factory producing the product, and
then installation 1 is another facility where the components needed to produce that prod-
uct are themselves either produced or received from suppliers.
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Since the items at installation 1 and installation 2 may be different, we will refer to
them as item 1 and item 2, respectively. The units of item 1 and item 2 are defined so that
exactly one unit of item 1 is needed to obtain one unit of item 2. For example, if item 1
collectively consists of the components needed to produce the final product (item 2), then
one set of components needed to produce one unit of the final product is defined as one
unit of item 1.

The model makes the following assumptions.

Assumptions for Serial Two-Echelon Model.

1. The assumptions of the basic EOQ model (see Sec. 18.3) hold at installation 2. Thus,
there is a known constant demand rate of d units per unit time, an order quantity of
Q2 units is placed in time to replenish inventory when the inventory level drops to zero,
and planned shortages are not allowed.

2. The relevant costs at installation 2 are a setup cost of K2 each time an order is placed
and a holding cost of h2 per unit per unit time.

3. Installation 1 uses its inventory to provide a batch of Q2 units to installation 2 imme-
diately each time an order is received.

4. An order quantity of Q1 units is placed in time to replenish inventory at installation 1
before a shortage would occur.

5. Similarly to installation 2, the relevant costs at installation 1 are a setup cost of K1 each
time an order is placed and a holding cost of h1 per unit per unit time.

6. The units increase in value when they are received and processed at installation 2, so
h1 � h2.

7. The objective is to minimize the sum of the variable costs per unit time at the two in-
stallations. (This will be denoted by C.)

The word “immediately” in assumption 3 implies that there is essentially zero lead time
between when installation 2 places an order for Q2 units and installation 1 fills that order.
In reality, it would be common to have a significant lead time because of the time needed
for installation 1 to receive and process the order and then to transport the batch to instal-
lation 2. However, as long as the lead time is essentially fixed, this is equivalent to assum-
ing zero lead time for modeling purposes because the order would be placed just in time to
have the batch arrive when the inventory level drops to zero. For example, if the lead time
is one week, the order would be placed one week before the inventory level drops to zero.

Although a zero lead time and a fixed lead time are equivalent for modeling purposes,
we specifically are assuming a zero lead time because it simplifies the conceptualization of
how the inventory levels at the two installations vary simultaneously over time. Figure 18.8
depicts this conceptualization. Because the assumptions of the basic EOQ model hold at in-
stallation 2, the inventory levels there vary according to the familiar saw-tooth pattern first
shown in Fig. 18.1. Each time installation 2 needs to replenish its inventory, installation 1
ships Q2 units of item 1 to installation 2. Item 1 may be identical to item 2 (as in the case
of a factory shipping the final product to a distribution center). If not (as in the case of a
supplier shipping the components needed to produce the final product to a factory), in-
stallation 2 immediately uses the shipment of Q2 units of item 1 to produce Q2 units of
item 2 (the final product). The inventory at installation 2 then gets depleted at the constant

1 2

Inventory at
installation 1

Inventory at
installation 2

■ FIGURE 18.7
A serial two-echelon
inventory system.
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demand rate of d units per unit time until the next replenishment, which occurs just as the
inventory level drops to 0.

The pattern of inventory levels over time for installation 1 is somewhat more com-
plicated than for installation 2. Q2 units need to be withdrawn from the inventory of instal-
lation 1 to supply installation 2 each time installation 2 needs to add Q2 units to replenish
its inventory. This necessitates replenishing the inventory of installation 1 occasionally, so
an order quantity of Q1 units is placed periodically. Using the same kind of reasoning as
employed in the preceding section (including in Figs. 18.4 and 18.5), the deterministic na-
ture of our model implies that installation 1 should replenish its inventory only at the
instant when its inventory level is zero and it is time to make a withdrawal from the
inventory in order to supply installation 2. The reasoning involves checking what would
happen if installation 1 were to replenish its inventory any later or any earlier than this in-
stant. If the replenishment were any later than this instant, installation 1 could not supply
installation 2 in time to continue following the optimal inventory policy there, so this is
unacceptable. If the replenishment were any earlier than this instant, installation 1 would
incur the extra cost of holding this inventory until it is time to supply installation 2, so it
is better to delay the replenishment at installation 1 until this instant. This leads to the fol-
lowing insight.

An optimal policy should have Q1 � nQ2 where n is a fixed positive integer. Furthermore,
installation 1 should replenish its inventory with a batch of Q1 units only when its inven-
tory level is zero and it is time to supply installation 2 with a batch of Q2 units.

Time

Inventory level
at installation 1

Q
1 

− Q
2
 

Q
1 

− 2Q
2

Q
1

Echelon stock, item 1

Installation stock, item 1

Inventory level
at installation 2

0

Installation stock = echelon stock, item 2

Q
2

Time

0
■ FIGURE 18.8
The synchronized inventory
levels at the two installations
when Q1 � 3Q2. The
installation stock is the stock
that is physically being held
at the installation, whereas
the echelon stock includes
both the installation stock
and the stock of the same
item that already is
downstream at the next
installation (if any).
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This is the kind of policy depicted in Fig. 18.8, which shows the case where n � 3. In
particular, each time installation 1 receives a batch of Q1 units, it simultaneously supplies
installation 2 with a batch of Q2 units, so the amount of stock left on hand (called the in-
stallation stock) at installation 1 becomes (Q1 � Q2) units. After later supplying installa-
tion 2 with two more batches of Q2 units, Fig. 18.8 shows that the next cycle begins with
installation 1 receiving another batch of Q1 units at the same time as when it needs to
supply installation 2 with yet another batch of Q2 units.

The dashed line in the top part of Fig. 18.8 shows another quantity called the echelon
stock for installation 1.

The echelon stock of a particular item at any installation in a multiechelon inventory sys-
tem consists of the stock of the item that is physically on hand at the installation (referred
to as the installation stock) plus the stock of the same item that already is downstream (and
perhaps incorporated into a more finished product) at subsequent echelons of the system.

Since the stock of item 1 at installation 1 is shipped periodically to installation 2, where it
is transformed immediately into item 2, the echelon stock at installation 1 in Fig. 18.8 is
the sum of the installation stock there and the inventory level at installation 2. At time 0,
the echelon stock of item 1 at installation 1 is Q1 because (Q1 � Q2) units remain on hand
and Q2 units have just been shipped to installation 2 to replenish the inventory there. As
the constant demand rate at installation 2 withdraws inventory there accordingly, the ech-
elon stock of item 1 at installation 1 decreases at this same constant rate until the next
shipment of Q1 units is received there. If the echelon stock of item 1 at installation 1 were
to be plotted over a longer period than shown in Fig. 18.8, you would see the same saw-
tooth pattern of inventory levels as in Fig. 18.1.

You will see soon that echelon stock plays a fundamental role in the analysis of mul-
tiechelon inventory systems. The reason is that the saw-tooth pattern of inventory levels
for echelon stock enables using an analysis similar to that for the basic EOQ model.

Since the objective is to minimize the sum of the variable costs per unit time at the two
installations, the easiest (and commonly used) approach would be to solve separately for the
values of Q2 and Q1 � nQ2 that minimize the total variable cost per unit at installation 2 and
installation 1, respectively. Unfortunately, this approach overlooks (or ignores) the connections
between the variable costs at the two installations. Because the batch size Q2 for item 2
affects the pattern of inventory levels for item 1 at installation 1, optimizing Q2 separately
without considering the consequences for item 1 does not lead to an overall optimal solution.

To better understand this subtle point, it may be instructive to begin by optimizing
separately at the two installations. We will do this and then demonstrate that this can lead
to fairly large errors.

The Trap of Optimizing the Two Installations Separately. Let us begin by op-
timizing installation 2 by itself. Since the assumptions for installation 2 fit the basic EOQ
model precisely, the results presented in Sec. 18.3 for this model can be used directly. The
total variable cost per unit time at this installation is

C2 � �
d
Q
K

2

2� � �
h2

2
Q2�.

(This expression for total variable cost differs from the one for total cost given in Sec. 18.3
for the basic EOQ model by deleting the fixed cost, dc, where c is the unit cost of acquir-
ing the item.) The EOQ formula indicates that the optimal order quantity for this installa-
tion by itself is

Q*2� ��
2d

h
K

2

2��,
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so the resulting value of C2 with Q2 � Q*2 is

C*2 � �2dK2h�2�.

Now consider installation 1 with an order quantity of Q1 � nQ2. Figure 18.8 indi-
cates that the average inventory level of installation stock is (n � 1)Q2/2. Therefore, since
installation 1 needs to replenish its inventory with Q1 units every Q1/d � nQ2/d units of
time, the total variable cost per unit time at installation 1 is

C1 � �
n
d
Q
K1

2
� � �

h1(n �
2

1)Q2�.

To find the order quantity Q1 � nQ2 that minimizes C1, given Q2 � Q*2, we need to solve
for the value of n that minimizes C1. Ignoring the requirement that n be an integer, this
is done by differentiating C1 with respect to n, setting the derivative equal to zero (while
noting that the second derivative is positive for positive n), and solving for n, which
yields

n*� �
Q

1

2
*� ��

2d
h
K
1

1�� � ��
K
K

1

2

h
h

2

1
��.

If n* is an integer, then Q1 � n*Q*2 is the optimal order quantity for installation 1, given
Q2 � Q*2. If n* is not an integer, then n* needs to be rounded either up or down to an in-
teger. The rule for doing this is the following.

Rounding Procedure for n*

If n* � 1, choose n � 1.
If n* � 1, let [n*] be the largest integer 
 n*, so [n*] 
 n* � [n*] � 1, and then

round as follows.

If �
[

n

n

*
*]
� 
 �

[n*]

n*
� 1
�, choose n � [n*].

If �
[

n

n

*
*]
� � �

[n*]

n*
� 1
�, choose n � [n*] � 1.

The formula for n* indicates that its value depends on both K1/K2 and h2/h1. If both
of these quantities are considerably greater than 1, then n* also will be considerably greater
than 1. Recall that assumption 6 of the model is that h1 � h2. This implies that h2/h1 ex-
ceeds 1, perhaps substantially so. The reason assumption 6 usually holds is that item 1
normally increases in value when it gets converted into item 2 (the final product) after
item 1 is transferred to installation 2 (the location where the demand can be met for the
final product). This means that the cost of capital tied up in each unit in inventory (usually
the main component in holding costs) also will increase as the units move from installa-
tion 1 to installation 2. Similarly, if a production run needs to be set up to produce each
batch at installation 1 (so K1 is large), whereas only a relatively small administrative cost
of K2 is required for installation 2 to place each order, then K1/K2 will be considerably
greater than 1.

The flaw in the above analysis comes in the first step when choosing the order quan-
tity for installation 2. Rather than considering only the costs at installation 2 when doing
this, the resulting costs at installation 1 also should have been taken into account. Let us
turn now to the valid analysis that simultaneously considers both installations by mini-
mizing the sum of the costs at the two locations.
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Optimizing the Two Installations Simultaneously. By adding the costs at the
individual installations obtained above, the total variable cost per unit time at the two
installations is

C � C1 � C2 � ��
K
n

1� � K2��
Q
d

2
� � [(n – 1)h1 � h2]�

Q
2

2�.

The holding costs on the right have an interesting interpretation in terms of the holding
costs for the echelon stock at the two installations. In particular, let

e1 � h1 � echelon holding cost per unit per unit time for installation 1,
e2 � h2 – h1 � echelon holding cost per unit per unit time for installation 2.

Then the holding costs can be expressed as

[(n � 1)h1 � h2] �
Q
2

2� � h1�
nQ

2
2� � (h2 � h1)�

Q
2

2�

� e1�
Q
2

1� � e2�
Q
2

2�,

where Q1/2 and Q2/2 are the average inventory levels of the echelon stock at installa-
tions 1 and 2, respectively. (See Fig. 18.8.) The reason that e2 � h2 – h1 rather than
e2 � h2 is that e1Q1/2 � h1Q1/2 already includes the holding cost for the units of item
1 that are downstream at installation 2, so e2 � h2 – h1 only needs to reflect the value
added by converting the units of item 1 to units of item 2 at installation 2. (This con-
cept of using echelon holding costs based on the value added at each installation will
play an even more important role in our next model where there are more than two
echelons.)

Using these echelon holding costs, we now have

C � ��
K
n

1� � K2��
Q
d

2
� � (ne1 � e2)�

Q
2

2�.

Differentiating with respect to Q2, setting the derivative equal to zero (while verifying that
the second derivative is positive for positive Q2), and solving for Q2 yields

Q*
2 ���

as the optimal order quantity (given n) at installation 2. Note that this is identical to the
EOQ formula for the basic EOQ model where the total setup cost is K1/n � K2 and the
total unit holding cost is ne1 � e2.

Inserting this expression for Q*
2 into C and performing some algebraic simplification

yields

C � �2d��
K
n

1� � K2��(ne1 � e2)�.

To solve for the optimal value of the order quantity at installation 1, Q1 � nQ*2, we need
to find the value of n that minimizes C. The usual approach for doing this would be to
differentiate C with respect to n, set this derivative equal to zero, and solve for n. However,
because the expression for C involves taking a square root, doing this directly is not very
convenient. A more convenient approach is to get rid of the square root sign by squaring
C and minimizing C2 instead, since the value of n that minimizes C 2 also is the value
that minimizes C. Therefore, we differentiate C2 with respect to n, set this derivative equal

2d��
K
n

1� � K2�
��

ne1 �e2
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to zero, and solve this equation for n. Since the second derivative is positive for positive n,
this yields the minimizing value of n as

n* � ��
K
K

1

2

e
e

2

1
��.

This is identical to the expression for n* obtained in the preceding subsection except that
h1 and h2 have been replaced here by e1 and e2, respectively. When n* is not an integer,
the procedure for rounding n* to an integer also is the same as described in the preced-
ing subsection.

Obtaining n in this way enables calculating Q*2 with the above expression and then
setting Q*1 � nQ*2.

An Example. To illustrate these results, suppose that the parameters of the model are 

K1 � $1,000, K2 � $100, h1 � $2, h2 � $3, d � 600.

Table 18.1 gives the values of Q*2, n*, n (the rounded value of n*), Q*1, and C* (the re-
sulting total variable cost per unit time) when solving in the two ways described in this
section. Thus, the second column gives the results when using the imprecise approach of
optimizing the two installations separately, whereas the third column uses the valid method
of optimizing the two installations simultaneously.

Note that simultaneous optimization yields rather different results than separate op-
timization. The biggest difference is that the order quantity at installation 2 is nearly twice
as large. In addition, the total variable cost C* is nearly 3 percent smaller. With different
parameter values, the error from separate optimization can sometimes lead to a consider-
ably larger percentage difference in the total variable cost. Thus, this approach provides
a pretty rough approximation. There is no reason to use it since simultaneous optimiza-
tion can be performed just as readily.

A Model for a Serial Multiechelon System

We now will extend the preceding analysis to serial systems with more than two echelons.
Figure 18.9 depicts this kind of system, where installation 1 has its inventory replenished
periodically, then the inventory at installation 1 is used to replenish the inventory at in-
stallation 2 periodically, then installation 2 does the same for installation 3, and so on
down to the final installation (installation N). Some or all of the installations might be
processing centers that process the items received from the preceding installation and
transform them into something closer to the finished product. Installations also are used
to store items until they are ready to be moved to the next processing center or to the next
storage facility that is closer to the customers for the final product. Installation N does
any needed final processing and also stores the final product at a location where it can
immediately meet the demand for that product on a continuous basis.

■ TABLE 18.1 Application of the serial two-echelon model to the example

Separate Optimization Simultaneous Optimization
Quantity of the Installations of the Installations

Q*
2 200 379

n* �15� �5�
n 4 2

Q*
1 800 758

C* $1,950 $1,897
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Since the items may be different at the different installations as they are being
processed into something closer to the finished product, we will refer to them as item 1
while they are at installation 1, item 2 while at installation 2, and so forth. The units of
the different items are defined so that exactly one unit of the item from one installation
is needed to obtain one unit of the next item at the next installation.

Our model for a serial multiechelon inventory system is a direct generalization of the
preceding one for a serial two-echelon inventory system, as indicated by the following as-
sumptions for the model.

Assumptions for Serial Multiechelon Model

1. The assumptions of the basic EOQ model (see Sec. 18.3) hold at installation N. Thus,
there is a known constant demand of d units per unit time, an order quantity of QN

units is placed in time in replenish inventory when the inventory level drops to zero,
and planned shortages are not allowed.

2. An order quantity of Q1 units is placed in time to replenish inventory at installation 1
before a shortage would occur.

3. Each installation except installation N uses its inventory to periodically replenish the
inventory of the next installation. Thus, installation i (i � 1, 2, . . . , N � 1) provides
a batch of Qi�1 units to installation (i � 1) immediately each time an order is received
from installation (i � 1).

4. The relevant costs at each installation i (i � 1, 2, . . . , N) are a setup cost of Ki each
time an order is placed and a holding cost of hi per unit per unit time.

5. The units increase in value each time they are received and processed at the next in-
stallation, so h1 � h2 � � � � � hN.

6. The objective is to minimize the sum of the variable costs per unit time at the N in-
stallations. (This will be denoted by C.)

The word “immediately” in assumption 3 implies that there is essentially zero lead
time between when an installation places an order and the preceding installation fills that
order, although a positive lead time that is fixed causes no complication. With zero lead
time, Fig. 18.10 extends Fig. 18.8 to show how the inventory levels would vary
simultaneously at the installations when there are four installations instead of only two.
In this case, Qi � 2Qi�1 for i � 1, 2, 3, so each of the first three installations needs to
replenish its inventory once for every two times it replenishes the inventory of the next
installation. Consequently, when a complete cycle of replenishments at all four installa-
tions begins at time 0, Fig. 18.10 shows an order of Q1 units arriving at installation 1
when the inventory level had been zero. Half of this order then is immediately used to
replenish the inventory at installation 2. Installation 2 then does the same for installation
3, and installation 3 does the same for installation 4. Therefore, at time 0, some of the
units that just arrived at installation 1 get transferred downstream as far as to the last in-
stallation as quickly as possible. The last installation then immediately starts using its
replenished inventory of the final product to meet the demand of d units per unit time
for that product.

1 2 N.    .    .

Inventory at
installation 1

Inventory at
installation 2

Inventory at
installation N

■ FIGURE 18.9
A serial multiechelon
inventory system.
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Recall that the echelon stock at installation 1 is defined as the stock that is physically
on hand there (the installation stock) plus the stock that already is downstream (and perhaps
incorporated into a more finished product) at subsequent echelons of the inventory system.
Therefore, as the dashed lines in Fig. 18.10 indicate, the echelon stock at installation 1 be-
gins at Q1 units at time 0 and then decreases at the rate of d units per unit time until it is
time to order another batch of Q1 units, after which the saw-tooth pattern continues. The
echelon stock at installations 2 and 3 follow the same saw-tooth pattern, but with shorter
cycles. The echelon stock coincides with the installation stock at installation 4, so the ech-
elon stock again follows a saw-tooth pattern there.

Time

Inventory level
(installation 1)

Q
1 

− Q
2

Q
1

Echelon stock

Installation stock

0

Inventory level
(installation 4)

0

Q
4

Time

Time

Q
2

Q
2 

− Q
3

Inventory level
(installation 2)

Q
3

Q
3 

 − Q
4

Time

Inventory level
(installation 3)

0

0

■ FIGURE 18.10
The synchronized inventory
level at four installations 
(N � 4) when Qi � 2Qi�1
(i � 1, 2, 3), where the solid
lines show the levels of the
installation stock and the
dashed lines do the same 
for the echelon stock.
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This saw-tooth pattern in the basic EOQ model in Sec. 18.3 made the analysis par-
ticularly straightforward. For the same reason, it is convenient to focus on the echelon
stock instead of the installation stock at the respective installations when analyzing the
current model. To do this, we need to use the echelon holding costs,

e1 � h1, e2 � h2 – h1, e3 � h3 – h2, . . . , eN � hN – hN – 1,

where ei is interpreted as the holding cost per unit per unit time on the value added by
converting item (i – 1) from installation (i – 1) into item i at installation i.

Figure 18.10 assumes that the replenishment cycles at the respective installations are
carefully synchronized so that, for example, a replenishment at installation 1 occurs at
the same time as some of the replenishments at the other installations. This makes sense
since it would be wasteful to replenish inventory at an installation before that inventory
is needed. To avoid having inventory left over at the end of a replenishment cycle at an
installation, it also is logical to order only enough to supply the next installation an in-
teger number of times.

An optimal policy should have Qi � niQi�1 (i � 1, 2, . . . , N – 1), where ni is a positive
integer, for any replenishment cycle. (The value of ni can be different for different re-
plenishment cycles.) Furthermore, installation i (i � 1, 2, . . . , N – 1) should replenish its
inventory with a batch of Qi units only when its inventory level is zero and it is time to
supply installation (i � 1) with a batch of Qi � 1 units.

A Revised Problem That Is Easier to Solve. Unfortunately, it is surprisingly diffi-
cult to solve for an optimal solution for this model when N � 2. For example, an optimal
solution can have order quantities that change from one replenishment cycle to the next
at the same installation. Therefore, two simplifying approximations normally are made to
derive a solution.

Simplifying Approximation 1: Assume that the order quantity at an installa-
tion must be the same on every replenishment cycle. Thus, Qi � niQi�1 (i � 1,
2, . . . , N – 1), where ni is a fixed positive integer.

Simplifying Approximation 2: ni � 2mi (i � 1, 2, . . . , N – 1), where mi is a
nonnegative integer, so the only values considered for ni are 1, 2, 4, 8, . . . .

In effect, these simplifying approximations revise the original problem by imposing some
new constraints that reduce the size of the feasible region that needs to be considered.
This revised problem has some additional structure (including the relatively simple cyclic
schedule implied by simplifying approximation 2) that makes it considerably easier to
solve than the original problem. Furthermore, it has been shown that an optimal solution
for the revised problem always is nearly optimal for the original problem, because of the
following key result.

Roundy’s 98 Percent Approximation Property: The revised problem is
guaranteed to provide at least a 98 percent approximation of the original problem
in the following sense. The amount by which the cost of an optimal solution for
the revised problem exceeds the cost of an optimal solution for the original prob-
lem never is more than 2 percent (and usually will be much less). Specifically, if

C* � total variable cost per unit time of an optimal solution for the original
problem,

C� � total variable cost per unit time of an optimal solution for the revised problem,

then

C� – C* 
 0.02 C*.
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This often is referred to as Roundy’s 98 percent approximation because the formulation
and proof of this fundamental property (which also holds for some more general types of
multiechelon inventory systems) was developed by Professor Robin Roundy of Cornell
University.6

One implication of the two simplifying approximations is that the order quantities for
the revised problem must satisfy the weak inequalities,

Q1 � Q2 � 	 	 	 � QN.

The procedure for solving the revised problem has two phases, where these inequalities
play a key role in phase 1. In particular, consider the following variation of both the orig-
inal problem and the revised problem.

A Relaxation of the Problem: Continue to assume that the order quantity at
an installation must be the same on every replenishment cycle. However, replace
simplifying approximation 2 by the less restrictive requirement that Q1 � Q2

� 	 	 	 � QN. Thus, the only restriction on ni in simplifying approximation 1 is
that each ni � 1 (i � 1, 2, . . . , N � 1), without even requiring that ni be an in-
teger. When ni is not an integer, the resulting lack of synchronization between
the installations is ignored. It is instead assumed that each installation satisfies
the basic EOQ model with inventory being replenished when the echelon in-
ventory level reaches zero, regardless of what the other installations do, so that
the installations can be optimized separately.

Although this relaxation is not a realistic representation of the real problem because it ig-
nores the need to coordinate replenishments at the installations (and so understates the
true holding costs), it provides an approximation that is very easy to solve.

Phase 1 of the solution procedure for solving the revised problem consists of solving
the relaxation of the problem. Phase 2 then modifies this solution by reimposing simpli-
fying approximation 2.

The weak inequalities, Qi � Qi�1 (i � 1, 2, . . . , N � 1), allow for the possibility
that Qi � Qi�1. (This corresponds to having mi � 0 in simplifying approximation 2.) As
suggested by Fig. 18.10, if Qi � Qi�1, whenever installation (i � 1) needs to replenish its
inventory with Qi�1 units, installation i needs to simultaneously order the same number
of units and then (after any necessary processing) immediately transfer the entire batch
to installation (i � 1). Therefore, even though these are separate installations in reality,
for modeling purposes, we can treat them as a single combined installation which is placing
one order for Qi � Qi�1 units with a setup cost of Ki � Ki�1 and an echelon holding cost
of ei � ei�1. This merging of installations (for modeling purposes) is incorporated into
phase 1 of the solution procedure.

We describe and outline the two phases of the solution procedure in turn below.

Phase 1 of the Solution Procedure. Recall that assumption 6 for the model indi-
cates that the objective is to minimize C, the total variable cost per unit time for all the
installations. By using the echelon holding costs, the total variable cost per unit time at
installation i is

Ci � �
d
Q
K

i

i�� �
ei

2
Qi�, for i � 1, 2, . . . , N,

so that

C � 	
N

i�1
Ci.

6R. Roundy, “A 98%-Effective Lot-Sizing Rule for a Multi-Product, Multi-Stage Production/Inventory System,”
Mathematics of Operations Research, 11: 699–727, 1986.
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(This expression for Ci assumes that the echelon inventory is replenished just as its level
reaches zero, which holds for the original and revised problems, but is only an approxi-
mation for the relaxation of the problem because the lack of coordination between instal-
lations in setting order quantities tends to lead to premature replenishments.) Note that Ci

is just the total variable cost per unit time for a single installation that satisfies the basic
EOQ model when ei is the relevant holding cost per unit time at the installation. Therefore,
by first solving the relaxed problem, which only requires optimizing the installations sep-
arately (when using echelon holding costs instead of installation holding costs), the EOQ
formula simply would be used to obtain the order quantity at each installation. It turns out
that this provides a reasonable first approximation of the optimal order quantities when
optimizing the installations simultaneously for the revised problem. Therefore, applying
the EOQ formula in this way is the key step in phase 1 of the solution procedure. Phase 2
then applies the needed coordination between the order quantities by applying simpli-
fying approximation 2.

When applying the EOQ formula to the respective installations, a special situation
arises when Ki/ei � Ki�1/ei�1, since this would lead to Qi

* � Q*
i�1, which is prohibited by

the relaxation of the problem. To satisfy the relaxation, which requires that Qi � Qi�1,
the best that can be done is to set Qi � Qi�1. As described at the end of the preceding
subsection, this implies that the two installations should be merged for modeling purposes.

Outline of Phase 1 (Solve the Relaxation)

1. If �
K
ei

i� � �
K
ei

i

�

�

1

1� for any i � 1, 2, . . . , N � 1, treat installations i and i � 1 as a single
merged installation (for modeling purposes) with a setup cost of Ki � Ki�1 and an ech-
elon holding cost of ei � ei�1 per unit per unit time. After the merger, repeat this step
as needed for any other pairs of consecutive installations (which might include a merged
installation). Then renumber the installations accordingly with N reset as the new to-
tal number of installations.

2. Set

Qi � ��
2d

e
K

i

i��, for i � 1, 2, . . . , N.

3. Set

Ci � �
d
Q
K

i

i� � �
ei

2
Qi�, for i � 1, 2, . . . , N,

C
�

� 	
N

i�1
Ci.

Phase 2 of the Solution Procedure. Phase 2 now is used to coordinate the order quan-
tities to obtain a convenient cyclic schedule of replenishments, such as the one illustrated in
Fig. 18.10. This is done mainly by rounding the order quantities obtained in phase 1 to fit
the pattern prescribed in the simplifying approximations. After tentatively determining the
values of ni � 2mi such that Qi � niQi�1 in this way, the final step is to refine the value of
QN to attempt to obtain an overall optimal solution for the revised problem.

This final step involves expressing each Qi in terms of QN. In particular, given each
ni such that Qi � niQi�1, let pi be the product,

pi � nini�1 	 	 	 nN�1, for i � 1, 2, . . . , N � 1,

so that

Qi � piQN, for i � 1, 2, . . . , N � 1,
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where pN � 1. Therefore, the total variable cost per unit time at all the installations is

C � 	
N

i�1

�p

d

iQ
K

N

i� � �
eip

2
iQN��.

Since C includes only the single order quantity QN, this expression also can be interpreted
as the total variable cost per unit time for a single inventory facility that satisfies the ba-
sic EOQ model with a setup cost and unit holding cost of

Setup cost � 	
N

i�1
�
d
p
K

i

i�, Unit holding cost � 	
N

i�1
eipi.

Hence, the value of QN that minimizes C is given by the EOQ formula as 

Q*
N ���.

Because this expression requires knowing the ni, phase 2 begins by using the value
of QN calculated in phase 1 as an approximation of Q*N, and then uses this QN to deter-
mine the ni (tentatively), before using this formula to calculate Q*N.

Outline of Phase 2 (Solve the Revised Problem)

1. Set Q*N to the value of QN obtained in phase 1.
2. For i � N � 1, N – 2, . . . , 1 in turn, do the following. Using the value of Qi obtained

in phase 1, determine the nonnegative integer value of m such that

2mQ*i�1 
 Qi � 2m�1Q*i�1.

If �
2m

Q
Q

i

i*�1
� 
 �

2m�

Q

1Q
i

*i�1�, set ni � 2m and Q*i � niQ*i�1.

If �
2m

Q
Q

i

i*�1
� � �

2m�

Q

1Q
i

*i�1�, set ni � 2m+1 and Q*i � niQ*i�1.

3. Use the values of the ni obtained in step 2 and the above formulas for pi and Q*N
to calculate Q*N. Then use this Q*N to repeat step 2.7 If none of the ni change, use
(Q*1, Q*2, . . . , Q*N) as the solution for the revised problem and calculate the cor-
responding cost C�. If any of the ni did change, repeat step 2 (starting with the cur-
rent Q*N) and then step 3 one more time. Use the resulting solution and calculate C�.

This procedure provides a very good solution for the revised problem. Although the
solution is not guaranteed to be optimal, it often is and, if not, it should be close. Since
the revised problem is itself an approximation of the original problem, obtaining such a
solution for the revised problem is very adequate for all practical purposes. Available the-
ory guarantees that this solution will provide a good approximation of an optimal solution
for the original problem.

Recall that Roundy’s 98 percent approximation property guarantees that the cost of an
optimal solution for the revised problem is within 2 percent of C*, the cost of the unknown
optimal solution for the original problem. In practice, this difference usually is far less

2d	
N

i�1
�
K
pi

i�

�

	
N

i�1
eipi

7A possible complication that would prevent repeating step 2 is if QN–1 � Q*N with this new value of Q*N. If this
occurs, you can simply stop and use the previous value of (Q*1, Q*2, . . . , Q*N) as the solution for the revised
problem. This same provision also applies for a subsequent attempt to repeat step 2.
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than 2 percent. If the solution obtained by the above procedure is not optimal for the re-
vised problem, Roundy’s results still guarantee that its cost C� is within 6 percent of C*.
Again, the actual difference in practice usually is far less than 6 percent and often is con-
siderably less than 2 percent.

It would be nice to be able to check how close C� is on any particular problem even
though C*is unknown. The relaxation of the problem provides an easy way of doing this.
Because the relaxed problem does not require coordinating the inventory replenishments
at the installations, the cost that is calculated for its optimal solution C

�
is a lower bound

on C*. Furthermore, C
�

normally is extremely close to C*. Therefore, checking how close
C� is to C

�
gives a conservative estimate of how close C� must be to C*, as summarized

below.

Cost Relationships: C
�


 C* 
 C�, so C� � C* 
 C� � C
�

, where 
C
�

� cost of an optimal solution for the relaxed problem,
C*� cost of an (unknown) optimal solution for the original problem,
C� � cost of the solution obtained for the revised problem.

You will see in the following rather typical example that, because C� � 1.0047C
�

for
the example, it is known that C� is within 0.47 percent of C*.

An Example. Consider a serial system with four installations that have the setup costs
and unit holding costs shown in Table 18.2.

The first step in applying the model is to convert the unit holding cost hi at each in-
stallation into the corresponding unit echelon holding cost ei that reflects the value added
at each installation. Thus,

e1 � h1 � $0.50, e2 � h2 – h1 � $0.05,
e3 � h3 – h2 � $3, e4 � h4 – h3 � $4.

We now can apply step 1 of phase 1 of the solution procedure to compare each Ki/ei

with Ki�1/ei�1.

�
K
e1

1� � 500, �
K
e2

2� � 120, �
K
e3

3� � 10, �
K
e4

4� � 27.5

These ratios decrease from left to right with the exception that

�
K
e3

3� � 10 � �
K
e4

4� � 27.5,

so we need to treat installations 3 and 4 as a single merged installation for modeling pur-
poses. After combining their setup costs and their echelon holding costs, we now have the
adjusted data shown in Table 18.3.

Using the adjusted data, Table 18.4 shows the results of applying the rest of the so-
lution procedure to this example.

■ TABLE 18.2 Data for the example of a four-echelon 
inventory system

Installation i Ki hi d � 4,000

1 $250 $0.50
2 $6 $0.55
3 $30 $3.55
4 $110 $7.55
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The second and third columns present the straightforward calculations from steps 2
and 3 of phase 1. For step 1 of phase 2, Q3 � 400 in the second column is carried over
to Q*3 � 400 in the fourth column. For step 2, we find that

21Q*3 � Q2 � 22Q*3

since

2(400) � 800 � 980 � 4(400) � 1600.

Because

�
2
Q
1Q

2

*3
� � �

9
8
8
0
0
0

� � �
1
9
6
8
0
0
0

� � �
2
Q

2Q*3
2

�,

we set n2 � 21 � 2 and Q*2 � n2Q*3 � 800. Similarly, we set n1 � 21 � 2 and Q*1 �
n1Q*2 � 1,600, since

2(800) � 1,600 � 2,000 � 4(800)� 3,200 and �
2
1
,
,
0
6
0
0
0
0

� � �
3
2
,
,
2
0
0
0
0
0

�.

After calculating the corresponding Ci, the fourth and fifth columns of the table summa-
rize these results from applying only steps 1 and 2 of phase 2.

The last two columns of the table then summarize the results from completing the
solution procedure by applying step 3 of phase 2. Since p1 � n1n2 � 4 and p2 � n2 � 2,
the formula for Q*N yields Q*3 � 425 as the value of Q3 that is part of the overall optimal
solution for the revised problem. Repeating step 2 with this new Q*3 again yields n2 � 2
and n1 � 2, so Q*2 � n2Q*3 � 850 and Q*1 � n1Q*2 � 1,700. Because n2 and n1 did not
change from the first time through step 2, we indeed now have the desired solution for
the revised problem, so the Ci are calculated accordingly. (This solution is, in fact, opti-
mal for the revised problem.)

Keep in mind that the original installations 3 and 4 have been merged only for
modeling purposes. They presumably will continue to be physically separate installations.

■ TABLE 18.3 Adjusted data for the four-echelon 
example after merging installations 
3 and 4 for modeling purposes

Installation i Ki ei d � 4,000

1 $250 $0.50
2 $6 $0.05
3(� 4) $140 $7

■ TABLE 18.4 Results from applying the solution procedure 
to the four-echelon example

Solution of Initial Solution of Final Solution of
Relaxed Problem Revised Problem Revised Problem

Installation i Qi Ci Qi
* Ci Qi

* Ci

1 2,000 $1,000 1,600 $1,025 1,700 $1,013
2 980 $49 800 $50 850 $49
3(� 4) 400 $2,800 400 $2,800 425 $2,805

C
�

� $3,849 C � $3,875 C� � $3,867

hil76299_ch18_828-904.qxd  11/14/08  11:24 AM  Page 863



Confirming Pages

864 CHAPTER 18 INVENTORY THEORY

Therefore, the conclusion in the sixth column of the table that Q*3 � 425 actually means
that both installations 3 and 4 will have an order quantity of 425. As soon as installation
3 receives and processes each such order, it then will immediately transfer the entire batch
to installation 4.

The bottom of the third, fifth, and seventh columns of the table show the total vari-
able cost per unit time for the corresponding solutions. The cost C in the fifth column
is 0.68 percent above C

�
in the third column, whereas C� in the seventh column is only

0.47 percent above C
�

. Since C
�

is a lower bound on C*, the cost of the (unknown) opti-
mal solution for the original problem, this means that stopping after step 2 of phase 2 pro-
vided a solution that is within 0.68 percent of C*, whereas the refinement from going on
to step 3 of phase 2 improved the solution to within 0.47 percent of C*.

Extensions of These Models

The two models presented previously in this section are both for serial inventory systems. As
depicted earlier in Fig. 18.9, this restricts each installation (after the first one) to having only
a single immediate predecessor that replenishes its inventory. By the same token, each instal-
lation (before the last one) replenishes the inventory of only a single immediate successor.

Many real multiechelon inventory systems are more complicated than this. An in-
stallation might have multiple immediate successors, such as when a factory supplies
multiple warehouses or when a warehouse supplies multiple retailers. Such an inventory
system is called a distribution system. Figure 18.11 shows a typical distribution inven-
tory system for a particular product. In this case, this product (among others) is produced
at a single factory, which sets up a quick production run each time it needs to replenish
its inventory of the product. This inventory is used to supply several warehouses in dif-
ferent regions, replenishing their inventories of the product when needed. Each of these
warehouses in turn supply several retailers within its region, replenishing their invento-
ries of the product when needed. If each retailer has (roughly) a known constant demand

Inventory
at a factory

Inventories
at warehouses

Inventories
at retailers

1

2

3

4

5

6

7

8

9

10

11

■ FIGURE 18.11
A typical distribution
inventory system.
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rate for the product, an extension of the serial multiechelon model can be formulated for
this distribution inventory system. (We will not pursue this further.)

Another common generalization of a serial multiechelon inventory system arises when
some installations have multiple immediate predecessors, such as when a subassembly
plant receives its components from multiple suppliers or when a factory receives its sub-
assemblies from multiple subassembly plants. Such an inventory system is called an
assembly system. Figure 18.12 shows a typical assembly inventory system. In this case,
a particular product is assembled at an assembly plant, drawing on inventories of sub-
assemblies maintained there to assemble the product. Each of these inventories of a sub-
assembly is replenished when needed by a plant that produces that subassembly, drawing
on inventories of components maintained there to produce the subassembly. In turn, each
of these inventories of a component is replenished when needed by a supplier that peri-
odically produces this component to replenish its own inventory. Under the appropriate
assumptions, another extension of the serial multiechelon model can be formulated for
this assembly inventory system.

Some multiechelon inventory systems also might include both installations that have
multiple immediate successors and installations that have multiple immediate predecessors.
(Some installations might even fall into both categories.) Some of the greatest challenges
of supply chain management come from dealing with these mixed kinds of multiechelon
inventory systems. A particular challenge arises when separate organizations (e.g., sup-
pliers, a manufacturer, and retailers) control different parts of a multiechelon inventory
system, whether it be a mixed system, a distribution system, or an assembly system. In
this case, a key principle of successful supply chain management is that the organizations
should work together, including through the development of mutually beneficial supply
contracts, to optimize the overall operation of the multiechelon inventory system.

Although the analysis of distribution systems and assembly systems presents some ad-
ditional complications, the approach presented here for the serial multiechelon model (in-
cluding Roundy’s 98 percent approximation property) can be extended to these other kinds
of multiechelon inventory systems as well. Details are provided by Selected Reference 6.
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Inventories
at suppliers

Inventories
at subassembly plants

Inventory
at an assembly plant

■ FIGURE 18.12
A typical assembly inventory
system.
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(Also see Selected Reference 1 for additional information about these kinds of inventory
systems, as well as for further details about the models for serial systems.)

Another way to extend our serial multiechelon model is to allow the demand for the
product at installation N to occur randomly rather than at a known constant demand rate.
This is an area of ongoing research.8

■ 18.6 A STOCHASTIC CONTINUOUS-REVIEW MODEL

We now turn to stochastic inventory models, which are designed for analyzing inventory
systems where there is considerable uncertainty about future demands. In this section, we
consider a continuous-review inventory system. Thus, the inventory level is being moni-
tored on a continuous basis so that a new order can be placed as soon as the inventory
level drops to the reorder point.

The traditional method of implementing a continuous-review inventory system was
to use a two-bin system. All the units for a particular product would be held in two bins.
The capacity of one bin would equal the reorder point. The units would first be withdrawn
from the other bin. Therefore, the emptying of this second bin would trigger placing a
new order. During the lead time until this order is received, units would then be with-
drawn from the first bin.

In more recent years, two-bin systems have been largely replaced by computerized
inventory systems. Each addition to inventory and each sale causing a withdrawal are
recorded electronically, so that the current inventory level always is in the computer. (For
example, the modern scanning devices at retail store checkout stands may both itemize
your purchases and record the sales of stable products for purposes of adjusting the cur-
rent inventory levels.) Therefore, the computer will trigger a new order as soon as the in-
ventory level has dropped to the reorder point. Several excellent software packages are
available from software companies for implementing such a system.

Because of the extensive use of computers for modern inventory management, con-
tinuous-review inventory systems have become increasingly prevalent for products that
are sufficiently important to warrant a formal inventory policy.

A continuous-review inventory system for a particular product normally will be based
on two critical numbers:

R � reorder point.
Q � order quantity.

For a manufacturer managing its finished products inventory, the order will be for a pro-
duction run of size Q. For a wholesaler or retailer (or a manufacturer replenishing its raw
materials inventory from a supplier), the order will be a purchase order for Q units of the
product.

An inventory policy based on these two critical numbers is a simple one.

Inventory policy: Whenever the inventory level of the product drops to R units,
place an order for Q more units to replenish the inventory.

Such a policy is often called a reorder-point, order-quantity policy, or (R, Q) policy for
short. [Consequently, the overall model might be referred to as the (R, Q) model. Other vari-
ations of these names, such as (Q, R) policy, (Q, R) model, etc., also are sometimes used.]

8For example, see H. K. Shang and L.-S. Song, “Newsvendor Bounds and Heuristic for Optimal Policies in Se-
rial Supply Chains,” Management Science, 49(5): 618–638, May 2003. Also see X. Chao and S. X. Zhou, “Prob-
abilistic Solution and Bounds for Serial Inventory Systems with Discounted and Average Costs,” Naval Research
Logistics, 54(6): 623–631, Sept. 2007.
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After summarizing the model’s assumptions, we will outline how R and Q can be
determined.

The Assumptions of the Model

1. Each application involves a single product.
2. The inventory level is under continuous review, so its current value always is known.
3. An (R, Q) policy is to be used, so the only decisions to be made are to choose R and Q.
4. There is a lead time between when the order is placed and when the order quantity

is received. This lead time can be either fixed or variable.
5. The demand for withdrawing units from inventory to sell them (or for any other

purpose) during this lead time is uncertain. However, the probability distribution of
demand is known (or at least estimated).

6. If a stockout occurs before the order is received, the excess demand is backlogged,
so that the backorders are filled once the order arrives.

7. A fixed setup cost (denoted by K ) is incurred each time an order is placed.
8. Except for this setup cost, the cost of the order is proportional to the order quantity Q.
9. A certain holding cost (denoted by h) is incurred for each unit in inventory per unit time.

10. When a stockout occurs, a certain shortage cost (denoted by p) is incurred for each
unit backordered per unit time until the backorder is filled.

This model is closely related to the EOQ model with planned shortages presented in
Sec. 18.3. In fact, all these assumptions also are consistent with that model, with the one
key exception of assumption 5. Rather than having uncertain demand, that model assumed
known demand with a fixed rate.

Because of the close relationship between these two models, their results should be
fairly similar. The main difference is that, because of the uncertain demand for the current
model, some safety stock needs to be added when setting the reorder point to provide some
cushion for having well-above-average demand during the lead time. Otherwise, the trade-
offs between the various cost factors are basically the same, so the order quantities from
the two models should be similar.

Choosing the Order Quantity Q

The most straightforward approach to choosing Q for the current model is to simply use the
formula given in Sec. 18.3 for the EOQ model with planned shortages. This formula is

Q � ��
2d

h
K
�� ��

p �

p
h

��,

where d now is the average demand per unit time, and where K, h, and p are defined in
assumptions 7, 9, and 10, respectively.

This Q will be only an approximation of the optimal order quantity for the current model.
However, no formula is available for the exact value of the optimal order quantity, so an ap-
proximation is needed. Fortunately, the approximation given above is a fairly good one.9

Choosing the Reorder Point R

A common approach to choosing the reorder point R is to base it on management’s desired
level of service to customers. Thus, the starting point is to obtain a managerial decision on
service level. (Problem 18.6-3 analyzes the factors involved in this managerial decision.)

9For further information about the quality of this approximation, see S. Axsäter, “Using the Deterministic EOQ
Formula in Stochastic Inventory Control,” Management Science, 42: 830–834, 1996. Also see Y.-S. Zheng, “On
Properties of Stochastic Systems,” Management Science, 38: 87–103, 1992.
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Service level can be defined in a number of different ways in this context, as outlined
below.

Alternative Measures of Service Level.

1. The probability that a stockout will not occur between the time an order is placed and
the order quantity is received.

2. The average number of stockouts per year.
3. The average percentage of annual demand that can be satisfied immediately (no

stockout).
4. The average delay in filling backorders when a stockout occurs.
5. The overall average delay in filling orders (where the delay without a stockout is 0).

Measures 1 and 2 are closely related. For example, suppose that the order quantity Q
has been set at 10 percent of the annual demand, so an average of 10 orders are placed
per year. If the probability is 0.2 that a stockout will occur during the lead time until an
order is received, then the average number of stockouts per year would be 10(0.2) � 2.

Measures 2 and 3 also are related. For example, suppose an average of 2 stockouts
occur per year and the average length of a stockout is 9 days. Since 2(9) � 18 days of
stockout per year are essentially 5 percent of the year, the average percentage of annual
demand that can be satisfied immediately would be 95 percent.

In addition, measures 3, 4, and 5 are related. For example, suppose that the average
percentage of annual demand that can be satisfied immediately is 95 percent and the av-
erage delay in filling backorders when a stockout occurs is 5 days. Since only 5 percent
of the customers incur this delay, the overall average delay in filling orders then would
be 0.05(5) � 0.25 day per order.

A managerial decision needs to be made on the desired value of at least one of these
measures of service level. After selecting one of these measures on which to focus pri-
mary attention, it is useful to explore the implications of several alternative values of this
measure on some of the other measures before choosing the best alternative.

Measure 1 probably is the most convenient one to use as the primary measure, so we
now will focus on this case. We will denote the desired level of service under this mea-
sure by L, so

L � management’s desired probability that a stockout will not occur between the
time an order quantity is placed and the order quantity is received.

Using measure 1 involves working with the estimated probability distribution of the
following random variable.

D � demand during the lead time in filling an order.

For example, with a uniform distribution, the formula for choosing the reorder point R is
a simple one.

If the probability distribution of D is a uniform distribution over the interval from
a to b, set

R � a � L(b � a),

because then

P(D 
 R) � L.

Since the mean of this distribution is

E(D) � �
a �

2
b

�,
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the amount of safety stock (the expected inventory level just before the order quantity is
received) provided by the reorder point R is

Safety stock � R � E(D) � a � L(b � a) � �
a �

2
b

�

� �L � �
1
2

��(b � a).

When the demand distribution is something other than a uniform distribution, the pro-
cedure for choosing R is similar.

General Procedure for Choosing R under Service Level Measure 1.

1. Choose L.
2. Solve for R such that

P(D 
 R) � L.

For example, suppose that D has a normal distribution with mean � and variance
�2, as shown in Fig. 18.13. Given the value of L, the table for the normal distribution
given in Appendix 5 then can be used to determine the value of R. In particular, you just
need to find the value of K1�L in this table and then plug into the following formula to
find R.

R � � � K1�L�.

The resulting amount of safety stock is

Safety stock � R � � � K1�L�.

To illustrate, if L � 0.75, then K1�L � 0.675, so

R � � � 0.675�,

as shown in Fig. 18.13. This provides

Safety stock � 0.675�.

Your OR Courseware also includes an Excel template that will calculate both the
order quantity Q and the reorder point R for you. You need to enter the average demand
per unit time (d ), the costs (K, h, and p), and the service level based on measure 1. You
also indicate whether the probability distribution of the demand during the lead time is
a uniform distribution or a normal distribution. For a uniform distribution, you specify
the interval over which the distribution extends by entering the lower endpoint and upper

P(D     R)     0.75

R              0.675

Demand

■ FIGURE 18.13
Calculation of the reorder
point R for the stochastic
continuous-review model
when L � 0.75 and the
probability distribution of the
demand over the lead time is
a normal distribution with
mean � and standard
deviation �.
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endpoint of this interval. For a normal distribution, you instead enter the mean � and stan-
dard deviation � of the distribution. After you provide all this information, the template
immediately calculates Q and R and displays these results on the right side.

An Example

Consider once again Example 1 (manufacturing speakers for TV sets) presented in Sec. 18.1.
Recall that the setup cost to produce the speakers is K � $12,000, the unit holding cost is
h � $0.30 per speaker per month, and the unit shortage cost is p � $1.10 per speaker per
month.

Originally, there was a fixed demand rate of 8,000 speakers per month to be assem-
bled into television sets being produced on a production line at this fixed rate. However,
sales of the TV sets have been quite variable, so the inventory level of finished sets has
fluctuated widely. To reduce inventory holding costs for finished sets, management has
decided to adjust the production rate for the sets on a daily basis to better match the out-
put with the incoming orders.

Consequently, the demand for the speakers now is quite variable. There is a lead time
of 1 month between ordering a production run to produce speakers and having speakers
ready for assembly into television sets. The demand for speakers during this lead time is
a random variable D that has a normal distribution with a mean of 8,000 and a standard
deviation of 2,000. To minimize the risk of disrupting the production line producing the
TV sets, management has decided that the safety stock for speakers should be large enough
to avoid a stockout during this lead time 95 percent of the time.

To apply the model, the order quantity for each production run of speakers should be

Q � ��
2d

h
K
�� ��

p �
p

h
�� � ��2(8,00�0

0
.
)
3
(1
0
2,0�00)
�� ��

1.1
1
�
.1�0.3
�� � 28,540.

This is the same order quantity that was found by the EOQ model with planned shortages
in Sec. 18.3 for the previous version of this example where there was a constant (rather than
average) demand rate of 8,000 speakers per month and planned shortages were allowed.
However, the key difference from before is that safety stock now needs to be provided to
counteract the variable demand. Management has chosen a service level of L � 0.95, so the
normal table in Appendix 5 gives K1�L � 1.645. Therefore, the reorder point should be

R � � � K1�L� � 8,000 � 1.645(2,000) � 11,290.

The resulting amount of safety stock is

Safety stock � R � � � 3,290.

The Worked Examples section of the book’s website provides another example of
the application of this model when two shipping options with different distributions for
the lead time are available and the less costly option needs to be identified.

■ 18.7 A STOCHASTIC SINGLE-PERIOD MODEL 
FOR PERISHABLE PRODUCTS

When choosing the inventory model to use for a particular product, a distinction should
be made between two types of products. One type is a stable product, which will re-
main sellable indefinitely so there is no deadline for disposing of its inventory. This is
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the kind of product considered in the preceding sections. The other type, by contrast,
is a perishable product, which can be carried in inventory for only a very limited period
of time before it can no longer be sold. This is the kind of product for which the single-
period model (and its variations) presented in this section is designed. In particular, the
single period in the model is the very limited period before the product can no longer
be sold.

One example of a perishable product is a daily newspaper being sold at a newsstand.
A particular day’s newspaper can be carried in inventory for only a single day before it
becomes outdated and needs to be replaced by the next day’s newspaper. When the
demand for the newspaper is a random variable (as assumed in this section), the owner
of the newsstand needs to choose a daily order quantity that provides an appropriate
trade-off between the potential cost of overordering (the wasted expense of ordering more
newspapers than can be sold) and the potential cost of underordering (the lost profit from
ordering fewer newspapers than can be sold). This section’s model enables solving for
the daily order quantity that would maximize the expected profit.

Because the general problem being analyzed fits this example so well, the problem
is often called the newsvendor problem. However, it has always been recognized that the
model being used is just as applicable to other perishable products as to newspapers. In
fact, most of the applications have been to perishable products other than newspapers,
including the examples of perishable products listed below.

Some Types of Perishable Products

As you read through the list below of various types of perishable products, think about
how the inventory management of such products is analogous to a newsstand dealing with
a daily newspaper since these products also cannot be sold after a single time period. All
that may differ is that the length of this time period may be a week, a month, or even sev-
eral months rather than just one day.

1. Periodicals, such as newspapers and magazines.
2. Flowers being sold by a florist.
3. The makings of fresh food to be prepared in a restaurant.
4. Produce, including fresh fruits and vegetables, to be sold in a grocery store.
5. Christmas trees.
6. Seasonal clothing, such as winter coats, where any goods remaining at the end of the

season must be sold at highly discounted prices to clear space for the next season.
7. Seasonal greeting cards.
8. Fashion goods that will be out of style soon.
9. New cars at the end of a model year.

10. Any product that will be obsolete soon.
11. Vital spare parts that must be produced during the last production run of a certain

model of a product (e.g., an airplane) for use as needed throughout the lengthy field
life of that model.

12. Reservations provided by an airline for a particular flight, since the seats available on
the flight can be viewed as the inventory of a perishable product (they cannot be sold
after the flight has occurred).

This last type is a particularly interesting one because major airlines (and various
other companies involved with transporting passengers) now are making extensive use of
operations research to analyze how to maximize their revenue when dealing with this spe-
cial kind of inventory. This special branch of inventory theory (commonly called revenue
management) is the subject of the next section.
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When managing the inventory of these various types of perishable products, it is
occasionally necessary to deal with some considerations beyond those that will be discussed
in this section. Extensive research has been conducted to extend the model to encompass
these considerations, and considerable progress has been made. (Selected Reference 5
provides a literature review of this research.10)

An Example

Refer back to Example 2 in Sec. 18.1, which involves the wholesale distribution of a par-
ticular bicycle model. There now has been a new development. The manufacturer has just
informed the distributor that this model is being discontinued. To help clear out its stock,
the manufacturer is offering the distributor the opportunity to make one final purchase at
very favorable terms, namely, a unit cost of only $200 per bicycle. With these special
arrangements, the distributor also would incur no significant setup cost to place this order.

The distributor feels that this offer provides an ideal opportunity to make one final
round of sales to its customers (bicycle shops) for the upcoming Christmas season for a
reduced price of only $450 per bicycle, thereby making a profit of $250 per bicycle. This
will need to be a one-time sale only because this model soon will be replaced by a new
model that will make it obsolete. Therefore, any bicycles not sold during this sale will
become almost worthless. However, the distributor believes that she will be able to dis-
pose of any remaining bicycles after Christmas by selling them for the nominal price of
$100 each (the salvage value), thereby recovering half of her purchase cost. Considering

10More recent research includes G. Raz and E. L. Porteus, “A Fractiles Perspective to the Joint Price/Quantity
Newsvendor Model,” Management Science, 52(11): 1764–1777, Nov. 2006.

Time Inc. is the largest magazine publisher in the United
States. With a portfolio of more than 125 magazines, one
out of every two American adults reads a Time Inc. mag-
azine each month.

A magazine is a good example of a perishable prod-
uct, given how quickly each issue goes out of date, so
the inventory model described in this section tends to fit
magazines as well. From the viewpoint of Time Inc., this
“newsvendor problem” for each magazine arises at three
different levels—the corporate level, the wholesale level,
and the retail level—but with a complication in each case
that is not fully captured by the assumptions of the
model. At the corporate level, a decision must be made
about the number of copies of the magazine to print, but
where the demand for the magazine is largely determined
by negotiations with the wholesalers rather than a ran-
dom variable. Similarly, each wholesaler must decide
how many copies to take, but where the demand it will
realize for the magazine is largely determined by nego-
tiations with its retailers rather than a random variable.
For each retailer, the demand it will realize for the mag-
azine is indeed a random variable, but the data needed
to make a reasonable estimate of the probability distri-
bution for the random variable may not be available. (For

example, if an issue of the magazine sells out before it
is time for the next issue, the retailer cannot determine
what the demand would have been if an adequate sup-
ply had been available.)

With the help of an OR consultant, a task force drew
on research in inventory management to determine how
to better integrate the decisions being made at the three
levels. Building up from the demand at the grassroots
(retail) level, OR analysis was done to make the best
use of the available data to evaluate each magazine’s
national print order, the wholesaler allotment procedure,
and the retail distribution process. Well-known solutions
for formal inventory models had to be adapted so they
could be implemented within the constraints of the mag-
azine distribution channel. However, this OR study suc-
ceeded in developing a well-designed new three-echelon
distribution process. The adoption of this new process
has resulted in generating incremental profits in excess
of $3.5 million annually for Time Inc.

Source: M. A. Koschat, G. L. Berk, J. A. Blatt, N. M. Kunz,
M. H. LePore, and S. Blyakher: “Newsvendors Tackle the
Newsvendor Problem,” Interfaces, 33(3): 72–84, May–June
2003. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette
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this loss if she orders more than she can sell, as well as the lost profit if she orders fewer
than can be sold, the distributor needs to decide what order quantity to submit to the
manufacturer.

The administrative cost incurred by placing this special order for the Christmas sea-
son is fairly small, so this cost will be ignored until near the end of this section.

Another relevant expense is the cost of maintaining unsold bicycles in inventory
until they can be disposed of after Christmas. Combining the cost of capital tied up in
inventory and other storage costs, this inventory cost is estimated to be $10 per bicycle
remaining in inventory after Christmas. Thus, considering the salvage value of $100 as
well, the unit holding cost is �$90 per bicycle left in inventory at the end.

Two remaining cost components still require discussion, the shortage cost and the
revenue. If the demand exceeds the supply, those customers who fail to purchase a bicy-
cle may bear some ill will, thereby resulting in a “cost” to the distributor. This cost is the
per-item quantification of the loss of goodwill times the unsatisfied demand whenever a
shortage occurs. The distributor considers this cost to be negligible.

If we adopt the criterion of maximizing profit, we must include revenue in the model.
Indeed, the total profit is equal to total revenue minus the costs incurred (the ordering,
holding, and shortage costs). Assuming no initial inventory, this profit for the distri-
butor is

Profit � $450 � number sold by distributor
� $200 � number purchased by distributor
� $90 � number unsold and so disposed of for salvage value.

Let

S � number purchased by distributor
� stock (inventory) level after receiving this purchase (since there is no initial

inventory)

and

D � demand by bicycle shops (a random variable),

so that

min{D, S} � number sold,
max{0, S � D} � number unsold.

Then

Profit � 450 min{D, S} � 200S � 90 max{0, S� D}.

The first term also can be written as

450 min{D, S} � 450D � 450 max{0, D � S}.

The term 450 max{0, D � S} represents the lost revenue from unsatisfied demand.
This lost revenue, plus any cost of the loss of customer goodwill due to unsatisfied demand
(assumed negligible in this example), will be interpreted as the shortage cost throughout
this section.

Now note that 450D is independent of the inventory policy (the value of S chosen)
and so can be deleted from the objective function, which leaves

Relevant profit � �450 max{0, D � S} � 200S � 90 max{0, S � D}

to be maximized. All the terms on the right are the negative of costs, where these costs are
the shortage cost, the ordering cost, and the holding cost (which has a negative value here),
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respectively. Rather than maximizing the negative of total cost, we instead will do the
equivalent of minimizing

Total cost � 450 max{0, D � S} � 200S � 90 max{0, S � D}.

More precisely, since total cost is a random variable (because D is a random variable),
the objective adopted for the model is to minimize the expected total cost.

In the discussion about the interpretation of the shortage cost, we assumed that the
unsatisfied demand was lost (no backlogging). If the unsatisfied demand could be met by
a priority shipment, similar reasoning applies. The revenue component of net income would
become the sales price of a bicycle ($450) times the demand minus the unit cost of the
priority shipment times the unsatisfied demand whenever a shortage occurs. If our whole-
sale distributor could be forced to meet the unsatisfied demand by purchasing bicycles
from the manufacturer for $350 each plus an air freight charge of, say, $20 each, then the
appropriate shortage cost would be $370 per bicycle. (If there were any costs associated
with loss of goodwill, these also would be added to this amount.)

The distributor does not know what the demand for these bicycles will be; i.e., demand
D is a random variable. However, an optimal inventory policy can be obtained if infor-
mation about the probability distribution of D is available. Let

PD(d ) � P{D � d}.

It will be assumed that PD(d ) is known for all values of d � 0, 1, 2, . . . .

We now are in a position to summarize the model in general terms.

The Assumptions of the Model

1. Each application involves a single perishable product.
2. Each application involves a single time period because the product cannot be sold later.
3. However, it will be possible to dispose of any units of the product remaining at the

end of the period, perhaps even receiving a salvage value for the units.
4. There may be some initial inventory on hand going into this time period, as denoted by

I � initial inventory.

5. The only decision to be made is the number of units to order (either through purchasing
or producing) so they can be placed into inventory at the beginning of the period. Thus,

Q � order quantity,
S � stock (inventory) level after receiving this order

� I � Q.

Given I, it will be convenient to use S as the model’s decision variable, which then
automatically determines Q = S – I.

6. The demand for withdrawing units from inventory to sell them (or for any other pur-
pose) during the period is a random variable D. However, the probability distribution
of D is known (or at least estimated).11

11In practice, it commonly is necessary to estimate the probability distribution from a limited amount of past
demand data. Research on how to drop assumption 6 and instead apply the available demand data directly
includes R. Levi, R. O. Roundy, and D. B. Shmoys, “Provably Near-Optimal Sampling-Based Policies for
Stochastic Inventory Control Models,” Mathematics of Operations Research, 32(4): 821–839, Nov. 2007.
Also see L. Y. Chu, J. G. Shanthikumar, and Z.-J. M. Shen, “Solving Operational Statistics Via a Bayesian
Analysis,” Operations Research Letters, 36(1): 110–116, Jan. 2008.
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7. After deleting the revenue if the demand were satisfied (since this is independent of
the decision S), the objective becomes to minimize the expected total cost, where the
cost components are

K � setup cost for purchasing or producing the entire batch of units,

c � unit cost for purchasing or producing each unit,

h � holding cost per unit remaining at end of period (includes storage cost minus
salvage value),

p � shortage cost per unit of unsatisfied demand (includes lost revenue and cost
of loss of customer goodwill).

Analysis of the Model with No Initial Inventory (I � 0)
and No Setup Cost (K � 0)

Before analyzing the model in its full generality, it will be instructive to begin by consider-
ing the simpler case where I � 0 (no initial inventory) and K � 0 (no setup cost). 

The decision on the value of S, the amount of inventory to acquire, depends heavily on
the probability distribution of demand D. More than the expected demand may be desirable,
but probably less than the maximum possible demand. A trade-off is needed between (1) the
risk of being short and thereby incurring shortage costs and (2) the risk of having an excess
and thereby incurring wasted costs of ordering and holding excess units. This is accomplished
by minimizing the expected value (in the statistical sense) of the sum of these costs.

