Introduction to

OPERATIONS
RESEARCH

Ninth Edition

Frederick S. Hillier
Gerald J. Lieberman




INTRODUCTION TO
OPERATIONS RESEARCH

Ninth Edition

FREDERICK S. HILLIER

Stanford University

GERALD ). LIEBERMAN

Late of Stanford University

5 Higher Education

Boston Burr Ridge, IL  Dubuque, IA° New York San Francisco St. Louis
Bangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto



The McGraw-Hill Companies

5 Higher Education

INTRODUCTION TO OPERATIONS RESEARCH, NINTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Previous
editions © 2005, 2001, and 1995. No part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill
Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or
broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper
1234567890CCW/CCW 09

ISBN 978-0-07-337629-5
MHID 0-07-337629-9

Global Publisher: Raghothaman Srinivasan
Sponsoring Editor: Debra B. Hash

Director of Development: Kristine Tibbetts
Developmental Editor: Lora Neyens

Senior Marketing Manager: Curt Reynolds
Project Manager: Melissa M. Leick

Senior Production Supervisor: Laura Fuller
Senior Media Project Manager: Sandra M. Schnee
Associate Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
Compositor: Laserwords Private Limited
Typeface: 10/12 Times Roman

Printer: Courier Westford, Inc.

Library of Congress Cataloging-in-Publication Data

Hillier, Frederick S.

Introduction to operations research / Frederick S. Hillier, Gerald J. Lieberman.—9th ed.

p. cm.

Includes index.

ISBN 978-0-07-337629-5 — ISBN 0-07-337629-9 (hbk. : alk. paper) 1. Operations research. I.
Lieberman, Gerald J. II. Title.

T57.6.H53 2010

658.4'032—dc22

2008039045

www.mhhe.com



ABOUT THE AUTHORS

Frederick S. Hillier was born and raised in Aberdeen, Washington, where he was an
award winner in statewide high school contests in essay writing, mathematics, debate,
and music. As an undergraduate at Stanford University he ranked first in his engineer-
ing class of over 300 students. He also won the McKinsey Prize for technical writing,
won the Outstanding Sophomore Debater award, played in the Stanford Woodwind
Quintet, and won the Hamilton Award for combining excellence in engineering with no-
table achievements in the humanities and social sciences. Upon his graduation with a
B.S. degree in Industrial Engineering, he was awarded three national fellowships
(National Science Foundation, Tau Beta Pi, and Danforth) for graduate study at Stanford
with specialization in operations research. After receiving his PhD degree, he joined the
faculty of Stanford University, where he earned tenure at the age of 28 and the rank of
full professor at 32. He also received visiting appointments at Cornell University,
Carnegie-Mellon University, the Technical University of Denmark, the University of
Canterbury (New Zealand), and the University of Cambridge (England). After 35 years
on the Stanford faculty, he took early retirement from his faculty responsibilities in 1996
in order to focus full time on textbook writing, and now is Professor Emeritus of Oper-
ations Research at Stanford.

Dr. Hillier’s research has extended into a variety of areas, including integer program-
ming, queueing theory and its application, statistical quality control, and the application of
operations research to the design of production systems and to capital budgeting. He has
published widely, and his seminal papers have been selected for republication in books of
selected readings at least 10 times. He was the first-prize winner of a research contest on
“Capital Budgeting of Interrelated Projects” sponsored by The Institute of Management
Sciences (TIMS) and the U.S. Office of Naval Research. He and Dr. Lieberman also re-
ceived the honorable mention award for the 1995 Lanchester Prize (best English-language
publication of any kind in the field of operations research), which was awarded by the In-
stitute of Operations Research and the Management Sciences (INFORMS) for the 6th edition
of this book. In addition, he was the recipient of the prestigious 2004 INFORMS Expository
Writing Award for the 8th edition of this book.

Dr. Hillier has held many leadership positions with the professional societies in his field.
For example, he has served as Treasurer of the Operations Research Society of America
(ORSA), Vice President for Meetings of TIMS, Co-General Chairman of the 1989 TIMS
International Meeting in Osaka, Japan, Chair of the TIMS Publications Committee,
Chair of the ORSA Search Committee for Editor of Operations Research, Chair of the
ORSA Resources Planning Committee, Chair of the ORSA/TIMS Combined Meetings
Committee, and Chair of the John von Neumann Theory Prize Selection Committee
for INFORMS. He continues to serve as the Series Editor for Springer’s International
Series in Operations Research and Management Science, a particularly prominent book
series that he founded in 1993.

In addition to Introduction to Operations Research and two companion volumes,
Introduction to Mathematical Programming (2nd ed., 1995) and Introduction to Sto-
chastic Models in Operations Research (1990), his books are The Evaluation of Risky
Interrelated Investments (North-Holland, 1969), Queueing Tables and Graphs (Elsevier
North-Holland, 1981, co-authored by O. S. Yu, with D. M. Avis, L. D. Fossett, F. D. Lo,

iii




iv

ABOUT THE AUTHORS

and M. 1. Reiman), and Introduction to Management Science: A Modeling and Case
Studies Approach with Spreadsheets (3rd ed., McGraw-Hill/Irwin, 2008, co-authored by
M. S. Hillier).

The late Gerald J. Lieberman sadly passed away in 1999. He had been Professor
Emeritus of Operations Research and Statistics at Stanford University, where he was the
founding chair of the Department of Operations Research. He was both an engineer (hav-
ing received an undergraduate degree in mechanical engineering from Cooper Union) and
an operations research statistician (with an AM from Columbia University in mathematical
statistics, and a PhD from Stanford University in statistics).

Dr. Lieberman was one of Stanford’s most eminent leaders in recent decades. After
chairing the Department of Operations Research, he served as Associate Dean of the School
of Humanities and Sciences, Vice Provost and Dean of Research, Vice Provost and Dean
of Graduate Studies, Chair of the Faculty Senate, member of the University Advisory
Board, and Chair of the Centennial Celebration Committee. He also served as Provost or
Acting Provost under three different Stanford presidents.

Throughout these years of university leadership, he also remained active profession-
ally. His research was in the stochastic areas of operations research, often at the interface
of applied probability and statistics. He published extensively in the areas of reliability
and quality control, and in the modeling of complex systems, including their optimal de-
sign, when resources are limited.

Highly respected as a senior statesman of the field of operations research, Dr. Lieberman
served in numerous leadership roles, including as the elected president of The Institute of
Management Sciences. His professional honors included being elected to the National
Academy of Engineering, receiving the Shewhart Medal of the American Society for
Quality Control, receiving the Cuthbertson Award for exceptional service to Stanford Univer-
sity, and serving as a fellow at the Center for Advanced Study in the Behavioral Sciences. In
addition, the Institute of Operations Research and the Management Sciences (INFORMS)
awarded him and Dr. Hillier the honorable mention award for the 1995 Lanchester Prize for
the 6th edition of this book. In 1996, INFORMS also awarded him the prestigious Kimball
Medal for his exceptional contributions to the field of operations research and management
science.

In addition to Introduction to Operations Research and two companion volumes, Intro-
duction to Mathematical Programming (2nd ed., 1995) and Introduction to Stochastic Models
in Operations Research (1990), his books are Handbook of Industrial Statistics (Prentice-
Hall, 1955, co-authored by A. H. Bowker), Tables of the Non-Central t-Distribution (Stan-
ford University Press, 1957, co-authored by G. J. Resnikoff), Tables of the Hypergeometric
Probability Distribution (Stanford University Press, 1961, co-authored by D. Owen),
Engineering Statistics, Second Edition (Prentice-Hall, 1972, co-authored by A. H. Bowker),
and Introduction to Management Science: A Modeling and Case Studies Approach with
Spreadsheets (McGraw-Hill/Irwin, 2000, co-authored by F. S. Hillier and M. S. Hillier).



ABOUT THE CASE WRITERS

Karl Schmedders is an associate professor in the Department of Managerial Economics
and Decision Sciences at the Kellogg Graduate School of Management (Northwestern
University), where he teaches quantitative methods for managerial decision making. His
research interests include applications of operations research in economic theory, general
equilibrium theory with incomplete markets, asset pricing, and computational economics.
Dr. Schmedders received his doctorate in operations research from Stanford University,
where he taught both undergraduate and graduate classes in operations research. Among
the classes taught was a case studies course in operations research, and he subsequently
was invited to speak at a conference sponsored by the Institute of Operations Research
and the Management Sciences (INFORMS) about his successful experience with this
course. He received several teaching awards at Stanford, including the university’s pres-
tigious Walter J. Gores Teaching Award. He also has received several teaching awards, in-
cluding the L. G. Lavengood Professor of the Year at the Kellogg School of Management.
While serving as a visiting professor at WHU Koblenz (a leading German business school),
he won teaching awards there as well.

Molly Stephens is an associate in the Los Angeles office of Quinn, Emanuel, Urquhart,
Oliver & Hedges, LLP. She graduated from Stanford University with a B.S. degree in In-
dustrial Engineering and an M.S. degree in Operations Research. Ms. Stephens taught pub-
lic speaking in Stanford’s School of Engineering and served as a teaching assistant for a case
studies course in operations research. As a teaching assistant, she analyzed operations re-
search problems encountered in the real world and the transformation of these problems into
classroom case studies. Her research was rewarded when she won an undergraduate research
grant from Stanford to continue her work and was invited to speak at an INFORMS con-
ference to present her conclusions regarding successful classroom case studies. Following
graduation, Ms. Stephens worked at Andersen Consulting as a systems integrator, experi-
encing real cases from the inside, before resuming her graduate studies to earn a JD de-
gree (with honors) from the University of Texas Law School at Austin.



DEDICATION

To the memory of our parents
and
To the memory of my beloved mentor,

Gerald J. Lieberman, who was one of the true
giants of our field



TABLE OF CONTENTS

PREFACE xviii

CHAPTER 1
Introduction 1

1.1 The Origins of Operations Research 1
1.2 The Nature of Operations Research 2
1.3 The Impact of Operations Research 3
1.4 Algorithms and OR Courseware 5
Selected References 7

Problems 7

CHAPTER 2
Overview of the Operations Research Modeling Approach 8

2.1 Defining the Problem and Gathering Data 8
2.2 Formulating a Mathematical Model 11

2.3 Deriving Solutions from the Model 13

2.4 Testing the Model 16

2.5 Preparing to Apply the Model 17

2.6 Implementation 18

2.7 Conclusions 19

Selected References 19

Problems 20

CHAPTER 3
Introduction to Linear Programming 23

3.1 Prototype Example 24
3.2 The Linear Programming Model 30
3.3 Assumptions of Linear Programming 36
3.4 Additional Examples 42
3.5 Formulating and Solving Linear Programming Models on a Spreadsheet 60
3.6 Formulating Very Large Linear Programming Models 68
3.7 Conclusions 75
Selected References 75
Learning Aids for This Chapter on Our Website 76
Problems 77
Case 3.1 Auto Assembly 86
Previews of Added Cases on Our Website 88
Case 3.2 Cutting Cafeteria Costs 88
Case 3.3 Staffing a Call Center 88
Case 3.4 Promoting a Breakfast Cereal 88



CONTENTS

CHAPTER 4
Solving Linear Programming Problems: The Simplex Method 89

4.1 The Essence of the Simplex Method 89
4.2 Setting Up the Simplex Method 94
4.3 The Algebra of the Simplex Method 97
4.4 The Simplex Method in Tabular Form 103
4.5 Tie Breaking in the Simplex Method 108
4.6 Adapting to Other Model Forms 111
4.7 Postoptimality Analysis 129
4.8 Computer Implementation 137
4.9 The Interior-Point Approach to Solving Linear Programming Problems
4.10 Conclusions 145
Appendix 4.1 An Introduction to Using LINDO and LINGO 145
Selected References 149
Learning Aids for This Chapter on Our Website 149
Problems 150
Case 4.1 Fabrics and Fall Fashions 158
Previews of Added Cases on Our Website 160
Case 4.2 New Frontiers 160
Case 4.3 Assigning Students to Schools 160

CHAPTER 5
The Theory of the Simplex Method 161

5.1 Foundations of the Simplex Method 161

5.2 The Simplex Method in Matrix Form 172

5.3 A Fundamental Insight 181

5.4 The Revised Simplex Method 184

5.5 Conclusions 187

Selected References 187

Learning Aids for This Chapter on Our Website 188
Problems 188

CHAPTER 6
Duality Theory and Sensitivity Analysis 195

6.1 The Essence of Duality Theory 196
6.2 Economic Interpretation of Duality 203
6.3 Primal-Dual Relationships 206
6.4 Adapting to Other Primal Forms 211
6.5 The Role of Duality Theory in Sensitivity Analysis 215
6.6 The Essence of Sensitivity Analysis 217
6.7 Applying Sensitivity Analysis 225
6.8 Performing Sensitivity Analysis on a Spreadsheet 245
6.9 Conclusions 259
Selected References 260
Learning Aids for This Chapter on Our Website 260
Problems 261
Case 6.1 Controlling Air Pollution 274
Previews of Added Cases on Our Website 275
Case 6.2 Farm Management 275
Case 6.3 Assigning Students to Schools, Revisited 275
Case 6.4 Writing a Nontechnical Memo 275

140



CONTENTS

CHAPTER 7
Other Algorithms for Linear Programming 276

7.1 The Dual Simplex Method 276

7.2 Parametric Linear Programming 280

7.3 The Upper Bound Technique 285

7.4 An Interior-Point Algorithm 287

7.5 Conclusions 298

Selected References 299

Learning Aids for This Chapter on Our Website 299
Problems 300

CHAPTER 8
The Transportation and Assignment Problems 304

8.1 The Transportation Problem 305
8.2 A Streamlined Simplex Method for the Transportation Problem 319
8.3 The Assignment Problem 334
8.4 A Special Algorithm for the Assignment Problem 342
8.5 Conclusions 346
Selected References 347
Learning Aids for This Chapter on Our Website 347
Problems 348
Case 8.1 Shipping Wood to Market 356
Previews of Added Cases on Our Website 357
Case 8.2 Continuation of the Texago Case Study 357
Case 8.3 Project Pickings 357

CHAPTER 9
Network Optimization Models 358

9.1 Prototype Example 359

9.2 The Terminology of Networks 360

9.3 The Shortest-Path Problem 363

9.4 The Minimum Spanning Tree Problem 368

9.5 The Maximum Flow Problem 373

9.6 The Minimum Cost Flow Problem 380

9.7 The Network Simplex Method 389

9.8 A Network Model for Optimizing a Projects Time-Cost Trade-Off 399

9.9 Conclusions 410

Selected References 411

Learning Aids for This Chapter on Our Website 411

Problems 412

Case 9.1 Money in Motion 420

Previews of Added Cases on Our Website 423
Case 9.2 Aiding Allies 423
Case 9.3 Steps to Success 423

CHAPTER 10

Dynamic Programming 424

10.1 A Prototype Example for Dynamic Programming 424
10.2 Characteristics of Dynamic Programming Problems 429
10.3 Deterministic Dynamic Programming 431



CONTENTS

10.4 Probabilistic Dynamic Programming 451

10.5 Conclusions 457

Selected References 457

Learning Aids for This Chapter on Our Website 457
Problems 458

CHAPTER 11
Integer Programming 464

11.1 Prototype Example 465
11.2 Some BIP Applications 468
11.3 Innovative Uses of Binary Variables in Model Formulation 473
11.4 Some Formulation Examples 479
11.5 Some Perspectives on Solving Integer Programming Problems 487
11.6 The Branch-and-Bound Technique and Its Application to Binary
Integer Programming 491
11.7 A Branch-and-Bound Algorithm for Mixed Integer
Programming 503
11.8 The Branch-and-Cut Approach to Solving BIP Problems 509
11.9 The Incorporation of Constraint Programming 515
11.10 Conclusions 521
Selected References 522
Learning Aids for This Chapter on Our Website 523
Problems 524
Case 11.1 Capacity Concerns 533
Previews of Added Cases on Our Website 535
Case 11.2 Assigning Art 535
Case 11.3 Stocking Sets 535
Case 11.4 Assigning Students to Schools, Revisited Again 536

CHAPTER 12
Nonlinear Programming 537

12.1 Sample Applications 538
12.2 Graphical lllustration of Nonlinear Programming Problems 542
12.3 Types of Nonlinear Programming Problems 546
12.4 One-Variable Unconstrained Optimization 552
12.5 Multivariable Unconstrained Optimization 557
12.6 The Karush-Kuhn-Tucker (KKT) Conditions for Constrained Optimization
12.7 Quadratic Programming 567
12.8 Separable Programming 573
12.9 Convex Programming 580
12.10 Nonconvex Programming (with Spreadsheets) 588
12.11 Conclusions 592
Selected References 593
Learning Aids for This Chapter on Our Website 593
Problems 594
Case 12.1 Savvy Stock Selection 605
Previews of Added Cases on Our Website 606
Case 12.2 International Investments 606
Case 12.3 Promoting a Breakfast Cereal, Revisited 606

563



CONTENTS

CHAPTER 13
Metaheuristics 607

13.1 The Nature of Metaheuristics 608

13.2 Tabu Search 615

13.3 Simulated Annealing 626

13.4 Genetic Algorithms 635

13.5 Conclusions 645

Selected References 646

Learning Aids for This Chapter on Our Website 646
Problems 647

CHAPTER 14
Game Theory 651

14.1 The Formulation of Two-Person, Zero-Sum Games 651
14.2 Solving Simple Games—A Prototype Example 653
14.3 Games with Mixed Strategies 658

14.4 Graphical Solution Procedure 660

14.5 Solving by Linear Programming 662

14.6 Extensions 666

14.7 Conclusions 667

Selected References 667

Learning Aids for This Chapter on Our Website 667
Problems 668

CHAPTER 15
Decision Analysis 672

15.1 A Prototype Example 673
15.2 Decision Making without Experimentation 674
15.3 Decision Making with Experimentation 680
15.4 Decision Trees 686
15.5 Using Spreadsheets to Perform Sensitivity Analysis on Decision Trees 690
15.6 Utility Theory 700
15.7 The Practical Application of Decision Analysis 707
15.8 Conclusions 708
Selected References 709
Learning Aids for This Chapter on Our Website 709
Problems 710
Case 15.1 Brainy Business 720
Preview of Added Cases on Our Website 722
Case 15.2 Smart Steering Support 722
Case 15.3 Who Wants to be a Millionaire? 722
Case 15.4 University Toys and the Engineering Professor Action Figures

CHAPTER 16
Markov Chains 723

16.1 Stochastic Processes 723
16.2 Markov Chains 725
16.3 Chapman-Kolmogorov Equations 732

722



xii CONTENTS

16.4 Classification of States of a Markov Chain 735
16.5 Long-Run Properties of Markov Chains 737
16.6 First Passage Times 743

16.7 Absorbing States 745

16.8 Continuous Time Markov Chains 748

Selected References 753

Learning Aids for This Chapter on Our Website 753
Problems 754

CHAPTER 17
Queueing Theory 759

17.1 Prototype Example 760
17.2 Basic Structure of Queueing Models 760
17.3 Examples of Real Queueing Systems 765
17.4 The Role of the Exponential Distribution 767
17.5 The Birth-and-Death Process 773
17.6 Queueing Models Based on the Birth-and-Death Process 777
17.7 Queueing Models Involving Nonexponential Distributions 790
17.8 Priority-Discipline Queueing Models 798
17.9 Queueing Networks 803
17.10 The Application of Queueing Theory 807
17.11 Conclusions 812
Selected References 812
Learning Aids for This Chapter on Our Website 813
Problems 814
Case 17.1 Reducing In-Process Inventory 826
Preview of an Added Case on Our Website 827
Case 17.2 Queueing Quandary 827

CHAPTER 18
Inventory Theory 828

18.1 Examples 829
18.2 Components of Inventory Models 831
18.3 Deterministic Continuous-Review Models 833
18.4 A Deterministic Periodic-Review Model 843
18.5 Deterministic Multiechelon Inventory Models for Supply
Chain Management 848
18.6 A Stochastic Continuous-Review Model 866
18.7 A Stochastic Single-Period Model for Perishable Products 870
18.8 Revenue Management 882
18.9 Conclusions 890
Selected References 890
Learning Aids for This Chapter on Our Website 891
Problems 892
Case 18.1 Brushing Up on Inventory Control 902
Previews of Added Cases on Our Website 904
Case 18.2 TNT: Tackling Newsboy’s Teachings 904
Case 18.3 Jettisoning Surplus Stock 904



CONTENTS xiii

CHAPTER 19
Markov Decision Processes 905

19.1 A Prototype Example 905

19.2 A Model for Markov Decision Processes 908

19.3 Linear Programming and Optimal Policies 911

19.4 Policy Improvement Algorithm for Finding Optimal Policies 915
19.5 Discounted Cost Criterion 920

19.6 Conclusions 928

Selected References 928

Learning Aids for This Chapter on Our Website 929

Problems 929

CHAPTER 20
Simulation 934

20.1 The Essence of Simulation 934
20.2 Some Common Types of Applications of Simulation 946
20.3 Generation of Random Numbers 951
20.4 Generation of Random Observations from a Probability Distribution 955
20.5 Outline of a Major Simulation Study 959
20.6 Performing Simulations on Spreadsheets 963
20.7 Conclusions 979
Selected References 981
Learning Aids for This Chapter on Our Website 982
Problems 983
Case 20.1 Reducing In-Process Inventory, Revisited 989
Case 20.2 Action Adventures 989
Previews of Added Cases on Our Website 990
Case 20.3 Planning Planers 990
Case 20.4 Pricing under Pressure 990

APPENDIXES

1. Documentation for the OR Courseware 991
Convexity 993

Classical Optimization Methods 998
Matrices and Matrix Operations 1001

Table for a Normal Distribution 1006

ik WwhN

PARTIAL ANSWERS TO SELECTED PROBLEMS 1008

INDEXES
Author Index 1023
Subject Index 1029



SUPPLEMENTS AVAILABLE
ON THE TEXT WEBSITE
www.mhhe.com/hillier

ADDITIONAL CASES

Case 3.2 Cutting Cafeteria Costs

Case 3.3 Staffing a Call Center

Case 3.4 Promoting a Breakfast Cereal

Case 4.2 New Frontiers

Case 4.3 Assigning Students to Schools

Case 6.2 Farm Management

Case 6.3 Assigning Students to Schools, Revisited
Case 6.4 Writing a Nontechnical Memo

Case 8.2 Continuation of the Texago Case Study
Case 8.3 Project Pickings

Case 9.2 Aiding Allies

Case 9.3 Steps to Success

Case 11.2 Assigning Art

Case 11.3 Stocking Sets

Case 11.4 Assigning Students to Schools, Revisited Again
Case 12.2 International Investments

Case 12.3 Promoting a Breakfast Cereal, Revisited
Case 15.2 Smart Steering Support

Case 15.3 Who Wants to be a Millionaire?

Case 15.4 University Toys and the Engineering Professor Action Figures
Case 17.2 Queueing Quandary

Case 18.2 TNT: Tackling Newsboy’s Teachings
Case 18.3 Jettisoning Surplus Stock

Case 20.3 Planning Planers

Case 20.4 Pricing under Pressure

SUPPLEMENT 1 TO CHAPTER 3
The LINGO Modeling Language

SUPPLEMENT 2 TO CHAPTER 3
More about LINGO

SUPPLEMENT TO CHAPTER 7

Linear Goal Programming and Its Solution Procedures
Problems

Case 7S.1 A Cure for Cuba

Case 7S.2 Airport Security



SUPPLEMENTS AVAILABLE ON THE TEXT WEBSITE

XV

SUPPLEMENT TO CHAPTER 8
A Case Study with Many Transportation Problems

SUPPLEMENT 1 TO CHAPTER 18
Derivation of the Optimal Policy for the Stochastic Single-Period Model
for Perishable Products

Problems

SUPPLEMENT 2 TO CHAPTER 18
Stochastic Periodic-Review Models

Problems

SUPPLEMENT 1 TO CHAPTER 20
Variance-Reducing Techniques

Problems

SUPPLEMENT 2 TO CHAPTER 20
Regenerative Method of Statistical Analysis

Problems

SUPPLEMENT 3 TO CHAPTER 20
Optimizing with OptQuest
Problems

CHAPTER 21
The Art of Modeling with Spreadsheets

21.1 A Case Study: The Everglade Golden Years Company Cash Flow Problem
21.2 Overview of the Process of Modeling with Spreadsheets

21.3 Some Guidelines for Building “Good” Spreadsheet Models

21.4 Debugging a Spreadsheet Model

21.5 Conclusions

Selected References

Learning Aids for This Chapter on Our Website

Problems

Case 21.1 Prudent Provisions for Pensions

CHAPTER 22
Project Management with PERT/CPM

22.1 A Prototype Example—The Reliable Construction Co. Project
22.2 Using a Network to Visually Display a Project

22.3 Scheduling a Project with PERT/CPM

22.4 Dealing with Uncertain Activity Durations

22.5 Considering Time-Cost Trade-Offs

22.6 Scheduling and Controlling Project Costs

22.7 An Evaluation of PERT/CPM

22.8 Conclusions



SUPPLEMENTS AVAILABLE ON THE TEXT WEBSITE

Selected References

Learning Aids for This Chapter on Our Website
Problems

Case 22.1 “Schools out forever . . .”

CHAPTER 23
Additional Special Types of Linear Programming Problems

23.1 The Transshipment Problem

23.2 Multidivisional Problems

23.3 The Decomposition Principle for Multidivisional Problems
23.4 Multitime Period Problems

23.5 Multidivisional Multitime Period Problems

23.6 Stochastic Programming

23.7 Chance-Constrained Programming

23.8 Conclusions

Selected References

Problems

CHAPTER 24
Probability Theory

24.1 Sample Space

24.2 Random Variables

24.3 Probability and Probability Distributions

24.4 Conditional Probability and Independent Events
24.5 Discrete Probability Distributions

24.6 Continuous Probability Distributions

24.7 Expectation

24.8 Moments

24.9 Bivariate Probability Distribution

24.10 Marginal and Conditional Probability Distributions
24.11 Expectations for Bivariate Distributions

24.12 Independent Random Variables and Random Samples
24.13 Law of Large Numbers

24.14 Central Limit Theorem

24.15 Functions of Random Variables

Selected References

Problems

CHAPTER 25

Reliability

25.1 Structure Function of a System

25.2 System Reliability

25.3 Calculation of Exact System Reliability

25.4 Bounds on System Reliability

25.5 Bounds on Reliability Based upon Failure Times
25.6 Conclusions

Selected References

Problems



SUPPLEMENTS AVAILABLE ON THE TEXT WEBSITE

CHAPTER 26
The Application of Queueing Theory

26.1 Examples

26.2 Decision Making

26.3 Formulation of Waiting-Cost Functions
26.4 Decision Models

26.5 The Evaluation of Travel Time

26.6 Conclusions

Selected References

Learning Aids for This Chapter on Our Website
Problems

CHAPTER 27
Forecasting

27.1 Some Applications of Forecasting

27.2 Judgmental Forecasting Methods

27.3 Time Series

27.4 Forecasting Methods for a Constant-Level Model

27.5 Incorporating Seasonal Effects into Forecasting Methods
27.6 An Exponential Smoothing Method for a Linear Trend Model
27.7 Times Series Forecasting with CB Predictor

27.8 Forecasting Errors

27.9 Box-Jenkins Method

27.10 Causal Forecasting with Linear Regression

27.11 Forecasting in Practice

27.12 Conclusions

Selected References

Learning Aids for This Chapter on Our Website

Problems

Case 27.1 Finagling the Forecasts

CHAPTER 28
Examples of Performing Simulations on Spreadsheets with Crystal Ball

28.1 Bidding for a Construction Project

28.2 Project Management

28.3 Cash Flow Management

28.4 Financial Risk Analysis

28.5 Revenue Management in the Travel Industry
28.6 Choosing the Right Distribution

28.7 Decision Making with Decision Tables
28.8 Conclusions

Selected References

Learning Aids for This Chapter on Our Website
Problems

APPENDIX 6
Simultaneous Linear Equations



PREFACE

hen Jerry Lieberman and I started working on the first edition of this book 45 years

ago, our goal was to develop a pathbreaking textbook that would help establish the
future direction of education in what was then the emerging field of operations research.
Following publication, it was unclear how well this particular goal was met, but what did
become clear was that the demand for the book was far larger than either of us had an-
ticipated. Neither of us could have imagined that this extensive worldwide demand would
continue at such a high level for such an extended period of time.

The enthusiastic response to our first eight editions has been most gratifying. It was a
particular pleasure to have the field’s leading professional society, the international Institute
for Operations Research and the Management Sciences (INFORMS), award the 6th edition
honorable mention for the 1995 INFORMS Lanchester Prize (the prize awarded for the year’s
most outstanding English-language publication of any kind in the field of operations research).

Then, just after the publication of the eighth edition, it was especially gratifying to
be the recipient of the prestigious 2004 INFORMS Expository Writing Award for this
book, including receiving the following citation:

Over 37 years, successive editions of this book have introduced more than one-half million
students to the field and have attracted many people to enter the field for academic activity
and professional practice. Many leaders in the field and many current instructors first learned
about the field via an edition of this book. The extensive use of international student edi-
tions and translations into 15 other languages has contributed to spreading the field around
the world. The book remains preeminent even after 37 years. Although the eighth edition
just appeared, the seventh edition had 46 percent of the market for books of its kind, and it
ranked second in international sales among all McGraw-Hill publications in engineering.

Two features account for this success. First, the editions have been outstanding from
students’ points of view due to excellent motivation, clear and intuitive explanations,
good examples of professional practice, excellent organization of material, very useful
supporting software, and appropriate but not excessive mathematics. Second, the editions
have been attractive from instructors’ points of view because they repeatedly infuse state-
of-the-art material with remarkable lucidity and plain language. For example, a wonderful
chapter on metaheuristics was created for the eighth edition.

When we began work on the book 45 years ago, Jerry already was a prominent mem-
ber of the field, a successful textbook writer, and the chairman of a renowned operations
research program at Stanford University. [ was a very young assistant professor just start-
ing my career. It was a wonderful opportunity for me to work with and to learn from the
master. I will be forever indebted to Jerry for giving me this opportunity.

Now, sadly, Jerry is no longer with us. During the progressive illness that led to his
death nine years ago, I resolved that I would pick up the torch and devote myself to subse-
quent editions of this book, maintaining a standard that would fully honor Jerry. Therefore,
I took early retirement from my faculty responsibilities at Stanford in order to work full time
on textbook writing for the foreseeable future. This has enabled me to spend far more than
the usual amount of time in preparing each new edition. It also has enabled me to closely
monitor new trends and developments in the field in order to bring this edition completely
up to date. This monitoring has led to the choice of the major revisions outlined below.
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THE MAJOR REVISIONS

¢ A Greatly Increased Emphasis on Real Applications. Unbeknownst to the general
public, the field of operations research is continuing to have an increasingly dramatic
impact on the success of numerous companies and organizations around the world.
Therefore, a special goal of this edition has been to tell this story much more forcefully,
thereby exciting students about the great relevance of the material they are studying. We
have pursued this goal in four ways. One is the addition of 29 application vignettes sep-
arated from the regular textual material that describe in a few paragraphs how an actual
application of operations research had a powerful impact on a company or organization
by using techniques like those being studied in that portion of the book. A second is the
addition of 71 selected references of award winning OR applications given at the end
of various chapters. A third is the addition of a link to the journal articles that fully
describe these 100 applications, through a special arrangement with INFORMS. The final
way is the addition of many problems that require reading one or more of these arti-
cles. Thus, the instructor now can motivate his or her lectures by having the students
delve into real applications that dramatically demonstrate the relevance of the material
being covered in the lectures.

We are particularly excited about our new partnership with INFORMS, our field’s
preeminent professional society, to provide a link to these 100 articles describing dra-
matic OR applications. The Institute for Operations Research and the Management
Sciences (INFORMS®) is a learned professional society for students, academics, and
practitioners in quantitative and analytical fields. Information about INFORMS®
journals, meetings, job bank, scholarships, awards, and teaching materials is at
www.informs.org.

e Approximately 200 New or Revised Problems. The new problems include the ones
involving real applications mentioned above. Other new problems also have been added,
including a considerable number that support the new or revised topics mentioned later.
Two new cases have been added for the chapter on decision analysis that are less com-
plex than the two that already were there. In addition, many of the problems from the
eighth edition have been revised. Therefore, an instructor who does not wish to assign
problems that were assigned in previous classes has a substantial number from which
to choose.

e An Updating of the Software Accompanying the Book. The next section will out-
line the wealth of software options that are provided with this new edition. The main
difference from the eighth edition is that new, improved versions of several of the soft-
ware packages now are available. For example, Excel 2007 represents by far the most
major revision of Excel and its user interface in many, many years, so this new ver-
sion of Excel and its Solver has been fully integrated into the book (while pointing
out differences for those still using old versions). Another important example is that,
for the first time in 10 years, new versions of TreePlan and Senslt have just now
become available and have been fully integrated into the decision analysis chapter.
The latest versions of all the other software packages also are being provided with
this new edition.

e A New Section on Revenue Management. A hallmark of new editions of this book
has been the addition of substantial coverage of dramatic, recent developments that are
beginning to revolutionize how certain areas of operations research are being practiced.
For example, the eighth edition added a new chapter on metaheuristics, a new section
on the incorporation of constraint programming, and a new section on multiechelon in-
ventory models for supply chain management. This edition is adding another key new
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topic with the addition of a complete section on revenue management in the chapter on
inventory theory. This is a timely addition because of the dramatic impact that revenue
management has been having in the airline industry and now is beginning to have in
several other industries.

A Reorganization of the Chapter on the Theory of the Simplex Method. Some in-
structors do not wish to take the time to cover the revised simplex method but may still
want to introduce the matrix form of the simplex method and may still want to cover
what we call the “fundamental insight” regarding the simplex method. Therefore, rather
than covering the revised simplex method in Section 5.2 before turning to the funda-
mental insight in Section 5.3—as in the eighth edition—we now simply introduce the
matrix form of the simplex method in Section 5.2, which flows directly into the funda-
mental insight in Section 5.3, after which we focus on the revised simplex method as
an optional topic in Section 5.4.

A Simplified Method for Determining Utilities. Among the various other smaller re-
visions throughout the book, perhaps the most noteworthy is a simplified presentation
in Section 15.6 of how to determine utilities. This is done through outlining a simple
“equivalent lottery method.”

A Reorganization to Reduce the Size of the Book. An unfortunate trend with early
editions of this book was that each new edition was significantly larger than the pre-
vious one. This continued until the seventh edition had become considerably larger than
is desirable for an introductory survey textbook. Therefore, I worked hard to substan-
tially reduce the size of the eighth edition and adopted the goal of avoiding any growth
in subsequent editions. The goal has been achieved for the current edition. This was
accomplished through a variety of means. One was being careful not to add too much
new material. Another was deleting two sections on real applications that had been in
the eighth edition but no longer were needed because of the addition of application vi-
gnettes. Another was moving both the long Appendix 3.1 on the LINGO modeling lan-
guage and the section on optimizing with OptQuest to the supplements on the book’s
website. (This decision regarding OptQuest was made easy by the fact that a new ver-
sion is due out momentarily, but not in time for this edition, so it will be added later
as a supplement.) Finally, a considerable number of sections were shortened. Other-
wise, I have stuck closely to what I hope has become the familiar organization of the
eighth edition after having made major changes for that edition.

Updating to Reflect the Current State of the Art. A special effort has been made to
keep the book completely up to date. This has included carefully updating both the se-
lected references at the end of each chapter and the various footnotes referencing the
latest research on the topics being covered.

A WEALTH OF SOFTWARE OPTIONS

A wealth of software options is being provided on the book’s website www.mhhe
.com/hillier as outlined below.

Excel spreadsheets: state-of-the-art spreadsheet formulations are displayed in Excel
files for all relevant examples throughout the book.

Several Excel add-ins, including Premium Solver for Education (an enhancement of
the basic Excel Solver), TreePlan (for decision analysis), Senslt (for probabilistic sen-
sitivity analysis), RiskSim (for simulation), and Solver Table (for sensitivity analysis).
A number of Excel templates for solving basic models.

Student versions of LINDO (a traditional optimizer) and LINGO (a popular algebraic
modeling language), along with formulations and solutions for all relevant examples
throughout the book.
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e Student versions of MPL (a leading algebraic modeling language) and its prime solver
CPLEX (the most widely used state-of-the-art optimizer), along with an MPL Tutorial and
MPL/CPLEX formulations and solutions for all relevant examples throughout the book.

e Student versions of several additional MPL solvers, including CONOPT (for convex
programming), LGO (for global optimization), LINDO (for mathematical program-
ming), CoinMP (for linear and integer programming), and BendX (for some stochas-
tic models).

e Queueing Simulator (for the simulation of queueing systems).

¢ OR Tutor for illustrating various algorithms in action.

e Interactive Operations Research (IOR) Tutorial for efficiently learning and executing
algorithms interactively, implemented in Java 2 in order to be platform independent.

Numerous students have found OR Tutor and IOR Tutorial very helpful for learn-
ing algorithms of operations research. When moving to the next stage of solving OR
models automatically, surveys have found instructors almost equally split in preferring
one of the following options for their students’ use: (1) Excel spreadsheets, including the
Excel Solver and other add-ins, (2) convenient traditional software (LINDO and LINGO),
and (3) state-of-the-art OR software (MPL and CPLEX). For this edition, therefore, I
have retained the philosophy of the last couple of editions of providing enough intro-
duction in the book to enable the basic use of any of the three options without distract-
ing those using another, while also providing ample supporting material for each option
on the book’s website.

We have elected to no longer include the Crystal Ball software package that was bun-
dled with the eighth edition. Fortunately, many universities now have a site license for Crys-
tal Ball and the package currently can also be downloaded for a free 30-day trial period,
so it still is feasible to have students use this software, at least for a limited time. There-
fore, this edition continues to use Crystal Ball in Section 20.6 and certain supplements to
illustrate the exciting functionality that is now available for analyzing simulation models.

Additional Online Resources

e Several examples for nearly every book chapter are included in a Worked Examples
section of the book’s website to provide additional help to occasional students who
need it without disrupting the flow of the text and adding unneeded pages for others.
(The book uses boldface to highlight whenever an additional example on the current
topic is available.)

e A glossary for every book chapter.

e Data files for various cases are included to enable students to focus on analysis rather
than inputting large data sets.

e An abundance of supplementary textual material (including eight complete chapters).

e A test bank featuring moderately difficult questions that require students to show their
work is being provided to instructors. Most of the questions in this test bank have pre-
viously been used successfully as test questions by the authors.

e Also available to instructors are a solutions manual and image files.

Electronic Textbook Option

This text is offered through CourseSmart for both instructors and students. CourseSmart
is an online resource where students can purchase access to this and other McGraw-Hill
textbooks in a digital format. Through their browser, students can access the complete text
online at almost half the cost of a traditional text. Purchasing the eTextbook also allows
students to take advantage of CourseSmart’s web tools for learning, which include full
text search, notes and highlighting, and e-mail tools for sharing notes between classmates.
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To learn more about CourseSmart options, contact your sales representative or visit
www.CourseSmart.com.

THE USE OF THE BOOK

The overall thrust of all the revision efforts has been to build upon the strengths of pre-
vious editions to more fully meet the needs of today’s students. These revisions make
the book even more suitable for use in a modern course that reflects contemporary prac-
tice in the field. The use of software is integral to the practice of operations research, so
the wealth of software options accompanying the book provides great flexibility to the
instructor in choosing the preferred types of software for student use. All the educational
resources accompanying the book further enhance the learning experience. Therefore,
the book and its website should fit a course where the instructor wants the students to
have a single self-contained textbook that complements and supports what happens in
the classroom.

The McGraw-Hill editorial team and I think that the net effect of the revision has been
to make this edition even more of a “student’s book”—clear, interesting, and well-organized
with lots of helpful examples and illustrations, good motivation and perspective, easy-to-find
important material, and enjoyable homework, without too much notation, terminology, and
dense mathematics. We believe and trust that the numerous instructors who have used previ-
ous editions will agree that this is the best edition yet.

The prerequisites for a course using this book can be relatively modest. As with pre-
vious editions, the mathematics has been kept at a relatively elementary level. Most of
Chaps. 1 to 14 (introduction, linear programming, and mathematical programming) require
no mathematics beyond high school algebra. Calculus is used only in Chaps. 12 (Nonlin-
ear Programming) and in one example in Chap. 10 (Dynamic Programming). Matrix no-
tation is used in Chap. 5 (The Theory of the Simplex Method), Chap. 6 (Duality Theory
and Sensitivity Analysis), Sec. 7.4 (An Interior-Point Algorithm), and Chap. 12, but the
only background needed for this is presented in Appendix 4. For Chaps. 15 to 20 (proba-
bilistic models), a previous introduction to probability theory is assumed, and calculus is
used in a few places. In general terms, the mathematical maturity that a student achieves
through taking an elementary calculus course is useful throughout Chaps. 15 to 20 and for
the more advanced material in the preceding chapters.

The content of the book is aimed largely at the upper-division undergraduate level
(including well-prepared sophomores) and at first-year (master’s level) graduate stu-
dents. Because of the book’s great flexibility, there are many ways to package the ma-
terial into a course. Chapters 1 and 2 give an introduction to the subject of operations
research. Chapters 3 to 14 (on linear programming and on mathematical programming)
may essentially be covered independently of Chaps. 15 to 20 (on probabilistic models),
and vice-versa. Furthermore, the individual chapters among Chaps. 3 to 14 are almost
independent, except that they all use basic material presented in Chap. 3 and perhaps
in Chap. 4. Chapter 6 and Sec. 7.2 also draw upon Chap. 5. Sections 7.1 and 7.2 use
parts of Chap. 6. Section 9.6 assumes an acquaintance with the problem formulations
in Secs. 8.1 and 8.3, while prior exposure to Secs. 7.3 and 8.2 is helpful (but not es-
sential) in Sec. 9.7. Within Chaps. 15 to 20, there is considerable flexibility of cover-
age, although some integration of the material is available.