The amount sold is given by

min{D, S} � �
Hence, the cost incurred if the demand is D and S is stocked is given by

C(D, S) � cS � p max{0, D � S} � h max{0, S � D}.

Because the demand is a random variable [with probability distribution PD(d )], this cost
is also a random variable. The expected cost is then given by C(S), where

C(S) � E[C(D, S)] � 	
�

d�0
(cS � p max{0, d � S} � h max{0, S � d})PD(d )

� cS � 	
�

d�S

p(d � S)PD(d ) � 	
S�1

d�0
h( S � d)PD(d ).

The function C(S) depends upon the probability distribution of D. Frequently, a rep-
resentation of this probability distribution is difficult to find, particularly when the demand
ranges over a large number of possible values. Hence, this discrete random variable is often
approximated by a continuous random variable. Furthermore, when demand ranges over
a large number of possible values, this approximation will generally yield a nearly exact
value of the optimal amount of inventory to stock. In addition, when discrete demand is
used, the resulting expressions may become slightly more difficult to solve analytically.
Therefore, unless otherwise stated, continuous demand is assumed throughout the remain-
der of this chapter.

For this continuous random variable D, let

f(x) � probability density function of D

and

F(d) � cumulative distribution function (CDF) of D,

if D � S
if D � S.

D
S
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so

F(d) � �d

0
f(x) dx.

When choosing an inventory level S, the CDF F(d) becomes the probability that a short-
age will not occur before the period ends. As in the preceding section, this probability is
referred to as the service level being provided by the order quantity. The corresponding
expected cost C(S) is expressed as

C(S) � E[C(D, S)] � ��

0
C(x, S) f(x) dx

� ��

0
(cS � p max{0, x � S} � h max{0, S � x}) f(x) dx

� cS � ��

S
p(x � S) f(x) dx � �S

0
h(S � x) f(x) dx.

It then becomes necessary to find the value of S, say S*, which minimizes C( S). Finding
a formula for S* requires a relatively protracted and sophisticated derivation, so we will
only give the answer here. However, the derivation is provided on the book’s website as
a supplement to this chapter for the more mathematically inclined and curious reader.
(This supplement also briefly extends the model to the case where the holding costs and
shortage costs are nonlinear instead of linear functions.)

This supplement shows that the C(S) function has roughly the shape shown in Fig. 18.14,
because it is a convex function (i.e., the second derivative is nonnegative everywhere). In fact,
it is a strictly convex function (i.e., the second derivative is strictly positive everywhere) if
f(x) � 0 for all x � 0. Furthermore, the first derivative becomes positive for sufficiently large
S, so C(S) must possess a global minimum. This global minimum is shown in Fig. 18.14
as S*, so S � S* is the optimal inventory (stock) level to obtain when the order quantity
(Q � S*) is received at the beginning of the period.

In particular, the supplement finds that the optimal inventory level S* is that value
which satisfies

F(S*) � �
p
p

�

�

h
c

�.

C(S)

C(S*)

S* S

■ FIGURE 18.14
Graph of C(S), the expected
cost for the stochastic single-
period model for perishable
products as a function of S
(the inventory level when the
order quantity Q � S – I is
received at the beginning of
the period), given that the
initial inventory is I � 0 and
the setup cost is K � 0.
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Thus, F(S*) is the optimal service level and the corresponding inventory level S* can be
obtained either by solving this equation algebraically or by plotting the CDF and then
identifying S* graphically. To interpret the right-hand side of this equation, the numera-
tor can be viewed as

p � c � unit cost of underordering
� decrease in profit that results from failing to order a unit that could have

been sold during the period.

Similarly,

c � h � unit cost of overordering
� decrease in profit that results from ordering a unit that could not be sold

during the period.

Therefore, denoting the unit cost of underordering and of overordering by Cunder and Cover,
respectively, this equation is specifying that

Optimal service level � �
Cund

C
er

u

�
nde

C
r

over
�.

When the demand has either a uniform or an exponential distribution, an automatic
procedure is available in your IOR Tutorial for calculating S*. A similar Excel template
also is included in this chapter’s Excel files on the book’s website.

If D is assumed to be a discrete random variable having the CDF

F(d) � 	
d

n�0
PD(n),

a similar result is obtained. In particular, the optimal inventory level S* is the smallest in-
teger such that

F(S*) � �
p
p

�

�

h
c

�.

The Worked Examples section of the book’s website provides another example
involving airline overbooking where D is a discrete random variable. The example below
treats D as a continuous random variable.

Application to the Example

Returning to the bicycle example described at the beginning of this section, we assume
that the demand has an exponential distribution with a mean of 10,000, so that its prob-
ability density function is

f(x) � �
and the CDF is

F(d) � �d

0
�
10,

1
000
�e�x/10,000 dx � 1 � e�d/10,000.

From the data given,

c � 200, p � 450, h � �90.

if x � 0

otherwise

�
10,

1
000
�e�x/10,000

0
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Consequently, S* (the optimal inventory level to obtain at the outset to begin meeting the
demand) is that value which satisfies

1 � e�S*/10,000 � � 0.69444.

By using the natural logarithm (denoted by ln), this equation can be solved as follows:

e�S*/10,000 � 0.30556,
ln e�S*/10,000 � ln 0.30556,

�
10

�

,0

S

0

*

0
� � �1.1856,

S* � 11,856.

Therefore, the distributor should stock 11,856 bicycles in the Christmas season. Note that
this number is slightly more than the expected demand of 10,000.

Whenever the demand has an exponential distribution with an expected value of �,
then S* can be obtained from the relation

S* � �� ln �
p
c �

�
h
h

�.

Analysis of the Model with Initial Inventory (I � 0)
but No Setup Cost (K � 0)

Now consider the case where I � 0, so there are already I units in inventory going into
the period but prior to the receipt of the order quantity, Q � S – I. (For example, this case
would arise for the bicycle example if the distributor begins with 500 bicycles before plac-
ing an order, so I � 500.) We continue to assume that K � 0 (no setup cost).

Let

C�(S) � expected cost for the model for any value of I and K (including the current
assumption that K � 0), given that S is the inventory level obtained when
the order quantity is received at the beginning of the period,

so the objective is to choose S � I so as to

Minimize C�(S).
S � I

It will be instructive to compare C�(S) with the cost function used in the preceding sub-
section (and plotted in Fig. 18.14),

C(S) � expected cost for the model, given S, when I � 0 and K � 0.

With K � 0,

C�(S) � c(S � I) � ��

S
p(x � S) f(x) dx � �S

0
h(S � x) f(x) dx.

Thus, C�(S) is identical to C(S) except for the first term, where C(S) has cS instead of
c(S � I). Therefore,

C�(S) � C(S) � cI.

Since I is a constant, this means that C�(S) achieves its minimum at the same value of S*

as for C(S), as shown in Fig. 18.14. However, since S must be constrained to S � I, if
I � S*, Fig. 18.14 indicates that C�(S) would be minimized over S � I by setting S � I
(i.e., do not place an order). This yields the following inventory policy.

450 � 200
450 � 90
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Optimal Inventory Policy with I � 0 and K � 0

If I � S*, order S* � I to bring the inventory level up to S*.
If I � S*, do not order,

where S* again satisfies

F(S*) � �
p
p

�
�

h
c

�.

Thus, in the bicycle example, if there are 500 bicycles on hand, the optimal policy is
to bring the inventory level up to 11,856 bicycles (which implies ordering 11,356 addi-
tional bicycles). On the other hand, if there were 12,000 bicycles already on hand, the
optimal policy would be not to order.

Analysis of the Model with a Setup Cost (K � 0)

Now consider the remaining version of the model where K � 0, so a setup cost of K is
incurred for purchasing or producing the entire batch of units being ordered. (For the bi-
cycle example, if an administrative cost of $8,000 would be incurred to place the special
order for the bicycles for the Christmas season, then K � 8,000.) We now will allow any
value of the initial inventory, so I � 0.

With K � 0, the expected cost C�(S), given the value of the decision variable S, is

C�(S) � K � c(S � I) � ��

S
p(x � S) f(x) dx � �S

0
h(S � x) f(x) dx if an order is 

placed;

C�(S) � ��

S
p(x � S) f(x) dx � �S

0
h(S � x) f(x) dx if do not order.

Therefore, in comparison with the expected cost function C(S) that is plotted in Fig. 18.14
(which assumes that I � 0 and K � 0),

C�(S) � K � C(S) � cI if an order is placed;
C�(I) � C(I) � cI if do not order.

Because I is a constant, the cI term in both expressions can be ignored for purposes of
minimizing C�(S) over S � I. Consequently, the plot of C(S) in Fig. 18.14 can be used to
determine if an order should be placed and, if so, what value of S should be selected.

This is what is done in Fig. 18.15, where s* is the value of S such that

C(s*) � K � C(S*).

C(S)

SS*

K

s*

■ FIGURE 18.15
The graph of C(S), the
expected cost (given S) for
the stochastic single-period
model when I � 0 and K � 0,
is being used here to
determine the critical points,
s* and S*, of the optimal
inventory policy for the
version of the model where
I � 0 and K � 0.
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Thus,

if I � s*, then C(S*) � K � C(I), so should order with S � S*;
if I � s*, then C(S) 
 K � C(I) for any S � I, so should not order.

In other words, if the initial inventory I is less than s*, then expending the setup cost K
is worthwhile because bringing the inventory level up to S* (by ordering S � I) will
reduce the expected remaining cost by more than K when compared with not ordering.
However, if I � s*, then it becomes impossible to recoup the setup cost K by ordering
any amount. (If I � s*, incurring the setup cost K to order S* � s* will reduce the expected
remaining cost by this same amount, so there is no reason to bother ordering.) This leads
to the following inventory policy.

Optimal Inventory Policy with I � 0 and K � 0

If I � s*, order S* � I to bring the inventory level up to S*.
If I* � s*, do not order.
(See the boxed formulas for S* and s* given earlier.)

When the demand has either a uniform or an exponential distribution, an automatic
procedure is available in your IOR Tutorial for calculating s* and S*. A similar Excel
template is also included in this chapter’s Excel files on the book’s website.

This kind of policy is referred to as an (s, S ) policy. It has had extensive use in 
industry.

An (s, S) policy also is often used when applying stochastic periodic-review models
to stable products, so multiple periods need to be considered. In this case, finding the
optimal inventory policy is somewhat more complicated since the values of s and S may
need to be different for different periods. The second supplement for this chapter on the
book’s website provides the details.

Returning to the current single-period model, we now will illustrate the calculation
of the optimal inventory policy for the bicycle example when K � 0.

Application to the Example

Suppose that the administrative cost of placing the special order for the bicycles for the
upcoming Christmas season is estimated to be $8,000. Thus, the parameters of the model
now are

K � 8,000, c � 200, p � 450, h � �90.

As indicated earlier, the demand for the bicycles is assumed to have an exponential dis-
tribution with a mean of 10,000.

We found earlier for this example that

S* � 11,856.

To find s*, we need to solve the equation,

C(s*) � K � C(S*),

for s*. Plugging twice into the expression for C(S) given in the early part of this section,
with S � s* on the left-hand side of the equation and S � S* � 11,856 on the right-hand
side, the equation becomes

200s* � 450��

s*
(x – s*)�

10,
1
000
�e–x/10,000dx – 90�s*

0
(s* – x)�

10,
1
000
�e–x/10,000dx
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� 8,000 � 200(11,856) � 450��

11,856
(x � 11,856)�

10,
1
000
�e–x/10,000dx 

– 90�11,856

0
(11,856 � x)�

10,
1
000
�e–x/10,000dx.

After lengthy calculations to compute the number on the right-hand side and to reduce
the left-hand side to a simpler expression in terms of s*, this equation eventually leads to
the numerical solution,

s* � 10,674.

Thus, the optimal policy calls for bringing the inventory level up to S* � 11,856 bicycles
if the amount on hand is less than s* � 10,674. Otherwise, no order is placed.

An Approximate Solution for the Optimal Policy 
When the Demand Has an Exponential Distribution

As this example has just illustrated, a lengthy calculation is required to solve for s* even
when the demand has a relatively straightforward distribution such as the exponential dis-
tribution. Therefore, given this demand distribution, we now will develop a close ap-
proximation to the optimal inventory policy that is easy to compute.

As described in Sec. 17.4, for an exponential distribution with a mean of 1/
, the
probability density function f(x) and CDF F(x) are

f(x) � �e–�x, for x � 0,
F(x) � 1 – e–�x, for x � 0.

Consequently, since

F(S*) � �
p
p

�

– c
h

�,

we have

1 � e��S*
� �

p
p

�
�

h
c

�, or e��S*
��

(p � h
p
)

�

�

h
(p � c)
�� �

h
h

�

�

p
c

�,

so

S* � �
�
1

� ln �
h
h

�

�

p
c

�

is the exact solution for S*.
To begin developing an approximation for s*, we begin with the exact equation,

C(s*) � K � C(S*).

Since

C(S) � cS � h �S

0
(S � x)�e��x dx � p ��

S
(x � S)�e��x dx

� (c � h)S � �
�

1
� (h � p)e��S � �

�
h

�.

This equation becomes

(c � h)s* � �
�
1

�(h � p)e��s*
� �

�
h

� � K � (c � h)S* � �
�
1

�(h � p)e��S*
� �

�
h

�,

or (by using the above result for S*)

(c � h)s* � �
�
1

�(h � p)e��s*
� K � (c � h)S* � �

�
1

�(c � h).
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Although this last equation does not have a closed-form solution for s*, it can be solved
numerically. An approximate analytical solution also can be obtained as follows. By letting

� � S* � s*,

and noting that

e��S* � �
h
h

�

�

p
c

�,

the last equation yields

�
�

1
�(h � p) �

e
e

�

�

�

�

S

s*

*� � ,

which reduces to

e�� � �
c
�
�
K

h
� � �� � 1.

If �� is close to zero, e�� can be expanded into a Taylor series around zero. If the terms
beyond the quadratic term are neglected, the result becomes

1 � �� � �
�2

2
�2

� � �
c
�
�
K

h
� � �� � 1,

so that

� � ��
�(c

2
�
K� h)
��.

Therefore, the desired approximation for s* is

s* � S* � ��
�(c

2
�

K�h)
��.

Using this approximation in the bicycle example results in

K � (c � h)∆ � �
�

1
�(c � h)

���
�
h
h

�

�

p
c

�

■ 18.8 REVENUE MANAGEMENT 

The beginning of the preceding section includes a list of 12 examples of perishable prod-
ucts. The last of these examples (reservations provided by an airline for the available in-
ventory of seats on a particular flight) is of considerable historical interest because its
early analysis led the way to a much broader and highly successful application area of
operations research commonly called revenue management.

The starting point for revenue management was the Airline Deregulation Act of
1978, which loosened control of airline fare prices. New low-cost and charter airlines

so that

s* � 11,856 � 1,206 � 10,650,

which is quite close to the exact value of s* � 10,674.

� � � � 1,206,(2)(10,000)(8,000)
200�90
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then entered the market to take advantage. Among the major airlines, American Airlines
led the way in fighting back by introducing capacity-controlled discount fares. A limited
number of discount seats were sold on various flights as needed to match or beat the fares
offered by low-cost airlines, but with restrictions that included the requirement that the
purchase must be made by some substantial number of days (initially 30 days) prior to
departure. The usual much-larger fares would still be provided to the airline’s core cus-
tomer class of business travelers, who typically make their reservations well after the dead-
line for discount fares. (The first model in this section deals with this situation.) 

Another of the oldest and most successful practices of revenue management in the
airline industry has been to do overbooking (providing more reservations than the num-
ber of seats available on a flight, to allow for the considerable number of no-shows that
usually occur). The rule of thumb in the industry is that approximately 15 percent of all
seats on a flight would go unoccupied without some form of overbooking. Therefore, a
large amount of additional revenue can be obtained by doing a significant amount of over-
booking without incurring an undue risk of overselling a flight. However, the penalties
have become substantial for denying admission to a flight for someone with a reservation,
so careful analysis must be done to achieve an appropriate trade-off between the addi-
tional revenue from overbooking and the risk of incurring these penalties. (The second
model in this section deals with this situation.) 

When implementing revenue management, a large airline needs to process reserva-
tions for many tens of thousands of passengers flying daily. Therefore, while OR models
and algorithms drive revenue management, the other essential component is sophisticated
information technology. Fortunately, advances in information technology by the 1980s
were providing the needed capability to automate transactions, capture and store vast
amounts of data, quickly execute complex algorithms, and then implement and manage
highly detailed revenue management decisions. 

By 1990, the practice of revenue management at American Airlines had been refined
to the point that it was generating nearly $500 million in additional revenue per year. (Se-
lected Reference A8 tells this story.) By that time, other airlines also were scrambling to
develop similar revenue management capabilities. 

As a result of this history, the practice of revenue management in the airline indus-
try today is pervasive, highly developed, and enormously effective. According to page 10
of Selected Reference 10 (the authoritative treatise on the theory and practice of revenue
management), “by most estimates, the revenue gains from the use of revenue management
systems are roughly comparable to many airlines’ total profitability in a good year (about
4 to 5% of revenues).”

The enormous success of revenue management in the airline industry has led various
other service industries with similar characteristics to develop their own revenue man-
agement systems. These industries include hotels, cruise ship lines, passenger railways,
car rental companies, tour operators, theaters, and sporting venues. Revenue management
also is growing in the retail industry when dealing with highly perishable products (e.g.,
grocery retailers), seasonal products (e.g., apparel retailers), and products that quickly be-
come obsolete (e.g., high-tech retailers). 

Achieving these outstanding results sometimes requires developing relatively com-
plex revenue management systems with many categories of customers, fares changing over
time, and so forth. The models and algorithms needed to support such systems are also
relatively complex and so are beyond the scope of this book. However, to convey the gen-
eral idea, we now present two basic models for elementary types of revenue management.
The components of each model are described in general terms to fit any kind of company,
but then the airline context is mentioned parenthetically for concreteness. Each model also
is followed by an airline example. 
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A Model for Capacity-Controlled Discount Fares 

A company has an inventory of a certain perishable product (such as the seats on an air-
line flight) to sell to two classes of customers (such as the leisure travelers and business
travelers on the flight). The class 2 customers come first to buy single units of the prod-
uct at a discounted price that is designed to help ensure that the entire inventory can be
sold before the product perishes. There is a deadline for requesting the discounted price,
but the company can terminate the special sale at any earlier point whenever it feels that
enough has been sold. After the discounted price is no longer available, the class 1 cus-
tomers begin arriving to buy single units of the product at full price. The probability dis-
tribution of the demand from class 1 customers is assumed to be known. The decision to
be made is how much of the total inventory should be reserved for class 1 customers, so
the discounted price would be discontinued early if the remaining inventory drops to this
level before the announced deadline for the discount is reached. 

The parameters (and random variable) for the model are 

L � size of the inventory of the perishable product available for sale,

p1 � price per unit paid by class 1 customers,

p2 � price per unit paid by class 2 customers, where p2 � p1,

D � Demand by class 1 customers (a random variable),

F(x) � cumulative distribution function for D, so F(x) � P(D 
 x). 

The decision variable is 

x � inventory level that must be reserved for class 1 customers. 

The key to solving for the optimal value of x, denoted by x*, is to ask the following
question and then to answer it by performing marginal analysis. 

Question: Suppose that x units remain in inventory prior to the deadline for
requesting the discounted price p2 and a class 2 customer arrives who wishes to
purchase one unit at that price. Should this request be accepted or denied? 

To address the question, we need to compare the incremental revenue (or the statistical
expectation of the incremental revenue) for the two options. 

If accept request, incremental revenue � p2.

If deny request, incremental revenue   � �
so 

E (incremental revenue) � p1 P(D � x).

Therefore, the request to make the sale to the class 2 customer should be accepted if 

p2 > p1 P(D � x) 

and denied otherwise. Now note that P(D � x) decreases as x increases. Thus, if this in-
equality holds for a particular value of x, this value can be increased to the critical point
x* where 

p2 
 p1 P(D � x*)     and     p2 � p1 P(D � x* � 1). 

It then follows that the optimal inventory level to reserve for class 1 customers is x*.
Equivalently, the maximum number of units that should be sold to class 2 customers be-
fore discontinuing the discounted price p2 is L � x*. 

0, if D 
 x �1
p1, if D � x
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Thus far, we have assumed that the customers are buying single units of the product
(such as the seats on an airline flight) so the probability distribution of D would be a dis-
crete distribution. However, when L is large (such as the number of seats on a large airline
flight), it can be much more convenient computationally to use a continuous distribution
as an approximation. There also are perishable products where fractional amounts can be
purchased, so continuous demand distributions would be appropriate anyway. If continu-
ous demand distributions now are assumed, at least as an approximation, it follows from
the above analysis that the optimal inventory level x* to reserve for class 1 customers is
the one that satisfies the equation,

p2 � p1 P(D � x*). 

Since P(D � x*) � 1 � P(D 
 x*) � 1 � F(x*), this equation also can be written as 

F(x*) � 1 � �p
p
1

2 .

(When a continuous distribution is being used as an approximation but x* that solves these
two equations is not an integer, x* should be rounded down to an integer in order to sat-
isfy the expressions defining the optimal integer value of x* given at the end of the
preceding paragraph.) This latter equation clearly shows that the ratio of p2 to p1 plays a
critical role in determining the probability that the entire demand of the class 1 customers
will be satisfied. 

An Example Applying This Model 
for Capacity-Controlled Discount Fares 

BLUE SKIES AIRLINES has decided to apply this model to one of its flights. This flight
can accept 200 reservations for seats in the main cabin. (This number includes an al-
lowance for overbooking because there always are some no-shows.) The flight attracts a
large number of business travelers, who typically make their reservations within a few
days of the flight but are willing to pay a relatively high fare of $1,000 for this flexibil-
ity. However, the substantial majority of the passengers need to be leisure travelers in or-
der to fill up the plane. Therefore, to attract enough of these travelers, a very low discount
fare of $200 is offered to passengers who make their reservations at least 14 days in ad-
vance and satisfy certain other restrictions (including no refunds). 

In the terminology of the above model, the class 1 customers are the business travel-
ers and the class 2 customers are the leisure travelers, so the parameters of the model are 

L � 200, p1 � $1,000, p2 � $200. 

Using data on the number of reservations requested by the class 1 customers for each
flight in the past, it is estimated that the probability distribution of the number of reser-
vations requested by these customers for each future flight is approximated by a normal
distribution with a mean of µ � 60 and standard deviation � � 20. Thus, this is the dis-
tribution for the random variable D in the model, where F(x) denotes the cumulative dis-
tribution for D. To solve for x*, the optimal number of reservation slots to reserve for
class 1 customers, we use the equation provided by the model,

F(x*) � 1 � �p
p
1

2 � 1 � $1,000
$200 

� 0.8.

Using the table for a normal distribution provided by Appendix 5 yields 

x* � µ � K0.2 � � 60 � 0.842(20) � 76.84. 

Since x* actually needs to be an integer, it next is rounded down (as specified by the model)
to the integer 76. By reserving 76 spots for customers willing to pay the fare of $1,000 for
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a reservation within a few days of the flight, this implies that L � x* � 124 is the maxi-
mum number of reservations that should be sold at the discount fare of $200 before dis-
continuing this fare, even if this occurs before the deadline of 14 days prior to the flight. 

An Overbooking Model 

As with the preceding model, we again are dealing with a company that has an inventory
of a certain perishable product (such as the seats on an airline flight) to sell to its cus-
tomers. We no longer make any distinction between different classes of customers. The
units in inventory become available only at a certain point in time, so each customer pur-
chases a unit by making a nonrefundable reservation in advance to acquire the unit at the
designated time. However, not all customers who make a reservation actually arrive on
time to acquire their units. Those customers who fail to arrive at the designated time are
referred to as no-shows.

Because the company anticipates that there will be a significant number of no-shows,
it can increase its revenue by doing some overbooking (selling more reservations than
the available inventory). However, care needs to be taken not to do so much overbooking
that there is a substantial probability of incurring shortages (more demand than inven-
tory). The reason is that there is a shortage cost incurred each time a customer with a
reservation arrives on time to acquire a unit of inventory after the inventory has been de-
pleted. For example, in the airline industry, a denied-boarding cost is incurred each time
a customer with a reservation for a particular flight is bumped (denied admission to the
flight), where this cost may include any refund of the purchase price, compensation for
the inconvenience, and the cost of the loss of goodwill (lost future bookings). In some
cases, this denied-boarding cost may consist instead of the compensation provided to a
customer who has a seat but is willing to give it up for another customer who has been
denied a seat. 

The basic question addressed by this overbooking model is how much overbooking
should be done so as to maximize the company’s expected profit. The model makes the
following assumptions. 

1. The customers independently make their reservations for a unit of inventory and then
have the same fixed probability of actually arriving at the designated time to acquire
the unit. 

2. There is a fixed net revenue obtained for each reservation that is accepted. 
3. There is a fixed shortage cost incurred each time a customer with a reservation arrives

on time to acquire a unit of inventory after the inventory has been depleted. 

Based on these assumptions, the model has the following parameters. 

p � probability that a customer who makes a reservation for a unit of inventory
will actually arrive at the designated time to acquire the unit.

r � net revenue obtained for each reservation that is accepted.

s � shortage cost per unit of unsatisfied demand.

L � size of the available inventory.

The decision variable for the model is 

n � number of customers that can be given a reservation for a unit of inventory,
so 

n � L � amount of overbooking allowed. 
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Given the value of n, the uncertainty is how many of the n customers with reservations
for a unit of inventory will actually arrive at the designated time to acquire this unit. In
other words, what is the demand for withdrawing units from inventory? Denote this random
variable by 

D(n) � demand for withdrawing units from inventory. 

It follows from assumption 1 that D(n) has a binomial distribution with parameter p, so 

P{D(n) � d} � � n
d � pd (1 � p)n�d � 

d!(n � d)!
n!

pd (1 � p)n�d,

where D(n) has mean np and variance np (1 � p). 
A closely related random variable that will be important in our analysis is the unsat-

isfied demand that will occur when n customers are given a reservation. We denote this
random variable by U(n), so 

U(n) � unsatisfied demand � �
and 

E(U(n)) � 	
n

d�L+1
(d � L) P{D(n) � d}.

We will be using marginal analysis (the analysis of the effect of increasing the value of
the decision variable n by 1) to determine the optimal value of n that maximizes expected
profit, so we will need to know the effect on E(U(n)) of increasing the value of n by 1.
Starting with n reservations, the effect of adding on one more reservation is to add 1 to
the unsatisfied demand only if both of two events occur. One necessary event is that the
original n reservations result in depleting the entire inventory, i.e., D(n) � L, and the other
required event is that the customer given the additional reservation actually will arrive at
the designated time to attempt to acquire a unit of inventory. Otherwise, there is no effect
on the unsatisfied demand. Consequently,

�E(U(n)) � E(U(n � 1)) � E(U(n)) � p P{D(n) � L} 

The value of �E(U(n)) depends on the value of n since P{D(n) � L}, the probability
of depleting the inventory, depends on n, the number of reservations. For n � L,
�E(U(n)) � 0, whereas �E(U(n)) increases as n increases further since the probability
of depleting the inventory increases as the number of reservations increases. 

The final random variable of interest is the company’s profit that will occur when n
customers are given a reservation. We denote this random variable by P(n), so 

P(n) � profit � r n � s U(n) 

E(P(n)) � r n � s E(U(n)),

�E(P(n)) � E(P(n � 1)) � E(P(n)) � r � s �E(U(n)) � r � s p P{D(n) � L}. 

As just noted above, �E(U(n)) � 0 for n � L, whereas �E(U(n)) increases as n increases
further. Therefore, �E(P(n)) � 0 for relatively small values of n and then (assuming that
r � s p) will switch to �E(P(n)) � 0 for sufficiently large values of n. It then follows
that n*, the value of n that maximizes E(P(n)), is the one that satisfies 

�E(P(n* � 1)) � 0      and      �E(P(n*)) 
 0,

0, if D(n) 
 L
D(n) � L, if D(n) > L
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or equivalently,

r > s p P{D(n* � 1) � L}    and     r 
 s p P{D(n*) � L}. 

Since D(n) has a binomial distribution, it is straightforward (albeit very tedious compu-
tationally) to solve for n* in this way. 

When L is large, it is particularly tedious to use the binomial distribution to perform
these calculations. Therefore, it is common in practice to use the normal approximation
of the binomial distribution for this application (as well as many others). In particular, the
normal distribution with mean n p and variance n p (1 � p) frequently is used as a con-
tinuous approximation of the binomial distribution with parameters n and p, since the
latter distribution has this same mean and variance. With this approach, we now assume
that D(n) has this normal distribution and treat n as a continuous decision variable. The
optimal value of n then is given approximately by the equation,

r � s p P{D(n* � L}, i.e., P{D(n*) � L} � �sp
r

By using the table for a normal distribution given in Appendix 5, it is straightforward to
calculate n*, as will be illustrated by the following example. If n* is not an integer, it next
should be rounded up to an integer in order to satisfy the expressions defining the opti-
mal integer value of n* given at the end of the preceding paragraph. 

An Example Applying This Overbooking Model

TRANSCONTINENTAL AIRLINES has a daily flight (excluding weekends) from San
Francisco to Chicago that is mainly used by business travelers. There are 150 seats avail-
able in the single cabin. The average fare per seat is $300. This is a nonrefundable fare,
so no-shows forfeit the entire fare. 

The company’s policy is to accept 10 percent more reservations than the number of
seats available on nearly all its flights, since roughly 10 percent of all its customers mak-
ing reservations end up being no-shows. However, if its experience with a particular flight
is much different from this, then an exception can be made and the OR group is called in
to analyze what the overbooking policy should be for that particular flight. This is what
has just happened regarding the daily flight from San Francisco to Chicago. Even when
the full quota of 165 reservations has been reached (which happens for most of the flights),
there usually has been a significant number of empty seats. While gathering its data, the
OR group has discovered the reason why. Only 80 percent of the customers who make
reservations for this flight actually show up to take the flight. The other 20 percent for-
feit the fare (or, in most cases, allow their company to do so) because their plans have
changed. 

When a customer is bumped from this flight, Transcontinental Airlines arranges to
put the customer on the next available flight to Chicago on another airline. The company’s
average cost for doing this is $200. In addition, the company gives the customer a voucher
worth $400 (but would cost the company just $300) for use on a future flight. The com-
pany also feels that an additional $500 should be assessed for the intangible cost of a loss
of goodwill on the part of the bumped customer. Therefore, the total cost of bumping a
customer is estimated to be $1,000. 

The OR group now wants to apply the overbooking model to determine how many
reservations should be accepted for this flight. Using the data described above, the para-
meters of the model are 

p � 0.8, r � $300, s � $1,000, L � 150. 
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Because L is so large, the group decides to use the normal approximation of the binomial
distribution. Therefore, this approximation of n*, the optimal number of reservations to
accept, is found by solving the equation,

P{D(n*) � 150} � �sp
r  

� 0.375,

where D(n*) has the normal distribution with mean µ � n p � 0.8n and variance 
�2 � np(1 � p) � 0.16n, so � � 0.4�n�. Using the table for a normal distribution given
in Appendix 5, since 
 � 0.375 and K
 � 0.32,

150 � µ

�
�

150 � 0.

0.4�n�
8n

� 0.32,

which reduces to 

0.8n � 0.128 �n� � 150 � 0.

Solving for �n� in this quadratic equation yields 

�n� �
�0.128 � (0.128)

1.6

2 � 4(0.8)(�150)
� 13.6,

which then gives 

n* � (13.6)2 � 184.96.

Since x* actually needs to be an integer, it next is rounded up (as specified by the model)
to the integer 185.12 The conclusion is that the number of reservations to accept for this
flight should be increased from 165 to 185. 

The resulting demand D(185) will have a mean of 0.8(185) � 148 and a standard de-
viation of 0.4 �185��� � 5.44. Thus, Transcontinental Airlines now should be able to nearly
or completely fill the 150 seats of the airplane, without an undue frequency of bumping
customers, whenever the number of reservation requests reaches 185. Therefore, the new
policy of increasing the number of reservations accepted from 165 to 185 should sub-
stantially increase the company’s profits from this flight. 

Other Models 

A variety of models are used for various types of revenue management. These models fre-
quently incorporate some of the ideas introduced in the two models presented in this
section. However, the models used in practice frequently must also incorporate some ad-
ditional features that are not considered in these two basic models. Here is a list of some
practical considerations that may need to be taken into account. 

• Different levels of service being provided (e.g., a first class cabin, a business section,
and an economy section on the same airline flight). 

• Different prices charged for the same service (e.g., discounts for seniors, children, stu-
dents, employees, etc.). 

• Different prices charged for the same service based on how much (if any) of it is re-
fundable with an early cancellation. 

12One step in obtaining this solution of 185 was reading the value of K
 = 0.32 to two decimal places from the
normal table. However, if interpolation is used to carry K
 to additional decimal places, the solution from the
model will change to 186. Using the binomial distribution directly instead of the normal approximation also
leads to a solution of 186.

�
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• Dynamic pricing based on when the reservation is made and how well the demand is
approaching the capacity. 

• Varying the overbooking level based on the remaining time and expected cancellations
until the service will be provided.

• Having a nonlinear shortage cost for overbooking (e.g., the first few customers may vol-
untarily accept modest compensation to forego the service but then it gets more costly). 

• Customers buy bundles of services in combination under various terms and conditions
(e.g., airline customers arranging a set of connecting flights or hotel customers stay-
ing multiple nights). 

• Customers purchase multiple units (e.g., couples or families or tour groups traveling
together).

Incorporating these and other practical considerations into more sophisticated models
as needed is a real challenge. However, outstanding progress has been made by numer-
ous OR researchers and practitioners. This has become one of the most exciting areas of
application of operations research. Further elaboration is beyond the scope of this book,
but details can be found in Selected Reference 10 and its 591 references. 

■ 18.9 CONCLUSIONS

We have introduced only rather basic kinds of inventory models here, but they serve the
purpose of introducing the general nature of inventory models. Furthermore, they are suf-
ficiently accurate representations of many actual inventory situations that they frequently
are useful in practice. For example, the EOQ models have been particularly widely used.
These models are sometimes modified to include some type of stochastic demand, such
as the stochastic continuous-review model does. The stochastic single-period model is a
very convenient one for perishable products. The elementary revenue management mod-
els in Sec. 18.8 are a starting point for the sophisticated kinds of revenue management
analysis that now is extensively applied in the airline industry and other service industries
with similar characteristics.

In today’s global economy, multiechelon inventory models (such as those introduced
in Sec. 18.5) are playing an increasingly important role in helping to manage a company’s
supply chain.

Nevertheless, many inventory situations possess complications that are not taken into
account by the models in this chapter, e.g., interactions between products or complicated
types of multiechelon inventory systems. More complex models have been formulated in
an attempt to fit such situations, but it is difficult to achieve both adequate realism and
sufficient tractability to be useful in practice. The development of useful models for sup-
ply chain management currently is a particularly active area of research. Much research
also is being conducted on developing more sophisticated revenue management models
that take into account more of the complexities that arise in practice.

Continued growth is occurring in the computerization of inventory data processing,
along with an accompanying growth in scientific inventory management.
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Automatic Procedures in IOR Tutorial:

Stochastic Single-Period Model for Perishable Products, No Setup Cost
Stochastic Single-Period Model for Perishable Products, with Setup Cost

“Ch. 18—Inventory Theory” Excel Files:

Templates for the Basic EOQ Model (a Solver Version and an Analytical Version)
Templates for the EOQ Model with Planned Shortages (a Solver Version and an Analytical Version)
Template for the EOQ Model with Quantity Discounts (Analytical Version Only)
Template for the Stochastic Continuous-Review Model
Template for the Stochastic Single-Period Model for Perishable Products, No Setup Cost
Template for the Stochastic Single-Period Model for Perishable Products, with Setup Cost

“Ch. 18—Inventory Theory” LINGO File for Selected Examples

Glossary for Chapter 18

Supplements to This Chapter

Derivation of the Optimal Policy for the Stochastic Single-Period Model for Perishable Products
Stochastic Periodic-Review Models

■ PROBLEMS

To the left of each of the following problems (or their parts), we
have inserted a T whenever one of the templates listed above can
be useful. An asterisk on the problem number indicates that at least
a partial answer is given in the back of the book.

T 18.3-1.* Suppose that the demand for a product is 30 units per
month and the items are withdrawn at a constant rate. The setup
cost each time a production run is undertaken to replenish inven-
tory is $15. The production cost is $1 per item, and the inventory
holding cost is $0.30 per item per month.
(a) Assuming shortages are not allowed, determine how often to

make a production run and what size it should be.
(b) If shortages are allowed but cost $3 per item per month, de-

termine how often to make a production run and what size it
should be.

T 18.3-2. The demand for a product is 1,000 units per week, and
the items are withdrawn at a constant rate. The setup cost for plac-
ing an order to replenish inventory is $40. The unit cost of each
item is $5, and the inventory holding cost is $0.10 per item per
week.
(a) Assuming shortages are not allowed, determine how often to

order and what size the order should be.
(b) If shortages are allowed but cost $3 per item per week, deter-

mine how often to order and what size the order should be.

18.3-3.* Tim Madsen is the purchasing agent for Computer Center,
a large discount computer store. He has recently added the hottest
new computer, the Power model, to the store’s stock of goods. Sales
of this model now are running at about 13 per week. Tim purchases

these computers directly from the manufacturer at a unit cost of
$3,000, where each shipment takes half a week to arrive.

Tim routinely uses the basic EOQ model to determine the
store’s inventory policy for each of its more important products. For
this purpose, he estimates that the annual cost of holding items in
inventory is 20 percent of their purchase cost. He also estimates that
the administrative cost associated with placing each order is $75.
T (a) Tim currently is using the policy of ordering 5 Power model

computers at a time, where each order is timed to have the
shipment arrive just about when the inventory of these com-
puters is being depleted. Use the Solver version of the Excel
template for the basic EOQ model to determine the various
annual costs being incurred with this policy.

T (b) Use this same spreadsheet to generate a table that shows
how these costs would change if the order quantity were
changed to the following values: 5, 7, 9, . . . , 25.

T (c) Use the Solver to find the optimal order quantity.
T (d) Now use the analytical version of the Excel template for the

basic EOQ model (which applies the EOQ formula directly)
to find the optimal quantity. Compare the results (including
the various costs) with those obtained in part (c).

(e) Verify your answer for the optimal order quantity obtained in
part (d ) by applying the EOQ formula by hand.

(f ) With the optimal order quantity obtained above, how fre-
quently will orders need to be placed on the average? What
should the approximate inventory level be when each order
is placed?

(g) How much does the optimal inventory policy reduce the
total variable inventory cost per year (holding costs plus
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administrative costs for placing orders) for Power model
computers from that for the policy described in part (a)?
What is the percentage reduction?

18.3-4. The Blue Cab Company is the primary taxi company in
the city of Maintown. It uses gasoline at the rate of 10,000 gallons
per month. Because this is such a major cost, the company has
made a special arrangement with the Amicable Petroleum Com-
pany to purchase a huge quantity of gasoline at a reduced price of
$3.50 per gallon every few months. The cost of arranging for each
order, including placing the gasoline into storage, is $2,000. The
cost of holding the gasoline in storage is estimated to be $0.04 per
gallon per month.
T (a) Use the Solver version of the Excel template for the basic

EOQ model to determine the costs that would be incurred
annually if the gasoline were to be ordered monthly.

T (b) Use this same spreadsheet to generate a table that shows how
these costs would change if the number of months between
orders were to be changed to the following values: 1, 2,
3, . . . , 10.

T (c) Use the Solver to find the optimal order quantity.
T (d) Now use the analytical version of the Excel template for the

basic EOQ model to find the optimal order quantity. Com-
pare the results (including the various costs) with those ob-
tained in part (c).

(e) Verify your answer for the optimal order quantity obtained in
part (d ) by applying the EOQ formula by hand.

18.3-5. For the basic EOQ model, use the square root formula to
determine how Q* would change for each of the following changes
in the costs or the demand rate. (Unless otherwise noted, consider
each change by itself.)
(a) The setup cost is reduced to 25 percent of its original value.
(b) The annual demand rate becomes four times as large as its

original value.
(c) Both changes in parts (a) and (b).
(d) The unit holding cost is reduced to 25 percent of its original value.
(e) Both changes in parts (a) and (d ).

18.3-6.* Kris Lee, the owner and manager of the Quality Hard-
ware Store, is reassessing his inventory policy for hammers. He
sells an average of 50 hammers per month, so he has been placing
an order to purchase 50 hammers from a wholesaler at a cost of
$20 per hammer at the end of each month. However, Kris does all
the ordering for the store himself and finds that this is taking a
great deal of his time. He estimates that the value of his time spent
in placing each order for hammers is $75.
(a) What would the unit holding cost for hammers need to be for

Kris’ current inventory policy to be optimal according to the
basic EOQ model? What is this unit holding cost as a per-
centage of the unit acquisition cost?

T (b) What is the optimal order quantity if the unit holding cost ac-
tually is 20 percent of the unit acquisition cost? What is the
corresponding value of TVC � total variable inventory cost
per year (holding costs plus the administrative costs for plac-
ing orders)? What is TVC for the current inventory policy?

T (c) If the wholesaler typically delivers an order of hammers in
5 working days (out of 25 working days in an average
month), what should the reorder point be (according to the
basic EOQ model)?

(d) Kris doesn’t like to incur inventory shortages of important
items. Therefore, he has decided to add a safety stock of
5 hammers to safeguard against late deliveries and larger-than-
usual sales. What is his new reorder point? How much does
this safety stock add to TVC?

18.3-7.* Consider Example 1 (manufacturing speakers for TV
sets) introduced in Sec. 18.1 and used in Sec. 18.3 to illustrate the
EOQ models. Use the EOQ model with planned shortages to solve
this example when the unit shortage cost is changed to $5 per
speaker short per month.

T 18.3-8. Speedy Wheels is a wholesale distributor of bicycles. Its
Inventory Manager, Ricky Sapolo, is currently reviewing the in-
ventory policy for one popular model that is selling at the rate of
500 per month. The administrative cost for placing an order for this
model from the manufacturer is $1,000 and the purchase price is
$400 per bicycle. The annual cost of the capital tied up in inven-
tory is 15 percent of the value (based on purchase price) of these
bicycles. The additional cost of storing the bicycles—including leas-
ing warehouse space, insurance, taxes, and so on—is $40 per bicycle
per year.
(a) Use the basic EOQ model to determine the optimal order quan-

tity and the total variable inventory cost per year.
(b) Speedy Wheel’s customers (retail outlets) generally do not ob-

ject to short delays in having their orders filled. Therefore, man-
agement has agreed to a new policy of having small planned
shortages occasionally to reduce the variable inventory cost. Af-
ter consultations with management, Ricky estimates that the an-
nual shortage cost (including lost future business) would be $150
times the average number of bicycles short throughout the year.
Use the EOQ model with planned shortages to determine the
new optimal inventory policy.

T 18.3-9. Reconsider Prob. 18.3-3. Because of the popularity of
the Power model computer, Tim Madsen has found that customers
are willing to purchase a computer even when none are currently
in stock as long as they can be assured that their order will be filled
in a reasonable period of time. Therefore, Tim has decided to switch
from the basic EOQ model to the EOQ model with planned short-
ages, using a shortage cost of $200 per computer short per year.
(a) Use the Solver version of the Excel template for the EOQ

model with planned shortages (with constraints added in the
Solver dialogue box that C10:C11 � integer) to find the new
optimal inventory policy and its total variable inventory cost
per year (TVC). What is the reduction in the value of TVC
found for Prob. 18.3-3 (and given in the back of the book)
when planned shortages were not allowed?

(b) Use this same spreadsheet to generate a table that shows how
TVC and its components would change if the maximum short-
age were kept the same as found in part (a) but the order quan-
tity were changed to the following values: 15, 17, 19, . . . , 35.
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(c) Use this same spreadsheet to generate a table that shows how
TVC and its components would change if the order quantity
were kept the same as found in part (a) but the maximum short-
age were changed to the following values: 10, 12, 14, . . . , 30.

18.3-10. You have been hired as an operations research consultant
by a company to reevaluate the inventory policy for one of its prod-
ucts. The company currently uses the basic EOQ model. Under this
model, the optimal order quantity for this product is 1,000 units,
so the maximum inventory level also is 1,000 units and the maxi-
mum shortage is 0.

You have decided to recommend that the company switch to
using the EOQ model with planned shortages instead after deter-
mining how large the unit shortage cost ( p) is compared to the unit
holding cost (h). Prepare a table for management that shows what
the optimal order quantity, maximum inventory level, and maxi-
mum shortage would be under this model for each of the follow-
ing ratios of p to h: �

1
3

�, 1, 2, 3, 5, 10.

18.3-11. In the basic EOQ model, suppose the stock is replenished
uniformly (rather than instantaneously) at the rate of b items per
unit time until the order quantity Q is fulfilled. Withdrawals from
the inventory are made at the rate of a items per unit time, where
a � b. Replenishments and withdrawals of the inventory are made
simultaneously. For example, if Q is 60, b is 3 per day, and a is
2 per day, then 3 units of stock arrive each day for days 1 to 20,
31 to 50, and so on, whereas units are withdrawn at the rate of 2
per day every day. The diagram of inventory level versus time is
given below for this example.

(a) Find the total cost per unit time in terms of the setup cost K,
production quantity Q, unit cost c, holding cost h, withdrawal
rate a, and replenishment rate b.

(b) Determine the economic order quantity Q*.

18.3-12.* MBI is a manufacturer of personal computers. All its
personal computers use a hard disk drive which it purchases from
Ynos. MBI operates its factory 52 weeks per year, which requires
assembling 100 of these disk drives into computers per week.
MBI’s annual holding cost rate is 20 percent of the value (based
on purchase cost) of the inventory. Regardless of order size, the
administrative cost of placing an order with Ynos has been esti-
mated to be $50. A quantity discount is offered by Ynos for large

orders as shown below, where the price for each category applies
to every disk drive purchased.

T (a) Determine the optimal order quantity according to the EOQ
model with quantity discounts. What is the resulting total
cost per year?

(b) With this order quantity, how many orders need to be placed
per year? What is the time interval between orders?

18.3-13. The Gilbreth family drinks a case of Royal Cola every day,
365 days a year. Fortunately, a local distributor offers quantity dis-
counts for large orders as shown in the table below, where the price
for each category applies to every case purchased. Considering the
cost of gasoline, Mr. Gilbreth estimates it costs him about $10 to go
pick up an order of Royal Cola. Mr. Gilbreth also is an investor in
the stock market, where he has been earning a 10 percent average
annual return. He considers the return lost by buying the Royal Cola
instead of stock to be the only holding cost for the Royal Cola.

T (a) Determine the optimal order quantity according to the EOQ
model with quantity discounts. What is the resulting total
cost per year?

(b) With this order quantity, how many orders need to be placed
per year? What is the time interval between orders?

18.3-14. Kenichi Kaneko is the manager of a production depart-
ment which uses 400 boxes of rivets per year. To hold down his
inventory level, Kenichi has been ordering only 50 boxes each
time. However, the supplier of rivets now is offering a discount
for higher-quantity orders according to the following price
schedule, where the price for each category applies to every box
purchased.

Inventory
 level (20, 20)

(30, 0)
•  •  •

Time (days)
(0, 0)

Point of 
maximum 
inventory

M

Discount Quantity Price (per
Category Purchased Disk Drive)

1 001 to 99 $100
2 100 to 499 $ 95
3 500 or more $ 90

Discount Quantity Price
Category Purchased (per Case)

1 001 to 49 $5.00
2 050 to 99 $4.85
3 100 or more $4.70

Discount Price
Category Quantity (per Box)

1 1,001 to 99 $8.50
2 1,100 to 999 $8.00
3 1,000 or more $7.50
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The company uses an annual holding cost rate of 20 percent
of the price of the item. The total cost associated with placing an
order is $80 per order.

Kenichi has decided to use the EOQ model with quantity dis-
counts to determine his optimal inventory policy for rivets.
(a) For each discount category, write an expression for the total

cost per year (TC) as a function of the order quantity Q.
T (b) For each discount category, use the EOQ formula for the

basic EOQ model to calculate the value of Q (feasible or
infeasible) that gives the minimum value of TC. (You may
use the analytical version of the Excel template for the ba-
sic EOQ model to perform this calculation if you wish.)

(c) For each discount category, use the results from parts (a)
and (b) to determine the feasible value of Q that gives the
feasible minimum value of TC and to calculate this value
of TC.

(d) Draw rough hand curves of TC versus Q for each of the dis-
count categories. Use the same format as in Fig. 18.3 (a solid
curve where feasible and a dashed curve where infeasible).
Show the points found in parts (b) and (c). However, you don’t
need to perform any additional calculations to make the curves
particularly accurate at other points.

(e) Use the results from parts (c) and (d ) to determine the optimal
order quantity and the corresponding value of TC.

T (f) Use the Excel template for the EOQ model with quantity
discounts to check your answers in parts (b), (c), and (e).

(g) For discount category 2, the value of Q that minimizes TC
turns out to be feasible. Explain why learning this fact would
allow you to rule out discount category 1 as a candidate for
providing the optimal order quantity without even performing
the calculations for this category that were done in parts (b)
and (c).

(h) Given the optimal order quantity from parts (e) and ( f ), how
many orders need to be placed per year? What is the time in-
terval between orders?

18.3-15. Sarah operates a concession stand at a downtown loca-
tion throughout the year. One of her most popular items is circus
peanuts, selling about 200 bags per month.

Sarah purchases the circus peanuts from Peter’s Peanut Shop.
She has been purchasing 100 bags at a time. However, to encour-
age larger purchases, Peter now is offering her discounts for larger
order sizes according to the following price schedule, where the
price for each category applies to every bag purchased.

Sarah wants to use the EOQ model with quantity discounts to
determine what her order quantity should be. For this purpose, she
estimates an annual holding cost rate of 17 percent of the value

(based on purchase price) of the peanuts. She also estimates a setup
cost of $4 for placing each order.

Follow the instructions of Prob. 18.3-14 to analyze Sarah’s
problem.

18.4-1. Suppose that production planning is to be done for the next
5 months, where the respective demands are r1 � 10, r2 � 25, r3 � 15,
r4 � 10, and r5 � 20. The setup cost is $9,000, the unit production
cost is $3,000, and the unit holding cost is $800. Use the determin-
istic periodic-review model to determine the optimal production
schedule that satisfies the monthly requirements.

18.4-2. Reconsider the example used to illustrate the determinis-
tic periodic-review model in Sec. 18.4. Solve this problem when
the demands are increased by 1 airplane in each period.

18.4-3. Reconsider the example used to illustrate the determinis-
tic periodic-review model in Sec. 18.4. Suppose that the following
single change is made in the example. The cost of producing each
airplane now varies from period to period. In particular, in addi-
tion to the setup cost of $2 million, the cost of producing airplanes
in either period 1 or period 3 is $1.4 million per airplane, whereas
it is only $1 million per airplane in either period 2 or period 4.

Use dynamic programming to determine how many airplanes
(if any) should be produced in each of the four periods to mini-
mize the total cost.

18.4-4.* Consider a situation where a particular product is pro-
duced and placed in in-process inventory until it is needed in a sub-
sequent production process. The number of units required in each
of the next 3 months, the setup cost, and the regular-time unit
production cost (in units of thousands of dollars) that would be in-
curred in each month are as follows:

There currently is 1 unit in inventory, and we want to have 2 units
in inventory at the end of 3 months. A maximum of 3 units can be
produced on regular-time production in each month, although 1 ad-
ditional unit can be produced on overtime at a cost that is 2 larger
than the regular-time unit production cost. The holding cost is
2 per unit for each extra month that it is stored.

Use dynamic programming to determine how many units
should be produced in each month to minimize the total cost.

18.5-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 18.5.
Briefly describe how inventory theory was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

Regular-Time
Month Requirement Setup Cost Unit Cost

1 1 5 8
2 3 10 10
3 2 5 9

Discount Order Price
Category Quantity (per Bag)

1 001 to 199 $1.00
2 200 to 499 $0.95
3 500 or more $0.90
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18.5-2. Consider an inventory system that fits the model for a se-
rial two-echelon system presented in Sec. 18.5, where K1 �
$25,000, K2 � $1,500, h1 � $30, h2 � $35, and d � 4,000. Develop
a table like Table 18.1 that shows the results from performing both
separate optimization of the installations and simultaneous opti-
mization of the installations. Then calculate the percentage increase
in the total variable cost per unit time if the results from perform-
ing separate optimization were to be used instead of the results
from the valid approach of performing simultaneous optimization.

18.5-3. A company soon will begin production of a new product.
When this happens, an inventory system that fits the model for a
serial two-echelon system presented in Sec. 18.5 will be used. At
this time, there is great uncertainty about what the setup costs and
holding costs will be at the two installations, as well as what the
demand rate for the new product will be. Therefore, to begin mak-
ing plans for the new inventory system, various combinations of
possible values of the model parameters need to be checked.

Calculate Q*2, n*, n, and Q*1 for the following combinations.
(a) (K1, K2) � ($25,000, $1,000), ($10,000, $2,500), and ($5,000,

$5,000), with h1 � $25, h2 � $250, and d � 2,500.
(b) (h1, h2) � ($10, $500), ($25, $250), and ($50, $100), with

K1 � $10,000, K2 � $2,500, and d � 2,500.
(c) d � 1,000, d � 2,500, and d � 5,000, with K1 � $10,000,

K2 � $2,500, h1 � $25, and h2 � $250.

18.5-4. A company owns both a factory to produce its products and
a retail outlet to sell them. A certain new product will be sold ex-
clusively through this retail outlet. Its inventory of this product will
be replenished when needed from the factory’s inventory, where an
administrative and shipping cost of $200 is incurred each time this
is done. The factory will replenish its own inventory of the product
when needed by setting up for a quick production run. A setup cost
of $5,000 is incurred each time this is done. The annual cost for
holding each unit is $10 when it is held at the factory and $11 when
it is held at the retail outlet. The retail outlet expects to sell 100
units of the product per month. All the assumptions of the model
for a serial two-echelon system presented in Sec. 18.5 apply to the
joint inventory system for the factory and retail outlet.
(a) Suppose that the factory and the retail outlet separately opti-

mize their own inventory policies for the product. Calculate
the resulting Q*2, n*, n, Q*1, and C*.

(b) Suppose that the company simultaneously optimizes the joint
inventory policy for the factory and retail outlet for the prod-
uct. Calculate the resulting Q*2, n*, n, Q*1, and C*.

(c) Calculate the percentage decrease in the total variable cost per
unit time C* that is achieved by using the approach described
in part (b) instead of the one in part (a).

18.5-5. A company produces a certain product by assembling it at
an assembly plant. All the components needed to assemble the prod-
uct are purchased from a single supplier. A shipment of all the com-
ponents is received from the supplier each time the assembly plant
needs to replenish its inventory of the components. The company
incurs a shipping cost of $500 in addition to the purchase price for
the components each time this is done. Each time the supplier needs
to replenish its own inventory of the components, quick production

runs are set up to produce the components. The total cost of setting
up for these production runs is $50,000. The annual cost of hold-
ing each set of components is $50 when it is held by the supplier
and $60 when it is held at the assembly plant. (It is higher in the
latter case since there is more capital tied up in each set of com-
ponents at this stage.) The assembly plant steadily produces 500 units
of the product per month. All the assumptions of the model for a
serial two-echelon system described in Sec. 18.5 apply to the joint
inventory system for the supplier and the assembly plant.
(a) Suppose that the supplier and the assembly plant separately

optimize their own inventory policies for the sets of compo-
nents. Calculate the resulting Q*2, n*, n, and Q*1. Also calculate
C*1 and C*2, the total variable cost per unit time for the supplier
and the assembly plant, respectively, as well as C*� C*1 � C*2.

(b) Suppose that the supplier and the assembly plant cooperate to
simultaneously optimize their joint inventory policy. Calculate
the same quantities as specified in part (a) for this new inven-
tory policy.

(c) Compare the values of C*1, C*2, and C*obtained in parts (a) and
(b). Would either organization lose money by using the joint in-
ventory policy obtained in part (b) instead of the separate poli-
cies obtained in part (a)? If so, what financial arrangement would
need to be made between these separate organizations to induce
the losing organization to agree to a supply contract that follows
the inventory policy obtained in part (b)? Comparing the values
of C*, what would be the total net savings for the two organiza-
tions if they can agree to follow the jointly optimal policy from
part (b) instead of the separate optimal policies from part (a)?

18.5-6. Consider a three-echelon inventory system that fits the
model for a serial multiechelon system presented in Sec. 18.5, where
the model parameters for this particular system are given below.

Develop a table like Table 18.4 that shows the intermediate and fi-
nal results from applying the solution procedure presented in Sec. 18.5
to this inventory system. After calculating the total variable cost
per unit time of the final solution, determine the maximum possi-
ble percentage by which this cost can exceed the corresponding
cost for an optimal solution.

18.5-7. Follow the instructions of Prob. 18.5-6 for a five-echelon
inventory model fitting the corresponding model in Sec. 18.5,
where the model parameters are given below.

Installation i Ki hi d � 1,000

1 $50,000 $1
2 $2,000 $2
3 $360 $10

Installation i Ki hi d � 1,000

1 $125,000 $2
2 $20,000 $10
3 $6,000 $15
4 $10,000 $20
5 $250 $30
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18.5-8. Reconsider the example of a four-echelon inventory sys-
tem presented in Sec. 18.5, where its model parameters are given
in Table 18.2. Suppose now that the setup costs at the four
installations have changed from what is given in Table 18.2, where
the new values are K1 � $1,000, K2 � $5, K3 � $75, and K4 � $80.
Redo the analysis presented in Sec. 18.5 for this example (as sum-
marized in Table 18.4) with these new setup costs.

18.5-9. One of the many products produced by the Global Corpo-
ration is marketed primarily in the United States. A rough form of
the product is produced in one of the corporation’s plants in Asia
and then is shipped to a plant in the United States for the finish
work. The finished product next is sent to the corporation’s distri-
bution center in the United States. The distribution center stores
the product and then uses this inventory to fill orders from various
wholesalers. These sales to wholesalers remain relatively uniform
throughout the year at a rate of about 10,000 units per month. The
American plant uses its inventory of the finished product to send
a shipment to the distribution center whenever the center needs to
replenish its inventory. The associated administrative and shipping
cost is about $400 per shipment. Whenever the American plant
needs to replenish its inventory, the Asian plant uses its inventory
of the rough product to send a shipment to the American plant,
which then sets up for a quick production run to convert the rough
product to a finished product. Each time this happens, the shipping
cost and setup cost total about $6,000. The Asian plant replenishes
its inventory of the rough product when needed by setting up for
a quick production run. A setup cost of $60,000 is incurred each
time this is done. The monthly cost for holding each unit is $3 at
the Asian plant, $7 at the American plant, and $9 at the distribu-
tion plant. All the assumptions of the model for a serial multi-
echelon system presented in Sec. 18.5 apply to the joint inventory
system at the three locations for the product.

Solve this model by developing a table like Table 18.4 that
shows the intermediate and final results from applying the solution
procedure presented in Sec. 18.5. After calculating the total vari-
able cost per month of the final solution, determine the maximum
possible percentage by which this cost can exceed the corre-
sponding cost for an optimal solution.

18.6-1. Henry Edsel is the owner of Honest Henry’s, the largest
car dealership in its part of the country. His most popular car model
is the Triton, so his largest costs are those associated with order-
ing these cars from the factory and maintaining an inventory of
Tritons on the lot. Therefore, Henry has asked his general man-
ager, Ruby Willis, who once took a course in operations research,
to use this background to develop a cost-effective policy for when
to place these orders for Tritons and how many to order each time.

Ruby decides to use the stochastic continuous-review model
presented in Sec. 18.6 to determine an (R, Q) policy. After some
investigation, she estimates that the administrative cost for placing
each order is $1,500 (a lot of paperwork is needed for ordering
cars), the holding cost for each car is $3,000 per year (15 percent
of the agency’s purchase price of $20,000), and the shortage cost
per car short is $1,000 per year (an estimated probability of �

1
3

� of
losing a car sale and its profit of about $3,000). After considering
both the seriousness of incurring shortages and the high holding

cost, Ruby and Henry agree to use a 75 percent service level (a
probability of 0.75 of not incurring a shortage between the time an
order is placed and the delivery of the cars ordered). Based on
previous experience, they also estimate that the Tritons sell at a
relatively uniform rate of about 900 per year.

After an order is placed, the cars are delivered in about two-
thirds of a month. Ruby’s best estimate of the probability distribution
of demand during the lead time before a delivery arrives is a normal
distribution with a mean of 50 and a standard deviation of 15.
(a) Solve by hand for the order quantity.
(b) Use a table for the normal distribution (Appendix 5) to solve

for the reorder point.
T (c) Use the Excel template for this model in your OR Course-

ware to check your answers in parts (a) and (b).
(d) Given your previous answers, how much safety stock does this

inventory policy provide?
(e) This policy can lead to placing a new order before the deliv-

ery from the preceding order arrives. Indicate when this would
happen.

18.6-2. One of the largest selling items in J.C. Ward’s Department
Store is a new model of refrigerator that is highly energy-efficient.
About 80 of these refrigerators are being sold per month. It takes
about a week for the store to obtain more refrigerators from a
wholesaler. The demand during this time has a uniform distribu-
tion between 10 and 30. The administrative cost of placing each
order is $100. For each refrigerator, the holding cost per month is
$15 and the shortage cost per month is estimated to be $3.

The store’s inventory manager has decided to use the sto-
chastic continuous-review model presented in Sec. 18.6, with a ser-
vice level (measure 1) of 0.8, to determine an (R, Q) policy.
(a) Solve by hand for R and Q.
T (b) Use the corresponding Excel template to check your answer

in part (a).
(c) What will be the average number of stockouts per year with

this inventory policy?

18.6-3. When using the stochastic continuous-review model pre-
sented in Sec. 18.6, a difficult managerial judgment decision needs
to be made on the level of service to provide to customers. The
purpose of this problem is to enable you to explore the trade-off
involved in making this decision.

Assume that the measure of service level being used is L �
probability that a stockout will not occur during the lead time. Since
management generally places a high priority on providing excel-
lent service to customers, the temptation is to assign a very high
value to L. However, this would result in providing a very large
amount of safety stock, which runs counter to management’s de-
sire to eliminate unnecessary inventory. (Remember the just-in-
time philosophy discussed in Sec. 18.3 that is heavily influencing
managerial thinking today.) What is the best trade-off between pro-
viding good service and eliminating unnecessary inventory?

Assume that the probability distribution of demand during the
lead time is a normal distribution with mean � and standard devi-
ation �. Then the reorder point R is R � � � K1�L�, where K1�L

is obtained from Appendix 5. The amount of safety stock provided
by this reorder point is K1�L�. Thus, if h denotes the holding cost
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for each unit held in inventory per year, the average annual holding
cost for safety stock (denoted by C) is C � hK1�L�.
(a) Construct a table with five columns. The first column is the

service level L, with values 0.5, 0.75, 0.9, 0.95, 0.99, and 0.999.
The next four columns give C for four cases. Case 1 is h � $1
and � � 1. Case 2 is h � $100 and � � 1. Case 3 is h � $1
and � � 100. Case 4 is h � $100 and � � 100.