An elementary survey course covering linear programming, mathematical program-
ming, and some probabilistic models can be presented in a quarter (40 hours) or semester
by selectively drawing from material throughout the book. For example, a good survey of
the field can be obtained from Chaps. 1, 2, 3, 4, 15, 17, 18, and 20, along with parts of
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Chaps. 9 to 13. A more extensive elementary survey course can be completed in two quar-
ters (60 to 80 hours) by excluding just a few chapters, for example, Chaps. 7, 14, and 19.
Chapters 1 to 8 (and perhaps part of Chap. 9) form an excellent basis for a (one-quarter)
course in linear programming. The material in Chaps. 9 to 14 covers topics for another
(one-quarter) course in other deterministic models. Finally, the material in Chaps. 15 to 20
covers the probabilistic (stochastic) models of operations research suitable for presentation
in a (one-quarter) course. In fact, these latter three courses (the material in the entire text)
can be viewed as a basic one-year sequence in the techniques of operations research, form-
ing the core of a master’s degree program. Each course outlined has been presented at ei-
ther the undergraduate or graduate level at Stanford University, and this text has been used
in the manner suggested.

The book’s website will provide updates about the book, including an errata. To ac-
cess this site, visit www.mhhe.com/hillier.
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CHAPTER

Introduction

1.1 THE ORIGINS OF OPERATIONS RESEARCH

Since the advent of the industrial revolution, the world has seen a remarkable growth in the
size and complexity of organizations. The artisans’ small shops of an earlier era have
evolved into the billion-dollar corporations of today. An integral part of this revolutionary
change has been a tremendous increase in the division of labor and segmentation of man-
agement responsibilities in these organizations. The results have been spectacular. How-
ever, along with its blessings, this increasing specialization has created new problems,
problems that are still occurring in many organizations. One problem is a tendency for the
many components of an organization to grow into relatively autonomous empires with
their own goals and value systems, thereby losing sight of how their activities and objec-
tives mesh with those of the overall organization. What is best for one component fre-
quently is detrimental to another, so the components may end up working at cross
purposes. A related problem is that as the complexity and specialization in an organization
increase, it becomes more and more difficult to allocate the available resources to the vari-
ous activities in a way that is most effective for the organization as a whole. These kinds of
problems and the need to find a better way to solve them provided the environment for the
emergence of operations research (commonly referred to as OR).

The roots of OR can be traced back many decades,' when early attempts were made to
use a scientific approach in the management of organizations. However, the beginning of
the activity called operations research has generally been attributed to the military services
early in World War II. Because of the war effort, there was an urgent need to allocate scarce
resources to the various military operations and to the activities within each operation in an
effective manner. Therefore, the British and then the U.S. military management called
upon a large number of scientists to apply a scientific approach to dealing with this and
other strategic and tactical problems. In effect, they were asked to do research on (military)
operations. These teams of scientists were the first OR teams. By developing effective
methods of using the new tool of radar, these teams were instrumental in winning the Air Bat-
tle of Britain. Through their research on how to better manage convoy and antisubmarine

!Selected Reference 2 provides an entertaining history of operations research that traces its roots as far back as
1564 by describing a considerable number of scientific contributions from 1564 to 1935 that influenced the sub-
sequent development of OR.

1
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operations, they also played a major role in winning the Battle of the North Atlantic. Sim-
ilar efforts assisted the Island Campaign in the Pacific.

When the war ended, the success of OR in the war effort spurred interest in applying
OR outside the military as well. As the industrial boom following the war was running its
course, the problems caused by the increasing complexity and specialization in organiza-
tions were again coming to the forefront. It was becoming apparent to a growing number of
people, including business consultants who had served on or with the OR teams during the
war, that these were basically the same problems that had been faced by the military but in
a different context. By the early 1950s, these individuals had introduced the use of OR to a
variety of organizations in business, industry, and government. The rapid spread of OR
soon followed.

At least two other factors that played a key role in the rapid growth of OR during this
period can be identified. One was the substantial progress that was made early in improv-
ing the techniques of OR. After the war, many of the scientists who had participated on OR
teams or who had heard about this work were motivated to pursue research relevant to the
field; important advancements in the state of the art resulted. A prime example is the
simplex method for solving linear programming problems, developed by George Dantzig
in 1947. Many of the standard tools of OR, such as linear programming, dynamic pro-
gramming, queueing theory, and inventory theory, were relatively well developed before
the end of the 1950s.

A second factor that gave great impetus to the growth of the field was the onslaught of
the computer revolution. A large amount of computation is usually required to deal most
effectively with the complex problems typically considered by OR. Doing this by hand
would often be out of the question. Therefore, the development of electronic digital com-
puters, with their ability to perform arithmetic calculations millions of times faster than a
human being can, was a tremendous boon to OR. A further boost came in the 1980s with
the development of increasingly powerful personal computers accompanied by good soft-
ware packages for doing OR. This brought the use of OR within the easy reach of much
larger numbers of people, and this progress further accelerated in the 1990s and into the
21st century. Today, literally millions of individuals have ready access to OR software.
Consequently, a whole range of computers from mainframes to laptops now are being rou-
tinely used to solve OR problems, including some of enormous size.

1.2 THE NATURE OF OPERATIONS RESEARCH

As its name implies, operations research involves “research on operations.” Thus, opera-
tions research is applied to problems that concern how to conduct and coordinate the
operations (i.e., the activities) within an organization. The nature of the organization is
essentially immaterial, and, in fact, OR has been applied extensively in such diverse areas
as manufacturing, transportation, construction, telecommunications, financial planning,
health care, the military, and public services, to name just a few. Therefore, the breadth of
application is unusually wide.

The research part of the name means that operations research uses an approach that
resembles the way research is conducted in established scientific fields. To a considerable
extent, the scientific method is used to investigate the problem of concern. (In fact, the term
management science sometimes is used as a synonym for operations research.) In particu-
lar, the process begins by carefully observing and formulating the problem, including gath-
ering all relevant data. The next step is to construct a scientific (typically mathematical)
model that attempts to abstract the essence of the real problem. It is then hypothesized that
this model is a sufficiently precise representation of the essential features of the situation
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that the conclusions (solutions) obtained from the model are also valid for the real prob-
lem. Next, suitable experiments are conducted to test this hypothesis, modify it as needed,
and eventually verify some form of the hypothesis. (This step is frequently referred to as
model validation.) Thus, in a certain sense, operations research involves creative scientific
research into the fundamental properties of operations. However, there is more to it than
this. Specifically, OR is also concerned with the practical management of the organization.
Therefore, to be successful, OR must also provide positive, understandable conclusions to
the decision maker(s) when they are needed.

Still another characteristic of OR is its broad viewpoint. As implied in the preceding
section, OR adopts an organizational point of view. Thus, it attempts to resolve the con-
flicts of interest among the components of the organization in a way that is best for the
organization as a whole. This does not imply that the study of each problem must give
explicit consideration to all aspects of the organization; rather, the objectives being sought
must be consistent with those of the overall organization.

An additional characteristic is that OR frequently attempts to search for a best solution
(referred to as an optimal solution) for the model that represents the problem under con-
sideration. (We say a best instead of the best solution because there may be multiple solu-
tions tied as best.) Rather than simply improving the status quo, the goal is to identify a
best possible course of action. Although it must be interpreted carefully in terms of the
practical needs of management, this “search for optimality” is an important theme in OR.

All these characteristics lead quite naturally to still another one. It is evident that no
single individual should be expected to be an expert on all the many aspects of OR work or
the problems typically considered; this would require a group of individuals having diverse
backgrounds and skills. Therefore, when a full-fledged OR study of a new problem is
undertaken, it is usually necessary to use a team approach. Such an OR team typically
needs to include individuals who collectively are highly trained in mathematics, statistics
and probability theory, economics, business administration, computer science, engineering
and the physical sciences, the behavioral sciences, and the special techniques of OR. The
team also needs to have the necessary experience and variety of skills to give appropriate
consideration to the many ramifications of the problem throughout the organization.

1.3 THE IMPACT OF OPERATIONS RESEARCH

Operations research has had an impressive impact on improving the efficiency of numer-
ous organizations around the world. In the process, OR has made a significant contribution
to increasing the productivity of the economies of various countries. There now are a few
dozen member countries in the International Federation of Operational Research Societies
(IFORS), with each country having a national OR society. Both Europe and Asia have fed-
erations of OR societies to coordinate holding international conferences and publishing
international journals in those continents. In addition, the Institute for Operations Research
and the Management Sciences (INFORMS) is an international OR society. Among its var-
ious journals is one called Inferfaces that regularly publishes articles describing major OR
studies and the impact they had on their organizations.

To give you a better notion of the wide applicability of OR, we list some actual appli-
cations in Table 1.1. Note the diversity of organizations and applications in the first two
columns. The third column identifies the section where an “application vignette” devotes
several paragraphs to describing the application and also references an article that provides
full details. (You can see the first of these application vignettes in this section.) The last
column indicates that these applications typically resulted in annual savings in the
many millions of dollars. Furthermore, additional benefits not recorded in the table
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TABLE 1.1 Applications of operations research to be described in application vignettes

Organization Area of Application Section Annual Savings

Federal Express Logistical planning of shipments 1.3 Not estimated

Continental Airlines Reassign crews to flights when schedule 2.2 $40 million
disruptions occur

Swift & Company Improve sales and manufacturing 3.1 $12 million
performance

Memorial Sloan-Kettering Design of radiation therapy 3.4 $459 million

Cancer Center

United Airlines Plan employee work schedules at airports 3.4 $6 million
and reservations offices

Welch's Optimize use and movement of raw materials 3.6 $150,000

Samsung Electronics Reduce manufacturing times and inventory levels 4.3 $200 million more revenue

Pacific Lumber Company Long-term forest ecosystem management 6.7 $398 million NPV

Procter & Gamble Redesign the production and distribution system 8.1 $200 million

Canadian Pacific Railway Plan routing of rail freight 9.3 $100 million

United Airlines Reassign airplanes to flights when disruptions occur 9.6 Not estimated

U.S. Military Logistical planning of Operations Desert Storm 10.3 Not estimated

Air New Zealand Airline crew scheduling 11.2 $6.7 million

Taco Bell Plan employee work schedules at restaurants 11.5 $13 million

Waste Management Develop a route-management system for trash 11.7 $100 million
collection and disposal

Bank Hapoalim Group Develop a decision-support system for 121 $31 million more revenue
investment advisors

Sears Vehicle routing and scheduling for home 13.2 $42 million
services and deliveries

Conoco-Phillips Evaluate petroleum exploration projects 15.2 Not estimated

Workers” Compensation Manage high-risk disability claims and rehabilitation 15.3 $4 million

Board

Westinghouse Evaluate research-and-development projects 15.4 Not estimated

Merrill Lynch Manage liquidity risk for revolving credit lines 16.2 $4 billion more liquidity

PSA Peugeot Citroén Guide the design process for efficient car 16.8 $130 million more profit
assembly plants

KeyCorp Improve efficiency of bank teller service 17.6 $20 million

General Motors Improve efficiency of production lines 17.9 $90 million

Deere & Company Management of inventories throughout a 18.5 $1 billion less inventory
supply chain

Time Inc. Management of distribution channels for 18.7 $3.5 million more profit
magazines

Bank One Corporation Management of credit lines and interest rates 19.2 $75 million more profit
for credit cards

Merrill Lynch Pricing analysis for providing financial services 20.2 $50 million more revenue

AT&T Design and operation of call centers 20.5 $750 million more profit

(e.g., improved service to customers and better managerial control) sometimes were con-
sidered to be even more important than these financial benefits. (You will have an opportu-
nity to investigate these less tangible benefits further in Probs. 1.3-1, 1.3-2, and 1.3-3.)
A link to the articles that describe these applications in detail is included on our website,

www.mhhe.com/hillier.

Although most routine OR studies provide considerably more modest benefits than
the applications summarized in Table 1.1, the figures in the rightmost column of this table
do accurately reflect the dramatic impact that large, well-designed OR studies occasionally

can have.



An Application Vignette

Federal Express (FedEx) is the world’s largest express
transportation company. Every working day, it delivers
more than 6.5 million documents, packages, and other
items throughout the United States and more than 220
countries and territories around the world. In some cases,
these shipments can be guaranteed overnight delivery by
10:30 A.M. the next morning.

The logistical challenges involved in providing this
service are staggering. These millions of daily shipments
must be individually sorted and routed to the correct gen-
eral location (usually by aircraft) and then delivered to
the exact destination (usually by motorized vehicle) in an
amazingly short period of time. How is all this possible?

Operations research (OR) is the technological engine
that drives this company. Ever since its founding in 1973,
OR has helped make its major business decisions, includ-
ing equipment investment, route structure, scheduling,
finances, and location of facilities. After OR was credited

with literally saving the company during its early years, it
became the custom to have OR represented at the weekly
senior management meetings and, indeed, several of the
senior corporate vice presidents have come up from the
outstanding FedEx OR group.

FedEx has come to be acknowledged as a world-class
company. It routinely ranks among the top companies on
Fortune Magazine’s annual listing of the “World’s Most
Admired Companies.” It also was the first winner (in 1991)
of the prestigious prize now known as the INFORMS Prize,
which is awarded annually for the effective and repeated
integration of OR into organizational decision making in
pioneering, varied, novel, and lasting ways.

Source: R. O. Mason, J. L. McKenney, W. Carlson, and
D. Copeland, “Absolutely, Positively Operations Research: The
Federal Express Story,” Interfaces, 27(2): 17-36, March-April
1997. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

1.4 ALGORITHMS AND OR COURSEWARE

An important part of this book is the presentation of the major algorithms (systematic solu-
tion procedures) of OR for solving certain types of problems. Some of these algorithms are
amazingly efficient and are routinely used on problems involving hundreds or thousands of
variables. You will be introduced to how these algorithms work and what makes them so
efficient. You then will use these algorithms to solve a variety of problems on a computer.
The OR Courseware contained on the book’s website (www.mhhe.com/hillier) will be a
key tool for doing all this.

One special feature in your OR Courseware is a program called OR Tutor. This pro-
gram is intended to be your personal tutor to help you learn the algorithms. It consists of
many demonstration examples that display and explain the algorithms in action. These
“demos” supplement the examples in the book.

In addition, your OR Courseware includes a special software package called
Interactive Operations Research Tutorial, or IOR Tutorial for short. Implemented in
Java, this innovative package is designed specifically to enhance the learning experience of
students using this book. IOR Tutorial includes many interactive procedures for executing
the algorithms interactively in a convenient format. The computer does all the routine cal-
culations while you focus on learning and executing the logic of the algorithm. You should
find these interactive procedures a very efficient and enlightening way of doing many of
your homework problems. IOR Tutorial also includes a number of other helpful proce-
dures, including some automatic procedures for executing algorithms automatically and
several procedures that provide graphical displays of how the solution provided by an algo-
rithm varies with the data of the problem.

In practice, the algorithms normally are executed by commercial software packages.
We feel that it is important to acquaint students with the nature of these packages that they
will be using after graduation. Therefore, your OR Courseware includes a wealth of mate-
rial to introduce you to three particularly popular software packages described next.
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Together, these packages will enable you to solve nearly all the OR models encountered in
this book very efficiently. We have added our own automatic procedures to IOR Tutorial in
a few cases where these packages are not applicable.

A very popular approach now is to use today’s premier spreadsheet package,
Microsoft Excel, to formulate small OR models in a spreadsheet format. The Excel Solver
(or an enhanced version of this add-in, such as Premium Solver for Education included
in your OR Courseware) then is used to solve the models. Your OR Courseware includes
separate Excel files, based on the relatively new Excel 2007, for nearly every chapter in
this book. Each time a chapter presents an example that can be solved using Excel, the
complete spreadsheet formulation and solution is given in that chapter’s Excel files. For
many of the models in the book, an Excel template also is provided that already includes all
the equations necessary to solve the model. Some Excel add-ins also are included on the
book’s website.

After many years, LINDO (and its companion modeling language LINGO) continues
to be a popular OR software package. Student versions of LINDO and LINGO now can be
downloaded free from the Web. This student version also is provided in your OR Course-
ware. As for Excel, each time an example can be solved with this package, all the details
are given in a LINGO/LINDO file for that chapter in your OR Courseware.

CPLEX is an elite state-of-the-art software package that is widely used for solving
large and challenging OR problems. When dealing with such problems, it is common to
also use a modeling system to efficiently formulate the mathematical model and enter it
into the computer. MPL is a user-friendly modeling system that uses CPLEX as its main
solver, but also has several other solvers, including LINDO, CoinMP (introduced in
Sec. 4.8), CONOPT (introduced in Sec. 12.9), LGO (introduced in Sec. 12.10), and
BendX (useful for solving some stochastic models). A student version of MPL, along with
the latest student version of CPLEX and its other solvers, is available free by downloading
it from the Web. For your convenience, we also have included this student version (includ-
ing all the solvers just mentioned) in your OR Courseware. Once again, all the examples
that can be solved with this package are detailed in MPL/CPLEX files for the correspond-
ing chapters in your OR Courseware.

We will further describe these three software packages and how to use them later
(especially near the end of Chaps. 3 and 4). Appendix | also provides documentation for
the OR Courseware, including OR Tutor and IOR Tutorial.

To alert you to relevant material in OR Courseware, the end of each chapter from
Chap. 3 onward has a list entitled Learning Aids for This Chapter on our Website. As
explained at the beginning of the problem section for each of these chapters, symbols also
are placed to the left of each problem number or part where any of this material (including
demonstration examples and interactive procedures) can be helpful.

Another learning aid provided on our website is a set of Worked Examples for each
chapter (from Chap. 3 onward). These complete examples supplement the examples in the
book for your use as needed, but without interrupting the flow of the material on those
many occasions when you don’t need to see an additional example. You also might find
these supplementary examples helpful when preparing for an examination. We always will
mention whenever a supplementary example on the current topic is included in the Worked
Examples section of the book’s website. To make sure you don’t overlook this mention, we
will boldface the words additional example (or something similar) each time.

The website also includes a glossary for each chapter.
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® PROBLEMS

1.3-1. Select one of the applications of operations research
listed in Table 1.1. Read the article that is referenced in the
application vignette presented in the section shown in the third
column. (A link to all these articles is provided on our website,
www.mhhe.com/hillier.) Write a two-page summary of the
application and the benefits (including nonfinancial benefits) it
provided.

1.3-2. Select three of the applications of operations research listed
in Table 1.1. For each one, read the article that is referenced in the

application vignette presented in the section shown in the third col-
umn. (A link to all these articles is provided on our website,
www.mhhe.com/hillier.) For each one, write a one-page sum-
mary of the application and the benefits (including nonfinancial
benefits) it provided.

1.3-3. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 1.3. List
the various financial and nonfinancial benefits that resulted from
this study.



CHAPTER

Overview of the Operations
Research Modeling Approach

he bulk of this book is devoted to the mathematical methods of operations research
(OR). This is quite appropriate because these quantitative techniques form the main part
of what is known about OR. However, it does not imply that practical OR studies are pri-
marily mathematical exercises. As a matter of fact, the mathematical analysis often repre-
sents only a relatively small part of the total effort required. The purpose of this chapter is to
place things into better perspective by describing all the major phases of a typical OR study.
One way of summarizing the usual (overlapping) phases of an OR study is the following:

1. Define the problem of interest and gather relevant data.

2. Formulate a mathematical model to represent the problem.

3. Develop a computer-based procedure for deriving solutions to the problem from the
model.

4. Test the model and refine it as needed.

5. Prepare for the ongoing application of the model as prescribed by management.

6. Implement.

Each of these phases will be discussed in turn in the following sections.

The selected references at the end of the chapter include some award-winning OR
studies that provide excellent examples of how to execute these phases well. We will inter-
sperse snippets from some of these examples throughout the chapter. If you decide that you
would like to learn more about these award-winning applications of operations research, a
link to the articles that describe these OR studies in detail is included on the book’s web-
site, www.mhhe.com/hillier.

2.1 DEFINING THE PROBLEM AND GATHERING DATA

In contrast to textbook examples, most practical problems encountered by OR teams are
initially described to them in a vague, imprecise way. Therefore, the first order of business
is to study the relevant system and develop a well-defined statement of the problem to be
considered. This includes determining such things as the appropriate objectives, con-
straints on what can be done, interrelationships between the area to be studied and other
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areas of the organization, possible alternative courses of action, time limits for making a
decision, and so on. This process of problem definition is a crucial one because it greatly
affects how relevant the conclusions of the study will be. It is difficult to extract a “right”
answer from the “wrong” problem!

The first thing to recognize is that an OR team normally works in an advisory capac-
ity. The team members are not just given a problem and told to solve it however they see fit.
Instead, they advise management (often one key decision maker). The team performs a
detailed technical analysis of the problem and then presents recommendations to manage-
ment. Frequently, the report to management will identify a number of alternatives that are
particularly attractive under different assumptions or over a different range of values of
some policy parameter that can be evaluated only by management (e.g., the trade-off
between cost and benefits). Management evaluates the study and its recommendations,
takes into account a variety of intangible factors, and makes the final decision based on its
best judgment. Consequently, it is vital for the OR team to get on the same wavelength as
management, including identifying the “right” problem from management’s viewpoint,
and to build the support of management for the course that the study is taking.

Ascertaining the appropriate objectives is a very important aspect of problem defini-
tion. To do this, it is necessary first to identify the member (or members) of management
who actually will be making the decisions concerning the system under study and then to
probe into this individual’s thinking regarding the pertinent objectives. (Involving the deci-
sion maker from the outset also is essential to build her or his support for the implementa-
tion of the study.)

By its nature, OR is concerned with the welfare of the entire organization rather than
that of only certain of its components. An OR study seeks solutions that are optimal for the
overall organization rather than suboptimal solutions that are best for only one component.
Therefore, the objectives that are formulated ideally should be those of the entire organiza-
tion. However, this is not always convenient. Many problems primarily concern only a por-
tion of the organization, so the analysis would become unwieldy if the stated objectives
were too general and if explicit consideration were given to all side effects on the rest of
the organization. Instead, the objectives used in the study should be as specific as they can
be while still encompassing the main goals of the decision maker and maintaining a rea-
sonable degree of consistency with the higher-level objectives of the organization.

For profit-making organizations, one possible approach to circumventing the problem
of suboptimization is to use long-run profit maximization (considering the time value of
money) as the sole objective. The adjective long-run indicates that this objective provides
the flexibility to consider activities that do not translate into profits immediately (e.g.,
research and development projects) but need to do so eventually in order to be worthwhile.
This approach has considerable merit. This objective is specific enough to be used conve-
niently, and yet it seems to be broad enough to encompass the basic goal of profit-making
organizations. In fact, some people believe that all other legitimate objectives can be trans-
lated into this one.

However, in actual practice, many profit-making organizations do not use this
approach. A number of studies of U.S. corporations have found that management tends to
adopt the goal of satisfactory profits, combined with other objectives, instead of focusing
on long-run profit maximization. Typically, some of these other objectives might be to
maintain stable profits, increase (or maintain) one’s share of the market, provide for prod-
uct diversification, maintain stable prices, improve worker morale, maintain family control
of the business, and increase company prestige. Fulfilling these objectives might achieve
long-run profit maximization, but the relationship may be sufficiently obscure that it may
not be convenient to incorporate them all into this one objective.
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Furthermore, there are additional considerations involving social responsibilities that
are distinct from the profit motive. The five parties generally affected by a business firm
located in a single country are (1) the owners (stockholders, etc.), who desire profits (divi-
dends, stock appreciation, and so on); (2) the employees, who desire steady employment at
reasonable wages; (3) the customers, who desire a reliable product at a reasonable price;
(4) the suppliers, who desire integrity and a reasonable selling price for their goods; and
(5) the government and hence the nation, which desire payment of fair taxes and consider-
ation of the national interest. All five parties make essential contributions to the firm, and
the firm should not be viewed as the exclusive servant of any one party for the exploitation
of others. By the same token, international corporations acquire additional obligations to
follow socially responsible practices. Therefore, while granting that management’s prime
responsibility is to make profits (which ultimately benefits all five parties), we note that its
broader social responsibilities also must be recognized.

OR teams typically spend a surprisingly large amount of time gathering relevant data
about the problem. Much data usually are needed both to gain an accurate understanding of
the problem and to provide the needed input for the mathematical model being formulated
in the next phase of study. Frequently, much of the needed data will not be available when
the study begins, either because the information never has been kept or because what was
kept is outdated or in the wrong form. Therefore, it often is necessary to install a new
computer-based management information system to collect the necessary data on an ongo-
ing basis and in the needed form. The OR team normally needs to enlist the assistance of
various other key individuals in the organization, including information technology (IT)
specialists, to track down all the vital data. Even with this effort, much of the data may be
quite “soft,” i.e., rough estimates based only on educated guesses. Typically, an OR team
will spend considerable time trying to improve the precision of the data and then will make
do with the best that can be obtained.

With the widespread use of databases and the explosive growth in their sizes in recent
years, OR teams now frequently find that their biggest data problem is not that too little is
available but that there is too much data. There may be thousands of sources of data, and
the total amount of data may be measured in gigabytes or even terabytes. In this environ-
ment, locating the particularly relevant data and identifying the interesting patterns in
these data can become an overwhelming task. One of the newer tools of OR teams is a
technique called data mining that addresses this problem. Data mining methods search
large databases for interesting patterns that may lead to useful decisions. (Selected Refer-
ence 2 at the end of the chapter provides further background about data mining.)

Example. In the late 1990s, full-service financial services firms came under assault
from electronic brokerage firms offering extremely low trading costs. Merrill Lynch
responded by conducting a major OR study that led to a complete overhaul in how it
charged for its services, ranging from a full-service asset-based option (charge a fixed
percentage of the value of the assets held rather than for individual trades) to a low-cost
option for clients wishing to invest online directly. Data collection and processing played
a key role in the study. To analyze the impact of individual client behavior in response to
different options, the team needed to assemble a comprehensive 200 gigabyte client
database involving 5 million clients, 10 million accounts, 100 million trade records, and
250 million ledger records. This required merging, reconciling, filtering, and cleaning data
from numerous production databases. The adoption of the recommendations of the study
led to a one-year increase of nearly $50 billion in client assets held and nearly $80 million
more revenue. (Selected Reference A2 describes this study in detail.)




2.2 FORMULATING A MATHEMATICAL MODEL 11

2.2 FORMULATING A MATHEMATICAL MODEL

After the decision maker’s problem is defined, the next phase is to reformulate this prob-
lem in a form that is convenient for analysis. The conventional OR approach for doing this
is to construct a mathematical model that represents the essence of the problem. Before
discussing how to formulate such a model, we first explore the nature of models in general
and of mathematical models in particular.

Models, or idealized representations, are an integral part of everyday life. Common
examples include model airplanes, portraits, globes, and so on. Similarly, models play an
important role in science and business, as illustrated by models of the atom, models of
genetic structure, mathematical equations describing physical laws of motion or chemical
reactions, graphs, organizational charts, and industrial accounting systems. Such models
are invaluable for abstracting the essence of the subject of inquiry, showing interrelation-
ships, and facilitating analysis.

Mathematical models are also idealized representations, but they are expressed in terms
of mathematical symbols and expressions. Such laws of physics as F = ma and E = mc” are
familiar examples. Similarly, the mathematical model of a business problem is the system of
equations and related mathematical expressions that describe the essence of the problem.
Thus, if there are n related quantifiable decisions to be made, they are represented as
decision variables (say, x;, x,, . . . , X,,, whose respective values are to be determined. The
appropriate measure of performance (e.g., profit) is then expressed as a mathematical func-
tion of these decision variables (for example, P = 3x; + 2x, + . . . + 5x,,). This function is
called the objective function. Any restrictions on the values that can be assigned to these
decision variables are also expressed mathematically, typically by means of inequalities or
equations (for example, x; + 3x;x, + 2x, = 10). Such mathematical expressions for the
restrictions often are called constraints. The constants (namely, the coefficients and right-
hand sides) in the constraints and the objective function are called the parameters of the
model. The mathematical model might then say that the problem is to choose the values of
the decision variables so as to maximize the objective function, subject to the specified con-
straints. Such a model, and minor variations of it, typifies the models used in OR.

Determining the appropriate values to assign to the parameters of the model (one
value per parameter) is both a critical and a challenging part of the model-building process.
In contrast to textbook problems where the numbers are given to you, determining para-
meter values for real problems requires gathering relevant data. As discussed in the pre-
ceding section, gathering accurate data frequently is difficult. Therefore, the value
assigned to a parameter often is, of necessity, only a rough estimate. Because of the uncer-
tainty about the true value of the parameter, it is important to analyze how the solution
derived from the model would change (if at all) if the value assigned to the parameter were
changed to other plausible values. This process is referred to as sensitivity analysis, as
discussed further in the next section (and much of Chap. 6).

Although we refer to “the” mathematical model of a business problem, real problems
normally don’t have just a single “right” model. Section 2.4 will describe how the process
of testing a model typically leads to a succession of models that provide better and better
representations of the problem. It is even possible that two or more completely different
types of models may be developed to help analyze the same problem.

You will see numerous examples of mathematical models throughout the remainder of
this book. One particularly important type that is studied in the next several chapters is the
linear programming model, where the mathematical functions appearing in both the
objective function and the constraints are all linear functions. In Chap. 3, specific linear
programming models are constructed to fit such diverse problems as determining (1) the
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mix of products that maximizes profit, (2) the design of radiation therapy that effectively
attacks a tumor while minimizing the damage to nearby healthy tissue, (3) the allocation of
acreage to crops that maximizes total net return, and (4) the combination of pollution
abatement methods that achieves air quality standards at minimum cost.

Mathematical models have many advantages over a verbal description of the problem.
One advantage is that a mathematical model describes a problem much more concisely.
This tends to make the overall structure of the problem more comprehensible, and it helps to
reveal important cause-and-effect relationships. In this way, it indicates more clearly what
additional data are relevant to the analysis. It also facilitates dealing with the problem in its
entirety and considering all its interrelationships simultaneously. Finally, a mathematical
model forms a bridge to the use of high-powered mathematical techniques and computers to
analyze the problem. Indeed, packaged software for both personal computers and main-
frame computers has become widely available for solving many mathematical models.

However, there are pitfalls to be avoided when you use mathematical models. Such a
model is necessarily an abstract idealization of the problem, so approximations and sim-
plifying assumptions generally are required if the model is to be fractable (capable of
being solved). Therefore, care must be taken to ensure that the model remains a valid rep-
resentation of the problem. The proper criterion for judging the validity of a model is
whether the model predicts the relative effects of the alternative courses of action with
sufficient accuracy to permit a sound decision. Consequently, it is not necessary to
include unimportant details or factors that have approximately the same effect for all the
alternative courses of action considered. It is not even necessary that the absolute magni-
tude of the measure of performance be approximately correct for the various alternatives,
provided that their relative values (i.e., the differences between their values) are suffi-
ciently precise. Thus, all that is required is that there be a high correlation between the
prediction by the model and what would actually happen in the real world. To ascertain
whether this requirement is satisfied, it is important to do considerable testing and conse-
quent modifying of the model, which will be the subject of Sec. 2.4. Although this testing
phase is placed later in the chapter, much of this model validation work actually is con-
ducted during the model-building phase of the study to help guide the construction of the
mathematical model.

In developing the model, a good approach is to begin with a very simple version and
then move in evolutionary fashion toward more elaborate models that more nearly reflect
the complexity of the real problem. This process of model enrichment continues only as
long as the model remains tractable. The basic trade-off under constant consideration is
between the precision and the tractability of the model. (See Selected Reference 8 for a
detailed description of this process.)

A crucial step in formulating an OR model is the construction of the objective func-
tion. This requires developing a quantitative measure of performance relative to each of the
decision maker’s ultimate objectives that were identified while the problem was being
defined. If there are multiple objectives, their respective measures commonly are then
transformed and combined into a composite measure, called the overall measure of per-
formance. This overall measure might be something tangible (e.g., profit) corresponding
to a higher goal of the organization, or it might be abstract (e.g., utility). In the latter case,
the task of developing this measure tends to be a complex one requiring a careful compar-
ison of the objectives and their relative importance. After the overall measure of perfor-
mance is developed, the objective function is then obtained by expressing this measure as
a mathematical function of the decision variables. Alternatively, there also are methods for
explicitly considering multiple objectives simultaneously, and one of these (goal program-
ming) is discussed in the supplement to Chap. 7.



An Application Vignette

Continental Airlines is a major U.S. air carrier that trans-
ports passengers, cargo, and mail. It operates more than
2,000 daily departures to well over 100 domestic destina-
tions and nearly 100 foreign destinations.

Airlines like Continental face schedule disruptions
daily because of unexpected events, including inclement
weather, aircraft mechanical problems, and crew unavail-
ability. These disruptions can cause flight delays and can-
cellations. As a result, crews may not be in position to
service their remaining scheduled flights. Airlines must
reassign crews quickly to cover open flights and to return
them to their original schedules in a cost-effective man-
ner while honoring all government regulations, contrac-
tual obligations, and quality-of-life requirements.

To address such problems, an OR team at Continental
Airlines developed a detailed mathematical model for reas-
signing crews to flights as soon as such emergencies arise.
Because the airline has thousands of crews and daily flights,
the model needed to be huge to consider all possible pair-
ings of crews with flights. Therefore, the model has millions
of decision variables and many thousands of constraints. In

its first year of use (mainly in 2001), the model was applied
four times to recover from major schedule disruptions (two
snowstorms, a flood, and the September 11 terrorist attacks).
This led to savings of approximately $40 million. Subse-
quent applications extended to many daily minor disruptions
as well.

Although other airlines subsequently scrambled to
apply operations research in a similar way, this initial
advantage over other airlines in being able to recover
more quickly from schedule disruptions with fewer
delays and cancelled flights left Continental Airlines in a
relatively strong position as the airline industry struggled
through a difficult period during the initial years of the
21st century. This initiative led to Continental winning
the prestigious First Prize in the 2002 international com-
petition for the Franz Edelman Award for Achievement in
Operations Research and the Management Sciences.

Source: G. Yu, M. Argiiello, C. Song, S. M. McGowan, and
A. White, “A New Era for Crew Recovery at Continental Air-
lines,” Interfaces, 33(1): 5-22, Jan.—Feb. 2003. (A link to this
article is provided on our website, www.mhhe.com/hillier.)

Example.

The Netherlands government agency responsible for water control and public

works, the Rijkswaterstaat, commissioned a major OR study to guide the development of
a new national water management policy. The new policy saved hundreds of millions of
dollars in investment expenditures and reduced agricultural damage by about $15 million
per year, while decreasing thermal and algae pollution. Rather than formulating one
mathematical model, this OR study developed a comprehensive, integrated system of 50
models! Furthermore, for some of the models, both simple and complex versions were
developed. The simple version was used to gain basic insights, including trade-off
analyses. The complex version then was used in the final rounds of the analysis or
whenever greater accuracy or more detailed outputs were desired. The overall OR study
directly involved over 125 person-years of effort (more than one-third in data gathering),
created several dozen computer programs, and structured an enormous amount of data.
(Selected Reference A7 describes this study in detail.)

2.3 DERIVING SOLUTIONS FROM THE MODEL

After a mathematical model is formulated for the problem under consideration, the next
phase in an OR study is to develop a procedure (usually a computer-based procedure) for
deriving solutions to the problem from this model. You might think that this must be the
major part of the study, but actually it is not in most cases. Sometimes, in fact, it is a relatively
simple step, in which one of the standard algorithms (systematic solution procedures) of OR
is applied on a computer by using one of a number of readily available software packages.
For experienced OR practitioners, finding a solution is the fun part, whereas the real work
comes in the preceding and following steps, including the postoptimality analysis discussed
later in this section.
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Since much of this book is devoted to the subject of how to obtain solutions for vari-
ous important types of mathematical models, little needs to be said about it here. However,
we do need to discuss the nature of such solutions.

A common theme in OR is the search for an optimal, or best, solution. Indeed,
many procedures have been developed, and are presented in this book, for finding such
solutions for certain kinds of problems. However, it needs to be recognized that these
solutions are optimal only with respect to the model being used. Since the model neces-
sarily is an idealized rather than an exact representation of the real problem, there cannot
be any utopian guarantee that the optimal solution for the model will prove to be the best
possible solution that could have been implemented for the real problem. There just are
too many imponderables and uncertainties associated with real problems. However, if
the model is well formulated and tested, the resulting solution should tend to be a good
approximation to an ideal course of action for the real problem. Therefore, rather than be
deluded into demanding the impossible, you should make the test of the practical suc-
cess of an OR study hinge on whether it provides a better guide for action than can be
obtained by other means.

Eminent management scientist and Nobel Laureate in economics Herbert Simon
points out that satisficing is much more prevalent than optimizing in actual practice. In
coining the term satisficing as a combination of the words satisfactory and optimizing,
Simon is describing the tendency of managers to seek a solution that is “good enough”
for the problem at hand. Rather than trying to develop an overall measure of perfor-
mance to optimally reconcile conflicts between various desirable objectives (including
well-established criteria for judging the performance of different segments of the organi-
zation), a more pragmatic approach may be used. Goals may be set to establish mini-
mum satisfactory levels of performance in various areas, based perhaps on past levels of
performance or on what the competition is achieving. If a solution is found that enables
all these goals to be met, it is likely to be adopted without further ado. Such is the nature
of satisficing.

The distinction between optimizing and satisficing reflects the difference between the-
ory and the realities frequently faced in trying to implement that theory in practice. In the
words of one of England’s pioneering OR leaders, Samuel Eilon, “Optimizing is the sci-
ence of the ultimate; satisficing is the art of the feasible.”!

OR teams attempt to bring as much of the “science of the ultimate” as possible to the
decision-making process. However, the successful team does so in full recognition of the
overriding need of the decision maker to obtain a satisfactory guide for action in a rea-
sonable period of time. Therefore, the goal of an OR study should be to conduct the study
in an optimal manner, regardless of whether this involves finding an optimal solution for
the model. Thus, in addition to pursuing the science of the ultimate, the team should also
consider the cost of the study and the disadvantages of delaying its completion, and then
attempt to maximize the net benefits resulting from the study. In recognition of this con-
cept, OR teams occasionally use only heuristic procedures (i.e., intuitively designed
procedures that do not guarantee an optimal solution) to find a good suboptimal solu-
tion. This is most often the case when the time or cost required to find an optimal solution
for an adequate model of the problem would be very large. In recent years, great progress
has been made in developing efficient and effective metaheuristics that provide both a
general structure and strategy guidelines for designing a specific heuristic procedure to fit
a particular kind of problem. The use of metaheuristics (the subject of Chap. 13) is con-
tinuing to grow.

'S. Eilon, “Goals and Constraints in Decision-making,” Operational Research Quarterly, 23: 3-15, 1972.
Address given at the 1971 annual conference of the Canadian Operational Research Society.
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The discussion thus far has implied that an OR study seeks to find only one solution,
which may or may not be required to be optimal. In fact, this usually is not the case. An
optimal solution for the original model may be far from ideal for the real problem, so addi-
tional analysis is needed. Therefore, postoptimality analysis (analysis done after finding
an optimal solution) is a very important part of most OR studies. This analysis also is
sometimes referred to as what-if analysis because it involves addressing some questions
about what would happen to the optimal solution if different assumptions are made about
future conditions. These questions often are raised by the managers who will be making
the ultimate decisions rather than by the OR team.

The advent of powerful spreadsheet software now has frequently given spreadsheets a
central role in conducting postoptimality analysis. One of the great strengths of a spread-
sheet is the ease with which it can be used interactively by anyone, including managers, to
see what happens to the optimal solution when changes are made to the model. This
process of experimenting with changes in the model also can be very helpful in providing
understanding of the behavior of the model and increasing confidence in its validity.

In part, postoptimality analysis involves conducting sensitivity analysis to determine
which parameters of the model are most critical (the “sensitive parameters”) in determin-
ing the solution. A common definition of sensitive parameter (used throughout this book)
is the following.

For a mathematical model with specified values for all its parameters, the model’s
sensitive parameters are the parameters whose value cannot be changed without changing
the optimal solution.

Identifying the sensitive parameters is important, because this identifies the parameters
whose value must be assigned with special care to avoid distorting the output of the model.

The value assigned to a parameter commonly is just an estimate of some quantity
(e.g., unit profit) whose exact value will become known only after the solution has been
implemented. Therefore, after the sensitive parameters are identified, special attention is
given to estimating each one more closely, or at least its range of likely values. One then
seeks a solution that remains a particularly good one for all the various combinations of
likely values of the sensitive parameters.

If the solution is implemented on an ongoing basis, any later change in the value of a
sensitive parameter immediately signals a need to change the solution.

In some cases, certain parameters of the model represent policy decisions (e.g.,
resource allocations). If so, there frequently is some flexibility in the values assigned to
these parameters. Perhaps some can be increased by decreasing others. Postoptimality
analysis includes the investigation of such trade-offs.

In conjunction with the study phase discussed in Sec. 2.4 (testing the model), postopti-
mality analysis also involves obtaining a sequence of solutions that comprises a series of
improving approximations to the ideal course of action. Thus, the apparent weaknesses in
the initial solution are used to suggest improvements in the model, its input data, and per-
haps the solution procedure. A new solution is then obtained, and the cycle is repeated. This
process continues until the improvements in the succeeding solutions become too small to
warrant continuation. Even then, a number of alternative solutions (perhaps solutions that
are optimal for one of several plausible versions of the model and its input data) may be pre-
sented to management for the final selection. As suggested in Sec. 2.1, this presentation of
alternative solutions would normally be done whenever the final choice among these alter-
natives should be based on considerations that are best left to the judgment of management.

Example. Consider again the Rijkswaterstaat OR study of national water management
policy for the Netherlands, introduced at the end of Sec. 2.2. This study did not conclude
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by recommending just a single solution. Instead, a number of attractive alternatives were
identified, analyzed, and compared. The final choice was left to the Dutch political
process, culminating with approval by Parliament. Sensitivity analysis played a major role
in this study. For example, certain parameters of the models represented environmental
standards. Sensitivity analysis included assessing the impact on water management
problems if the values of these parameters were changed from the current environmental
standards to other reasonable values. Sensitivity analysis also was used to assess the
impact of changing the assumptions of the models, e.g., the assumption on the effect of
future international treaties on the amount of pollution entering the Netherlands. A variety
of scenarios (e.g., an extremely dry year and an extremely wet year) also were analyzed,
with appropriate probabilities assigned.