(b) Construct a second table that is based on the table obtained in
part (a). The new table has five rows and the same five columns
as the first table. Each entry in the new table is obtained by
subtracting the corresponding entry in the first table from the
entry in the next row of the first table. For example, the en-
tries in the first column of the new table are 0.75 � 0.5 � 0.25,
0.9 � 0.75 � 0.15, 0.95 � 0.9 � 0.05, 0.99 � 0.95 � 0.04,
and 0.999 � 0.99 � 0.009. Since these entries represent in-
creases in the service level L, each entry in the next four
columns represents the increase in C that would result from
increasing L by the amount shown in the first column.

(c) Based on these two tables, what advice would you give a man-
ager who needs to make a decision on the value of L to use?

18.6-4. The preceding problem describes the factors involved in
making a managerial decision on the service level L to use. It also
points out that for any given values of L, h (the unit holding cost per
year), and � (the standard deviation when the demand during the
lead time has a normal distribution), the average annual holding cost
for the safety stock would turn out to be C � hK1�L�, where C de-
notes this holding cost and K1�L is given in Appendix 5. Thus, the
amount of variability in the demand, as measured by �, has a major
impact on this holding cost C.

The value of � is substantially affected by the duration of the
lead time. In particular, � increases as the lead time increases. The
purpose of this problem is to enable you to explore this relation-
ship further.

To make this more concrete, suppose that the inventory system
under consideration currently has the following values: L � 0.9,
h � $100, and � � 100 with a lead time of 4 days. However, the
vendor being used to replenish inventory is proposing a change in
the delivery schedule that would change your lead time. You want
to determine how this would change � and C.

We assume for this inventory system (as is commonly the
case) that the demands on separate days are statistically indepen-
dent. In this case, the relationship between � and the lead time is
given by the formula

� � �d��1,

where d � number of days in the lead time,
�1 � standard deviation if d � 1.

(a) Calculate C for the current inventory system.
(b) Determine �1. Then find how C would change if the lead time

were reduced from 4 days to 1 day.
(c) How would C change if the lead time were doubled, from 4

days to 8 days?
(d) How long would the lead time need to be in order for C to

double from its current value with a lead time of 4 days?

18.6-5. What is the effect on the amount of safety stock provided
by the stochastic continuous-review model presented in Sec. 18.6
when the following change is made in the inventory system? (Con-
sider each change independently.)
(a) The lead time is reduced to 0 (instantaneous delivery).
(b) The service level (measure 1) is decreased.
(c) The unit shortage cost is doubled.
(d) The mean of the probability distribution of demand during the

lead time is increased (with no other change to the distribution).
(e) The probability distribution of demand during the lead time is

a uniform distribution from a to b, but now (b � a) has been
doubled.

(f) The probability distribution of demand during the lead time is
a normal distribution with mean � and standard deviation �,
but now � has been doubled.

18.6-6.* Jed Walker is the manager of Have a Cow, a hamburger
restaurant in the downtown area. Jed has been purchasing all the
restaurant’s beef from Ground Chuck (a local supplier) but is con-
sidering switching to Chuck Wagon (a national warehouse) because
its prices are lower.

Weekly demand for beef averages 500 pounds, with some vari-
ability from week to week. Jed estimates that the annual holding
cost is 30 cents per pound of beef. When he runs out of beef, Jed is
forced to buy from the grocery store next door. The high purchase
cost and the hassle involved are estimated to cost him about $3 per
pound of beef short. To help avoid shortages, Jed has decided to keep
enough safety stock to prevent a shortage before the delivery arrives
during 95 percent of the order cycles. Placing an order only requires
sending a simple fax, so the administrative cost is negligible.

Have a Cow’s contract with Ground Chuck is as follows: The
purchase price is $1.49 per pound. A fixed cost of $25 per order
is added for shipping and handling. The shipment is guaranteed to
arrive within 2 days. Jed estimates that the demand for beef dur-
ing this lead time has a uniform distribution from 50 to 150 pounds.

The Chuck Wagon is proposing the following terms: The beef
will be priced at $1.35 per pound. The Chuck Wagon ships via re-
frigerated truck, and so charges additional shipping costs of $200
per order plus $0.10 per pound. The shipment time will be roughly
a week, but is guaranteed not to exceed 10 days. Jed estimates that
the probability distribution of demand during this lead time will be
a normal distribution with a mean of 500 pounds and a standard
deviation of 200 pounds.
T (a) Use the stochastic continuous-review model presented in

Sec. 18.6 to obtain an (R, Q) policy for Have a Cow for each
of the two alternatives of which supplier to use.

(b) Show how the reorder point is calculated for each of these two
policies.

(c) Determine and compare the amount of safety stock provided
by the two policies obtained in part (a).

(d) Determine and compare the average annual holding cost un-
der these two policies.

(e) Determine and compare the average annual acquisition cost
(combining purchase price and shipping cost) under these two
policies.
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(f) Since shortages are very infrequent, the only important costs
for comparing the two suppliers are those obtained in parts (d )
and (e). Add these costs for each supplier. Which supplier
should be selected?

(g) Jed likes to use the beef (which he keeps in a freezer) within
a month of receiving it. How would this influence his choice
of supplier?

18.7-1. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec. 18.7.
Briefly describe how inventory theory was applied in this study.
Then list the various financial and nonfinancial benefits that re-
sulted from this study.

T 18.7-2. A newspaper stand purchases newspapers for $0.55 and
sells them for $0.75. The shortage cost is $0.75 per newspaper (be-
cause the dealer buys papers at retail price to satisfy shortages).
The holding cost is $0.01 per newspaper left at the end of the day.
The demand distribution is a uniform distribution between 50 and
75. Find the optimal number of papers to buy.

18.7-3. Freddie the newsboy runs a newstand. Because of a
nearby financial services office, one of the newspapers he sells
is the daily Financial Journal. He purchases copies of this news-
paper from its distributor at the beginning of each day for $1.50
per copy, sells it for $2.50 each, and then receives a refund of
$0.50 from the distributor the next morning for each unsold copy.
The number of requests for this newspaper range from 15 to 18
copies per day. Freddie estimates that there are 15 requests on 40
percent of the days, 16 requests on 20 percent of the days, 17 re-
quests on 30 percent of the days, and 18 requests on the remain-
ing days.
(a) Use Bayes’ decision rule presented in Sec. 15.2 to determine

what Freddie’s new order quantity should be to maximize his
expected daily profit.

(b) Apply Bayes’ decision rule again, but this time with the crite-
rion of minimizing Freddie’s expected daily cost of under-
ordering or overordering.

(c) Use the stochastic single-period model for perishable products
to determine Freddie’s optimal order quantity.

(d) Draw the cumulative distribution function of demand and
then show graphically how the model in part (c) finds the op-
timal order quantity.

18.7-4. Jennifer’s Donut House serves a large variety of dough-
nuts, one of which is a blueberry-filled, chocolate-covered, su-
persized doughnut supreme with sprinkles. This is an extra large
doughnut that is meant to be shared by a whole family. Since the
dough requires so long to rise, preparation of these doughnuts be-
gins at 4:00 in the morning, so a decision on how many to pre-
pare must be made long before learning how many will be needed.
The cost of the ingredients and labor required to prepare each of
these doughnuts is $1. Their sale price is $3 each. Any not sold
that day are sold to a local discount grocery store for $0.50. Over
the last several weeks, the number of these doughnuts sold for $3
each day has been tracked. These data are summarized next.

(a) What is the unit cost of underordering? The unit cost of
overordering?

(b) Use Bayes’decision rule presented in Sec. 15.2 to determine how
many of these doughnuts should be prepared each day to mini-
mize the average daily cost of underordering or overordering.

(c) After plotting the cumulative distribution function of demand,
apply the stochastic single-period model for perishable prod-
ucts graphically to determine how many of these doughnuts to
prepare each day.

(d) Given the answer in part (c), what will be the probability of
running short of these doughnuts on any given day?

(e) Some families make a special trip to the Donut House just to
buy this special doughnut. Therefore, Jennifer thinks that the
cost when they run short might be greater than just the lost
profit. In particular, there may be a cost for lost customer good-
will each time a customer orders this doughnut but none are
available. How high would this cost have to be before they
should prepare one more of these doughnuts each day than was
found in part (c)?

18.7-5.* Swanson’s Bakery is well known for producing the best
fresh bread in the city, so the sales are very substantial. The daily
demand for its fresh bread has a uniform distribution between 300
and 600 loaves. The bread is baked in the early morning, before
the bakery opens for business, at a cost of $2 per loaf. It then is
sold that day for $3 per loaf. Any bread not sold on the day it is
baked is relabeled as day-old bread and sold subsequently at a dis-
count price of $1.50 per loaf.
(a) Apply the stochastic single-period model for perishable prod-

ucts to determine the optimal service level.
(b) Apply this model graphically to determine the optimal num-

ber of loaves to bake each morning.
(c) With such a wide range of possible values in the demand dis-

tribution, it is difficult to draw the graph in part (b) carefully
enough to determine the exact value of the optimal number of
loaves. Use algebra to calculate this exact value.

(d) Given your answer in part (a), what is the probability of in-
curring a shortage of fresh bread on any given day?

(e) Because the bakery’s bread is so popular, its customers are quite
disappointed when a shortage occurs. The owner of the bakery,
Ken Swanson, places high priority on keeping his customers
satisfied, so he doesn’t like having shortages. He feels that the
analysis also should consider the loss of customer goodwill due
to shortages. Since this loss of goodwill can have a negative ef-
fect on future sales, he estimates that a cost of $1.50 per loaf
should be assessed each time a customer cannot purchase fresh

Number Sold Percentage of Days

0 10%
1 15%
2 20%
3 30%
4 15%
5 10%
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bread because of a shortage. Determine the new optimal num-
ber of loaves to bake each day with this change. What is the
new probability of incurring a shortage of fresh bread on any
given day?

18.7-6. Reconsider Prob. 18.7-5. The bakery owner, Ken Swanson,
now wants you to conduct a financial analysis of various inventory
policies. You are to begin with the policy obtained in the first four
parts of Prob. 18.7-5 (ignoring any cost for the loss of customer
goodwill). As given with the answers in the back of the book, this
policy is to bake 500 loaves of bread each morning, which gives a
probability of incurring a shortage of �

1
3

�.
(a) For any day that a shortage does occur, calculate the revenue

from selling fresh bread.
(b) For those days where shortages do not occur, use the probabil-

ity distribution of demand to determine the expected number of
loaves of fresh bread sold. Use this number to calculate the ex-
pected daily revenue from selling fresh bread on those days.

(c) Combine your results from parts (a) and (b) to calculate the
expected daily revenue from selling fresh bread when consid-
ering all days.

(d) Calculate the expected daily revenue from selling day-old
bread.

(e) Use the results in parts (c) and (d ) to calculate the expected
total daily revenue and then the expected daily profit (exclud-
ing overhead).

(f) Now consider the inventory policy of baking 600 loaves each
morning, so that shortages never occur. Calculate the expected
daily profit (excluding overhead) from this policy.

(g) Consider the inventory policy found in part (e) of Prob. 18.7-5.
As implied by the answers in the back of the book, this policy
is to bake 550 loaves each morning, which gives a probability
of incurring a shortage of �

1
6

�. Since this policy is midway between
the policy considered here in parts (a) to (e) and the one con-
sidered in part ( f ), its expected daily profit (excluding overhead
and the cost of the loss of customer goodwill) also is midway
between the expected daily profit for those two policies. Use this
fact to determine its expected daily profit.

(h) Now consider the cost of the loss of customer goodwill for the
inventory policy analyzed in part (g). Calculate the expected
daily cost of the loss of customer goodwill and then the ex-
pected daily profit when considering this cost.

(i) Repeat part (h) for the inventory policy considered in parts 
(a) to (e).

18.7-7. Reconsider Prob. 18.7-5. The bakery owner, Ken Swanson,
now has developed a new plan to decrease the size of shortages.
The bread will be baked twice a day, once before the bakery
opens (as before) and the other during the day after it becomes
clearer what the demand for that day will be. The first baking
will produce 300 loaves to cover the minimum demand for the
day. The size of the second baking will be based on an estimate
of the remaining demand for the day. This remaining demand is
assumed to have a uniform distribution from a to b, where the val-
ues of a and b are chosen each day based on the sales so far. It is
anticipated that (b � a) typically will be approximately 75, as

opposed to the range of 300 for the distribution of demand in
Prob. 18.7-5.
(a) Ignoring any cost of the loss of customer goodwill [as in parts

(a) to (d ) of Prob. 18.7-5], write a formula for how many loaves
should be produced in the second baking in terms of a and b.

(b) What is the probability of still incurring a shortage of fresh
bread on any given day? How should this answer compare to
the corresponding probability in Prob. 18.7-5?

(c) When b � a � 75, what is the maximum size of a shortage that
can occur? What is the maximum number of loaves of fresh
bread that will not be sold? How do these answers compare to
the corresponding numbers for the situation in Prob. 18.7-5
where only one (early morning) baking occurs per day?

(d) Now consider just the cost of underordering and the cost of
overordering. Given your answers in part (c), how should the ex-
pected total daily cost of underordering and overordering for this
new plan compare with that for the situation in Prob. 18.7-5?
What does this say in general about the value of obtaining as
much information as possible about what the demand will be be-
fore placing the final order for a perishable product?

(e) Repeat parts (a), (b), and (c) when including the cost of the
loss of customer goodwill as in part (e) of Prob. 18.7-5.

18.7-8. Suppose that the demand D for a spare airplane part has
an exponential distribution with mean 50, that is,

�
5
1
0
�e�� /50 for � � 0

�D(� ) �

0 otherwise.

This airplane will be obsolete in 1 year, so all production of the
spare part is to take place at present. The production costs now are
$1,000 per item—that is, c � 1,000—but they become $10,000 per
item if they must be supplied at later dates—that is, p � 10,000.
The holding costs, charged on the excess after the end of the pe-
riod, are $300 per item.
T (a) Determine the optimal number of spare parts to produce.
(b) Suppose that the manufacturer has 23 parts already in inven-

tory (from a similar, but now obsolete airplane). Determine
the optimal inventory policy.

(c) Suppose that p cannot be determined now, but the manufac-
turer wishes to order a quantity so that the probability of a
shortage equals 0.1. How many units should be ordered?

(d) If the manufacturer were following an optimal policy that re-
sulted in ordering the quantity found in part (c), what is the
implied value of p?

18.7-9. Reconsider Prob. 18.6-1 involving Henry Edsel’s car deal-
ership. The current model year is almost over, but the Tritons are
selling so well that the current inventory will be depleted before
the end-of-year demand can be satisfied. Fortunately, there still is
time to place one more order with the factory to replenish the in-
ventory of Tritons just about when the current supply will be gone.

The general manager, Ruby Willis, now needs to decide how
many Tritons to order from the factory. Each one costs $20,000. She
then is able to sell them at an average price of $23,000, provided
they are sold before the end of the model year. However, any of these




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Tritons left at the end of the model year would then need to be sold
at a special sale price of $19,500. Furthermore, Ruby estimates that
the extra cost of the capital tied up by holding these cars such an
unusually long time would be $500 per car, so the net revenue would
be only $19,000. Since she would lose $1,000 on each of these cars
left at the end of the model year, Ruby concludes that she needs to
be cautious to avoid ordering too many cars, but she also wants to
avoid running out of cars to sell before the end of the model year if
possible. Therefore, she decides to use the stochastic single-period
model for perishable products to select the order quantity. To do this,
she estimates that the number of Tritons being ordered now that could
be sold before the end of the model year has a normal distribution
with a mean of 50 and a standard deviation of 15.
(a) Determine the optimal service level.
(b) Determine the number of Tritons that Ruby should order from

the factory.

T 18.7-10. Find the optimal ordering policy for the stochastic
single-period model with a setup cost where the demand has the
probability density function

�D(� ) �

and the costs are

Holding cost � $1 per item,

Shortage cost � $3 per item,

Setup cost � $1.50,

Production cost � $2 per item.

Show your work, and then check your answer by using the corre-
sponding Excel template in your OR Courseware.

T 18.7-11. Using the approximation for finding the optimal
policy for the stochastic single-period model with a setup cost
when demand has an exponential distribution, find this policy
when

�D(�) �

and the costs are

Holding cost � 40 cents per item,

Shortage cost � $1.50 per item,

Purchase price � $1 per item,

Setup cost � $10.

Show your work, and then check your answer by using the cor-
responding Excel template in your OR Courseware.

18.8-1. Reconsider the Blue Skies Airlines example presented in
Sec. 18.8. Regarding the flight under consideration, recent experi-
ence indicates that the demand for the very low discount fare of
$200 is so high that it may be possible to considerably increase

this fare and still usually fill up the airplane with both leisure and
business travelers. Therefore, management wants to learn how the
optimal number of reservation slots to reserve for class 1 customers
would change if this fare were to be increased. Make this calcula-
tion for new fares of $300, $400, $500, and $600.

18.8-2. The most popular cruise offered by Luxury Cruises is a
three-week cruise in the Mediterranean each July with daily ports
of call at interesting tourist destinations. The ship has 1,000 cab-
ins, so it is a challenge to fill the ship because of the high fares
charged. In particular, the average regular fare for a cabin is
$20,000, which is too high for many potential customers. There-
fore, to help fill the ship, the company offers a special discount
fare for this cruise that averages $12,000 per cabin when it an-
nounces its future cruises a year in advance. The deadline for ob-
taining this discount fare is 11 months before the cruise, and this
discount also can be discontinued earlier at the company’s discre-
tion. Thereafter, the company uses heavy publicity to attract luxury-
seeking customers who make vacation plans later and are willing
to pay the regular fare averaging $20,000 per cabin. Based on past
experience, it is estimated that the number of such luxury-seeking
customers for this cruise has a normal distribution with a mean of
400 and a standard deviation of 100.

Use the model for capacity-controlled discount fares presented
in Sec. 18.8 to determine the maximum number of cabins that
should be sold at the discount fare before reserving the remaining
cabins to be sold at the regular fare.

18.8-3. To help fill its seats for a particular flight, an airline offers
a special nonrefundable fare of $100 for customers who make a
reservation at least 21 days in advance and satisfy other restric-
tions. Thereafter, the fare will be $300. A total of 100 reservations
will be accepted. The number of customers who have requested a
reservation at full fare for this flight in the past always has been
at least 31 and not more than 50. It is estimated that the integer
numbers between 31 and 50 are equally likely.

Use the model for capacity-controlled discount fares to de-
termine how many of the reservations should be reserved for cus-
tomers who would pay full fare.

18.8-4. Reconsider the Transcontinental Airlines example pre-
sented in Sec. 18.8. Management has concluded that the original
estimate of $500 for the intangible cost of a loss of goodwill on
the part of a bumped customer is much too low and should be in-
creased to $1,000. Use the overbooking model to determine the
number of reservations that now should be accepted for this flight.

18.8-5. The management of Quality Airlines has decided to base
its overbooking policy on the overbooking model presented in
Sec. 18.8. This policy now needs to be applied to a new flight from
Seattle to Atlanta. The airplane has 125 seats available for a non-
refundable fare of $250. However, since there commonly are a few
no-shows on similar flights, the airline should accept a few more
than 125 reservations. On those occasions when more than 125
arrive to take the flight, the airline will find volunteers who are
willing to be put free on a later Quality Airlines flight that has avail-
able seats, in return for being given a certificate worth $500 (but

for � � 0
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that would cost the company just $300) toward any future travel
on this airline. Management feels that an additional $300 should
be assessed for the intangible cost of a loss of goodwill for in-
conveniencing these customers.

Based on previous experience with similar flights having
about 125 reservations, it is estimated that the relative frequency
of the number of no-shows (independent of the exact number of
reservations) will be as shown below.

Instead of using the binomial distribution, use this distribution di-
rectly with the overbooking model to determine how much over-
booking the company should do for this flight.

18.8-6. Consider the overbooking model presented in Sec. 18.8. For
a specific application, suppose that the parameters of the model are
p = 0.5, r = $1,000, s = $5,000, and L = 3. Use the binomial distri-
bution directly (not the normal approximation) to calculate n*, the
optimal number of reservations to accept, by using trial and error.

18.8-7. The Mountain Top Hotel is a luxury hotel in a popular ski
resort area. The hotel always is essentially full during winter

months, so reservations and payments must be made months in ad-
vance for week-long stays from Saturday to Saturday. Reservations
can be cancelled until a month in advance, but are nonrefundable
after that. The hotel has 100 rooms and the room charge for a
week’s stay is $3,000. Despite this high cost, the hotel’s wealthy
customers occasionally will forfeit this money and not show up be-
cause their plans have changed. On the average, about 10 percent
of the customers with reservations are no-shows, so the hotel’s
management wants to do some overbooking. However, it also feels
that this should be done cautiously because the consequences of
turning away a customer with a reservation would be severe. These
consequences include the cost of quickly arranging for alternative
housing in an inferior hotel, providing a voucher for a future stay,
and the intangible cost of a massive loss of goodwill on the part
of the furious customer who is turned away (and surely will tell
many wealthy friends about this shabby treatment). Management
estimates that the cost that should be imputed to these consequences
is $20,000.

Use the overbooking model presented in Sec. 18.8, including
the normal approximation for the binomial distribution, to deter-
mine how much overbooking the hotel should do.

18.9-1. From the bottom part of the selected references given at
the end of the chapter, select one of these award-winning applica-
tions of inventory theory. Read this article and then write a two-
page summary of the application and the benefits (including
nonfinancial benefits) it provided.

18.9-2. From the bottom part of the selected references given at
the end of the chapter, select three of these award-winning appli-
cations of inventory theory. For each one, write a one-page sum-
mary of the application and the benefits (including nonfinancial
benefits) it provided.

■ CASES

Number of No-Shows Relative Frequency

0 0%
1 5
2 10
3 10
4 15
5 20
6 15
7 10
8 10
9 5

CASE 18.1 Brushing Up on Inventory
Control
Robert Gates rounds the corner of the street and smiles when
he sees his wife pruning rose bushes in their front yard. He
slowly pulls his car into the driveway, turns off the engine,
and falls into his wife’s open arms.

“How was your day?” she asks.
“Great! The drugstore business could not be better!”

Robert replies, “Except for the traffic coming home from
work! That traffic can drive a sane man crazy! I am so tense
right now. I think I will go inside and make myself a relax-
ing martini.”

Robert enters the house and walks directly into the
kitchen. He sees the mail on the kitchen counter and begins
flipping through the various bills and advertisements until he
comes across the new issue of OR/MS Today. He prepares

his drink, grabs the magazine, treads into the living room,
and settles comfortably into his recliner. He has all that he
wants—except for one thing. He sees the remote control ly-
ing on the top of the television. He sets his drink and mag-
azine on the coffee table and reaches for the remote control.
Now, with the remote control in one hand, the magazine in
the other, and the drink on the table near him, Robert is fi-
nally the master of his domain.

Robert turns on the television and flips the channels
until he finds the local news. He then opens the magazine
and begins reading an article about scientific inventory
management. Occasionally he glances at the television to
learn the latest in business, weather, and sports.

As Robert delves deeper into the article, he becomes
distracted by a commercial on television about toothbrushes.
His pulse quickens slightly in fear because the commercial
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for Totalee toothbrushes reminds him of the dentist. The
commerical concludes that the customer should buy a
Totalee toothbrush because the toothbrush is Totalee revo-
lutionary and Totalee effective. It certainly is effective; it is
the most popular toothbrush on the market!

At that moment, with the inventory article and the tooth-
brush commercial fresh in his mind, Robert experiences a
flash of brilliance. He knows how to control the inventory
of Totalee toothbrushes at Nightingale Drugstore!

As the inventory control manager at Nightingale Drug-
store, Robert has been experiencing problems keeping 
Totalee toothbrushes in stock. He has discovered that cus-
tomers are very loyal to the Totalee brand name since To-
talee holds a patent on the toothbrush endorsed by 9 out of
10 dentists. Customers are willing to wait for the tooth-
brushes to arrive at Nightingale Drugstore since the drug-
store sells the toothbrushes for 20 percent less than other
local stores. This demand for the toothbrushes at Nightin-
gale means that the drugstore is often out of Totalee 
toothbrushes. The store is able to receive a shipment of
toothbrushes several hours after an order is placed to the
Totalee regional warehouse because the warehouse is only
20 miles away from the store. Nevertheless, the current
inventory situation causes problems because numerous emer-
gency orders cost the store unnecessary time and paper-
work and because customers become disgruntled when
they must return to the store later in the day.

Robert now knows a way to prevent the inventory prob-
lems through scientific inventory management! He grabs his
coat and car keys and rushes out of the house.

As he runs to the car, his wife yells, “Honey, where are
you going?”

“I’m sorry, darling,” Robert yells back. “I have just dis-
covered a way to control the inventory of a critical item at
the drugstore. I am really excited because I am able to ap-
ply my industrial engineering degree to my job! I need to
get the data from the store and work out the new inventory
policy! I will be back before dinner!”

Because rush hour traffic has dissipated, the drive to the
drugstore takes Robert no time at all. He unlocks the dark-
ened store and heads directly to his office where he rum-
mages through file cabinets to find demand and cost data
for Totalee toothbrushes over the past year.

Aha! Just as he suspected! The demand data for the
toothbrushes is almost constant across the months. Whether
in winter or summer, customers have teeth to brush, and they
need toothbrushes. Since a toothbrush will wear out after a
few months of use, customers will always return to buy an-
other toothbrush. The demand data shows that Nightingale
Drugstore customers purchase an average of 250 Totalee
toothbrushes per month (30 days).

After examining the demand data, Robert investigates
the cost data. Because Nightingale Drugstore is such a good
customer, Totalee charges its lowest wholesale price of only
$1.25 per toothbrush. Robert spends about 20 minutes to
place each order with Totalee. His salary and benefits add
up to $18.75 per hour. The annual holding cost for the in-
ventory is 12 percent of the capital tied up in the inventory
of Totalee toothbrushes.

(a) Robert decides to create an inventory policy that normally ful-
fills all demand since he believes that stock-outs are just not worth
the hassle of calming customers or the risk of losing future busi-
ness. He therefore does not allow any planned shortages. Since
Nightingale Drugstore receives an order several hours after it is
placed, Robert makes the simplifying assumption that delivery is
instantaneous. What is the optimal inventory policy under these
conditions? How many Totalee toothbrushes should Robert or-
der each time and how frequently? What is the total variable in-
ventory cost per year with this policy?

(b) Totalee has been experiencing financial problems because the
company has lost money trying to branch into producing other
personal hygiene products, such as hairbrushes and dental
floss. The company has therefore decided to close the ware-
house located 20 miles from Nightingale Drugstore. The drug-
store must now place orders with a warehouse located 350
miles away and must wait 6 days after it places an order to re-
ceive the shipment. Given this new lead time, how many
Totalee toothbrushes should Robert order each time, and when
should he order?

(c) Robert begins to wonder whether he would save money if he
allows planned shortages to occur. Customers would wait to
buy the toothbrushes from Nightingale since they have high
brand loyalty and since Nightingale sells the toothbrushes for
less. Even though customers would wait to purchase the
Totalee toothbrush from Nightingale, they would become un-
happy with the prospect of having to return to the store again
for the product. Robert decides that he needs to place a dol-
lar value on the negative ramifications from shortages. He
knows that an employee would have to calm each disgrun-
tled customer and track down the delivery date for a new
shipment of Totalee toothbrushes. Robert also believes that
customers would become upset with the inconvenience of
shopping at Nightingale and would perhaps begin looking for
another store providing better service. He estimates the costs
of dealing with disgruntled customers and losing customer
goodwill and future sales as $1.50 per unit short per year.
Given the 6-day lead time and the shortage allowance, how
many Totalee toothbrushes should Robert order each time,
and when should he order? What is the maximum shortage
under this optimal inventory policy? What is the total vari-
able inventory cost per year?

(d) Robert realizes that his estimate for the shortage cost is sim-
ply that—an estimate. He realizes that employees sometimes
must spend several minutes with each customer who wishes
to purchase a toothbrush when none is currently available. In
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addition, he realizes that the cost of losing customer goodwill
and future sales could vary within a wide range. He estimates
that the cost of dealing with disgruntled customers and losing
customer goodwill and future sales could range from 85 cents
to $25 per unit short per year. What effect would changing the
estimate of the unit shortage cost have on the inventory pol-
icy and total variable inventory cost per year found in part (c)?

(e) Closing warehouses has not improved Totalee’s bottom line sig-
nificantly, so the company has decided to institute a discount

policy to encourage more sales. Totalee will charge $1.25 per
toothbrush for any order of up to 500 toothbrushes, $1.15 per
toothbrush for orders of more than 500 but less than 1000 tooth-
brushes, and $1 per toothbrush for orders of 1000 toothbrushes
or more. Robert still assumes a 6-day lead time, but he does not
want planned shortages to occur. Under the new discount pol-
icy, how many Totalee toothbrushes should Robert order each
time, and when should he order? What is the total inventory
cost (including purchase costs) per year?

■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 18.2 TNT: Tackling Newsboy’s
Teaching 
A young entrepreneur will be operating a firecracker stand
for the Fourth of July. He has time to place only one order
for the firecrackers he will sell from his stand. After ob-
taining the relevant financial data and some information with
which to estimate the probability distribution of potential
sales, he now needs to determine how many firecracker sets
he should order to maximize his expected profit under dif-
ferent scenarios.

CASE 18.3 Jettisoning Surplus Stock
American Aerospace produces military jet engines. Frequent
shortages of one critical part has been causing delays in the

production of the most popular jet engine, so a new inven-
tory policy needs to be developed for this part. There is a
long lead time between when an order is placed for the part
and when the order quantity is received. The demand for the
part during this lead time is uncertain, but some data are
available for estimating its probability distribution. In the
future, the inventory level of the part will be kept under con-
tinuous review. Decisions now need to be made regarding
the inventory level at which a new order should be placed
and what the order quantity should be.
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19C H A P T E R

Markov Decision Processes

Chapter 16 introduced Markov chains and their analysis. Most of the chapter was de-
voted to discrete time Markov chains, i.e., Markov chains that are observed only at

discrete points in time (e.g., the end of each day) rather than continuously. Each time it is
observed, the Markov chain can be in any one of a number of states. Given the current
state, a (one-step) transition matrix gives the probabilities for what the state will be next
time. Given this transition matrix, Chap. 16 focused on describing the behavior of a
Markov chain, e.g., finding the steady-state probabilities for what state it is in.

Many important systems (e.g., many queueing systems) can be modeled as either a
discrete time or continuous time Markov chain. It is useful to describe the behavior of
such a system (as we did in Chap. 17 for queueing systems) in order to evaluate its per-
formance. However, it may be even more useful to design the operation of the system so
as to optimize its performance (as we did in Sec. 17.10 for queueing systems).

This chapter focuses on how to design the operation of a discrete time Markov chain
so as to optimize its performance. Therefore, rather than passively accepting the design
of the Markov chain and the corresponding fixed transition matrix, we now are being
proactive. For each possible state of the Markov chain, we make a decision about which
one of several alternative actions should be taken in that state. The action chosen affects
the transition probabilities as well as both the immediate costs (or rewards) and subse-
quent costs (or rewards) from operating the system. We want to choose the optimal ac-
tions for the respective states when considering both immediate and subsequent costs. The
decision process for doing this is referred to as a Markov decision process.

The first section gives a prototype example of an application of a Markov decision
process. Section 19.2 formulates the basic model for these processes. The next three sec-
tions describe how to solve them.

■ 19.1 A PROTOTYPE EXAMPLE

A manufacturer has one key machine at the core of one of its production processes. Be-
cause of heavy use, the machine deteriorates rapidly in both quality and output. There-
fore, at the end of each week, a thorough inspection is done that results in classifying the
condition of the machine into one of four possible states:
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After historical data on these inspection results are gathered, statistical analysis is done
on how the state of the machine evolves from month to month. The following matrix shows
the relative frequency (probability) of each possible transition from the state in one month
(a row of the matrix) to the state in the following month (a column of the matrix).

906 CHAPTER 19 MARKOV DECISION PROCESSES

State Condition

0 Good as new
1 Operable—minor deterioration
2 Operable—major deterioration
3 Inoperable—output of unacceptable quality

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 0 0 0 1 

State Expected Cost Due to Defective Items, $

0 0
1 1,000
2 3,000 

In addition, statistical analysis has found that these transition probabilities are unaffected
by also considering what the states were in prior months. This “lack-of-memory property”
is the Markovian property described in Sec. 16.2. Therefore, for the random variable Xt,
which is the state of the machine at the end of month t, it has been concluded that the
stochastic process {Xt, t � 0, 1, 2, . . .} is a discrete time Markov chain whose (one-step)
transition matrix is just the above matrix.

As the last entry in this transition matrix indicates, once the machine becomes inop-
erable (enters state 3), it remains inoperable. In other words, state 3 is an absorbing state.
Leaving the machine in this state would be intolerable, since this would shut down the
production process, so the machine must be replaced. (Repair is not feasible in this state.)
The new machine then will start off in state 0.

The replacement process takes 1 week to complete so that production is lost for this
period. The cost of the lost production (lost profit) is $2,000, and the cost of replacing the
machine is $4,000, so the total cost incurred whenever the current machine enters state 3
is $6,000.

Even before the machine reaches state 3, costs may be incurred from the production
of defective items. The expected costs per week from this source are as follows:

We now have mentioned all the relevant costs associated with one particular mainte-
nance policy (replace the machine when it becomes inoperable but do no maintenance
otherwise). Under this policy, the evolution of the state of the system (the succession of
machines) still is a Markov chain, but now with the following transition matrix:
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To evaluate this maintenance policy, we should consider both the immediate costs in-
curred over the coming week (just described) and the subsequent costs that result from hav-
ing the system evolve in this way. As introduced in Sec. 16.5, one such widely used measure
of performance for Markov chains is the (long-run) expected average cost per unit time.1

To calculate this measure, we first derive the steady-state probabilities �0, �1, �2,
and �3 for this Markov chain by solving the following steady-state equations:

�0 � �3,

�1 � �
7
8

��0 � �
3
4

��1,

�2 � �
1
1
6
��0 � �

1
8

��1 � �
1
2

��2,

�3 � �
1
1
6
��0 � �

1
8

��1 � �
1
2

��2,

1 � �0 � �1 � �2 � �3.

(Although this system of equations is small enough to be solved by hand without great dif-
ficulty, the Steady-State Probabilities procedure in the Markov Chains area of your IOR Tu-
torial provides another quick way of obtaining this solution.) The simultaneous solution is

�0 � �
1
2
3
�, �1 � �

1
7
3
�, �2 � �

1
2
3
�, �3 � �

1
2
3
�.

Hence, the (long-run) expected average cost per week for this maintenance policy is

0�0 � 1,000�1 � 3,000�2 � 6,000�3 � �
25

1
,0
3
00
� � $1,923.08.

However, there also are other maintenance policies that should be considered and com-
pared with this one. For example, perhaps the machine should be replaced before it reaches
state 3. Another alternative is to overhaul the machine at a cost of $2,000. This option is
not feasible in state 3 and does not improve the machine while in state 0 or 1, so it is of
interest only in state 2. In this state, an overhaul would return the machine to state 1. A
week is required, so another consequence is $2,000 in lost profit from lost production.

In summary, the possible decisions after each inspection are as follows:

19.1 A PROTOTYPE EXAMPLE 907

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

1The term long-run indicates that the average should be interpreted as being taken over an extremely long time
so that the effect of the initial state disappears. As time goes to infinity, Sec. 16.5 discusses the fact that the ac-
tual average cost per unit time essentially always converges to the expected average cost per unit time.

Decision Action Relevant States

1 Do nothing 0, 1, 2
2 Overhaul (return system to state 1) 2
3 Replace (return system to state 0) 1, 2, 3

hil76299_ch19_905-933.qxd  11/14/08  08:35 AM  Page 907



Confirming Pages

For easy reference, Table 19.1 also summarizes the relevant costs for each decision for
each state where that decision could be of interest.

What is the optimal maintenance policy? We will be addressing this question to il-
lustrate the material in the next four sections.

908 CHAPTER 19 MARKOV DECISION PROCESSES

TABLE 19.1 Cost data for the prototype example

Expected Cost Cost (Lost Total
Due to Producing Maintenance Profit) of Lost Cost per

Decision State Defective Items, $ Cost, $ Production, $ Week, $

1. Do nothing 0 0 0 0 0
1 1,000 0 0 1,000
2 3,000 0 0 3,000

2. Overhaul 2 0 2,000 2,000 4,000
3. Replace 1, 2, 3 0 4,000 2,000 6,000

2The solution procedures given in the next two sections also assume that the resulting transition matrix is irreducible.

■ 19.2 A MODEL FOR MARKOV DECISION PROCESSES

The model for the Markov decision processes considered in this chapter can be summa-
rized as follows.

1. The state i of a discrete time Markov chain is observed after each transition (i � 0,
1, . . . , M ).

2. After each observation, a decision (action) k is chosen from a set of K possible deci-
sions (k � 1, 2, . . . , K ). (Some of the K decisions may not be relevant for some of
the states.)

3. If decision di � k is made in state i, an immediate cost is incurred that has an expected
value Cik.

4. The decision di � k in state i determines what the transition probabilities2 will be for
the next transition from state i. Denote these transition probabilities by pij(k), for j � 0,
1, . . . , M.

5. A specification of the decisions for the respective states (d0, d1, . . . , dM) prescribes a
policy for the Markov decision process.

6. The objective is to find an optimal policy according to some cost criterion which con-
siders both immediate costs and subsequent costs that result from the future evolution
of the process. One common criterion is to minimize the (long-run) expected average
cost per unit time. (An alternative criterion is considered in Sec. 19.5.)

To relate this general description to the prototype example presented in Sec. 19.1, recall
that the Markov chain being observed there represents the state (condition) of a particular
machine. After each inspection of the machine, a choice is made between three possible de-
cisions (do nothing, overhaul, or replace). The resulting immediate expected cost is shown
in the rightmost column of Table 19.1 for each relevant combination of state and decision.
Section 19.1 analyzed one particular policy (d0, d1, d2, d3) � (1, 1, 1, 3), where decision 1
(do nothing) is made in states 0, 1, and 2 and decision 3 (replace) is made in state 3. The re-
sulting transition probabilities are shown in the last transition matrix given in Sec. 19.1.

Our general model qualifies to be a Markov decision process because it possesses
the Markovian property that characterizes any Markov process. In particular, given
the current state and decision, any probabilistic statement about the future of the
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process is completely unaffected by providing any information about the history of
the process. This Markovian property holds here since (1) we are dealing with a
Markov chain, (2) the new transition probabilities depend on only the current state
and decision, and (3) the immediate expected cost also depends on only the current
state and decision.

Our description of a policy implies two convenient (but unnecessary) properties that
we will assume throughout the chapter (with one exception). One property is that a pol-
icy is stationary; i.e., whenever the system is in state i, the rule for making the decision
always is the same regardless of the value of the current time t. The second property is
that a policy is deterministic; i.e., whenever the system is in state i, the rule for making
the decision definitely chooses one particular decision. (Because of the nature of the al-
gorithm involved, the next section considers randomized policies instead, where a proba-
bility distribution is used for the decision to be made.)

Using this general framework, we now return to the prototype example and find
the optimal policy by enumerating and comparing all the relevant policies. In doing
this, we will let R denote a specific policy and di(R) denote the corresponding deci-
sion to be made in state i, where decisions 1, 2, and 3 are described at the end of the
preceding section. Since one or more of these three decisions are the only ones that
would be considered in any given state, the only possible values of di(R) are 1, 2, or 3
for any state i.

19.2 A MODEL FOR MARKOV DECISION PROCESSES 909

In 2003, Bank One Corporation was the sixth-largest
bank in the United States. Bank One Card Services,
Inc., a division of Bank One Corporation, also was the
largest issuer of Visa cards in the United States, on be-
half of both Bank One and several thousand marketing
partners. The following year, Bank One Corporation
merged with JPMorgan Chase under the latter name to
form the third-largest banking institution in the coun-
try. Chase thereafter was used as the brand for its credit
card services.

The credit card business is a natural application area
of operations research because its success depends so
directly on a careful balancing of various quantitative
factors. The annual percentage rate (APR) for interest
charges and the credit line of card accounts influence
both card use and bank profitability. Consumers find
low APR levels and high credit lines attractive. How-
ever, low APR levels may reduce bank profitability,
while indiscriminate increases in credit lines increase
the bank’s exposure to credit loss. It is critical that these
factors be balanced in different ways for different cus-
tomers based on the evolving credit ratings of these 
customers.

With all this in mind, Bank One management asked
its in-house OR group in 1999 to begin the PORTICO
(portfolio control and optimization) project to evaluate
approaches for improving the profitability of its credit

card business. The OR group designed the PORTICO
system using Markov decision processes to select the
APR levels and credit lines for individual card holders
that maximize the net present value of the entire port-
folio of credit card customers. The group used several
variables—including the credit-line level, the APR level,
and some variables describing customer behavior in mak-
ing payments—to determine the state into which to slot
an account in any month. The transition probabilities were
based on 18 months of time-series data on a random sam-
ple of 3 million credit card accounts from the bank’s port-
folio. The decisions to be made for each state of the
Markov decision process are the APR level and credit-line
level for that category of customers in the next month.

A considerable period of testing the PORTICO
model verified that it would substantially increase the
bank’s profitability. As the actual implementation began,
it was estimated that this new process would increase an-
nual profits by over $75 million. This outstanding appli-
cation of Markov decision processes led to Bank One
winning the prestigious Wagner Prize for Excellence in
Operations Research Practice for 2002.

Source: M. S. Trench, S. P. Pederson, E. T. Lau, L. Ma, H. Wang,
and S. K. Nair: “Managing Credit Lines and Prices for Bank
One Credit Cards,” Interfaces, 33(5): 4–21, Sept.–Oct. 2003. (A
link to this article is provided on our website, www.mhhe
.com/hillier.)

An Application Vignette
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Decision k

Cik (in Thousands of Dollars)

State i 1 2 3

0 0 — —
1 1 — 6
2 3 4 6
3 — — 6 

Policy Verbal Description d0(R) d1(R) d2(R) d3(R)

Ra Replace in state 3 1 1 1 3
Rb Replace in state 3, overhaul in state 2 1 1 2 3
Rc Replace in states 2 and 3 1 1 3 3
Rd Replace in states 1, 2, and 3 1 3 3 3 

Solving the Prototype Example by Exhaustive Enumeration

The relevant policies for the prototype example are these:

Ra

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

Rb

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 1 0 0
3 1 0 0 0

Rc

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 1 0 0 0
3 1 0 0 0

Rd

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 1 0 0 0
2 1 0 0 0
3 1 0 0 0

Each policy results in a different transition matrix, as shown below.

From the rightmost column of Table 19.1, the values of Cik are as follows:

As indicated in Sec. 16.5, the (long-run) expected average cost per unit time E(C) then
can be calculated from the expression

E(C ) � �
M

i�0
Cik�i,
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Policy (�0, �1, �2, �3) E(C), in Thousands of Dollars

Ra ��
1
2
3
�, �

1
7
3
�, �

1
2
3
�, �

1
2
3
�� �

1
1
3
�[2(0) � 7(1) � 2(3) � 2(6)] � �

2
1
5
3
� � $1,923

Rb ��
2
2
1
�, �

5
7

�, �
2
2
1
�, �

2
2
1
�� �

2
1
1
�[2(0) � 15(1) � 2(4) � 2(6)] � �

3
2
5
1
� � $1,667

Rc ��
1
2
1
�, �

1
7
1
�, �

1
1
1
�, �

1
1
1
�� �

1
1
1
�[2(0) � 7(1) � 1(6) � 1(6)] � �

1
1
9
1
� � $1,727

Rd ��
1
2

�, �
1
7
6
�, �

3
1
2
�, �

3
1
2
�� �

3
1
2
�[16(0) � 14(6) � 1(6) � 1(6)] � �

9
3
6
2
� � $3,000

■ 19.3 LINEAR PROGRAMMING AND OPTIMAL POLICIES

Section 19.2 described the main kind of policy (called a stationary, deterministic policy)
that is used by Markov decision processes. We saw that any such policy R can be viewed
as a rule that prescribes decision di(R) whenever the system is in state i, for each i � 0,
1, . . . , M. Thus, R is characterized by the values

{d0(R), d1(R), . . . , dM(R)}.

Equivalently, R can be characterized by assigning values Dik � 0 or 1 in the matrix

Decision k
1 2 ��� K

State i ,

where each Dik (i � 0, 1, . . . , M and k � 1, 2, . . . , K ) is defined as

Dik � �
Therefore, each row in the matrix must contain a single 1 with the rest of the elements
0s. For example, the optimal policy Rb for the prototype example is characterized by the
matrix

if decision k is to be made in state i
otherwise.

1
0








D0K

D1K

DMK

���

���

���

D02

D12

DM2

D01

D11

DM1








0

1

�

M
�����������������������������

where k � di(R) for each i and (�0, �1, . . . , �M) represents the steady-state distribution
of the state of the system under the policy R being evaluated. After (�0, �1, . . . , �M) are
solved for under each of the four policies (as can be done with your IOR Tutorial), the
calculation of E(C ) is as summarized here:

Thus, the optimal policy is Rb; that is, replace the machine when it is found to be in
state 3, and overhaul the machine when it is found to be in state 2. The resulting (long-
run) expected average cost per week is $1,667.

If you would like to go through another small example, one is provided in the Worked
Examples section of the book’s website.

Using exhaustive enumeration to find the optimal policy is appropriate for such tiny
examples, where there are so few relevant policies. However, many applications have so
many policies that this approach would be completely infeasible. For such cases, algo-
rithms that can efficiently find an optimal policy are needed. The next three sections con-
sider such algorithms.

� Minimum
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Decision k
1 2 3

State i ;

i.e., do nothing (decision 1) when the machine is in state 0 or 1, overhaul (decision 2) in
state 2, and replace the machine (decision 3) when it is in state 3.

Randomized Policies

Introducing Dik provides motivation for a linear programming formulation. It is hoped
that the expected cost of a policy can be expressed as a linear function of Dik or a related
variable, subject to linear constraints. Unfortunately, the Dik values are integers (0 or 1),
and continuous variables are required for a linear programming formulation. This re-
quirement can be handled by expanding the interpretation of a policy. The previous de-
finition calls for making the same decision every time the system is in state i. The new
interpretation of a policy will call for determining a probability distribution for the deci-
sion to be made when the system is in state i.

With this new interpretation, the Dik now need to be redefined as

Dik � P{decision � kstate � i}.

In other words, given that the system is in state i, variable Dik is the probability of choos-
ing decision k as the decision to be made. Therefore, (Di1, Di2, . . . , DiK) is the proba-
bility distribution for the decision to be made in state i.

This kind of policy using probability distributions is called a randomized policy,
whereas the policy calling for Dik � 0 or 1 is a deterministic policy. Randomized policies
can again be characterized by the matrix

Decision k
1 2 ��� K

State i ,

where each row sums to 1, and now

0 � Dik � 1.

To illustrate, consider a randomized policy for the prototype example given by the
matrix

Decision k
1 2 3

State i .

This policy calls for always making decision 1 (do nothing) when the machine is in state 0.
If it is found to be in state 1, it is left as is with probability �

1
2

� and replaced with proba-
bility �

1
2

�, so a coin can be flipped to make the choice. If it is found to be in state 2, it is
left as is with probability �

1
4

�, overhauled with probability �
1
4

�, and replaced with probability �
1
2

�.








0
�
1
2

�

�
1
2

�

1

0

0
�
1
4

�

0

1
�
1
2

�

�
1
4

�

0








0

1

2

3








D0K

D1K

DMK

���

���

���

D02

D12

DM2

D01

D11

DM1








0

1

�

M








0

0

0

1

0

0

1

0

1

1

0

0








0

1

2

3

����������������������������
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Presumably, a random device with these probabilities (possibly a table of random num-
bers) can be used to make the actual decision. Finally, if the machine is found to be in
state 3, it always is replaced.

By allowing randomized policies, so that the Dik are continuous variables instead of
integer variables, it now is possible to formulate a linear programming model for finding
an optimal policy.

A Linear Programming Formulation

The convenient decision variables (denoted here by yik) for a linear programming model
are defined as follows. For each i � 0, 1, . . . , M and k � 1, 2, . . . , K, let yik be the steady-
state unconditional probability that the system is in state i and decision k is made; i.e.,

yik � P{state � i and decision � k}.

Each yik is closely related to the corresponding Dik since, from the rules of conditional
probability,

yik � �iDik,

where �i is the steady-state probability that the Markov chain is in state i. Furthermore,

�i � �
K

k�1
yik,

so that

Dik � �
y
�

ik

i
� � .

There exist three sets of constraints on yik:

1. �
M

i�0
�i � 1 so that �

M

i�0
�
K

k�1
yik � 1.

2. From results on steady-state probabilities (see Sec. 16.5),3

�j � �
M

i�0
�ipij(k)

so that

�
K

k�1
yjk � �

M

i�0
�
K

k�1
yikpij(k), for j � 0, 1, . . . , M.

3. yik � 0, for i � 0, 1, . . . , M and k � 1, 2, . . . , K.

The long-run expected average cost per unit time is given by

E(C ) � �
M

i�0
�
K

k�1
�iCikDik � �

M

i�0
�
K

k�1
Cikyik.

Hence, the linear programming model is to choose the yik so as to

Minimize Z � �
M

i�0
�
K

k�1
Cikyik,

yik�

�
K

k�1
yik

19.3 LINEAR PROGRAMMING AND OPTIMAL POLICIES 913

3The argument k is introduced in pij(k) to indicate that the appropriate transition probability depends upon the
decision k.
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subject to the constraints

(1) �
M

i�0
�
K

k�1
yik � 1.

(2) �
K

k�1
yjk � �

M

i�0
�
K

k�1
yikpij(k) � 0, for j � 0, 1, . . . , M.

(3) yik � 0, for i � 0, 1, . . . , M; k � 1, 2, . . . , K.

Thus, this model has M � 2 functional constraints and K(M � 1) decision variables. 
[Actually, (2) provides one redundant constraint, so any one of these M � 1 constraints
can be deleted.]

Because this is a linear programming model, it can be solved by the simplex method.
Once the yik values are obtained, each Dik is found from

Dik � .

The optimal solution obtained by the simplex method has some interesting proper-
ties. It will contain M � 1 basic variables yik � 0. It can be shown that yik � 0 for at least
one k � 1, 2, . . . , K, for each i � 0, 1, . . . , M. Therefore, it follows that yik � 0 for only
one k for each i � 0, 1, . . . , M. Consequently, each Dik � 0 or 1.

The key conclusion is that the optimal policy found by the simplex method is deter-
ministic rather than randomized. Thus, allowing policies to be randomized does not help
at all in improving the final policy. However, it serves an extremely useful role in this for-
mulation by converting integer variables (the Dik) to continuous variables so that linear
programming (LP) can be used. (The analogy in integer programming is to use the LP re-
laxation so that the simplex method can be applied and then to have the integer solutions
property hold so that the optimal solution for the LP relaxation turns out to be integer
anyway.)

Solving the Prototype Example by Linear Programming

Refer to the prototype example of Sec. 19.1. The first two columns of Table 19.1 give the
relevant combinations of states and decisions. Therefore, the decision variables that need
to be included in the model are y01, y11, y13, y21, y22, y23, and y33. (The general expres-
sions given above for the model include yik for irrelevant combinations of states and 
decisions here, so these yik � 0 in an optimal solution, and they might as well be deleted
at the outset.) The rightmost column of Table 19.1 provides the coefficients of these vari-
ables in the objective function. The transition probabilities pij(k) for each relevant com-
bination of state i and decision k also are spelled out in Sec. 19.1.

The resulting linear programming model is

Minimize Z � 1,000y11 � 6,000y13 � 3,000y21 � 4,000y22 � 6,000y23

� 6,000y33,

subject to

y01 � y11 � y13 � y21 � y22 � y23 � y33 � 1

y01 � (y13 � y23 � y33) � 0

yik�

�
K

k�1
yik

914 CHAPTER 19 MARKOV DECISION PROCESSES
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■ 19.4 POLICY IMPROVEMENT ALGORITHM
FOR FINDING OPTIMAL POLICIES

You now have seen two methods for deriving an optimal policy for a Markov decision
process: exhaustive enumeration and linear programming. Exhaustive enumeration is
useful because it is both quick and straightforward for very small problems. Linear pro-
gramming can be used to solve vastly larger problems, and software packages for the sim-
plex method are very widely available.

We now present a third popular method, namely, a policy improvement algorithm.
The key advantage of this method is that it tends to be very efficient, because it usually
reaches an optimal policy in a relatively small number of iterations (far fewer than for the
simplex method with a linear programming formulation).

By following the model of Sec. 19.2 and as a joint result of the current state i of the
system and the decision di(R) � k when operating under policy R, two things occur. An
(expected) cost Cik is incurred that depends upon only the observed state of the system
and the decision made. The system moves to state j at the next observed time period, with
transition probability given by pij(k). If, in fact, state j influences the cost that has been
incurred, then Cik is calculated as follows. Let

qij(k) � expected cost incurred when the system is in state i, decision k is made,
and the system evolves to state j at the next observed time period.

Then

Cik � �
M

j�0
qij(k)pij(k).

y11 � y13 � ��
7
8

�y01 � �
3
4

�y11 � y22� � 0

y21 � y22 � y23 � ��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � 0

y33 � ��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � 0

and

all yik � 0.

Applying the simplex method, we obtain the optimal solution

y01 � �
2
2
1
�, (y11, y13) � ��

5
7

�, 0�, (y21, y22, y23) � �0, �
2
2
1
�, 0�, y33 � �

2
2
1
�,

so

D01 � 1, (D11, D13) � (1, 0), (D21, D22, D23) � (0, 1, 0), D33 � 1.

This policy calls for leaving the machine as is (decision 1) when it is in state 0 or 1, over-
hauling it (decision 2) when it is in state 2, and replacing it (decision 3) when it is in state 3.
This is the same optimal policy found by exhaustive enumeration at the end of Sec. 19.2.

The Worked Examples section of the book’s website provides another example
of applying linear programming to obtain an optimal policy for a Markov decision
process.
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Preliminaries

Referring to the description and notation for Markov decision processes given at the be-
ginning of Sec. 19.2, we can show that, for any given policy R, there exist values g(R),
v0(R), v1(R), . . . , vM(R) that satisfy

g(R) � vi(R) � Cik � �
M

j�0
pij(k) vj(R), for i � 0, 1, 2, . . . , M.

We now shall give a heuristic justification of these relationships and an interpretation for
these values.

Denote by vi
n(R) the total expected cost of a system starting in state i (beginning the

first observed time period) and evolving for n time periods. Then vi
n(R) has two compo-

nents: Cik, the cost incurred during the first observed time period, and �
M

j�0
pij(k) vj

n�1(R),

the total expected cost of the system evolving over the remaining n � 1 time periods. This
gives the recursive equation

vi
n(R) � Cik � �

M

j�0
pij(k) vj

n�1(R), for i � 0, 1, 2, . . . , M,

where vi
1(R) � Cik for all i.

It will be useful to explore the behavior of vi
n(R) as n grows large. Recall that the (long-

run) expected average cost per unit time following any policy R can be expressed as

g(R) � �
M

i�0
�iCik,

which is independent of the starting state i. Hence, vi
n(R) behaves approximately as n g(R)

for large n. In fact, if we neglect small fluctuations, vi
n(R) can be expressed as the sum of

two components

vi
n(R) � n g(R) � vi(R),

where the first component is independent of the initial state and the second is dependent
upon the initial state. Thus, vi(R) can be interpreted as the effect on the total expected cost
due to starting in state i. Consequently,

vi
n(R) � vj

n(R) � vi(R) � vj(R),

so that vi(R) � vj(R) is a measure of the effect of starting in state i rather than state j.
Letting n grow large, we now can substitute vi

n(R) � n g(R) � vi(R) and vj
n�1(R) �

(n � 1)g(R) � vj(R) into the recursive equation. This leads to the system of equations
given in the opening paragraph of this subsection.

Note that this system has M � 1 equations with M � 2 unknowns, so that one of these
variables may be chosen arbitrarily. By convention, vM(R) will be chosen equal to zero.
Therefore, by solving the system of linear equations, we can obtain g(R), the (long-run)
expected average cost per unit time when policy R is followed. In principle, all policies
can be enumerated and that policy which minimizes g(R) can be found. However, even
for a moderate number of states and decisions, this technique is cumbersome. Fortunately,
there exists an algorithm that can be used to evaluate policies and find the optimal one
without complete enumeration, as described next.

The Policy Improvement Algorithm

The algorithm begins by choosing an arbitrary policy R1. It then solves the system of
equations to find the values of g(R1), v0(R), v1(R), . . . , vM�1(R) [with vM(R) � 0]. This

916 CHAPTER 19 MARKOV DECISION PROCESSES
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19.4 POLICY IMPROVEMENT ALGORITHM 917

step is called value determination. A better policy, denoted by R2, is then constructed.
This step is called policy improvement. These two steps constitute an iteration of the al-
gorithm. Using the new policy R2, we perform another iteration. These iterations continue
until two successive iterations lead to identical policies, which signifies that the optimal
policy has been obtained. The details are outlined below.

Summary of the Policy Improvement Algorithm

Initialization: Choose an arbitrary initial trial policy R1. Set n � 1.
Iteration n:
Step 1: Value determination: For policy Rn, use pij(k), Cik, and vM(Rn) � 0 to solve
the system of M � 1 equations

g(Rn) � Cik � �
M

j�0
pij(k) vj(Rn) � vi(Rn), for i � 0, 1, . . . , M,

for all M � 1 unknown values of g(Rn), v0(Rn), v1(Rn), . . . , vM�1(Rn).
Step 2: Policy improvement: Using the current values of vi (Rn) computed for policy Rn,
find the alternative policy Rn�1 such that, for each state i, di(Rn�1) � k is the decision
that minimizes

Cik � �
M

j�0
pij(k) vj(Rn) � vi(Rn),

i.e., for each state i,

Minimize [Cik � �
M

j�0
pij(k) vj(Rn) � vi(Rn)],

k�1, 2, . . . , K

and then set di(Rn�1) equal to the minimizing value of k. This procedure defines a new
policy Rn�1.
Optimality test: The current policy Rn�1 is optimal if this policy is identical to policy Rn.
If it is, stop. Otherwise, reset n � n � 1 and perform another iteration.

Two key properties of this algorithm are

1. g(Rn�1) � g(Rn), for n � 1, 2, . . . .
2. The algorithm terminates with an optimal policy in a finite number of iterations.4

Solving the Prototype Example by the Policy 
Improvement Algorithm

Referring to the prototype example presented in Sec. 19.1, we outline the application of
the algorithm next.

Initialization. For the initial trial policy R1, we arbitrarily choose the policy that calls
for replacement of the machine (decision 3) when it is found to be in state 3, but doing
nothing (decision 1) in other states. This policy, its transition matrix, and its costs are sum-
marized next.

4This termination is guaranteed under the assumptions of the model given in Sec. 19.2, including particularly
the (implicit) assumptions of a finite number of states (M � 1) and a finite number of decisions (K), but not
necessarily for more general models. See R. Howard, Dynamic Programming and Markov Processes, M.I.T.
Press, Cambridge, MA, 1960. Also see pp. 1291–1293 in A. F. Veinott, Jr., “On Finding Optimal Policies in Dis-
crete Dynamic Programming with No Discounting,” Annals of Mathematical Statistics, 37: 1284–1294, 1966.
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Transition matrix

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

Policy R1

State Decision

0 1
1 1
2 1
3 3

Costs

State Cik

0 0
1 1,000
2 3,000
3 6,000

Iteration 1. With this policy, the value determination step requires solving the follow-
ing four equations simultaneously for g(R1), v0(R1), v1(R1), and v2(R1) [with v3(R1) � 0].

g(R1) � � �
7
8

�v1(R1) � �
1
1
6
�v2(R1) � v0(R1).

g(R1) � 1,000 � �
3
4

�v1(R1) � �
1
8

�v2(R1) � v1(R1).

g(R1) � 3,000 � �
1
2

�v2(R1) � v2(R1).

g(R1) � 6,000 � v0(R1).

The simultaneous solution is

g(R1) � �
25

1
,0
3
00
� � 1,923

v0(R1) � ��
53

1
,0
3
00
� � �4,077

v1(R1) � ��
34

1
,0
3
00
� � �2,615

v2(R1) � �
28

1
,0
3
00
� � 2,154.

Step 2 (policy improvement) can now be applied. We want to find an improved
policy R2 such that decision k in state i minimizes the corresponding expression
below.

State 0: C0k � p00(k)(4,077) � p01(k)(2,615) � p02(k)(2,154) � 4,077
State 1: C1k � p10(k)(4,077) � p11(k)(2,615) � p12(k)(2,154) � 2,615
State 2: C2k � p20(k)(4,077) � p21(k)(2,615) � p22(k)(2,154) � 2,154
State 3: C3k � p30(k)(4,077) � p31(k)(2,615) � p32(k)(2,154).

Actually, in state 0, the only decision allowed is decision 1 (do nothing), so no calcu-
lations are needed. Similarly, we know that decision 3 (replace) must be made in state 3.
Thus, only states 1 and 2 require calculation of the values of these expressions for alter-
native decisions.

For state 1, the possible decisions are 1 and 3. For each one, we show below the cor-
responding C1k, the p1j(k), and the resulting value of the expression.
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19.4 POLICY IMPROVEMENT ALGORITHM 919

State 1

Value of
Decision C1k p10(k) p11(k) p12(k) p13(k) Expression

1 1,000 0 �
3
4

� �
1
8

� �
1
8

� 1,923

3 6,000 1 0 0 0 4,538

Costs

State Cik

0 0
1 1,000
2 4,000
3 6,000 

Transition matrix

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 1 0 0
3 1 0 0 0

Policy R2

State Decision

0 1
1 1
2 2
3 3 

� Minimum

State 2

Value of
Decision C2k p20(k) p21(k) p22(k) p23(k) Expression

1 3,000 0 0 �
1
2

� �
1
2

� 1,923

2 4,000 0 1 0 0 �769
3 6,000 1 0 0 0 �231 

� Minimum

Since decision 1 minimizes the expression, it is chosen as the decision to be made in state 1
for policy R2 (just as for policy R1).

The corresponding results for state 2 are shown below for its three possible decisions.

Therefore, decision 2 is chosen as the decision to be made in state 2 for policy R2. Note
that this is a change from policy R1.

We summarize our new policy, its transition matrix, and its costs below.

Since this policy is not identical to policy R1, the optimality test says to perform another
iteration.