2.4 TESTING THE MODEL

Developing a large mathematical model is analogous in some ways to developing a large
computer program. When the first version of the computer program is completed, it
inevitably contains many bugs. The program must be thoroughly tested to try to find and
correct as many bugs as possible. Eventually, after a long succession of improved pro-
grams, the programmer (or programming team) concludes that the current program now is
generally giving reasonably valid results. Although some minor bugs undoubtedly remain
hidden in the program (and may never be detected), the major bugs have been sufficiently
eliminated that the program now can be reliably used.

Similarly, the first version of a large mathematical model inevitably contains many
flaws. Some relevant factors or interrelationships undoubtedly have not been incorporated
into the model, and some parameters undoubtedly have not been estimated correctly. This is
inevitable, given the difficulty of communicating and understanding all the aspects and sub-
tleties of a complex operational problem as well as the difficulty of collecting reliable data.
Therefore, before you use the model, it must be thoroughly tested to try to identify and cor-
rect as many flaws as possible. Eventually, after a long succession of improved models, the
OR team concludes that the current model now is giving reasonably valid results. Although
some minor flaws undoubtedly remain hidden in the model (and may never be detected), the
major flaws have been sufficiently eliminated so that the model now can be reliably used.

This process of testing and improving a model to increase its validity is commonly
referred to as model validation.

It is difficult to describe how model validation is done, because the process depends
greatly on the nature of the problem being considered and the model being used. However,
we make a few general comments, and then we give an example. (See Selected Reference 3
for a detailed discussion.)

Since the OR team may spend months developing all the detailed pieces of the model,
it is easy to “lose the forest for the trees.” Therefore, after the details (“the trees”) of the ini-
tial version of the model are completed, a good way to begin model validation is to take a
fresh look at the overall model (“the forest™) to check for obvious errors or oversights. The
group doing this review preferably should include at least one individual who did not par-
ticipate in the formulation of the model. Reexamining the definition of the problem and
comparing it with the model may help to reveal mistakes. It is also useful to make sure that
all the mathematical expressions are dimensionally consistent in the units used. Additional
insight into the validity of the model can sometimes be obtained by varying the values of
the parameters and/or the decision variables and checking to see whether the output from
the model behaves in a plausible manner. This is often especially revealing when the para-
meters or variables are assigned extreme values near their maxima or minima.
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A more systematic approach to testing the model is to use a retrospective test. When
it is applicable, this test involves using historical data to reconstruct the past and then
determining how well the model and the resulting solution would have performed if they
had been used. Comparing the effectiveness of this hypothetical performance with what
actually happened then indicates whether using this model tends to yield a significant
improvement over current practice. It may also indicate areas where the model has short-
comings and requires modifications. Furthermore, by using alternative solutions from the
model and estimating their hypothetical historical performances, considerable evidence
can be gathered regarding how well the model predicts the relative effects of alternative
courses of actions.

On the other hand, a disadvantage of retrospective testing is that it uses the same data
that guided the formulation of the model. The crucial question is whether the past is truly
representative of the future. If it is not, then the model might perform quite differently in
the future than it would have in the past.

To circumvent this disadvantage of retrospective testing, it is sometimes useful to con-
tinue the status quo temporarily. This provides new data that were not available when the
model was constructed. These data are then used in the same ways as those described here
to evaluate the model.

Documenting the process used for model validation is important. This helps to
increase confidence in the model for subsequent users. Furthermore, if concerns arise in
the future about the model, this documentation will be helpful in diagnosing where prob-
lems may lie.

Example. Consider an OR study done for IBM to integrate its national network of spare-
parts inventories to improve service support for IBM’s customers. This study resulted in a
new inventory system that improved customer service while reducing the value of IBM’s
inventories by over $250 million and saving an additional $20 million per year through
improved operational efficiency. A particularly interesting aspect of the model validation
phase of this study was the way that future users of the inventory system were incorporated
into the testing process. Because these future users (IBM managers in functional areas
responsible for implementation of the inventory system) were skeptical about the system
being developed, representatives were appointed to a user team to serve as advisers to the
OR team. After a preliminary version of the new system had been developed (based on a
multiechelon inventory model), a preimplementation test of the system was conducted.
Extensive feedback from the user team led to major improvements in the proposed system.
(Selected Reference AS describes this study in detail.)

2.5 PREPARING TO APPLY THE MODEL

What happens after the testing phase has been completed and an acceptable model has been
developed? If the model is to be used repeatedly, the next step is to install a well-documented
system for applying the model as prescribed by management. This system will include the
model, solution procedure (including postoptimality analysis), and operating procedures
for implementation. Then, even as personnel changes, the system can be called on at regu-
lar intervals to provide a specific numerical solution.

This system usually is computer-based. In fact, a considerable number of computer
programs often need to be used and integrated. Databases and management information
systems may provide up-to-date input for the model each time it is used, in which case
interface programs are needed. After a solution procedure (another program) is applied to
the model, additional computer programs may trigger the implementation of the results
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automatically. In other cases, an interactive computer-based system called a decision sup-
port system is installed to help managers use data and models to support (rather than
replace) their decision making as needed. Another program may generate managerial
reports (in the language of management) that interpret the output of the model and its impli-
cations for application.

In major OR studies, several months (or longer) may be required to develop, test, and
install this computer system. Part of this effort involves developing and implementing a
process for maintaining the system throughout its future use. As conditions change over
time, this process should modify the computer system (including the model) accordingly.

Example. The application vignette in Sec. 2.2 described an OR study done for Continental
Airlines that led to the formulation of a huge mathematical model for reassigning crews to
flights when schedule disruptions occur. Because the model needs to be applied immediately
when a disruption occurs, a decision support system called CrewSolver was developed to
incorporate both the model and a huge in-memory data store representing current operations.
CrewSolver enables a crew coordinator to input data about the schedule disruption and then to
use a graphical user interface to request an immediate solution for how to reassign crews to
flights.

IMPLEMENTATION

After a system is developed for applying the model, the last phase of an OR study is to
implement this system as prescribed by management. This phase is a critical one because
it is here, and only here, that the benefits of the study are reaped. Therefore, it is important
for the OR team to participate in launching this phase, both to make sure that model solu-
tions are accurately translated to an operating procedure and to rectify any flaws in the
solutions that are then uncovered.

The success of the implementation phase depends a great deal upon the support of both
top management and operating management. The OR team is much more likely to gain this
support if it has kept management well informed and encouraged management’s active
guidance throughout the course of the study. Good communications help to ensure that the
study accomplishes what management wanted, and also give management a greater sense of
ownership of the study, which encourages their support for implementation.

The implementation phase involves several steps. First, the OR team gives operating
management a careful explanation of the new system to be adopted and how it relates to
operating realities. Next, these two parties share the responsibility for developing the pro-
cedures required to put this system into operation. Operating management then sees that a
detailed indoctrination is given to the personnel involved, and the new course of action is
initiated. If successful, the new system may be used for years to come. With this in mind,
the OR team monitors the initial experience with the course of action taken and seeks to
identify any modifications that should be made in the future.

Throughout the entire period during which the new system is being used, it is impor-
tant to continue to obtain feedback on how well the system is working and whether the
assumptions of the model continue to be satisfied. When significant deviations from the
original assumptions occur, the model should be revisited to determine if any modifica-
tions should be made in the system. The postoptimality analysis done earlier (as described
in Sec. 2.3) can be helpful in guiding this review process.

Upon culmination of a study, it is appropriate for the OR team to document its
methodology clearly and accurately enough so that the work is reproducible. Replicability
should be part of the professional ethical code of the operations researcher. This condition
is especially crucial when controversial public policy issues are being studied.
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Example. This example illustrates how a successful implementation phase might need to
involve thousands of employees before undertaking the new procedures. Samsung Electronics
Corp. initiated a major OR study in March 1996 to develop new methodologies and
scheduling applications that would streamline the entire semiconductor manufacturing process
and reduce work-in-progress inventories. The study continued for over five years, culminating
in June 2001, largely because of the extensive effort required for the implementation phase.
The OR team needed to gain the support of numerous managers, manufacturing staff, and
engineering staff by training them in the principles and logic of the new manufacturing
procedures. Ultimately, more than 3,000 people attended training sessions. The new procedures
then were phased in gradually to build confidence. However, this patient implementation
process paid huge dividends. The new procedures transformed the company from being the
least efficient manufacturer in the semiconductor industry to becoming the most efficient. This
resulted in increased revenues of over $1 billion by the time the implementation of the OR
study was completed. (Selected Reference A11 describes this study in detail.)

2.7 CONCLUSIONS

Although the remainder of this book focuses primarily on constructing and solving mathe-
matical models, in this chapter we have tried to emphasize that this constitutes only a por-
tion of the overall process involved in conducting a typical OR study. The other phases
described here also are very important to the success of the study. Try to keep in perspec-
tive the role of the model and the solution procedure in the overall process as you move
through the subsequent chapters. Then, after gaining a deeper understanding of mathemat-
ical models, we suggest that you plan to return to review this chapter again in order to fur-
ther sharpen this perspective.

OR is closely intertwined with the use of computers. In the early years, these generally
were mainframe computers, but now personal computers and workstations are being
widely used to solve OR models.

In concluding this discussion of the major phases of an OR study, it should be empha-
sized that there are many exceptions to the “rules” prescribed in this chapter. By its very
nature, OR requires considerable ingenuity and innovation, so it is impossible to write
down any standard procedure that should always be followed by OR teams. Rather, the
preceding description may be viewed as a model that roughly represents how successful
OR studies are conducted.
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M PROBLEMS

2.1-1. The example in Sec. 2.1 summarizes an award-winning OR

study done for Merrill Lynch. Read Selected Reference A2 that

describes this study in detail.

(a) Summarize the background that led to undertaking this study.

(b) Quote the one-sentence statement of the general mission of the
OR group (called the management science group) that con-
ducted this study.

(c) Identify the type of data that the management science group
obtained for each client.

(d) Identify the new pricing options that were provided to the com-
pany’s clients as a result of this study.

(e) What was the resulting impact on Merrill Lynch’s competitive
position?

2.1-2. Read Selected Reference Al that describes an award-
winning OR study done for General Motors.

(a) Summarize the background that led to undertaking this study.
(b) What was the goal of this study?
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(c) Describe how software was used to automate the collection of
the needed data.

(d) The improved production throughput that resulted from this
study yielded how much in documented savings and increased
revenue?

2.1-3. Read Selected Reference A12 that describes an OR study
done for the San Francisco Police Department.

(a) Summarize the background that led to undertaking this study.
(b) Define part of the problem being addressed by identifying the
six directives for the scheduling system to be developed.

(¢) Describe how the needed data were gathered.
(d) List the various tangible and intangible benefits that resulted
from the study.

2.1-4. Read Selected Reference A9 that describes an OR study

done for the Health Department of New Haven, Connecticut.

(a) Summarize the background that led to undertaking this study.

(b) Outline the system developed to track and test each needle and
syringe in order to gather the needed data.

(¢) Summarize the initial results from this tracking and testing
system.

(d) Describe the impact and potential impact of this study on pub-
lic policy.

2.2-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 2.2. List
the various financial and nonfinancial benefits that resulted from
this study.

2.2-2. Read Selected Reference A3 that describes an OR study

done for Swift & Company.

(a) Summarize the background that led to undertaking this study.

(b) Describe the purpose of each of the three general types of mod-
els formulated during this study.

(¢) How many specific models does the company now use as a re-
sult of this study?

(d) List the various financial and nonfinancial benefits that resulted
from this study.

2.2-3. Read Selected Reference A7 that describes an OR study
done for the Rijkswaterstaat of the Netherlands. (Focus especially
on pp. 3-20 and 30-32.)

(a) Summarize the background that led to undertaking this study.

(b) Summarize the purpose of each of the five mathematical mod-
els described on pp. 10-18.

(¢) Summarize the “impact measures” (measures of performance)
for comparing policies that are described on pp. 67 of this
article.

(d) List the various tangible and intangible benefits that resulted
from the study.

2.2-4. Read Selected Reference 5.

(a) Identify the author’s example of a model in the natural sci-
ences and of a model in OR.

(b) Describe the author’s viewpoint about how basic precepts of
using models to do research in the natural sciences can also be
used to guide research on operations (OR).

2.3-1. Read Selected Reference A10 that describes an OR study

done for Philips Electronics.

(a) Summarize the background that led to undertaking this study.

(b) What was the purpose of this study?

(c) What were the benefits of developing software to support prob-
lem solving speedily?

(d) List the four steps in the collaborative-planning process that
resulted from this study.

(e) List the various financial and nonfinancial benefits that resulted
from this study.

2.3-2. Refer to Selected Reference 5.

(a) Describe the author’s viewpoint about whether the sole goal in
using a model should be to find its optimal solution.

(b) Summarize the author’s viewpoint about the complementary
roles of modeling, evaluating information from the model, and
then applying the decision maker’s judgment when deciding
on a course of action.

2.4-1. Refer to pp. 18-20 of Selected Reference A7 that describes an
OR study done for the Rijkswaterstaat of the Netherlands. Describe an
important lesson that was gained from model validation in this study.

2.4-2. Read Selected Reference 7. Summarize the author’s view-
point about the roles of observation and experimentation in the
model validation process.

2.4-3. Read pp. 603-617 of Selected Reference 3.

(a) What does the author say about whether a model can be com-
pletely validated?

(b) Summarize the distinctions made between model validity, data
validity, logical/mathematical validity, predictive validity, opera-
tional validity, and dynamic validity.

(¢) Describe the role of sensitivity analysis in testing the operational
validity of a model.

(d) What does the author say about whether there is a validation
methodology that is appropriate for all models?

(e) Cite the page in the article that lists basic validation steps.

2.5-1. Read Selected Reference A6 that describes an OR study

done for Texaco.

(a) Summarize the background that led to undertaking this study.

(b) Briefly describe the user interface with the decision support
system OMEGA that was developed as a result of this study.

(c) OMEGA is constantly being updated and extended to reflect
changes in the operating environment. Briefly describe the var-
ious kinds of changes involved.

(d) Summarize how OMEGA is used.

(e) List the various tangible and intangible benefits that resulted
from the study.

2.5-2. Refer to Selected Reference A4 that describes an OR study

done for Yellow Freight System, Inc.

(a) Referring to pp. 147-149 of this article, summarize the back-
ground that led to undertaking this study.

(b) Referring to p. 150, briefly describe the computer system SYS-
NET that was developed as a result of this study. Also sum-
marize the applications of SYSNET.
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(c) Referring to pp. 162-163, describe why the interactive aspects
of SYSNET proved important.

(d) Referring to p. 163, summarize the outputs from SYSNET.

(e) Referring to pp. 168—172, summarize the various benefits that
have resulted from using SYSNET.

2.6-1. Refer to pp. 163-167 of Selected Reference A4 that describes

an OR study done for Yellow Freight System, Inc., and the resulting

computer system SYSNET.

(a) Briefly describe how the OR team gained the support of up-
per management for implementing SYSNET.

(b) Briefly describe the implementation strategy that was developed.

(c¢) Briefly describe the field implementation.

(d) Briefly describe how management incentives and enforcement
were used in implementing SYSNET.

2.6-2. Read Selected Reference AS that describes an OR study

done for IBM and the resulting computer system Optimizer.

(a) Summarize the background that led to undertaking this study.

(b) List the complicating factors that the OR team members
faced when they started developing a model and a solution
algorithm.

(c) Briefly describe the preimplementation test of Optimizer.

(d) Briefly describe the field implementation test.

(e) Briefly describe national implementation.

(f) List the various tangible and intangible benefits that resulted
from the study.

2.7-1. From the bottom part of the selected references given at the
end of the chapter, select one of these award-winning applications
of the OR modeling approach (excluding any that have been
assigned for other problems). Read this article and then write a
two-page summary of the application and the benefits (including
nonfinancial benefits) it provided.

2.7-2. From the bottom part of the selected references given at the
end of the chapter, select three of these award-winning applications
of the OR modeling approach (excluding any that have been
assigned for other problems). For each one, read this article and
write a one-page summary of the application and the benefits
(including nonfinancial benefits) it provided.

2.7-3. Read Selected Reference 4. The author describes 13 detailed
phases of any OR study that develops and applies a computer-
based model, whereas this chapter describes six broader phases.
For each of these broader phases, list the detailed phases that fall
partially or primarily within the broader phase.
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Introduction to Linear Programming

he development of linear programming has been ranked among the most important

scientific advances of the mid-20th century, and we must agree with this assessment.
Its impact since just 1950 has been extraordinary. Today it is a standard tool that has saved
many thousands or millions of dollars for many companies or businesses of even moder-
ate size in the various industrialized countries of the world, and its use in other sectors of
society has been spreading rapidly. A major proportion of all scientific computation on
computers is devoted to the use of linear programming. Dozens of textbooks have been
written about linear programming, and published articles describing important applica-
tions now number in the hundreds.

What is the nature of this remarkable tool, and what kinds of problems does it
address? You will gain insight into this topic as you work through subsequent examples.
However, a verbal summary may help provide perspective. Briefly, the most common type
of application involves the general problem of allocating limited resources among
competing activities in a best possible (i.e., optimal) way. More precisely, this problem
involves selecting the level of certain activities that compete for scarce resources that are
necessary to perform those activities. The choice of activity levels then dictates how much
of each resource will be consumed by each activity. The variety of situations to which this
description applies is diverse, indeed, ranging from the allocation of production facilities to
products to the allocation of national resources to domestic needs, from portfolio selection
to the selection of shipping patterns, from agricultural planning to the design of radiation
therapy, and so on. However, the one common ingredient in each of these situations is the
necessity for allocating resources to activities by choosing the levels of those activities.

Linear programming uses a mathematical model to describe the problem of concern.
The adjective linear means that all the mathematical functions in this model are required to
be linear functions. The word programming does not refer here to computer programming;
rather, it is essentially a synonym for planning. Thus, linear programming involves the
planning of activities to obtain an optimal result, i.e., a result that reaches the specified
goal best (according to the mathematical model) among all feasible alternatives.

Although allocating resources to activities is the most common type of application,
linear programming has numerous other important applications as well. In fact, any prob-
lem whose mathematical model fits the very general format for the linear programming
model is a linear programming problem. (For this reason, a linear programming problem
and its model often are referred to interchangeably as simply a linear program, or even as
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just an LP) Furthermore, a remarkably efficient solution procedure, called the simplex
method, is available for solving linear programming problems of even enormous size.
These are some of the reasons for the tremendous impact of linear programming in recent
decades.

Because of its great importance, we devote this and the next six chapters specifically to
linear programming. After this chapter introduces the general features of linear program-
ming, Chaps. 4 and 5 focus on the simplex method. Chapter 6 discusses the further analysis
of linear programming problems affer the simplex method has been initially applied. Chap-
ter 7 presents several widely used extensions of the simplex method and introduces an
interior-point algorithm that sometimes can be used to solve even larger linear program-
ming problems than the simplex method can handle. Chapters 8 and 9 consider some special
types of linear programming problems whose importance warrants individual study.

You also can look forward to seeing applications of linear programming to other areas
of operations research (OR) in several later chapters.

We begin this chapter by developing a miniature prototype example of a linear pro-
gramming problem. This example is small enough to be solved graphically in a straight-
forward way. Sections 3.2 and 3.3 present the general linear programming model and its
basic assumptions. Section 3.4 gives some additional examples of linear programming
applications. Section 3.5 describes how linear programming models of modest size can be
conveniently displayed and solved on a spreadsheet. However, some linear programming
problems encountered in practice require truly massive models. Section 3.6 illustrates how
a massive model can arise and how it can still be formulated successfully with the help of
a special modeling language such as MPL (its formulation is described in this section) or
LINGO (its formulation of this model is presented in Supplement 2 to this chapter on the
book’s website).

3.1 PROTOTYPE EXAMPLE

The WYNDOR GLASS CO. produces high-quality glass products, including windows and
glass doors. It has three plants. Aluminum frames and hardware are made in Plant 1, wood
frames are made in Plant 2, and Plant 3 produces the glass and assembles the products.

Because of declining earnings, top management has decided to revamp the company’s
product line. Unprofitable products are being discontinued, releasing production capacity
to launch two new products having large sales potential:

Product 1: An 8-foot glass door with aluminum framing
Product 2: A 4 X 6 foot double-hung wood-framed window

Product 1 requires some of the production capacity in Plants 1 and 3, but none in Plant 2.
Product 2 needs only Plants 2 and 3. The marketing division has concluded that the com-
pany could sell as much of either product as could be produced by these plants. However,
because both products would be competing for the same production capacity in Plant 3, it
is not clear which mix of the two products would be most profitable. Therefore, an OR
team has been formed to study this question.

The OR team began by having discussions with upper management to identify man-
agement’s objectives for the study. These discussions led to developing the following defi-
nition of the problem:

Determine what the production rates should be for the two products in order to maximize
their total profit, subject to the restrictions imposed by the limited production capacities
available in the three plants. (Each product will be produced in batches of 20, so the



An Application Vignette

Swift & Company is a diversified protein-producing
business based in Greeley, Colorado. With annual sales of
over $8 billion, beef and related products are by far the
largest portion of the company’s business.

To improve the company’s sales and manufacturing
performance, upper management concluded that it needed
to achieve three major objectives. One was to enable the
company’s customer service representatives to talk to
their more than 8,000 customers with accurate informa-
tion about the availability of current and future inven-
tory while considering requested delivery dates and
maximum product age upon delivery. A second was to

availability of cattle and constraints on the plant’s
capacity.

To meet these three challenges, an OR team devel-
oped an integrated system of 45 linear programming
models based on three model formulations to dynami-
cally schedule its beef-fabrication operations at five
plants in real time as it receives orders. The fotal audited
benefits realized in the first year of operation of this sys-
tem were $12.74 million, including $12 million due to
optimizing the product mix. Other benefits include a
reduction in orders lost, a reduction in price discounting,
and better on-time delivery.

produce an efficient shift-level schedule for each plant
over a 28-day horizon. A third was to accurately deter-
mine whether a plant can ship a requested order-line-item
quantity on the requested date and time given the

Source: A. Bixby, B. Downs, and M. Self, “A Scheduling and
Capable-to-Promise Application for Swift & Company,” Inter-
Jaces, 36(1): 39-50, Jan.—Feb. 2006. (A link to this article is
provided on our website, www.mhhe.com/hillier.)

production rate is defined as the number of batches produced per week.) Any combination
of production rates that satisfies these restrictions is permitted, including producing none
of one product and as much as possible of the other.

The OR team also identified the data that needed to be gathered:

1. Number of hours of production time available per week in each plant for these new
products. (Most of the time in these plants already is committed to current products, so
the available capacity for the new products is quite limited.)

2. Number of hours of production time used in each plant for each batch produced of each
new product.

3. Profit per batch produced of each new product. (Profit per batch produced was cho-
sen as an appropriate measure after the team concluded that the incremental profit
from each additional batch produced would be roughly constant regardless of the
total number of batches produced. Because no substantial costs will be incurred to
initiate the production and marketing of these new products, the total profit from each
one is approximately this profit per batch produced times the number of batches
produced.)

Obtaining reasonable estimates of these quantities required enlisting the help of key
personnel in various units of the company. Staff in the manufacturing division provided the
data in the first category above. Developing estimates for the second category of data
required some analysis by the manufacturing engineers involved in designing the produc-
tion processes for the new products. By analyzing cost data from these same engineers and
the marketing division, along with a pricing decision from the marketing division, the
accounting department developed estimates for the third category.

Table 3.1 summarizes the data gathered.

The OR team immediately recognized that this was a linear programming problem of
the classic product mix type, and the team next undertook the formulation of the corre-
sponding mathematical model.
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TABLE 3.1 Data for the Wyndor Glass Co. problem

Production Time
per Batch, Hours
Product
Production Time
Plant 1 2 Available per Week, Hours
1 1 0 4
2 0 2 12
3 3 2 18
Profit per batch $3,000 $5,000

Formulation as a Linear Programming Problem

The definition of the problem given above indicates that the decisions to be made are the
number of batches of the respective products to be produced per week so as to maximize
their total profit. Therefore, to formulate the mathematical (linear programming) model for
this problem, let

x; = number of batches of product 1 produced per week
X, = number of batches of product 2 produced per week

Z = total profit per week (in thousands of dollars) from producing these

two products

Thus, x; and x, are the decision variables for the model. Using the bottom row of
Table 3.1, we obtain

Z = 3x; + 5x..

The objective is to choose the values of x; and x, so as to maximize Z = 3x; + 5x,, subject
to the restrictions imposed on their values by the limited production capacities available in
the three plants. Table 3.1 indicates that each batch of product 1 produced per week uses
1 hour of production time per week in Plant 1, whereas only 4 hours per week are available.
This restriction is expressed mathematically by the inequality x; = 4. Similarly, Plant 2
imposes the restriction that 2x, = 12. The number of hours of production time used per
week in Plant 3 by choosing x; and x, as the new products’ production rates would be
3x; + 2x,. Therefore, the mathematical statement of the Plant 3 restriction is 3x; + 2x, = 18.
Finally, since production rates cannot be negative, it is necessary to restrict the decision vari-
ables to be nonnegative: x; = 0 and x, = 0.

To summarize, in the mathematical language of linear programming, the problem is to
choose values of x; and x, so as to

Maximize Z = 3x; + 5x,,

subject to the restrictions

IA
~

X1
2x, = 12
3x, + 2x, = 18

and
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(Notice how the layout of the coefficients of x; and x, in this linear programming model
essentially duplicates the information summarized in Table 3.1.)

Graphical Solution

This very small problem has only two decision variables and therefore only two dimen-
sions, so a graphical procedure can be used to solve it. This procedure involves construct-
ing a two-dimensional graph with x; and x, as the axes. The first step is to identify the
values of (x;, x,) that are permitted by the restrictions. This is done by drawing each line
that borders the range of permissible values for one restriction. To begin, note that the non-
negativity restrictions x; = 0 and x, = 0 require (xy, x,) to lie on the positive side of the
axes (including actually on either axis), i.e., in the first quadrant. Next, observe that the
restriction x; = 4 means that (x, x,) cannot lie to the right of the line x; = 4. These results
are shown in Fig. 3.1, where the shaded area contains the only values of (x;, x,) that are
still allowed.

In a similar fashion, the restriction 2x, = 12 (or, equivalently, x, = 6) implies that the
line 2x, = 12 should be added to the boundary of the permissible region. The final restric-
tion, 3x; + 2x, = 18, requires plotting the points (xy, x,) such that 3x; + 2x, = 18 (another
line) to complete the boundary. (Note that the points such that 3x; + 2x, = 18 are those
that lie either underneath or on the line 3x; + 2x, = 18, so this is the limiting line above
which points do not satisfy the inequality.) The resulting region of permissible values of
(x1, xp), called the feasible region, is shown in Fig. 3.2. (The demo called Graphical
Method in your OR Tutor provides a more detailed example of constructing a feasible
region.)

The final step is to pick out the point in this feasible region that maximizes the value
of Z = 3x; + 5x,. To discover how to perform this step efficiently, begin by trial and error.
Try, for example, Z = 10 = 3x; + 5x, to see if there are in the permissible region any val-
ues of (xj, x,) that yield a value of Z as large as 10. By drawing the line 3x; + 5x, = 10
(see Fig. 3.3), you can see that there are many points on this line that lie within the region.
Having gained perspective by trying this arbitrarily chosen value of Z = 10, you should
next try a larger arbitrary value of Z, say, Z = 20 = 3x; + 5x,. Again, Fig. 3.3 reveals that
a segment of the line 3x; + 5x, = 20 lies within the region, so that the maximum permis-
sible value of Z must be at least 20.

¥ FIGURE 3.1

Shaded area shows values of
(x1, x2) allowed by x; = 0,
X, =0, X1 =4.
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X2 A

¥ FIGURE 3.2

Shaded area shows the set of
permissible values of (xq, x2),
called the feasible region.

X2 A

Z=36=3x; +5x;

Z=20=3XI+SX2

Z=10=3x1+5x2

¥ FIGURE 3.3
The value of (x;, x,) that
maximizes 3x; + 5x, is (2, 6).

Now notice in Fig. 3.3 that the two lines just constructed are parallel. This is no coin-
cidence, since any line constructed in this way has the form Z = 3x; + 5x;, for the chosen
value of Z, which implies that 5x, = —3x; + Z or, equivalently,

3 1

Xy = —gxl + EZ
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This last equation, called the slope-intercept form of the objective function, demonstrates
that the slope of the line is —% (since each unit increase in x; changes x, by —2), whereas
the intercept of the line with the x, axis is éZ (since x, = éZ when x; = 0). The fact that the
slope is fixed at —2 means that all lines constructed in this way are parallel.

Again, comparing the 10 = 3x; + 5x, and 20 = 3x; + 5x; lines in Fig. 3.3, we note
that the line giving a larger value of Z (Z = 20) is farther up and away from the origin than
the other line (Z = 10). This fact also is implied by the slope-intercept form of the objec-
tive function, which indicates that the intercept with the x; axis (%Z) increases when the
value chosen for Z is increased.

These observations imply that our trial-and-error procedure for constructing lines in
Fig. 3.3 involves nothing more than drawing a family of parallel lines containing at least one
point in the feasible region and selecting the line that corresponds to the largest value of Z.
Figure 3.3 shows that this line passes through the point (2, 6), indicating that the optimal
solution is x; = 2 and x, = 6. The equation of this line is 3x; + 5x, = 3(2) + 5(6) = 36 = Z,
indicating that the optimal value of Z is Z = 36. The point (2, 6) lies at the intersection of the
two lines 2x, = 12 and 3x; + 2x, = 18, shown in Fig. 3.2, so that this point can be calculated
algebraically as the simultaneous solution of these two equations.

Having seen the trial-and-error procedure for finding the optimal point (2, 6), you now
can streamline this approach for other problems. Rather than draw several parallel lines, it
is sufficient to form a single line with a ruler to establish the slope. Then move the ruler
with fixed slope through the feasible region in the direction of improving Z. (When the
objective is to minimize Z, move the ruler in the direction that decreases Z.) Stop moving
the ruler at the last instant that it still passes through a point in this region. This point is the
desired optimal solution.

This procedure often is referred to as the graphical method for linear programming.
It can be used to solve any linear programming problem with two decision variables. With
considerable difficulty, it is possible to extend the method to three decision variables but
not more than three. (The next chapter will focus on the simplex method for solving larger
problems.)

Conclusions

The OR team used this approach to find that the optimal solution is x; = 2, x, = 6, with
Z = 36. This solution indicates that the Wyndor Glass Co. should produce products 1 and 2
at the rate of 2 batches per week and 6 batches per week, respectively, with a resulting total
profit of $36,000 per week. No other mix of the two products would be so profitable—
according to the model.

However, we emphasized in Chap. 2 that well-conducted OR studies do not simply
find one solution for the initial model formulated and then stop. All six phases described in
Chap. 2 are important, including thorough testing of the model (see Sec. 2.4) and postopti-
mality analysis (see Sec. 2.3).

In full recognition of these practical realities, the OR team now is ready to evaluate the
validity of the model more critically (to be continued in Sec. 3.3) and to perform sensitiv-
ity analysis on the effect of the estimates in Table 3.1 being different because of inaccurate
estimation, changes of circumstances, etc. (to be continued in Sec. 6.7).

Continuing the Learning Process with Your OR Courseware

This is the first of many points in the book where you may find it helpful to use your OR
Courseware on the book’s website. A key part of this courseware is a program called OR
Tutor. This program includes a complete demonstration example of the graphical method
introduced in this section. To provide you with another example of a model formulation
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as well, this demonstration begins by introducing a problem and formulating a linear pro-
gramming model for the problem before then applying the graphical method step by step to
solve the model. Like the many other demonstration examples accompanying other sections
of the book, this computer demonstration highlights concepts that are difficult to convey on
the printed page. You may refer to Appendix 1 for documentation of the software.

If you would like to see still more examples, you can go to the Worked Examples
section of the book’s website. This section includes a few examples with complete solu-
tions for almost every chapter as a supplement to the examples in the book and in OR
Tutor. The examples for the current chapter begin with a relatively straightforward prob-
lem that involves formulating a small linear programming model and applying the graphi-
cal method. The subsequent examples become progressively more challenging.

Another key part of your OR Courseware is a program called IOR Tutorial. This pro-
gram features many interactive procedures for interactively executing various solution
methods presented in the book, which enables you to focus on learning and executing the
logic of the method efficiently while the computer does the number crunching. Included is
an interactive procedure for applying the graphical method for linear programming. Once
you get the hang of it, a second procedure enables you to quickly apply the graphical
method for performing sensitivity analysis on the effect of revising the data of the problem.
You then can print out your work and results for your homework. Like the other procedures
in IOR Tutorial, these procedures are designed specifically to provide you with an effi-
cient, enjoyable, and enlightening learning experience while you do your homework.

When you formulate a linear programming model with more than two decision vari-
ables (so the graphical method cannot be used), the simplex method described in Chap. 4
enables you to still find an optimal solution immediately. Doing so also is helpful for
model validation, since finding a nonsensical optimal solution signals that you have made
a mistake in formulating the model.

We mentioned in Sec. 1.4 that your OR Courseware introduces you to three particu-
larly popular commercial software packages—the Excel Solver, LINGO/LINDO, and
MPL/CPLEX—for solving a variety of OR models. All three packages include the simplex
method for solving linear programming models. Section 3.5 describes how to use Excel to
formulate and solve linear programming models in a spreadsheet format. Descriptions of
the other packages are provided in Sec. 3.6 (MPL and LINGO), Supplements 1 and 2 to
this chapter on the book’s website (LINGO), Sec. 4.8 (CPLEX and LINDO), and Appen-
dix 4.1 (LINGO and LINDO). MPL, LINGO, and LINDO tutorials also are provided on
the book’s website. In addition, your OR Courseware includes a file for each of the three
packages showing how it can be used to solve each of the examples in this chapter.

3.2 THE LINEAR PROGRAMMING MODEL

The Wyndor Glass Co. problem is intended to illustrate a typical linear programming prob-
lem (miniature version). However, linear programming is too versatile to be completely
characterized by a single example. In this section we discuss the general characteristics of
linear programming problems, including the various legitimate forms of the mathematical
model for linear programming.

Let us begin with some basic terminology and notation. The first column of Table 3.2
summarizes the components of the Wyndor Glass Co. problem. The second column then
introduces more general terms for these same components that will fit many linear pro-
gramming problems. The key terms are resources and activities, where m denotes the num-
ber of different kinds of resources that can be used and n denotes the number of activities
being considered. Some typical resources are money and particular kinds of machines,
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TABLE 3.2 Common terminology for linear programming
R,

Prototype Example General Problem

Production capacities of plants Resources

3 plants m resources

Production of products Activities

2 products n activities

Production rate of product j, x; Level of activity j, x;

Profit Z Overall measure of performance Z

equipment, vehicles, and personnel. Examples of activities include investing in particular
projects, advertising in particular media, and shipping goods from a particular source to a
particular destination. In any application of linear programming, all the activities may be
of one general kind (such as any one of these three examples), and then the individual
activities would be particular alternatives within this general category.

As described in the introduction to this chapter, the most common type of application
of linear programming involves allocating resources to activities. The amount available of
each resource is limited, so a careful allocation of resources to activities must be made.
Determining this allocation involves choosing the levels of the activities that achieve the
best possible value of the overall measure of performance.

Certain symbols are commonly used to denote the various components of a linear pro-
gramming model. These symbols are listed below, along with their interpretation for the
general problem of allocating resources to activities.

Z = value of overall measure of performance.

x; = level of activity j (forj = 1,2,...,n).
¢; = increase in Z that would result from each unit increase in level of activity j.
b; = amount of resource i that is available for allocation to activities (fori =

1,2,....,m).
a; = amount of resource i consumed by each unit of activity j.

The model poses the problem in terms of making decisions about the levels of the activi-
ties, SO Xy, X, . . ., X,, are called the decision variables. As summarized in Table 3.3, the

TABLE 3.3 Data needed for a linear programming model involving

the allocation of resources to activities
- |

Resource Usage per Unit of Activity
Activity
Amount of
Resource 1 2 cee n Resource Available
1 an a2 ce ain by
2 az aszo . azp bz
m fe o A2 R Amn b
Contribution to Z per [« C . Ch
unit of activity
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values of ¢;, b,anda;;(fori = 1,2,...,mandj = 1,2, ..., n) are the input constants for
the model. The ¢;, b;, and a;; are also referred to as the parameters of the model.
Notice the correspondence between Table 3.3 and Table 3.1.

A Standard Form of the Model

Proceeding as for the Wyndor Glass Co. problem, we can now formulate the mathematical
model for this general problem of allocating resources to activities. In particular, this
model is to select the values for xy, x,, . . ., X,, SO as to

Maximize Z = cpx; + cx, + 00+ ¢,

subject to the restrictions

ap X, + a1rXy + -+ a X, = b]
ayxy + aypx, + 0+ ayx, = b,
A1 Xy + (£%2%) + 0t [ = bm>
and
x =0, =0, ..., x,=0.

We call this our standard form" for the linear programming problem. Any situation whose
mathematical formulation fits this model is a linear programming problem.

Notice that the model for the Wyndor Glass Co. problem fits our standard form, with
m=3andn = 2.

Common terminology for the linear programming model can now be summarized.
The function being maximized, c;x; + ¢cox + - - - + ¢,x,, is called the objective function.
The restrictions normally are referred to as constraints. The first m constraints (those with
a function of all the variables a;x; + apx, + - - - + a;,x, on the left-hand side) are some-
times called functional constraints (or structural constraints). Similarly, the x; = 0
restrictions are called nonnegativity constraints (or nonnegativity conditions).

Other Forms

We now hasten to add that the preceding model does not actually fit the natural form of
some linear programming problems. The other legitimate forms are the following:

1. Minimizing rather than maximizing the objective function:
Minimize Z = cx; + cpxp, + -0 + ¢,

2. Some functional constraints with a greater-than-or-equal-to inequality:
apx, + apx, + -+ + a,x, = b; for some values of i.

3. Some functional constraints in equation form:

apx, + apx, + -+ + a,x, = b; for some values of i.
4. Deleting the nonnegativity constraints for some decision variables:
x; unrestricted in sign  for some values of .

Any problem that mixes some of or all these forms with the remaining parts of the preced-
ing model is still a linear programming problem. Our interpretation of the words allocating

"This is called our standard form rather than the standard form because some textbooks adopt other forms.
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limited resources among competing activities may no longer apply very well, if at all; but
regardless of the interpretation or context, all that is required is that the mathematical state-
ment of the problem fit the allowable forms. Thus, the concise definition of a linear pro-
gramming problem is that each component of its model fits either the standard form or one
of the other legitimate forms listed above.

Terminology for Solutions of the Model

You may be used to having the term solution mean the final answer to a problem, but the
convention in linear programming (and its extensions) is quite different. Here, any specifi-
cation of values for the decision variables (xi, x5, . . ., x,,) is called a solution, regardless of
whether it is a desirable or even an allowable choice. Different types of solutions are then
identified by using an appropriate adjective.

A feasible solution is a solution for which all the constraints are satisfied.
An infeasible solution is a solution for which at least one constraint is violated.

In the example, the points (2, 3) and (4, 1) in Fig. 3.2 are feasible solutions, while the
points ( —1, 3) and (4, 4) are infeasible solutions.

The feasible region is the collection of all feasible solutions.

The feasible region in the example is the entire shaded area in Fig. 3.2.

It is possible for a problem to have no feasible solutions. This would have happened
in the example if the new products had been required to return a net profit of at least
$50,000 per week to justify discontinuing part of the current product line. The correspond-
ing constraint, 3x; + 5x, = 50, would eliminate the entire feasible region, so no mix of
new products would be superior to the status quo. This case is illustrated in Fig. 3.4.

Given that there are feasible solutions, the goal of linear programming is to find a best
feasible solution, as measured by the value of the objective function in the model.

¥ FIGURE 3.4

The Wyndor Glass Co.
problem would have no
feasible solutions if the
constraint 3x; + 5x, = 50

were added to the problem.

X2 A

Maximize Z = 3x; + 5x»,
subject to X1 =4
2%y =12
3)C1 + 2X2 =18
3x; + 5xp =50
X1 = 0, X =0

10

3)61 + 5)62 =50

3X1 + 2)62 =18

4’)6120
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An optimal solution is a feasible solution that has the most favorable value of the
objective function.

The most favorable value is the largest value if the objective function is to be maximized,
whereas it is the smallest value if the objective function is to be minimized.

Most problems will have just one optimal solution. However, it is possible to have
more than one. This would occur in the example if the profit per batch produced of prod-
uct 2 were changed to $2,000. This changes the objective function to Z = 3x; + 2x,, so
that all the points on the line segment connecting (2, 6) and (4, 3) would be optimal. This
case is illustrated in Fig. 3.5. As in this case, any problem having multiple optimal solu-
tions will have an infinite number of them, each with the same optimal value of the objec-
tive function.

Another possibility is that a problem has no optimal solutions. This occurs only if
(1) it has no feasible solutions or (2) the constraints do not prevent improving the value of
the objective function (Z) indefinitely in the favorable direction (positive or negative).
The latter case is referred to as having an unbounded Z or an unbounded objective. To
illustrate, this case would result if the last two functional constraints were mistakenly
deleted in the example, as illustrated in Fig. 3.6.

We next introduce a special type of feasible solution that plays the key role when the
simplex method searches for an optimal solution.

A corner-point feasible (CPF) solution is a solution that lies at a corner of the
feasible region.

(CPF solutions also are commonly referred to as extreme points or vertices, but we prefer
the more suggestive corner-point terminology.) Figure 3.7 highlights the five CPF solu-
tions for the example.