Iteration 2. For step 1 (value determination), the equations to be solved for this policy
are shown below.

g(R2) � � �
7
8

�v1(R2) � �
1
1
6
�v2(R2) � v0(R2).

g(R2) � 1,000 � �
3
4

�v1(R2) � �
1
8

�v2(R2) � v1(R2).

g(R2) � 4,000 � v1(R2) � v2(R2).
g(R2) � 6,000 � v0(R2).
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The simultaneous solution is

g(R2) � �
5,0

3
00
� � 1,667

v0(R2) � ��
13,

3
000
� � �4,333

v1(R2) � �3,000

v2(R2) � ��
2,0

3
00
� � �667.

Step 2 (policy improvement) can now be applied. For the two states with more than
one possible decision, the expressions to be minimized are

State 1: C1k � p10(k)(4,333) � p11(k)(3,000) � p12(k)(667) � 3,000

State 2: C2k � p20(k)(4,333) � p21(k)(3,000) � p22(k)(667) � 667.

The first iteration provides the necessary data (the transition probabilities and Cik) re-
quired for determining the new policy, except for the values of each of these expressions
for each of the possible decisions. These values are

Decision Value for State 1 Value for State 2

1 1,667 3,333
2 — 1,667
3 4,667 2,334

Since decision 1 minimizes the expression for state 1 and decision 2 minimizes the ex-
pression for state 2, our next trial policy R3 is

Policy R3

State Decision

0 1
1 1
2 2
3 3

Note that policy R3 is identical to policy R2. Therefore, the optimality test indicates
that this policy is optimal, so the algorithm is finished.

Another example illustrating the application of this algorithm is included in your
OR Tutor. The Worked Examples section of the book’s website provides an additional
example as well. The IOR Tutorial also includes an interactive procedure for efficiently
learning and applying the algorithm.

■ 19.5 DISCOUNTED COST CRITERION

Throughout this chapter, we have measured policies on the basis of their (long-run) ex-
pected average cost per unit time. We now turn to an alternative measure of performance,
namely, the expected total discounted cost.
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As first introduced in Sec. 18.2, this measure uses a discount factor �, where 0 	 � 	 1.
The discount factor � can be interpreted as equal to 1/(1 � i), where i is the current interest
rate per period. Thus, � is the present value of one unit of cost one period in the future. Sim-
ilarly, �m is the present value of one unit of cost m periods in the future.

This discounted cost criterion becomes preferable to the average cost criterion when
the time periods for the Markov chain are sufficiently long that the time value of money
should be taken into account in adding costs in future periods to the cost in the current
period. Another advantage is that the discounted cost criterion can readily be adapted to
dealing with a finite-period Markov decision process where the Markov chain will ter-
minate after a certain number of periods.

Both the policy improvement technique and the linear programming approach still
can be applied here with relatively minor adjustments from the average cost case, as we
describe next. Then we will present another technique, called the method of successive
approximations, for quickly approximating an optimal policy.

A Policy Improvement Algorithm

To derive the expressions needed for the value determination and policy improvement
steps of the algorithm, we now adopt the viewpoint of probabilistic dynamic program-
ming (as described in Sec. 10.4). In particular, for each state i (i � 0, 1, . . . , M ) of a
Markov decision process operating under policy R, let Vi

n(R) be the expected total dis-
counted cost when the process starts in state i (beginning the first observed time period)
and evolves for n time periods. Then Vi

n(R) has two components: Cik, the cost incurred 

during the first observed time period, and � �
M

j�0
pij(k)Vj

n�1(R), the expected total dis-

counted cost of the process evolving over the remaining n � 1 time periods. For each 
i � 0, 1, . . . , M, this yields the recursive equation

Vi
n(R) � Cik � � �

M

j�0
pij(k)Vj

n�1(R),

with Vi
1(R) � Cik, which closely resembles the recursive relationships of probabilistic 

dynamic programming found in Sec. 10.4.
As n approaches infinity, this recursive equation converges to

Vi(R) � Cik � � �
M

j�0
pij(k)Vj(R), for i � 0, 1, . . . , M,

where Vi(R) can now be interpreted as the expected total discounted cost when the process
starts in state i and continues indefinitely. There are M � 1 equations and M � 1 un-
knowns, so the simultaneous solution of this system of equations yields the Vi(R).

To illustrate, consider again the prototype example of Sec. 19.1. Under the average
cost criterion, we found in Secs. 19.2, 19.3, and 19.4 that the optimal policy is to do noth-
ing in states 0 and 1, overhaul in state 2, and replace in state 3. Under the discounted cost
criterion, with � � 0.9, this same policy gives the following system of equations:

V0(R) � � 0.9� �
7
8

�V1(R) � �
1
1
6
�V2(R) � �

1
1
6
�V3(R)�

V1(R) � 1,000 � 0.9� �
3
4

�V1(R) � �
1
8

�V2(R) � �
1
8

�V3(R)�
V2(R) � 4,000 � 0.9[ V1(R)]
V3(R) � 6,000 � 0.9[V0(R)].

19.5 DISCOUNTED COST CRITERION 921
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The simultaneous solution is

V0(R) � 14,949
V1(R) � 16,262
V2(R) � 18,636
V3(R) � 19,454.

Thus, assuming that the system starts in state 0, the expected total discounted cost is
$14,949.

This system of equations provides the expressions needed for a policy improvement
algorithm. After summarizing this algorithm in general terms, we shall use it to check
whether this particular policy still is optimal under the discounted cost criterion.

Summary of the Policy Improvement Algorithm 
(Discounted Cost Criterion)

Initialization: Choose an arbitrary initial trial policy R1. Set n � 1.
Iteration n:
Step 1: Value determination: For policy Rn, use pij(k) and Cik to solve the system of
M � 1 equations

Vi(Rn) � Cik � � �
M

j�0
pij(k)Vj(Rn), for i � 0, 1, . . . , M,

for all M � 1 unknown values of V0(Rn), V1(Rn), . . . , VM(Rn).
Step 2: Policy improvement: Using the current values of the Vi(Rn), find the alternative
policy Rn�1 such that, for each state i, di(Rn�1) � k is the decision that minimizes

Cik � � �
M

j�0
pij(k)Vj(Rn),

i.e., for each state i,

Minimize �Cik � � �
M

j�0
pij(k)Vj(Rn)�,

k�1, 2, . . . , K

and then set di(Rn�1) equal to the minimizing value of k. This procedure defines a
new policy Rn�1.
Optimality test: The current policy Rn�1 is optimal if this policy is identical to policy
Rn. If it is, stop. Otherwise, reset n � n � 1 and perform another iteration.

Three key properties of this algorithm are as follows:

1. Vi(Rn�1) � Vi(Rn), for i � 0, 1, . . . , M and n � 1, 2, . . . .
2. The algorithm terminates with an optimal policy in a finite number of iterations.
3. The algorithm is valid without the assumption (used for the average cost case) that the

Markov chain associated with every transition matrix is irreducible.

Your IOR Tutorial includes an interactive procedure for applying this algorithm.

Solving the Prototype Example by This Policy Improvement Algorithm. We
now pick up the prototype example where we left it before summarizing the algorithm.

922 CHAPTER 19 MARKOV DECISION PROCESSES
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We already have selected the optimal policy under the average cost criterion to be our
initial trial policy R1. This policy, its transition matrix, and its costs are summarized below.

19.5 DISCOUNTED COST CRITERION 923

� Minimum

� Minimum

State 1

Decision C1k p10(k) p11(k) p12(k) p13(k) Value of Expression

1 1,000 0 �
3
4

� �
1
8

� �
1
8

� 16,262

3 6,000 1 0 0 0 19,454

State 2

Decision C2k p20(k) p21(k) p22(k) p23(k) Value of Expression

1 3,000 0 0 �
1
2

� �
1
2

� 20,140

2 4,000 0 1 0 0 18,636
3 6,000 1 0 0 0 19,454 

Policy R2

State Decision

0 1
1 1
2 2
3 3

Policy R1

State Decision

0 1
1 1
2 2
3 3

Transition matrix

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 1 0 0
3 1 0 0 0

Costs

State Cik

0 0
1 1,000
2 4,000
3 6,000

We also have already done step 1 (value determination) of iteration 1. This transi-
tion matrix and these costs led to the system of equations used to find V0(R1) � 14,949,
V1(R1) � 16,262, V2(R1) � 18,636, and V3(R1) � 19,454.

To start step 2 (policy improvement), we only need to construct the expression to be
minimized for the two states (1 and 2) with a choice of decisions.

State 1: C1k � 0.9[ p10(k)(14,949) � p11(k)(16,262) � p12(k)(18,636)
� p13(k)(19,454)]

State 2: C2k � 0.9[ p20(k)(14,949) � p21(k)(16,262) � p22(k)(18,636)
� p23(k)(19,454)].

For each of these states and their possible decisions, we show below the corresponding
Cik, the pij(k), and the resulting value of the expression.

Since decision 1 minimizes the expression for state 1 and decision 2 minimizes the ex-
pression for state 2, our next trial policy (R2) is as follows:
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Since this policy is identical to policy R1, the optimality test indicates that this pol-
icy is optimal. Thus, the optimal policy under the average cost criterion also is optimal
under the discounted cost criterion in this case. (This often occurs, but not always.)

Linear Programming Formulation

The linear programming formulation for the discounted cost case is similar to that for the
average cost case given in Sec. 19.3. However, we no longer need the first constraint given
in Sec. 19.3; but the other functional constraints do need to include the discount factor �.
The other difference is that the model now contains constants �j for j � 0, 1, . . . , M.
These constants must satisfy the conditions

�
M

j�0
�j � 1, �j � 0 for j � 0, 1, . . . , M,

but otherwise they can be chosen arbitrarily without affecting the optimal policy obtained
from the model.

The resulting model is to choose the values of the continuous decision variables yik

so as to

Minimize Z � �
M

i�0
�
K

k�1
Cikyik,

subject to the constraints

(1) �
K

k�1
yjk � � �

M

i�0
�
K

k�1
yikpij(k) � �j, for j � 0, 1, . . . , M,

(2) yik � 0, for i � 0, 1, . . . , M; k � 1, 2, . . . , K.

Once the simplex method is used to obtain an optimal solution for this model, the
corresponding optimal policy then is defined by

Dik � P{decision � kstate � i} � .

The yik now can be interpreted as the discounted expected time of being in state i and
making decision k, when the probability distribution of the initial state (when observa-
tions begin) is P{X0 � j} � �j for j � 0, 1, . . . , M. In other words, if

zn
ik � P{at time n, state � i and decision � k},

then 

yik � z0
ik � �z1

ik � �2z2
ik � �3z3

ik � ���.

With the interpretation of the �j as initial state probabilities (with each probability greater
than zero), Z can be interpreted as the corresponding expected total discounted cost. Thus,
the choice of �j affects the optimal value of Z (but not the resulting optimal policy).

It again can be shown that the optimal policy obtained from solving the linear pro-
gramming model is deterministic; that is, Dik � 0 or 1. Furthermore, this technique is valid
without the assumption (used for the average cost case) that the Markov chain associated
with every transition matrix is irreducible.

yik�

�
K

k�1
yik

924 CHAPTER 19 MARKOV DECISION PROCESSES
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Solving the Prototype Example by Linear Programming. The linear program-
ming model for the prototype example (with � � 0.9) is

Minimize Z � 1,000y11 � 6,000y13 � 3,000y21 � 4,000y22 � 6,000y23

� 6,000y33,

subject to

y01 � 0.9(y13 � y23 � y33) � �
1
4

�

y11 � y13 � 0.9��
7
8

�y01 � �
3
4

�y11 � y22� � �
1
4

�

y21 � y22 � y23 � 0.9��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � �
1
4

�

y33 � 0.9��
1
1
6
�y01 � �

1
8

�y11 � �
1
2

�y21� � �
1
4

�

and

all yik � 0,

where �0, �1, �2, and �3 are arbitrarily chosen to be �
1
4

�. By the simplex method, the opti-
mal solution is

y01 � 1.210, (y11, y13) � (6.656, 0), (y21, y22, y23) � (0, 1.067, 0),
y33 � 1.067,

so

D01 � 1, (D11, D13) � (1, 0), (D21, D22, D23) � (0, 1, 0), D33 � 1.

This optimal policy is the same as that obtained earlier in this section by the policy im-
provement algorithm.

The value of the objective function for the optimal solution is Z � 17,325. This value
is closely related to the values of the Vi(R) for this optimal policy that were obtained by
the policy improvement algorithm. Recall that Vi(R) is interpreted as the expected total
discounted cost given that the system starts in state i, and we are interpreting �i as the
probability of starting in state i. Because each �i was chosen to equal �

1
4

�,

17,325 � �
1
4

�[V0(R) � V1(R) � V2(R) � V3(R)]

� �
1
4

�(14,949 � 16,262 � 18,636 � 19,454).

Finite-Period Markov Decision Processes and the Method 
of Successive Approximations

We now turn our attention to an approach, called the method of successive approxima-
tions, for quickly finding at least an approximation to an optimal policy.

We have assumed that the Markov decision process will be operating indefinitely, and
we have sought an optimal policy for such a process. The basic idea of the method of suc-
cessive approximations is to instead find an optimal policy for the decisions to make in
the first period when the process has only n time periods to go before termination, start-
ing with n � 1, then n � 2, then n � 3, and so on. As n grows large, the corresponding
optimal policies will converge to an optimal policy for the infinite-period problem of in-
terest. Thus, the policies obtained for n � 1, 2, 3, . . . provide successive approximations
that lead to the desired optimal policy.

19.5 DISCOUNTED COST CRITERION 925
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The reason that this approach is attractive is that we already have a quick method of
finding an optimal policy when the process has only n periods to go, namely, probabilis-
tic dynamic programming as described in Sec. 10.4.

In particular, for i � 0, 1, . . . , M, let

Vi
n � expected total discounted cost of following an optimal policy, given that

process starts in state i and has only n periods to go.5

By the principle of optimality for dynamic programming (see Sec. 10.2), the Vi
n are ob-

tained from the recursive relationship

Vi
n � min

k �Cik � � �
M

j�0
pij(k)Vj

n�1�, for i � 0, 1, . . . , M.

The minimizing value of k provides the optimal decision to make in the first period when
the process starts in state i.

To get started, with n � 1, all the Vi
0 � 0 so that

Vi
1 � min

k
{Cik}, for i � 0, 1, . . . , M.

Although the method of successive approximations may not lead to an optimal policy
for the infinite-period problem after only a few iterations, it has one distinct advantage over
the policy improvement and linear programming techniques. It never requires solving a
system of simultaneous equations, so each iteration can be performed simply and quickly.

Furthermore, if the Markov decision process actually does have just n periods to go,
n iterations of this method definitely will lead to an optimal policy. (For an n-period prob-
lem, it is permissible to set � � 1, that is, no discounting, in which case the objective is
to minimize the expected total cost over n periods.)

Your IOR Tutorial includes an interactive procedure to help guide you to use this
method efficiently.

Solving the Prototype Example by the Method 
of Successive Approximations

We again use � � 0.9. Refer to the rightmost column of Table 19.1 at the end of Sec. 19.1
for the values of Cik. Also note in the first two columns of this table that the only feasi-
ble decisions k for each state i are k � 1 for i � 0, k � 1 or 3 for i � 1, k � 1, 2, or 3
for i � 2, and k � 3 for i � 3.

For the first iteration (n � 1), the value obtained for each Vi
1 is shown below, along

with the minimizing value of k (given in parentheses).

V0
1 � min {C0k} � 0 (k � 1)

k�1

V1
1 � min {C1k} � 1,000 (k � 1)

k�1,3

V2
1 � min {C2k} � 3,000 (k � 1)

k�1,2,3

V3
1 � min {C3k} � 6,000 (k � 3)

k�3

926 CHAPTER 19 MARKOV DECISION PROCESSES

5Since we want to allow n to grow indefinitely, we are letting n be the number of periods to go, instead of the
number of periods from the beginning (as in Chap. 10).
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Thus, the first approximation calls for making decision 1 (do nothing) when the system is
in state 0, 1, or 2. When the system is in state 3, decision 3 (replace the machine) is made.

The second iteration leads to

V0
2 � 0 � 0.9��

7
8

�(1,000) � �
1
1
6
�(3,000) � �

1
1
6
�(6,000)� � 1,294 (k � 1).

V1
2 � min �1,000 � 0.9��

3
4

�(1,000) � �
1
8

�(3,000) � �
1
8

�(6,000)�,

6,000 � 0.9[1(0)]� � 2,688 (k � 1).

V2
2 � min �3,000 � 0.9��

1
2

�(3,000) � �
1
2

�(6,000)�,

4,000 � 0.9[1(1,000)], 6,000 � 0.9[1(0)]� � 4,900 (k � 2).

V3
2 � 6,000 � 0.9[1(0)] � 6,000 (k � 3).

where the min operator has been deleted from the first and fourth expressions because
only one alternative for the decision is available. Thus, the second approximation calls for
leaving the machine as is when it is in state 0 or 1, overhauling when it is in state 2, and
replacing the machine when it is in state 3. Note that this policy is the optimal one for
the infinite-period problem, as found earlier in this section by both the policy improve-
ment algorithm and linear programming. However, the Vi

2 (the expected total discounted
cost when starting in state i for the two-period problem) are not yet close to the Vi (the
corresponding cost for the infinite-period problem).

The third iteration leads to

V0
3 � 0 � 0.9��

7
8

�(2,688) � �
1
1
6
�(4,900) � �

1
1
6
�(6,000)� � 2,730 (k � 1).

V1
3 � min �1,000 � 0.9��

3
4

�(2,688) � �
1
8

�(4,900) � �
1
8

�(6,000)�,

6,000 � 0.9[1(1,294)]� � 4,041 (k � 1).

V2
3 � min �3,000 � 0.9��

1
2

�(4,900) � �
1
2

�(6,000)�,

4,000 � 0.9[1(2,688)], 6,000 � 0.9[1(1,294)]� � 6,419 (k � 2).

V3
3 � 6,000 � 0.9[1(1,294)] � 7,165 (k � 3).

Again the optimal policy for the infinite-period problem is obtained, and the costs are get-
ting closer to those for that problem. This procedure can be continued, and V0

n, V1
n, V2

n,
and V3

n will converge to 14,949, 16,262, 18,636, and 19,454, respectively.
Note that termination of the method of successive approximations after the second it-

eration would have resulted in an optimal policy for the infinite-period problem, although
there is no way to know this fact without solving the problem by other methods.

As indicated earlier, the method of successive approximations definitely obtains an
optimal policy for an n-period problem after n iterations. For this example, the first, sec-
ond, and third iterations have identified the optimal immediate decision for each state if
the remaining number of periods is one, two, and three, respectively.
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■ 19.6 CONCLUSIONS

Markov decision processes provide a powerful tool for optimizing the performance of
stochastic processes that can be modeled as a discrete time Markov chain. Applications
arise in a variety of areas, such as health care, highway and bridge maintenance, in-
ventory management, machine maintenance, cash-flow management, control of water
reservoirs, forest management, control of queueing systems, and operation of commu-
nication networks. Selected References 11 and 12 provide interesting early surveys of
applications. Selected Reference 10 gives an update on one that won a prestigious prize,
and Selected Reference 4 describes another award-winning application. Selected Ref-
erences 3 and 8 include more recent information on applications.

The two primary measures of performance used are the (long-run) expected average
cost per unit time and the expected total discounted cost. The latter measure requires de-
termination of the appropriate value of a discount factor, but this measure is useful when
it is important to take into account the time value of money.

The two most important methods for deriving optimal policies for Markov decision
processes are policy improvement algorithms and linear programming. Under the dis-
counted cost criterion, the method of successive approximations provides a quick way of
approximating an optimal policy.
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PROBLEMS 929

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.
I: We suggest that you use the corresponding interactive proce-

dure listed above (the printout records your work).
A: The automatic procedures listed above can be helpful.
C: Use the computer with any of the software options available to

you (or as instructed by your instructor) to solve your linear
programming formulation.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

19.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 19.2.
Briefly describe how Markov decision processes were applied in

this study. Then list the various financial and nonfinancial benefits
that resulted from this study.

19.2-2.* During any period, a potential customer arrives at a cer-
tain facility with probability �

1
2

�. If there are already two people at
the facility (including the one being served), the potential customer
leaves the facility immediately and never returns. However, if there
is one person or less, he enters the facility and becomes an actual
customer. The manager of the facility has two types of service con-
figurations available. At the beginning of each period, a decision
must be made on which configuration to use. If she uses her “slow”
configuration at a cost of $3 and any customers are present during
the period, one customer will be served and leave the facility with
probability �

3
5

�. If she uses her “fast” configuration at a cost of $9
and any customers are present during the period, one customer will
be served and leave the facility with probability �

4
5

�. The probability

■ PROBLEMS

■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)

Worked Examples:

Examples for Chapter 19

A Demonstration Example in OR Tutor:

Policy Improvement Algorithm—Average Cost Case

Interactive Procedures in IOR Tutorial:

Enter Markov Decision Model
Interactive Policy Improvement Algorithm—Average Cost
Interactive Policy Improvement Algorithm—Discounted Cost
Interactive Method of Successive Approximations

Automatic Procedures in IOR Tutorial (Markov Chains Area):

Enter Transition Matrix
Steady-State Probabilities

“Ch. 19—Markov Decision Proc” Files for Solving the Linear
Programming Formulations:

Excel Files
LINGO/LINDO File

Glossary for Chapter 19

See Appendix 1 for documentation of the software.
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of more than one customer arriving or more than one customer be-
ing served in a period is zero. A profit of $50 is earned when a
customer is served.
(a) Formulate the problem of choosing the service configuration

period by period as a Markov decision process. Identify the
states and decisions. For each combination of state and de-
cision, find the expected net immediate cost (subtracting any
profit from serving a customer) incurred during that period.

(b) Identify all the (stationary deterministic) policies. For each
one, find the transition matrix and write an expression for
the (long-run) expected average net cost per period in terms
of the unknown steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

19.2-3.* A student is concerned about her car and does not like
dents. When she drives to school, she has a choice of parking it on
the street in one space, parking it on the street and taking up two
spaces, or parking in the lot. If she parks on the street in one space,
her car gets dented with probability �

1
1
0
�. If she parks on the street

and takes two spaces, the probability of a dent is �
5
1
0
� and the prob-

ability of a $15 ticket is �
1
3
0
�. Parking in a lot costs $5, but the car

will not get dented. If her car gets dented, she can have it repaired,
in which case it is out of commission for 1 day and costs her $50
in fees and cab fares. She can also drive her car dented, but she
feels that the resulting loss of value and pride is equivalent to a
cost of $9 per school day. She wishes to determine the optimal pol-
icy for where to park and whether to repair the car when dented
in order to minimize her (long-run) expected average cost per
school day.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each

one, find the transition matrix and write an expression for
the (long-run) expected average cost per period in terms of
the unknown steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

19.2-4. Every Saturday night a man plays poker at his home with
the same group of friends. If he provides refreshments for the
group (at an expected cost of $14) on any given Saturday night,
the group will begin the following Saturday night in a good mood
with probability �

7
8

� and in a bad mood with probability �
1
8

�. However,
if he fails to provide refreshments, the group will begin the fol-
lowing Saturday night in a good mood with probability �

1
8

� and in
a bad mood with probability �

7
8

�, regardless of their mood this Sat-
urday. Furthermore, if the group begins the night in a bad mood
and then he fails to provide refreshments, the group will gang up
on him so that he incurs expected poker losses of $75. Under

other circumstances, he averages no gain or loss on his poker
play. The man wishes to find the policy regarding when to provide
refreshments that will minimize his (long-run) expected average
cost per week.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average cost per period in terms of the unknown
steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state probabilities
for each policy. Then evaluate the expression obtained in part
(b) to find the optimal policy by exhaustive enumeration.

19.2-5.* When a tennis player serves, he gets two chances to serve
in bounds. If he fails to do so twice, he loses the point. If he at-
tempts to serve an ace, he serves in bounds with probability �

3
8

�. If
he serves a lob, he serves in bounds with probability �

7
8

�. If he serves
an ace in bounds, he wins the point with probability �

2
3

�. With an in-
bounds lob, he wins the point with probability �

1
3

�. If the cost is �1
for each point lost and �1 for each point won, the problem is to
determine the optimal serving strategy to minimize the (long-run)
expected average cost per point. (Hint: Let state 0 denote point
over, two serves to go on next point; and let state 1 denote one
serve left.)
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each

one, find the transition matrix and write an expression for the
(long-run) expected average cost per point in terms of the un-
known steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state proba-
bilities for each policy. Then evaluate the expression ob-
tained in part (b) to find the optimal policy by exhaustive
enumeration.

19.2-6. Each year Ms. Fontanez has the chance to invest in two
different no-load mutual funds: the Go-Go Fund or the Go-Slow
Mutual Fund. At the end of each year, Ms. Fontanez liquidates her
holdings, takes her profits, and then reinvests. The yearly profits
of the mutual funds are dependent upon how the market reacts each
year. Recently the market has been oscillating around the 14,000
mark from one year end to the next, according to the probabilities
given in the following transition matrix:

13,000 14,000 15,000

Each year that the market moves up (down) 1,000 points, the Go-
Go Fund has profits (losses) of $25,000, while the Go-Slow Fund
has profits (losses) of $10,000. If the market moves up (down) 2,000
points in a year, the Go-Go Fund has profits (losses) of $60,000,
while the Go-Slow Fund has profits (losses) of only $25,000. If the



0.2

0.3

0.5

0.4

0.4

0.4

0.4

0.3

0.1



13,000

14,000

15,000
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market does not change, there is no profit or loss for either fund.
Ms. Fontanez wishes to determine her optimal investment policy in
order to minimize her (long-run) expected average cost (loss minus
profit) per year.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each

one, find the transition matrix and write an expression for the
(long-run) expected average cost per period in terms of the
unknown steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state probabilities
for each policy. Then evaluate the expression obtained in part
(b) to find the optimal policy by exhaustive enumeration.

19.2-7. Buck and Bill Bogus are twin brothers who work at a gas
station and have a counterfeiting business on the side. Each day a
decision is made as to which brother will go to work at the gas sta-
tion, and then the other will stay home and run the printing press
in the basement. Each day that the machine works properly, it is
estimated that 60 usable $20 bills can be produced. However, the
machine is somewhat unreliable and breaks down frequently. If the
machine is not working at the beginning of the day, Buck can have
it in working order by the beginning of the next day with proba-
bility 0.6. If Bill works on the machine, the probability decreases
to 0.5. If Bill operates the machine when it is working, the prob-
ability is 0.6 that it will still be working at the beginning of the
next day. If Buck operates the machine, it breaks down with prob-
ability 0.6. (Assume for simplicity that all breakdowns occur at the
end of the day.) The brothers now wish to determine the optimal
policy for when each should stay home in order to maximize their
(long-run) expected average profit (amount of usable counterfeit
money produced) per day.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states and decisions and then finding the Cik.
(b) Identify all the (stationary deterministic) policies. For each one,

find the transition matrix and write an expression for the (long-
run) expected average net profit per period in terms of the un-
known steady-state probabilities (�0, �1, . . . , �M).

A (c) Use your IOR Tutorial to find these steady-state probabilities
for each policy. Then evaluate the expression obtained in part
(b) to find the optimal policy by exhaustive enumeration.

19.2-8. Consider an infinite-period inventory problem involving a
single product where, at the beginning of each period, a decision
must be made about how many items to produce during that pe-
riod. The setup cost is $10, and the unit production cost is $5. The
holding cost for each item not sold during the period is $4 (a max-
imum of 2 items can be stored). The demand during each period
has a known probability distribution, namely, a probability of �

1
3

� of
0, 1, and 2 items, respectively. If the demand exceeds the supply
available during the period, then those sales are lost and a short-
age cost (including lost revenue) is incurred, namely, $8 and $32
for a shortage of 1 and 2 items, respectively.
(a) Consider the policy where 2 items are produced if there are no

items in inventory at the beginning of a period whereas no

items are produced if there are any items in inventory. Deter-
mine the (long-run) expected average cost per period for this
policy. In finding the transition matrix for the Markov chain
for this policy, let the states represent the inventory levels at
the beginning of the period.

(b) Identify all the feasible (stationary deterministic) inventory
policies, i.e., the policies that never lead to exceeding the stor-
age capacity.

19.3-1. Reconsider Prob. 19.2-2.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

19.3-2.* Reconsider Prob. 19.2-3.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

19.3-3. Reconsider Prob. 19.2-4.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

19.3-4.* Reconsider Prob. 19.2-5.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

19.3-5. Reconsider Prob. 19.2-6.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

19.3-6. Reconsider Prob. 19.2-7.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

19.3-7. Reconsider Prob. 19.2-8.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

D,I 19.4-1. Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-2.

D,I 19.4-2.* Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-3.

PROBLEMS 931
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D,I 19.4-3. Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-4.

D,I 19.4-4.* Use the policy improvement algorithm to find an
optimal policy for Prob. 19.2-5.

D,I 19.4-5. Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-6.

D,I 19.4-6. Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-7.

D,I 19.4-7. Use the policy improvement algorithm to find an op-
timal policy for Prob. 19.2-8.

D,I 19.4-8. Consider the blood-inventory problem presented in
Prob. 16.5-5. Suppose now that the number of pints of blood de-
livered (on a regular delivery) can be specified at the time of de-
livery (instead of using the old policy of receiving 1 pint at each
delivery). Thus, the number of pints delivered can be 0, 1, 2, or 3
(more than 3 pints can never be used). The cost of regular de-
livery is $50 per pint, while the cost of an emergency delivery is
$100 per pint. Starting with the policy of taking one pint at each
regular delivery if the number of pints on hand just prior to the
delivery is 0, 1, or 2 pints (so there never is more than 3 pints
on hand), perform two iterations of the policy improvement al-
gorithm. (Because so few pints are kept on hand and the oldest
pint always is used first, you now can ignore the remote possi-
bility that any pints will reach 21 days on the shelf and need to
be discarded.)

I 19.5-1.* Joe wants to sell his car. He receives one offer each
month and must decide immediately whether to accept the offer.
Once rejected, the offer is lost. The possible offers are $600, $800,
and $1,000, made with probabilities �

5
8

�, �
1
4

�, and �
1
8

�, respectively (where
successive offers are independent of each other). There is a main-
tenance cost of $60 per month for the car. Joe is anxious to sell
the car and so has chosen a discount factor of � � 0.95.

Using the policy improvement algorithm, find a policy that
minimizes the expected total discounted cost. (Hint: There are two
actions: Accept or reject the offer. Let the state for month t be the
offer in that month. Also include a state 
, where the process goes
to state 
 whenever an offer is accepted and it remains there at a
monthly cost of 0.)

19.5-2.* Reconsider Prob. 19.5-1.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

I 19.5-3.* For Prob. 19.5-1, use three iterations of the method of
successive approximations to approximate an optimal policy.

I 19.5-4. The price of a certain stock is fluctuating between
$10, $20, and $30 from month to month. Market analysts have

predicted that if the stock is at $10 during any month, it will be
at $10 or $20 the next month, with probabilities �

4
5

� and �
1
5

�, re-
spectively; if the stock is at $20, it will be at $10, $20, or $30
the next month, with probabilities �

1
4

�, �
1
4

�, and �
1
2

�, respectively; and
if the stock is at $30, it will be at $20 or $30 the next month,
with probabilities �

3
4

� and �
1
4

�, respectively. Given a discount factor
of 0.9, use the policy improvement algorithm to determine when
to sell and when to hold the stock to maximize the expected to-
tal discounted profit. (Hint: Include a state that is reached with
probability 1 when the stock is sold and with probability 0 when
the stock is held.)

19.5-5. Reconsider Prob. 19.5-4.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the re-

sulting optimal solution to identify an optimal policy.

I 19.5-6. For Prob. 19.5-4, use three iterations of the method of
successive approximations to approximate an optimal policy.

19.5-7. A chemical company produces two chemicals, denoted by
C1 and C2, and only one can be produced at a time. Each month
a decision is made as to which chemical to produce that month.
Because the demand for each chemical is predictable, it is known
that if C2 is produced this month, there is a 60 percent chance that
it will also be produced again next month. Similarly, if C1 is pro-
duced this month, there is only a 30 percent chance that it will be
produced again next month.

To combat the emissions of pollutants, the chemical company
has two processes, process A, which is efficient in combating the
pollution from the production of C2 but not from C1, and process
B, which is efficient in combating the pollution from the produc-
tion of C1 but not from C2. Only one process can be used at a
time. The amount of pollution from the production of each chem-
ical under each process is

Unfortunately, there is a time delay in setting up the pollu-
tion control processes, so that a decision as to which process to
use must be made in the month prior to the production decision.
Management wants to determine a policy for when to use each
pollution control process that will minimize the expected total
discounted amount of all future pollution with a discount factor
of � � 0.5.
(a) Formulate this problem as a Markov decision process by iden-

tifying the states, the decisions, and the Cik. Identify all the
(stationary deterministic) policies.

I (b) Use the policy improvement algorithm to find an optimal
policy.
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19.5-8. Reconsider Prob. 19.5-7.
(a) Formulate a linear programming model for finding an optimal

policy.
C (b) Use the simplex method to solve this model. Use the result-

ing optimal solution to identify an optimal policy.

I 19.5-9. For Prob. 19.5-7, use two iterations of the method of suc-
cessive approximations to approximate an optimal policy.

I 19.5-10. Reconsider Prob. 19.5-7. Suppose now that the com-
pany will be producing either of these chemicals for only 4 more

months, so a decision on which pollution control process to use
1 month hence only needs to be made three more times. Find an
optimal policy for this three-period problem.

I 19.5-11.* Reconsider the prototype example of Sec. 19.1. Sup-
pose now that the production process using the machine under con-
sideration will be used for only 4 more weeks. Using the discounted
cost criterion with a discount factor of � � 0.9, find the optimal
policy for this four-period problem.

PROBLEMS 933
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20C H A P T E R

Simulation

In this final chapter, we now are ready to focus on the last of the key techniques of opera-
tions research. Simulation ranks very high among the most widely used of these techniques.

Furthermore, because it is such a flexible, powerful, and intuitive tool, it is continuing to
rapidly grow in popularity.

This technique involves using a computer to imitate (simulate) the operation of an
entire process or system. For example, simulation is frequently used to perform risk analy-
sis on financial processes by repeatedly imitating the evolution of the transactions involved
to generate a profile of the possible outcomes. Simulation also is widely used to analyze
stochastic systems that will continue operating indefinitely. For such systems, the com-
puter randomly generates and records the occurrences of the various events that drive the
system just as if it were physically operating. Because of its speed, the computer can sim-
ulate even years of operation in a matter of seconds. Recording the performance of the
simulated operation of the system for a number of alternative designs or operating pro-
cedures then enables evaluating and comparing these alternatives before choosing one.

The first section describes and illustrates the essence of simulation. The following
section then presents a variety of common applications of simulation. Sections 20.3 and
20.4 focus on two key tools of simulation, the generation of random numbers and the gen-
eration of random observations from probability distributions. Section 20.5 outlines the
overall procedure for applying simulation. The next section describes how some simula-
tions now can be performed efficiently on spreadsheets. One supplement to the chapter
on the book’s website introduces some special techniques for improving the precision of
the estimates of the measures of performance of the system being simulated. A second
supplement presents an innovative statistical method for analyzing the output of a simu-
lation. A third supplement extends the spreadsheet-based approach to searching for an op-
timal solution for simulation models.

■ 20.1 THE ESSENCE OF SIMULATION
The technique of simulation has long been an important tool of the designer. For exam-
ple, simulating airplane flight in a wind tunnel is standard practice when a new airplane
is designed. Theoretically, the laws of physics could be used to obtain the same informa-
tion about how the performance of the airplane changes as design parameters are altered,

934
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20.1 THE ESSENCE OF SIMULATION 935

but, as a practical matter, the analysis would be too complicated to do it all. Another 
alternative would be to build real airplanes with alternative designs and test them in actual
flight to choose the final design, but this would be far too expensive (as well as unsafe).
Therefore, after some preliminary theoretical analysis is performed to develop a rough
design, simulating flight in a wind tunnel is a vital tool for experimenting with specific de-
signs. This simulation amounts to imitating the performance of a real airplane in a controlled
environment in order to estimate what its actual performance will be. After a detailed de-
sign is developed in this way, a prototype model can be built and tested in actual flight to
fine-tune the final design.

The Role of Simulation in Operations Research Studies

Simulation plays essentially this same role in many OR studies. However, rather than
designing an airplane, the OR team is concerned with developing a design or operating
procedure for some stochastic system (a system that evolves probabilistically over time).
Some of these stochastic systems resemble the examples of Markov chains and queue-
ing systems described in Chaps. 16 and 17, and others are more complicated. Rather
than use a wind tunnel, the performance of the real system is imitated by using probabil-
ity distributions to randomly generate various events that occur in the system. Therefore,
a simulation model synthesizes the system by building it up component by component
and event by event. Then the model runs the simulated system to obtain statistical ob-
servations of the performance of the system that result from various randomly generated
events. Because the simulation runs typically require generating and processing a vast
amount of data, these simulated statistical experiments are inevitably performed on a
computer.

When simulation is used as part of an OR study, commonly it is preceded and fol-
lowed by the same steps described earlier for the design of an airplane. In particular, some
preliminary analysis is done first (perhaps with approximate mathematical models) to de-
velop a rough design of the system (including its operating procedures). Then simulation
is used to experiment with specific designs to estimate how well each will perform. After
a detailed design is developed and selected in this way, the system probably is tested in
actual use to fine-tune the final design.

To prepare for simulating a complex system, a detailed simulation model needs to
be formulated to describe the operation of the system and how it is to be simulated. A
simulation model has several basic building blocks:

1. A definition of the state of the system (e.g., the number of customers in a queueing
system).

2. Identify the possible states of the system that can occur.
3. Identify the possible events (e.g., arrivals and service completions in a queueing sys-

tem) that would change the state of the system.
4. A provision for a simulation clock, located at some address in the simulation program,

that will record the passage of (simulated) time.
5. A method for randomly generating the events of the various kinds.
6. A formula for identifying state transitions that are generated by the various kinds of

events.

Great progress is being made in developing special software (described in Sec. 20.5)
for efficiently integrating the simulation model into a computer program and then perform-
ing the simulations. Nevertheless, when dealing with relatively complex systems, simula-
tion tends to be a relatively expensive procedure. After formulating a detailed simulation
model, considerable time often is required to develop and debug the computer programs
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needed to run the simulation. Next, many long computer runs may be needed to obtain
good data on how well all the alternative designs of the system would perform. Finally, all
these data (which only provide estimates of the performance of the alternative designs)
should be carefully analyzed before drawing any final conclusions. This entire process typ-
ically takes a lot of time and effort. Therefore, simulation should not be used when a less
expensive procedure is available that can provide the same (or better) information.

Simulation typically is used when the stochastic system involved is too complex to
be analyzed satisfactorily by the kinds of mathematical models (e.g., queueing models)
described in the preceding chapters. One of the main strengths of a mathematical model
is that it abstracts the essence of the problem and reveals its underlying structure, thereby
providing insight into the cause-and-effect relationships within the system. Therefore,
if the modeler is able to construct a mathematical model that is both a reasonable ide-
alization of the problem and amenable to solution, this approach usually is superior to
simulation. However, many problems are too complex to permit this approach. Thus,
simulation often provides the only practical approach to a problem.

Discrete-Event versus Continuous Simulation

Two broad categories of simulations are discrete-event and continuous simulations.
A discrete-event simulation is one where changes in the state of the system occur

instantaneously at random points in time as a result of the occurrence of discrete events.
For example, in a queueing system where the state of the system is the number of cus-
tomers in the system, the discrete events that change this state are the arrival of a customer
and the departure of a customer due to the completion of its service. Most applications of
simulation in practice are discrete-event simulations.

A continuous simulation is one where changes in the state of the system occur con-
tinuously over time. For example, if the system of interest is an airplane in flight and its
state is defined as the current position of the airplane, then the state is changing continu-
ously over time. Some applications of continuous simulations occur in design studies of
such engineering systems. Continuous simulations typically require using differential
equations to describe the rate of change of the state variables. Thus, the analysis tends to
be relatively complex.

By approximating continuous changes in the state of the system by occasional dis-
crete changes, it often is possible to use a discrete-event simulation to approximate the
behavior of a continuous system. This tends to greatly simplify the analysis.

This chapter focuses hereafter on discrete-event simulations. We assume this type in
all subsequent references to simulation.

Now let us look at two examples to illustrate the basic ideas of simulation. These ex-
amples have been kept considerably simpler than the usual application of this technique
in order to highlight the main ideas more readily. The first system is so simple, in fact,
that the simulation does not even need to be performed on a computer. The second sys-
tem incorporates more of the normal features of a simulation, although it, too, is simple
enough to be solved analytically.

936 CHAPTER 20 SIMULATION

EXAMPLE 1 A Coin-Flipping Game

You are the lucky winner of a sweepstakes contest. Your prize is an all-expense-paid 
vacation at a major hotel in Las Vegas, including some chips for gambling in the hotel
casino.

Upon entering the casino, you find that, in addition to the usual games (blackjack,
roulette, etc.), they are offering an interesting new game with the following rules.
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Rules of the Game

1. Each play of the game involves repeatedly flipping an unbiased coin until the differ-
ence between the number of heads tossed and the number of tails is 3.

2. If you decide to play the game, you are required to pay $1 for each flip of the coin.
You are not allowed to quit during a play of the game.

3. You receive $8 at the end of each play of the game.

Thus, you win money if the number of flips required is fewer than 8, but you lose money
if more than 8 flips are required. Here are some examples (where H denotes a head and
T a tail).

How would you decide whether to play this game?
Many people would base this decision on simulation, although they probably would

not call it by that name. In this case, simulation amounts to nothing more than playing
the game alone many times until it becomes clear whether it is worthwhile to play for
money. Half an hour spent in repeatedly flipping a coin and recording the earnings or
losses that would have resulted might be sufficient. This is a true simulation because
you are imitating the actual play of the game without actually winning or losing any
money.

Now let us see how a computer can be used to perform this same simulated experi-
ment. Although a computer cannot flip coins, it can simulate doing so. It accomplishes
this by generating a sequence of random observations from a uniform distribution be-
tween 0 and 1, where these random observations are referred to as uniform random num-
bers over the interval [0, 1]. One easy way to generate these uniform random numbers is
to use the RAND() function in Excel. For example, the lower part of Fig. 20.1 illustrates
that � RAND() has been entered into cell C13 and then copied into the range C14:C62
with the Copy command. (The parentheses need to be included with this function, but
nothing is inserted between them.) This causes Excel to generate the random numbers
shown in cells C13:C62 of the spreadsheet. (Rows 27–56 have been hidden to save space
in the figure.

The probabilities for the outcome of flipping a coin are

P(heads) � �
1
2

�, P(tails) � �
1
2

�.

Therefore, to simulate the flipping of a coin, the computer can just let any half of the pos-
sible random numbers correspond to heads and the other half correspond to tails. To be
specific, we will use the following correspondence.

0.0000 to 0.4999 correspond to heads.
0.5000 to 0.9999 correspond to tails.

By using the formula,

� IF(RandomNumber � 0.5, “Heads”, “Tails”),

in each of the column D cells in Fig. 20.1, Excel inserts Heads if the random number is
less than 0.5 and inserts Tails otherwise. Consequently, the first 11 random numbers gen-
erated in column C yield the following sequence of heads (H) and tails (T):

HTTTHHHTHHH,

HHH 3 flips. You win $5
THTTT 5 flips. You win $3
THHTHTHTTTT 11 flips. You lose $3
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1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6
5 7
5 8
5 9
6 0
6 1
6 2

A B C D E F G
Coin-Flipping Game

Required Difference 3
Cash at End of Game $8

Summary of Game
Number of Flips 11

Winnings -$3

Random Total Total
Flip Number Result Heads Tails Stop?
1 0.6961 Heads 1 0
2 0.2086 Tails 1 1
3 0.1457 Tails 1 2
4 0.3098 Tails 1 3
5 0.6996 Heads 2 3
6 0.9617 Heads 3 3
7 0.6117 Heads 4 3
8 0.3948 Tails 4 4
9 0.7769 Heads 5 4

10 0.5750 Heads 6 4
11 0.6271 Heads 7 4 Stop
12 0.2017 Tails 7 5 NA
13 0.7660 Heads 8 5 NA
14 0.9918 Heads 9 5 NA
45 0.2461 Tails 23 22 NA
46 0.7011 Heads 24 22 NA
47 0.3533 Tails 24 23 NA
48 0.7136 Heads 25 23 NA
49 0.7876 Heads 26 23 NA
50 0.3580 Tails 26 24 NA

1 1
1 2
1 3

1 4
1 5
1 6
1 7

C D E F
Random Total Total
Number Result Heads Tails

=RAND() =IF(RandomNumber<0.5,1,0) =IF(Result="Heads",1,0) =Flip-TotalHeads
=RAND() =IF(RandomNumber<0.5,"Tails","Heads") =E13+IF(Result="Heads",1,0) =Flip-TotalHeads
=RAND() =IF(RandomNumber<0.5,"Tails","Heads") =E14+IF(Result="Heads",1,0) =Flip-TotalHeads

: : : :
: : : :

1 2
1 3

1 4
1 5
1 6
1 7
1 8
1 9

G
Stop?

=IF(ABS(TotalHeads-TotalTails)>=RequiredDifference,"Stop","")
=IF(G15="",IF(ABS(TotalHeads-TotalTails)>=RequiredDifference,"Stop",""),"NA")
=IF(G16="",IF(ABS(TotalHeads-TotalTails)>=RequiredDifference,"Stop",""),"NA")

:
:

6
7
8

C D
Summary of Game

Number of Flips =COUNTBLANK(Stop?)+1
Winnings =CashAtEndOfGame-NumberOfFlips

Range Name Cells
CashAtEndOfGame D4
Flip B13:B62
NumberOfFlips D7
RandomNumber C13:C62
RequiredDifference D3
Result D13:D62
Stop? G13:G62
TotalHeads E13:E62
TotalTails F13:F62
Winnings D8

■ FIGURE 20.1
A spreadsheet model for a simulation of the coin-flipping game (Example 1).
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20.1 THE ESSENCE OF SIMULATION 939

at which point the game stops because the number of heads (7) exceeds the number of tails
(4) by 3. Cells D7 and D8 record the total number of flips (11) and resulting winnings 
($8 � $11 � �$3).

The equations in the bottom part of Fig. 20.1 show the formulas that have been
entered into the various cells by entering them at the top and then using the Copy com-
mand to copy them down the columns. Using these equations, the spreadsheet then
records the simulation of one complete play of the game. To virtually ensure that the
game will be completed, 50 flips of the coin have been simulated. Columns E and F
record the cumulative number of heads and tails after each flip. The equations entered
into the column G cells leave each cell blank until the difference in the numbers of
heads and tails reaches 3, at which point STOP is inserted into the cell. Thereafter, NA
(for Not Applicable) is inserted instead. Using the equations shown just below the
spreadsheet in Fig. 20.1, cells D7 and D8 record the outcome of the simulated play of
the game.

Such simulations of plays of the game can be repeated as often as desired with this
spreadsheet. Each time, Excel will generate a new sequence of random numbers, and so
a new sequence of heads and tails. (Excel will repeat a sequence of random numbers
only if you select the range of numbers you want to repeat, copy this range with the
Copy command, select Paste Special from the Edit menu, choose the Values option, and
click on OK.)

Simulations normally are repeated many times to obtain a more reliable estimate of
an average outcome. Therefore, this same spreadsheet has been used to generate the data
table in Fig. 20.2 for 14 plays of the game. As indicated on the right-hand side of Fig. 20.2,
this is done by creating a table with the column headings shown in columns J, K, and L,
and then entering equations into the first row of the data table that refer to the output cells
of interest in Fig. 20.1, so �NumberOfFlips is entered into cell K6 and � Winnings is
entered into cell L6, while leaving cell J6 blank. The next step is to select the entire

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

1

2

3

4

5

6

7
8

9
10
11
12

13

14
15
16
17

18
19
20

21

22

23

I J K L M

Data Table for Coin-Flipping Game

(14 Replications)

Number

Play of Flips Winnings

3 $5

1 9 -$1
2 5 $3

3 7 $1
4 11 -$3
5 5 $3
6 3 $5

7 3 $5

8 11 -$3
9 7 $1

10 15 -$7
11 3 $5

12 7 $1
13 9 -$1
14 5 3

Average 7.14 $0.86

Select the 
whole table 
(J6:L20), 
before 
choosing 
Table from 
the Data 
menu.

4
5
6

K L
Number
of Flips Winnings

=NumberOfFlips =Winnings

22

J K L

Average =AVERAGE(K7:K20) =AVERAGE(L7:L20)

Range Name Cell

NumberOfFlips D7
Winnings D8

■ FIGURE 20.2
A data table that records 
the results of performing 
14 replications of a
simulation with the
spreadsheet in Fig. 20.1.
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contents of the table (cells J6:L20) and then choose Data Table from the What-If Analy-
sis menu of the Data tab (for Excel 2007) or Table from the Data menu (for earlier ver-
sions of Excel). Finally, choose any blank cell (e.g., cell E4) for the column input cell
and click OK. Excel then enters the numbers in the first column of the table (J7:J20)
and uses the entire original spreadsheet (Fig. 20.1) in cells C13:G62 to recalculate the
output cells in columns K and L for each row where any number is entered in row J.
Entering the equations, �AVERAGE(K7:K20) or (L7:L20), into cells K22 and L22 pro-
vides the averages given in these cells.

Although this particular simulation run required using two spreadsheets—one to
perform each replication of the simulation and the other to record the outcomes of the
replications on a data table—we should point out that the replications of some other
simulations can be performed on a single spreadsheet. This is the case whenever each
replication can be performed and recorded on a single row of the spreadsheet. For ex-
ample, if only a single uniform random number is needed to perform a replication, then
the entire simulation run can be done and recorded by using a spreadsheet similar to
Fig. 20.1.

Returning to Fig. 20.2, cell K22 shows that this sample of 14 plays of the game gives
a sample average of 7.14 flips. The sample average provides an estimate of the true mean
of the underlying probability distribution of the number of flips required for a play of the
game. Hence, this sample average of 7.14 would seem to indicate that, on the average,
you should win about $0.86 (cell L22) each time you play the game. Therefore, if you do
not have a relatively high aversion to risk, it appears that you should choose to play this
game, preferably a large number of times.

However, beware! One common error in the use of simulation is that conclusions
are based on overly small samples, because statistical analysis was inadequate or totally
lacking. In this case, the sample standard deviation is 3.67, so that the estimated stan-
dard deviation of the sample average is 3.67/�14� � 0.98. Therefore, even if it is as-
sumed that the probability distribution of the number of flips required for a play of the
game is a normal distribution (which is a gross assumption because the true distribu-
tion is skewed ), any reasonable confidence interval for the true mean of this distribu-
tion would extend far above 8. Hence, a much larger sample size is required before we
can draw a valid conclusion at a reasonable level of statistical significance. Unfortu-
nately, because the standard deviation of a sample average is inversely proportional to
the square root of the sample size, a large increase in the sample size is required to
yield a relatively small increase in the precision of the estimate of the true mean. In this
case, it appears that 100 simulated plays (replications) of the game might be adequate,
depending on how close the sample average then is to 8, but 1,000 replications would
be much safer.

It so happens that the true mean of the number of flips required for a play of this
game is 9. (This mean can be found analytically, but not easily.) Thus, in the long run,
you actually would average losing about $1 each time you played the game. Part of the
reason that the above simulated experiment failed to draw this conclusion is that you have
a small chance of a very large loss on any play of the game, but you can never win more
than $5 each time. However, 14 simulated plays of the game were not enough to obtain
any observations far out in the tail of the probability distribution of the amount won or
lost on one play of the game. Only one simulated play gave a loss of more than $3, and
that was only $7.

Figure 20.3 gives the results of running the simulation for 1,000 plays of the games
(with rows 17–1000 not shown). Cell K1008 records the average number of flips as 8.97,
very close to the true mean of 9. With this number of replications, the average winnings
of �$0.97 in cell L1008 now provides a reliable basis for concluding that this game will

hil76299_ch20_934-990.qxd  12/5/08  08:00 AM  Page 940 Rev.Confirming Pages



20.1 THE ESSENCE OF SIMULATION 941

1

2

3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

1001
1002
1003
1004
1005
1006
1007
1008

I J K L M
Data Table for Coin-Flipping Game
(1000 Replications)

Number
Play of Flips Winnings

5 $3
1 3 $5
2 3 $5
3 7 $1
4 11 -$3
5 13 -$5
6 7 $1
7 3 $5
8 7 $1
9 3 $5

10 9 -$1
995 5 $3
996 27 -$19
997 7 $1
998 3 $5
999 9 -$1

1000 17 -$9

Average 8.97 -$0.97

■ FIGURE 20.3
This data table improves the
reliability of the simulation
recorded in Fig. 20.2 by
performing 1,000 replications
instead of only 14.

not win you money in the long run. (You can bet that the casino already has used simu-
lation to verify this fact in advance.)

Although formally constructing a full-fledged simulation model was not needed to
perform this simple simulation, we do so now for illustrative purposes. The stochastic
system being simulated is the successive flipping of the coin for a play of the game.
The simulation clock records the number of (simulated) flips t that have occurred so
far. The information about the system that defines its current status, i.e., the state of
the system, is

N(t) � number of heads minus number of tails after t flips.

The events that change the state of the system are the flipping of a head or the flipping
of a tail. The event generation method is the generation of a uniform random number over
the interval [0, 1], where

0.0000 to 0.4999 ⇒ a head,
0.5000 to 0.9999 ⇒ a tail.

The state transition formula is

Reset N(t) � �
The simulated game then ends at the first value of t where N(t) � �3, where the result-
ing sampling observation for the simulated experiment is 8 � t, the amount won (posi-
tive or negative) for that play of the game.

The next example will illustrate these building blocks of a simulation model for a
prominent stochastic system from queueing theory.

if flip t is a head
if flip t is a tail.

N(t � 1) � 1
N(t � 1) � 1
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EXAMPLE 2 An M/M/1 Queueing System

Consider the M/M/1 queueing theory model (Poisson input, exponential service times, and
single server) that was discussed at the beginning of Sec. 17.6. Although this model al-
ready has been solved analytically, it will be instructive to consider how to study it by 
using simulation. To be specific, suppose that the values of the mean arrival rate � and
mean service rate � are

� � 3 per hour, � � 5 per hour.

To summarize the physical operation of the system, arriving customers enter the queue,
eventually are served, and then leave. Thus, it is necessary for the simulation model to
describe and synchronize the arrival of customers and the serving of customers.

Starting at time 0, the simulation clock records the amount of (simulated) time t that
has transpired so far during the simulation run. The information about the queueing sys-
tem that defines its current status, i.e., the state of the system, is

N(t) � number of customers in system at time t.

The events that change the state of the system are the arrival of a customer or a ser-
vice completion for the customer currently in service (if any). We shall describe the event
generation method a little later. The state transition formula is

Reset N(t) � �
There are two basic methods used for advancing the simulation clock and recording

the operation of the system. We did not distinguish between these methods for Example 1
because they actually coincide for that simple situation. However, we now describe and
illustrate these two time advance methods (fixed-time incrementing and next-event in-
crementing) in turn.

With the fixed-time incrementing time advance method, the following two-step
procedure is used repeatedly.

Summary of Fixed-Time Incrementing

1. Advance time by a small fixed amount.
2. Update the system by determining what events occurred during the elapsed time in-

terval and what the resulting state of the system is. Also record desired information
about the performance of the system.

For the queueing theory model under consideration, only two types of events can oc-
cur during each of these elapsed time intervals, namely, one or more arrivals and one or
more service completions. Furthermore, the probability of two or more arrivals or of two
or more service completions during an interval is negligible for this model if the interval
is relatively short. Thus, the only two possible events during such an interval that need to
be investigated are the arrival of one customer and the service completion for one cus-
tomer. Each of these events has a known probability.

To illustrate, let us use 0.1 hour (6 minutes) as the small fixed amount by which the
clock is advanced each time. (Normally, a considerably smaller time interval would be
used to render negligible the probability of multiple arrivals or multiple service comple-
tions, but this choice will create more action for illustrative purposes.) Because both in-
terarrival times and service times have an exponential distribution, the probability PA that
a time interval of 0.1 hour will include an arrival is

PA � 1 � e�3/10 � 0.259,

if arrival occurs at time t
if service completion occurs at time t.

N(t) � 1
N(t) � 1

→

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■ TABLE 20.1 Fixed-time incrementing applied to Example 2

t, time Arrival in Departure
(min) N(t) rA Interval? rD in Interval?

0 0
6 1 0.096 Yes —

12 1 0.569 No 0.665 No
18 1 0.764 No 0.842 No
24 0 0.492 No 0.224 Yes
30 0 0.950 No —
36 0 0.610 No —
42 1 0.145 Yes —
48 1 0.484 No 0.552 No
54 1 0.350 No 0.590 No
60 0 0.430 No 0.041 Yes

and the probability PD that it will include a departure (service completion), given that a
customer was being served at the beginning of the interval, is

PD � 1 � e�5/10 � 0.393.

To randomly generate either kind of event according to these probabilities, the 
approach is similar to that in Example 1. The computer again is used to generate a 
uniform random number over the interval [0, 1], that is, a random observation from
the uniform distribution between 0 and 1. If we denote this uniform random number
by rA,

rA � 0.259 ⇒ arrival occurred,
rA � 0.259 ⇒ arrival did not occur.

Similarly, with another uniform random number rD,

rD � 0.393 ⇒ departure occurred,
rD � 0.393 ⇒ departure did not occur,

given that a customer was being served at the beginning of the time interval. With no cus-
tomer in service then (i.e., no customers in the system), it is assumed that no departure
can occur during the interval even if an arrival does occur.

Table 20.1 shows the result of using this approach for 10 iterations of the fixed-time
incrementing procedure, starting with no customers in the system and using time units of
minutes.

Step 2 of the procedure (updating the system) includes recording the desired mea-
sures of performance about the aggregate behavior of the system during this time inter-
val. For example, it could record the number of customers in the queueing system and the
waiting time of any customer who just completed his or her wait. If it is sufficient to esti-
mate only the mean rather than the probability distribution of each of these random variables,
the computer will merely add the value (if any) at the end of the current time interval to a
cumulative sum. The sample averages will be obtained after the simulation run is completed
by dividing these sums by the sample sizes involved, namely, the total number of time in-
tervals and the total number of customers, respectively.

To illustrate this estimating procedure, suppose that the simulation run in Table 20.1
were being used to estimate W, the steady-state expected waiting time of a customer in the
queueing system (including service). Two customers arrived during this simulation run, one
during the first time interval and the other during the seventh one, and each remained in
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→


the system for three time intervals. Therefore, since the duration of each time interval is
0.1 hour, the estimate of W is

Est{W} � �
3 �

2
3

� (0.1 hour) � 0.3 hour.

This is, of course, only an extremely rough estimate, based on a sample size of only
two. (Using the formula for W given in Sec. 17.6, its true value is W � 1/(� � �) � 0.5
hour.) A much, much larger sample size normally would be used.

Another deficiency with using only Table 20.1 is that this simulation run started with
no customers in the system, which causes the initial observations of waiting times to
tend to be somewhat smaller than the expected value when the system is in a steady-
state condition. Since the goal is to estimate the steady-state expected waiting time, it
is important to run the simulation for some time without collecting data until it is be-
lieved that the simulated system has essentially reached a steady-state condition. (The
second supplement to this chapter on the book’s website describes a special method for
circumventing this problem.) This initial period waiting to essentially reach a steady-state
condition before collecting data is called the warm-up period.

Next-event incrementing differs from fixed-time incrementing in that the simulation
clock is incremented by a variable amount rather than by a fixed amount each time. This
variable amount is the time from the event that has just occurred until the next event of
any kind occurs; i.e., the clock jumps from event to event. A summary follows.

Summary of Next-Event Incrementing

1. Advance time to the time of the next event of any kind.
2. Update the system by determining its new state that results from this event and by ran-

domly generating the time until the next occurrence of any event type that can occur
from this state (if not previously generated). Also record desired information about the
performance of the system.

For this example the computer needs to keep track of two future events, namely, the
next arrival and the next service completion (if a customer currently is being served).
These times are obtained by taking a random observation from the probability distribu-
tion of interarrival and service times, respectively. As before, the computer takes such a
random observation by generating and using a random number. (This technique will be
discussed in Sec. 20.4.) Thus, each time an arrival or service completion occurs, the com-
puter determines how long it will be until the next time this event will occur, adds this
time to the current clock time, and then stores this sum in a computer file. (If the service
completion leaves no customers in the system, then the generation of the time until the
next service completion is postponed until the next arrival occurs.) To determine which
event will occur next, the computer finds the minimum of the clock times stored in the
file. To expedite the bookkeeping involved, simulation programming languages provide a
“timing routine” that determines the occurrence time and type of the next event, advances
time, and transfers control to the appropriate subprogram for the event type.

Table 20.2 shows the result of applying this approach through five iterations of the
next-event incrementing procedure, starting with no customers in the system and using
time units of minutes. For later reference, we include the uniform random numbers rA and
rD used to generate the interarrival times and service times, respectively, by the method
to be described in Sec. 20.4. These rA and rD are the same as those used in Table 20.1 in
order to provide a truer comparison between the two time advance mechanisms.

The Excel files for this chapter in your OR Courseware include an automatic pro-
cedure, called Queueing Simulator, for applying the next-event incrementing procedure
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■ TABLE 20.2 Next-event incrementing applied to Example 2

Next Next
t, time Interarrival Service Next Next Next
(min) N(t) rA Time rD Time Arrival Departure Event

0 0 0.096 2.019 — — 2.019 — Arrival
2.019 1 0.569 16.833 0.665 13.123 18.852 15.142 Departure

15.142 0 — — — — 18.852 — Arrival
18.852 1 0.764 28.878 0.842 22.142 47.730 40.994 Departure
40.994 0 — — — — 47.730 — Arrival
47.730 1 

■ FIGURE 20.4
The output obtained by using the Queueing Simulator that is included in this chapter’s Excel files to perform a
simulation of Example 2 over a period of 10,000 customer arrivals.

to various kinds of queueing systems. (This software is a good example of discrete-event
simulation software that is widely used for applying simulation.) Queueing Simulator al-
lows the queueing system to have either a single server or multiple servers. Several op-
tions (exponential, Erlang, degenerate, uniform, or translated exponential) are available
for the probability distributions of interarrival times and service times. Figure 20.4 shows
the input and output (in units of hours) from applying Queueing Simulator to the cur-
rent example for a simulation run with 10,000 customer arrivals. Using the notation for
various measures of performance for queueing systems introduced in Sec. 17.2, column F
gives the estimate of each of these measures provided by the simulation run. [Using the
formulas given in Sec. 17.6 for an M/M/1 queueing system, the true values of these mea-
sures are L � 1.5, Lq � 0.9, W � 0.5, Wq � 0.3, P0 � 0.4, and Pn � 0.4(0.6)n.] Columns
G and H show the corresponding 95 percent confidence interval for each of these mea-
sures. Note that these confidence intervals are somewhat wider than might have been
expected after such a long simulation run. In general, surprisingly long simulation runs
are required to obtain relatively precise estimates (narrow confidence intervals) for the
measures of performance for a queueing system (or for most stochastic systems).
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■ 20.2 SOME COMMON TYPES OF APPLICATIONS OF SIMULATION

Simulation is an exceptionally versatile technique. It can be used (with varying degrees
of difficulty) to investigate virtually any kind of stochastic system. This versatility has
made simulation the most widely used OR technique for studies dealing with such sys-
tems, and its popularity is continuing to increase.