¥ FIGURE 3.5

The Wyndor Glass Co.
problem would have multiple
optimal solutions if the
objective function were
changed to Z = 3x; + 2x,.

X A
o I~ Maximize Z=3x;+ 2xy,
Z=18=3x;+2x, subject to X1 =4
2)62 =12
3)(1 + 2)(2 =18
8 and =0, =0

Every point on this darker line segment
is optimal, each with Z =18.

- Feasible
region
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(4,0),Z =
4,10),Z = 62
_ Maximize Z = 3x; + 5x,,
“,8),2=32 subject to x =4
and X1 = 0, X =0
4,6),Z=42
¥ FIGURE 3.6 “4.4).Z=32
The Wyndor Glass Co.
problem would have no
optimal solutions if the only
functional constraint were 4,2),Z=22
X1 <4, because x, then could
be increased indefinitely in
the feasible region without
ever reaching the maximum l | | -
value of Z = 3x; + 5x,. 6 8 10 X1

(0,6)

N FIGURE 3.7

The five dots are the five CPF
solutions for the Wyndor
Glass Co. problem. ©,0) 4,0 x

Sections 4.1 and 5.1 will delve into the various useful properties of CPF solutions for
problems of any size, including the following relationship with optimal solutions.

Relationship between optimal solutions and CPF solutions: Consider any lin-
ear programming problem with feasible solutions and a bounded feasible region.
The problem must possess CPF solutions and at least one optimal solution. Fur-
thermore, the best CPF solution must be an optimal solution. Thus, if a problem
has exactly one optimal solution, it must be a CPF solution. If the problem has
multiple optimal solutions, at least two must be CPF solutions.
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The example has exactly one optimal solution, (x;, x,) = (2, 6), which is a CPF solu-
tion. (Think about how the graphical method leads to the one optimal solution being a CPF
solution.) When the example is modified to yield multiple optimal solutions, as shown in
Fig. 3.5, two of these optimal solutions—(2, 6) and (4, 3)—are CPF solutions.

3.3 ASSUMPTIONS OF LINEAR PROGRAMMING

All the assumptions of linear programming actually are implicit in the model formulation
given in Sec. 3.2. In particular, from a mathematical viewpoint, the assumptions simply are
that the model must have a linear objective function subject to linear constraints. However,
from a modeling viewpoint, these mathematical properties of a linear programming model
imply that certain assumptions must hold about the activities and data of the problem being
modeled, including assumptions about the effect of varying the levels of the activities. It is
good to highlight these assumptions so you can more easily evaluate how well linear pro-
gramming applies to any given problem. Furthermore, we still need to see why the OR
team for the Wyndor Glass Co. concluded that a linear programming formulation provided
a satisfactory representation of the problem.

Proportionality

Proportionality is an assumption about both the objective function and the functional con-
straints, as summarized below.

Proportionality assumption: The contribution of each activity to the value of the
objective function Zis proportional to the level of the activity x;, as represented by
the cxx; term in the objective function. Similarly, the contribution of each activity
to the left-hand side of each functional constraint is proportional to the level of
the activity x;, as represented by the a;x; term in the constraint. Consequently, this
assumption rules out any exponent other than 1 for any variable in any term of
any function (whether the objective function or the function on the left-hand side
of a functional constraint) in a linear programming model.>

To illustrate this assumption, consider the first term (3x;) in the objective function
(Z = 3x; + 5x,) for the Wyndor Glass Co. problem. This term represents the profit gener-
ated per week (in thousands of dollars) by producing product 1 at the rate of x; batches per
week. The proportionality satisfied column of Table 3.4 shows the case that was assumed
in Sec. 3.1, namely, that this profit is indeed proportional to x; so that 3x; is the appropri-
ate term for the objective function. By contrast, the next three columns show different
hypothetical cases where the proportionality assumption would be violated.

Refer first to the Case I column in Table 3.4. This case would arise if there were start-up
costs associated with initiating the production of product 1. For example, there might be costs
involved with setting up the production facilities. There might also be costs associated with
arranging the distribution of the new product. Because these are one-time costs, they would
need to be amortized on a per-week basis to be commensurable with Z (profit in thousands of
dollars per week). Suppose that this amortization were done and that the total start-up cost
amounted to reducing Z by 1, but that the profit without considering the start-up cost would be
3x;. This would mean that the contribution from product 1 to Z should be 3x; — 1 for x; > 0,

>When the function includes any cross-product terms, proportionality should be interpreted to mean that changes
in the function value are proportional to changes in each variable (x;) individually, given any fixed values for all
the other variables. Therefore, a cross-product term satisfies proportionality as long as each variable in the term
has an exponent of 1 (However, any cross-product term violates the additivity assumption, discussed next.)
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TABLE 3.4 Examples of satisfying or violating proportionality

Profit from Product 1 ($000 per Week)
Proportionality Violated
Proportionality
X1 Satisfied Case 1 Case 2 Case 3
0 0 0 0 0
1 3 2 3 3
2 6 5 7 5
3 9 8 12 6
4 12 11 18 6

whereas the contribution would be 3x; = 0 when x; = 0 (no start-up cost). This profit func-
tion,> which is given by the solid curve in Fig. 3.8, certainly is not proportional to x;.

At first glance, it might appear that Case 2 in Table 3.4 is quite similar to Case 1.
However, Case 2 actually arises in a very different way. There no longer is a start-up cost,
and the profit from the first unit of product 1 per week is indeed 3, as originally assumed.
However, there now is an increasing marginal return; i.e., the slope of the profit function
for product 1 (see the solid curve in Fig. 3.9) keeps increasing as x; is increased. This vio-
lation of proportionality might occur because of economies of scale that can sometimes be
achieved at higher levels of production, e.g., through the use of more efficient high-volume
machinery, longer production runs, quantity discounts for large purchases of raw materials,
and the learning-curve effect whereby workers become more efficient as they gain experi-
ence with a particular mode of production. As the incremental cost goes down, the incre-
mental profit will go up (assuming constant marginal revenue).

¥ FIGURE 3.8

The solid curve violates the
proportionality assumption
because of the start-up cost
that is incurred when x; is
increased from 0. The values
at the dots are given by the
Case 1 column of Table 3.4.
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3If the contribution from product 1 to Z were 3x; — 1 for all x; = 0, including x; = 0, then the fixed constant,

—1, could be deleted from the objective function without changing the optimal solution and proportionality
would be restored. However, this “fix” does not work here because the — 1 constant does not apply when x; = 0.
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¥ FIGURE 3.9

The solid curve violates the
proportionality assumption
because its slope (the
marginal return from
product 1) keeps increasing
as x; is increased. The values
at the dots are given by the
Case 2 column of Table 3.4.
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Referring again to Table 3.4, the reverse of Case 2 is Case 3, where there is a
decreasing marginal return. In this case, the slope of the profit function for product 1
(given by the solid curve in Fig. 3.10) keeps decreasing as x; is increased. This violation of
proportionality might occur because the marketing costs need to go up more than propor-
tionally to attain increases in the level of sales. For example, it might be possible to sell
product 1 at the rate of 1 per week (x; = 1) with no advertising, whereas attaining sales to
sustain a production rate of x; = 2 might require a moderate amount of advertising, x; = 3
might necessitate an extensive advertising campaign, and x; = 4 might require also lower-
ing the price.

All three cases are hypothetical examples of ways in which the proportionality assump-
tion could be violated. What is the actual situation? The actual profit from producing prod-
uct 1 (or any other product) is derived from the sales revenue minus various direct and
indirect costs. Inevitably, some of these cost components are not strictly proportional to the
production rate, perhaps for one of the reasons illustrated above. However, the real question

¥ FIGURE 3.10

The solid curve violates the
proportionality assumption
because its slope (the marginal
return from product 1) keeps
decreasing as x; is increased.
The values at the dots are
given by the Case 3 column
in Table 3.4.
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is whether, after all the components of profit have been accumulated, proportionality is a
reasonable approximation for practical modeling purposes. For the Wyndor Glass Co. prob-
lem, the OR team checked both the objective function and the functional constraints. The
conclusion was that proportionality could indeed be assumed without serious distortion.
For other problems, what happens when the proportionality assumption does not hold
even as a reasonable approximation? In most cases, this means you must use nonlinear
programming instead (presented in Chap. 12). However, we do point out in Sec. 12.8 that
a certain important kind of nonproportionality can still be handled by linear programming
by reformulating the problem appropriately. Furthermore, if the assumption is violated
only because of start-up costs, there is an extension of linear programming (mixed integer
programming) that can be used, as discussed in Sec. 11.3 (the fixed-charge problem).

Additivity

Although the proportionality assumption rules out exponents other than 1, it does not pro-
hibit cross-product terms (terms involving the product of two or more variables). The addi-
tivity assumption does rule out this latter possibility, as summarized below.

Additivity assumption: Every function in a linear programming model (whether
the objective function or the function on the left-hand side of a functional con-
straint) is the sum of the individual contributions of the respective activities.

To make this definition more concrete and clarify why we need to worry about this
assumption, let us look at some examples. Table 3.5 shows some possible cases for the
objective function for the Wyndor Glass Co. problem. In each case, the individual contri-
butions from the products are just as assumed in Sec. 3.1, namely, 3x; for product 1 and 5x,
for product 2. The difference lies in the last row, which gives the function value for Z when
the two products are produced jointly. The additivity satisfied column shows the case
where this function value is obtained simply by adding the first two rows (3 + 5 = 8), so
that Z = 3x; + 5x, as previously assumed. By contrast, the next two columns show hypo-
thetical cases where the additivity assumption would be violated (but not the proportional-
ity assumption).

Referring to the Case I column of Table 3.5, this case corresponds to an objective
function of Z = 3x; + 5x, + xyx, sothat Z=3 + 5 + 1 = 9 for (x1, x) = (1, 1), thereby
violating the additivity assumption that Z = 3 + 5. (The proportionality assumption still
is satisfied since after the value of one variable is fixed, the increment in Z from the other
variable is proportional to the value of that variable.) This case would arise if the two
products were complementary in some way that increases profit. For example, suppose
that a major advertising campaign would be required to market either new product pro-
duced by itself, but that the same single campaign can effectively promote both products
if the decision is made to produce both. Because a major cost is saved for the second

TABLE 3.5 Examples of satisfying or violating additivity for the objective function

Value of Z
Additivity Violated
(x1, x2) Additivity Satisfied Case 1 Case 2
1, 0) 3 3 3
0, 1) 5 5 5
a,mn 8 9 7
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product, their joint profit is somewhat more than the sum of their individual profits when
each is produced by itself.

Case 2 in Table 3.5 also violates the additivity assumption because of the extra term in
the corresponding objective function, Z = 3x; + 5x, — xjx5, sothatZ=3 + 5 — 1 =7 for
(x1, x2) = (1, 1). As the reverse of the first case, Case 2 would arise if the two products
were competitive in some way that decreased their joint profit. For example, suppose that
both products need to use the same machinery and equipment. If either product were pro-
duced by itself, this machinery and equipment would be dedicated to this one use. How-
ever, producing both products would require switching the production processes back
and forth, with substantial time and cost involved in temporarily shutting down the pro-
duction of one product and setting up for the other. Because of this major extra cost,
their joint profit is somewhat less than the sum of their individual profits when each is
produced by itself.

The same kinds of interaction between activities can affect the additivity of the con-
straint functions. For example, consider the third functional constraint of the Wyndor Glass
Co. problem: 3x; + 2x, = 18. (This is the only constraint involving both products.) This
constraint concerns the production capacity of Plant 3, where 18 hours of production time
per week is available for the two new products, and the function on the left-hand side
(3x; + 2x,) represents the number of hours of production time per week that would be
used by these products. The additivity satisfied column of Table 3.6 shows this case as is,
whereas the next two columns display cases where the function has an extra cross-product
term that violates additivity. For all three columns, the individual contributions from the
products toward using the capacity of Plant 3 are just as assumed previously, namely, 3x;
for product 1 and 2x, for product 2, or 3(2) = 6 for x; = 2 and 2(3) = 6 for x, = 3. As was
true for Table 3.5, the difference lies in the last row, which now gives the toral function
value for production time used when the two products are produced jointly.

For Case 3 (see Table 3.6), the production time used by the two products is given by
the function 3x; + 2x, + 0.5xx,, so the fotal function value is 6 + 6 + 3 = 15 when
(x1, x2) = (2, 3), which violates the additivity assumption that the value is just 6 + 6 = 12.
This case can arise in exactly the same way as described for Case 2 in Table 3.5; namely,
extra time is wasted switching the production processes back and forth between the two
products. The extra cross-product term (0.5x;x,) would give the production time wasted
in this way. (Note that wasting time switching between products leads to a positive
cross-product term here, where the total function is measuring production time used,
whereas it led to a negative cross-product term for Case 2 because the total function
there measures profit.)

For Case 4 in Table 3.6, the function for production time used is 3x; + 2x, — 0.1x%x,,
so the function value for (x1, x,) = (2,3)is 6 + 6 — 1.2 = 10.8. This case could arise in the
following way. As in Case 3, suppose that the two products require the same type of
machinery and equipment. But suppose now that the time required to switch from one

W TABLE 3.6 Examples of satisfying or violating additivity for a functional constraint

Amount of Resource Used

Additivity Violated

(x1, x2) Additivity Satisfied Case 3 Case 4
(2, 0) 6 6 6
©,3) 6 6 6

2, 3) 12 15 10.8
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product to the other would be relatively small. Because each product goes through a
sequence of production operations, individual production facilities normally dedicated to
that product would incur occasional idle periods. During these otherwise idle periods, these
facilities can be used by the other product. Consequently, the total production time used
(including idle periods) when the two products are produced jointly would be less than the
sum of the production times used by the individual products when each is produced by
itself.

After analyzing the possible kinds of interaction between the two products illustrated
by these four cases, the OR team concluded that none played a major role in the actual
Wyndor Glass Co. problem. Therefore, the additivity assumption was adopted as a reason-
able approximation.

For other problems, if additivity is not a reasonable assumption, so that some of or all
the mathematical functions of the model need to be nonlinear (because of the cross-product
terms), you definitely enter the realm of nonlinear programming (Chap. 12).

Divisibility
Our next assumption concerns the values allowed for the decision variables.

Divisibility assumption: Decision variables in a linear programming model are
allowed to have any values, including noninteger values, that satisfy the func-
tional and nonnegativity constraints. Thus, these variables are not restricted to
just integer values. Since each decision variable represents the level of some
activity, it is being assumed that the activities can be run at fractional levels.

For the Wyndor Glass Co. problem, the decision variables represent production rates
(the number of batches of a product produced per week). Since these production rates can
have any fractional values within the feasible region, the divisibility assumption does hold.

In certain situations, the divisibility assumption does not hold because some of or
all the decision variables must be restricted to integer values. Mathematical models
with this restriction are called integer programming models, and they are discussed in
Chap. 11.

Certainty

Our last assumption concerns the parameters of the model, namely, the coefficients in the
objective function c¢;, the coefficients in the functional constraints a;, and the right-hand
sides of the functional constraints b;.

Certainty assumption: The value assigned to each parameter of a linear program-
ming model is assumed to be a known constant.

In real applications, the certainty assumption is seldom satisfied precisely. Linear pro-
gramming models usually are formulated to select some future course of action. Therefore,
the parameter values used would be based on a prediction of future conditions, which
inevitably introduces some degree of uncertainty.

For this reason it is usually important to conduct sensitivity analysis after a solution
is found that is optimal under the assumed parameter values. As discussed in Sec. 2.3, one
purpose is to identify the sensitive parameters (those whose value cannot be changed with-
out changing the optimal solution), since any later change in the value of a sensitive para-
meter immediately signals a need to change the solution being used.

Sensitivity analysis plays an important role in the analysis of the Wyndor Glass Co.
problem, as you will see in Sec. 6.7. However, it is necessary to acquire some more back-
ground before we finish that story.
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Occasionally, the degree of uncertainty in the parameters is too great to be amenable to
sensitivity analysis. In this case, it is necessary to treat the parameters explicitly as random
variables. Formulations of this kind have been developed, as discussed in Secs. 23.6 and
23.7 on the book’s website.

The Assumptions in Perspective

We emphasized in Sec. 2.2 that a mathematical model is intended to be only an idealized
representation of the real problem. Approximations and simplifying assumptions generally
are required in order for the model to be tractable. Adding too much detail and precision
can make the model too unwieldy for useful analysis of the problem. All that is really
needed is that there be a reasonably high correlation between the prediction of the model
and what would actually happen in the real problem.

This advice certainly is applicable to linear programming. It is very common in real
applications of linear programming that almost none of the four assumptions hold com-
pletely. Except perhaps for the divisibility assumption, minor disparities are to be expected.
This is especially true for the certainty assumption, so sensitivity analysis normally is a
must to compensate for the violation of this assumption.

However, it is important for the OR team to examine the four assumptions for the
problem under study and to analyze just how large the disparities are. If any of the assump-
tions are violated in a major way, then a number of useful alternative models are available,
as presented in later chapters of the book. A disadvantage of these other models is that the
algorithms available for solving them are not nearly as powerful as those for linear pro-
gramming, but this gap has been closing in some cases. For some applications, the power-
ful linear programming approach is used for the initial analysis, and then a more
complicated model is used to refine this analysis.

As you work through the examples in Sec. 3.4, you will find it good practice to ana-
lyze how well each of the four assumptions of linear programming applies.

3.4 ADDITIONAL EXAMPLES

The Wyndor Glass Co. problem is a prototype example of linear programming in several
respects: It involves allocating limited resources among competing activities, its model fits
our standard form, and its context is the traditional one of improved business planning.
However, the applicability of linear programming is much wider. In this section we begin
broadening our horizons. As you study the following examples, note that it is their under-
lying mathematical model rather than their context that characterizes them as linear pro-
gramming problems. Then give some thought to how the same mathematical model could
arise in many other contexts by merely changing the names of the activities and so forth.

These examples are scaled-down versions of actual applications. Like the Wyndor
problem and the demonstration example for the graphical method in OR Tutor, the first of
these examples has only two decision variables and so can be solved by the graphical
method. The new features are that it is a minimization problem and has a mixture of forms
for the functional constraints. (This example considerably simplifies the real situation
when designing radiation therapy, but the first application vignette in this section describes
the exciting impact that OR actually is having in this area.) The subsequent examples have
considerably more than two decision variables and so are more challenging to formulate.
Although we will mention their optimal solutions that are obtained by the simplex method,
the focus here is on how to formulate the linear programming model for these larger prob-
lems. Subsequent sections and the next chapter will turn to the question of the software
tools and the algorithm (the simplex method) that are used to solve such problems.
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M FIGURE 3.11

Cross section of Mary's
tumor (viewed from above),
nearby critical tissues, and
the radiation beams being
used.

dab

Beam 1

1. Bladder and
tumor

2. Rectum, coccyx,
etc.

3. Femur, part of
pelvis, etc.

If you find that you need additional examples of formulating small and relatively
straightforward linear programming models before dealing with these more challenging
formulation examples, we suggest that you go back to the demonstration example for the
graphical method in OR Tutor and to the examples in the Worked Examples section for this
chapter on the book’s website.

Design of Radiation Therapy

MARY has just been diagnosed as having a cancer at a fairly advanced stage. Specifically,
she has a large malignant tumor in the bladder area (a “whole bladder lesion™).

Mary is to receive the most advanced medical care available to give her every possible
chance for survival. This care will include extensive radiation therapy.

Radiation therapy involves using an external beam treatment machine to pass ionizing
radiation through the patient’s body, damaging both cancerous and healthy tissues. Nor-
mally, several beams are precisely administered from different angles in a two-dimensional
plane. Due to attenuation, each beam delivers more radiation to the tissue near the entry
point than to the tissue near the exit point. Scatter also causes some delivery of radiation to
tissue outside the direct path of the beam. Because tumor cells are typically microscopi-
cally interspersed among healthy cells, the radiation dosage throughout the tumor region
must be large enough to kill the malignant cells, which are slightly more radiosensitive, yet
small enough to spare the healthy cells. At the same time, the aggregate dose to critical tis-
sues must not exceed established tolerance levels, in order to prevent complications that
can be more serious than the disease itself. For the same reason, the total dose to the entire
healthy anatomy must be minimized.

Because of the need to carefully balance all these factors, the design of radiation ther-
apy is a very delicate process. The goal of the design is to select the combination of beams
to be used, and the intensity of each one, to generate the best possible dose distribution.
(The dose strength at any point in the body is measured in units called kilorads.) Once the
treatment design has been developed, it is administered in many installments, spread over
several weeks.

In Mary’s case, the size and location of her tumor make the design of her treatment an
even more delicate process than usual. Figure 3.11 shows a diagram of a cross section of
the tumor viewed from above, as well as nearby critical tissues to avoid. These tissues
include critical organs (e.g., the rectum) as well as bony structures (e.g., the femurs and
pelvis) that will attenuate the radiation. Also shown are the entry point and direction for the
only two beams that can be used with any modicum of safety in this case. (Actually, we are
simplifying the example at this point, because normally dozens of possible beams must be
considered.)

For any proposed beam of given intensity, the analysis of what the resulting radiation
absorption by various parts of the body would be requires a complicated process. In brief,
based on careful anatomical analysis, the energy distribution within the two-dimensional
cross section of the tissue can be plotted on an isodose map, where the contour lines repre-
sent the dose strength as a percentage of the dose strength at the entry point. A fine grid
then is placed over the isodose map. By summing the radiation absorbed in the squares
containing each type of tissue, the average dose that is absorbed by the tumor, healthy
anatomy, and critical tissues can be calculated. With more than one beam (administered
sequentially), the radiation absorption is additive.

After thorough analysis of this type, the medical team has carefully estimated the
data needed to design Mary’s treatment, as summarized in Table 3.7. The first column
lists the areas of the body that must be considered, and then the next two columns give
the fraction of the radiation dose at the entry point for each beam that is absorbed by the



An Application Vignette

Prostate cancer is the most common form of cancer diag-
nosed in men. There were an estimated 220,000 new
cases in just the United States alone in 2007. Like many
other forms of cancer, radiation therapy is a common
method of treatment for prostate cancer, where the goal is
to have a sufficiently high radiation dosage in the tumor
region to kill the malignant cells while minimizing the
radiation exposure to critical healthy structures near the
tumor. This treatment can be applied through either
external beam radiation therapy (as illustrated by the first
example in this section) or brachytherapy, which involves
placing approximately 100 radioactive “seeds” within the
tumor region. The challenge is to determine the most
effective three-dimensional geometric pattern for placing
these seeds.

Memorial Sloan-Kettering Cancer Center (MSKCC)
in New York City is the world’s oldest private cancer cen-
ter. An OR team from the Center for Operations Research
in Medicine and HealthCare at Georgia Institute of Tech-
nology worked with physicians at MSKCC to develop a
highly sophisticated next-generation method of optimiz-
ing the application of brachytherapy to prostrate cancer.
The underlying model fits the structure for linear pro-
gramming with one exception. In addition to having
the usual continuous variables that fit linear program-
ming, the model also has some binary variables (vari-
ables whose only possible values are 0 and 1). (This
kind of extension of linear programming to what is
called mixed-integer programming will be discussed in

Chap. 11.) The optimization is done in a matter of
minutes by an automated computerized planning sys-
tem that can be operated readily by medical personnel
when beginning the procedure of inserting the seeds
into the patient’s prostrate.

This breakthrough in optimizing the application of
brachytherapy to prostrate cancer is having a profound
impact on both health care costs and quality of life for
treated patients because of its much greater effectiveness
and the substantial reduction in side effects. When all
U.S. clinics adopt this procedure, it is estimated that the
annual cost savings will approximate $500 million due to
eliminating the need for a pretreatment planning meeting
and a postoperation CT scan, as well as providing a more
efficient surgical procedure and reducing the need to treat
subsequent side effects. It also is anticipated that this
approach can be extended to other forms of brachyther-
apy, such as treatment of breast, cervix, esophagus, bil-
iary tract, pancreas, head and neck, and eye.

This application of linear programming and its
extensions led to the OR team winning the prestigious
First Prize in the 2007 international competition for the
Franz Edelman Award for Achievement in Operations
Research and the Management Sciences.

Source: E. K. Lee and M. Zaider, “Operations Research
Advances Cancer Therapeutics,” Interfaces, 38(1): 5-25,
Jan.—Feb. 2008. (A link to this article is provided on our web-
site, www.mhhe.com/hillier.)

respective areas on average. For example, if the dose level at the entry point for beam 1
is 1 kilorad, then an average of 0.4 kilorad will be absorbed by the entire healthy
anatomy in the two-dimensional plane, an average of 0.3 kilorad will be absorbed by
nearby critical tissues, an average of 0.5 kilorad will be absorbed by the various parts of
the tumor, and 0.6 kilorad will be absorbed by the center of the tumor. The last column
gives the restrictions on the total dosage from both beams that is absorbed on average by
the respective areas of the body. In particular, the average dosage absorption for the

TABLE 3.7 Data for the design of Mary’s radiation therapy

Fraction of Entry Dose
Absorbed by
Area (Average)

Area Beam 1 Beam 2 Restriction on Total Average
Dosage, Kilorads

Healthy anatomy 0.4 0.5 Minimize

Critical tissues 0.3 0.1 = 27

Tumor region 0.5 0.5 = 6

Center of tumor 0.6 0.4 = 6
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healthy anatomy must be as small as possible, the critical tissues must not exceed 2.7
kilorads, the average over the entire tumor must equal 6 kilorads, and the center of the
tumor must be at least 6 kilorads.

Formulation as a Linear Programming Problem. The decisions that need to
be made are the dosages of radiation at the two entry points. Therefore, the two decision
variables x; and x, represent the dose (in kilorads) at the entry point for beam 1 and
beam 2, respectively. Because the total dosage reaching the healthy anatomy is to be min-
imized, let Z denote this quantity. The data from Table 3.7 can then be used directly to for-
mulate the following linear programming model.*

Minimize Z = 0.4x; + 0.5x,,

subject to
0.3x; + 0.1x, = 2.7
0.5x; + 0.5x, =6
0.6x; + 04x, =6
and

x=0, x=0.

Notice the differences between this model and the one in Sec. 3.1 for the Wyndor
Glass Co. problem. The latter model involved maximizing Z, and all the functional con-
straints were in = form. This new model does not fit this same standard form, but it does
incorporate three other legitimate forms described in Sec. 3.2, namely, minimizing Z, func-
tional constraints in = form, and functional constraints in = form.

However, both models have only two variables, so this new problem also can be solved
by the graphical method illustrated in Sec. 3.1. Figure 3.12 shows the graphical solution. The
feasible region consists of just the dark line segment between (6, 6) and (7.5, 4.5), because
the points on this segment are the only ones that simultaneously satisfy all the constraints.
(Note that the equality constraint limits the feasible region to the line containing this line seg-
ment, and then the other two functional constraints determine the two endpoints of the line
segment.) The dashed line is the objective function line that passes through the optimal
solution (x1, x5) = (7.5, 4.5) with Z = 5.25. This solution is optimal rather than the point
(6, 6) because decreasing Z (for positive values of Z) pushes the objective function line
toward the origin (where Z = 0). And Z = 5.25 for (7.5, 4.5) is less than Z = 5.4 for (6, 6).

Thus, the optimal design is to use a total dose at the entry point of 7.5 kilorads for
beam 1 and 4.5 kilorads for beam 2.

Regional Planning

The SOUTHERN CONFEDERATION OF KIBBUTZIM is a group of three kibbutzim
(communal farming communities) in Israel. Overall planning for this group is done in its
Coordinating Technical Office. This office currently is planning agricultural production for
the coming year.

“This model is much smaller than normally would be needed for actual applications. For the best results, a realistic
model might even need many tens of thousands of decision variables and constraints. For example, see H. E. Romeijn,
R. K. Ahuja, J. F. Dempsey, and A. Kumar, “A New Linear Programming Approach to Radiation Therapy Treatment
Planning Problems,” Operations Research, 54(2): 201-216, March—April 2006. For alternative approaches that
combine linear programming with other OR techniques (like the first application vignette in this section), also see
G.J. Lim, M. C. Ferris, S. J. Wright, D. M. Shepard, and M. A. Earl, “An Optimization Framework for Conformal
Radiation Treatment Planning,” INFORMS Journal on Computing, 19(3): 366—380, Summer 2007.
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¥ FIGURE 3.12
Graphical solution for the
design of Mary’s radiation
therapy.
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The agricultural output of each kibbutz is limited by both the amount of available irri-
gable land and the quantity of water allocated for irrigation by the Water Commissioner (a
national government official). These data are given in Table 3.8.

The crops suited for this region include sugar beets, cotton, and sorghum, and these
are the three being considered for the upcoming season. These crops differ primarily in
their expected net return per acre and their consumption of water. In addition, the Ministry
of Agriculture has set a maximum quota for the total acreage that can be devoted to each of
these crops by the Southern Confederation of Kibbutzim, as shown in Table 3.9.

I TABLE 3.8 Resource data for the Southern Confederation of Kibbutzim

Kibbutz Usable Land (Acres) Water Allocation (Acre Feet)
1 400 600
2 600 800

3 300 375
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B TABLE 3.9 Crop data for the Southern Confederation of Kibbutzim

Maximum Water Consumption Net Return
Crop Quota (Acres) (Acre Feet/Acre) ($/Acre)
Sugar beets 600 3 1,000
Cotton 500 2 750
Sorghum 325 1 250

Because of the limited water available for irrigation, the Southern Confederation of
Kibbutzim will not be able to use all its irrigable land for planting crops in the upcoming
season. To ensure equity between the three kibbutzim, it has been agreed that every kibbutz
will plant the same proportion of its available irrigable land. For example, if kibbutz 1 plants
200 of its available 400 acres, then kibbutz 2 must plant 300 of its 600 acres, while kib-
butz 3 plants 150 acres of its 300 acres. However, any combination of the crops may be
grown at any of the kibbutzim. The job facing the Coordinating Technical Office is to plan
how many acres to devote to each crop at the respective kibbutzim while satisfying the
given restrictions. The objective is to maximize the total net return to the Southern Con-
federation of Kibbutzim as a whole.

Formulation as a Linear Programming Problem. The quantities to be decided upon
are the number of acres to devote to each of the three crops at each of the three kibbutzim.
The decision variables x; (j = 1, 2, ..., 9) represent these nine quantities, as shown in
Table 3.10.

Since the measure of effectiveness Z is the total net return, the resulting linear pro-
gramming model for this problem is

Maximize  Z = 1,000(x; + x, + x3) + 750(x; + x5 + x¢) + 250(x; + xg + xo),

subject to the following constraints:
1. Usable land for each kibbutz:

x; + x4 + x; =400

X, + x5 + xg = 600

X3 + X T x9 = 300
2. Water allocation for each kibbutz:

3x, + 2x, + x; = 600

3x, + 2x5 + xg = 800

3x; + 2x¢ + x9 = 375

TABLE 3.10 Decision variables for the Southern Confederation
of Kibbutzim problem

Allocation (Acres)

Kibbutz
Crop 1 2 3
Sugar beets Xq Xo X3
Cotton X4 Xs X6

Sorghum Xz Xg Xo
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3. Total acreage for each crop:

x; + x, + x3 = 600
Xy + x5 + xg = 500
X; + xg + xg = 325

4. Equal proportion of land planted:

xl+X4+.X7 X2+XS+.X8

400 600
X, x5+ x5 x3+xg T X
600 300
X3+ xg X9 x;+ x4+ xg
300 400

5. Nonnegativity:
x;=0, forj=1,2,..,9

This completes the model, except that the equality constraints are not yet in an appropriate
form for a linear programming model because some of the variables are on the right-hand
side. Hence, their final form® is
3(x, + x4+ x7) — 200 + x5+ x5) =0
(v + x5 + xg) — 2(x3 + x5+ x9) =0
Ax; + xg + x9) — 3(x; + x4 +x7) =0

The Coordinating Technical Office formulated this model and then applied the sim-
plex method (developed in Chap. 4) to find an optimal solution

1
(X1 X5 X3, Xy y X5, Xg 5 X7, Xg 5 Xg) = (1333, 100, 25, 100, 250, 150, 0, 0, 0),

as shown in Table 3.11. The resulting optimal value of the objective function is Z=633, 3333,
that is, a total net return of $633,333.33.

W TABLE 3.11 Optimal solution for the Southern Confederation
of Kibbutzim problem

Best Allocation (Acres)
Kibbutz
Crop 1 2 3
Sugar beets 1335 100 25
Cotton 100 250 150
Sorghum 0 0 0

>Actually, any one of these equations is redundant and can be deleted if desired. Also, because of these equations,
any two of the usable land constraints also could be deleted because they automatically would be satisfied when
both the remaining usable land constraint and these equations are satisfied. However, no harm is done (except a
little more computational effort) by including unnecessary constraints, so you don’t need to worry about identify-
ing and deleting them in models you formulate.
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Controlling Air Pollution

The NORI & LEETS CO., one of the major producers of steel in its part of the world, is
located in the city of Steeltown and is the only large employer there. Steeltown has grown
and prospered along with the company, which now employs nearly 50,000 residents.
Therefore, the attitude of the townspeople always has been, What’s good for Nori & Leets
is good for the town. However, this attitude is now changing; uncontrolled air pollution
from the company’s furnaces is ruining the appearance of the city and endangering the
health of its residents.

A recent stockholders’ revolt resulted in the election of a new enlightened board of
directors for the company. These directors are determined to follow socially responsible
policies, and they have been discussing with Steeltown city officials and citizens’ groups
what to do about the air pollution problem. Together they have worked out stringent air
quality standards for the Steeltown airshed.

The three main types of pollutants in this airshed are particulate matter, sulfur oxides,
and hydrocarbons. The new standards require that the company reduce its annual emission of
these pollutants by the amounts shown in Table 3.12. The board of directors has instructed
management to have the engineering staff determine how to achieve these reductions in the
most economical way.

The steelworks has two primary sources of pollution, namely, the blast furnaces for
making pig iron and the open-hearth furnaces for changing iron into steel. In both cases the
engineers have decided that the most effective types of abatement methods are (1) increas-
ing the height of the smokestacks,® (2) using filter devices (including gas traps) in the
smokestacks, and (3) including cleaner, high-grade materials among the fuels for the fur-
naces. Each of these methods has a technological limit on how heavily it can be used (e.g.,
a maximum feasible increase in the height of the smokestacks), but there also is consider-
able flexibility for using the method at a fraction of its technological limit.

Table 3.13 shows how much emission (in millions of pounds per year) can be elimi-
nated from each type of furnace by fully using any abatement method to its technological
limit. For purposes of analysis, it is assumed that each method also can be used less fully
to achieve any fraction of the emission-rate reductions shown in this table. Furthermore,
the fractions can be different for blast furnaces and for open-hearth furnaces. For either
type of furnace, the emission reduction achieved by each method is not substantially
affected by whether the other methods also are used.

After these data were developed, it became clear that no single method by itself could
achieve all the required reductions. On the other hand, combining all three methods at full
capacity on both types of furnaces (which would be prohibitively expensive if the company’s

TABLE 3.12 Clean air standards for the Nori & Leets Co.

Pollutant Required Reduction in Annual Emission Rate
(Million Pounds)

Particulates 60
Sulfur oxides 150
Hydrocarbons 125

SSubsequent to this study, this particular abatement method has become a controversial one. Because its effect is
to reduce ground-level pollution by spreading emissions over a greater distance, environmental groups contend
that this creates more acid rain by keeping sulfur oxides in the air longer. Consequently, the U.S. Environmental
Protection Agency adopted new rules in 1985 to remove incentives for using tall smokestacks.
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TABLE 3.13 Reduction in emission rate (in millions of pounds per year) from the
maximum feasible use of an abatement method for Nori & Leets Co.

Taller Smokestacks Filters Better Fuels

Blast Open-Hearth Blast Open-Hearth Blast Open-Hearth

Pollutant Furnaces Furnaces Furnaces Furnaces Furnaces Furnaces
Particulates 12 9 25 20 17 13
Sulfur oxides 35 42 18 31 56 49
Hydrocarbons 37 53 28 24 29 20

products are to remain competitively priced) is much more than adequate. Therefore, the
engineers concluded that they would have to use some combination of the methods, per-
haps with fractional capacities, based upon the relative costs. Furthermore, because of the
differences between the blast and the open-hearth furnaces, the two types probably should
not use the same combination.

An analysis was conducted to estimate the total annual cost that would be incurred by
each abatement method. A method’s annual cost includes increased operating and mainte-
nance expenses as well as reduced revenue due to any loss in the efficiency of the produc-
tion process caused by using the method. The other major cost is the start-up cost (the
initial capital outlay) required to install the method. To make this one-time cost commen-
surable with the ongoing annual costs, the time value of money was used to calculate the
annual expenditure (over the expected life of the method) that would be equivalent in value
to this start-up cost.

This analysis led to the total annual cost estimates (in millions of dollars) given in
Table 3.14 for using the methods at their full abatement capacities. It also was determined
that the cost of a method being used at a lower level is roughly proportional to the fraction
of the abatement capacity given in Table 3.13 that is achieved. Thus, for any given fraction
achieved, the total annual cost would be roughly that fraction of the corresponding quan-
tity in Table 3.14.

The stage now was set to develop the general framework of the company’s plan for
pollution abatement. This plan specifies which types of abatement methods will be used
and at what fractions of their abatement capacities for (1) the blast furnaces and (2) the
open-hearth furnaces. Because of the combinatorial nature of the problem of finding a plan
that satisfies the requirements with the smallest possible cost, an OR team was formed to
solve the problem. The team adopted a linear programming approach, formulating the
model summarized next.

Formulation as a Linear Programming Problem. This problem has six decision
variables x; j=1,2,...,6, each representing the use of one of the three abatement meth-
ods for one of the two types of furnaces, expressed as a fraction of the abatement capacity
(so x;cannot exceed 1). The ordering of these variables is shown in Table 3.15. Because the

TABLE 3.14 Total annual cost from the maximum feasible use of an abatement
method for Nori & Leets Co. ($ millions)

Abatement Method

Blast Furnaces

Open-Hearth Furnaces

Taller smokestacks
Filters
Better fuels

8
7
11

10
6
9
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TABLE 3.15 Decision variables (fraction of the maximum feasible use of an
abatement method) for Nori & Leets Co.

Abatement Method Blast Furnaces Open-Hearth Furnaces
Taller smokestacks Xq X2
Filters X3 X4
Better fuels Xs Xe

objective is to minimize total cost while satisfying the emission reduction requirements,
the data in Tables 3.12, 3.13, and 3.14 yield the following model:

Minimize Z = 8x; + 10x, + 7x; + 6x, + 11x5 + 9x¢,
subject to the following constraints:
1. Emission reduction:

12x1 + 9)(:2 + ZSX3 + ZOX4 + 17x5 + 13x6 = 60
35x; + 42x, + 18x;3 + 31x, + 56x5 + 49x5 = 150
37x, + 53x, + 28x3 + 24x, + 29x5 + 20x5 = 125

2. Technological limit:
x=1, forj=1,2,...,6
3. Nonnegativity:
x; =0, forj=1,2,...,6.
The OR team used this model’ to find a minimum-cost plan
(215 X0, X3, X4, X5, X6) = (1,0.623,0.343,1,0.048, 1),

with Z = 32.16 (total annual cost of $32.16 million). Sensitivity analysis then was conducted
to explore the effect of making possible adjustments in the air standards given in Table 3.12,
as well as to check on the effect of any inaccuracies in the cost data given in Table 3.14. (This
story is continued in Case 6.1 at the end of Chap. 6.) Next came detailed planning and man-
agerial review. Soon after, this program for controlling air pollution was fully implemented
by the company, and the citizens of Steeltown breathed deep (cleaner) sighs of relief.

Reclaiming Solid Wastes

The SAVE-IT COMPANY operates a reclamation center that collects four types of solid
waste materials and treats them so that they can be amalgamated into a salable product.
(Treating and amalgamating are separate processes.) Three different grades of this product
can be made (see the first column of Table 3.16), depending upon the mix of the materials
used. Although there is some flexibility in the mix for each grade, quality standards may
specify the minimum or maximum amount allowed for the proportion of a material in the
product grade. (This proportion is the weight of the material expressed as a percentage of
the total weight for the product grade.) For each of the two higher grades, a fixed percentage

7An equivalent formulation can express each decision variable in natural units for its abatement method; for
example, x; and x, could represent the number of feet that the heights of the smokestacks are increased.



CHAPTER 3 INTRODUCTION TO LINEAR PROGRAMMING

TABLE 3.16 Product data for Save-It Co.

Amalgamation Selling Price
Grade Specification Cost per Pound ($) per Pound ($)

Material 1: Not more than 30% of total
A Material 2: Not less than 40% of total 3.00 8.50
Material 3: Not more than 50% of total
Material 4: Exactly 20% of total

Material 1: Not more than 50% of total

B Material 2: Not less than 10% of total 2.50 7.00
Material 4: Exactly 10% of total
C Material 1: Not more than 70% of total 2.00 5.50

is specified for one of the materials. These specifications are given in Table 3.16 along with
the cost of amalgamation and the selling price for each grade.

The reclamation center collects its solid waste materials from regular sources and so is
normally able to maintain a steady rate for treating them. Table 3.17 gives the quantities
available for collection and treatment each week, as well as the cost of treatment, for each
type of material.

The Save-It Co. is solely owned by Green Earth, an organization devoted to dealing
with environmental issues, so Save-It’s profits are used to help support Green Earth’s
activities. Green Earth has raised contributions and grants, amounting to $30,000 per
week, to be used exclusively to cover the entire treatment cost for the solid waste materi-
als. The board of directors of Green Earth has instructed the management of Save-It to
divide this money among the materials in such a way that at least half of the amount
available of each material is actually collected and treated. These additional restrictions
are listed in Table 3.17.

Within the restrictions specified in Tables 3.16 and 3.17, management wants to deter-
mine the amount of each product grade to produce and the exact mix of materials to be
used for each grade. The objective is to maximize the net weekly profit (total sales income
minus total amalgamation cost), exclusive of the fixed treatment cost of $30,000 per week
that is being covered by gifts and grants.

Formulation as a Linear Programming Problem. Before attempting to construct a
linear programming model, we must give careful consideration to the proper definition of
the decision variables. Although this definition is often obvious, it sometimes becomes the
crux of the entire formulation. After clearly identifying what information is really desired
and the most convenient form for conveying this information by means of decision vari-
ables, we can develop the objective function and the constraints on the values of these
decision variables.

TABLE 3.17 Solid waste materials data for the Save-It Co.

Pounds per Treatment Cost
Material Week Available per Pound ($) Additional Restrictions
1 3,000 3.00 1. For each material, at least half of the
2 2,000 6.00 pounds per week available should be
3 4,000 4.00 collected and treated.
4 1,000 5.00 2. $30,000 per week should be used
to treat these materials.
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In this particular problem, the decisions to be made are well defined, but the appropri-
ate means of conveying this information may require some thought. (Try it and see if you
first obtain the following inappropriate choice of decision variables.)

Because one set of decisions is the amount of each product grade to produce, it would
seem natural to define one set of decision variables accordingly. Proceeding tentatively
along this line, we define

y; = number of pounds of product grade i produced per week (i = A, B, C).

The other set of decisions is the mix of materials for each product grade. This mix is iden-
tified by the proportion of each material in the product grade, which would suggest defin-
ing the other set of decision variables as

z;; = proportion of material j in product grade i (i = A, B, C;j = 1,2,3,4).

However, Table 3.17 gives both the treatment cost and the availability of the materials by
quantity (pounds) rather than proportion, so it is this quantity information that needs to be
recorded in some of the constraints. For material j (j = 1, 2, 3, 4),

Number of pounds of material j used per week = z4y4 + 2Zgyp + 2gVc-

For example, since Table 3.17 indicates that 3,000 pounds of material 1 is available per
week, one constraint in the model would be

Zaa T gy T Zeye = 3,000.

Unfortunately, this is not a legitimate linear programming constraint. The expression on
the left-hand side is not a linear function because it involves products of variables. There-
fore, a linear programming model cannot be constructed with these decision variables.

Fortunately, there is another way of defining the decision variables that will fit the lin-
ear programming format. (Do you see how to do it?) It is accomplished by merely replac-
ing each product of the old decision variables by a single variable! In other words, define
x; =2z (fori=A,B,C;j=1,23,4)

y

number of pounds of material j allocated to product grade i per week,

and then we let the x;; be the decision variables. Combining the x;; in different ways yields
the following quantities needed in the model (fori=A, B, C;j=1, 2, 3, 4).

X; + xp + x5 + xi = number of pounds of product grade i produced per week.
Xa; T xp; + xg; = number of pounds of material j used per week.

Xjj

= proportion of material j in product grade i.
X+ xp + X+ Xy

The fact that this last expression is a nonlinear function does not cause a complication.
For example, consider the first specification for product grade A in Table 3.16 (the proportion
of material 1 should not exceed 30 percent). This restriction gives the nonlinear constraint

XAl

= 0.3.
Xt X0 X3t Xy

However, multiplying through both sides of this inequality by the denominator yields an
equivalent constraint

Xa1 = 0-3(XA1 o Tt XA4),
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SO
0.7.XA1 - O.SxA2 - 0.3XA3 - O.3XA4 = O,

which is a legitimate linear programming constraint.

With this adjustment, the three quantities given above lead directly to all the func-
tional constraints of the model. The objective function is based on management’s objective
of maximizing net weekly profit (total sales income minus total amalgamation cost) from
the three product grades. Thus, for each product grade, the profit per pound is obtained by
subtracting the amalgamation cost given in the third column of Table 3.16 from the selling
price in the fourth column. These differences provide the coefficients for the objective
function.

Therefore, the complete linear programming model is

Maximize Z = 5.5(x;; + x40 + X3 + x44) + 45005 + x5 + xp3 + Xpy)

+ 3.5(XC1 + X2 + X3 + xC4),
subject to the following constraints:

1. Mixture specifications (second column of Table 3.16):

Xa1 = 0.3(xq + x40 + x43 + x44)  (grade A, material 1)
Xao = 0.4(xp; + x40 + X3 T Xp4) grade A, material 2)
Xaz = 0.5(xq; + x40 + X3 T X44) grade A, material 3)
X = 0.2(x4; + x40 + X3 T Xg4) grade A, material 4)
xpr = 0.5(xp; + x5 + Xp3 + xpy)

)

Xpp = 0.1(xg + xpo + X3 + Xpy

(
(
(
(grade B, material 1)
(grade B, material 2)
(

Xps = 0.1(xp + xp + xp3 + Xp4) grade B, material 4)
xXer = 0.7(x¢y + xeo + X3 + x¢s)  (grade C, material 1).
2. Availability of materials (second column of Table 3.17):
Xap T xg + xop = 3,000 (material 1)
Xgo t Xp + X = 2,000  (material 2)
Xaz T xp3 + xo3 = 4,000 (material 3)
Xas + Xpy + Xy = 1,000 (material 4).
3. Restrictions on amounts treated (right side of Table 3.17):
Xa1 + Xg + X = 1,500 (material 1)
Xap T X + xeo = 1,000 (material 2)
Xa3 t Xpz + X3 = 2,000 (material 3)
Xas T Xy + xoy = 500  (material 4).
4. Restriction on treatment cost (right side of Table 3.17):
3(xar + X+ xep) F 6(x42 + Xpp + Xeo) + Hxaz + xgs T+ Xe3)
+ 5(x44 + x4 + xc4) = 30,000.

5. Nonnegativity constraints:

Xy =0, x5, =0, ..., xu=0.
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TABLE 3.18 Optimal solution for the Save-It Co. problem

Pounds Used per Week
Material
Number of Pounds
Grade 1 2 3 4 Produced per Week
A 412.3 859.6 447.4 429.8 2149
(19.2%) (40%) (20.8%) (20%)
B 2587.7 517.5 1552.6 517.5 5175
(50%) (10%) (30%) (10%)
C 0 0 0 0 0
Total 3000 1377 2000 947

This formulation completes the model, except that the constraints for the mixture
specifications need to be rewritten in the proper form for a linear programming model by
bringing all variables to the left-hand side and combining terms, as follows:

Mixture specifications:

0.7x,, — 0.3x4, — 0.3x43 — 0.3x4, =0 (grade A, material 1)
—0.4x,, + 0.6x,, — 0.4x,3 — 0.4x,, =0 (grade A, material 2)
—0.5x,4; — 0.5x4, + 0.5x,3 — 0.5x,, =0  (grade A, material 3)
—0.2x4, — 0.2x4, — 0.2x,5 + 0.8x,, = 0  (grade A, material 4)

0.5x5 — 0.5x5 — 0.5x53 — 0.5x5, =0 ( )
—0.1xz + 0.9x5 — 0.1xz; — 0.1x, =0 ( )
—0.1xp — 0.1xg — O.Lxgs + 0935, = 0 ( )

0.3xc; — 0.7x¢, — 0.7x¢3 — 0.7x¢, =0 (grade C, material 1).

grade B, material 1
grade B, material 2

grade B, material 4

An optimal solution for this model is shown in Table 3.18, and then these x;; values are
used to calculate the other quantities of interest given in the table. The resulting optimal
value of the objective function is Z = 35,109.65 (a total weekly profit of $35,109.65).

The Save-It Co. problem is an example of a blending problem. The objective for a
blending problem is to find the best blend of ingredients into final products to meet certain
specifications. Some of the earliest applications of linear programming were for gasoline
blending, where petroleum ingredients were blended to obtain various grades of gasoline.
Other blending problems involve such final products as steel, fertilizer, and animal feed.

Personnel Scheduling

UNION AIRWAYS is adding more flights to and from its hub airport, and so it needs to
hire additional customer service agents. However, it is not clear just how many more
should be hired. Management recognizes the need for cost control while also consistently
providing a satisfactory level of service to customers. Therefore, an OR team is studying
how to schedule the agents to provide satisfactory service with the smallest personnel cost.

Based on the new schedule of flights, an analysis has been made of the minimum num-
ber of customer service agents that need to be on duty at different times of the day to pro-
vide a satisfactory level of service. The rightmost column of Table 3.19 shows the number
of agents needed for the time periods given in the first column. The other entries in this
table reflect one of the provisions in the company’s current contract with the union that



An Application Vignette

Cost control is essential for survival in the airline industry.
Therefore, upper management of United Airlines initiated
an operations research study to improve the utilization of
personnel at the airline’s reservations offices and airports
by matching work schedules to customer needs more
closely. The number of employees needed at each location
to provide the required level of service varies greatly dur-
ing the 24-hour day and might fluctuate considerably from
one half-hour to the next.

Trying to design the work schedules for all the empl-
oyees at a given location to meet these service require-
ments most efficiently is a nightmare of combinatorial
considerations. Once an employee arrives, he or she will
be there continuously for the entire shift (2 to 10 hours,
depending on the employee), except for either a meal
break or short rest breaks every two hours. Given the
minimum number of employees needed on duty for each
half-hour interval over a 24-hour day (this minimum

changes from day to day over a seven-day week), how
many employees of each shift length should begin work
at what start time over each 24-hour day of a seven-day
week? Fortunately, linear programming thrives on such
combinatorial nightmares. The linear programming
model for some of the locations scheduled involves over
20,000 decisions!

This application of linear programming was credited
with saving United Airlines more than $6 million annually
in just direct salary and benefit costs. Other benefits
included improved customer service and reduced work-
loads for support staff.

Source: T. J. Holloran and J. E. Bryne, “United Airlines Station
Manpower Planning System,” Interfaces, 16(1): 39-50,
Jan.—Feb. 1986. (A link to this article is provided on our web-
site, www.mhhe.com/hillier.)

represents the customer service agents. The provision is that each agent work an 8-hour
shift 5 days per week, and the authorized shifts are

Shift 1: 6:00 A.m. to 2:00 p.Mm.
Shift 2: 8:00 aA.m. to 4:00 p.m.
Shift 3: Noon to 8:00 p.m.
Shift 4: 4:00 p.M. to midnight
Shift 5: 10:00 p.m. to 6:00 A.M.

Checkmarks in the main body of Table 3.19 show the hours covered by the respective
shifts. Because some shifts are less desirable than others, the wages specified in the con-
tract differ by shift. For each shift, the daily compensation (including benefits) for each
agent is shown in the bottom row. The problem is to determine how many agents should be

TABLE 3.19 Data for the Union Airways personnel scheduling problem

Time Periods Covered
Shift
Minimum Number of

Time Period 1 2 3 4 5 Agents Needed
6:00 a.m. to 8:00 a.m. v 48

8:00 a.m. to 10:00 a.m. v v 79

10:00 a.Mm. to noon (4 (4 65

Noon to 2:00 p.m. v v v 87

2:00 p.m. to 4:00 p.m. v v 64

4:00 p.m. to 6:00 p.m. v (4 73

6:00 p.M. to 8:00 p.m. v v 82

8:00 p.M. to 10:00 p.m. v 43

10:00 p.M. to midnight v v 52
Midnight to 6:00 a.m. v 15

Daily cost per agent $170 $160 $175 $180 $195
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assigned to the respective shifts each day to minimize the fotal personnel cost for agents,
based on this bottom row, while meeting (or surpassing) the service requirements given in
the rightmost column.

Formulation as a Linear Programming Problem. Linear programming problems
always involve finding the best mix of activity levels. The key to formulating this particular
problem is to recognize the nature of the activities.

Activities correspond to shifts, where the level of each activity is the number of
agents assigned to that shift. Thus, this problem involves finding the best mix of shift
sizes. Since the decision variables always are the levels of the activities, the five decision
variables here are

x; = number of agents assigned to shiftj, forj =1,2,3,4,5.

The main restrictions on the values of these decision variables are that the number of
agents working during each time period must satisfy the minimum requirement given in
the rightmost column of Table 3.19. For example, for 2:00 p.m. to 4:00 p.Mm., the total num-
ber of agents assigned to the shifts that cover this time period (shifts 2 and 3) must be at
least 64, so

X+ x; =64

is the functional constraint for this time period.
Because the objective is to minimize the total cost of the agents assigned to the five
shifts, the coefficients in the objective function are given by the last row of Table 3.19.
Therefore, the complete linear programming model is

Minimize Z = 170x; + 160x, + 175x; + 180x4 + 195x;,

subject to
X =48 (6-8a.Mm.)
X +x =79 (8-10 am.)
x; + x =65 (10 a.M. to noon)
X +x+x =87 (Noon-2pr.Mm.)
Xy + x5 =64 (2-4prMm)
X3t Xy =73 (4-6prPM.)
X3 + x4 =82 (6-8prM.)
X4 =43 (8-10prmMm.)
X, + x5 =52 (10 p.M.—midnight)
x5 =15 (Midnight-6 a.m.)
and

=0, forj=1234,5.

With a keen eye, you might have noticed that the third constraint, x; + x, = 65, actu-
ally is not necessary because the second constraint, x; + x, = 79, ensures that x; + x,
will be larger than 65. Thus, x; + x, = 65 is a redundant constraint that can be deleted.
Similarly, the sixth constraint, x3 + x4 = 73, also is a redundant constraint because the
seventh constraint is x3 + x4 = 82. (In fact, three of the nonnegativity constraints—
x; =0, x4 = 0, x5 = 0—also are redundant constraints because of the first, eighth, and
tenth functional constraints: x; = 48, x4, = 43, and x5 = 15. However, no computational
advantage is gained by deleting these three nonnegativity constraints.)
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The optimal solution for this model is (x;, x5, X3, X4, X5) = (48, 31, 39, 43, 15). This
yields Z = 30,610, that is, a total daily personnel cost of $30,610.

This problem is an example where the divisibility assumption of linear programming
actually is not satisfied. The number of agents assigned to each shift needs to be an integer.
Strictly speaking, the model should have an additional constraint for each decision variable
specifying that the variable must have an integer value. Adding these constraints would
convert the linear programming model to an integer programming model (the topic of
Chap. 11).

Without these constraints, the optimal solution given above turned out to have integer
values anyway, so no harm was done by not including the constraints. (The form of the
functional constraints made this outcome a likely one.) If some of the variables had turned
out to be noninteger, the easiest approach would have been to round up to integer values.
(Rounding up is feasible for this example because all the functional constraints are in =
form with nonnegative coefficients.) Rounding up does not ensure obtaining an optimal
solution for the integer programming model, but the error introduced by rounding up such
large numbers would be negligible for most practical situations. Alternatively, integer pro-
gramming techniques described in Chap. 11 could be used to solve exactly for an optimal
solution with integer values.

The second application vignette in this section describes how United Airlines used lin-
ear programming to develop a personnel scheduling system on a vastly larger scale than
this example.

Distributing Goods through a Distribution Network

The Problem. The DISTRIBUTION UNLIMITED CO. will be producing the same new
product at two different factories, and then the product must be shipped to two warehouses,
where either factory can supply either warehouse. The distribution network available for
shipping this product is shown in Fig. 3.13, where F1 and F2 are the two factories, W1 and
W2 are the two warehouses, and DC is a distribution center. The amounts to be shipped
from F1 and F2 are shown to their left, and the amounts to be received at W1 and W2 are
shown to their right. Each arrow represents a feasible shipping lane. Thus, F1 can ship
directly to W1 and has three possible routes (F1 — DC — W2, F1 — F2 — DC — W2, and
F1 — W1 — W2) for shipping to W2. Factory F2 has just one route to W2 (F2 — DC — W2)
and one to W1 (F2 — DC — W2 — W1). The cost per unit shipped through each shipping
lane is shown next to the arrow. Also shown next to F1 — F2 and DC — W2 are the maxi-
mum amounts that can be shipped through these lanes. The other lanes have sufficient ship-
ping capacity to handle everything these factories can send.

The decision to be made concerns how much to ship through each shipping lane. The
objective is to minimize the total shipping cost.

Formulation as a Linear Programming Problem. With seven shipping lanes, we
need seven decision variables (Xp;.F2, Xp1-DC> XF1-W1s XF2-DC> XDC-W2> XWi-w2> Xw2-w1) tO
represent the amounts shipped through the respective lanes.

There are several restrictions on the values of these variables. In addition to the
usual nonnegativity constraints, there are two upper-bound constraints, xgi.r> < 10 and
Xpc-w2 < 80, imposed by the limited shipping capacities for the two lanes, F1 — F2 and
DC — W2. All the other restrictions arise from five net flow constraints, one for each of
the five locations. These constraints have the following form.

Net flow constraint for each location:

Amount shipped out — amount shipped in = required amount.
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¥ FIGURE 3.13
The distribution network for
Distribution Unlimited Co.

50 units F1 $900/unit 30 units
produced needed

$200/unit | 10 units max. $200/unit $300/unit
40 units 60 units
produced needed

As indicated in Fig. 3.13, these required amounts are 50 for F1, 40 for F2, —30 for W1,
and —60 for W2.

What is the required amount for DC? All the units produced at the factories are ulti-
mately needed at the warehouses, so any units shipped from the factories to the distribution
center should be forwarded to the warehouses. Therefore, the total amount shipped from
the distribution center to the warehouses should equal the total amount shipped from the
factories to the distribution center. In other words, the difference of these two shipping
amounts (the required amount for the net flow constraint) should be zero.

Since the objective is to minimize the total shipping cost, the coefficients for the
objective function come directly from the unit shipping costs given in Fig. 3.13. Therefore,
by using money units of hundreds of dollars in this objective function, the complete linear
programming model is

Minimize Z = 2xpip t 4Xpipe T %iwi T 3¥mpe + Xpews
+ 3xwiwz T 2Xwawi
subject to the following constraints:

1. Net flow constraints:

Ypip2 T Xpipe T Xpw = 50 (factory 1)
TXpLR2 + Xp2pe = 40 (factory 2)
— Xp1pe — Xppe T Xpews = 0O(distribution
center)
— Xpiwi + Xwiw2 — Xwowi = —30 (warehouse 1)

— Xpcw2 ~ Xwiwz T Xwo.wp = —60 (warehouse 2)
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2. Upper-bound constraints:
Xppr = 10, Xpews = 80
3. Nonnegativity constraints:
e =0, Xpipe =0, xpw1 =0, Xppe =0, xpewz = 0,
Xwiw2 = 0, xwow = 0.

You will see this problem again in Sec. 9.6, where we focus on linear programming
problems of this type (called the minimum cost flow problem). In Sec. 9.7, we will solve for
its optimal solution:

Xpipe = 0, Xpipe = 40, Xpwi = 10, Xpope = 40, xpew, = 80,
Xwiwz = 0, Xwowr = 20.

The resulting total shipping cost is $49,000.

3.5 FORMULATING AND SOLVING LINEAR PROGRAMMING
MODELS ON A SPREADSHEET

Spreadsheet software, such as Excel, is a popular tool for analyzing and solving small lin-
ear programming problems. The main features of a linear programming model, including
all its parameters, can be easily entered onto a spreadsheet. However, spreadsheet software
can do much more than just display data. If we include some additional information, the
spreadsheet can be used to quickly analyze potential solutions. For example, a potential
solution can be checked to see if it is feasible and what Z value (profit or cost) it achieves.
Much of the power of the spreadsheet lies in its ability to immediately reveal the results of
any changes made in the solution.

In addition, the Excel Solver can quickly apply the simplex method to find an optimal
solution for the model. We will describe how this is done in the latter part of this section.

To illustrate this process of formulating and solving linear programming models on a
spreadsheet, we now return to the Wyndor example introduced in Sec. 3.1.

Formulating the Model on a Spreadsheet

Figure 3.14 displays the Wyndor problem by transferring the data from Table 3.1 onto a
spreadsheet. (Columns E and F are being reserved for later entries described below.) We
will refer to the cells showing the data as data cells. These cells are lightly shaded to dis-
tinguish them from other cells in the spreadsheet.®

You will see later that the spreadsheet is made easier to interpret by using range
names. A range name is a descriptive name given to a block of cells that immediately
identifies what is there. Thus, the data cells in the Wyndor problem are given the range
names UnitProfit (C4:D4), HoursUsedPerBatchProduced (C7:D9), and HoursAvailable
(G7:GY). Note that no spaces are allowed in a range name so each new word begins with a
capital letter. Although optional, the range of cells being given each range name can be
specified in parentheses following the name. (For example, the range C7:D9 is Excel
shorthand for the range from C7 to D9; that is, the entire block of cells in column C or D
and in row 7, 8, or 9.) To enter a range name, first select the range of cells, then choose

8Borders and cell shading can be added either by using the borders button and the fill color button on the format-
ting toolbar or by choosing Cells from the Format menu and then selecting the Borders tab and/or the Patterns tab.



An Application Vignette

Welch’s, Inc., is the world’s largest processor of Con-
cord and Niagara grapes, with annual sales surpassing
$550 million per year. Such products as Welch’s grape
jelly and Welch’s grape juice have been enjoyed by gen-
erations of American consumers.

Every September, growers begin delivering grapes to
processing plants that then press the raw grapes into juice.
Time must pass before the grape juice is ready for conver-
sion into finished jams, jellies, juices, and concentrates.

Deciding how to use the grape crop is a complex task
given changing demand and uncertain crop quality and
quantity. Typical decisions include what recipes to use
for major product groups, the transfer of grape juice
between plants, and the mode of transportation for these
transfers.

Because Welch’s lacked a formal system for opti-
mizing raw material movement and the recipes used for
production, an OR team developed a preliminary linear
programming model. This was a large model with 8,000
decision variables that focused on the component level of
detail. Small-scale testing proved that the model worked.

To make the model more useful, the team then
revised it by aggregating demand by product group rather
than by component. This reduced its size to 324 decision
variables and 361 functional constraints. The model then
was incorporated into a spreadsheet.

The company has run the continually updated version
of this spreadsheet model each month since 1994 to provide
senior management with information on the optimal logis-
tics plan generated by the Solver. The savings from using
and optimizing this model were approximately $150,000 in
the first year alone. A major advantage of incorporating the
linear programming model into a spreadsheet has been the
ease of explaining the model to managers with differ-
ing levels of mathematical understanding. This has led
to a widespread appreciation of the operations research
approach for both this application and others.

Source: E. W. Schuster and S. J. Allen, “Raw Material Manage-
ment at Welch’s, Inc.,” Interfaces, 28(5): 13-24, Sept.—Oct.
1998. (A link to this article is provided on our website,
www.mhhe.com/hillier.)

Name\Define from the Insert menu and type a range name (or click in the name box on the
left of the formula bar above the spreadsheet and type a name).

Three questions need to be answered to begin the process of using the spreadsheet to
formulate a linear programming model for the problem.

1. What are the decisions to be made? For this problem, the necessary decisions are the
production rates (number of batches produced per week) for the two new products.

2. What are the constraints on these decisions? The constraints here are that the number of
hours of production time used per week by the two products in the respective plants
cannot exceed the number of hours available.

3. What is the overall measure of performance for these decisions? Wyndor’s overall mea-
sure of performance is the fotal profit per week from the two products, so the objective
is to maximize this quantity.

Figure 3.15 shows how these answers can be incorporated into the spreadsheet. Based
on the first answer, the production rates of the two products are placed in cells C12 and

F!G.U.RE 3.14 A | B | C | D E F G
The initial spreadsheet for the

Wyndor problem after 1 | Wyndor Glass Co. Product-Mix Problem

transferring the data from 2

Table 3.1 into data cells. 3 Doors Windows
4 Profit Per Batch $3,000 $5,000
5 \ Hours
6 Hours Used Per Batch Produced Available
7 Plant 1 1 0 4
8 Plant 2 0 2 12
9

Plant 3 3 2 18
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A | B [ C [ D E F G

1 _[Wyndor Glass Co. Product-Mix Problem

2

3 Doors Windows

4 Profit Per Batch $3,000 $5,000

5 Hours Hours
= FIGURE 3.15 6 Hours Used Per Batch Produced Used Available
The complete spreadsheet - Plant 1 0 ) = 4
for the Wyndor problem with 8 Plant 2 0 > 0 = 12
an initial trial solution (both 5 Plant 3 3 5 T 0 == 18
production rates equal to 0
Zﬁro) gntere(lil lntCo1 ;he d 11 Doors Windows Total Profit
changing cells ( an 12 Batches Produced 0 0 $0

D12).

D12 to locate them in the columns for these products just under the data cells. Since we
don’t know yet what these production rates should be, they are just entered as zeroes at this
point. (Actually, any trial solution can be entered, although negative production rates
should be excluded since they are impossible.) Later, these numbers will be changed while
seeking the best mix of production rates. Therefore, these cells containing the decisions to
be made are called changing cells (or adjustable cells). To highlight the changing cells,
they are shaded and have a border. (In the spreadsheet files contained in OR Courseware,
the changing cells appear in bright yellow on a color monitor.) The changing cells are
given the range name BatchesProduced (C12:D12).

Using the answer to question 2, the total number of hours of production time used per
week by the two products in the respective plants is entered in cells E7, E8, and E9, just to
the right of the corresponding data cells. The Excel equations for these three cells are

E7 = C7*C12 + D7*D12
E8 = C8*C12 + D8*DI12
E9 = C9*C12 + D9+D12

where each asterisk denotes multiplication. Since each of these cells provides output that
depends on the changing cells (C12 and D12), they are called output cells.

Notice that each of the equations for the output cells involves the sum of two products.
There is a function in Excel called SUMPRODUCT that will sum up the product of each of
the individual terms in two different ranges of cells when the two ranges have the same
number of rows and the same number of columns. Each product being summed is the
product of a term in the first range and the term in the corresponding location in the second
range. For example, consider the two ranges, C7:D7 and C12:D12, so that each range has
one row and two columns. In this case, SUMPRODUCT (C7:D7, C12:D12) takes each of
the individual terms in the range C7:D7, multiplies them by the corresponding term in the
range C12:D12, and then sums up these individual products, as shown in the first equation
above. Using the range name BatchesProduced (C12:D12), the formula becomes
SUMPRODUCT (C7:D7, BatchesProduced). Although optional with such short equations,
this function is especially handy as a shortcut for entering longer equations.

Next, < signs are entered in cells F7, F8, and F9 to indicate that each total value to
their left cannot be allowed to exceed the corresponding number in column G. The spread-
sheet still will allow you to enter trial solutions that violate the < signs. However, these <
signs serve as a reminder that such trial solutions need to be rejected if no changes are
made in the numbers in column G.
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Finally, since the answer to the third question is that the overall measure of perfor-
mance is the total profit from the two products, this profit (per week) is entered in cell G12.
Much like the numbers in column E, it is the sum of products,

G12 = SUMPRODUCT (C4:D4, C12:D12)

Utilizing range names of TotalProfit (G12), ProfitPerBatch (C4:D4), and BatchesProduced
(C12:D12), this equation becomes

TotalProfit = SUMPRODUCT (ProfitPerBatch, BatchesProduced)

This is a good example of the benefit of using range names for making the resulting equa-
tion easier to interpret. Rather than needing to refer to the spreadsheet to see what is in
cells G12, C4:D4, and C12:D12, the range names immediately reveal what the equation is
doing.

TotalProfit (G12) is a special kind of output cell. It is the particular cell that is being
targeted to be made as large as possible when making decisions regarding production rates.
Therefore, TotalProfit (G12) is referred to as the target cell (or objective cell). The target
cell is shaded darker than the changing cells and is further distinguished by having a heavy
border. (In the spreadsheet files contained in OR Courseware, this cell appears in orange
on a color monitor.)

The bottom of Fig. 3.16 summarizes all the formulas that need to be entered in the
Hours Used column and in the Total Profit cell. Also shown is a summary of the range
names (in alphabetical order) and the corresponding cell addresses.

This completes the formulation of the spreadsheet model for the Wyndor problem.

With this formulation, it becomes easy to analyze any trial solution for the production
rates. Each time production rates are entered in cells C12 and D12, Excel immediately

¥ FIGURE 3.16

The spreadsheet model

for the Wyndor problem,
including the formulas for
the target cell TotalProfit
(G12) and the other output
cells in column E, where the
objective is to maximize the
target cell.

A | B [ [ [ D [ E F G

1 Wyndor Glass Co. Product-Mix Problem

2

3 Doors Windows

4 Profit Per Batch $3,000 $5,000

5 Hours Hours

6 Hours Used Per Batch Produced Used Available

7 Plant 1 1 0 0 <= 4

8 Plant 2 0 2 0 [<= 12

9 Plant 3 3 2 0 |<= 18

10

11 Doors Windows Total Profit

12 Batches Produced 0 0 $0
Range Name Cells
BatchesProduced Ci2:D12 E
HoursAvailable G7:G9 5 Hours
HoursUsed E7:E9 6 Used
HoursUsedPerBatchProduced C7:D9 7 |=SUMPRODUCT(C7:D7,BatchesProduced)
ProfitPerBatch C4:.D4 8 [=SUMPRODUCT(C8:D8,BatchesProduced)
TotalProfit G12 9 [=SUMPRODUCT(C9:D9,BatchesProduced)

G
11 Total Profit

12 [=SUMPRODUCT (ProfitPerBatch,BatchesProduced)
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calculates the output cells for hours used and total profit. However, it is not necessary to
use trial and error. We shall describe next how the Excel Solver can be used to quickly find
the optimal solution.

Using the Excel Solver to Solve the Model

Excel includes a tool called Solver that uses the simplex method to find an optimal solu-
tion. (A more powerful version of Solver, called Premium Solver for Education, also is
available in your OR Courseware.)

To access Solver the first time, you need to install it by going to Excel’s Add-in menu
and adding Solver, after which you will find it on the Data tab (for Excel 2007) or in the
Tools menu (for earlier versions of Excel).

To get started, an arbitrary trial solution has been entered in Fig. 3.16 by placing
zeroes in the changing cells. The Solver will then change these to the optimal values after
solving the problem.

This procedure is started by choosing Solver. The Solver dialogue box is shown in
Fig. 3.17.

Before the Solver can start its work, it needs to know exactly where each component
of the model is located on the spreadsheet. The Solver dialogue box is used to enter this
information. You have the choice of typing the range names, typing in the cell addresses, or
clicking on the cells in the spreadsheet.” Figure 3.17 shows the result of using the first
choice, so TotalProfit (rather than G12) has been entered for the target cell and Batches-
Produced (rather than the range C12:D12) has been entered for the changing cells. Since
the goal is to maximize the target cell, Max also has been selected.

Next, the cells containing the functional constraints need to be specified. This is done
by clicking on the Add button on the Solver dialogue box. This brings up the Add Con-
straint dialogue box shown in Fig. 3.18. The < signs in cells F7, F8, and F9 of Fig. 3.16
are a reminder that the cells in HoursUsed (E7:E9) all need to be less than or equal to the

¥ FIGURE 3.17

This Solver dialogue box
specifies which cells in

Fig. 3.16 are the target cell
and the changing cells. It also
indicates that the target cell
is to be maximized.

Solver Parameters
Set Target Cell: ITotaIProfit q&] Solve

Equal To: & Max ( Mn ¢ valueof: |0
~By Changing Cells:

|BatchesPrcduced 3_1 Guess |

~Subject to the Constraints: Options
= Aadd |

Change I
L’ Delete |

I,

Close

Reset All

dld

Help

°If you select cells by clicking on them, they will first appear in the dialogue box with their cell addresses and
with dollar signs (e.g., $C$9:$D$9). You can ignore the dollar signs. Solver will eventually replace both the cell
addresses and the dollar signs with the corresponding range name (if a range name has been defined for the given
cell addresses), but only after either adding a constraint or closing and reopening the Solver dialogue box.
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¥ FIGURE 3.18

The Add Constraint dialogue
box after entering the set of
constraints, HoursUsed
(E7:E9) < HoursAvailable
(G7:G9), which specifies that
cells E7, E8, and E9 in

Fig. 3.16 are required to be
less than or equal to cells G7,
G8, and G9, respectively.

X
Cell Reference: Constraint:
[HoursUsed Y| I <= LI [Hoursavailable Y
oK Cancel | Add | Help |

corresponding cells in HoursAvailable (G7:G9). These constraints are specified for the
Solver by entering HoursUsed (or E7:E9) on the left-hand side of the Add Constraint dia-
logue box and HoursAvailable (or G7:G9) on the right-hand side. For the sign between
these two sides, there is a menu to choose between <= (less than or equal), =, or
>= (greater than or equal), so <= has been chosen. This choice is needed even
though < signs were previously entered in column F of the spreadsheet because the Solver
only uses the functional constraints that are specified with the Add Constraint dialogue box.

If there were more functional constraints to add, you would click on Add to bring up a
new Add Constraint dialogue box. However, since there are no more in this example, the
next step is to click on OK to go back to the Solver dialogue box.

The Solver dialogue box now summarizes the complete model (see Fig. 3.19) in terms
of the spreadsheet in Fig. 3.16. However, before asking Solver to solve the model, one more
step should be taken. Clicking on the Options button brings up the dialogue box shown in
Fig. 3.20. This box allows you to specify a number of options about how the problem will
be solved. The most important of these are the Assume Linear Model option and the
Assume Non-Negative option. Be sure that both options are checked as shown in the figure.
This tells Solver that the problem is a linear programming problem and that nonnegativity
constraints are needed for the changing cells to reject negative production rates. Regarding
the other options, accepting the default values shown in the figure usually is fine for small
problems. Clicking on the OK button then returns you to the Solver dialogue box.

¥ FIGURE 3.19

The Solver dialogue box after
specifying the entire model in
terms of the spreadsheet.

Solver Parameters b
Set Target Cell: ITotaIProfit q‘] Solve
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¥ FIGURE 3.20

The Solver Options dialogue
box after checking the
Assume Linear Model and
Assume Non-Negative
options to indicate that we
wish to solve a linear
programming model that has
nonnegativity constraints.

5D|"|"EI‘ Options
Max Time: |1IIIIII seconds

o] 4

Zancel

Load Model,

Iberations: 100
Precision: |0.00o001
Tolerance: |5

)

Save Model, .,

Conyergence: IIII.IIIIIIIZII

v assume Linear Model

v fssume Mon-Megative

Help

[T Use Automatic Scaling
[ show Iteration Results

Estimates ————— Derivatives ~Search
o Tangenk o Forward O Mewban
™ Cuadratic ™ Central ™ Conjugate

Now you are ready to click on Solve in the Solver dialogue box, which will start the
process of solving the problem in the background. After a few seconds (for a small prob-
lem), Solver will then indicate the outcome. Typically, it will indicate that it has found an
optimal solution, as specified in the Solver Results dialogue box shown in Fig. 3.21. If the
model has no feasible solutions or no optimal solution, the dialogue box will indicate that
instead by stating that “Solver could not find a feasible solution” or that “The Set Cell
values do not converge.” The dialogue box also presents the option of generating various
reports. One of these (the Sensitivity Report) will be discussed later in Secs. 4.7 and 6.8.

¥ FIGURE 3.21

The Solver Results dialogue
box that indicates that an
optimal solution has been
found.

Suhrer Results

Solver Found a solution, &l conskraints and optimality
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& {een Solver Solution:

™ Restore Criginal Yalues

0] 4 I iZancel

Save Scenario. ..

X
Reports
Answer ;I
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Lirnit=
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After solving the model, the Solver replaces the original numbers in the changing cells
with the optimal numbers, as shown in Fig. 3.22. Thus, the optimal solution is to produce
two batches of doors per week and six batches of windows per week, just as was found by
the graphical method in Sec. 3.1. The spreadsheet also indicates the corresponding number
in the target cell (a total profit of $36,000 per week), as well as the numbers in the output
cells HoursUsed (E7:E9).

At this point, you might want to check what would happen to the optimal solution if
any of the numbers in the data cells were changed to other possible values. This is easy to
do because Solver saves all the addresses for the target cell, changing cells, constraints,
and so on when you save the file. All you need to do is make the changes you want in the
data cells and then click on Solve in the Solver dialogue box again. (Sections 4.7 and 6.8
will focus on this kind of sensitivity analysis, including how to use the Solver’s Sensitivity
Report to expedite this type of what-if analysis.)

To assist you with experimenting with these kinds of changes, your OR Courseware
includes Excel files for this chapter (as for others) that provide a complete formulation and
solution of the examples here (the Wyndor problem and the ones in Sec. 3.4) in a spread-
sheet format. We encourage you to “play” with these examples to see what happens with
different data, different solutions, and so forth. You might also find these spreadsheets use-
ful as templates for solving homework problems.

In addition, we suggest that you use this chapter’s Excel files to take a careful look at
the spreadsheet formulations for some of the examples in Sec. 3.4. This will demonstrate

¥ FIGURE 3.22

The spreadsheet obtained
after solving the Wyndor
problem.

A B | C | D | E F G

1 Wyndor Glass Co. Product-Mix Problem

2

3 Doors Windows

4 Profit Per Batch $3,000 $5,000

5 Hours Hours

6 Hours Used Per Batch Produced Used Available

7 Plant 1 1 0 2 <= 4

8 Plant 2 0 2 12 <= 12

9 Plant 3 3 2 18 <= 18

10

11 Doors Windows Total Profit

12 Batches Produced 2 6 $36,000

:
Set Target Cell: ITutaIF‘rDFit ’s] : Tjourds
se

EqualTo: @ max Mo © ™7 1_SUMPRODUCT(C7:D7,BatchesProduced)
By Changing Cells: 8 [=SUMPRODUCT(C8:D8,BatchesProduced)
[BatchesProduced 9 |=SUMPRODUCT(C9:D9,BatchesProduced)

ubject bo the Constrainks; G
|HnursLIsed <= Hoursfvailable 11 Total Profit

12 |=SUMPRODUCT (ProfitPerBatch,BatchesProduced)

[Range Name Cells
¥ assume Linear Model BatchesProduced Ci12:D12
¥ Assume Mon-Negative el G7:G9

HoursUsed E7:E9
HoursUsedPerBatchProduced C7:D9
ProfitPerBatch C4:D4
TotalProfit G12
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how to formulate linear programming models in a spreadsheet that are larger and more
complicated than for the Wyndor problem.

You will see other examples of how to formulate and solve various kinds of OR mod-
els in a spreadsheet in later chapters. The supplementary chapters on the book’s website
also include a complete chapter (Chap. 21) that is devoted to the art of modeling in spread-
sheets. That chapter describes in detail both the general process and the basic guidelines
for building a spreadsheet model. It also presents some techniques for debugging such
models.

3.6 FORMULATING VERY LARGE LINEAR PROGRAMMING MODELS

Linear programming models come in many different sizes. For the examples in Secs. 3.1
and 3.4, the model sizes range from three functional constraints and two decision vari-
ables (for the Wyndor and radiation therapy problems) up to 17 functional constraints and
12 decision variables (for the Save-It Company problem). The latter case may seem like a
rather large model. After all, it does take a substantial amount of time just to write down
a model of this size. However, by contrast, the models for the application vignettes pre-
sented in this chapter are much, much larger. For example, the model for the United Air-
lines application in Sec. 3.4 often has over 20,000 decision variables.

Such model sizes are not at all unusual. Linear programming models in practice com-
monly have many hundreds or thousands of functional constraints. In fact, they occasion-
ally will have even millions of functional constraints. The number of decision variables
frequently is even larger than the number of functional constraints, and occasionally will
range well into the millions.

Formulating such monstrously large models can be a daunting task. Even a “medium-
sized” model with a thousand functional constraints and a thousand decision variables has
over a million parameters (including the million coefficients in these constraints). It simply
is not practical to write out the algebraic formulation, or even to fill in the parameters on a
spreadsheet, for such a model.

So how are these very large models formulated in practice? It requires the use of a
modeling language.

Modeling Languages

A mathematical modeling language is software that has been specifically designed for effi-
ciently formulating large mathematical models, including linear programming models.
Even with millions of functional constraints, they typically are of a relatively few types.
Similarly, the decision variables will fall into a small number of categories. Therefore,
using large blocks of data in databases, a modeling language will use a single expression to
simultaneously formulate all the constraints of the same type in terms of the variables of
each type. We will illustrate this process soon.

In addition to efficiently formulating large models, a modeling language will expedite
a number of model management tasks, including accessing data, transforming data into
model parameters, modifying the model whenever desired, and analyzing solutions from
the model. It also may produce summary reports in the vernacular of the decision makers,
as well as document the model’s contents.

Several excellent modeling languages have been developed over the last couple of
decades. These include AMPL, MPL, OPL, GAMS, and LINGO.

The student version of one of these, MPL (short for Mathematical Programming Lan-
guage), is provided for you on the book’s website along with extensive tutorial material. As
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subsequent versions are released in future years, the latest student version also can be
downloaded from the website, maximalsoftware.com. MPL is a product of Maximal Soft-
ware, Inc. One feature is extensive support for Excel in MPL. This includes both importing
and exporting Excel ranges from MPL. Full support also is provided for the Excel VBA
macro language through OptiMax 2000. (The student version of OptiMax 2000 is on the
book’s website as well.) This product allows the user to fully integrate MPL models into
Excel and solve with any of the powerful solvers that MPL supports, including CPLEX
(described in Sec. 4.8).

LINGO is a product of LINDO Systems, Inc., which also markets a spreadsheet-add-
in optimizer called What’sBest! that is designed for large industrial problems, as well as a
callable subroutine library called the LINDO API. The LINGO software includes as a sub-
set the LINDO interface that has been a popular introduction to linear programming for
many people. The student version of LINGO with the LINDO interface is part of the soft-
ware included on the book’s website. All of the LINDO Systems products can also be
downloaded from www.lindo.com. Like MPL, LINGO is a powerful general-purpose
modeling language. A notable feature of LINGO is its great flexibility for dealing with a
wide variety of OR problems in addition to linear programming. For example, when deal-
ing with highly nonlinear models, it contains a global optimizer that will find a globally
optimal solution. (More about this in Sec. 12.10.) New to the current edition of this book,
the latest LINGO also has a built-in compatible programming language so that you can do
things like solve several different optimization problems as part of one run, which is par-
ticularly useful when doing parametric analysis.

The book’s website includes MPL, LINGO and LINDO formulations for essentially
every example in this book to which these modeling languages and optimizers can be applied.