Because of the tremendous diversity of its applications, it is impossible to enumerate
all the specific areas in which simulation has been used. However, we will briefly describe
here some particularly important categories of applications.

The next-event incrementing procedure is considerably better suited for this exam-
ple and similar stochastic systems than the fixed-time incrementing procedure. Next-
event incrementing requires fewer iterations to cover the same amount of simulated time,
and it generates a precise schedule for the evolution of the system rather than a rough
approximation.

The next-event incrementing procedure will be illustrated again in the second sup-
plement to this chapter on the book’s website in the context of a full statistical experi-
ment for estimating certain measures of performance for another queueing system. That
supplement also describes the statistical method that is used by Queueing Simulator to
obtain its point estimates and confidence intervals.

Several pertinent questions about how to conduct a simulation study of this type still re-
main to be answered. These answers are presented in a broader context in subsequent sections.

More Examples in Your OR Courseware

Simulation examples are easier to understand when they can be observed in action, rather
than just talked about on a printed page. Therefore, the simulation area of your IOR Tu-
torial includes an automatic procedure called “Animation of a Queueing System” that shows
a simulation where you actually observe the customers entering and leaving a queueing
system. Thus, viewing this animation illustrates the sequence of events that the next-event
incrementing procedure would generate during the simulation of a queueing system. In ad-
dition, the simulation area of your OR Tutor includes two demonstration examples that
should be viewed at this time.

Both demonstration examples involve a bank that plans to open up a new branch of-
fice. The questions address how many teller windows to provide and then how many tellers
to have on duty at the outset. Therefore, the system being studied is a queueing system.
However, in contrast to the M/M/1 queueing system just considered in Example 2, this
queueing system is too complicated to be solved analytically. This system has multiple
servers (tellers), and the probability distributions of interarrival times and service times
do not fit the standard models of queueing theory. Furthermore, in the second demon-
stration, it has been decided that one class of customers (merchants) needs to be given
nonpreemptive priority over other customers, but the probability distributions for this class
are different from those for other customers. These complications are typical of those that
can be readily incorporated into a simulation study.

In both demonstrations, you will be able to see customers arrive and served customers
leave as well as the next-event incrementing procedure being applied simultaneously to
the simulation run.

The demonstrations also introduce you to an interactive procedure called “Interac-
tively Simulate Queueing Problem” in your IOR Tutorial that you should find very help-
ful in dealing with some of the problems at the end of this chapter.
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The first three categories concern types of stochastic systems considered in detail in
other chapters. It is common to use the kinds of mathematical models described in those
chapters to analyze simplified versions of the system and then to apply simulation to re-
fine the results.

Design and Operation of Queueing Systems

Section 17.3 gives many examples of commonly encountered queueing systems that il-
lustrate how such systems pervade many areas of society. Many mathematical models are
available (including those presented in Chap. 17) for analyzing relatively simple types of
queueing systems. Unfortunately, these models can only provide rough approximations at
best of more complicated queueing systems. However, simulation is well suited for deal-
ing with even very complicated queueing systems, so many of its applications fall into
this category.

The two demonstration examples of simulation in your OR Tutor (both dealing with
how much teller service to provide a bank’s customers) are of this type. Because queueing
applications of simulation are so pervasive, your OR Courseware includes an automatic
procedure called Queueing Simulator (illustrated earlier in Fig. 20.4) for simulating queue-
ing systems. (As already pointed out in the preceding section, this special procedure is pro-
vided in one of this chapter’s Excel files.)

Among the award-winning applications of queueing models presented in Sec. 17.3, one
of these also made heavy use of simulation. This was an application that involved AT&T
developing a PC-based system to help its business customers design or redesign their call
centers, resulting in more than $750 million in annual profit for these customers. This ap-
plication of simulation is described further in the application vignette presented in Sec. 20.5.

Managing Inventory Systems

Sections 18.6 and 18.7 present models for the management of simple kinds of inventory
systems when the products involved have uncertain demand. However, inventory systems
that arise in practice often have complications that are not taken into account by these
particular models. Although other mathematical models sometimes can help analyze these
more complicated systems, simulation often plays a key role as well.

As one example, an article in the April 1996 issue of OR/MS Today describes an OR
study of this kind that was done for the IBM PC Company in Europe. Facing unrelenting
pressure from increasingly agile and aggressive competitors, the company had to find a
way to greatly improve its performance in quickly filling customer orders. The OR team
analyzed how to do this by simulating various redesigns of the company’s entire supply
chain (the network of facilities that spans procurement, manufacturing, and distribution,
including all the inventories accumulated along the way). This led to major changes in
the design and operation of the supply chain (including its inventory systems) that greatly
improved the company’s competitive position. Direct cost savings of $40 million per year
also were achieved.

Section 20.6 will illustrate the application of simulation to a relatively simple kind
of inventory system.

Estimating the Probability of Completing a Project by the Deadline

One of the key concerns of a project manager is whether his or her team will be able to
complete the project by the deadline. Section 22.4 (on the book’s website) describes how
the PERT three-estimate approach can be used to obtain a rough estimate of the proba-
bility of meeting the deadline with the current project plan. That section also describes
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Since its founding in 1914, Merrill Lynch has been a
leading full-service financial service firm that strives to
bring Wall Street to Main Street by making financial mar-
kets accessible to everyone. It employs a highly trained
sales force of over 15,000 financial advisors throughout
the United States and operates in 36 countries. A Fortune
100 company with net revenues of $26 billion in 2005, it
manages client assets that  total over $1.7 trillion.

Faced with increasing competition from discount
brokerage firms and electronic brokerage firms, a task
force was formed in late 1998 to recommend a product or
service response to the marketplace challenge. Merrill
Lynch’s strong operations research group was charged
with doing the detailed analysis of two potential new
pricing options for clients. One option would replace
charging for trades individually by charging a fixed per-
centage of a client’s assets at Merrill Lynch and then
allowing an unlimited number of free trades and com-
plete access to a financial advisor. The other option
would allow self-directed investors to  invest online
directly for a fixed low fee per trade without consulting a
financial advisor.

The great challenge facing the OR group was to
determine a “sweet spot” for the prices for these options
that would be likely to grow the firm’s business and
increase its revenues while minimizing the risk of losing
revenue instead. A key tool in attacking this problem

proved to be simulation. To undertake a major simulation
study, the group assembled and evaluated an extensive
volume of data on the assets and trading activity of the
firm’s five million clients. For each segment of the client
base, a careful analysis was done of its offer-adoption
behavior by using managerial judgment, market research,
and experience with clients. With this input, the group
then formulated and ran a simulation model with various
pricing scenarios to identify the pricing sweet spot.

The implementation of these results had a profound
impact on Merrill Lynch’s competitive position, restoring
it to a leadership role in the industry. Instead of continuing
to lose ground to the fierce new competition, client assets
managed by the company had increased by $22 billion
and its incremental revenue reached $80 million within
18 months. The CEO of Merrill Lynch called the new
strategy “the most important decision we as a firm have
made (in the last 20 years).” This enormously successful
application of simulation led to Merrill Lynch winning the
prestigious First Prize in the 2001 international competi-
tion for the Franz Edelman Award for Achievement in
Operations Research and the Management Sciences.

Source: S. Altschuler, D. Batavia, J. Bennett, R. Labe, B. Liao,
R. Nigam, and J. Oh: “Pricing Analysis for Merrill Lynch Inte-
grated Choice,” Interfaces, 32(1): 5–19, Jan.–Feb. 2002. (A link to
this article is provided on our website, www.mhhe.com/hillier.)

An Application Vignette

three simplifying approximations made by this approach to be able to estimate this prob-
ability. Unfortunately, because of these approximations, the resulting estimate always is
overly optimistic, and sometimes by a considerable amount.

Consequently, it is becoming increasingly common now to use simulation to obtain
a better estimate of this probability. This involves generating random observations from
the probability distributions of the duration of the various activities in the projects. By us-
ing the project network, it then is straightforward to simulate when each activity begins
and ends, and so when the project finishes. By repeating this simulation thousands of
times (in one computer run), a very good estimate can be obtained of the probability of
meeting the deadline.

A detailed illustration of this particular kind of application can be found in Sec. 28.2
on the book’s website.

Design and Operation of Manufacturing Systems

Surveys consistently show that a large proportion of the applications of simulation involve
manufacturing systems. Many of these systems can be viewed as a queueing system of
some kind (e.g., a queueing system where the machines are the servers and the jobs to be
processed are the customers). However, various complications inherent in these systems
(e.g., occasional machine breakdowns, defective items needing to be reworked, and mul-
tiple types of jobs) go beyond the scope of the usual queueing models. Such complica-
tions can be handled readily by simulation.
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Here are a few examples of the kinds of questions that might be addressed.

1. How many machines of each type should be provided?
2. How many materials-handling units of each type should be provided?
3. Considering their due dates for completion of the entire production process, what rule

should be used to choose the order in which the jobs currently at a machine should be
processed?

4. What are realistic due dates for jobs?
5. What will be the bottleneck operations in a new production process as currently de-

signed?
6. What will be the throughput (production rate) of a new production process?

Selected Reference A1 describes an award-winning application of this last type. Gen-
eral Motors Corporation was so successful in applying simulation to predict and improve
the throughput performance of its production lines that it both increased revenue and saved
over $2.1 billion in 30 vehicle plants and 10 countries.

Design and Operation of Distribution Systems

Any major manufacturing corporation needs an efficient distribution system for distribut-
ing its goods from its factories and warehouses to its customers. There are many uncer-
tainties involved in the operation of such a system. When will vehicles become available
for shipping the goods? How long will a shipment take? What will be the demands of the
various customers? By generating random observations from the relevant probability dis-
tributions, simulation can readily deal with these kinds of uncertainties. Thus, it is used
quite often to test various possibilities for improving the design and operation of these
systems.

One award-winning application of this kind is described in the January–February 1991
issue of Interfaces. Reynolds Metal Company spends over $250 million annually to de-
liver its products and receive raw materials. Shipments are made by truck, rail, ship, and
air across a network of well over a hundred shipping locations including plants, ware-
houses, and suppliers. A combination of mixed binary integer programming (Chap. 11)
and simulation was used to design a new distribution system with central dispatching. The
new system both improved on-time delivery of shipments and reduced annual freight costs
by over $7 million.

Financial Risk Analysis

Financial risk analysis was one of the earliest application areas of simulation, and it
continues to be a very active area. For example, consider the evaluation of a proposed
capital investment with uncertain future cash flows. By generating random observations
from the probability distributions for the cash flow in each of the respective time periods
(and considering relationships between time periods), simulation can generate thousands
of scenarios for how the investment will turn out. This provides a probability distribu-
tion of the return (e.g., net present value) from the investment. This distribution (some-
times called the risk profile) enables management to assess the risk involved in making
the investment.

A similar approach enables analyzing the risk associated with investing in various se-
curities, including the more exotic financial instruments such as puts, calls, futures, stock
options, etc.

Section 28.4 on the book’s website provides a detailed example of using simulation
for financial risk analysis.
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Health Care Applications

Health care is another area where, like the evaluation of risky investments, analyzing fu-
ture uncertainties is central to current decision making. However, rather than dealing with
uncertain future cash flows, the uncertainties now involve such things as the evolution of
human diseases.

Here are a few examples of the kinds of simulations that have been performed to
guide the design of health care systems.

1. Simulating the use of hospital resources when treating patients with coronary heart disease.
2. Simulating health expenditures under alternative insurance plans.
3. Simulating the cost and effectiveness of screening for the early detection of a disease.
4. Simulating the use of the complex of surgical services at a medical center.
5. Simulating the timing and location of calls for ambulance services.
6. Simulating the matching of donated kidneys with transplant recipients.
7. Simulating the operation of an emergency room.

Applications to Other Service Industries

Like health care, other service industries also have proved to be fertile fields for the ap-
plication of simulation. These industries include government services, banking, hotel man-
agement, restaurants, educational institutions, disaster planning, the military, amusement
parks, and many others. In many cases, the systems being simulated are, in fact, queue-
ing systems of some type.

Selected Reference A5 describes an award-winning application in this category. The
United States Postal Service had identified automation technology as the only way it would
be able to handle its increasing mail volume while remaining price competitive and satis-
fying service goals. Extensive planning over several years was required to convert to a largely
automated system that would meet these goals. The backbone of the analysis leading to the
adopted plan was performed with a comprehensive simulation model called META (model
for evaluating technology alternatives). This model was first applied extensively at the na-
tional level, and then it was moved down to the local level for detailed planning. The re-
sulting plan required a cumulative capital investment of $12 billion, but also was projected
to achieve labor savings of over $4 billion per year. Another consequence of this highly suc-
cessful application of simulation was that the value of OR tools now is recognized at the
highest levels of the Postal Service. Operations research techniques continue to be used by
the planning staff both at headquarters and in the field divisions.

Military Applications

There is probably no other sector of society where simulation is used as extensively as in
the military. The military reliance on simulation to perform war gaming actually traces back
several centuries and the U.S. military academics have included war gaming in their curricu-
lum from their inception. However, the advent of powerful computers has led to a phenome-
nal growth in the military use of simulation, especially in the U.S. Department of Defense.
War gaming to simulate military operations is now routinely used to plan future military op-
erations, update military doctrine, and train officers. Simulation also is widely used to help
make military procurement decisions.

New Applications

More new innovative applications of simulation are being made each year. Many of these
applications are first announced publicly at the annual Winter Simulation Conference, held
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■ TABLE 20.3 Table of random digits

09656 96657 64842 49222 49506 10145 48455 23505 90430 04180
24712 55799 60857 73479 33581 17360 30406 05842 72044 90764
07202 96341 23699 76171 79126 04512 15426 15980 88898 06358
84575 46820 54083 43918 46989 05379 70682 43081 66171 38942
38144 87037 46626 70529 27918 34191 98668 33482 43998 75733

48048 56349 01986 29814 69800 91609 65374 22928 09704 59343
41936 58566 31276 19952 01352 18834 99596 09302 20087 19063
73391 94006 03822 81845 76158 41352 40596 14325 27020 17546
57580 08954 73554 28698 29022 11568 35668 59906 39557 27217
92646 41113 91411 56215 69302 86419 61224 41936 56939 27816

07118 12707 35622 81485 73354 49800 60805 05648 28898 60933
57842 57831 24130 75408 83784 64307 91620 40810 06539 70387
65078 44981 81009 33697 98324 46928 34198 96032 98426 77488
04294 96120 67629 55265 26248 40602 25566 12520 89785 93932
48381 06807 43775 09708 73199 53406 02910 83292 59249 18597

00459 62045 19249 67095 22752 24636 16965 91836 00582 46721
38824 81681 33323 64086 55970 04849 24819 20749 51711 86173
91465 22232 02907 01050 07121 53536 71070 26916 47620 01619
50874 00807 77751 73952 03073 69063 16894 85570 81746 07568
26644 75871 15618 50310 72610 66205 82640 86205 73453 90232

Source: Reproduced with permission from The Rand Corporation, A Million Random Digits with
100,000 Normal Deviates. Copyright, The Free Press, Glencoe, IL, 1955, top of p. 182.

each December in some U.S. city. Since its beginning in 1967, this conference has been
an institution in the simulation field. It now is attended by nearly a thousand participants,
divided roughly equally between academics and practitioners. Hundreds of papers are pre-
sented to announce both methodological advances and new innovative applications.

■ 20.3 GENERATION OF RANDOM NUMBERS
As the examples in Sec. 20.1 demonstrated, implementing a simulation model requires
random numbers to obtain random observations from probability distributions. One method
for generating such random numbers is to use a physical device such as a spinning disk
or an electronic randomizer. Several tables of random numbers have been generated in
this way, including one containing 1 million random digits, published by the Rand Cor-
poration. An excerpt from the Rand table is given in Table 20.3.

Physical devices now have been replaced by the computer as the primary source for
generating random numbers. For example, we pointed out in Sec. 20.1 that Excel uses the
RAND() function for this purpose. Many other software packages also have the capability
of generating random numbers whenever needed during a simulation run.

Characteristics of Random Numbers

The procedure used by a computer to obtain random numbers is called a random number
generator.

A random number generator is an algorithm that produces sequences of num-
bers that follow a specified probability distribution and possess the appearance
of randomness.

The reference to sequences of numbers means that the algorithm produces many random num-
bers in a serial manner. Although an individual user may need only a few of the numbers,
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generally the algorithm must be capable of producing many numbers. Probability distribu-
tion implies that a probability statement can be associated with the occurrence of each num-
ber produced by the algorithm.

We shall reserve the term random number to mean a random observation from some
form of a uniform distribution, so that all possible numbers are equally likely. When we
are interested in some other probability distribution (as in the next section), we shall re-
fer to random observations from that distribution.

Random numbers can be divided into two main categories, random integer numbers
and uniform random numbers, defined as follows:

A random integer number is a random observation from a discretized uniform dis-
tribution over some range n

�
, n

�
� 1, . . . , n�. The probabilities for this distribution are

P(n
�

) � P(n
�

� 1) � . . . � P(n�) �

Usually, n
�

� 0 or 1, and these are convenient values for most applications. (If n
�

has another value, then subtracting either n
�

or n
�

� 1 from the random integer
number changes the lower end of the range to either 0 or 1.)

A uniform random number is a random observation from a (continuous) uni-
form distribution over some interval [a, b]. The probability density function of
this uniform distribution is

�
b �

1
a

� if a � x � b
f (x) �

0 otherwise.

When a and b are not specified, they are assumed to be a � 0 and b � 1.

The random numbers initially generated by a computer usually are random integer
numbers. However, if desired, these numbers can immediately be converted to a uniform
random number as follows:

For a given random integer number in the range 0 to n�, dividing this number by
n� yields (approximately) a uniform random number. (If n� is small, this approxi-
mation should be improved by adding �

1
2

� to the random integer number and then
dividing by n� � 1 instead.)

This is the usual method used for generating uniform random numbers. With the huge
values of n� commonly used, it is an essentially exact method.

Strictly speaking, the numbers generated by the computer should not be called ran-
dom numbers because they are predictable and reproducible (which sometimes is advan-
tageous), given the random number generator being used. Therefore, they are sometimes
given the name pseudo-random numbers. However, the important point is that they sat-
isfactorily play the role of random numbers in the simulation if the method used to gen-
erate them is valid.

Various relatively sophisticated statistical procedures have been proposed for testing
whether a generated sequence of numbers has an acceptable appearance of randomness.
Basically the requirements are that each successive number in the sequence have an equal
probability of taking on any one of the possible values and that it be statistically inde-
pendent of the other numbers in the sequence.

Congruential Methods for Random Number Generation

There are a number of random number generators available, of which the most popular
are the congruential methods (additive, multiplicative, and mixed). The mixed congruen-
tial method includes features of the other two, so we shall discuss it first.





1
�� .
n� � n

�
� 1

hil76299_ch20_934-990.qxd  11/14/08  08:44 AM  Page 952



Confirming Pages

20.3 GENERATION OF RANDOM NUMBERS 953

■ TABLE 20.4 Illustration of the mixed congruential method

n xn 5xn � 7 (5xn � 7)/8 xn�1

0 4 27 3 � �
3
8

� 3

1 3 22 2 � �
6
8

� 6

2 6 37 4 � �
5
8

� 5

3 5 32 4 � �
0
8

� 0

4 0 7 0 � �
7
8

� 7

5 7 42 5 � �
2
8

� 2

6 2 17 2 � �
1
8

� 1

7 1 12 1 � �
4
8

� 4

The mixed congruential method generates a sequence of random integer numbers over
the range from 0 to m � 1. The method always calculates the next random number from the
last one obtained, given an initial random number x0, called the seed, which may be obtained
from some published source such as the Rand table. In particular, it calculates the (n � 1)st
random number xn�1 from the nth random number xn by using the recurrence relation

xn�1 ≡ (axn � c)(modulo m),

where a, c, and m are positive integers (a � m, c � m). This mathematical notation sig-
nifies that xn�1 is the remainder when axn � c is divided by m. Thus, the possible values
of xn�1 are 0, 1, . . . , m � 1, so that m represents the desired number of different values
that could be generated for the random numbers.

To illustrate, suppose that m � 8, a � 5, c � 7, and x0 � 4. The resulting sequence
of random numbers is calculated in Table 20.4. (The sequence is not continued further
because it would just begin repeating the numbers in the same order.) Note that this se-
quence includes each of the eight possible numbers exactly once. This property is a nec-
essary one for a sequence of random integer numbers, but it does not occur with some
choices of a and c. (Try a � 4, c � 7, and x0 � 3.) Fortunately, there are rules available
for choosing values of a and c that will guarantee this property. (There are no restric-
tions on the seed x0 because it affects only where the sequence begins and not the pro-
gression of numbers.)

The number of consecutive numbers in a sequence before it begins repeating itself is
referred to as the cycle length. Thus, the cycle length in the example is 8. The maximum
cycle length is m, so the only values of a and c considered are those that yield this max-
imum cycle length.

Table 20.5 illustrates the conversion of random integer numbers to uniform random
numbers. The left column gives the random integer numbers obtained in the rightmost
column of Table 20.4. The right column gives the corresponding uniform random num-
bers from the formula

Uniform random number � .
random integer number � �

1
2

�

���
m
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■ TABLE 20.5 Converting random integer numbers to uniform 
random numbers

Random Integer Number Uniform Random Number

3 0.4375
6 0.8125
5 0.6875
0 0.0625
7 0.9375
2 0.3125
1 0.1875
4 0.5625 

954 CHAPTER 20 SIMULATION

Note that each of these uniform random numbers lies at the midpoint of one of the eight
equal-sized intervals 0 to 0.125, 0.125 to 0.25, . . . , 0.875 to 1. The small value of m � 8
does not enable us to obtain other values over the interval [0, 1], so we are obtaining fairly
rough approximations of real uniform random numbers. In practice, far larger values of
m generally are used.

The Worked Examples section of the book’s website includes another example of
applying the mixed congruential method with a relatively small value of m(m � 16) and
then converting the resulting random integer numbers to uniform random numbers. This
example then explores the problems that arise from using such a small value of m.

For a binary computer with a word size of b bits, the usual choice for m is m � 2b;
this is the total number of nonnegative integers that can be expressed within the capacity
of the word size. (Any undesired integers that arise in the sequence of random numbers
are just not used.) With this choice of m, we can ensure that each possible number occurs
exactly once before any number is repeated by selecting any of the values a � 1, 5, 9,
13, . . . and c � 1, 3, 5, 7, . . . . For a decimal computer with a word size of d digits, the
usual choice for m is m � 10d, and the same property is ensured by selecting any of the
values a � 1, 21, 41, 61, . . . and c � 1, 3, 7, 9, 11, 13, 17, 19, . . . (that is, all positive
odd integers except those ending with the digit 5). The specific selection can be made on
the basis of the serial correlation between successively generated numbers, which differs
considerably among these alternatives.1

Occasionally, random integer numbers with only a relatively small number of digits
are desired. For example, suppose that only three digits are desired, so that the possible
values can be expressed as 000, 001, . . . , 999. In such a case, the usual procedure still is
to use m � 2b or m � 10d, so that an extremely large number of random integer numbers
can be generated before the sequence starts repeating itself. However, except for purposes
of calculating the next random integer number in this sequence, all but three digits of each
number generated would be discarded to obtain the desired three-digit random integer num-
ber. One convention is to take the last three digits (i.e., the three trailing digits).

The multiplicative congruential method is just the special case of the mixed con-
gruential method where c � 0. The additive congruential method also is similar, but it
sets a � 1 and replaces c by some random number preceding xn in the sequence, for ex-
ample, xn�1 (so that more than one seed is required to start calculating the sequence).

The mixed congruential method provides tremendous flexibility in choosing a par-
ticular random number generator (a specific combination of values of a, c, and m). How-
ever, great care needs to be taken in choosing the random number generator because most

1See R. R. Coveyou, “Serial Correlation in the Generation of Pseudo-Random Numbers,” Journal of the Asso-
ciation of Computing Machinery, 7: 72–74, 1960.
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2For recommendations on the choice of the random number generator, see P. L’Ecuyer, R. Simard, E. J. Chen, and
W. D. Kelton, “An Object-Oriented Random-Number Package with Many Long Streams and Substreams,” Opera-
tions Research, 50: 1073–1075, 2002.

■ 20.4 GENERATION OF RANDOM OBSERVATIONS 
FROM A PROBABILITY DISTRIBUTION

Given a sequence of random numbers, how can one generate a sequence of random ob-
servations from a given probability distribution? Several different approaches are avail-
able, depending on the nature of the distribution.

Simple Discrete Distributions

For some simple discrete distributions, a sequence of random integer numbers can be used
to generate random observations in a straightforward way. Merely allocate the possible
values of a random number to the various outcomes in the probability distribution in di-
rect proportion to the respective probabilities of those outcomes.

For Example 1 in Sec. 20.1, where flips of a coin are being simulated, the possible
outcomes of one flip are a head or a tail, where each outcome has a probability of �

1
2

�. There-
fore, rather than using uniform random numbers (as was done in Sec. 20.1), it would have
been sufficient to use random digits to generate the outcomes. Five of the ten possible
values of a random digit (say, 0, 1, 2, 3, 4) would be assigned an association with a head
and the other five (say, 5, 6, 7, 8, 9) a tail.

As another example, consider the probability distribution of the outcome of a throw of
two dice. It is known that the probability of throwing a 2 is �

3
1
6
� (as is the probability of throw-

ing a 12), the probability of throwing a 3 is �
3
2
6
�, and so on. Therefore, �

3
1
6
� of the possible val-

ues of a random integer number should be associated with throwing a 2, �
3
2
6
� of the values

with throwing a 3, and so forth. Thus, if two-digit random integer numbers are being used,
72 of the 100 values will be selected for consideration, so that a random integer number
will be rejected if it takes on any one of the other 28 values. Then 2 of the 72 possible val-
ues (say, 00 and 01) will be assigned an association with throwing a 2, four of them (say
02, 03, 04, and 05) will be assigned an association with throwing a 3, and so on.

Using random integer numbers in this kind of way is convenient when they either are
being drawn from a table of random numbers or are being generated directly by a con-
gruential method. However, when performing the simulation on a computer, it usually is
more convenient to have the computer generate uniform random numbers and then use
them in the corresponding way. All the subsequent methods for generating random ob-
servations use uniform random numbers.

The Inverse Transformation Method

For more complicated distributions, whether discrete or continuous, the inverse transfor-
mation method can sometimes be used to generate random observations. Letting X be the
random variable involved, we denote the cumulative distribution function by

F(x) � P{X � x}.

combinations of values of a, c, and m lead to undesirable properties (e.g., a cycle length
less than m). When researchers identify attractive random number generators, extensive
testing is done to find any flaws, and this might lead to a better random number generator.
For example, several years ago, m � 231 was considered an attractive choice, but experts
now consider it unacceptable and are instead recommending that certain much larger num-
bers, including specific values of m near 2191, should be used.2
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Generating each observation then requires the following two steps.

Summary of Inverse Transformation Method

1. Generate a uniform random number r between 0 and 1.
2. Set F(x) � r and solve for x, which then is the desired random observation from the

probability distribution.

This procedure is illustrated in Fig. 20.5 for the case where F(x) is plotted graphically and
the uniform random number r happens to be 0.5269.

Although the graphical procedure illustrated by Fig. 20.5 is convenient if the simu-
lation is done manually, the computer must revert to some alternative approach. For dis-
crete distributions, a table lookup approach can be taken by constructing a table that gives
a “range” (jump) in the value of F(x) for each possible value of X � x. Excel provides a
convenient VLOOKUP function to implement this approach when performing a simula-
tion on a spreadsheet.

To illustrate how this function works, suppose that a company is simulating the main-
tenance program for its machines. The time between breakdowns of one of these ma-
chines always is 4, 5, or 6 days, where these times occur with probabilities 0.25, 0.5, and
0.25, respectively. The first step in simulating these breakdowns is to create the table
shown in Fig. 20.6 somewhere in the spreadsheet. Note that each number in the second
column gives the cumulative probability prior to the number of days in the third column.
The second and third columns (below the column headings) constitute the “lookup table.”
The VLOOKUP function has three arguments. The first argument gives the address of the
cell that is providing the uniform random number being used. The second argument identi-
fies the range of cell addresses for the lookup table. The third argument indicates which col-
umn of the lookup table (the second and third columns in Fig. 20.6) provides the random

Distribution of time between breakdowns

Probability Cumulative Number of Days

0.25 0.00 4
0.5 0.25 5
0.25 0.75 6

■ FIGURE 20.6
The table that would be
constructed in a spreadsheet
for using Excel’s VLOOKUP
function to implement the
inverse transformation
method for the maintenance
program example.

Random observation

F(x)

0

1

r � 0.5269

x

■ FIGURE 20.5
Illustration of the inverse
transformation method for
obtaining a random
observation from a given
probability distribution.
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3For example, see J. H. Ahrens and V. Dieter, “Efficient Table-Free Sampling Methods for Exponential, Cauchy,
and Normal Distributions,” Communications of the ACM, 31: 1330–1337, 1988.

observation, so this argument equals 2 in this case. The VLOOKUP function with these three
arguments is entered as the equation for each cell in the spreadsheet where a random obser-
vation from the distribution is to be entered.

For certain continuous distributions, the inverse transformation method can be im-
plemented on a computer by first solving the equation F(x) � r analytically for x. An
example in the Worked Examples section of the book’s website illustrates this approach
(after first applying the graphical approach). 

We also illustrate this approach next with the exponential distribution.

Exponential and Erlang Distributions

As indicated in Sec. 17.4, the cumulative distribution function for the exponential dis-
tribution is

F(x) � 1 � e��x, for x � 0,

where 1/� is the mean of the distribution. Setting F(x) � r thereby yields

1 � e��x � r,

so that

e��x � 1 � r.

Therefore, taking the natural logarithm of both sides gives

ln e��x � ln (1 � r),

so that

��x � ln (1 � r),

which yields

x � �
ln (

�
1

�
� r)
� .

Now note that 1 � r is itself a uniform random number. Therefore, to save a subtraction,
it is common in practice simply to use the original uniform random number r directly in
place of 1 � r. This gives

Random observation � �
�

ln
�
r

as the desired random observation from the exponential distribution.
This direct application of the inverse transformation method provides the most

straightforward way of generating random observations from an exponential distribution.
(More complicated techniques also have been developed for this distribution3 that are
faster for a computer than calculating a logarithm.)

A natural extension of this procedure for the exponential distribution also can be used
to generate a random observation from an Erlang (gamma) distribution (see Sec. 17.7).
The sum of k independent exponential random variables, each with mean 1/(k�), has the
Erlang distribution with shape parameter k and mean 1/�. Therefore, given a sequence of
k uniform random numbers between 0 and 1, say, r1, r2, . . . , rk, the desired random ob-
servation from the Erlang distribution is

x � �
k

i�1

1n ri

�k�
,
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which reduces to

x � ��
k
1
�
� ln ��

k

i�1
ri�,

where 	 denotes multiplication.

Normal and Chi-Square Distributions

A particularly simple (but inefficient) technique for generating a random observation
from a normal distribution is obtained by applying the central limit theorem. Be-
cause a uniform random number has a uniform distribution from 0 to 1, it has mean
�
1
2

� and standard deviation 1/�12�. Therefore, this theorem implies that the sum of n
uniform random numbers has approximately a normal distribution with mean n/2 and
standard deviation �n/12�. Thus, if r1, r2, . . . , rn are a sample of uniform random
numbers, then

x � �
n

i�1
ri � � � �

n
2

�

is a random observation from an approximately normal distribution with mean � and stan-
dard deviation �. This approximation is an excellent one (except in the tails of the distri-
bution), even with small values of n. Thus, values of n from 5 to 10 may be adequate; 
n � 12 also is a convenient value, because it eliminates the square root terms from the
preceding expression.

Since tables of the normal distribution are widely available (e.g., see Appendix 5),
another simple method to generate a close approximation of a random observation is to
use such a table to implement the inverse transformation method directly. This is fairly
convenient when you are generating a few random observations by hand, but less so for
computer implementation since it requires storing a large table and then using a table
lookup.

Various exact techniques for generating random observations from a normal distri-
bution have also been developed.4 These exact techniques are sufficiently fast that, in
practice, they generally are used instead of the approximate methods described above.
A routine for one of these techniques usually is already incorporated into a software
package with simulation capabilities. For example, Excel uses the function,
NORMINV(RAND(), �, �), to generate a random observation from a normal distribu-
tion with mean � and standard deviation �.

A simple method for handling the chi-square distribution is to use the fact that it is
obtained by summing squares of standardized normal random variables. Thus, if y1,
y2, . . . , yn are n random observations from a normal distribution with mean 0 and stan-
dard deviation 1, then

x � �
n

i�1
yi

2

is a random observation from a chi-square distribution with n degrees of freedom.

The Acceptance-Rejection Method

For many continuous distributions, it is not feasible to apply the inverse transformation
method because x � F�1(r) cannot be computed (or at least computed efficiently). There-
fore, several other types of methods have been developed to generate random observations

�
�
�n/12�

�
�
�n/12�

4See again the reference cited in footnote 3 on the preceding page.
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■ 20.5 OUTLINE OF A MAJOR SIMULATION STUDY

Thus far, this chapter has focused mainly on the process of performing a simulation and
some applications from doing so. We now place this material into broader perspective by
briefly outlining all the typical steps involved in a major operations research study that is
based on applying simulation. (Nearly the same steps also apply when the study is ap-
plying other operations research techniques instead.)

Step 1: Formulate the Problem and Plan the Study
The operations research team needs to begin by meeting with management to address the
following kinds of questions.

1. What is the problem that management wants studied?
2. What are the overall objectives for the study?
3. What specific issues should be addressed?

from such distributions. Frequently, these methods are considerably faster than the inverse
transformation method even when the latter method can be used. To provide some notion
of the approach for these alternative methods, we now illustrate one called the acceptance-
rejection method on a simple example.

Consider the triangular distribution having the probability density function

f(x) �

The acceptance-rejection method uses the following two steps (perhaps repeatedly) to gen-
erate a random observation.

1. Generate a uniform random number r1 between 0 and 1, and set x � 2r1 (so that the
range of possible values of x is 0 to 2).

2. Accept x with

Probability � �
to be the desired random observation [since this probability equals f(x)]. Otherwise,
reject x and repeat the two steps.

To randomly generate the event of accepting (or rejecting) x according to this prob-
ability, the method implements step 2 as follows:

2. Generate a uniform random number r2 between 0 and 1.

Accept x if r2 � f (x).
Reject x if r2 
 f (x).

If x is rejected, repeat the two steps.

Because x � 2r1 is being accepted with a probability � f (x), the probability distribution
of accepted values has f (x) as its density function, so accepted values are valid random
observations from f (x).

We were fortunate in this example that the largest value of f (x) for any x was exactly
1. If this largest value were L � 1 instead, then r2 would be multiplied by L in step 2.
With this adjustment, the method is easily extended to other probability density functions
over a finite interval, and similar concepts can be used over an infinite interval as well.

if 0 � x � 1
if 1 � x � 2,

x
1 � (x � 1)

if 0 � x � 1
if 1 � x � 2
otherwise.

x
1 � (x � 1)
0




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Call centers have been one of the fastest-growing indus-
tries worldwide for many years. In the United States
alone, many hundreds of thousands of businesses use call
centers located around the world to enable customers to
place an order simply by making a free telephone call to
an 800 number.

The 800-network market is a lucrative one for
telecommunication companies, so they are happy to sell
the needed technology to their business customers and
then to help these customers design efficient call centers.
AT&T was the pioneer in developing and marketing this
service to its customers. Its approach was to develop a
highly flexible and sophisticated simulation model,
called the Call Processing Simulator (CAPS), that
enables its customers to study various scenarios for how
to design and operate their call centers.

CAPS contains four modules. The call generation
module generates incoming calls arriving randomly, with
mean arrival rates varying over the course of the day. The
network module simulates how an incoming call can be
answered immediately or placed on hold or receive a
busy signal, where the latter cases can result in either the
caller persevering until getting through or giving up and
taking his or her business elsewhere. The automatic call

distribution module simulates how AT&T’s automatic call
distribution system equitably distributes calls to available
agents. The call service module simulates agents serving
calls and then doing any necessary follow-up  work.

The development and refinement of CAPS over a
period of many years carefully followed the steps of a
major simulation study described in Sec. 20.5. This
meticulous approach has paid off big-time for AT&T. The
company has completed as many as 2,000 CAPS studies
per year for its business customers, helping it increase,
protect, and regain more than $1 billion in an $8 billion
800-network market. This also has generated more than
$750 million in annual profit for AT&T’s business cus-
tomers who received CAPS studies. This sophisticated
application of simulation led to AT&T winning the pres-
tigious First Prize in the 1993 international competition
for the Franz Edelman Award for Achievement in Opera-
tions Research and the Management Sciences.

Source: A. J. Brigandi, D. R. Dargon, M. J. Sheehan, and 
T. Spencer III: “AT&T’s Call Processing Simulator (CAPS) Oper-
ational Design for Inbound Call Centers,” Interfaces, 24(1): 6–28,
Jan.–Feb. 1994. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

An Application Vignette

4. What kinds of alternative system configurations should be considered?
5. What measures of performance of the system are of interest to management?
6. What are the time constraints for performing the study?

In addition, the team also will meet with engineers and operational personnel to learn the
details of just how the system would operate. (The team generally will also include one
or more members with a first-hand knowledge of the system.)

Step 2: Collect the Data and Formulate the Simulation Model

The types of data needed depend on the nature of the system to be simulated. For exam-
ple, key pieces of data for a queueing system would be the distribution of interarrival
times and the distribution of service times. For most other cases as well, it is the probability
distributions of the relevant quantities that are needed. Generally, it will only be possible to
estimate these distributions, but it is important to do so. In order to generate representative
scenarios of how a system will perform, it is essential for simulation to generate random ob-
servations from these distributions rather than simply using averages.

A simulation model often is formulated in terms of a flow diagram that links together
the various components of the system. Operating rules are given for each component, in-
cluding the probability distributions that control when events will occur there.

Step 3: Check the Accuracy of the Simulation Model

Before constructing a computer program, the OR team should engage the people most in-
timately familiar with how the system will operate in checking the accuracy of the simula-
tion model. This often is done by performing a structured walk-through of the conceptual
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model, using an overhead projector, before an audience of all the key people. Typically at
such meetings, several erroneous model assumptions will be discovered and corrected, a few
new assumptions will be added, and some issues will be resolved about how much detail is
needed in the various parts of the model.

Step 4: Select the Software and Construct a Computer Program

There are several major classes of software used for simulations. One is spreadsheet software.
Example 1 in Sec. 20.1 illustrated how Excel is able to perform some basic simulations on a
spreadsheet. In addition, some excellent Excel add-ins now are available to enhance this kind
of spreadsheet modeling. The next section focuses on the use of these add-ins.

Other classes of software for simulations are intended for more extensive applica-
tions where it is no longer convenient to use spreadsheet software. One such class is a
general-purpose programming language, such as C, FORTRAN, BASIC, etc. Such lan-
guages (and their predecessors) often were used in the early history of the field because
of their great flexibility for programming any sort of simulation. However, because of
the considerable programming time required, they are not used nearly as much now.

Many commercial software packages that don’t use spreadsheets also have been de-
veloped specifically to perform simulations. Historically, these simulation software pack-
ages have been classified into two categories, general-purpose simulation languages and
application-oriented simulators. General-purpose simulation languages provide many of
the features needed to program any simulation model efficiently. Application-oriented sim-
ulators (or just simulators for short) are designed for simulating fairly specific types of
systems. However, as time has gone on, the distinction between these two categories has
become increasingly blurred. General-purpose simulation languages now may include some
special features that make them almost as well suited as simulators for certain specific kinds
of applications. Conversely, today’s simulators tend to include more flexibility then they pre-
viously had for dealing with a broader class of systems.

Another way of categorizing simulation software packages is by whether they use an
event-scheduling approach or a process approach to discrete-event simulation modeling. The
event-scheduling approach closely follows the next-event incrementing time advance method
described in Sec. 20.1. The process approach still uses next-event incrementing in the back-
ground but focuses the modeling instead on describing the processes that generate the events.
Most contemporary simulation software packages now use the process approach. 

It has become increasingly common for simulation software packages to include an-
imation capabilities for displaying simulations in action. In an animation, key elements
of a system are represented in a computer display by icons that change shape, color, or
position when there is a change in the state of the simulation system. The major reason
for the popularity of animation is its ability to communicate the essence of a simulation
model (or of a simulation run) to managers and other key personnel.

Because of the growing importance of simulation, there now are approximately 50
software companies marketing simulation software packages. Selected Reference 12 pro-
vides a survey of these packages. (OR/MS Today updates this survey every two years.)

Step 5: Test the Validity of the Simulation Model

After the computer program has been constructed and debugged, the next key step is to
test whether the simulation model incorporated into the program is providing valid results
for the system it is representing. Specifically, will the measures of performance for the
real system be closely approximated by the values of these measures generated by the
simulation model?
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In some cases, a mathematical model may be available to provide results for a sim-
ple version of the system. If so, these results also should be compared with the simula-
tion results.

When no real data are available to compare with simulation results, one possibility
is to conduct a field test to collect such data. This would involve constructing a small pro-
totype of some version of the proposed system and placing it into operation.

Another useful validation test is to have knowledgeable operational personnel check
the creditability of how the simulation results change as the configuration of the simu-
lated system is changed. Watching animations of simulation runs also is a useful way of
checking the validity of the simulation model.

Step 6: Plan the Simulations to Be Performed

At this point, you need to begin making decisions on which system configurations to sim-
ulate. This often is an evolutionary process, where the initial results for a range of config-
urations help you to hone in on which specific configurations warrant detailed investigation.

Decisions also need to be made now on some statistical issues. One such issue (unless
using the special technique described in the second supplement to this chapter on the
book’s website) is the length of the warm-up period while waiting for the system to es-
sentially reach a steady-state condition before starting to collect data. Preliminary
simulation runs often are used to analyze this issue. Since systems frequently require a
surprisingly long time to essentially reach a steady-state condition, it is helpful to select
starting conditions for a simulated system that appear to be roughly representative of
steady-state conditions in order to reduce this required time as much as possible.

Another key statistical issue is the length of the simulation run following the warm-
up period for each system configuration being simulated. Keep in mind that simulation
does not produce exact values for the measures of performance of a system. Instead, each
simulation run can be viewed as a statistical experiment that is generating statistical ob-
servations of the performance of the simulated system. These observations are used to
produce statistical estimates of the measures of performance. Increasing the length of a
run increases the precision of these estimates. (The first supplement to this chapter on the
book’s website also describes special variance-reducing techniques that can sometimes
be used to increase the precision of these estimates.)

The statistical theory for designing statistical experiments conducted through simu-
lation is little different than for experiments conducted by directly observing the perfor-
mance of a physical system.5 Therefore, the inclusion of a professional statistician (or at
least an experienced simulation analyst with a strong statistical background) on the OR
team can be invaluable at this step.

Step 7: Conduct the Simulation Runs and Analyze the Results

The output from the simulation runs now provides statistical estimates of the desired mea-
sures of performance for each system configuration of interest. In addition to a point es-
timate of each measure, a confidence interval normally should be obtained to indicate the
range of likely values of the measure ( just as was done for Example 2 in Sec. 20.1). The
second supplement to this chapter on the book’s website describes one method for doing
this.6

5For details about the relevant statistical theory for applying simulation, see Chaps. 9–12 in Selected Refer-
ence 10. Also see Selected References 8 and 9 for authoritative treatises on the design and analysis of simu-
lation experiments.
6See pp. 530–531 in Selected Reference 10 for alternative methods.
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These results might immediately indicate that one system configuration is clearly su-
perior to the others. More often, they will identify the few strong candidates to be the best
one. In the latter case, some longer simulation runs would be conducted to better com-
pare these candidates.7 Additional runs also might be used to fine-tune the details of what
appears to be the best configuration.

Step 8: Present Recommendations to Management

After completing its analysis, the OR team needs to present its recommendations to man-
agement. This usually would be done through both a written report and a formal oral
presentation to the managers responsible for making the decisions regarding the system
under study.

The report and presentation should summarize how the study was conducted, includ-
ing documentation of the validation of the simulation model. A demonstration of the ani-
mation of a simulation run might be included to better convey the simulation process and
add credibility. Numerical results that provide the rationale for the recommendations need
to be included.

Management usually involves the OR team further in the initial implementation of
the new system, including the indoctrination of the affected personnel.

7Methodology for using simulation to attempt to identify the best system configuration is referred to as simu-
lation optimization. This is a very active area of current research. For example, see Selected References 7,13,
and 4.

■ 20.6 PERFORMING SIMULATIONS ON SPREADSHEETS

Section 20.5 outlines the typical steps involved in major simulation studies of complex sys-
tems, including the use of general simulation languages or specialized simulators that are
needed to study most such systems efficiently. However, not all simulation studies are nearly
that involved. In fact, when studying relatively simple systems, it is sometimes possible to
run the needed simulations quickly and easily on spreadsheets. In particular, whenever a
spreadsheet model can be formulated to analyze a system without taking uncertainties into
account (except through sensitivity analysis), it usually is possible to extend the model to
use simulation to consider the effect of the uncertainties. Therefore, we now will focus on
these simpler cases where spreadsheets can be used to perform the simulations effectively.

As illustrated by Example 1 in Sec. 20.1, the standard Excel package has some basic
simulation capabilities, including the ability to generate uniform random numbers and to
generate random observations from some probability distributions. An exciting subsequent
advancement has been the development of powerful Excel add-ins that greatly extend these
capabilities. One of these add-ins is Crystal Ball, developed by Decisioneering, Inc. (now
Oracle). In addition to its strong functionality for performing simulations, the Professional
Edition of Crystal Ball also includes two other modules. One is CB Predictor for gener-
ating forecasts from time-series data, as described and illustrated in Chapter 27 (a sup-
plementary chapter on the book’s website). The other is OptQuest, which enhances Crystal
Ball by using its output from a series of simulation runs to automatically search for an
optimal solution for a simulation model, as described in the third supplement to this chap-
ter on the book’s website.

Some of the other simulation add-ins are available as shareware. One is RiskSim, devel-
oped by Professor Michael Middleton. We have provided the academic version of RiskSim
for you in your OR Courseware. Although not as elaborate or powerful as Crystal Ball, RiskSim
is easy to use and is well documented on the book’s website. (If you want to continue to use
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it after this course, you should register and pay the shareware fee.) Like any Excel add-ins,
any of these simulation add-ins need to be installed before they will show up in Excel.

This section focuses on the functionality of Crystal Ball to illustrate what can be done
with simulation add-ins. You can practice using Crystal Ball yourself by going to its web-
site (currently www.decisioneering.com/downloadform.html) to download this software
for a temporary trial period (currently 30 days). Your school (like many others) may also
have a site license for this popular software package.

We have included end-of-chapter problems for this section that are well suited for us-
ing Crystal Ball. RiskSim on the book’s website also can be used for these problems.

Business spreadsheets typically include some input cells that display key data (e.g.,
the various costs associated with producing or marketing a product) and one or more
output cells that show measures of performance (e.g., the profit from producing or mar-
keting the product). The user writes Excel equations to link the inputs to the outputs so
that the output cells will show the values that correspond to the values that are entered
into the input cells. In some cases, there will be uncertainty about what the correct values
for the input cells will turn out to be. Sensitivity analysis can be used to check how the
outputs change as the values for the input cells change. However, if there is considerable
uncertainty about the values of some input cells, a more systematic approach to analyzing
the effect of the uncertainty would be helpful. This is where simulation enters the picture.

With simulation, instead of entering a single number in an input cell where there is
uncertainty, a probability distribution that describes the uncertainty is entered instead.
By generating a random observation from the probability distribution for each such in-
put cell, the spreadsheet can calculate the output values in the usual way. This is called
a trial by Crystal Ball. By running the number of trials specified by the user (typically
hundreds or thousands), the simulation thereby generates the same number of random
observations of the output values. The Crystal Ball program records all this information
and then gives you the choice of printing out detailed statistics in tabular or graphical
form (or both) that roughly shows the underlying probability distribution of the output
values. A summary of the results also includes estimates of the mean and standard de-
viation of this distribution.

Now let us go through an example in detail to illustrate this process.

An Inventory Management Example—Freddie the Newsboy’s Problem

Consider the following problem being faced by a newsboy named Freddie. One of the daily
newspapers that Freddie sells from his newsstand is the Financial Journal. A distributor
brings the day’s copies of the Financial Journal to the newsstand early each morning. Any
copies unsold at the end of the day are returned to the distributor the next morning. However,
to encourage ordering a large number of copies, the distributor does give a small refund
for unsold copies.

Here are Freddie’s cost figures.

Freddie pays $1.50 per copy delivered.
Freddie sells it at $2.50 per copy.
Freddie’s refund is $0.50 per unsold copy.

Partially because of the refund, Freddie always has taken a plentiful supply. How-
ever, he has become concerned about paying so much for copies that then have to be
returned unsold, particularly since this has been occurring nearly every day. He now
thinks he might be better off by ordering only a minimal number of copies and saving
this extra cost.

964 CHAPTER 20 SIMULATION
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To investigate this further, he has compiled the following record of his daily sales.

Freddie sells anywhere between 40 and 70 copies inclusively on any given day. The
frequency of the numbers between 40 and 70 are roughly equal.

The decision that Freddie needs to make is the number of copies to order per day from
the distributor. His objective is to maximize his average daily profit.

You may recognize this problem as an example of the newsvendor problem discussed
in Sec. 18.7. Thus, the stochastic one-period inventory model for perishable products (with
no setup cost) presented there can be used to solve this problem. However, for illustrative
purposes, we now will show how simulation can be used to analyze this simple inventory
system in the same way that it analyzes more complex inventory systems that are beyond
the reach of available inventory models.

A Spreadsheet Model for This Problem

Figure 20.7 shows a spreadsheet model for this problem. Given the data cells C4:C6, the
decision variable is the order quantity to be entered in cell C9. (The number 60 has been
entered arbitrarily in this figure as a first guess of a reasonable value.) The bottom of the
figure shows the equations used to calculate the output cells C14:C16. These output cells
are then used to calculate the output cell Profit (C18).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

A B C D E F

Freddie the Newsboy

Data
Unit Sale Price $2.50

Unit Purchase Cost $1.50
Unit Salvage Value $0.50

Decision Variable
Order Quantity 60

Simulation Minimum Maximum
Demand 55 Discrete Uniform 40 70

Sales Revenue $137.50
Purchasing Cost $90.00

Salvage Value $2.50

Profit $50.00

14
15
16
17
18

B C
Sales Revenue =UnitSalePrice*MIN(OrderQuantity,Demand)

Purchasing Cost =UnitPurchaseCost*OrderQuantity
Salvage Value =UnitSalvageValue*MAX(OrderQuantity-Demand,0)

Profit =SalesRevenue-PurchasingCost+SalvageValue

Range Name Cell
Demand C12
OrderQuantity C9
Profit C18
PurchasingCost C15
SalesRevenue C14
SalvageValue C16
UnitPurchaseCost C5
UnitSalePrice C4
UnitSalvageValue C6

■ FIGURE 20.7
A spreadsheet model for
applying simulation to the
example that involves
Freddie the newsboy. The
assumption cell is
SimulatedDemand (C12), the
forecast cell is Profit (C18),
and the decision variable is
OrderQuantity (C9).
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The only uncertain input quantity in this spreadsheet is the day’s demand in cell C12.
This quantity can be anywhere between 40 and 70 inclusively. Since the frequency of the
integer numbers between 40 and 70 are about the same, the probability distribution of the
day’s demand can reasonably be assumed to be a discrete uniform distribution between
40 and 70, as indicated in cells D12:F12. Rather than enter a single number permanently
into SimulatedDemand (C12), what Crystal Ball will do is to enter this probability dis-
tribution into this cell. (Before turning to Crystal Ball, an arbitrary number 55 has been
entered temporarily into this cell in Fig. 20.7.) By using Crystal Ball to generate a ran-
dom observation from this probability distribution, the spreadsheet can calculate the out-
put cells in the usual way to complete one trial. By running the number of trials specified
by the user (typically hundreds or thousands), the simulation thereby generates the same
number of random observations of the values in the output cells. Crystal Ball records this
information for the output cell(s) of particular interest (Freddie’s daily profit) and then,
at the end, displays it in a variety of convenient forms that reveal an estimate of the un-
derlying probability distribution of Freddie’s daily profit. (More about this later.)

The Application of Crystal Ball

Four steps are needed to use the spreadsheet in Fig. 20.7 to perform the simulation with
Crystal Ball.

1. Define the random input cells.
2. Define the output cells to forecast.
3. Set the run preferences.
4. Run the simulation.

We now describe each of these four steps in turn.

Define the Random Input Cells. A random input cell is an input cell that has a ran-
dom value (such as the daily demand for the Financial Journal), so an assumed probabil-
ity distribution needs to be entered into the cell instead of permanently entering a single
number. The only random input cell in Fig. 20.7 is Demand (C12). Crystal Ball refers to
each such random input cell as an assumption cell.

The following procedure is used to define an assumption cell.

Procedure for Defining an Assumption Cell

1. Select the cell by clicking on it.
2. If the cell does not already contain a value, enter any number into the cell.
3. Click on the Define Assumption button ( ) in the Crystal Ball tab (for Excel 2007)

or toolbar (for earlier versions of Excel).
4. Select a probability distribution to enter into the cell by clicking on this distribution in

the Distribution Gallery shown in Fig. 20.8.
5. Click on OK (or double click on the distribution) to bring up a dialogue box for the

selected distribution.
6. Use this dialogue box to enter the parameters for the distribution, preferably by refer-

ring to the cells in the spreadsheet that contain the values of these parameters. If de-
sired, a name also can be entered for the assumption cell. (If the cell already has a name
next to it or above it on the spreadsheet, that name will appear in the dialogue box.)

7. Click on OK.

The Distribution Gallery mentioned in step 4 provides a wide variety of 21 probability
distributions from which to choose. Figure 20.8 displays six basic distributions, but 15
more also are available by clicking on the All button. (When there is uncertainty about
which continuous distribution provides the best fit to historical data, Crystal Ball provides
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■ FIGURE 20.8 
The Crystal Ball Distribution
Gallery dialogue box
showing the basic
distributions. In addition to
the 6 distributions displayed
here, 15 more distributions
can be accessed by clicking
on the All button.

a procedure to choose an appropriate distribution. This procedure is described in Sec. 28.6
on the book’s website.)

In Freddie’s case, double clicking on the discrete uniform distribution in the Dis-
tribution Gallery brings up the Discrete Uniform Distribution dialogue box shown in
Fig. 20.9, which is used to enter the parameters of the distribution. For each of the

■ FIGURE 20.9
The Crystal Ball Discrete
Uniform Distribution
dialogue box. It is being
used here to enter a discrete
uniform distribution with 
the parameters 40(=E12) 
and 70(=F12) into the
assumption cell Demand
(C12) in the spreadsheet
model in Fig. 20.7.
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parameters (Minimum and Maximum), we refer to the data cells in E12 and F12 on the
spreadsheet by typing the formulas �E12 and �F12 for Minimum and Maximum, re-
spectively. After entering the cell references, the dialogue box will show the actual value
of the parameter based on the cell reference (40 and 70 as shown in Fig. 20.9). To see
or make a change to a cell reference, clicking on the parameter will show the underly-
ing cell reference.

Define the Output Cells to Forecast. Crystal Ball refers to the output of a simula-
tions as a forecast, since it is forecasting what the probability distribution of the performance
of the real system will be after it starts operating. Thus, each output cell that is being used
by a simulation to forecast a measure of performance is referred to as a forecast cell. The
spreadsheet model for a simulation does not include a target cell, but a forecast cell plays
roughly the same role.

The measure of performance of interest to Freddie the newsboy is his daily profit
from selling the Financial Journal, so the only forecast cell in Fig. 20.7 is Profit (C18).
The following procedure is used to define such an output cell as a forecast cell.

Procedure for Defining a Forecast Cell

1. Select the cell by clicking on it.

2. Click on the Define Forecast button ( ) in the Crystal Ball tab (Excel 2007) or tool-

bar (earlier versions of Excel), which brings up the Define Forecast dialogue box (as
shown in Fig. 20.10 for Freddie’s problem).

3. This dialogue box can be used to define a name and (optionally) units for the forecast
cell. (If a range name already has been assigned to the cell, that name will appear in
the dialogue box.)

4. Click on OK.

Set the Run Preferences. The third step—setting run preferences—refers to such
things as choosing the number of trials to run and deciding on other options regarding
how to perform the simulation. This step begins by clicking on Run Preferences in the
Crystal Ball tab (Excel 2007) or toolbar (earlier versions of Excel). The Run Prefer-
ences dialogue box has the five tabs shown on the top of Fig. 20.11. You can click on
any of these buttons to enter or change any of your specifications controlled by that tab
for how to run the simulation. For example, Fig. 20.11 shows the version of the dia-
logue box that is obtained by selecting the Trials tab. This figure indicates that 500 has
been chosen as the maximum number of trials for the simulation. (The second option
in the Run Preferences Trials dialogue box—Stop if Specified Precision is Reached—
will be described later.)

968 CHAPTER 20 SIMULATION

■ FIGURE 20.10
The Crystal Ball Define
Forecast dialogue box. It is
being used here to define
the forecast cell Profit (C18)
in the spreadsheet model in
Fig. 20.7.
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■ FIGURE 20.11
The Crystal Ball Run
Preferences dialogue box
after selecting the Trials tab.

Run the Simulation. At this point, the stage is set to begin running the simulation. To 
start, you only need to click on the Start Simulation button ( ). However, if a simula-

tion has been run previously, you should first click on the Reset Simulation button ( )
to reset the simulation before starting a new one.

Once started, a forecast window displays the results of the simulation as it runs. 
Figure 20.12 shows the forecast for Profit (Freddie’s daily profit from selling the Finan-
cial Journal) after all 500 trials have been completed. The default view of the forecast is
the frequency chart shown on the left side of the figure. The height of the vertical lines
in the frequency chart indicates the relative frequency of the various profit values that
were obtained during the simulation run. For example, consider the tall vertical line at
$60. The right-hand side of the chart indicates a frequency of about 175 there, which
means that about 175 of the 500 trials led to a profit of $60. Thus, the left-hand side of
the chart indicates that the estimated probability of a profit of $60 is 175/500 � 0.35. This
is the profit that results whenever the demand equals or exceeds the order quantity of 60.
The remainder of the time, the profit was scattered fairly evenly between $20 and $60.
These profit values correspond to trials where the demand was between 40 and 60 units,
with lower profit values corresponding to demands closer to 40 and higher profit values
corresponding to demands closer to 60. The mean of the 500 profit values is $45.94, as
indicated by the mean line at this point.

The statistics table in Fig. 20.12 is obtained by choosing Statistics from the View
menu. These statistics summarize the outcome of the 500 trials of the simulation. These
500 trials provide a sample of 500 random observations from the underlying probability
distribution of Freddie’s daily profit. The most interesting statistics about this sample
provided by the table include the mean of $45.94, the median of $50.00 (indicating
that $50 was the middle profit value from the 500 trials when listing the profits from
smallest to largest), the mode of $60 (meaning that this was the profit value that oc-
curred most frequently), and the standard deviation of $13.91. The information near
the bottom of the table regarding the minimum and maximum profit values also is par-
ticularly useful.
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■ FIGURE 20.12
The frequency chart and
statistics table provided by
Crystal Ball to summarize the
results of running the
simulation model in Fig. 20.7
for the example that involves
Freddie the newsboy.

Which of these statistics in Fig. 20.12 are particularly relevant really depends on what
Freddie wants to achieve. The mean usually is the most important since, despite the wide
fluctuations in the daily profits, the average daily profit will converge to the mean as time
goes on. Therefore, multiplying the mean by the number of days that the newsstand will
be open during the year gives (very closely) what the total annual profit from selling the
Financial Journal will be, which is a very relevant quantity to want to maximize. How-
ever, if Freddie is an individual who focuses much more on the present than the future,
then the median and mode might be of considerable interest to him. If he considers a profit
of $50 to be a good day and his goal is to achieve a good day at least half the time, then
he will want the median to be at least $50 (as it is). If he gains particular satisfaction out
of achieving the maximum possible profit of $60 (given an order quantity of 60), then he
will want to make sure that this will happen more often than any other specific profit (as
indicated by the mode of $60). On the other hand, if Freddie is risk averse and so is par-
ticularly concerned with avoiding bad days (profits far below the mean) as much as 
possible, then he would have a special interest in having a relatively small standard devi-
ation and a relatively large minimum.

Keep in mind that the statistics in Fig. 20.12 are based on using an order quantity of
60, whereas the objective is to determine the best order quantity. If Freddie has a partic-
ularly strong interest in more than one of the statistics, one approach would be to rerun
the simulation model in Fig. 20.12 with various order quantities and then let Freddie
choose the one whose set of statistics he likes best. In most situations, however, the mean
will be the one statistic of special interest. In this case, the objective is to determine the
order quantity that maximizes the mean. (We will assume this objective hereafter.) After
estimating the optimal order quantity according to this objective, Freddie then should be
shown the corresponding frequency chart and statistics table (and perhaps other informa-
tion described subsequently as well) to make sure that everything else is satisfactory with
this order quantity.

In addition to the frequency chart and statistics table presented in Fig. 20.12, the
View menu provides some other useful ways of displaying the results of a simulation
run, including a percentiles table, a cumulative chart, and a reverse cumulative chart.
These alternative displays are shown in a split view in Fig. 20.13. The percentiles table
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is based on listing the profit values generated by the 500 trials from smallest to largest,
dividing this list into 10 equal parts (50 values in each), and then recording the value
at the end of each part. Thus, the value 10 percent through the list is $24, the value 20
percent through the list is $30, and so forth. (For example, the intuitive interpretation
of the 10 percent percentile of $24 is that 10 percent of the trials have profit values less
than or equal to $24 and the other 90 percent of the trials have profit values greater than
or equal to $24, so $24 is the dividing line between the smallest 10 percent of the values
and the largest 90 percent.) The cumulative chart on the top left of Fig. 20.13 provides
similar (but more detailed) information about this same list of the smallest-to-largest profit
values. The horizontal axis shows the entire range of values from the smallest possible
profit value ($20) to the largest possible profit value ($60). For each value in this range,
the chart cumulates the number of actual profits generated by the 500 trials that are less
than or equal to that value. This number equals the frequency shown on the right or,
when divided by the number of trials, the probability shown on the left. The reverse cu-
mulative chart on the bottom left of Fig. 20.13 is constructed in the same way as the
cumulative chart except for the following crucial difference. For each value in the range
from $20 to $60, the reverse cumulative chart cumulates the number of actual profits
generated by the 500 trials that are greater than or equal to that value.