Now let us look at a simplified example that illustrates how a very large linear pro-
gramming model can arise.

An Example of a Problem with a Huge Model

Management of the WORLDWIDE CORPORATION needs to address a product-mix
problem, but one that is vastly more complex than the Wyndor product-mix problem intro-
duced in Sec. 3.1. This corporation has 10 plants in various parts of the world. Each of
these plants produces the same 10 products and then sells them within its region. The
demand (sales potential) for each of these products from each plant is known for each of
the next 10 months. Although the amount of a product sold by a plant in a given month
cannot exceed the demand, the amount produced can be larger, where the excess amount
would be stored in inventory (at some unit cost per month) for sale in a later month. Each
unit of each product takes the same amount of space in inventory, and each plant has some
upper limit on the total number of units that can be stored (the inventory capacity).

Each plant has the same 10 production processes (we’ll refer to them as machines),
each of which can be used to produce any of the 10 products. Both the production cost per
unit of a product and the production rate of the product (number of units produced per day
devoted to that product) depend on the combination of plant and machine involved (but not
the month). The number of working days (production days available) varies somewhat
from month to month.

Since some plants and machines can produce a particular product either less expen-
sively or at a faster rate than other plants and machines, it is sometimes worthwhile to ship
some units of the product from one plant to another for sale by the latter plant. For each
combination of a plant being shipped from (the fromplant) and a plant being shipped to
(the foplant), there is a certain cost per unit shipped of any product, where this unit ship-
ping cost is the same for all the products.
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Management now needs to determine how much of each product should be pro-
duced by each machine in each plant during each month, as well as how much each plant
should sell of each product in each month and how much each plant should ship of each
product in each month to each of the other plants. Considering the worldwide price for
each product, the objective is to find the feasible plan that maximizes the total profit
(total sales revenue minus the sum of the total production costs, inventory costs, and
shipping costs).

We should note again that this is a simplified example in a number of ways. We have
assumed that the number of plants, machines, products, and months are exactly the same
(10). In most real situations, the number of products probably will be far larger and the
planning horizon is likely to be considerably longer than 10 months, whereas the number
of “machines” (types of production processes) may be less than 10. We also have assumed
that every plant has all the same types of machines (production processes) and every
machine type can produce every product. In reality, the plants may have some differences
in terms of their machine types and the products they are capable of producing. The net
result is that the corresponding model for some corporations may be smaller than the one
for this example, but the model for other corporations may be considerably larger (perhaps
even vastly larger) than this one.

The Structure of the Resulting Model

Because of the inventory costs and the limited inventory capacities, it is necessary to keep
track of the amount of each product kept in inventory in each plant during each month.
Consequently, the linear programming model has four types of decision variables: produc-
tion quantities, inventory quantities, sales quantities, and shipping quantities. With 10
plants, 10 machines, 10 products, and 10 months, this gives a total of 21,000 decision vari-
ables, as outlined below.

Decision Variables.

10,000 production variables: one for each combination of a plant, machine, product, and
month

1,000 inventory variables: one for each combination of a plant, product, and month

1,000 sales variables: one for each combination of a plant, product, and month

9,000 shipping variables: one for each combination of a product, month, plant (the fromplant),
and another plant (the toplant)

Multiplying each of these decision variables by the corresponding unit cost or unit
revenue, and then summing over each type, the following objective function can be
calculated:

Obijective Function.
Maximize profit = total sales revenue — total cost,
where
Total cost = total production cost + total inventory cost + total shipping cost.

When maximizing this objective function, the 21,000 decision variables need to sat-
isfy nonnegativity constraints as well as four types of functional constraints—production
capacity constraints, plant balance constraints (equality constraints that provide appropri-
ate values to the inventory variables), maximum inventory constraints, and maximum sales
constraints. As enumerated below, there are a total of 3,100 functional constraints, but all
the constraints of each type follow the same pattern.
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Functional Constraints.

1,000 production capacity constraints (one for each combination of a plant, machine, and
month):

Production days used = production days available,

where the left-hand side is the sum of 10 fractions, one for each product, where each
fraction is that product’s production quantity (a decision variable) divided by the prod-
uct’s production rate (a given constant).

1,000 plant balance constraints (one for each combination of a plant, product, and month):

Amount produced + inventory last month + amount shipped in = sales + current
inventory + amount shipped out,

where the amount produced is the sum of the decision variables representing the pro-
duction quantities at the machines, the amount shipped in is the sum of the decision
variables representing the shipping quantities in from the other plants, and the amount
shipped out is the sum of the decision variables representing the shipping quantities
out to the other plants.

100 maximum inventory constraints (one for each combination of a plant and month):
Total inventory = inventory capacity,

where the left-hand side is the sum of the decision variables representing the inventory
quantities for the individual products.

1,000 maximum sales constraints (one for each combination of a plant, product, and
month):

Sales = demand.

Now let us see how the MPL Modeling Language can formulate this huge model very
compactly.

Formulation of the Model in MPL

The modeler begins by assigning a title to the model and listing an index for each of the
entities of the problem, as illustrated below.

TITLE
Production_Planning;

INDEX
product := (Al, A2, A3, A4, A5, A6, A7, A8, A9, AlO0);
month := (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct);
plant := (pl, p2, p3, p4, p5, p6, pP7, P8, P9, plo);
fromplant :=plant;
toplant :=plant;
machine := (ml, m2, m3, m4, m5, m6, m7, m8, m9, ml0);

Except for the months, the entries on the right-hand side are arbitrary labels for the respec-
tive products, plants, and machines, where these same labels are used in the data files. Note
that a colon is placed after the name of each entry and a semicolon is placed at the end of
each statement (but a statement is allowed to extend over more than one line).

A big job with any large model is collecting and organizing the various types of data
into data files. A data file can be in either dense format or sparse format. In dense format,
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the file will contain an entry for every combination of all possible values of the respective
indexes. For example, suppose that the data file contains the production rates for producing
the various products with the various machines (production processes) in the various
plants. In dense format, the file will contain an entry for every combination of a plant, a
machine, and a product. However, the entry may need to be zero for most of the combina-
tions because that particular plant may not have that particular machine or, even if it does,
that particular machine may not be capable of producing that particular product in that par-
ticular plant. The percentage of the entries in dense format that are nonzero is referred to as
the density of the data set. In practice, it is common for large data sets to have a density
under 5 percent, and it frequently is under 1 percent. Data sets with such a low density are
referred to as being sparse. In such situations, it is more efficient to use a data file in sparse
Sformat. In this format, only the nonzero values (and an identification of the index values
they refer to) are entered into the data file. Generally, data are entered in sparse format
either from a text file or from corporate databases. The ability to handle sparse data sets
efficiently is one key for successfully formulating and solving large-scale optimization
models. MPL can readily work with data in either dense format or sparse format.

In the Worldwide Corp. example, eight data files are needed to hold the product prices,
demands, production costs, production rates, production days available, inventory costs,
inventory capacities, and shipping costs. We assume that these data files are available in
sparse format. The next step is to give a brief suggestive name to each one and to identify
(inside square brackets) the index or indexes for that type of data, as shown below.

DATA

Price[product] := SPARSEFILE (“Price.dat”);

Demand [plant, product, month] := SPARSEFILE (“Demand.dat”) ;
ProdCost [plant, machine, product] := SPARSEFILE (“Produce.dat”, 4);
ProdRate[plant, machine, product] := SPARSEFILE(“Produce.dat”, 5);
ProdDaysAvail [month] := SPARSEFILE (“ProdDays.dat”) ;

InvtCost [plant, product] := SPARSEFILE(“InvtCost.dat”);
InvtCapacity[plant] := SPARSEFILE (“InvtCap.dat”);

ShipCost [fromplant, toplant] := SPARSEFILE (“ShipCost.dat”);

To illustrate the contents of these data files, consider the one that provides produc-
tion costs and production rates. Here is a sample of the first few entries of SPARSEFILE
produce.dat:

! Produce.dat - Production Cost and Rate

! ProdCost [plant, machine, product]:
! ProdRate[plant, machine, product]:

pl, mll, Al, 73.30, 500,
pl, mll, A2, 52.90, 450,
pl, ml2, A3, 65.40, 550,
pl, ml3, A3, 47.60, 350,

Next, the modeler gives a short name to each type of decision variable. Following the
name, inside square brackets, is the index or indexes over which the subscripts run.

VARIABLES
Produce[plant, machine, product, month] -> Prod;
Inventory[plant, product, month] -> Invt;
Sales[plant, product, month] -> Sale;

Ship[product, month, fromplant, toplant]
WHERE (fromplant <> toplant);
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In the case of the decision variables with names longer than four letters, the arrows on the right
point to four-letter abbreviations to fit the size limitations of many solvers. The last line indi-
cates that the fromplant subscript and toplant subscript are not allowed to have the same value.

There is one more step before writing down the model. To make the model easier to read,
it is useful first to introduce macros to represent the summations in the objective function.

MACROS

Total Revenue := SUM(plant, product, month: Price*Sales);

TotalProdCost := SUM(plant, machine, product, month:
ProdCost*Produce) ;

TotalInvtCost := SUM(plant, product, month:
InvtCost*Inventory) ;

TotalShipCost := SUM(product, month, fromplant, toplant:
ShipCost*Ship) ;

TotalCost := TotalProdCost + TotalInvtCost + TotalShipCost;

The first four macros use the MPL keyword SUM to execute the summation involved. Fol-
lowing each SUM keyword (inside the parentheses) is, first, the index or indexes over
which the summation runs. Next (after the colon) is the vector product of a data vector (one
of the data files) times a variable vector (one of the four types of decision variables).

Now this model with 3,100 functional constraints and 21,000 decision variables can
be written down in the following compact form.

MODEL
MAX Profit = TotalRevenue - TotalCost;
SUBJECT TO
ProdCapacity[plant, machine, month] -> PCap:
SUM (product: Produce/ProdRate) <= ProdDaysAvail;
PlantBal[plant, product, month] -> PBal:
SUM (machine: Produce) + Inventory [month - 1]
+ SUM(fromplant: Ship[fromplant, toplant:= plant])

Sales + Inventory
+ SUM(toplant: Ship[fromplant:= plant, toplant]);

MaxInventory [plant, month] -> MaxI:
SUM (product: Inventory) <= InvtCapacity;

BOUNDS
Sales <= Demand;
END

For each of the four types of constraints, the first line gives the name for this type.
There is one constraint of this type for each combination of values for the indexes inside
the square brackets following the name. To the right of the brackets, the arrow points to a
four-letter abbreviation of the name that a solver can use. Below the first line, the general
form of constraints of this type is shown by using the SUM operator.

For each production capacity constraint, each term in the summation consists of a
decision variable (the production quantity of that product on that machine in that plant dur-
ing that month) divided by the corresponding production rate, which gives the number of
production days being used. Summing over the products then gives the total number of
production days being used on that machine in that plant during that month, so this number
must not exceed the number of production days available.

The purpose of the plant balance constraint for each plant, product, and month is to
give the correct value to the current inventory variable, given the values of all the other
decision variables including the inventory level for the preceding month. Each of the SUM
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operators in these constraints involves simply a sum of decision variables rather than a vec-
tor product. This is the case also for the SUM operator in the maximum inventory con-
straints. By contrast, the left-hand side of the maximum sales constraints is just a single
decision variable for each of the 1,000 combinations of a plant, product, and month. (Sep-
arating these upper-bound constraints on individual variables from the regular functional
constraints is advantageous because of the computational efficiencies that can be obtained
by using the upper bound technique described in Sec. 7.3.) No lower-bound constraints are
shown here because MPL automatically assumes that all 21,000 decision variables have
nonnegativity constraints unless nonzero lower bounds are specified. For each of the 3,100
functional constraints, note that the left-hand side is a linear function of the decision vari-
ables and the right-hand side is a constant taken from the appropriate data file. Since the
objective function also is a linear function of the decision variables, this model is a legiti-
mate linear programming model.

To solve the model, MPL supports various leading solvers (software packages for
solving linear programming models and related models) that can be installed into MPL. As
discussed in Sec. 4.8, CPLEX is a particularly prominent and powerful solver. The version
of MPL in your OR Courseware already has installed the student version of CPLEX, which
uses the simplex method to solve linear programming models. Therefore, to solve such a
model formulated with MPL, all you have to do is choose Solve CPLEX from the Run
menu or press the Run Solve button in the Toolbar. You then can display the solution file in
a view window by pressing the View button at the bottom of the Status Window.

This brief introduction to MPL illustrates the ease with which modelers can use mod-
eling languages to formulate huge linear programming models in a clear, concise way. To
assist you in using MPL, an MPL Tutorial is included on the book’s website. This tutorial
goes through all the details of formulating smaller versions of the production planning
example considered here. You also can see elsewhere on the book’s website how all the
other linear programming examples in this chapter and subsequent chapters would be for-
mulated with MPL and solved by CPLEX.

The LINGO Modeling Language

LINGO is another popular modeling language featured in this book. The company, LINDO
Systems, that produces LINGO first became known for the easy-to-use optimizer, LINDO,
which is a subset of the LINGO software. LINDO Systems also produces a spreadsheet
solver, What’sBest!, and a callable solver library, the LINDO API. The student version of
LINGO is provided to you on the book’s website. (The latest trial versions of all of the
above can be downloaded from www.lindo.com.) Both LINDO and What’sBest! share the
LINDO API as the solver engine. The LINDO API has solvers based on the simplex
method and interior-point/barrier solvers (such as discussed in Secs. 4.9 and 7.4), plus a
global solver for solving nonlinear models.

Like MPL, LINGO enables a modeler to efficiently formulate a huge model in a clear
compact fashion that separates the data from the model formulation. This separation means
that as changes occur in the data describing the problem that needs to be solved from day
to day (or even minute to minute), the user needs to change only the data and not be con-
cerned with the model formulation. You can develop a model on a small data set and then
when you supply the model with a large data set, the model formulation adjusts automati-
cally to the new data set.

LINGO uses sets as a fundamental concept. For example, in the Worldwide Corp. pro-
duction planning problem, the simple or “primitive” sets of interest are products, plants,
machines, and months. Each member of a set may have one or more attributes associated
with it, such as the price of a product, the inventory capacity of a plant, the production rate
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of a machine, and the number of production days available in a month. Some of these
attributes are input data, while others, such as production and shipping quantities, are deci-
sion variables for the model. One can also define derived sets that are built from combina-
tions of other sets. As with MPL, the SUM operator is commonly used to write the
objective function and constraints in a compact form.

There is a hard copy manual available for LINGO. This entire manual also is
available directly in LINGO via the Help command and can be searched in a variety of
ways.

A supplement to this chapter on the book’s website describes LINGO further and
illustrates its use on a couple of small examples. A second supplement shows how
LINGO can be used to formulate the model for the Worldwide Corp. production planning
example. A LINGO tutorial on the website provides the details needed for doing basic
modeling with this modeling language. The LINGO formulations and solutions for the
various examples in both this chapter and many other chapters also are included on the
website.

3.7 CONCLUSIONS

Linear programming is a powerful technique for dealing with the problem of allocating
limited resources among competing activities as well as other problems having a similar
mathematical formulation. It has become a standard tool of great importance for numerous
business and industrial organizations. Furthermore, almost any social organization is con-
cerned with allocating resources in some context, and there is a growing recognition of the
extremely wide applicability of this technique.

However, not all problems of allocating limited resources can be formulated to fit a
linear programming model, even as a reasonable approximation. When one or more of the
assumptions of linear programming is violated seriously, it may then be possible to apply
another mathematical programming model instead, e.g., the models of integer program-
ming (Chap. 11) or nonlinear programming (Chap. 12).
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PROBLEMS

® PROBLEMS

The symbols to the left of some of the problems (or their parts)
have the following meaning:

D: The demonstration example listed above may be helpful.

I You may find it helpful to use the corresponding proce-
dure in IOR Tutorial (the printout records your work).

C: Use the computer to solve the problem by applying the
simplex method. The available software options for doing
this include the Excel Solver or Premium Solver (Sec. 3.5),
MPL/CPLEX (Sec. 3.6), LINGO (Supplements 1 and 2 to
this chapter on the book’s website and Appendix 4.1), and
LINDO (Appendix 4.1), but follow any instructions given
by your instructor regarding the option to use.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

3.1-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 3.1.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that
resulted from this study.

D 3.1-2.* For each of the following constraints, draw a separate

graph to show the nonnegative solutions that satisfy this constraint.

@ x; +3x, =6

(b) 4x; +3x, = 12

(€ 4x; + x, =8

(d) Now combine these constraints into a single graph to show the
feasible region for the entire set of functional constraints plus
nonnegativity constraints.

D 3.1-3. Consider the following objective function for a linear
programming model:

Maximize Z = 2x; + 3x,

(a) Draw a graph that shows the corresponding objective function
lines for Z = 6,Z = 12, and Z = 18.

(b) Find the slope-intercept form of the equation for each of these
three objective function lines. Compare the slope for these three
lines. Also compare the intercept with the x, axis.

3.1-4. Consider the following equation of a line:
60x, + 40x, = 600

(a) Find the slope-intercept form of this equation.

(b) Use this form to identify the slope and the intercept with the
X, axis for this line.

(c) Use the information from part (b) to draw a graph of this line.

D,I 3.1-5.* Use the graphical method to solve the problem:
Maximize Z = 2x; + x,,
subject to

x =10

2x; + 5x, = 60
X+ x, =18
3, + x, =44

and

D,I 3.1-6. Use the graphical method to solve the problem:

Maximize Z = 10x; + 20x,,

subject to

3.1-7. The Whitt Window Company is a company with only thr
employees which makes two different kinds of hand-crafted wi
dows: a wood-framed and an aluminum-framed window. They ea
$180 profit for each wood-framed window and $90 profit for ea
aluminum-framed window. Doug makes the wood frames, and c:
make 6 per day. Linda makes the aluminum frames, and can mal

4 per day. Bob forms and cuts the glass, and can make 48 squa

feet of glass per day. Each wood-framed window uses 6 square fe

of glass and each aluminum-framed window uses 8 square feet
glass.

The company wishes to determine how many windows of eax
type to produce per day to maximize total profit.

(a) Describe the analogy between this problem and the Wynd
Glass Co. problem discussed in Sec. 3.1. Then construct ar
fill in a table like Table 3.1 for this problem, identifying bo
the activities and the resources.

(b) Formulate a linear programming model for this problem.

D,I (¢) Use the graphical method to solve this model.

I (d) A new competitor in town has started making wood-frame
windows as well. This may force the company to lower tl
price they charge and so lower the profit made for each woo
framed window. How would the optimal solution change (if
all) if the profit per wood-framed window decreases from $1¢
to $120? From $180 to $60? (You may find it helpful to u:
the Graphical Analysis and Sensitivity Analysis procedure
IOR Tutorial.)

I (e) Doug is considering lowering his working hours, which wou
decrease the number of wood frames he makes per day. Ho
would the optimal solution change if he makes only 5 woc
frames per day? (You may find it helpful to use the Graphic
Analysis and Sensitivity Analysis procedure in IOR Tutorial

3.1-8. The WorldLight Company produces two light fixtur
(products 1 and 2) that require both metal frame parts and electric
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components. Management wants to determine how many units of
each product to produce so as to maximize profit. For each unit of
product 1, 1 unit of frame parts and 2 units of electrical compo-
nents are required. For each unit of product 2, 3 units of frame parts
and 2 units of electrical components are required. The company has
200 units of frame parts and 300 units of electrical components.
Each unit of product 1 gives a profit of $1, and each unit of product
2, up to 60 units, gives a profit of $2. Any excess over 60 units of
product 2 brings no profit, so such an excess has been ruled out.
(a) Formulate a linear programming model for this problem.

DI (b) Use the graphical method to solve this model. What is the

resulting total profit?

3.1-9. The Primo Insurance Company is introducing two new prod-
uct lines: special risk insurance and mortgages. The expected profit
is $5 per unit on special risk insurance and $2 per unit on mortgages.

Management wishes to establish sales quotas for the new
product lines to maximize total expected profit. The work require-
ments are as follows:

Work-Hours per Unit
Work-Hours
Department Special Risk Mortgage Available
Underwriting 3 2 2400
Administration 0 1 800
Claims 2 0 1200

(a) Formulate a linear programming model for this problem.

D,I (b) Use the graphical method to solve this model.

(c) Verify the exact value of your optimal solution from part (b)
by solving algebraically for the simultaneous solution of the
relevant two equations.

3.1-10. Weenies and Buns is a food processing plant which manu-
factures hot dogs and hot dog buns. They grind their own flour for
the hot dog buns at a maximum rate of 200 pounds per week. Each
hot dog bun requires 0.1 pound of flour. They currently have a con-
tract with Pigland, Inc., which specifies that a delivery of 800
pounds of pork product is delivered every Monday. Each hot dog
requires 3 pound of pork product. All the other ingredients in the
hot dogs and hot dog buns are in plentiful supply. Finally, the labor
force at Weenies and Buns consists of 5 employees working full
time (40 hours per week each). Each hot dog requires 3 minutes of
labor, and each hot dog bun requires 2 minutes of labor. Each hot
dog yields a profit of $0.80, and each bun yields a profit of $0.30.
Weenies and Buns would like to know how many hot dogs
and how many hot dog buns they should produce each week so as
to achieve the highest possible profit.
(a) Formulate a linear programming model for this problem.
D,I (b) Use the graphical method to solve this model.

3.1-11.* The Omega Manufacturing Company has discontinued
the production of a certain unprofitable product line. This act

created considerable excess production capacity. Management is
considering devoting this excess capacity to one or more of three
products; call them products 1, 2, and 3. The available capacity
on the machines that might limit output is summarized in the fol-
lowing table:

Available Time

Machine Type (Machine Hours per Week)

Milling machine 500
Lathe 350
Grinder 150

The number of machine hours required for each unit of the re-
spective products is

Productivity coefficient (in machine hours per unit)

Machine Type Product 1 Product 2 Product 3
Milling machine 9 3 5
Lathe 5 4 0
Grinder 3 0 2

The sales department indicates that the sales potential for
products 1 and 2 exceeds the maximum production rate and that
the sales potential for product 3 is 20 units per week. The unit
profit would be $50, $20, and $25, respectively, on products I, 2,
and 3. The objective is to determine how much of each product
Omega should produce to maximize profit.

(a) Formulate a linear programming model for this problem.
C (b) Use a computer to solve this model by the simplex
method.

D 3.1-12. Consider the following problem, where the value of ¢,
has not yet been ascertained.

Maximize Z = ¢;x; + X,
subject to

X+ = 6
=

x; + 2x, =10
and
X1 = O, Xo = 0.

Use graphical analysis to determine the optimal solution(s) for
(x1, x») for the various possible values of ¢;(—® < ¢; < ®©).

D 3.1-13. Consider the following problem, where the value of k&
has not yet been ascertained.

Maximize Z = x; + 2x,,
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subject to
X (3.3)
—x =2 (6, 3)
=3

kx, + x, =2k + 3, wherek=0 ©,2)
and

=0, x=0.
The solution currently being used is x; = 2, x, = 3. Use graphi-
cal analysis to determine the values of k such that this solution ac- (g, 0)
tually is optimal. 6,00 X

D 3.1-14. Consider the following problem, where the values of ¢,
and ¢, have not yet been ascertained.

Maximize Z = cix; + %,

subject to

2.7('1 + Xy = 11
—x; + 20, = 2
and

x120, X220.

Use graphical analysis to determine the optimal solution(s) for
(x1, x,) for the various possible values of ¢; and c¢,. (Hint: Sepa-
rate the cases where ¢, = 0, ¢, > 0, and ¢, < 0. For the latter two
cases, focus on the ratio of ¢; to ¢,.)

3.2-1. The following table summarizes the key facts about two
products, A and B, and the resources, Q, R, and S, required to
produce them.

Resource Usage
per Unit Produced

Amount of Resource

Resource Product A Product B Available
Q 2 1 2
R 1 2 2
S 3 3 4
Profit per unit 3 2

All the assumptions of linear programming hold.

(a) Formulate a linear programming model for this problem.

D,I (b) Solve this model graphically.

(¢) Verify the exact value of your optimal solution from part (b)
by solving algebraically for the simultaneous solution of the
relevant two equations.

3.2-2. The shaded area in the following graph represents the feasi-
ble region of a linear programming problem whose objective func-
tion is to be maximized.

Label each of the following statements as True or False, and
then justify your answer based on the graphical method. In each
case, give an example of an objective function that illustrates
your answer.

(a) If (3, 3) produces a larger value of the objective function than
(0, 2) and (6, 3), then (3, 3) must be an optimal solution.

(b) If (3, 3) is an optimal solution and multiple optimal solu-
tions exist, then either (0, 2) or (6, 3) must also be an opti-
mal solution.

(¢) The point (0, 0) cannot be an optimal solution.

3.2-3.* This is your lucky day. You have just won a $10,000
prize. You are setting aside $4,000 for taxes and partying
expenses, but you have decided to invest the other $6,000. Upon
hearing this news, two different friends have offered you an
opportunity to become a partner in two different entrepreneurial
ventures, one planned by each friend. In both cases, this invest-
ment would involve expending some of your time next summer
as well as putting up cash. Becoming a full partner in the first
friend’s venture would require an investment of $5,000 and 400
hours, and your estimated profit (ignoring the value of your
time) would be $4,500. The corresponding figures for the second
friend’s venture are $4,000 and 500 hours, with an estimated
profit to you of $4,500. However, both friends are flexible and
would allow you to come in at any fraction of a full partnership
you would like. If you choose a fraction of a full partnership, all
the above figures given for a full partnership (money investment,
time investment, and your profit) would be multiplied by this
same fraction.

Because you were looking for an interesting summer job any-
way (maximum of 600 hours), you have decided to participate in
one or both friends’ ventures in whichever combination would
maximize your total estimated profit. You now need to solve the
problem of finding the best combination.

(a) Describe the analogy between this problem and the Wyndor
Glass Co. problem discussed in Sec. 3.1. Then construct and
fill in a table like Table 3.1 for this problem, identifying both
the activities and the resources.

(b) Formulate a linear programming model for this problem.

DI (c) Use the graphical method to solve this model. What is your

total estimated profit?
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DI 3.2-4. Use the graphical method to find all optimal solutions
for the following model:

Maximize Z = 500x; + 300x,,
subject to

15x; + 5x, = 300
10x;, + 6x, = 240
8x, + 12x, = 450

and

x120, X220.

D 3.2-5. Use the graphical method to demonstrate that the follow-
ing model has no feasible solutions.
Maximize Z = 5x; + Tx,,

subject to

2, — X
—x; + 2x,

and
x =0,

D 3.2-6. Suppose that the following constraints have been pro-
vided for a linear programming model.

—x; + 2x, =50

—2x, + x =50
and

x=0, x=0.

(a) Demonstrate that the feasible region is unbounded.

(b) If the objective is to maximize Z = — x; + x,, does the model
have an optimal solution? If so, find it. If not, explain why not.

(c) Repeat part (b) when the objective is to maximize Z = x; — x,.

(d) For objective functions where this model has no optimal solu-
tion, does this mean that there are no good solutions accord-
ing to the model? Explain. What probably went wrong when
formulating the model?

3.3-1. Reconsider Prob. 3.2-3. Indicate why each of the four
assumptions of linear programming (Sec. 3.3) appears to be reason-
ably satisfied for this problem. Is one assumption more doubtful
than the others? If so, what should be done to take this into account?

3.3-2. Consider a problem with two decision variables, x; and x5,
which represent the levels of activities 1 and 2, respectively. For
each variable, the permissible values are 0, 1, and 2, where the fea-
sible combinations of these values for the two variables are deter-
mined from a variety of constraints. The objective is to maximize a
certain measure of performance denoted by Z. The values of Z for
the possibly feasible values of (xy, x,) are estimated to be those
given in the following table:

X2
X1 V] 1 2
0 0 4 8
1 3 8 13
2 6 12 18

Based on this information, indicate whether this problem com-
pletely satisfies each of the four assumptions of linear program-
ming. Justify your answers.

3.4-1. Read the referenced article that fully describes the OR study
summarized in the first application vignette presented in Sec. 3.4.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that
resulted from this study.

3.4-2. Read the referenced article that fully describes the OR study
summarized in the second application vignette presented in Sec. 3.4.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that resulted
from this study.

3.4-3.* For each of the four assumptions of linear programming dis-
cussed in Sec. 3.3, write a one-paragraph analysis of how well you
feel it applies to each of the following examples given in Sec. 3.4:
(a) Design of radiation therapy (Mary).

(b) Regional planning (Southern Confederation of Kibbutzim).
(c) Controlling air pollution (Nori & Leets Co.).

3.4-4. For each of the four assumptions of linear programming dis-

cussed in Sec. 3.3, write a one-paragraph analysis of how well it

applies to each of the following examples given in Sec. 3.4.

(a) Reclaiming solid wastes (Save-It Co.).

(b) Personnel scheduling (Union Airways).

(c¢) Distributing goods through a distribution network (Distribu-
tion Unlimited Co.).

D,I 3.4-5. Use the graphical method to solve this problem:
Minimize Z = 15x; + 20x,,
subject to

x; + 2x, = 10

2x; — 3x,

VoIn IV
=)

X+ ox
and
x =0, x,=0.
DI 3.4-6. Use the graphical method to solve this problem:
Minimize Z = 3x; + 2x,,
subject to

X 25 =12
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2x; + 3x, = 12
2+ x, = 8

and

D 3.4-7. Consider the following problem, where the value of ¢,
has not yet been ascertained.

Maximize Z = c¢;x; + 2x,,
subject to

4x, + x, =12
X — Xy =
and

X1 20, XZEO.

Use graphical analysis to determine the optimal solution(s) for
(x1, x») for the various possible values of c;.

D,I 3.4-8. Consider the following model:

Minimize  Z = 40x; + 50x,,
subject to
2x; + 3x, = 30

x+ x=12
2x; + x, =20

and

x120, X220.

(a) Use the graphical method to solve this model.

(b) How does the optimal solution change if the objective function
is changed to Z = 40x; + 70x,? (You may find it helpful to
use the Graphical Analysis and Sensitivity Analysis procedure
in IOR Tutorial.)

(¢) How does the optimal solution change if the third functional
constraint is changed to 2x; + x, = 15? (You may find it help-
ful to use the Graphical Analysis and Sensitivity Analysis pro-
cedure in IOR Tutorial.)

3.4-9. Ralph Edmund loves steaks and potatoes. Therefore, he has
decided to go on a steady diet of only these two foods (plus some
liquids and vitamin supplements) for all his meals. Ralph realizes
that this isn’t the healthiest diet, so he wants to make sure that he
eats the right quantities of the two foods to satisfy some key nutri-
tional requirements. He has obtained the nutritional and cost infor-
mation shown at the top of the next column.

Ralph wishes to determine the number of daily servings (may
be fractional) of steak and potatoes that will meet these require-
ments at a minimum cost.

(a) Formulate a linear programming model for this problem.
D1 (b) Use the graphical method to solve this model.
¢ (¢) Use a computer to solve this model by the simplex method.

Grams of Ingredient
per Serving

Daily Requirement

Ingredient Steak Potatoes (Grams)
Carbohydrates 5 15 = 50
Protein 20 5 = 40
Fat 15 2 = 60
Cost per serving $4 $2

3.4-10. Web Mercantile sells many household products through an
online catalog. The company needs substantial warehouse space for
storing its goods. Plans now are being made for leasing warehouse
storage space over the next 5 months. Just how much space will be
required in each of these months is known. However, since these space
requirements are quite different, it may be most economical to lease
only the amount needed each month on a month-by-month basis. On
the other hand, the additional cost for leasing space for additional
months is much less than for the first month, so it may be less expen-
sive to lease the maximum amount needed for the entire 5 months.
Another option is the intermediate approach of changing the total
amount of space leased (by adding a new lease and/or having an old
lease expire) at least once but not every month.

The space requirement and the leasing costs for the various
leasing periods are as follows:

Required Leasing Period | Cost per Sq. Ft.
Month | Space (Sq. Ft.) (Months) Leased
1 30,000 1 $ 65
2 20,000 2 $100
3 40,000 3 $135
4 10,000 4 $160
5 50,000 5 $190

The objective is to minimize the total leasing cost for meeting the
space requirements.

(a) Formulate a linear programming model for this problem.

C (b) Solve this model by the simplex method.

3.4-11. Larry Edison is the director of the Computer Center for
Buckly College. He now needs to schedule the staffing of the cen-
ter. It is open from 8 A.m. until midnight. Larry has monitored the
usage of the center at various times of the day, and determined that
the following number of computer consultants are required:

Minimum Number of Consultants

Time of Day Required to Be on Duty

8 A.M.—noon 4
Noon—4 p.m. 8
4 p.M.—8 P.M. 10
8 r.M.—midnight 6
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Two types of computer consultants can be hired: full-time and
part-time. The full-time consultants work for 8 consecutive hours
in any of the following shifts: morning (8 A.Mm.—4 p.M.), afternoon
(noon-8 p.M.), and evening (4 p.m.—midnight). Full-time consultants
are paid $40 per hour.

Part-time consultants can be hired to work any of the four
shifts listed in the above table. Part-time consultants are paid
$30 per hour.

An additional requirement is that during every time period,
there must be at least 2 full-time consultants on duty for every part-
time consultant on duty.

Larry would like to determine how many full-time and how
many part-time workers should work each shift to meet the above
requirements at the minimum possible cost.

(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-12.* The Medequip Company produces precision medical
diagnostic equipment at two factories. Three medical centers have
placed orders for this month’s production output. The table below
shows what the cost would be for shipping each unit from each fac-
tory to each of these customers. Also shown are the number of units
that will be produced at each factory and the number of units
ordered by each customer.

Al wishes to know which investment plan maximizes the
amount of money that can be accumulated by the beginning of
year 6.

(a) All the functional constraints for this problem can be expressed
as equality constraints. To do this, let A,, B;, C,, and D, be the
amount invested in investment A, B, C, and D, respectively, at
the beginning of year ¢ for each ¢ where the investment is avail-
able and will mature by the end of year 5. Also let R, be the
number of available dollars not invested at the beginning of
year t (and so available for investment in a later year). Thus,
the amount invested at the beginning of year ¢ plus R, must
equal the number of dollars available for investment at that
time. Write such an equation in terms of the relevant variables
above for the beginning of each of the 5 years to obtain the
five functional constraints for this problem.

(b) Formulate a complete linear programming model for this
problem.

C (c) Solve this model by the simplex model.

3.4-14. The Metalco Company desires to blend a new alloy of 40
percent tin, 35 percent zinc, and 25 percent lead from several avail-
able alloys having the following properties:

Unit Shipping Cost

To
From Customer 1 Customer 2 Customer 3 | Output
Factory 1 $600 $800 $700 400 units
Factory 2 $400 $900 $600 500 units
Order size | 300 units 200 units 400 units

Alloy
Property 1 2 3 4 5
Percentage of tin 60 25 45 20 50
Percentage of zinc 10 15 45 50 40
Percentage of lead 30 60 10 30 10
Cost ($/Ib) 77 70 88 84 94

A decision now needs to be made about the shipping plan for
how many units to ship from each factory to each customer.
(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-13.* Al Ferris has $60,000 that he wishes to invest now in
order to use the accumulation for purchasing a retirement annuity
in 5 years. After consulting with his financial adviser, he has been
offered four types of fixed-income investments, which we will
label as investments A, B, C, D.

Investments A and B are available at the beginning of each
of the next 5 years (call them years 1 to 5). Each dollar invested
in A at the beginning of a year returns $1.40 (a profit of $0.40)
2 years later (in time for immediate reinvestment). Each dollar
invested in B at the beginning of a year returns $1.70 three years
later.

Investments C and D will each be available at one time in the
future. Each dollar invested in C at the beginning of year 2 returns
$1.90 at the end of year 5. Each dollar invested in D at the begin-
ning of year 5 returns $1.30 at the end of year 5.

The objective is to determine the proportions of these alloys that
should be blended to produce the new alloy at a minimum cost.

(a) Formulate a linear programming model for this problem.

C (b) Solve this model by the simplex method.

3.4-15% A cargo plane has three compartments for storing cargo:
front, center, and back. These compartments have capacity limits
on both weight and space, as summarized below:

Weight Space

Capacity Capacity
Compartment (Tons) (Cubic Feet)
Front 12 7,000
Center 18 9,000
Back 10 5,000

Furthermore, the weight of the cargo in the respective compart-
ments must be the same proportion of that compartment’s weight
capacity to maintain the balance of the airplane.



PROBLEMS

83

The following four cargoes have been offered for shipment
on an upcoming flight as space is available:

Cargo Weight Volume Profit
(Tons) (Cubic Feet/Ton) ($/Ton)
1 20 500 320
2 16 700 400
3 25 600 360
4 13 400 290

Any portion of these cargoes can be accepted. The objective is to

determine how much (if any) of each cargo should be accepted and

how to distribute each among the compartments to maximize the

total profit for the flight.

(a) Formulate a linear programming model for this problem.

C (b) Solve this model by the simplex method to find one of its
multiple optimal solutions.

3.4-16. Oxbridge University maintains a powerful mainframe
computer for research use by its faculty, Ph.D. students, and
research associates. During all working hours, an operator must be
available to operate and maintain the computer, as well as to per-
form some programming services. Beryl Ingram, the director of the
computer facility, oversees the operation.

It is now the beginning of the fall semester, and Beryl is con-
fronted with the problem of assigning different working hours to
her operators. Because all the operators are currently enrolled in
the university, they are available to work only a limited number of
hours each day, as shown in the following table.

Maximum Hours of Availability
Operators Wage Rate | Mon. Tue. Wed. Thurs. Fri.
K. C. $25/hour 6 0 6 0 6
D. H. $26/hour 0 6 0 6 0
H. B. $24/hour 4 8 4 0 4
S. C. $23/hour 5 5 5 0 5
K.S. $28/hour 3 0 3 8 0
N. K. $30/hour 0 0 0 6 2

There are six operators (four undergraduate students and two
graduate students). They all have different wage rates because of
differences in their experience with computers and in their pro-
gramming ability. The above table shows their wage rates, along
with the maximum number of hours that each can work each day.

Each operator is guaranteed a certain minimum number of
hours per week that will maintain an adequate knowledge of the
operation. This level is set arbitrarily at 8 hours per week for the
undergraduate students (K. C., D. H., H. B., and S. C.) and 7 hours
per week for the graduate students (K. S. and N. K.).

The computer facility is to be open for operation from 8 a.m.
to 10 pM. Monday through Friday with exactly one operator on
duty during these hours. On Saturdays and Sundays, the computer
is to be operated by other staff.

Because of a tight budget, Beryl has to minimize cost. She
wishes to determine the number of hours she should assign to each
operator on each day.

(a) Formulate a linear programming model for this problem.
C (b) Solve this model by the simplex method.

3.4-17. Joyce and Marvin run a day care for preschoolers. They
are trying to decide what to feed the children for lunches. They
would like to keep their costs down, but also need to meet the
nutritional requirements of the children. They have already
decided to go with peanut butter and jelly sandwiches, and some
combination of graham crackers, milk, and orange juice. The
nutritional content of each food choice and its cost are given in the
table below.

Calories | Total |Vitamin C|Protein| Cost
Food Item from Fat | Calories (mg) (9) (¢)
Bread (1 slice) 10 70 0 3 5
Peanut butter
(1 tbsp) 75 100 0 4 4
Strawberry jelly
(1 tbsp) 0 50 3 0 7
Graham cracker
(1 cracker) 20 60 0 1 8
Milk (1 cup) 70 150 2 8 15
Juice (1 cup) 0 100 120 1 35

The nutritional requirements are as follows. Each child should
receive between 400 and 600 calories. No more than 30 percent of
the total calories should come from fat. Each child should consume
at least 60 milligrams (mg) of vitamin C and 12 grams (g) of pro-
tein. Furthermore, for practical reasons, each child needs exactly
2 slices of bread (to make the sandwich), at least twice as much
peanut butter as jelly, and at least 1 cup of liquid (milk and/or
juice).

Joyce and Marvin would like to select the food choices for each
child which minimize cost while meeting the above requirements.
(a) Formulate a linear programming model for this problem.

C (b) Solve this model by the simplex method.

3.5-1. Read the referenced article that fully describes the OR study
summarized in the application vignette presented in Sec. 3.5.
Briefly describe how linear programming was applied in this study.
Then list the various financial and nonfinancial benefits that
resulted from this study

3.5-2.*% You are given the following data for a linear programming
problem where the objective is to maximize the profit from allocat-
ing three resources to two nonnegative activities.
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Resource Usage per
Unit of Each Activity

Amount of Resource

Resource Activity 1 Activity 2 Available
1 2 1 10
2 3 3 20
3 2 4 20

Contribution $20 $30

per unit

Contribution per unit = profit per unit of the activity.

(a) Formulate a linear programming model for this problem.

D,I (b) Use the graphical method to solve this model.

(c) Display the model on an Excel spreadsheet.

(d) Use the spreadsheet to check the following solutions:
(x1, x2) = (2,2), (3, 3), (2,4), (4,2), (3, 4), (4, 3). Which of
these solutions are feasible? Which of these feasible solutions
has the best value of the objective function?

C (e) Use the Excel Solver to solve the model by the simplex

method.

3.5-3. Ed Butler is the production manager for the Bilco Corpora-
tion, which produces three types of spare parts for automobiles.
The manufacture of each part requires processing on each of two
machines, with the following processing times (in hours):

Part
Machine A B C
1 0.02 0.03 0.05
2 0.05 0.02 0.04

Each machine is available 40 hours per month. Each part manufac-
tured will yield a unit profit as follows:

Part
A B C
Profit $300 $250 $200

Ed wants to determine the mix of spare parts to produce in order

to maximize total profit.

(a) Formulate a linear programming model for this problem.

(b) Display the model on an Excel spreadsheet.

(¢) Make three guesses of your own choosing for the optimal so-
lution. Use the spreadsheet to check each one for feasibility
and, if feasible, to find the value of the objective function.

Which feasible guess has the best objective function value?
(d) Use the Excel Solver to solve the model by the simplex method.