Figure 20.14 illustrates another of the many ways provided by Crystal Ball for ex-
tracting helpful information from the results of a simulation run. Freddie the newsboy
feels that he has had a reasonably satisfactory day if he obtains a profit of at least $40
from selling the Financial Journal. Therefore, he would like to know the percentage of
days that he could expect to achieve this much profit if he were to adopt the order quan-
tity currently being analyzed (60). An estimate of this percentage (65.80 percent) is shown
in the Certainty box below the frequency chart in Fig. 20.14. Crystal Ball can provide this

■ FIGURE 20.13
Three more forms in which
Crystal Ball displays the
results of running the
simulation model in Fig. 20.7
for the example that involves
Freddie the newsboy.
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percentage in two ways. First, the user can drag the triangle on the left just under the chart
(originally at $20 in Fig. 20.12) to the right until it was at $40 (as in Fig. 20.14). Alter-
natively, $40 can be typed directly into the box in the lower left-hand corner. If desired,
the probability of obtaining a profit between any two values also could be estimated im-
mediately by dragging the two triangles to those values.

How Accurate Are the Simulation Results?

An important number provided by Fig. 20.12 is the mean of $45.94. This number was
calculated as the average of the 500 random observations from the underlying probabil-
ity distribution of Freddie’s daily profit that were generated by the 500 trials. This sample
average of $45.94 thereby provides an estimate of the true mean of this distribution.
However, the true mean might deviate somewhat from $45.94. How accurate can we expect
this estimate to be?

The answer to this key question is provided by the mean standard error of $0.62 given
at the bottom of the statistics table in Fig. 20.12. The mean standard error is calculated as
s/�n�, where s is the sample standard deviation and n is the number of trials. It is an esti-
mate of the standard deviation of the sample average, so the sample average is within one
mean standard error of the true mean most of the time. In other words, the true mean can
readily deviate from the sample mean by any amount up to the mean standard error, but
most of the time (approximately 68 percent of the time), it will not deviate by more than
that. Thus, the interval from $45.94 � $0.62 � $45.32 to $45.94 � $0.62 = $46.56 is a
68 percent confidence interval for the true mean. Similarly, a larger confidence interval can
be obtained by using an appropriate multiple of the mean standard error to subtract from
the sample mean and then to add to the sample mean. For example, the appropriate

■ FIGURE 20.14
After setting a lower bound
of $40 for desirable profit
values, the Certainty box
below this frequency chart
reveals that 65.80 percent 
of the trials in Freddie’s
simulation run provided 
a profit at least this high.
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multiple for a 95 percent confidence interval is 1.965, so such a confidence interval ranges
from $45.94 � 1.965($0.62) � $44.72 to $45.94 � 1.965($0.62) � $47.16. (This multi-
ple of 1.965 will change slightly if the number of trials is different from 500.) Therefore,
it is very likely that the true mean is somewhere between $44.72 and $47.16.

If greater precision is required, the mean standard error normally can be reduced
by increasing the number of trials in the simulation run. However, the reduction tends
to be small unless the number of trials is increased substantially. For example, cutting
the mean standard error in half requires approximately quadrupling the number of tri-
als. Thus, a surprisingly large number of trials may be required to obtain the desired
degree of precision.

Since the number of trials required to obtain the desired degree of accuracy cannot be
predicted very well in advance of the simulation run, the temptation is to specify an ex-
tremely large number of trials. This specified number might turn out to be many times as
large as necessary and thereby cause an excessively long computer run. Fortunately, Crys-
tal Ball has a special method of precision control for stopping the simulation run early,
as soon as the desired precision has been reached. This method is triggered by choosing
the option (“Stop when precision control limits are reached”) in the Run Preferences Trials
dialogue box shown in Fig. 20.11. The specified precision is entered in the Expanded
Define Forecast dialogue box displayed in Fig. 20.15. (This dialogue box is brought up

by clicking on the More button ( ) in the Define Forecast dialogue box shown in 

Fig. 20.10.) Figure 20.15 indicates that the precision control is being applied to the
mean (but not to the standard deviation or to a specified percentile). The run prefer-
ences in Fig. 20.11 indicate that a 95 percent confidence interval is being used. The
width of half of the confidence interval, measured from its midpoint to either end, is
considered to be the precision that has been achieved. The desired precision can be spec-
ified in either absolute terms (using the same units as for the confidence interval) or in
relative terms (expressed as a percentage of the midpoint of the confidence interval).

Figure 20.15 indicates that the decision was made to specify the desired precision
in absolute terms as $1. The 95 percent confidence interval for the mean after 500 tri-
als was found to be $45.94 plus-or-minus $1.22, so $1.22 is the precision that was
achieved after all these trials. Crystal Ball also calculates the confidence interval (and
so the current precision) periodically to check whether the current precision is under
$1, in which case the run would be stopped. However, this never happened, so Crys-
tal Ball allowed the simulation to run until the maximum number of trials (500) was
reached. 

To obtain the desired precision, the simulation would need to be restarted to gener-
ate additional trials. This is done by entering a larger number (such as 5,000) for the
maximum number of trials (including the 500 already obtained) in the Run Preferences 
dialogue box (shown in Fig. 20.11) and then clicking on the Start Simulation button ( ).

Figure 20.16 shows the results from doing this. The first row indicates that the desired
precision was obtained after only 500 additional trials, for a total of 1000 trials. (The
default value for the frequency of checking the precision is every 500 trials, so the preci-
sion of $1 actually was reached somewhere between 500 and 1000 trials.) Because of the
additional trials, some of the statistics have changed slightly from those given in Fig. 20.12.
For example, the best estimate of the mean now is $46.46, with a precision of $0.85.
Thus, it is very likely (95 percent confidence) that the true value of the mean is within
$0.85 of $46.46.

95 percent confidence interval: $45.61 � Mean � $47.31
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■ FIGURE 20.15
This Expanded Define
Forecast dialogue box is
being used to specify how
much precision is desired in
Freddie’s simulation run.

■ FIGURE 20.16
The results obtained after
continuing Freddie’s
simulation run until the
precision specified in 
Fig. 20.15 has been 
achieved.

The precision also is given for the current estimates of the median and the standard
deviation, as well as for the estimates of the percentiles given in the percentiles table.
Therefore, a 95 percent confidence interval also can be calculated for each of these quan-
tities by adding and subtracting its precision from its estimate.
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Application of the Decision Table Tool

The results presented in Figs. 20.12 and 20.16 were from a simulation run that fixed
Freddie’s daily order quantity at 60 copies of the Financial Journal (as indicated in cell C9
of the spreadsheet in Fig. 20.7). Freddie wanted this order quantity tried first because it
seems to provide a reasonable compromise between being able to fully meet the de-
mand on many days (about two-thirds of them) and often not having many unsold copies
on those days. However, the results obtained do not reveal whether 60 is the optimal order
quantity that would maximize his average daily profit. Many more simulation runs with
other order quantities will be needed to determine (or at least estimate) the optimal or-
der quantity.

Fortunately, Crystal Ball provides a special feature called the Decision Table tool
that systematically applies simulation to identify at least an approximation of an optimal
solution for problems with only one or two decision variables. Freddie’s problem has only
a single decision variable, OrderQuantity (C9) in the spreadsheet model of Fig. 20.7, so
we now will apply this tool.

An intuitive approach for searching for an optimal solution would be to use trial and
error. Try different values of the decision variable(s), run a simulation for each, and see
which one provides the best estimate of the chosen measure of performance. This is what
the Decision Table tool does, but it does it in a systematic way. Its dialogue boxes enable
you to quickly specify what you want to do. Then, after you click one button, all the 
desired simulations are run and the results soon are displayed in the Decision Table. If
desired, you also can view some charts, including a trend chart, that provide additional
details about the results.

If you have previously used either an Excel data table or the Solver Table that is in-
cluded in your OR Courseware for performing sensitivity analysis systematically, the
Decision Table works in much the same way. In particular, the layout for a Decision Table
with either one or two decision variables is similar to that for either a one-dimensional or
two-dimensional Solver Table (introduced in Sec. 6.8). Two is the maximum number of
decision variables that can be varied simultaneously in a Decision Table.

Since the number of copies that Freddie’s customers want to purchase varies widely
from day to day (anywhere from 40 to 70 copies), it would seem sensible to begin by try-
ing a sampling of possible order quantities, say, 40, 45, 50, 55, 60, 65, and 70. To do this
with the Decision Table tool, the first step is to define the decision variable being investi-
gated, namely, OrderQuantity (C9) in Fig. 20.7, by using the following procedure.

Procedure for Defining a Decision Variable

1. Select the cell containing the decision variable by clicking on it.
2. If the cell does not already contain a value, enter any number into the cell.
3. Click on the Define Decision button ( ) on the Crystal Ball tab or toolbar, which

brings up the Define Decision Variable dialogue box (as shown in Fig. 20.17 for Freddie’s
problem).

4. Enter the lower limit and the upper limit of the range of values to be simulated for the
decision variable.

5. Click on either Continuous or Discrete to define whether the decision variable is
continuous or discrete.

6. If Discrete is selected in step 5, use the Step box to specify the difference between suc-
cessive possible values (not just those to be simulated) of the decision variable. (The
default value is 1.)

7. Click on OK.
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Figure 20.17 shows the application of this procedure to Freddie’s problem. Since sim-
ulations will be run for order quantities ranging from 40 to 70, these limits for the range
have been entered on the left. The order quantity can have any integer value within this
range, so this is indicated on the right.

Now we are ready to choose Decision Table from the Crystal Ball Tools menu. This
brings up the sequence of three dialogue boxes shown in Fig. 20.18.

The Step 1 dialogue box is used to choose one of the forecast cells listed there to be
the target cell for the Decision Table. Freddie’s spreadsheet model in Fig. 20.7 has only
one forecast cell, Profit (C18), so select it and then click on the Next button.

■ FIGURE 20.17
This Define Decision Variable
dialogue box specifies the
characteristics of the decision
variable OrderQuantity (C9)
in the simulation model in
Fig. 20.7 for the example
that involves Freddie the
newsboy.

■ FIGURE 20.18
To prepare for generating a
Decision Table, these three
dialogue boxes specify (1)
which forecast cell will be
the target cell, (2) which one
or two decision variables will
be varied, and (3) the
running options. The choices
made here are for the
example that involves
Freddie the newsboy.
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■ FIGURE 20.19
The Decision Table for
Freddie’s problem.

Initially, the left side of the Step 2 dialogue box includes a list of all the cells that
have been defined as decision variables. This consists of the single decision variable,
OrderQuantity (C9), for Freddie’s problem. The purpose of this dialogue box is to choose
which one or two decision variables to vary for the Decision Table. This is done by se-
lecting these decision variables on the left side and then clicking on the double right ar-
rows (

) between the two boxes, which brings these decision variables to the right side.
Figure 20.19 shows the result of doing this with Freddie’s decision variable.

The Step 3 dialogue box is used to specify the options for the Decision Table. The
first entry box records the number of values of the decision variable for which simula-
tions will be run. Crystal Ball then distributes the values evenly over the range of values
specified in the Define Decision Variable dialogue box (Fig. 20.17). For Freddie’s prob-
lem, the range of values is 40 to 70, so entering 7 into the first entry box in the Step 3
dialogue box results in choosing 40, 45, 50, 55, 60, 65, and 70 as the seven values of the
order quantity for which simulations will be run. After selecting the run size for each sim-
ulation and specifying what you want to see while the simulations are running, the last
step is to click the Start button.

After Crystal Ball runs the simulations, the Decision Table is created in a new spread-
sheet as shown in Figure 20.19. For each of the order quantities shown at the top, row 2
gives the mean of the values of the target cell, Profit (C18), obtained in all the trials of
that simulation run. Cells D2:F2 reveal that an order quantity of 55 achieved the largest
mean profit of $47.49, while order quantities of 50 and 60 essentially tied for the second
largest mean profit.

The sharp drop off in mean profits on both sides of these order quantities virtually
guarantees that the optimal order quantity lies between 50 and 60 (and probably close
to 55). To pin this down better, the logical next step would be to generate another Deci-
sion Table that considers all integer order quantities between 50 and 60. You are asked to
do this in Problem 20.6-6. (The third supplement to this chapter on the book’s website
will use the OptQuest module of Crystal Ball to pin down the optimal order quantity
in another way.)

The upper left-hand corner of the Decision Table provides three options for obtain-
ing more detailed information about the results of the simulation runs for the cells that
you select. One option is to view the forecast chart of interest, such as a frequency chart
or cumulative chart, by choosing a forecast cell in row 2 and then clicking on the Fore-
cast Charts button. Another option is to see the results of two or more simulations runs
together. This is done by selecting a set of forecast cells, say, cells E2:F2 in Fig. 20.19,
and then clicking on the Overlay Chart button. The resulting overlay chart in shown in 
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Fig. 20.20. The dark lines show the frequency chart for cell E2 (an order quantity of 55)
while the light lines do the same for cell F2 (an order quantity of 60), so the results for
these two cases can be compared side by side. (On a color monitor, you will see differ-
ent colors used to distinguish between the different cases.)

The third option is to select all the forecast cells of interest (cells B2:H2 in Fig. 20.19)
and then click on the Trend Chart button. This generates an interesting chart, called the
trend chart, shown in Fig. 20.21. The key points along the horizontal axis are the seven
vertical grid lines that correspond to the seven cases (order quantities of 40, 45, . . . , 70)
for which the simulations were run. The vertical axis gives the profit values obtained in
the trials of these simulation runs. The bands in the chart summarize information about
the frequency distribution of the profit values from each simulation run. (On a color mon-
itor, the bands appear in color—light blue for the center band, red for the adjacent pair
of bands, green for the next pair, and dark blue for the outer pair of bands.) These bands
are centered on the medians of the frequency distributions. In other words, the center of
the middle band (the lightest one) gives the profit value such that half of the trials gave
a larger value and half gave a smaller value. This middle band contains the middle 10
percent of the profit values (so 45 percent are on each side of the band). Similarly, the
middle three bands contain the middle 25 percent of the profit values, the middle five
bands contain the middle 50 percent of the profit values, and all seven bands contain
the middle 90 percent of the profit values. (These percentages are listed to the right of the
trend chart.) Thus, 5 percent of the profit values generated in the trials of each simulation
run lie above the top band and 5 percent lie below the bottom band.

The trend chart received its name because it shows the trends graphically as the
value of the decision variable (the order quantity in this case) increases. In Fig. 20.21,
for example, consider the middle band (which gets hidden in the narrow part of the chart
on the left). In going from the third-order quantity (50) to the fourth one (55), the mid-
dle band trends upward, but then it trends downward thereafter. Thus, the median value

■ FIGUER 20.20
The overlay chart that
compares the frequency
distributions for order
quantities of 55 and 60 
for Freddie’s problem.
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■ FIGUER 20.21
The trend chart that shows
the trend in the range of
various portions of the
frequency distribution as
the order quantity increases
for Freddie’s problem.

of the profit values generated in the respective simulation runs increases as the order
quantity increases until the median reaches its peak at an order quantity of 55, after which
the median trends downward. Similarly, most of the other bands also trend downward as
the order quantity increases above 55. This suggests that an order quantity of 55 is a par-
ticularly attractive one in terms of its entire frequency distribution and not just its mean
value. The fact that the trend chart spreads out as it moves to the right provides the fur-
ther insight that the variability of the profit values increase as the order quantity is in-
creased. Although the largest order quantities provide some chance of particularly high
profits on occasional days, they also can lead to an unusually low profit on any given
day. This risk profile may be relevant to Freddie if he is concerned about the variability
of his daily profits.

If you would like to read more about how to perform simulations on spreadsheets
with Crystal Ball, Chap. 28 on the book’s website provides several additional examples
and further details. These examples include applications to contract bidding, project man-
agement, cash flow management, financial risk analysis, and revenue management.

■ 20.7 CONCLUSIONS
Simulation is a widely used tool for estimating the performance of complex stochastic
systems if contemplated designs or operating policies are to be used.

We have focused in this chapter on the use of simulation for predicting the steady-
state behavior of systems whose states change only at discrete points in time. However,
by having a series of runs begin with the prescribed starting conditions, we can also use
simulation to describe the transient behavior of a proposed system. Furthermore, if we
use differential equations, simulation can be applied to systems whose states change
continuously with time.
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Simulation is one of the most popular techniques of operations research because it is
such a flexible, powerful, and intuitive tool. In a matter of seconds or minutes, it can sim-
ulate even years of operation of a typical system while generating a series of statistical
observations about the performance of the system over this period. Because of its excep-
tional versatility, simulation has been applied to a wide variety of areas. Furthermore, its
horizons continue to broaden because of the great progress being made in simulation soft-
ware, including software for performing simulations on spreadsheets.

On the other hand, simulation should not be viewed as a panacea when studying sto-
chastic systems. When applicable, analytical methods (such as those presented in Chaps. 15
to 19) have some significant advantages. Simulation is inherently an imprecise technique.
It provides only statistical estimates rather than exact results, and it compares alternatives
rather than generating an optimal one (unless a special software package such as OptQuest—
described in the third supplement to this chapter on the book’s website—is being used). Fur-
thermore, despite impressive advances in software, simulation still can be a relatively slow
and costly way to study complex stochastic systems. For such systems, it usually requires
a large amount of time and expense for analysis and programming, in addition to consider-
able computer running time. Simulation models tend to become unwieldy, so that the
number of cases that can be run and the accuracy of the results obtained often turn out to
be inadequate. Finally, simulation yields only numerical data about the performance of the
system, so that it provides no additional insight into the cause-and-effect relationships within
the system except for the clues that can be gleaned from these numbers (and from the analy-
sis required to construct the simulation model). Therefore, it is very expensive to conduct a
sensitivity analysis of the parameter values assumed by the model. The only possible way
would be to conduct new series of simulation runs with different parameter values, which
would tend to provide relatively little information at a relatively high cost.

For all these reasons, analytical methods (when available) and simulation have im-
portant complementary roles for studying stochastic systems. An analytical method is well
suited for doing at least preliminary analysis, for examining cause-and-effect relationships,
for doing some rough optimization, and for conducting sensitivity analysis. When the
mathematical model for the analytical method does not capture all the important features
of the stochastic system, simulation is well suited for incorporating all these features and
then obtaining detailed information about the measures of performance of the few lead-
ing candidates for the final system configuration.

Simulation provides a way of experimenting with proposed systems or policies with-
out actually implementing them. Sound statistical theory should be used in designing these
experiments. Surprisingly long simulation runs often are needed to obtain statistically sig-
nificant results. However, variance-reducing techniques (described in the first supplement
to this chapter on the book’s website) occasionally can be very helpful in reducing the
length of the runs needed.

Several tactical problems arise when we apply traditional statistical estimation pro-
cedures to simulated experiments. These problems include prescribing appropriate start-
ing conditions, determining how long a warm-up period is needed to essentially reach a
steady-state condition, and dealing with statistically dependent observations. These prob-
lems can be eliminated by using the regenerative method of statistical analysis (described
in the second supplement to this chapter on the book’s website). However, there are some
restrictions on when this method can be applied.

Simulation unquestionably has a very important place in the theory and practice of
OR. It is an invaluable tool for use on those problems where analytical techniques are
inadequate, and its usage is continuing to grow.
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A8. Larson, R. C., M. F. Cahn, and M. C. Shell: “Improving the New York City Arrest-to-Arraignment
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■ LEARNING AIDS FOR THIS CHAPTER ON OUR WEBSITE (www.mhhe.com/hillier)

Worked Examples:

Examples for Chapter 20

Demonstration Examples in OR Tutor:

Simulating a Basic Queueing System
Simulating a Queueing System with Priorities

An Automatic Procedure in IOR Tutorial:

Animation of a Queueing System

Interactive Procedures in IOR Tutorial:

Enter Queueing Problem
Interactively Simulate Queueing Problem

“Ch. 20—Simulation” Excel Files:

Spreadsheet Examples
Queueing Simulator

Excel Add-In:

RiskSim (academic version)

Glossary for Chapter 20

Supplements to This Chapter:

Variance-Reducing Techniques
Regenerative Method of Statistical Analysis
Optimizing with OptQuest

See Appendix 1 for documentation of the software.

hil76299_ch20_934-990.qxd  11/14/08  08:44 AM  Page 982



Confirming Pages

PROBLEMS 983

■ PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration examples for this chapter may be helpful.
I: We suggest that you use the interactive procedures listed

in Learning Aids (the printout records your work).
E: Use Excel.
A: Use an Excel simulation add-in, such as RiskSim or Crys-

tal Ball.
Q: Use the Queueing Simulator.
R: Use three-digit uniform random numbers (0.096, 0.569,

etc.) that are obtained from the consecutive random digits
in Table 20.3, starting from the front of the top row, to do
each problem part.

20.1-1.* Use the uniform random numbers in cells C13:C18 of
Fig. 20.1 to generate six random observations for each of the fol-
lowing situations.
(a) Throwing an unbiased coin.
(b) A baseball pitcher who throws a strike 60 percent of the time

and a ball 40 percent of the time.
(c) The color of a traffic light found by a randomly arriving car

when it is green 40 percent of the time, yellow 10 percent of
the time, and red 50 percent of the time.

20.1-2. The weather can be considered a stochastic system, be-
cause it evolves in a probabilistic manner from one day to the next.
Suppose for a certain location that this probabilistic evolution sat-
isfies the following description:

The probability of rain tomorrow is 0.6 if it is raining today.
The probability of its being clear (no rain) tomorrow is 0.8 if it is
clear today.
(a) Use the uniform random numbers in cells C17:C26 of Fig. 20.1

to simulate the evolution of the weather for 10 days, beginning
the day after a clear day.

E (b) Now use a computer with the uniform random numbers gen-
erated by Excel to perform the simulation requested in part
(a) on a spreadsheet.

20.1-3. Jessica Williams, manager of Kitchen Appliances for the
Midtown Department Store, feels that her inventory levels of stoves
have been running higher than necessary. Before revising the in-
ventory policy for stoves, she records the number sold each day
over a period of 25 days, as summarized below.

(c) Describe how uniform random numbers can be used to simu-
late daily sales.

(d) Use the uniform random numbers 0.4476, 0.9713, and 0.0629
to simulate daily sales over 3 days. Compare the average with
the mean obtained in part (b).

E (e) Formulate a spreadsheet model for performing a simulation
of the daily sales. Perform 300 replications and obtain the
average of the sales over the 300 simulated days.

20.1-4. The William Graham Entertainment Company will be
opening a new box office where customers can come to make ticket
purchases in advance for the many entertainment events being held
in the area. Simulation is being used to analyze whether to have
one or two clerks on duty at the box office.

While simulating the beginning of a day at the box office, the
first customer arrives 5 minutes after it opens and then the inter-
arrival times for the next four customers (in order) are 3 minutes,
9 minutes, 1 minute, and 4 minutes, after which there is a long de-
lay until the next customer arrives. The service times for these first
five customers (in order) are 8 minutes, 6 minutes, 2 minutes, 4 min-
utes, and 7 minutes.
(a) For the alternative of a single clerk, plot a graph that shows

the evolution of the number of customers at the box office over
this period.

(b) Use this figure to estimate the usual measures of perfor-
mance—L, Lq, W, Wq, and the Pn (as defined in Sec. 17.2)—
for this queueing system.

(c) Repeat part (a) for the alternative of two clerks.
(d) Repeat part (b) for the alternative of two clerks.

20.1-5. Consider the M/M/1 queueing theory model that was dis-
cussed in Sec. 17.6 and Example 2, Sec. 20.1. Suppose that the
mean arrival rate is 10 per hour, the mean service rate is 12 per
hour, and you are required to estimate the expected waiting time
before service begins by using simulation.
R (a) Starting with the system empty, use next-event increment-

ing to perform the simulation by hand until two service
completions have occurred.

R (b) Starting with the system empty, use fixed-time increment-
ing (with 2 minutes as the time unit) to perform the simu-
lation by hand until two service completions have occurred.

D,I (c) Use the interactive procedure for simulation in your IOR
Tutorial (which incorporates next-event incrementing) to
interactively execute a simulation run until 20 service com-
pletions have occurred.

Q (d) Use the Queueing Simulator to execute a simulation run
with 10,000 customer arrivals.

E (e) Use the Excel template for this model in the Excel files for
Chap. 17 to obtain the usual measures of performance for
this queueing system. Then compare these exact results
with the corresponding point estimates and 95 percent con-
fidence intervals obtained from the simulation run in part
(d ). Identify any measure whose exact result falls outside
the 95 percent confidence interval.

Number sold 2 3 4 5 6

Number of days 4 7 8 5 1

(a) Use these data to estimate the probability distribution of daily
sales.

(b) Calculate the mean of the distribution obtained in part (a).
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20.1-6. The Rustbelt Manufacturing Company employs a mainte-
nance crew to repair its machines as needed. Management now
wants a simulation study done to analyze what the size of the crew
should be, where the crew sizes under consideration are 2, 3, and
4. The time required by the crew to repair a machine has a uni-
form distribution over the interval from 0 to twice the mean, where
the mean depends on the crew size. The mean is 4 hours with two
crew members, 3 hours with three crew members, and 2 hours with
four crew members. The time between breakdowns of some ma-
chine has an exponential distribution with a mean of 5 hours. When
a machine breaks down and so requires repair, management wants
its average waiting time before repair begins to be no more than 3
hours. Management also wants the crew size to be no larger than
necessary to achieve this.
(a) Develop a simulation model for this problem by describing its

basic building blocks listed in Sec. 20.1 as they would be ap-
plied to this situation.

R (b) Consider the case of a crew size of 2. Starting with one
machine needing repair, where this repair is starting just
now, use next-event incrementing to perform the simula-
tion by hand for 20 hours of simulated time.

R (c) Repeat part (b), but this time with fixed-time incrementing
(with 1 hour as the time unit).

D,I (d) Use the interactive procedure for simulation in your IOR
Tutorial (which incorporates next-event incrementing) to
interactively execute a simulation run over a period of
10 breakdowns for each of the three crew sizes under
consideration.

Q (e) Use the Queueing Simulator to simulate this system over a
period of 10,000 breakdowns for each of the three crew
sizes.

(f) Use the M/G/1 queueing model presented in Sec. 17.7 to ob-
tain the expected waiting time Wq analytically for each of the
three crew sizes. (You can either calculate Wq by hand or use
the template for this model in the Excel files for Chap. 17.)
Which crew size should be used?

20.1-7. While performing a simulation of a single-server queue-
ing system, the number of customers in the system is 0 for the first
10 minutes, 1 for the next 17 minutes, 2 for the next 24 minutes,
1 for the next 15 minutes, 2 for the next 16 minutes, and 1 for the
next 18 minutes. After this total of 100 minutes, the number be-
comes 0 again. Based on these results for the first 100 minutes,
perform the following analysis (using the notation for queueing
models introduced in Sec. 17.2).
(a) Plot a graph showing the evolution of the number of customers

in the system over these 100 minutes.
(b) Develop estimates of P0, P1, P2, P3.
(c) Develop estimates of L and Lq.
(d) Develop estimates of W and Wq.

20.1-8. View the first demonstration example (Simulating a Basic
Queueing System) in the simulation area of your OR Tutor.
D,I (a) Enter this same problem into the interactive procedure for

simulation in your IOR Tutorial. Interactively execute a
simulation run for 20 minutes of simulated time.

Q (b) Use the Queueing Simulator with 5,000 customer arrivals to
estimate the usual measures of performance for this queue-
ing system under the current plan to provide two tellers.

Q (c) Repeat part (b) if three tellers were to be provided.
Q (d) Now perform some sensitivity analysis by checking the ef-

fect if the level of business turns out to be even higher than
projected. In particular, assume that the average time be-
tween customer arrivals turns out to be only 0.9 minute in-
stead of 1.0 minute. Evaluate the alternatives of two tellers
and three tellers under this assumption.

(e) Suppose you were the manager of this bank. Use your simu-
lation results as the basis for a managerial decision on how
many tellers to provide. Justify your answer.

D,I 20.1-9. View the second demonstration example (Simulating a
Queueing System with Priorities) in the simulation area of your
OR Tutor. Then enter this same problem into the interactive pro-
cedure for simulation in your IOR Tutorial. Interactively execute
a simulation run for 20 minutes of simulated time.

20.1-10.* Hugh’s Repair Shop specializes in repairing German and
Japanese cars. The shop has two mechanics. One mechanic works on
only German cars and the other mechanic works on only Japanese
cars. In either case, the time required to repair a car has an expo-
nential distribution with a mean of 0.2 day. The shop’s business has
been steadily increasing, especially for German cars. Hugh projects
that, by next year, German cars will arrive randomly to be repaired
at a mean rate of 4 per day, so the time between arrivals will have an
exponential distribution with a mean of 0.25 day. The mean arrival
rate for Japanese cars is projected to be 2 per day, so the distribution
of interarrival times will be exponential with a mean of 0.5 day.

For either kind of car, Hugh would like the expected waiting
time in the shop before the repair is completed to be no more than
0.5 day.
(a) Formulate a simulation model for performing a simulation to

estimate what the expected waiting time until repair is com-
pleted will be next year for either kind of car.

D,I (b) Considering only German cars, use the interactive procedure
for simulation in your IOR Tutorial to interactively perform
this simulation over a period of 10 arrivals of German cars.

Q (c) Use the Queueing Simulator to perform this simulation for
German cars over a period of 10,000 car arrivals.

Q (d) Repeat part (c) for Japanese cars.
D,I (e) Hugh is considering hiring a second mechanic who spe-

cializes in German cars so that two such cars can be re-
paired simultaneously. (Only one mechanic works on any
one car.) Repeat part (b) for this option.

Q (f) Use the Queueing Simulator with 10,000 arrivals of German
cars to evaluate the option described in part (e).

Q (g) Another option is to train the two current mechanics to work
on either kind of car. This would increase the expected re-
pair time by 10 percent, from 0.2 day to 0.22 day. Use the
Queueing Simulator with 20,000 arrivals of cars of either
kind to evaluate this option.

(h) Because both the interarrival-time and service-time distribu-
tions are exponential, the M/M/1 and M/M/s queueing models
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introduced in Sec. 17.6 can be used to evaluate all the above
options analytically. Use these models to determine W, the ex-
pected waiting time until repair is completed, for each of the
cases considered in parts (c), (d ), ( f ), and (g). (You can either
calculate W by hand or use the template for the M/M/s model
in the Excel files for Chap. 17.) For each case, compare the
estimate of W obtained by simulation with the analytical value.
What does this say about the number of car arrivals that should
be included in the simulation?

(i) Based on the above results, which option would you select if
you were Hugh? Why?

20.1-11. Vistaprint produces monitors and printers for computers.
In the past, only some of them were inspected on a sampling 
basis. However, the new plan is that they all will be inspected 
before they are released. Under this plan, the monitors and print-
ers will be brought to the inspection station one at a time as they
are completed. For monitors, the interarrival time will have a uni-
form distribution between 10 and 20 minutes. For printers, the in-
terarrival time will be a constant 15 minutes.

The inspection station has two inspectors. One inspector
works on only monitors and the other one only inspects printers.
In either case, the inspection time has an exponential distribution
with a mean of 10 minutes.

Before beginning the new plan, management wants an evalu-
ation made of how long the monitors and printers will be held up
waiting at the inspection station.
(a) Formulate a simulation model for performing a simulation to

estimate the expected waiting times (both before beginning in-
spection and after completing inspection) for either the moni-
tors or the printers.

D,I (b) Considering only the monitors, use the interactive procedure
for simulation in your IOR Tutorial to interactively perform
this simulation over a period of 10 arrivals of monitors.

D,I (c) Repeat part (b) for the printers.
Q (d) Use the Queueing Simulator to repeat parts (b) and (c) with

10,000 arrivals in each case.
Q (e) Management is considering the option of providing new

inspection equipment to the inspectors. This equipment
would not change the expected time to perform an inspec-
tion but it would decrease the variability of the times. In
particular, for either product, the inspection time would have
an Erlang distribution with a mean of 10 minutes and shape
parameter k � 4. Use the Queueing Simulator to repeat
part (d ) under this option. Compare the results with those
obtained in part (d ).

20.2-1. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec. 20.2.
Briefly describe how simulation was applied in this study. Then list
the various financial and nonfinancial benefits that resulted from
this study.

20.2-2. Section 20.2 introduced actual applications of simulation
that are described in Selected References A1 and A5. Select one
of these applications and read the corresponding article. Write a
two-page summary of the application and the benefits it provided.

20.3-1.* Use the mixed congruential method to generate the fol-
lowing sequences of random numbers.
(a) A sequence of 10 one-digit random integer numbers such that

xn�1 ≡ (xn � 3) (modulo 10) and x0 � 2
(b) A sequence of eight random integer numbers between 0 and 7

such that xn�1 ≡ (5xn � 1) (modulo 8) and x0 � 1
(c) A sequence of five two-digit random integer numbers such that

xn�1 ≡ (61xn � 27) (modulo 100) and x0 � 10

20.3-2. Reconsider Prob. 20.3-1. Suppose now that you want to
convert these random integer numbers to (approximate) uniform
random numbers. For each of the three parts, give a formula for
this conversion that makes the approximation as close as possible.

20.3-3. Use the mixed congruential method to generate a sequence
of five two-digit random integer numbers such that xn�1 ≡ (11xn � 23)
(modulo 100) and x0 � 52.

20.3-4. Use the mixed congruential method to generate a sequence
of three three-digit random integer numbers such that xn�1 ≡
(201xn � 503) (modulo 1,000) and x0 � 485.

20.3-5. You need to generate five uniform random numbers.
(a) Prepare to do this by using the mixed congruential method

to generate a sequence of five random integer numbers be-
tween 0 and 31 such that xn�1 ≡ (13xn � 15) (modulo 32)
and x0 � 14.

(b) Convert these random integer numbers to uniform random
numbers as closely as possible.

20.3-6. You are given the multiplicative congruential generator 
x0 � 1 and xn�1 ≡ 7xn (modulo 13) for n � 0, 1, 2, . . . .
(a) Calculate xn for n � 1, 2, . . . , 12.
(b) How often does each integer between 1 and 12 appear in the

sequence generated in part (a)?
(c) Without performing additional calculations, indicate how x13,

x14, . . . will compare with x1, x2, . . . .

20.4-1. Reconsider the coin flipping game introduced in Sec. 20.1
and analyzed with simulation in Figs. 20.1, 20.2, and 20.3.
(a) Simulate one play of this game by repeatedly flipping your

own coin until the game ends. Record your results in the for-
mat shown in columns B, D, E, F, and G of Fig. 20.1. How
much would you have won or lost if this had been a real play
of the game?

E (b) Revise the spreadsheet model in Fig. 20.1 by using Excel’s
VLOOKUP function instead of the IF function to generate
each simulated flip of the coin. Then perform a simulation
of one play of the game.

E (c) Use this revised spreadsheet model to generate a data table
with 14 replications like Fig. 20.2.

E (d) Repeat part (c) with 1,000 replications (like Fig. 20.3).

20.4-2.* Apply the inverse transformation method as indicated
next to generate three random observations from the uniform dis-
tribution between �10 and 40 by using the following uniform
random numbers: 0.0965, 0.5692, 0.6658.
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(a) Apply this method graphically.
(b) Apply this method algebraically.
(c) Write the equation that Excel would use to generate each such

random observation.

R 20.4-3. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate three random obser-
vations from each of the following probability distributions.
(a) The uniform distribution from 25 to 75.
(b) The distribution whose probability density function is

f (x) �

(c) The distribution whose probability density function is

f (x) �

R 20.4-4. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate three random obser-
vations from each of the following probability distributions.
(a) The random variable X has P{X � 0} � �

1
2

�. Given X � 0, it has
a uniform distribution between �5 and 15.

(b) The distribution whose probability density function is

f (x) � �
(c) The geometric distribution with parameter p � �

1
3

�, so that

P{X � k} �

20.4-5. Each time an unbiased coin is flipped three times, the prob-
ability of getting 0, 1, 2, and 3 heads is �

1
8

�, �
3
8

�, �
3
8

�, and �
1
8

�, respectively.
Therefore, with eight groups of three flips each, on the average,
one group will yield 0 heads, three groups will yield 1 head, three
groups will yield 2 heads, and one group will yield 3 heads.
(a) Using your own coin, flip it 24 times divided into eight groups

of three flips each, and record the number of groups with 0
head, with 1 head, with 2 heads, and with 3 heads.

(b) Obtaining uniform random numbers as instructed at the be-
ginning of the Problems section, simulate the flips specified
in part (a) and record the information indicated in part (a).

E (c) Formulate a spreadsheet model for performing a simulation
of three flips of the coin and recording the number of heads.
Perform one replication of this simulation.

E (d) Use this spreadsheet to generate a data table with 8 repli-
cations of the simulation. Compare this frequency distribu-
tion of the number of heads with the probability distribution
of the number of heads with three flips.

E (e) Repeat part (d ) with 800 replications.

20.4-6.* The game of craps requires the player to throw two dice
one or more times until a decision has been reached as to whether
he (or she) wins or loses. He wins if the first throw results in a

if k � 1, 2, . . .

otherwise.

�
1
3

�	�
2
3

�

k�1

0





if 1 � x � 2
if 2 � x � 3.

x � 1
3 � x

if 40 � x � 60

otherwise.

�
2
1
00
�(x � 40)

0





if �1 � x � 1

otherwise.

�
1
4

�(x � 1)3

0





sum of 7 or 11 or, alternatively, if the first sum is 4, 5, 6, 8, 9, or
10 and the same sum reappears before a sum of 7 has appeared.
Conversely, he loses if the first throw results in a sum of 2, 3, or
12 or, alternatively, if the first sum is 4, 5, 6, 8, 9, or 10 and a sum
of 7 appears before the first sum reappears.
E (a) Formulate a spreadsheet model for performing a simulation

of the throw of two dice. Perform one replication.
E (b) Perform 25 replications of this simulation.
(c) Trace through these 25 replications to determine both the num-

ber of times the simulated player would have won the game of
craps and the number of losses when each play starts with the
next throw after the previous play ends. Use this information
to calculate a preliminary estimate of the probability of win-
ning a single play of the game.

(d) For a large number of plays of the game, the proportion of
wins has approximately a normal distribution with mean �
0.493 and standard deviation � 0.5�n�. Use this information
to calculate the number of simulated plays that would be re-
quired to have a probability of at least 0.95 that the proportion
of wins will be less than 0.5.

R 20.4-7. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, use the inverse transformation
method and the table of the normal distribution given in Appen-
dix 5 (with linear interpolation between values in the table) to
generate 10 random observations (to three decimal places) from a
normal distribution with mean � 1 and variance � 4. Then calcu-
late the sample average of these random observations.

R 20.4-8. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate three random observa-
tions (approximately) from a normal distribution with mean � 5 and
standard deviation � 10.
(a) Do this by applying the central limit theorem, using three uni-

form random numbers to generate each random observation.
(b) Now do this by using the table for the normal distribution given

in Appendix 5 and applying the inverse transformation method.

R 20.4-9. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate four random observa-
tions (approximately) from a normal distribution with mean � 0
and standard deviation � 1.
(a) Do this by applying the central limit theorem, using three uni-

form random numbers to generate each random observation.
(b) Now do this by using the table for the normal distribution

given in Appendix 5 and applying the inverse transformation
method.

(c) Use your random observations from parts (a) and (b) to gen-
erate random observations from a chi-square distribution with
2 degrees of freedom.

R 20.4-10. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate two random observa-
tions from each of the following probability distributions.
(a) The exponential distribution with mean � 10
(b) The Erlang distribution with mean � 10 and shape parameter

k � 2 (that is, standard deviation � 2�2�)
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(c) The normal distribution with mean � 10 and standard devia-
tion � 2�2�. (Use the central limit theorem and n � 6 for each
observation.)

20.4-11. Richard Collins, manager and owner of Richard’s Tire
Service, wishes to use simulation to analyze the operation of his
shop. One of the activities to be included in the simulation is the
installation of automobile tires (including balancing the tires).
Richard estimates that the cumulative distribution function (CDF)
of the probability distribution of the time (in minutes) required to
install a tire has the graph shown below.

(b) Proposal 2: Generate uniform random numbers ri (i � 1,
2, . . .), and then set xi equal to the greatest integer less than
or equal to 1 � 8ri.

(c) Proposal 3: Generate xi from the mixed congruential genera-
tor xn�1 ≡ (5xn � 7) (modulo 8), with starting value x0 � 4.

R 20.4-15. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, use the acceptance-rejection
method to generate three random observations from the triangular
distribution used to illustrate this method in Sec. 20.4.

R 20.4-16. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, use the acceptance-rejection
method to generate three random observations from the probabil-
ity density function

f (x) �

R 20.4-17. An insurance company insures four large risks. The
number of losses for each risk is independent and identically dis-
tributed on the points {0, 1, 2} with probabilities 0.7, 0.2, and 0.1,
respectively. The size of an individual loss has the following cu-
mulative distribution function:

F(x) �

Obtaining uniform random numbers as instructed at the beginning
of the Problems section, perform a simulation experiment twice of
the total loss generated by the four large risks.

20.4-18. A company provides its three employees with health in-
surance under a group plan. For each employee, the probability of
incurring medical expenses during a year is 0.9, so the number of
employees incurring medical expenses during a year has a bino-
mial distribution with p � 0.9 and n � 3. Given that an employee
incurs medical expenses during a year, the total amount for the
year has the distribution $100 with probability 0.9 or $10,000 with
probability 0.1. The company has a $5,000 deductible clause with
the insurance company so that each year the insurance company
pays the total medical expenses for the group in excess of $5,000.
Use the uniform random numbers 0.01 and 0.20, in the order given,
to generate the number of claims based on a binomial distribution
for each of 2 years. Use the following uniform random numbers,
in the order given, to generate the amount of each claim: 0.80, 0.95,
0.70, 0.96, 0.54, 0.01. Calculate the total amount that the insur-
ance company pays for 2 years.

20.5-1. Read the referenced article that fully describes the OR
study summarized in the application vignette presented in Sec. 20.5.
Briefly describe how simulation was applied in this study. Then
list the various financial and nonfinancial benefits that resulted
from this study.

if 0 � x � 100

if 100 � x � 200

if x 
 200.

�
�
20

x�
�

�
20

x
0

�

1



if 10 � x � 20

otherwise.

�
5
1
0
�(x � 10)

0





(a) Use the inverse transformation method to generate five random
observations from this distribution when using the following
five uniform random numbers: 0.2655, 0.3472, 0.0248, 0.9205,
0.6130.

(b) Use a nested IF function to write an equation that Excel can
use to generate each random observation from this distribution.

R 20.4-12. Obtaining uniform random numbers as instructed at the
beginning of the Problems section, generate four random observa-
tions from an exponential distribution with mean � 20. Then use
these four observations to generate one random observation from
an Erlang distribution with mean � 4 and shape parameter k � 4.

20.4-13. Let r1, r2, . . . , rn be uniform random numbers. Define 

xi � �ln ri and yi � �ln (1 � ri), for i � 1, 2, . . . , n, and z � �
n

i�1

xi. Label each of the following statements as true or false, and then
justify your answer.
(a) The numbers x1, x2, . . . , xn and y1, y2, . . . , yn are random

observations from the same exponential distribution.
(b) The average of x1, x2, . . . , xn is equal to the average of y1,

y2, . . . , yn.
(c) z is a random observation from an Erlang (gamma) distribution.

20.4-14. Consider the discrete random variable X that is uniformly
distributed (equal probabilities) on the set {1, 2, . . . , 8}. You wish
to generate a series of random observations xi (i � 1, 2, . . .) of X.
The following three proposals have been made for doing this. For
each one, analyze whether it is a valid method and, if not, how it
can be adjusted to become a valid method.
(a) Proposal 1: Generate uniform random numbers ri (i � 1,

2, . . .), and then set xi � n, where n is the integer satisfying
n/8 � ri � (n � 1)/8.

9 11 13 Time70

0.2

0.8

1.0
CDF
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A 20.6-1. The results from a simulation run are inherently random.
This problem will demonstrate this fact and investigate the impact
of the number of trials on this randomness. Consider the example
involving Freddie the newsboy that was introduced in Sec. 20.6.
The spreadsheet model is available in this chapter’s Excel files on
the book’s website. When using Crystal Ball, make sure that the
“Use Same Sequence of Random Numbers” option is not checked
and that the Monte-Carlo Sampling Method is selected in the Sam-
pling tab of Run Preferences. Use an order quantity of 60.
(a) Set the number of trials to 100 in Run Preferences and run the

simulation of Freddie’s problem five times. Note the mean
profit for each simulation run.

(b) Repeat part (a) except set the number of trials to 1,000 in Run
Preferences.

(c) Compare the results from part (a) and part (b) and comment
on any differences.

A 20.6-2. The Aberdeen Development Corporation (ADC) is re-
considering the Aberdeen Resort Hotel project. It would be located
on the picturesque banks of Grays Harbor and have its own
championship-level golf course.

The cost to purchase the land would be $1 million, payable
now. Construction costs would be approximately $2 million,
payable at the end of the year 1. However, the construction costs
are uncertain. These costs could be up to 20 percent higher or lower
than the estimate of $2 million. Assume that the construction costs
would follow a triangular distribution.

ADC is very uncertain about the annual operating profits (or
losses) that would be generated once the hotel is constructed. Its best
estimate for the annual operating profit that would be generated in
years 2, 3, 4, and 5 is $700,000. Due to the great uncertainty, the es-
timate of the standard deviation of the annual operating profit in each
year also is $700,00. Assume that the yearly profits are statistically
independent and follow the normal distribution.

After year 5, ADC plans to sell the hotel. The selling price is
likely to be somewhere between $4 and $8 million (assume a uni-
form distribution). ADC uses a 10 percent discount rate for calcu-
lating net present value. (For purposes of this calculation, assume
that each year’s profits are received at year end.) Perform 1,000
trials of a simulation of this project on a spreadsheet.
(a) What is the mean net present value (NPV) of the project? (Hint:

The NPV(rate, cash stream) function in Excel returns the NPV
of a stream of cash flows assumed to start one year from now.
For example, NPV(10%, C5:F5) returns the NPV at a 10 per-
cent discount rate when C5 is a cash flow at the end of year 1,
D5 at the end of year 2, E5 at the end of year 3, and F5 at the
end of year 4.)

(b) What is the estimated probability that the project will yield an
NPV greater than $2 million?

(c) ADC also is concerned about cash flow in years 2, 3, 4, and 5.
Generate a forecast of the distribution of the minimum annual
operating profit (undiscounted) earned in any of the four years.
What is the mean value of the minimum annual operating profit
over the four years?

(d) What is the probability that the annual operating profit will be
at least $0 in all four years of operation?

A 20.6-3. The Avery Co. factory has been having a maintenance
problem with the control panel for one of its production processes.
This control panel contains four identical electromechanical relays
that have been the cause of the trouble. The problem is that the re-
lays fail fairly frequently, thereby forcing the control panel (and
the production process it controls) to be shut down while a re-
placement is made. The current practice is to replace the relays
only when they fail. The average total cost of doing this has been
$3.19 per hour. To attempt to reduce this cost, a proposal has been
made to replace all four relays whenever any one of them fails to
reduce the frequency with which the control panel must be shut
down. Would this actually reduce the cost?

The pertinent data are the following. For each relay, the oper-
ating time until failure has approximately a uniform distribution from
1,000 to 2,000 hours. The control panel must be shut down for one
hour to replace one relay or for two hours to replace all four relays.
The total cost associated with shutting down the control panel and
replacing relays is $1,000 per hour plus $200 for each new relay.

Use simulation on a spreadsheet to evaluate the cost of the
proposal and compare it to the current practice. Perform 1,000 tri-
als (where the end of each trial coincides with the end of a shut-
down of the control panel) and determine the average cost per hour.

A 20.6-4. For one new product to be produced by the Aplus Com-
pany, bushings will need to be drilled into a metal block and 
cylindrical shafts inserted into the bushings. The shafts are required
to have a radius of at least 1.0000 inch, but the radius should be
as little larger than this as possible. With the proposed production
process for producing the shafts, the probability distribution of the
radius of a shaft has a triangular distribution with a minimum of
1.0000 inch, a most likely value of 1.0010 inches, and a maximum
value of 1.0020 inches. With the proposed method of drilling the
bushings, the probability distribution of the radius of a bushing has
a normal distribution with a mean of 1.0020 inches and a standard
deviation of 0.0010 inch. The clearance between a bushing and a
shaft is the difference in their radii. Because they are selected at
random, there occasionally is interference (i.e., negative clearance)
between a bushing and a shaft to be mated.

Management is concerned about the disruption in the pro-
duction of the new product that would be caused by this occasional
interference. Perhaps the production processes for the shafts and
bushings should be improved (at considerable cost) to lessen the
chance of interference. To evaluate the need for such improvements,
management has asked you to determine how frequently interfer-
ence would occur with the currently proposed production processes.

Estimate the probability of interference by performing 500 tri-
als of a simulation on a spreadsheet.

A 20.6-5. Reconsider Prob. 20.4-6 involving the game of craps.
Now the objective is to estimate the probability of winning a play
of this game. If the probability is greater than 0.5, you will want
to go to Las Vegas to play the game numerous times until you even-
tually win a considerable amount of money. However, if the prob-
ability is less than 0.5, you will stay home.

You have decided to perform simulation on a spreadsheet to
estimate this probability. Perform the number of trials (plays of the
game) indicated below twice.
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(a) 100 trials.
(b) 1,000 trials.
(c) 10,000 trials.
(d) The true probability is 0.493. What conclusion do you draw from

the above simulation runs about the number of trials that ap-
pears to be needed to give reasonable assurance of obtaining an
estimate that is within 0.007 of the true probability?

A 20.6-6. Consider the example involving Freddie the newsboy
that was introduced in Sec. 20.6. The spreadsheet model is avail-
able in this chapter’s Excel files on the book’s website. The Deci-
sion Table generated in Sec. 20.6 (see Fig. 20.19) for Freddie’s
problem suggests that 55 is the best order quantity, but this table
only considered order quantities that were a multiple of 5. Refine

the search by generating a Decision Table for Freddie’s problem
that considers all integer order quantities between 50 and 60.

20.7-1. From the bottom part of the Selected References given at
the end of the chapter, select one of these award-winning applica-
tions of simulation. Read this article and then write a two-page
summary of the application and the benefits (including nonfinan-
cial benefits) it provided.

20.7-2. From the bottom part of the Selected References given at
the end of the chapter, select three of these award-winning appli-
cations of simulation. For each one, read the article and then write
a one-page summary of the application and the benefits (including
nonfinancial benefits) it provided.

■ CASES

CASE 20.1 Reducing In-Process
Inventory, Revisted
Reconsider case 17.1. The current and proposed queueing sys-
tems in this case were to be analyzed with the help of queue-
ing models to determine how to reduce in-process inventory
as much as possible. However, these same queueing systems
also can be effectively analyzed by applying simulation with
the help of the Queueing Simulator in your OR Courseware.

Use simulation to perform all the analysis requested in
this case.

CASE 20.2 Action Adventures
The Adventure Toys Company manufactures a popular line
of action figures and distributes them to toy stores at the
wholesale price of $10 per unit. Demand for the action fig-
ures is seasonal, with the highest sales occurring before
Christmas and during the spring. The lowest sales occur dur-
ing the summer and winter (post-Christmas) months.

Each month the monthly “base” sales follow a normal dis-
tribution with mean equal to the previous month’s actual “base”
sales and with a standard deviation of 500 units. The actual
sales in any month are the monthly base sales multiplied by
the seasonality factor for the month, as shown in the table be-
low. Base sales in December 2009 were 6,000, with actual
sales equal to (1.18)(6,000) � 7,080. It is now January 1, 2010.

Cash sales typically account for about 40 percent of
monthly sales, but this figure has been as low as 28 percent
and as high as 48 percent in some months. The remainder
of the sales are made on a 30-day interest-free credit basis, with
full payment received one month after delivery. In December
2009, 42 percent of sales were cash sales and 58 percent were
on credit.

The production costs depend upon the labor and mater-
ial costs. The plastics required to manufacture the action fig-
ures fluctuate in price from month to month, depending on
market conditions. Because of these fluctuations, production
costs can be anywhere from $6 to $8 per unit. In addition to
these variable production costs, the company incurs a fixed
cost of $15,000 per month for manufacturing the action fig-
ures. The company assembles the products to order. When a
batch of a particular action figure is ordered, it is immedi-
ately manufactured and shipped within a couple days.

The company utilizes eight molding machines to mold
the action figures. These machines occasionally break down
and require a $5,000 replacement part. Each machine requires
a replacement part with a 10 percent probability each month.

The company has a policy of maintaining a minimum
cash balance of at least $20,000 at the end of each month.
The balance at the end of December 2009 (or equivalently,
at the beginning of January 2010) is $25,000. If required, the
company will take out a short-term (1 month) loan to cover
expenses and maintain the minimum balance. The loans must
be paid back the following month with interest (using the
current month’s loan interest rate). For example, if March’s
annual interest rate is 6 percent (so 0.5 percent per month)
and a $1,000 loan is taken out in March, then $1,005 is due
in April. However, a new loan can be taken out each month.

Any balance remaining at the end of a month (includ-
ing the minimum balance) is carried forward to the follow-
ing month, and also earns savings interest. For example, if

Month Seasonality Factor Month Seasonality Factor

January 0.79 July 0.74
February 0.88 August 0.98
March 0.95 September 1.06
April 1.05 October 1.10
May 1.09 November 1.16
June 0.84 December 1.18

CASES 989
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the ending balance in March is $20,000, and March’s sav-
ings interest is 3 percent per annum (so 0.25 percent per
month), then $50 of savings interest is earned in April.

Both the loan interest rate and the savings interest
rate are set monthly based upon the Prime rate. The loan
interest rate is set at Prime � 2 percent, while the sav-
ings interest rate is set at Prime � 2 percent. However, the
loan interest rate is capped at (can’t exceed) 9 percent and
the savings interest rate will never drop below 2 percent.

The Prime rate in December 2009 was 5 percent per an-
num. This rate depends upon the whims of the Federal Reserve
Board. In particular, for each month there is a 70 percent
chance it will stay unchanged, a 10 percent chance it will in-
crease by 25 basis points (0.25 percent), a 10 percent chance
it will decrease by 25 basis points, a 5 percent chance it will
increase by 50 basis points, and a 5 percent chance it will de-
crease by 50 basis points.

(a) Formulate a simulation model on a spreadsheet to track the
company’s cash flows from month to month. Indicate the

probability distributions (both the type and the parameters)
for the assumption cells directly on the spreadsheet. Simulate
1,000 trials for the year 2010, and paste your results in the
spreadsheet.

(b) Adventure Toys management wants information about what
the company’s net worth might be at the end of 2010, in-
cluding the likelihood that the net worth will exceed zero.
(The net worth is defined here as the ending cash balance
plus savings interest and account receivables minus any loans
and interest due.) Display the results of your simulation run
from part (a) in the various forms that you think would be
helpful to management in analyzing this issue.

(c) Arrangements need to be made to obtain a specific credit
limit from the bank for the short-term loans that might be
needed during 2010. Therefore, Adventure Toys management
also would like information regarding the size of the largest
short-term loan that might be needed during 2010. Display
the results of your simulation run from part (a) in the vari-
ous forms that you think would be helpful to management in
analyzing this issue.

■ PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 20.3 Planning Planers
A factory’s planer department has had a difficult time keep-
ing up with its workload, which has seriously disrupted the
production schedule for subsequent operations. At times, the
work pours in and a big backlog builds up. Then there might
be a long pause when not much comes in, so the planers
stand idle part of the time. Three separate proposals have
been made to relive the bottleneck in the planer department:
(1) obtain one additional planer, (2) eliminate the variabil-
ity of the interarrival times of the jobs, and (3) reduce the
variability of the time required to perform the jobs. Any one
or any combination of these proposals can be adopted. With
the help of the Queueing Simulator, simulation is to be used
to determine what should be done so as to minimize the
expected total cost per hour.

CASE 20.4 Pricing under Pressure
A client of a large investment bank is interested in pur-
chasing a European call option for a certain stock that pro-
vides him with the right to purchase the stock at a fixed price
12 weeks from today. The client then would exercise this
option in 12 weeks only if this fixed price is less than the
market price of the stock at that time. The bank now needs
to determine what price should be charged for the call op-
tion. This price should be the mean value of the option in
12 weeks. Based on a random walk model of how a stock
price evolves from week to week, simulation is to be used
to estimate this mean value. To start, the various elements
of a simulation model need to be carefully formulated.
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1A P P E N D I X

Documentation for the 
OR Courseware

You will find a wealth of software resources on the book’s
website (www.mhhe.com/hillier). The entire software

package is called OR Courseware.
The individual software packages are discussed briefly

below.

OR TUTOR

OR Tutor is a Web document consisting of a set of HTML
pages that often contain JavaScript. Any browser that sup-
ports JavaScript can be used. It can be viewed with either an
IBM-compatible PC or a Macintosh.

This resource has been designed to be your personal tu-
tor by illustrating and illuminating key concepts in an in-
teractive manner. It contains 16 demonstration examples that
supplement the examples in the book in ways that cannot be
duplicated on the printed page. Each one vividly demon-
strates one of the algorithms or concepts of OR in action.
Most combine an algebraic description of each step with a
geometric display of what is happening. Some of these geo-
metric displays become quite dynamic, with moving points
or moving lines, to demonstrate the evolution of the algo-
rithm. The demonstration examples also are integrated with
the book, using the same notation and terminology, with ref-
erences to material in the book, etc. Students find them an
enjoyable and effective learning aid.

IOR TUTORIAL

Another key tutorial feature of the OR Courseware is a
software package called Interactive Operations Research
Tutorial, or IOR Tutorial for short. A product of Accelet

Corporation, it has been designed specifically for use with
this book. Innovative tutorial features are employed to
make the process of learning the algorithms in the book as
efficient and enjoyable as possible. It is implemented in
Java 2, so it can operate on any platform.

IOR Tutorial features a large number of interactive pro-
cedures for the various topic areas covered in the book. Each
of these interactive procedures enables you to interactively
execute one of the algorithms of OR. While viewing all rel-
evant information on the computer screen, you make the
decision on how the next step of the algorithm should be
performed, and then the computer does all the necessary
number crunching to execute that step. When a previous mis-
take is discovered, the procedure allows you to quickly back-
track to correct the mistake. To get you started properly, the
computer points out any mistake made on the first iteration
(where possible). When done, you can print out all the work
performed to turn in for homework.

In our judgment, these interactive procedures provide the
“right” way in this computer age for students to do homework
designed to help them learn the algorithms of OR. The pro-
cedures enable you to focus on concepts rather than mindless
number crunching, thereby making the learning process far
more efficient and effective as well as stimulating. They also
point you in the right direction, including organizing the work
to be done. However, the procedures do not do the thinking
for you. As in any good homework assignment, you are al-
lowed to make mistakes (and to learn from those mistakes),
so that hard thinking will need to be done to try to stay on
the right path. We have been careful in designing the division
of labor between the computer and the student to provide an
efficient, complete learning process.
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Once you have learned the logic of a particular algo-
rithm with the help of an interactive procedure, you will
want to be able to apply the algorithm quickly with an au-
tomatic procedure thereafter. Such a procedure is provided
by one or more of the software packages discussed below
for most of the algorithms described in this book. However,
for certain algorithms that are not included in these com-
mercial packages (as well as a few that are), we have pro-
vided special automatic procedures in IOR Tutorial. These
procedures are designed only for solving the textbook-size
problems in the book.

EXCEL FILES

The OR Courseware includes separate Excel files for nearly
every chapter in this book. The files for each chapter typically
include several spreadsheets that will help you formulate and
solve the various kinds of models described in the chapter. Two
types of spreadsheets are included. First, each time an example
is presented that can be solved using Excel, the complete spread-
sheet formulation and solution is given in that chapter’s Excel
files. This provides a convenient reference, or even useful tem-
plates, when you set up spreadsheets to solve similar problems
with the Excel Solver (or the Premium Solver discussed in the
next subsection). Second, for many of the models in the book,
template files are provided that already include all the equations
necessary to solve the model. You simply enter the data for the
model and the solution is immediately calculated.

EXCEL ADD-INS

Four Excel add-ins are included in OR Courseware. One is
Premium Solver for Education, which is a more powerful ver-
sion of the standard Solver in Excel and also adds Evolution-
ary Solver discussed in Sec. 12.10. See the book’s website for
instructions for how to download this add-in from the website
(www.solver.com) of the developer (Frontline Systems Inc.),
using both the textbook code (HLITOR) and a course code
that needs to be obtained by the instructor (following instruc-
tions on our website).

Three other Excel add-ins are academic versions of 
SensIt (introduced in Sec. 15.5), TreePlan (introduced in
Sec. 15.5), and RiskSim (introduced in Sec. 20.6). All are
shareware developed by Professor Michael R. Middleton for
Windows and Macintosh. Documentation is included on the
book’s website for all three add-ins. Since this software is
shareware, those desiring to use it after the course should
register and pay the shareware fee.

As with any Excel add-in, each of these add-ins needs
to be installed in Excel before it is operational. (The same
is true for the standard Excel Solver.) Installation instruc-
tions are included in the OR Courseware.

MPL/CPLEX

As discussed at length in Secs. 3.6 and 4.8, MPL is a state-
of-the-art modeling language and its prime solver CPLEX is
a particularly prominent and powerful solver. Several other
powerful solvers (described in the next paragraph) also are
available with MPL. The student version of the latest releases
of MPL, CPLEX, and these other solvers is included in the
OR Courseware. Although this student version is limited to
much smaller problems than the massive linear, integer, and
quadratic programming problems commonly solved in prac-
tice by the full version, it still can handle far larger problems
than any you will encounter in this book.

The book’s website provides an extensive MPL tutorial
and documentation, as well as MPL/CPLEX formulations
and solutions for virtually every example in the book to
which they can be applied. Also included in the OR Course-
ware is the student version of OptiMax 2000, which en-
ables fully integrating MPL models into Excel and solving
with CPLEX. In addition, the convex programming solver
CONOPT, the global oprimizer LGO, the linear and integer
programming solver CoinMP, the linear, integer, and qua-
dratic programming solver LINDO, and the stochastic solver
BendX are included in MPL for solving such problems.

The website for further exploring MPL and its solvers is
www.maximalsoftware.com.

LINGO/LINDO FILES

This book also features the popular modeling language LINGO
(see especially the end of Sec. 3.7, the supplements to Chap. 3,
and Appendix 4.1), including the traditional LINDO syntax
subset (see Sec. 4.8 and Appendix 4.1). A student version of
LINGO (with the LINDO subset) is included in the OR
Courseware. Updated student versions of LINGO/LINDO (as
well as the companion spreadsheet solver What’s Best) also
can be downloaded from the website, www.lindo.com.