3.5-4. You are given the following data for a linear programming
problem where the objective is to minimize the cost of conducting
two nonnegative activities so as to achieve three benefits that do
not fall below their minimum levels.

Benefit Contribution per
Unit of Each Activity Minimum
Acceptable
Benefit Activity 1 Activity 2 Level
1 5 3 60
2 2 2 30
3 7 9 126
Unit cost $60 $50

(a) Formulate a linear programming model for this problem.

D,J (b) Use the graphical method to solve this model.

(c) Display the model on an Excel spreadsheet.

(d) Use the spreadsheet to check the following solutions:
(x1, x2) = (7,7), (7, 8), (8, 7), (8, 8), (8,9), (9, 8). Which of
these solutions are feasible? Which of these feasible solutions
has the best value of the objective function?

C (e) Use the Excel Solver to solve this model by the simplex

method.

3.5-5.*% Fred Jonasson manages a family-owned farm. To supple-
ment several food products grown on the farm, Fred also raises
pigs for market. He now wishes to determine the quantities of the
available types of feed (corn, tankage, and alfalfa) that should be
given to each pig. Since pigs will eat any mix of these feed types,
the objective is to determine which mix will meet certain nutri-
tional requirements at a minimum cost. The number of units of each
type of basic nutritional ingredient contained within a kilogram of
each feed type is given in the following table, along with the daily
nutritional requirements and feed costs:

Kilogram | Kilogram | Kilogram | Minimum
Nutritional of of of Daily
Ingredient Corn Tankage | Alfalfa |Requirement
Carbohydrates 90 20 40 200
Protein 30 80 60 180
Vitamins 10 20 60 150
Cost (¢) 84 72 60

(a) Formulate a linear programming model for this problem.

(b) Display the model on an Excel spreadsheet.

(c) Use the spreadsheet to check if (x1, x5, x3) = (1, 2, 2) is a fea-
sible solution and, if so, what the daily cost would be for this
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diet. How many units of each nutritional ingredient would this
diet provide daily?

(d) Take a few minutes to use a trial-and-error approach with the
spreadsheet to develop your best guess for the optimal solu-
tion. What is the daily cost for your solution?

C (e) Use the Excel Solver to solve the model by the simplex

method.

3.5-6. Maureen Laird is the chief financial officer for the Alva
Electric Co., a major public utility in the midwest. The company
has scheduled the construction of new hydroelectric plants 5, 10,
and 20 years from now to meet the needs of the growing population
in the region served by the company. To cover at least the construc-
tion costs, Maureen needs to invest some of the company’s money
now to meet these future cash-flow needs. Maureen may purchase
only three kinds of financial assets, each of which costs $1 million
per unit. Fractional units may be purchased. The assets produce
income 5, 10, and 20 years from now, and that income is needed to
cover at least minimum cash-flow requirements in those years.
(Any excess income above the minimum requirement for each time
period will be used to increase dividend payments to shareholders
rather than saving it to help meet the minimum cash-flow require-
ment in the next time period.) The following table shows both the
amount of income generated by each unit of each asset and the
minimum amount of income needed for each of the future time
periods when a new hydroelectric plant will be constructed.

Income per Unit of Asset
Minimum Cash

Year | Asset 1 Asset 2 Asset 3 Flow Required
5 $2 million $1 million $0.5 million $400 million
10 | $0.5 million $0.5 million $1 million $100 million
20 0 $1.5 million $2 million $300 million

Maureen wishes to determine the mix of investments in these as-
sets that will cover the cash-flow requirements while minimizing
the total amount invested.

(a) Formulate a linear programming model for this problem.

(b) Display the model on a spreadsheet.

(c) Use the spreadsheet to check the possibility of purchasing
100 units of Asset 1, 100 units of Asset 2, and 200 units of
Asset 3. How much cash flow would this mix of investments
generate 5, 10, and 20 years from now? What would be the
total amount invested?

(d) Take a few minutes to use a trial-and-error approach with the
spreadsheet to develop your best guess for the optimal solu-
tion. What is the total amount invested for your solution?

C (e) Usethe Excel Solver to solve the model by the simplex method.

3.6-1. The Philbrick Company has two plants on opposite sides of
the United States. Each of these plants produces the same two
products and then sells them to wholesalers within its half of the
country. The orders from wholesalers have already been received

for the next 2 months (February and March), where the number of
units requested are shown below. (The company is not obligated to
completely fill these orders but will do so if it can without decreas-
ing its profits.)

Plant 1 Plant 2
Product February March February March
1 3,600 6,300 4,900 4,200
2 4,500 5,400 5,100 6,000

Each plant has 20 production days available in February and 23
production days available in March to produce and ship these prod-
ucts. Inventories are depleted at the end of January, but each plant
has enough inventory capacity to hold 1,000 units total of the two
products if an excess amount is produced in February for sale in
March. In either plant, the cost of holding inventory in this way is
$3 per unit of product 1 and $4 per unit of product 2.

Each plant has the same two production processes, each of
which can be used to produce either of the two products. The pro-
duction cost per unit produced of each product is shown below for
each process in each plant.

Plant 1 Plant 2
Product Process 1 Process 2 Process 1 Process 2
1 $62 $59 $61 $65
2 $78 $85 $89 $86

The production rate for each product (number of units produced
per day devoted to that product) also is given for each process in
each plant below.

Plant 1 Plant 2
Product Process 1 Process 2 Process 1 Process 2
1 100 140 130 110
2 120 150 160 130

The net sales revenue (selling price minus normal shipping
costs) the company receives when a plant sells the products to its
own customers (the wholesalers in its half of the country) is $83 per
unit of product 1 and $112 per unit of product 2. However, it also
is possible (and occasionally desirable) for a plant to make a ship-
ment to the other half of the country to help fill the sales of the other
plant. When this happens, an extra shipping cost of $9 per unit of
product 1 and $7 per unit of product 2 is incurred.
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Management now needs to determine how much of each prod-
uct should be produced by each production process in each plant
during each month, as well as how much each plant should sell of
each product in each month and how much each plant should ship
of each product in each month to the other plant’s customers. The
objective is to determine which feasible plan would maximize the
total profit (total net sales revenue minus the sum of the produc-
tion costs, inventory costs, and extra shipping costs).

(a) Formulate a complete linear programming model in algebraic
form that shows the individual constraints and decision vari-
ables for this problem.

C (b) Formulate this same model on an Excel spreadsheet instead.

Then use the Excel Solver to solve the model.

C (c¢) Use MPL to formulate this model in a compact form. Then

use the MPL solver CPLEX to solve the model.

C (d) Use LINGO to formulate this model in a compact form. Then

use the LINGO solver to solve the model.

Cc 3.6-2. Reconsider Prob. 3.1-11.

(a) Use MPL/CPLEX to formulate and solve the model for this
problem.

(b) Use LINGO to formulate and solve this model.

Cc 3.6-3. Reconsider Prob. 3.4-12.

(a) Use MPL/CPLEX to formulate and solve the model for this
problem.

(b) Use LINGO to formulate and solve this model.

¢ 3.6-4. Reconsider Prob. 3.4-16.

(a) Use MPL/CPLEX to formulate and solve the model for this
problem.

(b) Use LINGO to formulate and solve this model.

Cc 3.6-5. Reconsider Prob. 3.5-5.

(a) Use MPL/CPLEX to formulate and solve the model for this
problem.

(b) Use LINGO to formulate and solve this model.

C 3.6-6. Reconsider Prob. 3.5-6.

(a) Use MPL/CPLEX to formulate and solve the model for this
problem.

(b) Use LINGO to formulate and solve this model.

3.6-7. A large paper manufacturing company, the Quality Paper
Corporation, has 10 paper mills from which it needs to supply

1,000 customers. It uses three alternative types of machines and
four types of raw materials to make five different types of paper.
Therefore, the company needs to develop a detailed production dis-
tribution plan on a monthly basis, with an objective of minimizing
the total cost of producing and distributing the paper during the
month. Specifically, it is necessary to determine jointly the amount
of each type of paper to be made at each paper mill on each type of
machine and the amount of each type of paper to be shipped from
each paper mill to each customer.

The relevant data can be expressed symbolically as follows:

Dj. = number of units of paper type k demanded by customer
J
T'um = number of units of raw material m needed to produce
1 unit of paper type k on machine type /,
R;,, = number of units of raw material m available at paper
mill 7,
¢ = number of capacity units of machine type / that will
produce 1 unit of paper type k,
C;; = number of capacity units of machine type / available at
paper mill i,
P, = production cost for each unit of paper type k produced
on machine type / at paper mill i,
T = transportation cost for each unit of paper type k shipped
from paper mill i to customer j.

(a) Using these symbols, formulate a linear programming model
for this problem by hand.

(b) How many functional constraints and decision variables does
this model have?

¢ (¢) Use MPL to formulate this problem.

¢ (d) Use LINGO to formulate this problem.

3.7-1. From the bottom part of the selected references given at the
end of the chapter, select one of these award-winning applications
of linear programming. Read this article and then write a two-page
summary of the application and the benefits (including nonfinan-
cial benefits) it provided.

3.7-2. From the bottom part of the selected references given at the
end of the chapter, select three of these award-winning applications
of linear programming. For each one, read the article and then
write a one-page summary of the application and the benefits
(including nonfinancial benefits) it provided.

W CASES

CASE 3.1 Auto Assembly

Automobile Alliance, a large automobile manufacturing
company, organizes the vehicles it manufactures into three
families: a family of trucks, a family of small cars, and a
family of midsized and luxury cars. One plant outside De-
troit, MI, assembles two models from the family of midsized

and luxury cars. The first model, the Family Thrillseeker, is
a four-door sedan with vinyl seats, plastic interior, standard
features, and excellent gas mileage. It is marketed as a smart
buy for middle-class families with tight budgets, and each
Family Thrillseeker sold generates a modest profit of $3,600
for the company. The second model, the Classy Cruiser, is a
two-door luxury sedan with leather seats, wooden interior,
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custom features, and navigational capabilities. It is mar-
keted as a privilege of affluence for upper-middle-class fam-
ilies, and each Classy Cruiser sold generates a healthy profit
of $5,400 for the company.

Rachel Rosencrantz, the manager of the assembly plant,
is currently deciding the production schedule for the next
month. Specifically, she must decide how many Family
Thrillseekers and how many Classy Cruisers to assemble in
the plant to maximize profit for the company. She knows
that the plant possesses a capacity of 48,000 labor-hours dur-
ing the month. She also knows that it takes 6 labor-hours to
assemble one Family Thrillseeker and 10.5 labor-hours to
assemble one Classy Cruiser.

Because the plant is simply an assembly plant, the parts
required to assemble the two models are not produced at the
plant. They are instead shipped from other plants around the
Michigan area to the assembly plant. For example, tires,
steering wheels, windows, seats, and doors all arrive from
various supplier plants. For the next month, Rachel knows
that she will be able to obtain only 20,000 doors (10,000
left-hand doors and 10,000 right-hand doors) from the door
supplier. A recent labor strike forced the shutdown of that
particular supplier plant for several days, and that plant will
not be able to meet its production schedule for the next
month. Both the Family Thrillseeker and the Classy Cruiser
use the same door part.

In addition, a recent company forecast of the monthly
demands for different automobile models suggests that the
demand for the Classy Cruiser is limited to 3,500 cars.
There is no limit on the demand for the Family Thrillseeker
within the capacity limits of the assembly plant.

(a) Formulate and solve a linear programming problem to deter-
mine the number of Family Thrillseekers and the number of
Classy Cruisers that should be assembled.

Before she makes her final production decisions, Rachel
plans to explore the following questions independently ex-
cept where otherwise indicated.

(b) The marketing department knows that it can pursue a targeted
$500,000 advertising campaign that will raise the demand for
the Classy Cruiser next month by 20 percent. Should the cam-
paign be undertaken?

(c) Rachel knows that she can increase next month’s plant capacity
by using overtime labor. She can increase the plant’s labor-hour
capacity by 25 percent. With the new assembly plant capacity,
how many Family Thrillseekers and how many Classy Cruisers
should be assembled?

(d) Rachel knows that overtime labor does not come without an ex-
tra cost. What is the maximum amount she should be willing to

pay for all overtime labor beyond the cost of this labor at reg-
ular time rates? Express your answer as a lump sum.

(e) Rachel explores the option of using both the targeted advertis-
ing campaign and the overtime labor-hours. The advertising
campaign raises the demand for the Classy Cruiser by 20 per-
cent, and the overtime labor increases the plant’s labor-hour ca-
pacity by 25 percent. How many Family Thrillseekers and how
many Classy Cruisers should be assembled using the advertis-
ing campaign and overtime labor-hours if the profit from each
Classy Cruiser sold continues to be 50 percent more than for
each Family Thrillseeker sold?

(f) Knowing that the advertising campaign costs $500,000 and the
maximum usage of overtime labor-hours costs $1,600,000 be-
yond regular time rates, is the solution found in part (e) a wise
decision compared to the solution found in part (a)?

(g) Automobile Alliance has determined that dealerships are actu-
ally heavily discounting the price of the Family Thrillseekers
to move them off the lot. Because of a profit-sharing agreement
with its dealers, the company is therefore not making a profit
of $3,600 on the Family Thrillseeker but is instead making a
profit of $2,800. Determine the number of Family Thrillseek-
ers and the number of Classy Cruisers that should be assem-
bled given this new discounted price.

(h) The company has discovered quality problems with the Fam-
ily Thrillseeker by randomly testing Thrillseekers at the end
of the assembly line. Inspectors have discovered that in over
60 percent of the cases, two of the four doors on a Thrillseeker
do not seal properly. Because the percentage of defective
Thrillseekers determined by the random testing is so high, the
floor supervisor has decided to perform quality control tests
on every Thrillseeker at the end of the line. Because of the
added tests, the time it takes to assemble one Family
Thrillseeker has increased from 6 to 7.5 hours. Determine the
number of units of each model that should be assembled given
the new assembly time for the Family Thrillseeker.

(i) The board of directors of Automobile Alliance wishes to cap-
ture a larger share of the luxury sedan market and therefore
would like to meet the full demand for Classy Cruisers. They
ask Rachel to determine by how much the profit of her as-
sembly plant would decrease as compared to the profit found
in part (a). They then ask her to meet the full demand for
Classy Cruisers if the decrease in profit is not more than
$2,000,000.

(j) Rachel now makes her final decision by combining all the new
considerations described in parts (f), (g), and (/). What are her
final decisions on whether to undertake the advertising cam-
paign, whether to use overtime labor, the number of Family
Thrillseekers to assemble, and the number of Classy Cruisers
to assemble?
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B PREVIEWS OF ADDED CASES ON OUR WEBSITE (www.mhhe.com/hillier)

CASE 3.2 Cutting Cafeteria Costs

This case focuses on a subject that is dear to the heart of
many students. How should the manager of a college cafe-
teria choose the ingredients of a casserole dish to make it
sufficiently tasty for the students while also minimizing
costs? In this case, linear programming models with only
two decision variables can be used to address seven specific
issues being faced by the manager.

CASE 3.3 Staffing a Call Center

California Children’s Hospital currently uses a confusing,
decentralized appointment and registration process for its
patients. Therefore, the decision has been made to central-
ize the process by establishing one call center devoted ex-
clusively to appointments and registration. The hospital
manager now needs to develop a plan for how many em-
ployees of each kind (full-time or part-time, English speak-
ing, Spanish speaking, or bilingual) should be hired for each
of several possible work shifts. Linear programming is
needed to find a plan that minimizes the total cost of pro-
viding a satisfactory level of service throughout the 14 hours
that the call center will be open each weekday. The model
requires more than two decision variables, so a software

package such as described in Sec. 3.5 or Sec. 3.6 will be
needed to solve the two versions of the model.

CASE 3.4 Promoting a Breakfast
Cereal

The vice president for marketing of the Super Grain Corpo-
ration needs to develop a promotional campaign for the com-
pany’s new breakfast cereal. Three advertising media have
been chosen for the campaign, but decisions now need to be
made regarding how much of each medium should be used.
Constraints include a limited advertising budget, a limited
planning budget, and a limited number of TV commercial
spots available, as well as requirements for effectively reach-
ing two special target audiences (young children and parents
of young children) and for making full use of a rebate pro-
gram. The corresponding linear programming model requires
more than two decision variables, so a software package such
as described in Sec. 3.5 or Sec. 3.6 will be needed to solve
the model. This case also asks for an analysis of how well
the four assumptions of linear programming are satisfied for
this problem. Does linear programming actually provide a
reasonable basis for managerial decision making in this sit-
uation? (Case 12.3 will provide a continuation of this case.)



CHAPTER

Solving Linear Programming
Problems: The Simplex Method

We, now are ready to begin studying the simplex method, a general procedure for
solving linear programming problems. Developed by the brilliant George Dantzig'
in 1947, it has proved to be a remarkably efficient method that is used routinely to solve
huge problems on today’s computers. Except for its use on tiny problems, this method is
always executed on a computer, and sophisticated software packages are widely available.
Extensions and variations of the simplex method also are used to perform postoptimality
analysis (including sensitivity analysis) on the model.

This chapter describes and illustrates the main features of the simplex method. The
first section introduces its general nature, including its geometric interpretation. The fol-
lowing three sections then develop the procedure for solving any linear programming
model that is in our standard form (maximization, all functional constraints in = form,
and nonnegativity constraints on all variables) and has only nonnegative right-hand sides
b; in the functional constraints. Certain details on resolving ties are deferred to Sec. 4.5,
and Sec. 4.6 describes how to adapt the simplex method to other model forms. Next we
discuss postoptimality analysis (Sec. 4.7), and describe the computer implementation of
the simplex method (Sec. 4.8). Section 4.9 then introduces an alternative to the simplex
method (the interior-point approach) for solving large linear programming problems.

4.1 THE ESSENCE OF THE SIMPLEX METHOD

The simplex method is an algebraic procedure. However, its underlying concepts are
geometric. Understanding these geometric concepts provides a strong intuitive feeling
for how the simplex method operates and what makes it so efficient. Therefore, before
delving into algebraic details, we focus in this section on the big picture from a geo-
metric viewpoint.

'Widely revered as perhaps the most important pioneer of operations research, George Dantzig is commonly re-
ferred to as the father of linear programming because of the development of the simplex method and many key
subsequent contributions. The authors had the privilege of being his faculty colleagues in the Department of Op-
erations Research at Stanford University for nearly 30 years. Dr. Dantzig remained professionally active right
up until he passed away in 2005 at the age of 90.

89
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To illustrate the general geometric concepts, we shall use the Wyndor Glass Co. ex-
ample presented in Sec. 3.1. (Sections 4.2 and 4.3 use the algebra of the simplex method
to solve this same example.) Section 5.1 will elaborate further on these geometric con-
cepts for larger problems.

To refresh your memory, the model and graph for this example are repeated in
Fig. 4.1. The five constraint boundaries and their points of intersection are highlighted in
this figure because they are the keys to the analysis. Here, each constraint boundary is
a line that forms the boundary of what is permitted by the corresponding constraint. The
points of intersection are the corner-point solutions of the problem. The five that lie on
the corners of the feasible region—(0, 0), (0, 6), (2, 6), (4, 3), and (4, 0)—are the corner-
point feasible solutions (CPF solutions). [The other three—(0, 9), (4, 6), and (6, 0)—are
called corner-point infeasible solutions.]

In this example, each corner-point solution lies at the intersection of two constraint
boundaries. (For a linear programming problem with n decision variables, each of its corner-
point solutions lies at the intersection of n constraint boundaries.?) Certain pairs of the CPF
solutions in Fig. 4.1 share a constraint boundary, and other pairs do not. It will be impor-
tant to distinguish between these cases by using the following general definitions.

For any linear programming problem with n decision variables, two CPF solutions are
adjacent to each other if they share n — 1 constraint boundaries. The two adjacent CPF
solutions are connected by a line segment that lies on these same shared constraint bound-
aries. Such a line segment is referred to as an edge of the feasible region.

Since n = 2 in the example, two of its CPF solutions are adjacent if they share one con-
straint boundary; for example, (0, 0) and (0, 6) are adjacent because they share the
x; = 0 constraint boundary. The feasible region in Fig. 4.1 has five edges, consisting of the
five line segments forming the boundary of this region. Note that two edges emanate from

2Although a corner-point solution is defined in terms of n constraint boundaries whose intersection gives this
solution, it also is possible that one or more additional constraint boundaries pass through this same point.
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TABLE 4.1 Adjacent CPF solutions for each CPF
solution of the Wyndor Glass Co. problem

CPF Solution Its Adjacent CPF Solutions
0, 0) (0, 6) and (4, 0)
(0, 6) (2, 6) and (0, 0)
(2, 6) (4, 3) and (0, 6)
“, 3) (4, 0) and (2, 6)
(4, 0) (0, 0) and (4, 3)

each CPF solution. Thus, each CPF solution has two adjacent CPF solutions (each lying at
the other end of one of the two edges), as enumerated in Table 4.1. (In each row of this table,
the CPF solution in the first column is adjacent to each of the two CPF solutions in the sec-
ond column, but the two CPF solutions in the second column are not adjacent to each other.)

One reason for our interest in adjacent CPF solutions is the following general prop-
erty about such solutions, which provides a very useful way of checking whether a CPF
solution is an optimal solution.

Optimality test: Consider any linear programming problem that possesses at
least one optimal solution. If a CPF solution has no adjacent CPF solutions that
are better (as measured by Z), then it must be an optimal solution.

Thus, for the example, (2, 6) must be optimal simply because its Z = 36 is larger than
Z =30 for (0, 6) and Z = 27 for (4, 3). (We will delve further into why this property
holds in Sec. 5.1.) This optimality test is the one used by the simplex method for deter-
mining when an optimal solution has been reached.

Now we are ready to apply the simplex method to the example.

Solving the Example

Here is an outline of what the simplex method does (from a geometric viewpoint) to solve
the Wyndor Glass Co. problem. At each step, first the conclusion is stated and then the
reason is given in parentheses. (Refer to Fig. 4.1 for a visualization.)

Initialization: Choose (0, 0) as the initial CPF solution to examine. (This is a conve-
nient choice because no calculations are required to identify this CPF solution.)

Optimality Test: Conclude that (0, 0) is not an optimal solution. (Adjacent CPF so-
lutions are better.)

Iteration 1: Move to a better adjacent CPF solution, (0, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 0), choose to move
along the edge that leads up the x, axis. (With an objective function of Z = 3x; + 5x,,
moving up the x, axis increases Z at a faster rate than moving along the x; axis.)

2. Stop at the first new constraint boundary: 2x, = 12. [Moving farther in the direction
selected in step 1 leaves the feasible region; e.g., moving to the second new constraint
boundary hit when moving in that direction gives (0, 9), which is a corner-point in-
feasible solution.]

3. Solve for the intersection of the new set of constraint boundaries: (0, 6). (The equations
for these constraint boundaries, x; = 0 and 2x, = 12, immediately yield this solution.)

Optimality Test: Conclude that (0, 6) is not an optimal solution. (An adjacent CPF
solution is better.)
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FIGURE 4.2
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Iteration 2: Move to a better adjacent CPF solution, (2, 6), by performing the fol-
lowing three steps.

1. Considering the two edges of the feasible region that emanate from (0, 6), choose to
move along the edge that leads to the right. (Moving along this edge increases Z,
whereas backtracking to move back down the x, axis decreases Z.)

2. Stop at the first new constraint boundary encountered when moving in that direction:
3x; + 2x, = 12. (Moving farther in the direction selected in step 1 leaves the feasible
region.)

3. Solve for the intersection of the new set of constraint boundaries: (2, 6). (The equa-
tions for these constraint boundaries, 3x; + 2x, = 18 and 2x, = 12, immediately yield
this solution.)

Optimality Test: Conclude that (2, 6) is an optimal solution, so stop. (None of the
adjacent CPF solutions are better.)

This sequence of CPF solutions examined is shown in Fig. 4.2, where each circled num-
ber identifies which iteration obtained that solution. (See the Worked Examples section
on the book’s website for another example of how the simplex method marches through
a sequence of CPF solutions to reach the optimal solution.)

Now let us look at the six key solution concepts of the simplex method that provide
the rationale behind the above steps. (Keep in mind that these concepts also apply for
solving problems with more than two decision variables where a graph like Fig. 4.2 is not
available to help quickly find an optimal solution.)

The Key Solution Concepts

The first solution concept is based directly on the relationship between optimal solutions
and CPF solutions given at the end of Sec. 3.2.

Solution concept 1: The simplex method focuses solely on CPF solutions. For
any problem with at least one optimal solution, finding one requires only find-
ing a best CPF solution.’

3The only restriction is that the problem must possess CPF solutions. This is ensured if the feasible region is
bounded.
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Since the number of feasible solutions generally is infinite, reducing the number of solu-
tions that need to be examined to a small finite number (just three in Fig. 4.2) is a tremen-
dous simplification.

The next solution concept defines the flow of the simplex method.

Solution concept 2: The simplex method is an iterative algorithm (a systematic
solution procedure that keeps repeating a fixed series of steps, called an iteration,
until a desired result has been obtained) with the following structure.

Initialization: Set up to start iterations, including finding an initial
l CPF solution.
Optimality test: Is the current CPF solution optimal?

If no—l If yes — Stop.

Iteration: Perform an iteration to find a better CPF solution.

When the example was solved, note how this flow diagram was followed through two
iterations until an optimal solution was found.

We next focus on how to get started.

Solution concept 3: Whenever possible, the initialization of the simplex method
chooses the origin (all decision variables equal to zero) to be the initial CPF so-
lution. When there are too many decision variables to find an initial CPF solu-
tion graphically, this choice eliminates the need to use algebraic procedures to
find and solve for an initial CPF solution.

Choosing the origin commonly is possible when all the decision variables have nonneg-
ativity constraints, because the intersection of these constraint boundaries yields the ori-
gin as a corner-point solution. This solution then is a CPF solution unless it is infeasible
because it violates one or more of the functional constraints. If it is infeasible, special pro-
cedures described in Sec. 4.6 are needed to find the initial CPF solution.

The next solution concept concerns the choice of a better CPF solution at each iteration.

Solution concept 4: Given a CPF solution, it is much quicker computationally
to gather information about its adjacent CPF solutions than about other CPF so-
lutions. Therefore, each time the simplex method performs an iteration to move
from the current CPF solution to a better one, it always chooses a CPF solution
that is adjacent to the current one. No other CPF solutions are considered. Con-
sequently, the entire path followed to eventually reach an optimal solution is along
the edges of the feasible region.

The next focus is on which adjacent CPF solution to choose at each iteration.

Solution concept 5: After the current CPF solution is identified, the simplex
method examines each of the edges of the feasible region that emanate from this
CPF solution. Each of these edges leads to an adjacent CPF solution at the other
end, but the simplex method does not even take the time to solve for the adjacent
CPF solution. Instead, it simply identifies the rate of improvement in Z that would
be obtained by moving along the edge. Among the edges with a positive rate of
improvement in Z, it then chooses to move along the one with the largest rate of
improvement in Z. The iteration is completed by first solving for the adjacent
CPF solution at the other end of this one edge and then relabeling this adjacent
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CPF solution as the current CPF solution for the optimality test and (if needed)
the next iteration.

At the first iteration of the example, moving from (0, 0) along the edge on the x; axis
would give a rate of improvement in Z of 3 (Z increases by 3 per unit increase in x;),
whereas moving along the edge on the x, axis would give a rate of improvement in Z of
5 (Z increases by 5 per unit increase in x,), so the decision is made to move along the lat-
ter edge. At the second iteration, the only edge emanating from (0, 6) that would yield a
positive rate of improvement in Z is the edge leading to (2, 6), so the decision is made to
move next along this edge.

The final solution concept clarifies how the optimality test is performed efficiently.

Solution concept 6: Solution concept 5 describes how the simplex method ex-
amines each of the edges of the feasible region that emanate from the current
CPF solution. This examination of an edge leads to quickly identifying the rate
of improvement in Z that would be obtained by moving along the edge toward
the adjacent CPF solution at the other end. A positive rate of improvement in Z
implies that the adjacent CPF solution is better than the current CPF solution,
whereas a negative rate of improvement in Z implies that the adjacent CPF so-
lution is worse. Therefore, the optimality test consists simply of checking whether
any of the edges give a positive rate of improvement in Z. If none do, then the
current CPF solution is optimal.

In the example, moving along either edge from (2, 6) decreases Z. Since we want to max-
imize Z, this fact immediately gives the conclusion that (2, 6) is optimal.

4.2 SETTING UP THE SIMPLEX METHOD

Section 4.1 stressed the geometric concepts that underlie the simplex method. How-
ever, this algorithm normally is run on a computer, which can follow only algebraic
instructions. Therefore, it is necessary to translate the conceptually geometric proce-
dure just described into a usable algebraic procedure. In this section, we introduce the
algebraic language of the simplex method and relate it to the concepts of the pre-
ceding section.

The algebraic procedure is based on solving systems of equations. Therefore, the first
step in setting up the simplex method is to convert the functional inequality constraints
to equivalent equality constraints. (The nonnegativity constraints are left as inequalities
because they are treated separately.) This conversion is accomplished by introducing slack
variables. To illustrate, consider the first functional constraint in the Wyndor Glass Co.
example of Sec. 3.1

x; =4

The slack variable for this constraint is defined to be
x3 =4 — xy,

which is the amount of slack in the left-hand side of the inequality. Thus,
X +x;3 =4

Given this equation, x; = 4 if and only if 4 — x; = x3 = 0. Therefore, the original con-
straint x; = 4 is entirely equivalent to the pair of constraints

x;tx3=4 and x3 = 0.
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Upon the introduction of slack variables for the other functional constraints, the
original linear programming model for the example (shown below on the left) can now
be replaced by the equivalent model (called the augmented form of the model) shown
below on the right:

Original Form of the Model Augmented Form of the Model*
Maximize Z = 3x; + 5x,, Maximize Z = 3x; + 5x,,
subject to subject to

X = 4 (@) X1 + x3 = 4
2x, = 12 2) 2x, + x4 =12
3x; + 2x, = 18 3) 3x; + 2x, + x5 = 18
and and
x =0, X =0. x; =0, forj=1,2,3,4,5.

Although both forms of the model represent exactly the same problem, the new form is
much more convenient for algebraic manipulation and for identification of CPF solutions.
We call this the augmented form of the problem because the original form has been aug-
mented by some supplementary variables needed to apply the simplex method.

If a slack variable equals O in the current solution, then this solution lies on the con-
straint boundary for the corresponding functional constraint. A value greater than 0 means
that the solution lies on the feasible side of this constraint boundary, whereas a value less
than 0 means that the solution lies on the infeasible side of this constraint boundary. A
demonstration of these properties is provided by the demonstration example in your OR
Tutor entitled Interpretation of the Slack Variables.

The terminology used in Section 4.1 (corner-point solutions, etc.) applies to the orig-
inal form of the problem. We now introduce the corresponding terminology for the aug-
mented form.

An augmented solution is a solution for the original variables (the decision vari-
ables) that has been augmented by the corresponding values of the slack variables.

For example, augmenting the solution (3, 2) in the example yields the augmented solu-
tion (3, 2, 1, 8, 5) because the corresponding values of the slack variables are x3 = 1,
Xq = 8, and X5 = 5.

A basic solution is an augmented corner-point solution.

To illustrate, consider the corner-point infeasible solution (4, 6) in Fig. 4.1. Augmenting
it with the resulting values of the slack variables x; = 0, x4, = 0, and x5 = —6 yields the
corresponding basic solution (4, 6, 0, 0, —6).

The fact that corner-point solutions (and so basic solutions) can be either feasible or
infeasible implies the following definition:

A basic feasible (BF) solution is an augmented CPF solution.

Thus, the CPF solution (0, 6) in the example is equivalent to the BF solution (0, 6, 4,
0, 6) for the problem in augmented form.

The only difference between basic solutions and corner-point solutions (or between
BF solutions and CPF solutions) is whether the values of the slack variables are included.

“The slack variables are not shown in the objective function because the coefficients there are 0.
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For any basic solution, the corresponding corner-point solution is obtained simply by delet-
ing the slack variables. Therefore, the geometric and algebraic relationships between these
two solutions are very close, as described in Sec. 5.1.

Because the terms basic solution and basic feasible solution are very important parts
of the standard vocabulary of linear programming, we now need to clarify their algebraic
properties. For the augmented form of the example, notice that the system of functional
constraints has 5 variables and 3 equations, so

Number of variables — number of equations =5 — 3 = 2.

This fact gives us 2 degrees of freedom in solving the system, since any two variables can be

chosen to be set equal to any arbitrary value in order to solve the three equations in terms of

the remaining three variables.” The simplex method uses zero for this arbitrary value. Thus,

two of the variables (called the nonbasic variables) are set equal to zero, and then the si-

multaneous solution of the three equations for the other three variables (called the basic vari-

ables) is a basic solution. These properties are described in the following general definitions.
A basic solution has the following properties:

=

Each variable is designated as either a nonbasic variable or a basic variable.

2. The number of basic variables equals the number of functional constraints (now equa-

tions). Therefore, the number of nonbasic variables equals the total number of vari-

ables minus the number of functional constraints.

The nonbasic variables are set equal to zero.

4. The values of the basic variables are obtained as the simultaneous solution of the sys-
tem of equations (functional constraints in augmented form). (The set of basic vari-
ables is often referred to as the basis.)

5. If the basic variables satisfy the nonnegativity constraints, the basic solution is a BF

solution.

Bl

To illustrate these definitions, consider again the BF solution (0, 6, 4, 0, 6). This so-
lution was obtained before by augmenting the CPF solution (0, 6). However, another way
to obtain this same solution is to choose x; and x4 to be the two nonbasic variables, and
so the two variables are set equal to zero. The three equations then yield, respectively,
x3 =4, x, = 6, and x5 = 6 as the solution for the three basic variables, as shown below
(with the basic variables in bold type):

x; =0and x, =0 so

(1) X1 + X3 =4 X3 = 4
(2) 2x2 + Xq =12 Xy = 6
(3) 3)(:1 + 2x2 + X5 = 18 X5 = 6

Because all three of these basic variables are nonnegative, this basic solution (0, 6, 4,
0, 6) is indeed a BF solution. The Worked Examples section of the book’s website includes
another example of the relationship between CPF solutions and BF solutions.

Just as certain pairs of CPF solutions are adjacent, the corresponding pairs of BF so-
lutions also are said to be adjacent. Here is an easy way to tell when two BF solutions
are adjacent.

Two BF solutions are adjacent if all but one of their nonbasic variables are the same.
This implies that all but one of their basic variables also are the same, although perhaps
with different numerical values.

This method of determining the number of degrees of freedom for a system of equations is valid as long as the
system does not include any redundant equations. This condition always holds for the system of equations formed
from the functional constraints in the augmented form of a linear programming model.
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Consequently, moving from the current BF solution to an adjacent one involves switch-
ing one variable from nonbasic to basic and vice versa for one other variable (and
then adjusting the values of the basic variables to continue satisfying the system of
equations).

To illustrate adjacent BF solutions, consider one pair of adjacent CPF solutions in
Fig. 4.1: (0, 0) and (0, 6). Their augmented solutions, (0, 0, 4, 12, 18) and (0, 6, 4, 0, 6),
automatically are adjacent BF solutions. However, you do not need to look at Fig. 4.1 to
draw this conclusion. Another signpost is that their nonbasic variables, (x;, x,) and
(x1, x4), are the same with just the one exception—x, has been replaced by x,. Conse-
quently, moving from (0, 0, 4, 12, 18) to (0, 6, 4, 0, 6) involves switching x, from non-
basic to basic and vice versa for x,.

When we deal with the problem in augmented form, it is convenient to consider and
manipulate the objective function equation at the same time as the new constraint equa-
tions. Therefore, before we start the simplex method, the problem needs to be rewritten
once again in an equivalent way:

Maximize Z,
subject to
(0) 7 — 3X1 - 5.X2 = O
(1) X1 +X3 = 4
(2 2x, + x4 =12
(3) 3x1 + 2.X2 + X5 = 18
and
x; =0, forj=1,2,...,5.

It is just as if Eq. (0) actually were one of the original constraints; but because it already
is in equality form, no slack variable is needed. While adding one more equation, we also
have added one more unknown (Z) to the system of equations. Therefore, when using
Egs. (1) to (3) to obtain a basic solution as described above, we use Eq. (0) to solve for
Z at the same time.

Somewhat fortuitously, the model for the Wyndor Glass Co. problem fits our stan-
dard form, and all its functional constraints have nonnegative right-hand sides b;. If this
had not been the case, then additional adjustments would have been needed at this point
before the simplex method was applied. These details are deferred to Sec. 4.6, and we
now focus on the simplex method itself.

4.3 THE ALGEBRA OF THE SIMPLEX METHOD

We continue to use the prototype example of Sec. 3.1, as rewritten at the end of Sec. 4.2,
for illustrative purposes. To start connecting the geometric and algebraic concepts of the
simplex method, we begin by outlining side by side in Table 4.2 how the simplex method
solves this example from both a geometric and an algebraic viewpoint. The geometric view-
point (first presented in Sec. 4.1) is based on the original form of the model (no slack vari-
ables), so again refer to Fig. 4.1 for a visualization when you examine the second column
of the table. Refer to the augmented form of the model presented at the end of Sec. 4.2
when you examine the third column of the table.
We now fill in the details for each step of the third column of Table 4.2.
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TABLE 4.2 Geometric and algebraic interpretations of how the simplex method
solves the Wyndor Glass Co. problem

Method
Sequence Geometric Interpretation Algebraic Interpretation
Initialization Choose (0, 0) to be the initial CPF Choose x; and x, to be the nonbasic
solution. variables (= 0) for the initial BF
solution: (0, O, 4, 12, 18).
Optimality ~ Not optimal, because moving along Not optimal, because increasing either
test either edge from (0, 0) increases Z. nonbasic variable (x; or x,) increases Z.
Iteration 1
Step 1 Move up the edge lying on the Increase x, while adjusting other
Xz axis. variable values to satisfy the system
of equations.
Step 2 Stop when the first new constraint Stop when the first basic variable
boundary (2x, = 12) is reached. (x3, X4, OF Xs5) drops to zero (xa).
Step 3 Find the intersection of the new pair With x, now a basic variable and x4
of constraint boundaries: (0, 6) is the now a nonbasic variable, solve the
new CPF solution. system of equations: (0, 6, 4, 0, 6) is
the new BF solution.
Optimality ~ Not optimal, because moving along the Not optimal, because increasing one
test edge from (0, 6) to the right increases Z. nonbasic variable (x;) increases Z.
Iteration 2
Step 1 Move along this edge to the right. Increase x; while adjusting other
variable values to satisfy the system
of equations.
Step 2 Stop when the first new constraint Stop when the first basic variable
boundary (3x; + 2x, = 18) is reached. (x2, X3, or xs) drops to zero (xs).
Step 3 Find the intersection of the new pair With x; now a basic variable and xs
of constraint boundaries: (2, 6) is the now a nonbasic variable, solve the
new CPF solution. system of equations: (2, 6, 2, 0, 0) is
the new BF solution.
Optimality (2, 6) is optimal, because moving (2,6, 2,0, 0) is optimal, because
test along either edge from (2, 6) decreases Z. increasing either nonbasic variable
(x4 or xs) decreases Z.
Initialization

The choice of x; and x, to be the nonbasic variables (the variables set equal to zero) for the
initial BF solution is based on solution concept 3 in Sec. 4.1. This choice eliminates the
work required to solve for the basic variables (xs3, X4, x5) from the following system of
equations (where the basic variables are shown in bold type):

x; =0 and x, = 0 so

(1) X1 +x3 = 4 X3 = 4
(2) ZX2 +X4 =12 X4 = 12
3)  3x + 2% +xs=18 xs=18

Thus, the initial BF solution is (0, 0, 4, 12, 18).

Notice that this solution can be read immediately because each equation has just one
basic variable, which has a coefficient of 1, and this basic variable does not appear in any
other equation. You will soon see that when the set of basic variables changes, the sim-
plex method uses an algebraic procedure (Gaussian elimination) to convert the equations
to this same convenient form for reading every subsequent BF solution as well. This form
is called proper form from Gaussian elimination.



An Application Vignette

Samsung Electronics Corp., Ltd. (SEC) is a leading mer-
chant of dynamic and static random access memory devices
and other advanced digital integrated circuits. Its site at
Kiheung, South Korea (probably the largest semiconductor
fabrication site in the world) fabricates more than 300,000
silicon wafers per month and employs over 10,000 people.

Cycle time is the industry’s term for the elapsed time
from the release of a batch of blank silicon wafers into
the fabrication process until completion of the devices
that are fabricated on those wafers. Reducing cycle times
is an ongoing goal since it both decreases costs and en-
ables offering shorter lead times to potential customers,
a real key to maintaining or increasing market share in a
very competitive industry.

Three factors present particularly major challenges
when striving to reduce cycle times. One is that the prod-
uct mix changes continually. Another is that the company
often needs to make substantial changes in the fab-out
schedule inside the target cycle time as it revises forecasts
of customer demand. The third is that the machines of a
general type are not homogenous so only a small number
of machines are qualified to perform each device-step.

An OR team developed a huge linear programming
model with tens of thousands of decision variables and
functional constraints to cope with these challenges. The
objective function involved minimizing back-orders and
finished-goods inventory. Despite the huge size of this
model, it was readily solved in minutes whenever needed
by using a highly sophisticated implementation of the
simplex method (and related techniques) in the CPLEX
optimization software. (CPLEX will be discussed further
in Sec. 4.8.)

The ongoing implementation of this model enabled
the company to reduce manufacturing cycle times to
fabricate dynamic random access memory devices from
more than 80 days to less than 30 days. This tremen-
dous improvement and the resulting reduction in both
manufacturing costs and sale prices enabled Samsung
to capture an additional $200 million in annual sales
revenue.

Source: R. C. Leachman, J. Kang, and Y. Lin: “SLIM: Short
Cycle Time and Low Inventory in Manufacturing at Samsung
Electronics,” Interfaces, 32(1): 61-77, Jan.—Feb. 2002. (A link to
this article is provided on our website, www.mhhe.com/hillier.)