The OR Courseware includes extensive LINGO/LINDO
files or (when LINDO is not relevant) LINGO files for many
of the chapters. Each file provides the LINGO and LINDO
models and solutions for the various examples in the chapter
to which they can be applied. The book’s website also pro-
vides LINGO and LINDO tutorials.

UPDATES

The software world evolves very rapidly during the lifetime
of one edition of a textbook. We believe that the documen-
tation provided in this appendix is accurate at the time of
this writing, but changes inevitably will occur as time passes.

You can visit the book’s website, www.mhhe.com/hillier,
for information about software updates.
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2A P P E N D I X

Convexity

A s introduced in Chap. 12, the concept of convexity is
frequently used in OR work, especially in the area of non-

linear programming. Therefore, we further introduce the prop-
erties of convex or concave functions and convex sets here.

CONVEX OR CONCAVE FUNCTIONS 
OF A SINGLE VARIABLE

We begin with definitions.

Definitions: A function of a single variable f (x) is
a convex function if, for each pair of values of x,
say, x� and x� (x� � x�),

f [�x� � (1 � �)x�] � �f(x�) � (1 � �) f(x�)

for all values of � such that 0 � � � 1. It is a
strictly convex function if � can be replaced by �.
It is a concave function (or a strictly concave
function) if this statement holds when � is re-
placed by � (or by �).

This definition of a convex function has an enlighten-
ing geometric interpretation. Consider the graph of the func-
tion f (x) drawn as a function of x, as illustrated in Fig. A2.1
for a function f (x) that decreases for x � 1, is constant for
1 � x � 2, and increases for x � 2. Then [x�, f(x�)] and [x�,
f(x�)] are two points on the graph of f(x), and [�x� � (1 � �)x�,
�f (x�) � (1 � �) f (x�)] represents the various points on the
line segment between these two points (but excluding these
endpoints) when 0 � � � 1. Thus, the � inequality in the de-
finition indicates that this line segment lies entirely above or
on the graph of the function, as in Fig. A2.1. Therefore, f (x)
is convex if, for each pair of points on the graph of f (x), the
line segment joining these two points lies entirely above or
on the graph of f (x).

For example, the particular choice of x� and x� shown in
Fig. A2.1 results in the entire line segment (except the two
endpoints) lying above the graph of f(x). This also occurs for
other choices of x� and x� where either x� � 1 or x� � 2 (or
both). If 1 � x� � x� � 2, then the entire line segment lies
on the graph of f(x). Therefore, this f(x) is convex.

This geometric interpretation indicates that f (x) is con-
vex if it only “bends upward” whenever it bends at all. (This
condition is sometimes referred to as concave upward, as
opposed to concave downward for a concave function.) To
be more precise, if f (x) possesses a second derivative every-
where, then f (x) is convex if and only if d2f (x)/dx2 � 0 for
all possible values of x.

The definitions of a strictly convex function, a concave
function, and a strictly concave function also have analogous
geometric interpretations. These interpretations are summa-
rized below in terms of the second derivative of the function,
which provides a convenient test of the status of the function.

Convexity test for a function of a single variable:
Consider any function of a single variable f (x) that
possesses a second derivative at all possible values
of x. Then f (x) is

1. Convex if and only if 	
d

d

2f
x
(
2
x)

	 � 0 for all possi-

ble values of x

2. Strictly convex if and only if 	
d

d

2f
x
(
2
x)

	 � 0 for all

possible values of x

3. Concave if and only if 	
d

d

2f
x
(
2
x)

	 � 0 for all pos-

sible values of x

4. Strictly concave if and only if 	
d

d

2f
x
(
2
x)

	 � 0 for all

possible values of x
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Note that a strictly convex function also is convex, but a con-
vex function is not strictly convex if the second derivative
equals zero for some values of x. Similarly, a strictly con-
cave function is concave, but the reverse need not be true.

Figures A2.1 to A2.6 show examples that illustrate these
definitions and this convexity test.

Applying this test to the function in Fig. A2.1, we see
that as x is increased, the slope (first derivative) either in-
creases (for 0 � x � 1 and x � 2) or remains constant (for
1 � x1 � 2). Therefore, the second derivative always is non-
negative, which verifies that the function is convex. How-
ever, it is not strictly convex because the second derivative
equals zero for 1 � x � 2.

However, the function in Fig. A2.2 is strictly convex be-
cause its slope always is increasing so its second derivative
always is greater than zero.

The piecewise linear function shown in Fig. A2.3
changes its slope at x 
 1. Consequently, it does not possess

1 x� x� x2

f(x)

■ FIGURE A2.1
A convex function.

x

f(x)

x� x�

■ FIGURE A2.2
A strictly convex function.

a first or second derivative at this point, so the convexity test
cannot be fully applied. (The fact that the second derivative
equals zero for 0 � x � 1 and x � 1 makes the function el-
igible to be either convex or concave, depending upon its
behavior at x 
 1.) Applying the definition of a concave func-
tion, we see that if 0 � x� � 1 and x� � 1 (as shown in
Fig. A2.3), then the entire line segment joining [x�, f(x�)] and
[x�, f(x�)] lies below the graph of f(x), except for the two end-
points of the line segment. If either 0 � x� � x� � 1 or 1 �
x� � x�, then the entire line segment lies on the graph of f(x).
Therefore, f(x) is concave (but not strictly concave).

The function in Fig. A2.4 is strictly concave because its
second derivative always is less than zero.

As illustrated in Fig. A2.5, any linear function has its
second derivative equal to zero everywhere and so is both
convex and concave.

The function in Fig. A2.6 is neither convex nor concave
because as x increases, the slope fluctuates between de-
creasing and increasing so the second derivative fluctuates
between being negative and positive.

CONVEX OR CONCAVE FUNCTIONS 
OF SEVERAL VARIABLES

The concept of a convex or concave function of a single vari-
able also generalizes to functions of more than one variable.
Thus, if f(x) is replaced by f(x1, x2, . . . , xn), the definition
still applies if x is replaced everywhere by (x1, x2, . . . , xn).
Similarly, the corresponding geometric interpretation is still
valid after generalization of the concepts of points and line
segments. Thus, just as a particular value of (x, y) is inter-
preted as a point in two-dimensional space, each possible

994 APPENDIX 2 CONVEXITY

hil76299_app_991-1007.qxd  11/14/08  08:47 AM  Page 994



Confirming Pages

APPENDIX 2 CONVEXITY 995

value of (x1, x2, . . . , xm) may be thought of as a point in m-
dimensional (Euclidean) space. By letting m 
 n � 1, the
points on the graph of f(x1, x2, . . . , xn) become the possible
values of [x1, x2, . . . , xn, f(x1, x2, . . . , xn)]. Another point,
(x1, x2, . . . , xn, xn�1), is said to lie above, on, or below the
graph of f(x1, x2, . . . , xn), according to whether xn�1 is larger,
equal to, or smaller than f(x1, x2, . . . , xn), respectively.

Definition: The line segment joining any two
points (x�1, x�2, . . . , x�m) and (x�1, x�2, . . . , x�m) is the
collection of points

(x1, x2, . . . , xm) 
 [�x1� � (1 � �)x�1, �x2�
� (1 � �)x�2, . . . , �x�m � (1 � �)x�m]

such that 0 � � � 1.

Thus, a line segment in m-dimensional space is a direct
generalization of a line segment in two-dimensional space.
For example, if

(x�1, x�2) 
 (2, 6), (x1�, x2�) 
 (3, 4),

then the line segment joining them is the collection of points

(x1, x2) 
 [3� � 2(1 � �), 4� � 6(1 � �)],

where 0 � � � 1.

Definition: f (x1, x2, . . . , xn) is a convex function
if, for each pair of points on the graph of f (x1,
x2, . . . , xn), the line segment joining these two
points lies entirely above or on the graph of f (x1,
x2, . . . , xn). It is a strictly convex function if this
line segment actually lies entirely above this graph
except at the endpoints of the line segment. Con-
cave functions and strictly concave functions are
defined in exactly the same way, except that above
is replaced by below.

Just as the second derivative can be used (when it ex-
ists everywhere) to check whether a function of a single vari-
able is convex, so second partial derivatives can be used to
check functions of several variables, although in a more

f(x)

x1x� x�

x

f(x)

x� x� x

f(x)

x

f(x)

■ FIGURE A2.3
A concave function.

■ FIGURE A2.4
A strictly concave 
function.

■ FIGURE A2.5
A function that is both 
convex and concave.

■ FIGURE A2.6
A function that is neither 
convex nor concave.
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■ TABLE A2.1 Convexity test for a function of two variables

Strictly Strictly
Quantity Convex Convex Concave Concave

	
�2f(

�
x
x
1
2
1

, x2)
	 	

�2f(
�
x
x
1
2
2

, x2)
	 � �	�

2

�
f
x
(x

1

1

�
,
x2

x2)
	�

2
� 0 � 0 � 0 � 0

	
�2f (

�
x
x
1
2
1

, x2)
	 � 0 � 0 � 0 � 0

	
�2f(

�
x
x
1
2
2

, x2)
	 � 0 � 0 � 0 � 0

Values of (x1, x2) All possible values

complicated way. For example, if there are two variables and
all partial derivatives exist everywhere, then the convexity
test assesses whether all three quantities in the first column
of Table A2.1 satisfy the inequalities shown in the appro-
priate column for all possible values of (x1, x2).

When there are more than two variables, the convexity
test is a generalization of the one shown in Table A2.1. For
example, in mathematical terminology, f (x1, x2, . . . , xn) is
convex if and only if its n � n Hessian matrix is positive
semidefinite for all possible values of (x1, x2, . . . , xn).

To illustrate the convexity test for two variables, con-
sider the function

f (x1, x2) 
 (x1 � x2)2 
 x2
1 � 2x1x2 � x2

2.

Therefore,

(1) 	
�2f (

�
x
x
1
2
1

, x2)
	 	

�2f (
�
x
x
1
2
2

, x2)
	 � �	�

2

�
f
x
(x

1

1

�
,
x
x
2

2)
	�

2




2(2) � (�2)2 
 0,

(2) 
 2 � 0,

(3) 	
�2f (

�
x
x
1
2
2

, x2)
	 
 2 � 0.

Since � 0 holds for all three conditions, f (x1, x2) is convex.
However, it is not strictly convex because the first condition
only gives 
 0 rather than � 0.

Now consider the negative of this function

g(x1, x2) 
 �f (x1, x2) 
 �(x1 � x2)2


 �x2
1 � 2x1x2 � x2

2.

In this case,

(4) 	
�2g(

�
x
x
1
2
1

, x2)
	 	

�2g(
�
x
x
1
2
2

, x2)
	 � �	�

2

�
g
x
(x
1�

1,
x2

x2)
	�

2




�2(�2) � 22 
 0,

(5) 	
�2g(

�
x
x
1
2
1

, x2)
	 
 �2 � 0,

(6) 	
�2g(

�
x
x
1
2
2

, x2)
	 
 �2 � 0.

Because � 0 holds for the first condition and � 0 holds for
the other two, g(x1, x2) is a concave function. However, it is
not strictly concave since the first condition gives 
 0.

Thus far, convexity has been treated as a general prop-
erty of a function. However, many nonconvex functions do
satisfy the conditions for convexity over certain intervals for
the respective variables. Therefore, it is meaningful to talk
about a function being convex over a certain region. For ex-
ample, a function is said to be convex within a neighbor-
hood of a specified point if its second derivative or partial
derivatives satisfy the conditions for convexity at that point.
This concept is useful in Appendix 3.

Finally, two particularly important properties of convex
or concave functions should be mentioned. First, if f (x1,
x2, . . . , xn) is a convex function, then g(x1, x2, . . . , xn) 

�f (x1, x2, . . . , xn) is a concave function, and vice versa, as
illustrated by the above example where f(x1, x2) 
 (x1 � x2)2.
Second, the sum of convex functions is a convex function,
and the sum of concave functions is a concave function.
To illustrate,

f1(x1) 
 x4
1 � 2x2

1 � 5x1

and

f2(x1, x2) 
 x2
1 � 2x1x2 � x2

2

are both convex functions, as you can verify by calculating
their second derivatives. Therefore, the sum of these functions

f (x1, x2) 
 x4
1 � 3x2

1 � 5x1 � 2x1x2 � x2
2

is a convex function, whereas its negative

g(x1, x2) 
 �x4
1 � 3x2

1 � 5x1 � 2x1x2 � x2
2,

is a concave function.

�2f (x1, x2)
		

�x2
1
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x

f(x)

x

f(x)

x1

x2

■ FIGURE A2.7
Example of a convex set
determined by a convex function.

■ FIGURE A2.8
Example of a convex set
determined by a concave function.

■ FIGURE A2.9
Example of a convex set
determined by both convex
and concave functions.

x1

x2

1

2

1 20 x1

x2

1

2

1 20

■ FIGURE A2.10
Example of a set that is not convex.

■ FIGURE A2.11
Example of a convex set.

CONVEX SETS

The concept of a convex function leads quite naturally to
the related concept of a convex set. Thus, if f(x1, x2, . . . , xn)
is a convex function, then the collection of points that lie
above or on the graph of f (x1, x2, . . . , xn) forms a convex
set. Similarly, the collection of points that lie below or on
the graph of a concave function is a convex set. These cases
are illustrated in Figs. A2.7 and A2.8 for the case of a sin-
gle independent variable. Furthermore, convex sets have the
important property that, for any given group of convex sets,
the collection of points that lie in all of them (i.e., the in-
tersection of these convex sets) is also a convex set. There-
fore, the collection of points that lie both above or on a
convex function and below or on a concave function is a
convex set, as illustrated in Fig. A2.9. Thus, convex sets may
be viewed intuitively as a collection of points whose bottom
boundary is a convex function and whose top boundary is a
concave function.

Although describing convex sets in terms of convex and
concave functions may be helpful for developing intuition
about their nature, their actual definition has nothing to do
(directly) with such functions.

Definition: A convex set is a collection of points
such that, for each pair of points in the collection,
the entire line segment joining these two points is
also in the collection.

The distinction between nonconvex sets and convex sets
is illustrated in Figs. A2.10 and A2.11. Thus, the set of points
shown in Fig. A2.10 is not a convex set because there exist
many pairs of these points, for example, (1, 2) and (2, 1),
such that the line segment between them does not lie entirely
within the set. This is not the case for the set in Fig. A2.11,
which is convex.

In conclusion, we introduce the useful concept of an ex-
treme point of a convex set.

Definition: An extreme point of a convex set is a
point in the set that does not lie on any line seg-
ment that joins two other points in the set.

Thus, the extreme points of the convex set in Fig. A2.11
are (0, 0), (0, 2), (1, 2), (2, 1), (1, 0), and all the infinite
number of points on the boundary between (2, 1) and (1, 0).
If this particular boundary were a line segment instead, then
the set would have only the five listed extreme points.
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3A P P E N D I X

Classical Optimization Methods

This appendix reviews the classical methods of calculus
for finding a solution that maximizes or minimizes (1)

a function of a single variable, (2) a function of several vari-
ables, and (3) a function of several variables subject to equal-
ity constraints on the values of these variables. It is assumed
that the functions considered possess continuous first and
second derivatives and partial derivatives everywhere. Some
of the concepts discussed next have been introduced briefly
in Secs. 12.2 and 12.3.

UNCONSTRAINED OPTIMIZATION OF 
A FUNCTION OF A SINGLE VARIABLE

Consider a function of a single variable, such as that shown
in Fig. A3.1. A necessary condition for a particular solution
x 
 x* to be either a minimum or a maximum is that

	
df

d
(
x
x)
	 
 0 at x 
 x*.

Thus, in Fig. A3.1 there are five solutions satisfying these
conditions. To obtain more information about these five crit-
ical points, it is necessary to examine the second derivative.
Thus, if

	
d

d

2f
x
(
2
x)

	 � 0 at x 
 x*,

then x* must be at least a local minimum [that is, f (x*) �
f (x) for all x sufficiently close to x*]. Using the language in-
troduced in Appendix 2, we can say that x* must be a local
minimum if f (x) is strictly convex within a neighborhood of
x*. Similarly, a sufficient condition for x* to be a local max-
imum (given that it satisfies the necessary condition) is that
f (x) be strictly concave within a neighborhood of x* (that
is, the second derivative is negative at x*). If the second 

derivative is zero, the issue is not resolved (the point may
even be an inflection point), and it is necessary to examine
higher derivatives.

To find a global minimum [i.e., a solution x* such that
f (x*) � f (x) for all x], it is necessary to compare the local
minima and identify the one that yields the smallest value
of f (x). If this value is less than f (x) as x � �� and as 
x � �� (or at the endpoints of the function, if it is defined
only over a finite interval), then this point is a global mini-
mum. Such a point is shown in Fig. A3.1, along with the
global maximum, which is identified in an analogous way.

However, if f (x) is known to be either a convex or a
concave function (see Appendix 2 for a description of such
functions), the analysis becomes much simpler. In particu-
lar, if f (x) is a convex function, such as the one shown in
Fig. A2.1, then any solution x* such that

	
df

d
(
x
x)
	 
 0 at x 
 x*

is known automatically to be a global minimum. In other
words, this condition is not only a necessary but also a suf-
ficient condition for a global minimum of a convex func-
tion. This solution need not be unique, since there could be
a tie for the global minimum over a single interval where
the derivative is zero. On the other hand, if f (x) actually is
strictly convex, then this solution must be the only global
minimum. (However, if the function is either always de-
creasing or always increasing, so the derivative is nonzero
for all values of x, then there will be no global minimum at
a finite value of x.)

Similarly, if f (x) is a concave function, then having

	
df

d
(
x
x)
	 
 0 at x 
 x*
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becomes both a necessary and sufficient condition for x* to
be a global maximum.

UNCONSTRAINED OPTIMIZATION OF 
A FUNCTION OF SEVERAL VARIABLES

The analysis for an unconstrained function of several vari-
ables f (x), where x 
 (x1, x2, . . . , xn), is similar. Thus, a
necessary condition for a solution x 
 x* to be either a min-
imum or a maximum is that

	
�
�
f (
x
x
j

)
	 
 0 at x 
 x*, for j 
 1, 2, . . . , n.

After the critical points that satisfy this condition are iden-
tified, each such point is then classified as a local minimum
or maximum if the function is strictly convex or strictly con-
cave, respectively, within a neighborhood of the point. (Ad-
ditional analysis is required if the function is neither.) The
global minimum and maximum would be found by compar-
ing the local minima and maxima and then checking the
value of the function as some of the variables approach ��
or ��. However, if the function is known to be convex or
concave, then a critical point must be a global minimum or
a global maximum, respectively.

CONSTRAINED OPTIMIZATION 
WITH EQUALITY CONSTRAINTS

Now consider the problem of finding the minimum or max-
imum of the function f (x), subject to the restriction that x
must satisfy all the equations

g1(x) 
 b1

g2(x) 
 b2

�

gm(x) 
 bm,

■ FIGURE A3.1
A function having several
maxima and minima. x

f(x)

Global
minimum

Inflection
point

Local
maximum

Local
minimum

Global
maximum

where m � n. For example, if n 
 2 and m 
 1, the prob-
lem might be

Maximize f (x1, x2) 
 x2
1 � 2x2,

subject to

g(x1, x2) 
 x2
1 � x2

2 
 1.

In this case, (x1, x2) is restricted to be on the circle of ra-
dius 1, whose center is at the origin, so that the goal is to
find the point on this circle that yields the largest value of
f (x1, x2). This example will be solved after a general ap-
proach to the problem is outlined.

A classical method of dealing with this problem is the
method of Lagrange multipliers. This procedure begins by
formulating the Lagrangian function

h(x, �) 
 f (x) � �
m

i
1
�i[gi(x) � bi],

where the new variables � 
 (�1, �2, . . . , �m) are called
Lagrange multipliers. Notice the key fact that for the feasi-
ble values of x,

gi(x) � bi 
 0, for all i,

so h(x, �) 
 f(x). Therefore, it can be shown that if (x, �) 

(x*, �*) is a local or global minimum or maximum for the
unconstrained function h(x, �), then x* is a corresponding
critical point for the original problem. As a result, the
method now reduces to analyzing h(x, �) by the procedure
just described for unconstrained optimization. Thus, the 
n � m partial derivatives would be set equal to zero

	
�
�
x
h
j

	 
 	
�
�
x
f
j

	 � �
m

i
1
�i 	

�
�
g
xj

i	 
 0, for j 
 1, 2, . . . , n,

	
�
�
�
h

i
	 
 �gi(x) � bi 
 0, for i 
 1, 2, . . . , m,
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and then the critical points would be obtained by solving
these equations for (x, �). Notice that the last m equations
are equivalent to the constraints in the original problem, so
only feasible solutions are considered. After further analy-
sis to identify the global minimum or maximum of h( � ), the
resulting value of x is then the desired solution to the orig-
inal problem.

From a practical computational viewpoint, the method
of Lagrange multipliers is not a particularly powerful pro-
cedure. It is often essentially impossible to solve the equa-
tions to obtain the critical points. Furthermore, even when
the points can be obtained, the number of critical points may
be so large (often infinite) that it is impractical to attempt
to identify a global minimum or maximum. However, for
certain types of small problems, this method can sometimes
be used successfully.

To illustrate, consider the example introduced earlier. In
this case,

h(x1, x2) 
 x2
1 � 2x2 � �(x2

1 � x2
2 � 1),

so that

	
�
�
x
h
1

	 
 2x1 � 2�x1 
 0,

	
�
�
x
h
2

	 
 2 � 2�x2 
 0,

	
�
�
�
h
	 
 �(x2

1 � x2
2 � 1) 
 0.

The first equation implies that either � 
 1 or x1 
 0. If 
� 
 1, then the other two equations imply that x2 
 1 and
x1 
 0. If x1 
 0, then the third equation implies that 
x2 
 
1. Therefore, the two critical points for the original
problem are (x1, x2) 
 (0, 1) and (0, �1). Thus, it is appar-
ent that these points are the global maximum and minimum,
respectively.

THE DERIVATIVE OF A DEFINITE INTEGRAL

In presenting the classical optimization methods just de-
scribed, we have assumed that you are already familiar with
derivatives and how to obtain them. However, there is a spe-
cial case of importance in OR work that warrants additional

explanation, namely, the derivative of a definite integral. In
particular, consider how to find the derivative of the function

F (y) 
 �h(y)

g(y)
f (x, y) dx,

where g(y) and h(y) are the limits of integration expressed
as functions of y.

To begin, suppose that these limits of integration are
constants, so that g(y) 
 a and h(y) 
 b, respectively. For
this special case, it can be shown that, given the regularity
conditions assumed at the beginning of this appendix, the
derivative is

	
d
d
y
	 �b

a
f (x, y) dx 
 �b

a
	
�f(

�

x
y
, y)
	 dx.

For example, if f (x, y) 
 e�xy, a 
 0, and b 
 �, then

	
d
d
y
	 ��

0
e�xy dx 
 ��

0
(�x)e�xy dx 
 �	

y
1
2	

at any positive value of y. Thus, the intuitive procedure of
interchanging the order of differentiation and integration is
valid for this case.

However, finding the derivative becomes a little more
complicated than this when the limits of integration are func-
tions. In particular,

	
d
d
y
	 �h(y)

g(y)
f (x, y) dx 
 �h(y)

g(y)
	
�f(

�

x
y
, y)
	 dx

� f (h(y), y) 	
dh

d
(
y
y)
	 � f (g(y), y) 	

dg
d
(
y
y)
	,

where f (h(y), y) is obtained by writing out f (x, y) and then
replacing x by h(y) wherever it appears, and similarly for
f (g(y), y). To illustrate, if f (x, y) 
 x2y3, g(y) 
 y, and 
h(y) 
 2y, then

	
d
d
y
	 �2y

y
x2y3 dx 
 �2y

y
3x2y2 dx � (2y)2y3(2) � y2y3(1)


 14y5

at any positive value of y.
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A matrix is a rectangular array of numbers. For example,

A 


is a 3 � 2 matrix (where 3 � 2 is said “3 by 2”) because it
is a rectangular array of numbers with three rows and two
columns. (Matrices are denoted in this book by boldface
capital letters.) The numbers in the rectangular array are
called the elements of the matrix. For example,

B 
 � �
is a 2 � 4 matrix whose elements are 1, 2.4, 0, �3�, �4, 2,
�1, and 15. Thus, in more general terms,

A 
 
 aij

is an m � n matrix, where a11, . . . , amn represent the num-
bers that are the elements of this matrix; aij is shorthand
notation for identifying the matrix whose element in row i
and column j is aij for every i 
 1, 2, . . . , m and j 
 1,
2, . . . , n.

MATRIX OPERATIONS

Because matrices do not possess a numerical value, they
cannot be added, multiplied, and so on as if they were in-
dividual numbers. However, it is sometimes desirable to
perform certain manipulations on arrays of numbers. There-
fore, rules have been developed for performing operations








a1n

a2n

amn

���

���

���

a12

a22

am2

a11

a21

am1








�3�
15

0

�1

2.4

2

1

�4







5

0

1

2

3

1







4A P P E N D I X

Matrices and Matrix Operations

�������������������������

on matrices that are analogous to arithmetic operations. To
describe these, let A 
 aij and B 
 bij be two ma-
trices having the same number of rows and the same num-
ber of columns. (We shall change this restriction on the size
of A and B later when discussing matrix multiplication.)

Matrices A and B are said to be equal (A 
 B) if and
only if all the corresponding elements are equal (aij 
 bij

for all i and j ).
The operation of multiplying a matrix by a number (de-

note this number by k) is performed by multiplying each
element of the matrix by k, so that

kA 
 kaij.

For example,

3� � 
 � �.

To add two matrices A and B, simply add the correspond-
ing elements, so that

A � B 
 aij � bij.

To illustrate,

� � � � � 
 � �.

Similarly, subtraction is done as follows:

A � B 
 A � (�1)B,

so that

A � B 
 aij � bij.

For example,

� � � � � 
 � �.
3

5

3

�2

0

1

2

3

3

6

5

1

3

7

7

4

0

1

2

3

3

6

5

1

6

�9

1

0

3

15

2

�3

	
1
3

	

0

1

5
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Note that, with the exception of multiplication by a
number, all the preceding operations are defined only when
the two matrices involved are the same size. However, all of
these operations are straightforward because they involve
performing only the same comparison or arithmetic opera-
tion on the corresponding elements of the matrices.

There exists one additional elementary operation that has
not been defined—matrix multiplication—but it is consider-
ably more complicated. To find the element in row i, column j
of the matrix resulting from multiplying matrix A times ma-
trix B, it is necessary to multiply each element in row i of A
by the corresponding element in column j of B and then to add
these products. To do this element-by-element multiplication,
we need the following restriction on the sizes of A and B:

Matrix multiplication AB is defined if and only if the
number of columns of A equals the number of rows of B.

Thus, if A is an m � n matrix and B is an n � s matrix, then
their product is

AB 
 �
n

k
1
aikbkj,

where this product is an m � s matrix. However, if A is an
m � n matrix and B is an r � s matrix, where n � r, then
AB is not defined.

To illustrate matrix multiplication,

� � 



 .

On the other hand, if one attempts to multiply these matri-
ces in the reverse order, the resulting product

� �
is not even defined.

Even when both AB and BA are defined,

AB � BA

in general. Thus, matrix multiplication should be viewed as
a specially designed operation whose properties are quite
different from those of arithmetic multiplication. To under-
stand why this special definition was adopted, consider the
following system of equations:

2x1 � x2 � 5x3 � x4 
 20
x1 � 5x2 � 4x3 � 5x4 
 30

3x1 � x2 � 6x3 � 2x4 
 20.

Rather than write out these equations as shown here, they
can be written much more concisely in matrix form as

Ax 
 b,

where

A 
 , x 
 , b 
 .

It is this kind of multiplication for which matrix multipli-
cation is designed.

Carefully note that matrix division is not defined.
Although the matrix operations described here do not

possess certain of the properties of arithmetic operations,
they do satisfy these laws

A � B 
 B � A,
(A � B) � C 
 A � (B � C),

A(B � C) 
 AB � AC,
A(BC) 
 (AB)C,

when the relative sizes of these matrices are such that the
indicated operations are defined.

Another type of matrix operation, which has no arith-
metic analog, is the transpose operation. This operation in-
volves nothing more than interchanging the rows and
columns of the matrix, which is frequently useful for per-
forming the multiplication operation in the desired way.
Thus, for any matrix A 
 aij, its transpose AT is

AT 
 aji.

For example, if

A 
 ,

then

AT 
 � �.

SPECIAL KINDS OF MATRICES

In arithmetic, 0 and 1 play a special role. There also exist
special matrices that play a similar role in matrix theory. In
particular, the matrix that is analogous to 1 is the identity
matrix I, which is a square matrix whose elements are 0s
except for 1s along the main diagonal. Thus,

4

0

1

3

2

5







5

3

0

2

1

4













20

30

20














x1

x2

x3

x4














1

5

2

5

4

�6

�1

5

1

2

1

3













2

0

3

1

4

2







1

5

3

2







11

4

17

7

12

12













1(1) � 2(5)

4(1) � 0(5)

2(1) � 3(5)

1(3) � 2(2)

4(3) � 0(2)

2(3) � 3(2)







1

5

3

2







2

0

3

1

4

2






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I 


The number of rows or columns of I can be specified as de-
sired. The analogy of I to 1 follows from the fact that for
any matrix A,

IA 
 A 
 AI,

where I is assigned the appropriate number of rows and
columns in each case for the multiplication operation to be
defined.

Similarly, the matrix that is analogous to 0 is the null
matrix 0, which is a matrix of any size whose elements are
all 0s. Thus,

0 


Therefore, for any matrix A,

A � 0 
 A, A � A 
 0, and
0A 
 0 
 A0,

where 0 is the appropriate size in each case for the opera-
tions to be defined.

On certain occasions, it is useful to partition a matrix into
several smaller matrices, called submatrices. For example,
one possible way of partitioning a 3 � 4 matrix would be

A 
 
 � �,

where

A12 
 [a12, a13, a14], A21 
 � �,

A22 
 � �
all are submatrices. Rather than perform operations element
by element on such partitioned matrices, we can do them in
terms of the submatrices, provided the partitionings are such
that the operations are defined. For example, if B is a par-
titioned 4 � 1 matrix such that

B 
 
 � �,
b1

B2








b1

b2

b3

b4








a24

a34

a23

a33

a22

a32

a21

a31

A12

A22

a11

A21







a14

a24

a34

a13

a23

a33

a12

a22

a32

a11

a21

a31














0

0

0

���

���

���

0

0

0

0

0

0


















0

0

0

1

���

���

���

���

0

0

1

0

0

1

0

0

1

0

0

0










�����������������������

�������������������

then

AB 
 �	Aa1

2

1

1

b
b

1

1

�
�

A
A

1

2

2

2

B
B

2

2
	�.

VECTORS

A special kind of matrix that plays an important role in ma-
trix theory is the kind that has either a single row or a sin-
gle column. Such matrices are often referred to as vectors.
Thus,

x 
 [x1, x2, . . . , xn]

is a row vector, and

x 


is a column vector. (Vectors are denoted in this book by
boldface lowercase letters.) These vectors also are some-
times called n-vectors to indicate that they have n elements.
For example,

x 
 [1, 4, �2, 	
1
3

	, 7]

is a 5-vector.
A null vector 0 is either a row vector or a column vec-

tor whose elements are all 0s, that is,

0 
 [0, 0, . . . , 0] or 0 
 .

(Although the same symbol 0 is used for either kind of null
vector, as well as for a null matrix, the context normally will
identify which it is.)

One reason vectors play an important role in matrix the-
ory is that any m � n matrix can be partitioned into either
m row vectors or n column vectors, and important proper-
ties of the matrix can be analyzed in terms of these vectors.
To amplify, consider a set of n-vectors x1, x2, . . . , xm of
the same type (i.e., they are either all row vectors or all col-
umn vectors).

Definition: A set of vectors x1, x2, . . . , xm is said
to be linearly dependent if there exist m numbers
(denoted by c1, c2, . . . , cm), some of which are not
zero, such that

c1x1 � c2x2 � ��� � cmxm 
 0.

Otherwise, the set is said to be linearly independent.








0

0

�

0







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


x1

x2
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


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To illustrate, if m 
 3 and

x1 
 [1, 1, 1], x2 
 [0, 1, 1], x3 
 [2, 5, 5],

then there exist three numbers, namely, c1 
 2, c2 
 3, and
c3 
 �1, such that

2x1 � 3x2 � x3 
 [2, 2, 2] � [0, 3, 3] � [2, 5, 5]

 [0, 0, 0],

so, x1, x2, x3 are linearly dependent. Note that showing they
are linearly dependent required finding three particular num-
bers (c1, c2, c3) that make c1x1 � c2x2 � c3x3 
 0, which is
not always easy. Also note that this equation implies that

x3 
 2x1 � 3x2.

Thus, x1, x2, x3 can be interpreted as being linearly depen-
dent because one of them is a linear combination of the oth-
ers. However, if x3 were changed to

x3 
 [2, 5, 6]

instead, then x1, x2, x3 would be linearly independent be-
cause it is impossible to express one of these vectors (say,
x3) as a linear combination of the other two.

Definition: The rank of a set of vectors is the
largest number of linearly independent vectors that
can be chosen from the set.

Continuing the preceding example, we see that the rank
of the set of vectors x1, x2, x3 was 2 (any pair of the vec-
tors is linearly independent), but it became 3 after x3 was
changed.

Definition: A basis for a set of vectors is a col-
lection of linearly independent vectors taken from
the set such that every vector in the set is a linear
combination of the vectors in the collection (i.e.,
every vector in the set equals the sum of certain
multiples of the vectors in the collection).

To illustrate, any pair of the vectors (say, x1 and x2) con-
stituted a basis for x1, x2, x3 in the preceding example be-
fore x3 was changed. After x3 is changed, the basis becomes
all three vectors.

The following theorem relates the last two definitions.

Theorem A4.1: A collection of r linearly indepen-
dent vectors chosen from a set of vectors is a ba-
sis for the set if and only if the set has rank r.

SOME PROPERTIES OF MATRICES

Given the preceding results regarding vectors, it is now possi-
ble to present certain important concepts regarding matrices.

1004 APPENDIX 4 MATRICES AND MATRIX OPERATIONS

Definition: The row rank of a matrix is the rank
of its set of row vectors. The column rank of a
matrix is the rank of its column vectors.

For example, if matrix A is

A 
 ,

then the preceding example of linearly dependent vectors
shows that the row rank of A is 2. The column rank of A is
also 2. (The first two column vectors are linearly indepen-
dent but the second column vector minus the third equals 0.)
Having the same column rank and row rank is no coinci-
dence, as the following general theorem indicates.

Theorem A4.2: The row rank and column rank of
a matrix are equal.

Thus, it is only necessary to speak of the rank of a matrix.
The final concept to be discussed is the inverse of a

matrix. For any nonzero number k, there exists a recipro-
cal or inverse k�1 
 1/k such that

kk�1 
 1 
 k�1k.

Is there an analogous concept that is valid in matrix theory?
In other words, for a given matrix A other than the null ma-
trix, does there exist a matrix A�1 such that

AA�1 
 I 
 A�1A?

If A is not a square matrix (i.e., if the number of rows and
the number of columns of A differ), the answer is never, be-
cause these matrix products would necessarily have a dif-
ferent number of rows for the multiplication to be defined
(so that the equality operation would not be defined). How-
ever, if A is square, then the answer is under certain cir-
cumstances, as described by the following definition and
Theorem A4.3.

Definition: A matrix is nonsingular if its rank
equals both the number of rows and the number of
columns. Otherwise, it is singular.

Thus, only square matrices can be nonsingular. A use-
ful way of testing for nonsingularity is provided by the fact
that a square matrix is nonsingular if and only if its deter-
minant is nonzero.

Theorem A4.3:
(a) If A is nonsingular, there is a unique nonsingu-
lar matrix A�1, called the inverse of A, such that
AA�1 
 I 
 A�1A.


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1
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(b) If A is nonsingular and B is a matrix for which
either AB 
 I or BA 
 I, then B 
 A�1.
(c) Only nonsingular matrices have inverses.

To illustrate matrix inverses, consider the matrix

A 
 � �.

Notice that A is nonsingular since its determinant, 5(�1) �
1(�4) 
 �1, is nonzero. Therefore, A must have an inverse,
which has the unknown elements

A�1 
 � �.

To derive A�1, we use the property that

AA�1 
 � � 
 � �,
0

1

1

0
5b�4d5a�4c

b
d

a

c

�4

�1

5

1

so

5a � 4c = 1 5b � 4d = 0
a � c = 0 b � d = 1

Solving these two pairs of simultaneous equations yields
a = 1, c =1 , and b = �4, d = �5, so

A�1 
 � �.

Hence,

AA�1 
 � � � � 
 � �,

and

A�1A 
 � � � � 
 � �.
0

1

1

0

�4

�1

5

1

�4

�5

1

1

0

1

1

0

�4

�5

1

1

�4

�1

5

1

�4

�5

1

1

a�c b�d
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Table for a Normal Distribution

TABLE A5.1 Areas under the normal curve from K� to �

P{standard normal � K�} � ��

K�

e�x2/2 dx � �

K� .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .00990 .00964 .00939 .00914 .00889 .00866 .00842
2.4 .00820 .00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639

2.5 .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480
2.6 .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357
2.7 .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264
2.8 .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193
2.9 .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139

1
	
�2��

1006
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K� .0 .1 .2 .3 .4 .5 .6 .7 .8 .9

3 .00135 .03968 .03687 .03483 .03337 .03233 .03159 .03108 .04723 .04481
4 .04317 .04207 .04133 .05854 .05541 .05340 .05211 .05130 .06793 .06479
5 .06287 .06170 .07996 .07579 .07333 .07190 .07107 .08599 .08332 .08182
6 .09987 .09530 .09282 .09149 .010777 .010402 .010206 .010104 .011523 .011260

Source: F. E. Croxton, Tables of Areas in Two Tails and in One Tail of the Normal Curve. Copyright
1949 by Prentice-Hall, Inc., Englewood Cliffs, NJ.

APPENDIX 5 TABLE FOR A NORMAL DISTRIBUTION 1007
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1008

PARTIAL ANSWERS TO 
SELECTED PROBLEMS

CHAPTER 3

3.1-2. (a)

3.1-5. (x1, x2) � (13, 5); Z � 31.

3.1-11. (b) (x1, x2, x3) � (26.19, 54.76, 20); Z � 2,904.76.

3.2-3. (b) Maximize Z � 4,500x1 � 4,500x2,

subject to

x1 � 1
x2 � 1

5,000x1 � 4,000x2 � 6,000
400x1 � 500x2 � 600

and

x1 � 0, x2 � 0.

3.4-3. (a) Proportionality: OK since it is implied that a fixed fraction of the radiation dosage at a
given entry point is absorbed by a given area.

Additivity: OK since it is stated that the radiation absorption from multiple beams is
additive.

Divisibility: OK since beam strength can be any fractional level.
Certainty: Due to the complicated analysis required to estimate the data on radiation ab-

sorption in different tissue types, there is considerable uncertainty about the
data, so sensitivity analysis should be used.

3.4-12. (b) From Factory 1, ship 200 units to Customer 2 and 200 units to Customer 3.
From Factory 2, ship 300 units to Customer 1 and 200 units to Customer 3.

3.4-13. (c) Z � $152,880; A1 � 60,000; A3 � 84,000; D5 � 117,600. All other decision variables
are 0.

3.4-15. (b) Each optimal solution has Z � $13,330.

x1

2

1

0 1 2 3 4 5 6

x2
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PARTIAL ANSWERS TO SELECTED PROBLEMS 1009

3.5-2. (c, e)

3.5-5. (a) Minimize Z � 84C � 72T � 60A,

subject to

90C � 20T � 40A � 200
30C � 80T � 60A � 180
10C � 20T � 60A � 150

and

C � 0, T � 0, A � 0.

CHAPTER 4

4.1-4. (a) The corner-point solutions that are feasible are (0, 0), (0, 1), (�
1
4

�, 1), (�
2
3

�, �
2
3

�), (1, �
1
4

�), and
(1, 0).

4.3-4. (x1, x2, x3) � (0, 10, 6�
2
3

�); Z � 70.

4.6-1. (a, c) (x1, x2) � (2, 1); Z � 7.

4.6-3. (a, c, e) (x1, x2, x3) � (�
4
5

�, �
9
5

�, 0); Z � 7.

4.6-9. (a, b, d) (x1, x2, x3) � (0, 15, 15); Z � 90.
(c) For both the Big M method and the two-phase method, only the final tableau represents a

feasible solution for the real problem.

4.6-13. (a, c) (x1, x2) � (��
8
7

�, �
1
7
8
�); Z � �

8
7
0
�.

4.7-5. (a) (x1, x2, x3) � (0, 1, 3); Z � 7.
(b) y1* � �

1
2

�, y2* � �
5
2

�, y3* � 0. These are the marginal values of resources 1, 2, and 3, respectively.

CHAPTER 5

5.1-1. (a) (x1, x2) � (2, 2) is optimal. Other CPF solutions are (0, 0), (3, 0), and (0, 3).

5.1-12. (x1, x2, x3) � (0, 15, 15) is optimal.

5.2-2. (x1, x2, x3, x4, x5) � (0, 5, 0, �
5
2

�, 0); Z � 50.

5.3-1. (a) Right side is Z � 8, x2 � 14, x6 � 5, x3 � 11.
(b) x1 � 0, 2x1 � 2x2 � 3x3 � 5, x1 � x2 � x3 � 3.

CHAPTER 6

6.1-1. (a) Minimize W � 15y1 � 12y2 � 45y3,

subject to

�y1 � y2 � 5y3 � 10
2y1 � y2 � 3y3 � 20

Resource Usage per Unit
of Each Activity

Resource
Resource Activity 1 Activity 2 Totals Available

1 2 1 10 � 10
2 3 3 20 � 20
3 2 4 20 � 20

Unit Profit 20 30 $166.67
Solution 3.333 3.333 

hil76299_ans_1008-1021.qxd  11/14/08  08:51 AM  Page 1009



Confirming Pages

and

y1 � 0, y2 � 0, y3 � 0.

6.3-1. (c)

1010 PARTIAL ANSWERS TO SELECTED PROBLEMS

Complementary Basic Solutions

Primal Problem Dual Problem

Basic Solution Feasible? Z � W Feasible? Basic Solution

(0, 0, 20, 10) Yes 0 No (0, 0, �6, �8)

(4, 0, 0, 6) Yes 24 No �1�
1
5

�, 0, 0, �5�
3
5

��
(0, 5, 10, 0) Yes 40 No (0, 4, �2, 0)

�2�
1
2

�, 3�
3
4

�, 0, 0� Yes and optimal 45 Yes and optimal ��
1
2

�, 3�
1
2

�, 0, 0�
(10, 0, �30, 0) No 60 Yes (0, 6, 0, 4)
(0, 10, 0, �10) No 80 Yes (4, 0, 14, 0) 

6.3-7. (c) Basic variables are x1 and x2. The other variables are nonbasic.
(e) x1 � 3x2 � 2x3 � 3x4 � x5 � 6, 4x1 � 6x2 � 5x3 � 7x4 � x5 � 15, x3 � 0, x4 � 0, x5 � 0. 

Optimal CPF solution is (x1, x2, x3, x4, x5) � (�
3
2

�, �
3
2

�, 0, 0, 0).

6.4-3. Maximize W � 8y1 � 6y2,

subject to

y1 � 3y2 � 2
4y1 � 2y2 � 3
2y1 � 2y2 � 1

and

y1 � 0, y2 � 0.

6.4-8. (a) Minimize W � 120y1 � 80y2 � 100y3,

subject to

3y1 � y2 � 3y3 � �1
3y1 � y2 � y3 � �2

y1 � 4y2 � 2y3 � �1

and

y1 � 0, y2 � 0, y3 � 0.

6.6-1. (d) Not optimal, since 2y1 � 3y2 � 3 is violated for y1* � �
1
5

�, y2* � �
3
5

�.
(f) Not optimal, since 3y1 � 2y2 � 2 is violated for y1* � �

1
5

�, y2* � �
3
5

�.

6.7-1.
New Basic Solution

Part (x1, x2, x3, x4, x5) Feasible? Optimal?

(a) (0, 30, 0, 0, �30) No No
(b) (0, 20, 0, 0, �10) No No
(c) (0, 10, 0, 0, 60) Yes Yes
(d) (0, 20, 0, 0, 10) Yes Yes
(e) (0, 20, 0, 0, 10) Yes Yes
(f) (0, 10, 0, 0, 40) Yes No
(g) (0, 20, 0, 0, 10) Yes Yes
(h) (0, 20, 0, 0, 10, x6 � �10) No No
(i) (0, 20, 0, 0, 0) Yes Yes 
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6.7-3. �10 � � � �
1
9
0
�

6.7-12. (a) b1 � 2, 6 � b2 � 18, 12 � b3 � 24
(b) 0 � c1 � �

1
2
5
�, c2 � 2

6.8-4. (f) The allowable range for the unit profit from producing toys is $2.50 to $5.00. The cor-
responding range for producing subassemblies is �$3.00 to �$1.50.

6.8-6. (f) For part (a), the change is within the allowable increase of $10, so the optimal solution
does not change. For part (b), the change is outside the allowable decrease of $5, so the
optimal solution might change. For part (c), the sum of the percentages of the allowable
changes is 250 percent, so the 100 percent rule for simultaneous changes in objective
function coefficients indicates that the optimal solution might change.

CHAPTER 7

7.1-2. (x1, x2, x3) � (�
2
3

�, 2, 0) with Z � �
2
3
2
� is optimal.

7.1-6. (a) The new optimal solution is (x1, x2, x3, x4, x5) � (0, 0, 9, 3, 0) with Z � 117.

7.2-1. (a, b)

PARTIAL ANSWERS TO SELECTED PROBLEMS 1011

Range of � Optimal Solution Z(�)

0 � � � 2 (x1, x2) � (0, 5) 120 � 10�

2 � � � 8 (x1, x2) � ��
1
3
0
�, �

1
3
0
�� �

320 �
3

10�
�

8 � � (x1, x2) � (5, 0) 40 � 5�

7.2-4.
Optimal Solution

Range of � x1 x2 Z(�)

0 � � � 1 10 � 2� 10 � 2� 30 � 6�

1 � � � 5 10 � 2� 15 � 3� 35 � �

5 � � � 25 25 � � 0 50 � 2� 

7.3-3. (x1, x2, x3) � (1, 3, 1) with Z � 8 is optimal.

CHAPTER 8

Destination

Today Tomorrow Dummy Supply

Dick 3.0 2.7 0 5
Source

Harry 2.9 2.8 0 4

Demand 3.0 4.0 2

8.1-3. (b)

8.2-2. (a) Basic variables: x11 � 4, x12 � 0, x22 � 4, x23 � 2, x24 � 0, x34 � 5, x35 � 1, x45 � 0; 
Z � 53.

(b) Basic variables: x11 � 4, x23 � 2, x25 � 4, x31 � 0, x32 � 0, x34 � 5, x35 � 1, x42 � 4; Z � 45.
(c) Basic variables: x11 � 4, x23 � 2, x25 � 4, x32 � 0, x34 � 5, x35 � 1, x41 � 0, x42 � 4; Z � 45.

8.2-7. (a) x11 � 3, x12 � 2, x22 � 1, x23 � 1, x33 � 1, x34 � 2; three iterations to reach optimality.
(b, c) x11 � 3, x12 � 0, x13 � 0, x14 � 2, x23 � 2, x32 � 3; already optimal.

8.2-10. x11 � 10, x12 � 15, x22 � 0, x23 � 5, x25 � 30, x33 � 20, x34 � 10, x44 � 10; cost �
$77.30. Also have other tied optimal solutions.
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8.2-11. (b) Let xij be the shipment from plant i to distribution center j. Then x13 � 2, x14 � 10,
x22 � 9, x23 � 8, x31 � 10, x32 � 1; cost � $20,200.

8.3-4. (a)

1012 PARTIAL ANSWERS TO SELECTED PROBLEMS

Task

Backstroke Breaststroke Butterfly Freestyle Dummy

Carl 37.7 43.4 33.3 29.2 0
Chris 32.9 33.1 28.5 26.4 0

Assignee David 33.8 42.2 38.9 29.6 0
Tony 37.0 34.7 30.4 28.5 0
Ken 35.4 41.8 33.6 31.1 0 

CHAPTER 9

9.3-3. (a) O � A � B � D � T or O � A � B � E � D � T, with length � 16.

9.4-1. (a) {(O, A); (A, B); (B, C ); (B, E ); (E, D); (D, T )}, with length � 18.

9.5-1. Arc (1, 2) (1, 3) (1, 4) (2, 5) (3, 4) (3, 5) (3, 6) (4, 6) (5, 7) (6, 7)

Flow 4 4 1 4 1 0 3 2 4 5 

9.8-3. (a) Critical path: Start � A � C � E � Finish
Total duration � 12 weeks

(b) New plan:
Activity Duration Cost

A 3 weeks $54,000
B 3 weeks $65,000
C 3 weeks $68,666
D 2 weeks $41,500
E 2 weeks $80,000 

$7,834 is saved by this crashing schedule.

CHAPTER 10

10.3-2.
Store

1 2 3

1 2 2
Allocations

3 2 0

10.3-7. (a) 
Phase (a) (b)

1 2M 2.945M
2 1M 1.055M
3 1M 0

Market share 6% 6.302% 

10.3-11. x1 � �2 � �13� � 1.6056, x2 � 5 � �13� � 1.3944; Z � 98.233.

10.4-3. Produce 2 on first production run; if none acceptable, produce 3 on second run. Expected
cost � $573.
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CHAPTER 11

11.1-2. (a) Minimize Z � 4.5xem � 7.8xec � 3.6xed � 2.9xel � 4.9xsm � 7.2xsc � 4.3xsd

� 3.1xsl,

subject to

xem � xec � xed � xel � 2
xsm � xsc � xsd � xsl � 2

xem � xsm � 1
xec � xsc � 1
xed � xsd � 1
xel � xsl � 1

and

all xij are binary.

11.3-1. (b)

PARTIAL ANSWERS TO SELECTED PROBLEMS 1013

Modified Original
Right-Hand Right-Hand

Constraint Product 1 Product 2 Product 3 Product 4 Totals Side Side

First 5 3 6 4 6000 � 6000 6000
Second 4 6 3 5 12000 � 105999 6000

Marginal revenue $70 $60 $90 $80 $80000
Solution 0 2000 0 0

� � � �

0 9999 0 0
Set Up? 0 1 0 0 1 � 2
Start-up Cost $50,000 $40,000 $70,000 $60,000

Contingency Constraints:

Product 3: 0 � 1 :Product 1 or 2
Product 4: 0 � 1 :Product 1 or 2

Which Constraint (0 � First, 1 � Second): 0 

11.3-5. (b, d) (long, medium, short) � (14, 0, 16), with profit of $95.6 million.

11.4-3. (b)
Right-Hand

Constraint Product 1 Product 2 Product 3 Total Side

Milling 9 3 5 498 � 500
Lathe 5 4 0 349 � 350
Grinder 3 0 2 135 � 150
Sales Potential 0 0 1 0 � 20

Unit Profit 50 20 25 $2870
Solution 45 31 0

� � �

999 999 0
Produce? 1 1 0 2 � 2 

11.4-5. (a) Let xij � �
Mutually exclusive alternatives: For each column of arcs, exactly one arc is included
in the shortest path. Contingent decisions: The shortest path leaves node i only if it en-
ters node i.

if arc i � j is included in shortest path
otherwise.

1
0
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11.5-2. (a) (x1, x2) � (2, 3) is optimal.
(b) None of the feasible rounded solutions are optimal for the integer programming problem.

11.6-1. (x1, x2, x3, x4, x5) � (0, 0, 1, 1, 1), with Z � 6.

11.6-7. (b)

1014 PARTIAL ANSWERS TO SELECTED PROBLEMS

Task 1 2 3 4 5

Assignee 1 3 2 4 5

11.6-9. (x1, x2, x3, x4) � (0, 1, 1, 0), with Z � 36.

11.7-2. (a, b) (x1, x2) � (2, 1) is optimal.

11.8-1. (a) x1 � 0, x3 � 0

CHAPTER 12

12.2-7. (a) Concave.

12.4-1. (a) Approximate solution � 1.0125.

12.5-3. Exact solution is (x1, x2) � (2, �2).

12.5-7. (a) Approximate solution is (x1, x2) � (0.75, 1.5). 

12.6-3.
�4x1

3 � 4x1 � 2x2 � 2u1 � u2 � 0 (or � 0 if x1 � 0).
�2x1 � 8x2 � u1 � 2u2 � 0 (or � 0 if x2 � 0).

� 2x1 � x2 � 10 � 0 (or � 0 if u1 � 0).
� x1 � 2x2 � 10 � 0 (or � 0 if u2 � 0).

x1 � 0, x2 � 0, u1 � 0, u2 � 0.

12.6-6. (x1, x2) � (1, 2) cannot be optimal.

12.6-8. (a) (x1, x2) � (1 � 3�1/2, 3�1/2).

12.7-2. (a) (x1, x2) � (2, 0) is optimal.
(b) Minimize Z � z1 � z2,

subject to

2x12x2 � � u1 � y1 � y2 � v1� z1 � z2 � 8
2x1 � 2x2 � u1 � y1 � y2 �� v1 z1 � z2 � 4
x1 � x2 u1 � y1 � y2 y2 � v1 z1� � z2 � 2

x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0, z1 � 0,
z2 � 0.

12.8-2. (b) Maximize Z � 3x11 � 3x12 � 15x13 � 4x21 � 4x23,

subject to

x11 � x12 � x13 � 3x21 � 3x22 � 3x23 � 8
5x11 � 5x12 � 5x13 � 2x21 � 2x22 � 2x23 � 14

and

0 � xij � 1, for i � 1, 2, 3; j � 1, 2, 3.

12.9-8. (a) (x1, x2) � ��
1
3

�, �
2
3

��.

12.9-14. (a) P(x; r) � �2x1 � (x2 � 3)2 � r ��x1 �
1

3
� � �

x2 �
1

3
��.

(b) (x1, x2) � �3 � ��
2
r

��
1/2

, 3 � ��
2
r

��
1/3

�
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CHAPTER 13

13.2-2. The best solution found has links AC, BC, CD, and DE.

13.4-2. (a) For the first child, the options for the first link are 1-2, 1-8, 1-5, and 1-4 so the random
numbers 0.09656 and 0.96657 say to choose link 1-2 and no mutation occurs. The options for the
second link then are 2-3, 2-8, and 2-4, and so forth. A mutation occurs with the fifth link. The com-
plete first child is 1-2-8-5-6-4-7-3-1.

CHAPTER 14

14.2-2. Player 1: strategy 2; player 2: strategy 1.

14.2-7. (a) Politician 1: issue 2; politician 2: issue 2.
(b) Politician 1: issue 1; politician 2: issue 2.

14.4-4. (x1, x2) � (�
2
5

�, �
3
5

�); (y1, y2, y3) � (�
1
5

�, 0, �
4
5

�); v � �
8
5

� .

14.5-3. (a) Maximize x4,

subject to

5x1 � 2x2 � 3x3 � x4 � 0
3x1 � 4x2 � 2x3 � x4 � 0
3x1 � 3x2 � 2x3 � x4 � 0
x1 � 2x2 � 4x3 � x4 � 0
x1 � x2 � x3 � x4 � 1

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.

CHAPTER 15

15.2-2. (a)

PARTIAL ANSWERS TO SELECTED PROBLEMS 1015

State of Nature

Alternative Sell 10,000 Sell 100,000

Build Computers 0 54
Sell Rights 15 15 

(c) Let p � prior probability of selling 10,000. They should build when p � 0.722, and sell when
p � 0.722.

15.2-4. (c) Warren should make the countercyclical investment.

15.2-8. Order 25.

15.3-2. (a) EVPI � EP (with perfect info) � EP (without more info) � 34.5 � 27 � $7.5 million.
(d)

Data: P (Finding  State)

State of Prior Finding

Nature Probability Sell 10,000 Sell 100,000

Sell 10,000 0.5 0.666666667 0.333333333
Sell 100,000 0.5 0.333333333 0.666666667 
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15.3-4. (b) EVPI � EP (with perfect info) � EP (without more info) � 53 � 35 � $18
(c) Betsy should consider spending up to $18 to obtain more information.

15.3-8. (a) Up to $230,000
(b) Order 25.

15.3-9. (a)

1016 PARTIAL ANSWERS TO SELECTED PROBLEMS

Posterior P (State  Finding)
Probabilities: State of Nature

Finding P (Finding) Sell 10,000 Sell 100,000

Sell 10,000 0.5 0.666666667 0.333333333
Sell 100,000 0.5 0.333333333 0.666666667 

State of Nature

Alternative Poor Risk Average Risk Good Risk

Extend Credit �15,000 10,000 20,000
Don’t Extend Credit 0 0 0

Prior Probabilities 0.2 0.5 0.3 

(c) EVPI � EP (with perfect info) � EP (without more info) � 11,000 � 8,000 � $3,000. This in-
dicates that the credit-rating organization should not be used.

15.3-13. (a) Guess coin 1.
(b) Heads: coin 2; tails: coin 1.

15.4-2. The optimal policy is to do no market research and build the computers.

15.4-4. (c) EVPI � EP (with perfect info) � EP (without more info) � 1.8 � 1 � $800,000
(d)

0.6

0.4

0.25

0.25

0.75

0.75

0.45

0.15

0.1

0.3

0.818

0.333

0.182

0.667

W
in

Lose

lose, given win

win, given win

lose, given lose

win, given lose

win and win

win and lose

lose and win

lose and lose

win, given win

win, given lose

lose, given win

lose, given lose

Prior
Probabilities

P (state)

Conditional
Probabilities

P (finding|state)

Joint
Probabilities

P (state and finding)

Posterior
Probabilities

P (state|finding)

(f) Leland University should hire William. If he predicts a winning season then they should hold
the campaign. If he predicts a losing season then they should not hold the campaign.
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15.5-7. (a) Choose to introduce the new product (expected payoff is $12.5 million).
(b) $7.5 million.
(c) The optimal policy is not to test but to introduce the new product.
(f) Both charts indicate that the expected payoff is sensitive to both parameters, but is somewhat

more sensitive to changes in the profit if successful than to changes in the loss if unsuccessful. 

15.6-2. (a) Choose not to buy insurance (expected payoff is $249,840).
(b) U(insurance) � 499.82

U(no insurance) � 499.8
Optimal policy is to buy insurance.

15.6-4. U(10) � 9

CHAPTER 16

16.3-3. (c) �0 � �1 � �2 � �3 � �4 � �
1
5

� .

16.4-1. (a) All states belong to the same recurrent class.

16.5-7. (a) �0 � 0.182, �1 � 0.285, �2 � 0.368, �3 � 0.165.
(b) 6.50

CHAPTER 17

17.2-1. Input source: population having hair; customers: customers needing haircuts; and so forth
for the queue, queue discipline, and service mechanism.

17.2-2. (b) Lq � 0.375
(d) W � Wq � 24.375 minutes

17.4-2. (c) 0.0527

17.5-5. (a) State: 15 10 5

15

0 1 2 3

15 15

(c) P0 � �
2
9
6
�, P1 � �

2
9
6
�, P2 � �

1
3
3
�, P3 � �

1
1
3
�.

(d) W � 0.11 hour.

17.5-8. (b) P0 � �
2
5

�, Pn � (�
3
5

�)(�
1
2

�)n

(c) L � �
6
5

�, Lq � �
3
5

�, W � �
2
1
5
�, Wq � �

5
1
0
�

17.6-2. (a) P0 � P1 � P2 � P3 � P4 � 0.96875 or 97 percent of the time.

17.6-21. (a) Combined expected waiting time � 0.211
(c) An expected process time of 3.43 minutes would cause the expected waiting times to be the

same for the two procedures.

17.6-26. (a) 0.429

17.6-32. (a) three machines
(b) three operators

PARTIAL ANSWERS TO SELECTED PROBLEMS 1017
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17.7-1. (a) Wq (exponential) � 2Wq (constant) � �
8
5

�Wq (Erlang).
(b) Wq (new) � �

1
2

� Wq (old) and Lq (new) � Lq (old) for all distributions.

17.7-6. (a, b) Under the current policy an airplane loses 1 day of flying time as opposed to 3.25
days under the proposed policy.
Under the current policy 1 airplane is losing flying time per day as opposed to 0.8125
airplane.

17.7-9.

1018 PARTIAL ANSWERS TO SELECTED PROBLEMS

Service Distribution P0 P1 P2 L

Erlang 0.561 0.316 0.123 0.561
Exponential 0.571 0.286 0.143 0.571 

17.8-1. (a) This system is an example of a nonpreemptive priority queueing system.

(c) � �
0
0
.
.
0
0
3
8
3
3

� � 0.4

17.8-4. (a) W � �
1
2

�

(b) W1 � 0.20, W2 � 0.35, W3 � 1.10
(c) W1 � 0.125, W2 � 0.3125, W3 � 1.250

17.10-2. 4 cash registers

CHAPTER 18

18.3-1. (a) t � 1.83, Q � 54.77
(b) t � 1.91, Q � 57.45, S � 52.22

18.3-3. (a)

Wq for first-class passengers
����
Wq for coach-class passengers

(d)

Data

d � 676 (demand/year)
K � $75 (setup cost)
h � $600.00 (unit holding cost)
L � 3.5 (lead time in days)

WD � 365 (working days/year) 

Results

Reorder point � 6.5
Annual setup cost � $10,140

Annual holding cost � $ 1,500

Total variable cost � $11,640 

Decision

Q � 5 (order quantity) 

Data

d � 676 (demand/year)
K � $75 (setup cost)
h � $600 (unit holding cost)
L � 3.5 (lead time in days)

WD � 365 (working days/year) 

Results

Reorder point � 6.48
Annual setup cost � $3,900

Annual holding cost � $3,900

Total variable cost � $7,800 

Decision

Q � 13 (order quantity) 

The results are the same as those obtained in part (c).
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(f) Number of orders per year � 52
ROP � 6.5 � inventory level when each order is placed

(g) The optimal policy reduces the total variable inventory cost by $3,840 per year, which is a 
33 percent reduction.

18.3-6. (a) h � $3 per month which is 15 percent of the acquisition cost.
(c) Reorder point is 10.
(d) ROP � 5 hammers, which adds $20 to his TVC (5 hammers � $4 holding cost).

18.3-7. t � 3.26, Q � 26,046, S � 24,572

18.3-12. (a) Optimal Q � 500

18.4-4. Produce 3 units in period 1 and 4 units in period 3.

18.6-6. (b) Ground Chuck: R � 145.
Chuck Wagon: R � 829.

(c) Ground Chuck: safety stock � 45.
Chuck Wagon: safety stock � 329.

(f) Ground Chuck: $39,378.71.
Chuck Wagon: $41,958.61.
Jed should choose Ground Chuck as their supplier.

(g) If Jed would like to use the beef within a month of receiving it, then Ground Chuck is the bet-
ter choice. The order quantity with Ground Chuck is roughly 1 month’s supply, whereas with
Chuck Wagon the optimal order quantity is roughly 3 month’s supply.

18.7-5. (a) Optimal service level � 0.667
(c) Q* � 500
(d) The probability of running short is 0.333.
(e) Optimal service level � 0.833

CHAPTER 19

19.2-2. (c) Use slow service when no customers or one customer is present and fast service when
two customers are present.

19.2-3. (a) The possible states of the car are dented and not dented.
(c) When the car is not dented, park it on the street in one space. When the car is dented, get it

repaired.

19.2-5. (c) State 0: attempt ace; state 1: attempt lob.

19.3-2. (a) Minimize Z � 4.5y02 � 5y03 � 50y14 � 9y15,

subject to

y01 � y02 � y03 � y14 � y15 � 1

y01 � y02 � y03 � ��
1
9
0
�y01 � �

4
5
9
0
�y02 � y03 � y14� � 0

y14 � y15 � ��
1
1
0
�y01 � �

5
1
0
�y02 � y15� � 0

and

all yik � 0.

19.3-4. (a) Minimize Z � ��
1
8

�y01 � �
2
7
4
�y02 � �

1
2

�y11 � �
1
5
2
�y12,
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subject to

y01 � y02 � ��
3
8

�y01 � y11 � �
7
8

�y02 � y12� � 0

y11 � y12 � ��
5
8

�y01 � y11 � �
1
8

�y02� � y12 � 0

y01 � y02 � �
1
8

�y11 � y12 � 1

and

yik � 0 for i � 0, 1; k � 1, 2.

19.4-2. Car not dented: park it on the street in one space. Car dented: repair it.

19.4-4. State 0: attempt ace. State 1: attempt lob.

19.5-1. Reject $600 offer, accept any of the other two.

19.5-2. (a) Minimize Z � 60(y01 � y11 � y21) � 600y02 � 800y12 � 1,000y22,

subject to

y01 � y02 � (0.95)��
5
8

��(y01 � y11 � y21) � �
5
8

�

y11 � y12 � (0.95)��
1
4

��(y01 � y11 � y21) � �
1
4

�

y21 � y22 � (0.95)��
1
8

��(y01 � y11 � y21) � �
1
8

�

and

yik � 0 for i � 0, 1, 2; k � 1, 2.

19.5-3. After three iterations, approximation is, in fact, the optimal policy given for 
Prob. 19.5-1.

19.5-11. In periods 1 to 3: Do nothing when the machine is in state 0 or 1; overhaul when machine
is in state 2; and replace when machine is in state 3. In period 4: Do nothing when machine is in
state 0, 1, or 2; replace when machine is in state 3.

CHAPTER 20

20.1-1. (b) Let the numbers 0.0000 to 0.5999 correspond to strikes and the numbers 0.6000 
to 0.9999 correspond to balls. The random observations for pitches are 0.7520
� ball, 0.4184 � strike, 0.4189 � strike, 0.5982 � strike, 0.9559 � ball, and 0.1403
� strike.

20.1-10. (b) Use � � 4 and � � 5.
(i) Answers will vary. The option of training the two current mechanics significantly decreases the

waiting time for German cars, without a significant impact on the wait for Japanese cars, and
does so without the added cost of a third mechanic. Adding a third mechanic lowers the aver-
age wait for German cars even more, but comes at an added cost for the third mechanic.

20.3-1. (a) 5, 8, 1, 4, 7, 0, 3, 6, 9, 2

20.4-2. (b) F(x) � 0.0965 when x � �5.18
F(x) � 0.5692 when x � 18.46
F(x) � 0.6658 when x � 23.29
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20.4-6. (a) Here is a sample replication.

PARTIAL ANSWERS TO SELECTED PROBLEMS 1021

Summary of Results:

Win? (1 � Yes, 0 � No) 0
Number of Tosses � 3 

Simulated Tosses

Toss Die 1 Die 2 Sum

1 4 2 6
2 3 2 5
3 6 1 7
4 5 2 7
5 4 4 8
6 1 4 5
7 2 6 8 

Results

Win? Lose? Continue?

0 0 Yes
0 0 Yes
0 1 No

NA NA No
NA NA No
NA NA No
NA NA No 
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efficiency of, 779
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basic EOQ model, 834–836
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solutions
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degenerate, 108
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sensitivity analysis with, 678–679

Bayes’ theorem, 681
A Beautiful Mind (movie), 651
BendX, 6
Better Products Company problem,

339–342
BF solutions

adjacent, 96–97, 102
algebraic properties of, 96–97
defined, 95, 170
degenerate, 170
and feasible spanning trees,

correspondence between,
390–392

finding next, in network simplex
method, 394–398

initial, 98, 111, 113
optimality test for, 99, 102, 104,

327, 397
in simplex method, extensions to,

169–172
solving for, in simplex method,

101–102
solving for, in simplex method in

matrix form, 173–175
bi
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nonnegative right-hand sides of, 89,

97
Big M method

applying, 118, 119
to assign value for unidentified

costs, 314–315, 317, 340, 341
compared to two-phase methods,

125–126
defined, 113
to introduce artificial variables, 319
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120–121, 122, 127, 215
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models. See BIP models
binary representation of general
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auxiliary, 473

binding constraints, 132, 133–134
BIP models

airline applications, 471–473
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of)
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interrelated activities, scheduling,

471
investment analysis, 468–469
production and distribution

network, designing, 469–470
site selection, 469
software options for solving, 467

BIP models, binary variables in
formulation of

binary representation of general
integers, 478–479

either-or constraints, 473–474
fixed-charge problem, 476–478
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N possible values, functions with,

475–476
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branch-and-bound algorithm for MIP,
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branch-and-cut approach to solving
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(See also branch-and-cut
technique, for solving BIP
problems)

constraint programming, 515–521
(See also constraint
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formulation examples (See BIP

problems, formulation
examples)

prototype example, 465–467
solving, perspectives on, 487–491
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queueing models based on,

777–790
(See also M/M/s model)

results for, 776–777
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blending problem, 55 See also Save-It

Co. problem
boldface lowercase letters to represent

vectors, 173
bounding, 493–494, 495, 496, 505
brachytherapy, 44
brainy business, 720–722
branch-and-bound algorithm for MIP,

503–509
branch-and-bound technique, 491–502

for BIP problems (See branch-and-
bound technique, for solving
BIP problems)

bounding, 493–494, 495, 496, 505
branching, 492–493, 495, 496, 505
example, completing, 496–500
fathoming, 494–495, 496, 505
other options with, 500–502
summary of, 495–496

branch-and-cut technique, for solving
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automatic problem processing for
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background, 509–510
generating cutting planes for pure

BIP, 514–515
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branching, 492–493, 495, 496, 505
branching tree, 493
branching variable, 493
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bumped flight, 886
business firm located in a single
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C

cafeteria costs, cutting, 88
California Manufacturing Company,

465–467
call centers

design and operations of, 960
staffing, 88

calling population (input source) in
queueing theory, 760–761

Call Processing Simulator (CAPS), 960
Canadian Pacific Railway, 367
capacity-controlled discount fares

model, 884–885
applying, example of, 885–886

CAPS (Call Processing Simulator), 960
car assembly plants, design process

for efficient, 749
cells

adjustable, 62
assumption, procedure for defining,

966–968
changing, 62

multiple, 251–252
data, 60
donor, 330
forecast, procedure for defining,

968–972
objective, 63
output, 62
recipient, 330
target, 63

Center for Operations Research in
Medicine and Health Care, 44

certainty assumption, 41–42
changing cells, 62

multiple, 251–252
Chapman-Kolmogorov equations

n-step transition matrices for
inventory example, 733–734

n-step transition matrices for
weather example, 733

characteristics, covering all, 485–486
child, procedure for generating,

643–644
children, 636, 637
China, 471
Chinese State Planning Commission,

471
chi-square distributions, 958
cj parameters

for systemic changes in, 280–282
summary of, 280–282

classical nonlinear programming
model for portfolio selection, 541

coefficients
allowable range of, 135–136,

233–235
of basic variable, changes in,

236–239

negative, 178, 278
of nonbasic variable, changes in,

215–216, 231–235
nonnegative, 277
object function, analyzing

simultaneous changes in, 235,
255–258

technological, 134
CoinMP, 6, 139
column reduction, 343
commercial service systems, 765
competing activities, limited

resources allocated among, 23
complementarity constraint, 551, 569
complementarity problem, 551–552
complementary basic solutions,

207–209
complementary basic solutions,

relationships among, 208,
209–211

complementary basic solutions
property, 207

complementary optimal solutions
properties, 201, 279n

complementary optimal solution y*,
201

complementary slackness, 207
relationship for complementary

basic solutions, 208
complementary slackness property,

202, 207
complementary solutions properties,

201
complementary variables, 569
computer-based system, 17

decision support system, 18
computer implementation

linear programming software,
138–140

of simplex method, 137–138
computerized inventory systems,

866
computer revolution, 2
concave function, 585
connected network, 362
connected nodes, 362
Conoco-Phillips, 675
CONOPT, 6, 573, 588
constraint boundary, 90, 162

intersection of, 166
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constraint programming
all-different constraints, 518–519
element constraints, 519–520
nature of, 516–517
potential of, 517–518
research, current, 520–521

constraints
all-different, 518–519
for artificial problem, 111, 113, 118
binding, 132, 133–134
boundary (See constraint boundary)
complementarity, 569
defined, 11
either-or, 473–474
element, 519–520
equality, 94
functional (See functional

constraints)
global, 518
inequality, 94
known, 218
K out of N, 474–475
minimum cover of, 515
minimum spanning tree with,

617–622
net flow, 58
new, introduction of, 239–240
node, 383
nonnegativity, 32
programming (See constraint

programming)
for real problem, 111, 118
redundant, 57
upper-bound, 58

Continental Airlines, 13, 18, 473–474
contingent decisions, 466
continuous review, 833
continuous simulation, 936
continuous time Markov chains

formulation, 748–749
random variables, key, 749–751
steady-state probabilities, 751–753

continuous time transition probability
function, 749

convex combination, 110
convex function, 545–546
convex programming

Frank-Wolfe algorithm, 581–584
other algorithms, 584–585
software options for, 587–588

SUMT, 585–587
convex set, 546
corner-point feasible (CPF) solutions.

See CPF solutions
corner-point infeasible solutions, 90
corner-point solutions, 90, 117
cost assumption, 309, 318
cost criterion, discounted, 922–924
cost of ordering, 831
County Hospital emergency room

problem
M/M/s model, 783–785
priority-discipline queueing models,

801–803
CPF solutions

defined, 34, 162
five solutions for Wyndor Glass Co.

problem, 34, 35
optimal solutions and, relationship

between, 35–36
See also CPF solutions in simplex

method
CPF solutions in simplex method

adjacent, 93, 164–166
augmented, extensions to, 95,

169–172
constraint boundaries shared by, 90
example, solving, 91–92
functional constraint in � form,

117–118
optimality test, 91–92
properties of, 166–169
solution concepts, 92–94
terminology, 161–164
in two-phased method, 121–126

CPLEX, 6, 30
barrier algorithm in, 138–139, 141
for convex programming, 587–588
crossover algorithm in, 144
dual simplex method, computational

experience with, 277
ILOG OPL-CPLEX Development

System, 520–520
OPL-CPLEX Development System,

139
for quadratic programming,

572–573
for solving BIP models, 467
student version of, 74

CPLEX 11, 138, 139

CPM (critical path method), 399
of time-cost trade-offs, 359, 399, 403

crashing decisions
crash point, 403–404
deciding which projects should be

crashed, 404–406
partially crashing, 403–404
restatement of the problem,

406–407
in time-cost trade-offs, 403
using linear programming to make,

406–409
crash point, 403–404
credit lines and interest rate for credit

cards, management of, 909
CrewSolver, 18
critical path

defined, 403
in time-cost trade-offs, 401–403

critical path method (CPM). See CPM
(critical path method)

crossover algorithm, 144
crossover point, 678
cross-product terms, 39
Crystal Ball, 963–964, 966–971, 973,

976–977
C spreadsheet software, 961
curse of dimensionality, 449
customers, 10
cut, 378
cutting planes for pure BIP,

generating, 514–515
cut value, 378
cycle, 361–362
cycle length, 953
cycling around a perpetual loop, 108n

D

Dash Optimization, 138
data

collecting for simulation study, 960
collection and processing, 10
determining parameter values for

real problems, 11
gathering, 8–10
for linear programming, Wyndsor

Glass Co. example, 25, 26, 31
needed for linear programming

models, 31–32
databases, 17–18
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data cells, 60
data mining, 10
data set, density of, 72
death, 773
decision analysis

decision making with
experimentation, 680–686

decision making without
experimentation, 674–679

decision trees, 686–690
practical application of, 707–708
prototype example, 673
utility theory, 700–707

decision making with experimentation
posterior probabilities, 680–684
prototype example, 680
value of experimentation, 684–686

decision making without
experimentation

Bayes’ decision rule, 677–679
formulation of prototype example,

675
maximin likelihood criterion,

676–677
maximin payoff criterion, 675–676

decision-support system, 18
for investment advisors, developing,

541
decision table tool, application of,

975
decision trees

analysis, performing, 687–690
(See also decision trees,

performing sensitivity analysis
on using spreadsheets)

constructing, 686–687
defined, 452

decision trees, performing sensitivity
analysis on using spreadsheets

first, how TreePlan constructs the
decision tree for, 691–693

full, decision tree for, 693
organizing spreadsheet to perform

sensitivity analysis, 693–696
using Senslt to create three types of

sensitivity analysis graphs,
696–700

See also Goferbroke Co. problem
decision variables

in augmented solution, 95

defined, 31
defining, procedure for, 975–979
explained, 11
in formulation of linear

programming problem, 26
making choices when they are

continuous, 479–482
decreasing marginal utility for money,

700
Deere & Company, 849
defining equations, 163, 164–165
degeneracy, 164
degenerate basic variable, 108
degenerate BF solutions, 170
degenerate distribution, 762
Delta Air Lines, 472
demand, 308, 829
demand node, 363, 382

dummy, 382
demonstration example, 95
denied-boarding cost, 886
density of data set, 72
dependent demand, 841
dependent-demand products, 841
descendants, 494
destinations, 308
deterministic continuous-review

models
demand types for a product,

841–842
JIT inventory management,

842–843
See also EOQ models

deterministic dynamic programming,
431–451

deterministic multiechelon inventory
models for supply chain
management

extensions of, 864–866
model for serial multiechelon

system, 855–856, 856
assumptions for, 856–860

phase 1: outline of (solve the
relaxation), 860–861

phase 2: outline of (solve the
revised problem), 861–864

rounding procedure for n*, 853–855
serial two-echelon model, 849–853

deterministic periodic-review models
applying to the example, 846–848

example of, 843–845
for finding optimal inventory policy,

845–846
deterministic policy, 909
Digital Equipment Corporation, 470
dimensionally consistent

mathematical expressions, 16
directed arc, 360
directed network, 361, 368
directed path, 361
disability claims and rehabilitation,

managing high-risk, 681
discounted cost criterion in Markov

decision processes
method of successive

approximations, 925–927
policy improvement algorithm,

921–925
discount factor, 832
discount rate, 832
discrete-event simulation, 936
distributing scientists to research

teams, 440–442
distribution channels for magazines,

management of, 872
Distribution Gallery, 966–967
distribution network, 384

distributing goods through, 58–60
distribution of effort problem

distributing scientists to research
teams, 440–442

scheduling employment levels,
442–448

Wyndor Glass Company problem,
448–451

See also dynamic programming
distribution systems, 864

design and operation of, 949
redesign of, 306

Distribution Unlimited Co. problem,
58–60, 384–385

divisibility assumption, 41
dominated strategies, 655
donor cells, 330
dual feasible solution, 211
duality, economic interpretation

of dual problem, 203–205
of simplex method, 205–206

duality properties, 201–202
duality theorem, 202
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duality theory
applications, 202–203
dual problem, origin of, 198–200
other primal forms, adapting to,

211–215
primary-dual relationships,

summary of, 201–202
in sensitivity analysis, 195,

215–217
(See also sensitivity analysis, in

duality theory)
See also primal-dual relationships

dual problem, 203–205, 212
dual simplex method

defined, 130
example of, 278–280
summary of, 278

dummy demand node, 382
dummy destination, 315
dummy sink, 374
dummy source, 317, 374
dynamic programming

deterministic, 431–451
probabilistic, 451–457
problems, characteristics of,

429–430
prototype example for, 424–429

E

echelon, 848
economic order quantity model. See

EOQ models
either-or constraints, 473–474
elementary algebraic operations, 101
elementary row operations, 105, 123,

124
element constraints, 519–520
employees, 10
employee work schedules at

restaurants, 488
enumeration tree, 493
EOQ formula, 843
EOQ models

basic, 834–836
defined, 833
Excel templates for, 840
observations about, 840–841
with planned shortages, 836–838
with quantity discounts, 838–839

equality constraints, 94, 112–116
equations, defining, 163, 164–165

equilibrium solution, 657
equivalent cost tables, role of,

342–344
equivalent lottery method in utility

theory, 703–704
equivalent problem, 127–128
ergodic states, 737
Erlang distributions, 792, 957–958
EVE (expected value of

experimentation), 685–686
event node, 686
evolutionary solver, 592
EVPI (expected value of perfect

information), 684–685
Excel

add-ins included on book’s website, 6
EOQ model templates, 840
Frontline Systems, 139
for postoptimality analysis,

134–136
for quadratic programming,

572–573
Queueing Simulator, 944–945
RAND() function, 937, 951
Senslt add-in, 696–700
for shortest-path problem, 365–367
Solver (See Excel Solver)
SUMPRODUCT, 62–63
template, 6
for transportation problem, 311–313
TreePlan add-in, 690–693

Excel Solver, 6
Assume Linear Model option, 65
Assume Non-Negative option, 65
dialogue box, 64–67
Premium Solver for Education, 6, 64,

139, 140
sensitivity report, using to perform

sensitivity analysis, 253–258
Table (See Solver Table)
using to find local optima, 589–590
using to solve linear programming

models, 64–68
expected service cost per unit time �

E(SC), 808–809, 810
expected total cost per unit time �

E(TC), 808–809, 810
expected value of experimentation

(EVE), 685–686
expected value of perfect information

(EVPI), 684–685

expected waiting cost per unit time �

E(WC), 808–809, 810
exponential distribution

optimal inventory policy,
approximate solution for,
881–882

in queueing systems, 767–773
random observations from a

probability distribution,
generation of, 957–958

exponential growth, 487
exponential service times, 777–778
exponential time algorithm, 142
exponential utility function, 705
Express-MP, 138
external beam radiation therapy, 44
extreme points or vertices. See CPF

solutions

F
fabrics and fall fashions, 158–160
fair game, 655
fanning-out procedure, 378
farm management, 275
fathoming, 494–495, 496, 505
feasibility test, 224
feasible region, 27, 28, 33, 90–92
feasible solutions, 33, 90, 93

no, 126–127
property, 309, 384
See also BF solutions

feasible spanning tree, 390–392
Federal Express Logistical planning

of shipments, 5
Financial Journal, 964
financial risk analysis, 949
financial services, pricing analysis for

providing, 948
first passage times, of Markov chains,

743–745
fixed-charge problem, 476–478
fleet assignment problem, 471
forecast cell, procedure for defining,

968–972
forest ecosystem management, long-

term, 228
form of the objective function, 432
FORTRAN, 961
fractional programming, 550–551
fraction of the abatement capacity,

50–51
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Frank-Wolfe algorithm, 581–584
Franz Edelman Awards for

Management Science
Achievement, 13, 44, 468, 473,
766

Freddie the newsboy’s problem
assumption cell, procedure for

defining, 966–968
crystal ball, application of, 966
decision table tool, application of,

975
decision variable, procedure for

defining, 975–979
forecast cell, procedure for

defining, 968–972
simulation results, accuracy of,

972–974
spreadsheet model for, 965–966

freedom for a system of equations,
degrees of, 96n

free goods, 132
from plant, 69
Frontline Systems, 139
functional constraints

defined, 32
in � form, 116–118
ordinary, number of, 138

fundamental insight in simplex
method, 181–184

fundamental property, 702–703
fundamental theorem for network

simplex method, 391
Furniture City, 536

G

game theory
extensions, 666–667
games with mixed strategies,

658–660
graphical solution procedure,

660–662
simple games, solving (prototype

example), 653–658
solving by linear programming,

662–666
two-person, zero-sum games,

651–653
formulation as, 653–658

GAMS, 68
gasoline blending, 55

Gaussian elimination, proper form
from, 98, 101–102, 119, 124,
223, 224

Gauss-Jordan method of elimination,
101–102

general integers, binary representation
of, 478–479

generalized Erlangian distributions, 797
General Motors (GM), 804
general-purpose algorithm, 338
general-purpose programming

language, 961
general-purpose simulation languages,

961
genes, 638
genetic algorithms

basic concepts, 635–636
as Evolutionary Solver, 592
generating a child, procedure for,

643–644
integer version of nonlinear

programming example, 637–640
outline of, 636–637
traveling salesman problem

example, 640–643
geometric concepts, 89–90
geometric interpretations of simplex

method, 98
geometric programming, 550
German bonds, 606
global constraint, 518
global optimization, 588
global supply chain, 470
Goferbroke Co. problem, 691–693

first, how TreePlan constructs the
decision tree for, 691–693

full, decision tree for, 693
full, utility theory applied to,

704–705
spreadsheet to perform sensitivity

analysis, organizing, 693–696
using Senslt to create three types of

sensitivity analysis graphs,
696–700

utility theory, 704–707
Good Products Company example,

479–482
government, 10
gradient algorithms, 580
gradient search procedure, 557–562,

609

Grantham, Mayo, Van Otterloo and
Company, 469

Graphical Method and Sensitivity
Analysis, 133, 224, 254

Graphical Method demo, 27
graphical method for linear

programming, 29, 45
graphical solution procedure

in game theory, 660–662
in linear programming, Wyndsor

Glass Co. example, 27–29
Green Earth, 52

H

health care applications in simulation,
950

heuristic method, 607
heuristic procedures, 14
Hewlett-Packard (HP), 767
hill-climbing procedure, 609
Hit-and-Miss Manufacturing

Company, 452–454
holding cost, 830, 831
holding time, 761
Hungarian algorithm

equivalent cost tables, role of,
342–344

summary of, 346
zero elements, creation of

additional, 344–346
hyperexponential distribution, 797
hyperplanes, 162, 165, 167

I

IBM, 17
IBM PC Company in Europe, 947
identity matrix, 173, 176, 180, 183,

185
IFORS (International Federation of

Operational Research Societies),
3

ILOG, 139, 143
ILOG CP Optimizer, 521
ILOG OPL-CPLEX Development

System, 520–521
immediate predecessors, 399–400
immediate successor, 399–400
improve sales and manufacturing

performance, 25
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increasing marginal utility for money,
700

incremental analysis, 222–223
incumbent, 494
independent demand, 841
indicating variable, 169
inequality constraints, 94
infeasible solution, 33
infinite queues, 804–805
in flow, 366
information technology (IT), 10
INFORMS (Institute for Operations

Research and the Management
Sciences), 3, 766

inheriting links, 642
inheriting sub-tour reversal, 642–643
initial basic solution, 130
initial basic variable, 104
initial BF solutions, 98, 111, 113
initial nonbasic variable, 104
initial tableau, 130
initial trial solution, 629, 633
in-process inventory, reducing, 826–827
input source (calling population) in

queueing theory, 760–761
Institute for Operations Research and

the Management Sciences
(INFORMS), 3, 766

integer programming. See IP
programming

integer solutions property, 311, 336,
384

integer values, 41
interactive computer-based system, 18
Interactive Operations Research

Tutorial. See IOR Tutorial
interarrival time, 761
intercept of a line, 29
interfaces, 3
Interfaces (journal), 3, 470, 471
interior-point algorithm

(Karmarkar’s), 140–142
centering scheme for implementing

concept 3, 292
gradient for concepts 1 and 2,

relevance of, 288–290
gradient to implement concepts 1

and 2, using, 290–291
introduced, 24
summary and illustration of,

292–294

summary of, 294–298
interior-point approach

barrier algorithm, 138–139
vs. complementary roles of simplex

method, 143–145
key solution concept, 141–142
vs. simplex method, 142–143

interior points, 141
internal service systems, 765, 808
International Federation of

Operational Research Societies
(IFORS), 3

international investments, 606
Interpretation of the Slack Variables,

95
inventory

capacity, 69
levels, reducing, 99
reducing in-process, 826–827
throughout a supply chain,

management of, 849
inventory example

formulating as Markov chain,
728–730

n-step transition matrices for, in
Chapman-Kolmogorov
equations, 733–734

of stochastic process in Markov
chains, 724–725

inventory models
components of, 831–833
deterministic continuous-review,

833–843
deterministic multiechelon, for

supply chain management,
848–866

deterministic periodic-review,
843–848

perishable products, stochastic
single period for, 870–882

stochastic continuous-review,
866–870

See also individual headings
inventory policy

examples of, 829–831
revenue management (See revenue

management)
scientific inventory management,

828–829
inventory systems

computerized, 866

future users of, 17
managing in simulation

applications, 947
inverse transformation method,

955–956
summary of, 956–957

investment analysis using BIP
models, 468–469

investments, international, 606
IOR Tutorial, 5, 30

Graphical Method and Sensitivity
Analysis, 133, 224, 254

Solve Automatically by the Interior-
Point Algorithm, 287

Solve Automatically by the Simplex
Method, 103

Solve Interactively by the Simplex
Method, 103

IP programming
defined, 41
explained, 464–465
nonlinear programming example,

637–640
solving, 487–491
state-of-the-art algorithms for, in

CPLEX 11, 139
See also BIP models

italicized letters, 173
iterative algorithm, 93

J

Jackson networks, 805–807
Job Shoe Company problem,

334–339
JPMorgan Chase, 909
just-in-time (JIT) inventory

management, 842–843

K

Karush-Kuhn-Tucker conditions. See
KKT conditions

KeyCorp, 779
KKT conditions

for constrained optimization,
563–567

for quadratic programming,
568–569

known constant, 41
known constraints, 218
K out of N constraints, 474–475
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L

Lagrangian relaxation, 500
large linear programming models,

formulating
LINGO modeling language, 74–75
modeling languages, 68–69
in MPL, 71–74
with no feasible solutions, 127n
structure of resulting model, 70–71
Worldwide Corporation problem,

69–70
largest absolute value, 108
Las Vegas, winning in, 455–457
lead time, 832
leaving basic variable, 100

determining, 105
finding, 394–398
in tie breaking (degeneracy), 108
variables allowed to be negative,

127–128
LGO, 6, 588
limited resources, allocating among

competing activities, 23
LINDO, 6, 30, 139, 140

for convex programming, 587–588
introduction to, 145–149
introduction to using, 145–149
large linear programming models

formulated in, 69
for nonconvex programming, 588
for quadratic programming,

572–573
for solving BIP models, 467
student version available on Web, 6
What’sBest! spreadsheet solver, 74

LINDO API, 69, 74, 141
LINDO Systems, Inc., 69, 74, 139
linear, defined
linear complementarity problem, 552
linear functions, 23
linearly constrained optimization, 548
linear programming

applications, fundamental insight
on, 183–184

data needed for, 31
development of, 23
examples of, 42–68
introduction to, 23–24
to make crashing decisions,

406–409
published articles about, 23

software options, 138–140
solving games by, 662–666
terminology for, 30–31

linear programming, assumptions of
additivity, 39–41
certainty, 41–42
divisibility, 41
in perspective, 42
proportionality, 36–39

linear programming, Wyndsor Glass
Co. example

conclusions, 29
CPF solutions for, 34, 35
data for, 25, 26
estimates for, 25
formulation as problem, 26–27
graphical solution, 27–29
objectives for, 24–25
software, 138–140

linear programming in Markov
decision processes

formulation, 913–914
randomized policies, 912–913
solving prototype example by,

914–915
linear programming models

data needed for, 31–32
defined, 11–12
formulating on a spreadsheet,

60–64
introduced, 24
large, formulating (See large linear

programming models,
formulating)

legitimate forms of, 32–33
LINGO modeling language, 74–75
modeling languages, 68–69
standard form of, 32
terminology for solutions of, 33–36
using Excel Solver to solve, 64–68

linear programming problems
computer implementation, 137–140
interior-point approach, 140–145
LINDO, 145–149
LINGO, 145–149
other model forms, adapting to,

111–129
postoptimality analysis, 129–137
reformulation as, 574–579
simplex method, 89–140
special types of, 137–138

See also individual headings
lines, constructing, 27–29
LINGO, 6, 30, 139, 140

for convex programming, 587–588
introduction to using, 145–149
large linear programming models

formulated in, 68, 69
modeling language, 74–75
for nonconvex programming, 588,

589
for quadratic programming, 572–573
sets as fundamental concept of,

74–75
for solving BIP models, 467
student version available on Web, 6

links, 360
Little’s formula, 764
L.L. Bean, Inc., 766
local improvement procedure,

609–610
local optima

multiple, nonlinear programming
problems with (example),
608–611

systematic approach to finding,
590–592

using Excel Solver to find, 589–590
local search procedure, 615, 618
long-run profit maximization, 9
long-run properties of Markov chains

expected average cost per unit time,
740–741

expected average cost per unit time
for complex cost functions,
741–743

steady-state probabilities, 737–740
LP relaxation, 488, 493

M

macros, 73
magazines distribution channels,

management of, 872
management information system

computer-based, 10
providing up-to-date input for

model, 17–18
management science, 2 (See also

operations research)
managerial reports, 18
manufacturing systems, design and

operation of, 948–949
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manufacturing times, reducing, 99
marginal cost analysis, 405–406
Markov chains

additional examples of, 730–732
Chapman-Kolmogorov equations,

732–735
continuous time Markov chains,

748–753
explained, 725–726
first passage times, 743–745
formulating inventory example as,

728–730
formulating weather example as,

726–728
long-run properties of, 737–743
states of (See Markov chains, states

of)
stochastic process, 723–725
See also individual headings

Markov chains, states of
absorbing, 745–748
periodicity properties, 737
recurrent states and transient states,

735–737
Markov decision processes

discounted cost criterion, 920–927
linear programming, 911–915
model for, 908–911
optimal policies, 915–920
See also individual headings

Markov decision processes, prototype
example of, 905–908

solving by exhaustive enumeration,
910–911

solving by linear programming,
914–915

solving by method of successive
approximations, 926–927

solving by policy improvement
algorithm, 917–920

Markovian property, 725, 748
Massachusetts Institute of Technology

(MIT), 767
material requirements planning

(MRP), 841–842
mathematical model, formulating,

11–13
matrix form of simplex method. See

simplex method, in matrix form
max-flow min-cut theorem, 378

maximin likelihood criterion,
676–677

maximin payoff criterion, 675–676
maximization form, 196
maximum feasible flow, 378–379
maximum flow problem

applications, 374
augmenting path algorithm,

374–379
minimum cost flow problem,

387–388
Seervada Park, 376–378
using Excel to formulate and solve,

379–380
M/D/s model, 792
measure of performance, 31, 61
M/Ek/s model, 792–794
Memorial Sloan-Kettering Cancer

Center (MSKCC), 44
Merrill Lynch

manage liquidity risk for revolving
credit lines, 727

OR study on service charge
methods, 10

pricing analysis for providing
financial services, 948

Merrill Lynch (ML) Bank USA, 727
metaheuristics, 14

genetic algorithms, 635–644
nature of (See metaheuristics,

nature of)
simulated annealing, 626–635
tabu search, 615–626
See also individual headings

metaheuristics, nature of
nonlinear programming problem

with multiple local optima
(example), 608–611

sub-tour reversal algorithm,
613–615

traveling salesman problem
example, 611–613

M/G/1 model, 791–792
midpoint rule, 553
Military Airlift Command (MAC),

433
military applications in simulation

applications, 950
minimax criterion, 659

656

minimax theorem, 659
simple proof of, 664

minimization, 118–119
minimization form, 196
minimum cost flow problem, 60, 318

applications, 381–383
example of, 384–385
explained, 358–359
formulation of, 383–384
special cases, 386–389
using Excel to formulate and solve,

385–386
minimum cover of constraint, 515
minimum ratio test, 100, 178
minimum spanning tree problem

algorithm for, 370–373
applications, 369–370
with constraints, 617–622
explained, 358
Seervada Park, 370–373

MIP
branch-and-bound algorithm for,

503–509
defined, 464
for fixed-charge problem, 476–478

mixed congruential method, 953
mixed integer programming. See MIP
mixed strategies, 658–660
M/M/s/K model, 785–788
M/M/s model

County Hospital example based on,
783–785

finite calling population variation
of, 788–790

finite queue variation of (M/M/s/K
model), 785–788

model enrichment, 12
modeling language

CPLEX (See CPLEX)
in large models, 68–69
LINDO (See LINDO)
LINGO (See LINGO)
MPL (See MPL)
Optimization Programming

Language (OPL), 139
software for, 68–69

model validation, 3, 12, 16, 30
modified simplex method, 570–572
money, utility functions for, 700–703
money in motion, 420–422
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move selection rule, 627
MPL, 6, 30

for convex programming, 588
large linear programming models

formulated in, 71–74
for nonconvex programming, 588
OptiMax 2000 Component Library,

69, 140
for quadratic programming,

572–573
for solving BIP models, 467
student version of, 68–69, 139
Tutorial, 74

MRP (material requirements
planning), 841–842

MSKCC (Memorial Sloan-Kettering
Cancer Center), 44

MultiModal Applied System, 367
multiple optimal solutions, 34,

109–111
multiplicative congruential method,

954
multiplicative factors, 115
multivariable unconstrained

optimization
gradient search procedure, 557–562
Newton’s method, 562–563

mutations, 636
of inherited links, 643
rate, 637

mutually exclusive alternatives, 466,
476

N

nation, 10
negative coefficients, 178, 278
negative right-hand sides, 116
negative variables, 127–129
neighborhood structure, 618, 629,

633
net flow constraints, 58, 366
network, connected, 362
Network Analysis Area, 398
network optimization models

CPM method of time-cost trade-
offs, 359

maximum flow problem, 358,
373–380

minimum cost flow problem,
358–359, 380–389

minimum spanning tree problem,
358, 368–373

prototype example, 359–360
shortest-path problem, 358,

363–368
terminology of networks, 360–363
time-cost trade-off, for optimizing,

399–410
See also individual headings

network simplex method
BF solution, finding next, 394–398
BF solutions and feasible spanning

trees, correspondence between,
390–392

in CPLEX, 139
entering basic variable, selecting,

392–394
fundamental theorem for, 391
leaving basic variable, finding,

394–398
upperbound technique,

incorporating, 389–390
new constraints, introduction of,

239–240
newsvendor problem, 871
Newton’s methods

of multivariable unconstrained
optimization, 557–563

of one-variable unconstrained
optimization, 552–557

quasi-, 563
new variable, introduction of,

235–236
next-event incrementing in

simulation, 944–946
no backlogging, 832
node

connected, 362
constraints, 383
in decision trees, 686
defined, 360
demand, 363, 382

dummy, 382
event, 686
nth nearest, 364–365
solved, 364
supply, 363
transshipment, 363, 373

no entering basic variable, 119n
no feasible solutions, 126–127

no leaving basic variable in tie
breaking (unbounded Z), 109

nonbasic arc, 390–391
nonbasic variables

changes in coefficients of, 231–235
coefficients of, changes in, 215–216
number of, 170

nonconvex programming, 550
nonconvex programming with

spreadsheets
evolutionary solver, 592
local optima, systematic approach

to finding, 590–592
local optima, using Excel Solver to

find, 589–590
solving nonconvex programming,

challenge of, 588–589
nonexponential distributions involving

queueing models
M/D/s model, 792
M/Ek/s model, 792–794
M/G/1 model, 791–792
models without Poisson input,

795–796
other models, 796–798

nonlinear programming
integer version of (example),

637–640
IP problems, example of, 637–640
portfolio selection with risky

securities, 540–542
problems (See nonlinear

programming problems)
product-mix problem with price

elasticity, 538–539
role of in OR, 537
simulated annealing example,

632–635
transportation problem with volume

discounts on shipping costs,
539–540

nonlinear programming problems
convex programming, 580–588
graphical illustration of, 542–546
KKT conditions for constrained

optimization, 563–567
with multiple local optima

(example), 608–611
multivariable unconstrained

optimization, 557–563
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nonlinear programming problems—
Cont.

nonconvex programming (with
spreadsheets), 588–592

one-variable unconstrained
optimization, 552–557

quadratic programming, 567–573
separable programming, 573–580
types of (See nonlinear

programming problems, types
of)

See also individual headings
nonlinear programming problems,

types of
complementarity problem, 551–552
convex programming, 549
fractional programming, 550–551
geometric programming, 550
linearly constrained optimization,

548
nonconvex programming, 550
quadratic programming, 548–549
separable programming, 549–550
unconstrained optimization,

547–548
nonnegative coefficients, 277
nonnegative right-hand sides, 89, 97,

111, 116, 203
nonnegativity constraints, 32
nonpreemptive priorities, 798–799
nonpreemptive priorities model,

results for, 799–800
nonstandard form, converting to

standard form, 211
nontechnical memo, writing, 275
nonzero entries, 72
Nori & Leets Co., 49–51, 274–275
normal distributions, 958
northwest corner rule, 323
notation in queueing theory, 763–764
N possible values, 475–476
N priority classes, 798
n-step transition matrices

in Chapman-Kolmogorov equations,
733–734

for inventory example, 733–734
for weather example, 733

n-step transition probabilities, 726
nth nearest node, 364–365
null vector, 173
number of iterations, 142

O

object function coefficients, analyzing
simultaneous changes in, 235,
255–258

objective cells, 63
objective function, 11, 32
OMEGA, 21
100 percent rule for simultaneous

changes in objective function
coefficients, 235, 255–258

one-variable unconstrained
optimization

bisection method, 553–555
Newton’s method, 555–557

Operation Desert Storm, 433
operations research (OR)

applications of, described in
vignettes, 4

approach (See operations research
(OR) modeling approach)

impact of, 3–4
nature of, 2–3
origins of, 1–2
simulation in, 935–936
teams, 9

operations research (OR) courseware.
See OR courseware

operations research (OR) modeling
approach

applying the model, 17–18
defining the problem and gathering

data, 8–9
deriving solutions from, 13–16
implementation, 18–19
mathematical model, formulating,

11–13
testing the model, 16–17

OPL, 68, 520–521
OPL-CPLEX Development System,

139
optimal inventory policy

algorithm for finding, 845–846
with I � 0 and K 0, 880
with (I 0) K � 0, 879
when demand has exponential

distribution, approximate
solution for, 881–882

optimality test
for CPF solution, 91–92
for new BF solution, 99, 102, 104,

327, 397

passing, 397
in sensitivity analysis, 224

optimal policies in Markov decision
processes

policy improvement algorithm for,
916–920

preliminaries, 916
optimal policy for problem, 430
optimal solution, 109

defined, 3, 34
desired, finding, 29
multiple, 34, 109–111
no, 34
nonsensical, finding, 30
in OR themes, 14
resulting in algebra of simplex

method, 102–103
OptiMax 2000 Component Library,

69, 140
optimization

linearly constrained, 548
unconstrained, 547–548

Optimization Decision Manager, 143
Optimization Programming Language

(OPL), 139
optimizing the product mix, 25
OR. See operations research (OR)
OR courseware

additional example, 107
algorithms and, 5–6
another example, 103, 107
IOR Tutorial (See IOR Tutorial)
for linear programming examples,

29–30
OR Tutor (See OR Tutor)
Queueing Simulator, 944–945
simulation examples, 946
software for solving BIP models,

467
solvers available through, 6
Worked Examples, 6, 30

ordering cost, 830
order quantity Q, choosing in

stochastic continuous-review
model, 867

OR Tutor, 5, 29–30
Interpretation of the Slack

Variables, 95
Network Analysis Area, 398
Simplex Method—Algebraic Form,

103
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Simplex Method—Tabular Form,
107

other model forms, adapting to
equality restraints, 112–116
example, solving (radiation

therapy), 119–121
functional constraint in � form,

116–118
fundamental insight on, 183
minimization, 118–119
negative right-hand sides, 116
no feasible solutions, 126–127
two-phased method, 121–126
variables allowed to be negative,

127–129
out flow, 366
output cells, 62
overall measure of performance, 12
overbooking model, 886–888

applying, example of, 888–889
owners, 10

P

Pacific Lumber Company (PALCO),
228

PALCO (Pacific Lumber Company),
228

parameters
defined, 11, 32
sensitive, 15, 41–42, 133, 218
table for transportation problem,

309
See also parametric linear

programming
parametric linear programming

postoptimality analysis, 136–137
for systemic changes in bi

parameters, 282–283
summary of, 283–285

for systemic changes in cj

parameters, 280–282
summary of, 280–282

systemic sensitivity analysis,
240–245

parametric programming. See
parametric linear programming

parents, 636, 637
path, 361, 401
payoff, 674
payoff table, 652, 674
performance measures, 31, 61

periodicity properties in states of
Markov chains, 737

periodic review, 833
perishable products, types of,

871–872
perishable products model. See

stochastic single period model for
perishable products

perpetual loop, cycling around, 108n
personnel scheduling, 55–58
PERT, 399
petroleum exploration projects,

evaluating, 675
phase-type distributions, 797
physical annealing process, 628
pivot column, 105
pivot number, 105
pivot row, 105
planned shortages, EOQ model with,

836–838
planning, 23
planning planners, 990
Poisson input, 777–778

models without, 795–796
process, 771

Poisson process, 771–773
policy decision, 429
policy improvement algorithm

linear programming formulation,
924–925

for optimal policies in Markov
decision processes, 915–920

summary of (discounted cost
criterion), 922–924

Pollaczek-Khintchine formula, 792
polygon, 164
polyhedron, 164
polynomial time algorithm, 142
population, 636, 637

calling, (input source) in queueing
theory, 760–761

posterior probabilities, 680–684
postoptimality analysis

defined, 15
in parametric linear programming,

136–137
reoptimization, 130
sensitivity analysis, 133–134

using Excel to generate
information, 134–136

shadow prices, 131–133

posynomials, 550
preemptive priorities, 799
preemptive priorities model, results

for, 801
preimplementation test, 17
Premium Solver for Education, 6, 64,

139, 140
price elasticity, product-mix problem

with, 538–539
pricing under pressure, 990
primal-dual forms, 214, 215
primal-dual method, 131n
primal-dual relationships, 195

complementary basic solutions,
207–209

relationships among, 209–211
See also duality theory

primal-dual table, 196
primal feasible solution, 211
principle of optimality, 430
prior distribution, 674–675
priority-discipline queueing models

basic, described, 798–799
County Hospital example with

priorities, 801–803
nonpreemptive priorities model,

results for, 799–800
preemptive priorities model, results

for, 801
single-server variation of, 800

prior probabilities, 675
probabilistic dynamic programming,

451–457
determining reject allowances,

452–454
winning in Las Vegas, 455–457

probability of absorption, 745
probability tree diagram, 682
problem, defining, 8–10
Procter & Gamble, 306
product demand, different types of,

841–842
product form solution, 805
production and distribution network,

designing using BIP models,
469–470

production days available, 69
production line, improving efficiency,

804
production rates, 24–25
production system, redesign of, 306

hil76299_sub_idx_1029-1048.qxd  12/17/08  12:45 PM  Page 1041 Rev.Confirming Pages



1042 SUBJECT INDEX

product mix, 25
product-mix problem, 69–75

with price elasticity, 538–539
products

assigning to plants, example of,
339–342

perishable, stochastic single period
for (See stochastic single period
model for perishable products)

profit per batch produced, 25
program evaluation and review

technique (PERT), 399
programming, 23
project deadline, 947–948
project duration, 401
project network, 400–401
project pickings, 357
proof by contradiction, 166
proper form from Gaussian

elimination, 98, 101–102, 119,
124, 223, 224

proportionality, violating, 482–485
proportionality assumption, 36–39
prostate cancer, 44
PSA Peugeot Citroën, 749
pseudo-random numbers, 952
P & T Company, 305 See also

transportation problem
pure strategies, 658

Q

quadratic approximation, 556
quadratic programming

KKT conditions for, 568–569
linear constraints in, 548–549
modified simplex method, 570–572
software options, 572–573

quantity discounts, with EOQ model,
838–839

quasi-Newton methods, 563
queue, 761
queue discipline, 761
queueing models

birth-and death-process, 773–790
involving nonexponential

distributions, 790–798
M/M/s model, 778–783
priority-discipline, 798–803
See also individual headings

queueing networks
described, 803–804

infinite queues in series, 804–805
Jackson networks, 805–807

Queueing Simulator, 944–945
queueing systems

classes of, 765–766
design, award winning studies, 766
design and operation of, 947
exponential distribution, 767–773

queueing theory
application of (See queueing theory,

application of)
defined, 759
prototype example, 760
structure of (See queueing theory,

structure of)
queueing theory, application of

example of, 809–810
other issues, 810–812
servers, determining number of,

808–809
queueing theory, structure of

input source (calling population),
760–761

process of, basic, 760
process of, elementary, 762–763
queue, 761
queue discipline, 761
relationships between L, W, Lq, and

Wq, 764–765
service mechanism, 761–762
terminology and notation, 763–764

queuing quandary, 827

R

R, Q policy (reorder-point, order-
quantity policy), 866–867

radiation therapy
design of, 43–45
example, applying simplex method

to, 119–121
primal-dual form for, 214, 215

rail freight, plan routing of, 367
RAND() function in Excel, 937, 951
random digits, table of, 951
random integer number, 952
randomized policy, 909–910
random number, 952
random number generator, 951
random numbers in simulation

applications
annealing, 628

characteristics of, 951–952
generation of, 951

congruential methods for,
952–955

random observations from a
probability distribution,
generation of

acceptance-rejection method,
958–959

Erlang distributions, 957–958
exponential distributions, 957–958
inverse transformation method,

955–956
summary of, 956–957

normal and chi-square distributions,
958

simple discrete distributions, 955
random selection of an immediate

neighbor, 629, 633
random walk, 745
range name, 60–61
range of likely values, 224
raw materials, optimize use and

movement of, 61
real problem, 111, 118
recipient cells, 330
recurrence time, 753
recurrent states in Markov chain,

735–737
recursive relationship, 430
redundant constraints, 57
reject allowances, determining,

452–454
relaxation

Lagrangian, 500
LP, 488, 493
of a problem, 493
solving, 860–861

Reliable Construction Co. problem,
399–410 See also time-cost trade-
offs

reoptimization
in postoptimality analysis, 130
in sensitivity analysis, 224
technique, 130

reorder point R, choosing in
stochastic continuous-review
model, 867–870

replicability, 18
reproducible work, 18
requirements assumption, 308, 318

hil76299_sub_idx_1029-1048.qxd  12/17/08  12:45 PM  Page 1042 Rev.Confirming Pages



SUBJECT INDEX 1043

research-and-development projects,
evaluating, 687

research on constraint programming,
current, 520–521

residual capacities, 374
residual network, 374
restricted-entry rule, 570
retrospective test, 17
revenue, 832
revenue management

capacity-controlled discount fares
model, 884–885

applying, example of, 885–886
other models, 889–890
overbooking model, 886–888

applying, example of, 888–889
reverse arc, 389
revised problem, solving, 861–864
revised simplex method, 137, 180,

184–187
revision of final tableau, 221–222,

224
revision of model in sensitivity

analysis, 224
revolving credit lines, manage

liquidity risk for, 727
right-hand sides

allowable range for, 228–229
nonnegative, 89, 97, 111, 116, 203
simultaneous changes in, analyzing,

229–230
Rijkswaterstaat of the Netherlands,

13, 15–16
risk-averse, 700
risk-neutral individual, 700
risk seekers, 700
RiskSim, 963–964
route-management system for trash

collection and disposal,
developing, 505

row, 104
row reduction, 343
rules of the game in simulation,

937–942
Russell’s approximation method,

324–327
Russian Federation, 422–423

S

saddle point, 656
salvage value, 832

Samsung Electronics, 19, 99
San Francisco Museum of Modern

Art, 535
satisficing, 14
Save-It Co. problem, 51–55
scarce goods, 132
scenarios, 16
schedule disruptions occurring in

airlines, 13
scheduling employment levels,

442–448
scientific inventory management,

828–829
Sears, Roebuck and Company, 471,

616
Seervada Park

augmenting path algorithm,
applying to, 376–378

maximum flow problem, 376–378
minimum spanning tree problem,

370–373
shortest-path problem, 364–365

sensible-odd-bizarre method (SOB),
213–215

sensitive parameters, 15, 133, 218
sensitivity analysis

with Bayes’ decision rule, 678–679
in certainty assumption, 41–42
defined, 11
essence of, 217–224
in postoptimality analysis,

133–134
using Excel to generate

information, 134–136
summary of procedure for, 224

sensitivity analysis, applying
changes in bi, 225–231
changes in coefficients of basic

variable, 236–239
changes in coefficients of nonbasic

variable, 231–235
introduction of new constraints,

239–240
introduction of new variable,

235–236
systemic sensitivity analysis

(parametric programming),
240–245

sensitivity analysis, in duality theory
coefficients of nonbasic variable,

changes in, 215–216

new variable, introduction of,
216–217

other applications, 217
sensitivity analysis, performing on

spreadsheet
checking individual changes in

model, 245–247
checking two-way changes in

model, 248–251
decision trees, 690–700

(See also decision trees,
performing sensitivity analysis
on using spreadsheets)

other types of sensitivity analysis,
258–259

using sensitivity report to perform
sensitivity analysis, 134,
253–258

using solver table for two-way
sensitivity analysis, 251–253

using solver table to do sensitivity
analysis systematically, 248

sensitivity report, using to perform
sensitivity analysis, 134, 253–258

Senslt Excel add-in, 696–700
separable function, 549
separable programming

in convex programming, 549–550
extensions, 579–580
key property of, 576–577
reformulation as linear

programming problem, 574–579
sequence of distinct arcs, 361
sequential-approximation algorithms,

580–581
sequential linear approximation

algorithm (Frank-Wolfe),
581–584

sequential unconstrained algorithms,
580

sequential unconstrained minimization
technique. See SUMT

serial multiechelon system, model for,
855–856

assumptions for, 856–860
serial two-echelon model, 849–853
servers, 761

determining number of, 808–809
service cost, 808
service industries, simulation

applications of, 950
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service mechanism, 761–762
service time, 761
set partitioning problems, 486
sets, stocking, 535–536
setup cost, 829
shadow prices, 131–133, 136, 147,

204
shift sizes, best mix of, 57
shipments

dispatching using BIP models,
470–471

planning of, 5
shipping cost, volume discounts on,

539–540
shortage cost, 830, 832
shortest-path problem

algorithm for, 364–365
minimum cost flow problem,

387
other applications, 367–368
Seervada park, 364–365
using Excel to formulate and solve,

365–367
simple discrete distributions, 955
simplex method

algebra of (See simplex method,
algebra of)

applying to radiation therapy
example, 119–121

complementary roles of, vs.
interior-point approach,
143–145

computer implementation, 137–138
constraint boundary, 90
corner-point solutions, 90
CPF solutions (See CPF solutions

in simplex method)
defined, 24
dual (See dual simplex method)
duality, economic interpretation of,

205–206
example, solving, 91–92
fundamental insight, 181–184
geometric interpretations of, 98
in matrix form (See simplex

method, in matrix form)
minimization, 118–119
modified, 570–572
revised, 137, 180, 184–187
setting up, 94–97
solution concepts, key, 92–94

specialized versions of, 138
summary of, 104–106
in tabular form, 103–107
theory of, 161–187
tie breaking in (See simplex

method, tie breaking in)
See also transportation simplex

method
simplex method, algebra of

direction of movement,
determining, 99–100

initialization, 98
new BF solution, solving for,

101–102
optimality test, 99

for new BF solution, 102
optimal solution, resulting, 102–103
where to stop, determining, 100

simplex method, in matrix form, 137
BF solutions, solving for, 173–175
of current set of equations, 176–178
observations, final, 180
summary of, 178–180

simplex method, tie breaking in
for entering basic variable, 108
for leaving basic variable

(degeneracy), 108
multiple optimal solutions, 109–111
no leaving basic variable

(unbounded Z), 109
Simplex Method—Algebraic Form,

103, 103
Simplex Method—Tabular Form, 107
simplex tableau, 103–104
simulated annealing

basic concepts, 626–628
basic simulated annealing

algorithm, outline of, 628–629
nonlinear programming example,

632–635
traveling salesman problem

example, 629–632
simulation

discrete-event vs. continuous, 936
examples of, in OR courseware,

946
fixed-time incrementing, summary

of, 942–944
inventory management example

(performing on spreadsheets),
964–979

(See also Freddie the newsboy’s
problem)

next-event incrementing, summary
of, 944–946

role of, in operations research
studies, 935–936

rules of the game, 937–942
simulation, applications of

completing a project by deadline,
estimating probability of,
947–948

design and operation of distribution
systems, 949

design and operation of
manufacturing systems,
948–949

design and operation of queueing
systems, 947

financial risk analysis, 949
health care applications, 950
managing inventory systems, 947
military applications, 950
new applications, 950–951
to other service industries, 950
random numbers (See random

numbers in simulation
applications)

See also random observations from
a probability distribution,
generation of

simulation, major study (outline of)
step 1: formulate the problem and

plan the study, 959–960
step 2: collect data and formulate

stimulation model, 960
step 3: check accuracy of

stimulation model, 960–961
step 4: select software and construct

computer program, 961
step 5: test validity of stimulation

model, 961–962
step 6: plan stimulations to be

performed, 962
step 7: conduct simulation runs and

analyze results, 962–963
step 8: present recommendations to

management, 963
simulation model, 935
single-server variation of priority-

discipline queueing models, 800
sink, 373–374
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site selection using BIP models, 469
slack variables, 94, 95, 104
slope

of a line, 29
of the profit function, 37–38

slope-intercept form, 29
small minimization example, 467
smart steering support, 722
SOB (sensible-odd-bizarre method),

213–215
social service systems, 765
software

commercial software packages, 6,
30

for convex programming, 587–588
discrete-event simulation, 944–945
general-purpose programming

language, 961
for linear programming, 138–140
mathematical modeling language,

68–69
for quadratic programming,

572–573
for simulation study, 961
for solving BIP models, 467
for solving transportation problems,

311
solid waste management, 382
solid wastes, reclaiming, 51–55
solution, 33
solution tree, 493
Solve Automatically by the Interior-

Point Algorithm, 287
Solve Automatically by the Interior-

Point Algorithm, 142n
Solve Automatically by the Simplex

Method, 103
solved node, 364
solvers, 6, 30, 139–140
Solver Table

using for two-way sensitivity
analysis, 251–253

using to do sensitivity analysis
systematically, 248

sources, 308
Southern Confederation of Kibbutzim

problem, 45–48
Southwestern Airways example,

485–486
spanning tree, 362–363

feasible, and BF solutions, 390–392

with minimum constraints, 617–622
solution, 391
See also minimum spanning tree

problem
SPARSEFILE produce.dat, 72
sparse format, 72
spider chart, 698
spreadsheet

borders and cell shading, 60n
decision trees, performing

sensitivity analysis on using
spreadsheets, 691–700

formulating linear programming
models on, 60–64

for Goferbroke Co. problem,
693–696

inventory management example for
simulation, 964–979

nonconvex programming with,
588–592

solvers, 6, 30, 139–140
See also sensitivity analysis,

performing on spreadsheet;
individual headings

Springfield School Board, 160, 275,
536

stable solution, 657
stagecoach problem, 424–429
stages of problem, 429
standard form, 97

converting to nonstandard form, 211
for general linear programming, 180
for linear programming problem,

45, 169
for primal linear programming

problem, 195
using matrices, 173

start-up cost, 50
state of nature, 674
states and transient states in Markov

chain, recurrent, 735–737
states of stages, 429
stationary policy, 909
stationary probabilities, 738
stationary transition probabilities,

725–726, 748
steady-state condition, 764
steady-state equations, 751
steady-state probabilities, 738

in continuous time Markov chains,
751–753

in long-run properties of Markov
chains, 737–740

steepest ascent/mildest descent
approach, 615

stochastic continuous-review model
assumptions of, 867
example of, 870
order quantity Q, choosing, 867
reorder point R, choosing, 867–870

stochastic process in Markov chains
defined, 723–724
inventory example, 724–725
weather example, 724

stochastic single period model for
perishable products

analysis of (See stochastic single
period model for perishable
products, analysis of)

assumptions of, 874–875
example of, 872–874

application to, 877–878, 880–881
optimal inventory policy (See

optimal inventory policy)
types of perishable products,

871–872
stochastic single period model for

perishable products, analysis of
with initial inventory (I 0) and no

setup cost (K � 0), 878
with no initial inventory (I � 0) and

no setup cost (K � 0), 875–877
with setup cost (K 0), 879–880

stopping rule, 614, 616, 618, 623
strategy, 652

dominated, 655
mixed, 658–660
pure, 658

streamlined algorithms, 304
strong duality property, 201, 202
structural constraints. See functional

constraints
students, assigning to schools, 160,

275, 536
suboptimal solution, 14
sub-tour reversal, 613

algorithm, 613–615
inheriting, 642–643

success, steps to, 423
successive approximations, method of

finite-period Markov decision
processes, 925–926
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successive approximations, method
of—Cont.

solving prototype example by,
926–927

SUM keyword, 73
SUM operator, 73–74, 75
SUMPRODUCT, 62–63
SUMT, 580, 585–587
Super Grain Corporation, 88, 606
superoptimal basic solution, 223
Supersuds Corporation example,

482–485
suppliers, 10
supply, 308
supply chain, 848

managing inventories throughout, 849
supply chain management. See

deterministic multiechelon
inventory models for supply chain
management

supply node, 363
surplus variable, 117–118
Swift & Company, 25
symmetry property, 202
SYSNET, 21–22
systemic sensitivity analysis

(parametric programming),
240–245

system service rate, 77

T

tabular form of simplex method,
103–107

tabu list, 615, 618, 623
tabu moves, 615, 618, 623
tabu search

algorithm, outline of, 616–617
basic concepts, 615
minimum spanning tree problem

with constraints, 617–622
questions and answers, 618–619,

623
traveling salesman problem

example, 622–625
Taco Bell, 488
target cells, 63
tasks, 334
team approach, 3
technological coefficients, 134
temperature schedule, 628, 629–630,

633–634

tentative initial decision, 131
terminology

for linear programming, 30–31
in network optimization models,

360–363
in queueing theory, 763–764
in simplex method, foundations of,

161–164
for solutions of linear programming

models, 33–36
Texago Corp., 357
time-cost trade-offs

CPM method of, 359, 399, 403
critical path, 401–403
for individual activities, 403–404
project networks, 400–401
prototype example, 399–400
See also crashing decisions

Time Inc., 872
toplant, 69
tornado chart, 699–700
total profit, maximizing, 24–25
tractable model
transient condition, 764
transient states in Markov chain,

recurrent, 735–737
transition intensities, 750
transition probabilities, 726, 748
transportation problem

example with dummy destination,
313–315

example with dummy source,
316–318

generalizations of, 318
minimum cost flow problem,

385–386
model, 308–311
prototype example, 305–308
streamlined simplex method for

(See transportation simplex
method)

using Excel to formulate and solve,
311–313

with volume discounts on shipping
costs, 539–540

transportation service systems, 765
transportation simplex method

initialization, 321–327
iteration, 328–331
optimality test, 327–328
setting up, 319–321

special features of example,
331–333

summary of, 331
transportation simplex tableau, 321
transshipment node, 363, 373
transshipment problem, 318, 387
traveling salesman problem example

genetic algorithms, 640–643
nature of metaheuristics, 611–613
simulated annealing, 629–632
tabu search, 622–625

TreePlan Excel add-in, 690–693
TrendLines, 158–160
trial-and-error procedure for

constructing lines, 27–29
two-bin system, 866
two demonstration examples, 946
two-person, zero-sum games,

651–653
formulation as, 653–658

two-phased method, 121–126
two-way changes, checking in

spreadsheet model, 248–251
two-way sensitivity analysis, using

solver table for, 251–253

U

U/M (utility functions for money),
700–703

estimating using utility theory,
705–706

unbounded objective, 34, 109
unbounded Z, 34, 109
unconditional state probabilities in

Chapman-Kolmogorov equations,
734–735

unconstrained optimization, 547–548
undirected arc, 360
undirected network, 361
undirected path, 361
uniform random number, 952
Union Airways problem, 55–58
United Airlines

plan employee work schedules at
airports and reservations offices,
56

reassign airplanes to flights when
disruptions occur, 13, 382

U.S. Military Logistical planning of
Operations Desert Storm, 433

unit production cost, 829

hil76299_sub_idx_1029-1048.qxd  12/3/08  06:31 PM  Page 1046 Confirming Pages



SUBJECT INDEX 1047

University Toys and Engineering
Professor Action Figures, 722

unstable solution, 657
upper-bound constraints, 58
upper bound technique, 74

incorporating, 389–390
in linear programming problems,

285–287
user team, 17
utility functions for money (U/M),

700–703
utility theory

applying to full Goferbroke Co.
problem, 704–705

equivalent lottery method, 703–704
estimating U(M), 705–706
Goferbroke Co. problem with

utilities, using decision tree to
analyze, 706–707

utility functions for money,
700–703

utilization factor, 763–764

V

value of the game, 655
variables

basic (See basic variables)
binary, 44, 465
complementary, 569
indicating, 169

initial basic, 104
initial nonbasic, 104
negative, 127–129
new, introduction of, 216–217,

235–236
nonbasic (See nonbasic variables)

vectors, 173
of basic variables, 174

vehicle routing and scheduling for
home services and deliveries, 616

vehicle-routing problem with time
windows (VRPTW), 615

Vogel’s approximation method,
323–324, 326–327

volume discounts on shipping costs,
539–540

VRPTW (vehicle-routing problem
with time windows), 615

W

waiting cost, 808
warm-up period, 944
Waste Management Inc., 505
weak duality property, 201, 202
weather example

formulating as Markov chain,
726–728

n-step transition matrices for
Chapman-Kolmogorov
equations, 733

of stochastic process in Markov
chains, 724

weighted average, 109
Welch’s, Inc., 61
Westinghouse, 687
what-if analysis, 15
What’sBest! spreadsheet solver, 74
“Who Wants to be a Millionaire?”,

722
Workers’ Compensation Board

(WCB), 681
World Bank, 471
World Health Council problem,

432–440
Worldwide Corporation problem,

69–75
worst-case performance, 142
Wyndsor Glass Co. example. See

dynamic programming; linear
programming, Wyndsor Glass Co.
example

X

Xerox Corporation, 766

Z

zero elements, creation of additional,
344–346
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