Optimality Test

The objective function is
Z= 3)(1 + 5X2,

so Z = 0 for the initial BF solution. Because none of the basic variables (x3, x4, x5) have
a nonzero coefficient in this objective function, the coefficient of each nonbasic variable
(x1, x») gives the rate of improvement in Z if that variable were to be increased from zero
(while the values of the basic variables are adjusted to continue satisfying the system of
equations).® These rates of improvement (3 and 5) are positive. Therefore, based on so-
lution concept 6 in Sec. 4.1, we conclude that (0, 0, 4, 12, 18) is not optimal.

For each BF solution examined after subsequent iterations, at least one basic variable
has a nonzero coefficient in the objective function. Therefore, the optimality test then will
use the new Eq. (0) to rewrite the objective function in terms of just the nonbasic variables,
as you will see later.

Determining the Direction of Movement (Step 1 of an Iteration)

Increasing one nonbasic variable from zero (while adjusting the values of the basic vari-
ables to continue satisfying the system of equations) corresponds to moving along one
edge emanating from the current CPF solution. Based on solution concepts 4 and 5 in
Sec. 4.1, the choice of which nonbasic variable to increase is made as follows:

SNote that this interpretation of the coefficients of the x; variables is based on these variables being on the right-
hand side, Z = 3x; + 5x,. When these variables are brought to the left-hand side for Eq. (0), Z — 3x; — 5x, = 0,
the nonzero coefficients change their signs.
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Z=3x, + 5x,
Increase x;? Rate of improvement in Z = 3.
Increase x,? Rate of improvement in Z = 5.

5 > 3, so choose x, to increase.
As indicated next, we call x, the entering basic variable for iteration 1.

At any iteration of the simplex method, the purpose of step 1 is to choose one nonbasic
variable to increase from zero (while the values of the basic variables are adjusted to con-
tinue satisfying the system of equations). Increasing this nonbasic variable from zero will
convert it to a basic variable for the next BF solution. Therefore, this variable is called
the entering basic variable for the current iteration (because it is entering the basis).

Determining Where to Stop (Step 2 of an Iteration)

Step 2 addresses the question of how far to increase the entering basic variable x, before
stopping. Increasing x, increases Z, so we want to go as far as possible without leaving
the feasible region. The requirement to satisfy the functional constraints in augmented
form (shown below) means that increasing x, (while keeping the nonbasic variable x; = 0)
changes the values of some of the basic variables as shown on the right.

x; = 0, SO
(1) X + x3 = 4 x3= 4
2) 2x, + x4 =12 x, =12 — 2x,
3) 3x; + 2x; + x5 =18 X5 = 18 — 2x;,.

The other requirement for feasibility is that all the variables be nonnegative. The non-
basic variables (including the entering basic variable) are nonnegative, but we need to check
how far x, can be increased without violating the nonnegativity constraints for the basic
variables.

x3=4=0 = no upper bound on x,.

x4=12—2x220:>x2_%=6 < minimum.

x5=18—2x2202>x2_12—8=9.

Thus, x, can be increased just to 6, at which point x4 has dropped to 0. Increasing x, be-
yond 6 would cause x, to become negative, which would violate feasibility.

These calculations are referred to as the minimum ratio test. The objective of this
test is to determine which basic variable drops to zero first as the entering basic variable
is increased. We can immediately rule out the basic variable in any equation where the
coefficient of the entering basic variable is zero or negative, since such a basic variable
would not decrease as the entering basic variable is increased. [This is what happened
with x5 in Eq. (1) of the example.] However, for each equation where the coefficient of
the entering basic variable is strictly positive (> 0), this test calculates the ratio of the
right-hand side to the coefficient of the entering basic variable. The basic variable in the
equation with the minimum ratio is the one that drops to zero first as the entering basic
variable is increased.

At any iteration of the simplex method, step 2 uses the minimum ratio test to determine
which basic variable drops to zero first as the entering basic variable is increased. De-
creasing this basic variable to zero will convert it to a nonbasic variable for the next BF
solution. Therefore, this variable is called the leaving basic variable for the current iter-
ation (because it is leaving the basis).

Thus, x4 is the leaving basic variable for iteration 1 of the example.
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Solving for the New BF Solution (Step 3 of an Iteration)

Increasing x, = 0 to x, = 6 moves us from the initial BF solution on the left to the new
BF solution on the right.

Initial BF solution New BF solution
Nonbasic variables: x; =0, x, =0 x1=0, x4=0
Basic variables: x3=4, x4=12, x5=18 X3=7 Xx,=6, x5=7?

The purpose of step 3 is to convert the system of equations to a more convenient form
(proper form from Gaussian elimination) for conducting the optimality test and (if needed)
the next iteration with this new BF solution. In the process, this form also will identify
the values of x3 and x5 for the new solution.

Here again is the complete original system of equations, where the new basic vari-
ables are shown in bold type (with Z playing the role of the basic variable in the objec-
tive function equation):

©) Z—3x — 5%, =0
(1) X + x5 = 4
) 2x, +x =12
3) 3x, + 2%, +xs=18.

Thus, x, has replaced x, as the basic variable in Eq. (2). To solve this system of equations
for Z, x,, x5, and x5, we need to perform some elementary algebraic operations to re-
produce the current pattern of coefficients of x4 (0, 0, 1, 0) as the new coefficients of x,.
We can use either of two types of elementary algebraic operations:

1. Multiply (or divide) an equation by a nonzero constant.
2. Add (or subtract) a multiple of one equation to (or from) another equation.

To prepare for performing these operations, note that the coefficients of x, in the
above system of equations are —35, 0, 2, and 2, respectively, whereas we want these co-
efficients to become 0, 0, 1, and 0, respectively. To turn the coefficient of 2 in Eq. (2)
into 1, we use the first type of elementary algebraic operation by dividing Eq. (2) by 2
to obtain

(2) X2 + %X4 = 6.

To turn the coefficients of —5 and 2 into zeros, we need to use the second type of ele-
mentary algebraic operation. In particular, we add 5 times this new Eq. (2) to Eq. (0), and
subtract 2 times this new Eq. (2) from Eq. (3). The resulting complete new system of
equations is

0) Z — 3x; + %x4 =30
) X +xs = 4
@) - +%M -6
3) 3, it xs= 6

Since x; = 0 and x4 = 0, the equations in this form immediately yield the new BF solu-
tion, (xy, X2, X3, X4, X5) = (0, 6, 4, 0, 6), which yields Z = 30.

This procedure for obtaining the simultaneous solution of a system of linear equa-
tions is called the Gauss-Jordan method of elimination, or Gaussian elimination for
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short.” The key concept for this method is the use of elementary algebraic operations to
reduce the original system of equations to proper form from Gaussian elimination, where
each basic variable has been eliminated from all but one equation (its equation) and has
a coefficient of +1 in that equation.

Optimality Test for the New BF Solution
The current Eq. (0) gives the value of the objective function in terms of just the current
nonbasic variables

Z =130+ 3x; — %x4.

Increasing either of these nonbasic variables from zero (while adjusting the values of the
basic variables to continue satisfying the system of equations) would result in moving
toward one of the two adjacent BF solutions. Because x; has a positive coefficient, in-
creasing x; would lead to an adjacent BF solution that is better than the current BF solu-
tion, so the current solution is not optimal.

Iteration 2 and the Resulting Optimal Solution

Since Z = 30 + 3x; — x4, Z can be increased by increasing x;, but not x,. Therefore, step
1 chooses x; to be the entering basic variable.

For step 2, the current system of equations yields the following conclusions about
how far x; can be increased (with x, = 0):

x3=4—x,=0 :x15%=4.
xXx=6=0 = no upper bound on x;.

Xs=6—3x; =0 = x; Sg=2 < minimum.

Therefore, the minimum ratio test indicates that x5 is the leaving basic variable.

For step 3, with x; replacing x5 as a basic variable, we perform elementary algebraic
operations on the current system of equations to reproduce the current pattern of coeffi-
cients of x5 (0, 0, 0, 1) as the new coefficients of x;. This yields the following new sys-
tem of equations:

(0) VA + %X4 + X5 = 36
1 1
(1) X3 + §X4 - ?)CS = 2
1
(2) X> + x4 = 6
2
5 IR
X1 3X4 3X5 = .

Therefore, the next BF solution is (x1, x5, X3, X4, X5) = (2, 6, 2, 0, 0), yielding Z = 36. To
apply the optimality test to this new BF solution, we use the current Eq. (0) to express Z
in terms of just the current nonbasic variables,

7Actually, there are some technical differences between the Gauss-Jordan method of elimination and Gaussian
elimination, but we shall not make this distinction.



4.4 THE SIMPLEX METHOD IN TABULAR FORM 103

3
Z:36_§X4_.X5.

Increasing either x4 or x5 would decrease Z, so neither adjacent BF solution is as good as
the current one. Therefore, based on solution concept 6 in Sec. 4.1, the current BF solu-
tion must be optimal.

In terms of the original form of the problem (no slack variables), the optimal solu-
tion is x; = 2, x, = 6, which yields Z = 3x; + 5x, = 36.

To see another example of applying the simplex method, we recommend that you
now view the demonstration entitled Simplex Method—Algebraic Form in your OR Tutor.
This vivid demonstration simultaneously displays both the algebra and the geometry of the
simplex method as it dynamically evolves step by step. Like the many other demonstration
examples accompanying other sections of the book (including the next section), this com-
puter demonstration highlights concepts that are difficult to convey on the printed page. In
addition, the Worked Examples section of the book’s website includes another example
of applying the simplex method.

To further help you learn the simplex method efficiently, the IOR Tutorial in your OR
Courseware includes a procedure entitled Solve Interactively by the Simplex Method.
This routine performs nearly all the calculations while you make the decisions step by
step, thereby enabling you to focus on concepts rather than get bogged down in a lot of
number crunching. Therefore, you probably will want to use this routine for your home-
work on this section. The software will help you get started by letting you know when-
ever you make a mistake on the first iteration of a problem.

After you learn the simplex method, you will want to simply apply an automatic com-
puter implementation of it to obtain optimal solutions of linear programming problems
immediately. For your convenience, we also have included an automatic procedure called
Solve Automatically by the Simplex Method in IOR Tutorial. This procedure is designed
for dealing with only textbook-sized problems, including checking the answer you got
with the interactive procedure. Section 4.8 will describe more powerful software options
for linear programming that also are provided on the book’s website.

The next section includes a summary of the simplex method for a more convenient
tabular form.

4.4 THE SIMPLEX METHOD IN TABULAR FORM

The algebraic form of the simplex method presented in Sec. 4.3 may be the best one for
learning the underlying logic of the algorithm. However, it is not the most convenient form
for performing the required calculations. When you need to solve a problem by hand (or
interactively with your IOR Tutorial), we recommend the fabular form described in this
section.®

The tabular form of the simplex method records only the essential information, namely,
(1) the coefficients of the variables, (2) the constants on the right-hand sides of the equa-
tions, and (3) the basic variable appearing in each equation. This saves writing the sym-
bols for the variables in each of the equations, but what is even more important is the fact
that it permits highlighting the numbers involved in arithmetic calculations and recording
the computations compactly.

Table 4.3 compares the initial system of equations for the Wyndor Glass Co. problem
in algebraic form (on the left) and in tabular form (on the right), where the table on the
right is called a simplex tableau. The basic variable for each equation is shown in bold type

8A form more convenient for automatic execution on a computer is presented in Sec. 5.2.
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TABLE 4.3 Initial system of equations for the Wyndor Glass Co. problem

(a) Algebraic Form (b) Tabular Form
Coefficient of:

Basic Right

Variable | Eq. | Z | x; X2 X3 X4 X5 | Side
(0) Z—3x1 — 5x; =0 4 ©o|1{-3 -5 0 0 O 0
M X1 + X3 = 4 X3 M| o 1 0o 1 0o o0 4
2 2X; + X4 =12 X4 @2 |0 0 2 0 1 0 12
3) 3x + 2x; +x5=18 Xs 3]0 3 2 0 0 1 18

on the left and in the first column of the simplex tableau on the right. [Although only the
x; variables are basic or nonbasic, Z plays the role of the basic variable for Eq. (0).] All
variables not listed in this basic variable column (x;, x,) automatically are nonbasic
variables. After we set x; = 0, x, = 0, the right side column gives the resulting solution for
the basic variables, so that the initial BF solution is (x;, x», X3, x4, X5) = (0, 0, 4, 12, 18)
which yields Z = 0.

The tabular form of the simplex method uses a simplex tableau to compactly display the
system of equations yielding the current BF solution. For this solution, each variable in
the leftmost column equals the corresponding number in the rightmost column (and vari-
ables not listed equal zero). When the optimality test or an iteration is performed, the only
relevant numbers are those to the right of the Z column.” The term row refers to just a
row of numbers to the right of the Z column (including the right side number), where row
i corresponds to Eq. (7).

We summarize the tabular form of the simplex method below and, at the same time,
briefly describe its application to the Wyndor Glass Co. problem. Keep in mind that the logic
is identical to that for the algebraic form presented in the preceding section. Only the form
for displaying both the current system of equations and the subsequent iteration has changed
(plus we shall no longer bother to bring variables to the right-hand side of an equation be-
fore drawing our conclusions in the optimality test or in steps 1 and 2 of an iteration).

Summary of the Simplex Method (and Iteration 1 for the Example)

Initialization. Introduce slack variables. Select the decision variables to be the initial
nonbasic variables (set equal to zero) and the slack variables to be the initial basic vari-
ables. (See Sec. 4.6 for the necessary adjustments if the model is not in our standard
form—maximization, only = functional constraints, and all nonnegativity constraints—
or if any b; values are negative.)

For the Example: This selection yields the initial simplex tableau shown in column (b)
of Table 4.3, so the initial BF solution is (0, 0, 4, 12, 18).

Optimality Test. The current BF solution is optimal if and only if every coefficient in
row 0 is nonnegative (= 0). If it is, stop; otherwise, go to an iteration to obtain the next
BF solution, which involves changing one nonbasic variable to a basic variable (step 1)
and vice versa (step 2) and then solving for the new solution (step 3).

For the Example: Just as Z = 3x; + 5x, indicates that increasing either x; or x, will
increase Z, so the current BF solution is not optimal, the same conclusion is drawn from

°For this reason, it is permissible to delete the Eq. and Z columns to reduce the size of the simplex tableau. We
prefer to retain these columns as a reminder that the simplex tableau is displaying the current system of equa-
tions and that Z is one of the variables in Eq. (0).



4.4 THE SIMPLEX METHOD IN TABULAR FORM 105

the equation Z — 3x; — 5x, = 0. These coefficients of —3 and —35 are shown in row 0 in
column (b) of Table 4.3.

Iteration. Step I: Determine the entering basic variable by selecting the variable
(automatically a nonbasic variable) with the negative coefficient having the largest ab-
solute value (i.e., the “most negative” coefficient) in Eq. (0). Put a box around the col-
umn below this coefficient, and call this the pivot column.

For the Example: The most negative coefficient is —5 for x, (5 > 3), so x, is to be
changed to a basic variable. (This change is indicated in Table 4.4 by the box around the
X, column below —5.)

Step 2: Determine the leaving basic variable by applying the minimum ratio test.

Minimum Ratio Test

. Pick out each coefficient in the pivot column that is strictly positive (> 0).

. Divide each of these coefficients into the right side entry for the same row.

. Identify the row that has the smallest of these ratios.

. The basic variable for that row is the leaving basic variable, so replace that vari-
able by the entering basic variable in the basic variable column of the next simplex
tableau.

W N -

Put a box around this row and call it the pivot row. Also call the number that is in both
boxes the pivot number.

For the Example: The calculations for the minimum ratio test are shown to the right
of Table 4.4. Thus, row 2 is the pivot row (see the box around this row in the first sim-
plex tableau of Table 4.5), and x, is the leaving basic variable. In the next simplex tableau
(see the bottom of Table 4.5), x, replaces x, as the basic variable for row 2.

Step 3: Solve for the new BF solution by using elementary row operations (multi-
ply or divide a row by a nonzero constant; add or subtract a multiple of one row to an-
other row) to construct a new simplex tableau in proper form from Gaussian elimination
below the current one, and then return to the optimality test. The specific elementary row
operations that need to be performed are listed below.

1. Divide the pivot row by the pivot number. Use this new pivot row in steps 2 and 3.

2. For each other row (including row 0) that has a negative coefficient in the pivot column,
add to this row the product of the absolute value of this coefficient and the new pivot row.

3. For each other row that has a positive coefficient in the pivot column, subtract from
this row the product of this coefficient and the new pivot row.

TABLE 4.4 Applying the minimum ratio test to determine the first leaving basic
variable for the Wyndor Glass Co. problem

Coefficient of:
Basic Right
Variable Eq. V4 X1 X2 X3 X4 X5 Side Ratio

Z 0) 1 -3 -5 0 0 0 0

X3 ©) 0 1 0 1 0 0 4

X4 2) 0 0 2 0 1 0 12 —>% = 6 < minimum

18
Xs ?3) 0 3 2 0 0 1 18 —» 5 = 9
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TABLE 4.5 Simplex tableaux for the Wyndor Glass Co. problem after the
first pivot row is divided by the first pivot number

Coefficient of:
Basic Right
Iteration Variable Eq. V4 Xq X2 X3 X4 Xs Side
Z 0) 1 - -5 0 0 0 0
0 X 0 0 1 (0] 1 0 0 4
X4 2) 0 0 2 0 1 0 12
Xs 3) 0 3 12 0 0 1 18
Z 0) 1
1 X3 (1 ) 0 1
X2 2) 0 0 1 0 > 0 6
Xs 3) 0

For the Example: Since x, is replacing x4 as a basic variable, we need to reproduce
the first tableau’s pattern of coefficients in the column of x4 (0, 0, 1, 0) in the second
tableau’s column of x,. To start, divide the pivot row (row 2) by the pivot number (2),
which gives the new row 2 shown in Table 4.5. Next, we add to row 0 the product, 5 times
the new row 2. Then we subtract from row 3 the product, 2 times the new row 2 (or equiv-
alently, subtract from row 3 the old row 2). These calculations yield the new tableau shown
in Table 4.6 for iteration 1. Thus, the new BF solution is (0, 6, 4, 0, 6), with Z = 30. We
next return to the optimality test to check if the new BF solution is optimal. Since the new
row O still has a negative coefficient (—3 for x;), the solution is not optimal, and so at
least one more iteration is needed.

Iteration 2 for the Example and the Resulting Optimal Solution

The second iteration starts anew from the second tableau of Table 4.6 to find the next BF
solution. Following the instructions for steps 1 and 2, we find x; as the entering basic vari-
able and x5 as the leaving basic variable, as shown in Table 4.7.

For step 3, we start by dividing the pivot row (row 3) in Table 4.7 by the pivot num-
ber (3). Next, we add to row 0 the product, 3 times the new row 3. Then we subtract the
new row 3 from row 1.

‘We now have the set of tableaux shown in Table 4.8. Therefore, the new BF solution
is (2, 6, 2, 0, 0), with Z = 36. Going to the optimality test, we find that this solution is

TABLE 4.6 First two simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right
Iteration Variable Eq. V4 Xq X2 X3 X4 Xs Side
V4 0) 1 -3 -5 0 0 0 0
0 X3 ©) 0 1 0 1 0 0 4
X4 ) 0 0 2 0 1 0 12
Xs 3) 0 3 2] 0 0 1 18
5
V4 0) 1 -3 0 0 > 0 30
1 X3 ©) 0 1 0 1 0 0 4
% @ | o 0 1 0 % 0 6
Xs 3) 0 3 0 0 -1 1 6
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TABLE 4.7 Steps 1 and 2 of iteration 2 for the Wyndor Glass Co. problem

Coefficient of:
Basic Right
Iteration Variable | Eq. | Z | x; X2 X3 X4 Xs Side Ratio
5
V4 0) 1 -3 0 0 5 0 30
— 4
X3 M | o 1 0 1 0 0 4 7= 4
1
X5 2 | o0 0 1 0 % 0 6
6 i

Xs 3) |0 3 0 0 -1 1 6 3= 2 < minimum

optimal because none of the coefficients in row 0 is negative, so the algorithm is finished.
Consequently, the optimal solution for the Wyndor Glass Co. problem (before slack vari-
ables are introduced) is x; = 2, x, = 6.

Now compare Table 4.8 with the work done in Sec. 4.3 to verify that these two forms
of the simplex method really are equivalent. Then note how the algebraic form is supe-
rior for learning the logic behind the simplex method, but the tabular form organizes the
work being done in a considerably more convenient and compact form. We generally use
the tabular form from now on.

An additional example of applying the simplex method in tabular form is available
to you in the OR Tutor. See the demonstration entitled Simplex Method—Tabular Form.
Another example also is included in the Worked Examples section of the book’s website.

TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

Coefficient of:
Basic Right
Iteration Variable Eq. V4 X1 X2 X3 X4 X5 Side
V4 0) 1 -3 -5 0 0 0 0
0 X 0 0 1 0 1 0 0 4
X4 ®) 0 0 2 0 1 0 12|
Xs 3) 0 3 12 0 0 1 18
5
V4 0) 1 -3 0 0 5 0 30
1 X3 M | o 1] 0 1 0 0 4
X2 2) 0 0 1 0 % 0 6
Xs 3) 0 3 0 0 -1 1 6
3
V4 0) 1 0 0 0 5 1 36
x M 0 0 0 1 1 . 2
3 3 3
2 1
X %) 0 0 1 0 > 0 6
x G | o 1 o o -1 1 2
1 3 3
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4.5 TIE BREAKING IN THE SIMPLEX METHOD

You may have noticed in the preceding two sections that we never said what to do if the
various choice rules of the simplex method do not lead to a clear-cut decision, because of
either ties or other similar ambiguities. We discuss these details now.

Tie for the Entering Basic Variable

Step 1 of each iteration chooses the nonbasic variable having the negative coefficient with
the largest absolute value in the current Eq. (0) as the entering basic variable. Now suppose
that two or more nonbasic variables are tied for having the largest negative coefficient (in
absolute terms). For example, this would occur in the first iteration for the Wyndor Glass
Co. problem if its objective function were changed to Z = 3x;+ 3x,, so that the initial
Eq. (0) became Z — 3x; — 3x, = 0. How should this tie be broken?

The answer is that the selection between these contenders may be made arbitrarily.
The optimal solution will be reached eventually, regardless of the tied variable chosen,
and there is no convenient method for predicting in advance which choice will lead there
sooner. In this example, the simplex method happens to reach the optimal solution (2, 6)
in three iterations with x; as the initial entering basic variable, versus two iterations if x,
is chosen.

Tie for the Leaving Basic Variable—Degeneracy

Now suppose that two or more basic variables tie for being the leaving basic variable
in step 2 of an iteration. Does it matter which one is chosen? Theoretically it does, and
in a very critical way, because of the following sequence of events that could occur.
First, all the tied basic variables reach zero simultaneously as the entering basic vari-
able is increased. Therefore, the one or ones not chosen to be the leaving basic variable
also will have a value of zero in the new BF solution. (Note that basic variables with a
value of zero are called degenerate, and the same term is applied to the corresponding
BF solution.) Second, if one of these degenerate basic variables retains its value of zero
until it is chosen at a subsequent iteration to be a leaving basic variable, the corre-
sponding entering basic variable also must remain zero (since it cannot be increased
without making the leaving basic variable negative), so the value of Z must remain un-
changed. Third, if Z may remain the same rather than increase at each iteration, the sim-
plex method may then go around in a loop, repeating the same sequence of solutions
periodically rather than eventually increasing Z toward an optimal solution. In fact, ex-
amples have been artificially constructed so that they do become entrapped in just such
a perpetual loop.'°

Fortunately, although a perpetual loop is theoretically possible, it has rarely been
known to occur in practical problems. If a loop were to occur, one could always get out
of it by changing the choice of the leaving basic variable. Furthermore, special rules''
have been constructed for breaking ties so that such loops are always avoided. However,
these rules frequently are ignored in actual application, and they will not be repeated here.
For your purposes, just break this kind of tie arbitrarily and proceed without worrying
about the degenerate basic variables that result.

19For further information about cycling around a perpetual loop, see J. A. J. Hall and K. I. M. McKinnon: “The
Simplest Examples Where the Simplex Method Cycles and Conditions Where EXPAND Fails to Prevent Cy-
cling,” Mathematical Programming, Series B, 100(1): 135-150, May 2004.

'See R. Bland: “New Finite Pivoting Rules for the Simplex Method,” Mathematics of Operations Research,
2: 103-107, 1977.
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TABLE 4.9 Initial simplex tableau for the Wyndor Glass Co. problem
without the last two functional constraints

Coefficient of:
Basic Right

Variable Eq. V4 Xq X2 X3 Side Ratio

V4 0) 1 -3 -5 0 0 With x; = 0 and x; increasing,
X3 M | o 1 [0] 1 4 None Xx3=4—1x; — Ox, = 4> 0.

No Leaving Basic Variable—Unbounded Z

In step 2 of an iteration, there is one other possible outcome that we have not yet dis-
cussed, namely, that no variable qualifies to be the leaving basic variable.'? This
outcome would occur if the entering basic variable could be increased indefinitely with-
out giving negative values to any of the current basic variables. In tabular form, this
means that every coefficient in the pivot column (excluding row 0) is either negative
or zero.

As illustrated in Table 4.9, this situation arises in the example displayed in
Fig. 3.6. In this example, the last two functional constraints of the Wyndor Glass Co.
problem have been overlooked and so are not included in the model. Note in Fig. 3.6
how x, can be increased indefinitely (thereby increasing Z indefinitely) without ever
leaving the feasible region. Then note in Table 4.9 that x, is the entering basic vari-
able but the only coefficient in the pivot column is zero. Because the minimum ratio
test uses only coefficients that are greater than zero, there is no ratio to provide a leav-
ing basic variable.

The interpretation of a tableau like the one shown in Table 4.9 is that the constraints
do not prevent the value of the objective function Z from increasing indefinitely, so the
simplex method would stop with the message that Z is unbounded. Because even linear
programming has not discovered a way of making infinite profits, the real message for
practical problems is that a mistake has been made! The model probably has been misfor-
mulated, either by omitting relevant constraints or by stating them incorrectly. Alternatively,
a computational mistake may have occurred.

Multiple Optimal Solutions

We mentioned in Sec. 3.2 (under the definition of optimal solution) that a problem can
have more than one optimal solution. This fact was illustrated in Fig. 3.5 by changing the
objective function in the Wyndor Glass Co. problem to Z = 3x; + 2x,, so that every point
on the line segment between (2, 6) and (4, 3) is optimal. Thus, all optimal solutions are
a weighted average of these two optimal CPF solutions

(-xl’ )C2) = Wl(z’ 6) + W2(4’ 3)’
where the weights w; and w, are numbers that satisfy the relationships
W1+W2:l and WIEO, WQEO.

1 2 .
For example, w; = 5 and w, = 5 give

"?Note that the analogous case (no entering basic variable) cannot occur in step 1 of an iteration, because the
optimality test would stop the algorithm first by indicating that an optimal solution had been reached.
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L 2,4 (2.8 6. 6\_(10
(XIa)CZ)_3(2,6)+3(4,3)—<3+3, 3+3>_(3, 4)

as one optimal solution.

In general, any weighted average of two or more solutions (vectors) where the
weights are nonnegative and sum to 1 is called a convex combination of these solu-
tions. Thus, every optimal solution in the example is a convex combination of (2, 6)
and (4, 3).

This example is typical of problems with multiple optimal solutions.

As indicated at the end of Sec. 3.2, any linear programming problem with multiple opti-
mal solutions (and a bounded feasible region) has at least two CPF solutions that are op-
timal. Every optimal solution is a convex combination of these optimal CPF solutions.
Consequently, in augmented form, every optimal solution is a convex combination of the
optimal BF solutions.

(Problems 4.5-5 and 4.5-6 guide you through the reasoning behind this conclusion.)

The simplex method automatically stops after one optimal BF solution is found.
However, for many applications of linear programming, there are intangible factors
not incorporated into the model that can be used to make meaningful choices between
alternative optimal solutions. In such cases, these other optimal solutions should be
identified as well. As indicated above, this requires finding all the other optimal BF
solutions, and then every optimal solution is a convex combination of the optimal BF
solutions.

After the simplex method finds one optimal BF solution, you can detect if there are
any others and, if so, find them as follows:

Whenever a problem has more than one optimal BF solution, at least one of the non-
basic variables has a coefficient of zero in the final row 0, so increasing any such vari-
able will not change the value of Z. Therefore, these other optimal BF solutions can
be identified (if desired) by performing additional iterations of the simplex method,
each time choosing a nonbasic variable with a zero coefficient as the entering basic
variable.'?

To illustrate, consider again the case just mentioned, where the objective function in
the Wyndor Glass Co. problem is changed to Z = 3x; + 2x,. The simplex method obtains
the first three tableaux shown in Table 4.10 and stops with an optimal BF solution. How-
ever, because a nonbasic variable (x3) then has a zero coefficient in row 0, we perform
one more iteration in Table 4.10 to identify the other optimal BF solution. Thus, the two
optimal BF solutions are (4, 3, 0, 6, 0) and (2, 6, 2, 0, 0), each yielding Z = 18. Notice
that the last tableau also has a nonbasic variable (x,) with a zero coefficient in row 0. This
situation is inevitable because the extra iteration does not change row 0, so this leaving
basic variable necessarily retains its zero coefficient. Making x, an entering basic variable
now would only lead back to the third tableau. (Check this.) Therefore, these two are the
only BF solutions that are optimal, and all other optimal solutions are a convex combi-
nation of these two.

(x1, X2, X3, X4, X5) = wi(2, 6, 2, 0, 0) + wy(4, 3,0, 6, 0),
W1+W2:1, WIEO, szo.

131f such an iteration has no leaving basic variable, this indicates that the feasible region is unbounded and the
entering basic variable can be increased indefinitely without changing the value of Z.
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TABLE 4.10 Complete set of simplex tableaux to obtain all optimal BF solutions
for the Wyndor Glass Co. problem with ¢; =2

Coefficient of:
Basic Right Solution
Iteration Variable | Eq. | Z | x, X2 X3 X4 X5 Side Optimal?
V4 (0) 1 -3 =2 0 0 0 0 No
0 X3 M | o 1 0 1 0 0 4 |
X4 @ | o 0 2 0 1 0 12
Xs 3|0 3] 2 0 0 1 18
V4 (0) 1 0o -2 3 0 0 12 No
1 1 M | o 1 0 1 0 0 4
X4 @ | o 0 2 0 1 0 12
Xs 3|0 [0 2 -3 0 1 6 |
V4 (0) 1 0 0 0 0 1 18 Yes
5 1 M | o 1 0 1 0 0 4
X4 @ | ol [o 0 3 1 -1 6 |
3 1
X2 3|0 0 1 - 0 > 3
V4 (0) 1 0 0 0 o 1 18 Yes
1 1
1 M | o 1 0 o -3 3 2
Extra ] 1
X @ | o 0 0 1 3 3 2
%2 @lol o 1 0o 2+ o0 6

4.6 ADAPTING TO OTHER MODEL FORMS

Thus far we have presented the details of the simplex method under the assumptions that
the problem is in our standard form (maximize Z subject to functional constraints in = form
and nonnegativity constraints on all variables) and that b; =0 for all i =1, 2, . . ., m.
In this section we point out how to make the adjustments required for other legitimate
forms of the linear programming model. You will see that all these adjustments can be
made during the initialization, so the rest of the simplex method can then be applied just
as you have learned it already.

The only serious problem introduced by the other forms for functional constraints
(the = or = forms, or having a negative right-hand side) lies in identifying an initial
BF solution. Before, this initial solution was found very conveniently by letting the
slack variables be the initial basic variables, so that each one just equals the nonneg-
ative right-hand side of its equation. Now, something else must be done. The standard
approach that is used for all these cases is the artificial-variable technique. This tech-
nique constructs a more convenient artificial problem by introducing a dummy variable
(called an artificial variable) into each constraint that needs one. This new variable is
introduced just for the purpose of being the initial basic variable for that equation. The
usual nonnegativity constraints are placed on these variables, and the objective func-
tion also is modified to impose an exorbitant penalty on their having values larger than
zero. The iterations of the simplex method then automatically force the artificial vari-
ables to disappear (become zero), one at a time, until they are all gone, after which the
real problem is solved.
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To illustrate the artificial-variable technique, first we consider the case where the only
nonstandard form in the problem is the presence of one or more equality constraints.

Equality Constraints
Any equality constraint
a1 Xy + AipXo + -+ ainX, = bi

actually is equivalent to a pair of inequality constraints:

<+ ain Xy, = bi
<+ ain Xy, = bi'

a;1Xq + AipXo + -
a;1Xq + AipXo + -

However, rather than making this substitution and thereby increasing the number of con-
straints, it is more convenient to use the artificial-variable technique. We shall illustrate
this technique with the following example.

Example. Suppose that the Wyndor Glass Co. problem in Sec. 3.1 is modified to require
that Plant 3 be used at full capacity. The only resulting change in the linear programming
model is that the third constraint, 3x; + 2x, = 18, instead becomes an equality constraint

3x| + 2X2 = 18,

so that the complete model becomes the one shown in the upper right-hand corner of
Fig. 4.3. This figure also shows in darker ink the feasible region which now consists of
Jjust the line segment connecting (2, 6) and (4, 3).

After the slack variables still needed for the inequality constraints are introduced, the
system of equations for the augmented form of the problem becomes

¥ FIGURE 4.3

When the third functional
constraint becomes an
equality constraint, the
feasible region for the
Wyndor Glass Co. problem
becomes the line segment
between (2, 6) and (4, 3).

xp A
10 —
Maximize Z = 3x; + 5x,,
subject to X1 =4
2 = 12
8 3x; + 2xy =18
and X1 20, X =0
6
4 —
2 —
L o
0 8 X
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(0) Z— 3)(1 - 5X2 =0
(D X + X3 =14
2) 2x; +x4 =12
3) 3x; + 2x; = 18.

Unfortunately, these equations do not have an obvious initial BF solution because there
is no longer a slack variable to use as the initial basic variable for Eq. (3). It is necessary
to find an initial BF solution to start the simplex method.

This difficulty can be circumvented in the following way.

Obtaining an Initial BF Solution. The procedure is to construct an artificial prob-
lem that has the same optimal solution as the real problem by making two modifications
of the real problem.

1. Apply the artificial-variable technique by introducing a nonnegative artificial vari-
able (call it Es)” into Eq. (3), just as if it were a slack variable

3) 3x; + 2x, + x5 = 18.
2. Assign an overwhelming penalty to having x5 > 0 by changing the objective function
Z=3x; + 5x to
Z= 3)C1 + 5X2 - M)_C5,
where M symbolically represents a huge positive number. (This method of forcing xs
to be x5 = 0 in the optimal solution is called the Big M method.)

Now find the optimal solution for the real problem by applying the simplex method to the
artificial problem, starting with the following initial BF solution:

Initial BF Solution
Nonbasic variables: x; =0, X, =0
Basic variables: X3 = 4, x4 = 12, xs = 18.

Because x5 plays the role of the slack variable for the third constraint in the artificial
problem, this constraint is equivalent to 3x; + 2x, = 18 (just as for the original Wyndor
Glass Co. problem in Sec. 3.1). We show below the resulting artificial problem (before
augmenting) next to the real problem.

The Real Problem The Artificial Problem
Define x5 = 18 — 3x; — 2x,.
Maximize Z = 3x; + 5x,, Maximize Z = 3x; + 5x, — Mxs,
subject to subject to
X1 = 4 X1 = 4
2%, = 12 2x, =12
3x; + 2x, = 18 3x; + 2x, =18
and (so 3x; + 2x, + x5 = 18)
x =0 X =0 and
x =0 X, =0 x5 =0

Therefore, just as in Sec. 3.1, the feasible region for (x;, x,) for the artificial problem is
the one shown in Fig. 4.4. The only portion of this feasible region that coincides with the
feasible region for the real problem is where x5 = 0 (so 3x; + 2x, = 18).

“We shall always label the artificial variables by putting a bar over them.
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¥ FIGURE 4.4

This graph shows the feasible
region and the sequence of
CPF solutions (©, (), @, ®)
examined by the simplex
method for the artificial
problem that corresponds to
the real problem of Fig. 4.3.

X2 A
Define X5 = 18 — 3x; — 2x,.
— 20 Maximize Z = 3x; + 5x, — MXs,
- Z=30-6M subject to X =4
2%, =12
(O’ 6) 3X] + 2X2 =18
and X1 ZO, X2 ZO, )?5 =0
. Feasible @ “.3)
region AN 7 =127
_@ W) z=12-6m
(0, 0) ? | | | | | | | g
4,0 X1
Z=0-18M

Figure 4.4 also shows the order in which the simplex method examines the CPF so-
Iutions (or BF solutions after augmenting), where each circled number identifies which
iteration obtained that solution. Note that the simplex method moves counterclockwise here
whereas it moved clockwise for the original Wyndor Glass Co. problem (see Fig. 4.2). The
reason for this difference is the extra term —MXs in the objective function for the artificial
problem.

Before applying the simplex method and demonstrating that it follows the path shown
in Fig. 4.4, the following preparatory step is needed.

Converting Equation (0) to Proper Form. The system of equations after the arti-
ficial problem is augmented is

O  Z—3x; — 5x + Mxs =0
(1) X + x3 = 4
2) 2x5 + x4 =12
3) 3x; + 2x, + X5 =18

where the initial basic variables (x3, x4, X5) are shown in bold type. However, this system
is not yet in proper form from Gaussian elimination because a basic variable x5 has a
nonzero coefficient in Eq. (0). Recall that all basic variables must be algebraically elimi-
nated from Eq. (0) before the simplex method can either apply the optimality test or find
the entering basic variable. This elimination is necessary so that the negative of the coef-
ficient of each nonbasic variable will give the rate at which Z would increase if that non-
basic variable were to be increased from O while adjusting the values of the basic variables
accordingly.
To algebraically eliminate x5 from Eq. (0), we need to subtract from Eq. (0) the prod-

uct, M times Eq. (3).

Z—3x; — 5% + Mxs= 0

—MQBx;+ 2x, + x5 = 18)
Z—(3M + 3)x; — 2M + S)x, = —18M.

New (0)
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Application of the Simplex Method. This new Eq. (0) gives Z in terms of just the
nonbasic variables (x;, x5),

Z=—18M + 3M + 3)x, + @M + 5)x,.

Since 3M + 3 > 2M + 5 (remember that M represents a huge number), increasing x; in-
creases Z at a faster rate than increasing x, does, so x; is chosen as the entering basic vari-
able. This leads to the move from (0, 0) to (4, 0) at iteration 1, shown in Fig. 4.4, thereby
increasing Z by 4(3M + 3).

The quantities involving M never appear in the system of equations except for
Eq. (0), so they need to be taken into account only in the optimality test and when an en-
tering basic variable is determined. One way of dealing with these quantities is to assign
some particular (huge) numerical value to M and use the resulting coefficients in Eq. (0)
in the usual way. However, this approach may result in significant rounding errors that in-
validate the optimality test. Therefore, it is better to do what we have just shown, namely,
to express each coefficient in Eq. (0) as a linear function aM + b of the symbolic quan-
tity M by separately recording and updating the current numerical value of (1) the multi-
plicative factor a and (2) the additive term b. Because M is assumed to be so large that b
always is negligible compared with M when a # 0, the decisions in the optimality test
and the choice of the entering basic variable are made by using just the multiplicative fac-
tors in the usual way, except for breaking ties with the additive factors.

Using this approach on the example yields the simplex tableaux shown in Table 4.11.
Note that the artificial variable x5 is a basic variable (x5 > 0) in the first two tableaux

TABLE 4.11 Complete set of simplex tableaux for the problem shown in Fig. 4.4

Coefficient of:
Basic Right
Iteration Variable | Eq. | Z X1 X2 X3 X4 Xs Side
Z © 1| -3M=3 -2M-5 0 0 0 —18M
0 X3 Mo 1 0 1 0 0 4|
X4 @ |o 0 2 0 1 0 12
Xs 3|0 i 2 0 0 1 18
Z ©) |1 0 -2M -5 3M+3 0 0 —6M + 12
: X1 ™ |o 1 0 1 0 0 4
X4 @ |o 0 2 0 1 0 12
Xs 3)|o [0 2 -3 0 1 6 |
9
Z © |1 0 0 -5 0 M+ 27
) X1 @™ |o 1 0 1 0 4
X4 @ |o [0 0 3 1 -1 6 |
3 1
X2 3) | o 0 1 -3 0 3 3
3
Z © |1 0 0 0 S M+ 36
1 0 1 0 0 1 i 2
X1 ( ) 3 3
3 1 1
X3 @ |o 0 0 1 3 -3 2
X2 3) | o 0 1 0 % 0 6
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and a nonbasic variable (x5 = 0) in the last two. Therefore, the first two BF solutions for
this artificial problem are infeasible for the real problem whereas the last two also are BF
solutions for the real problem.

This example involved only one equality constraint. If a linear programming model
has more than one, each is handled in just the same way. (If the right-hand side is nega-
tive, multiply through both sides by —1 first.)

Negative Right-Hand Sides

The technique mentioned in the preceding sentence for dealing with an equality constraint
with a negative right-hand side (namely, multiply through both sides by —1) also works
for any inequality constraint with a negative right-hand side. Multiplying through both
sides of an inequality by —1 also reverses the direction of the inequality; i.e., = changes
to = or vice versa. For example, doing this to the constraint

X —x = -1 (that is, x; = x, — 1)
gives the equivalent constraint
—x;tx=1 (thatis, x, — 1 = x))

but now the right-hand side is positive. Having nonnegative right-hand sides for all the
functional constraints enables the simplex method to begin, because (after augmenting)
these right-hand sides become the respective values of the initial basic variables, which
must satisfy nonnegativity constraints.

We next focus on how to augment = constraints, such as —x; + x, = 1, with the help
of the artificial-variable technique.

Functional Constraints in > Form

To illustrate how the artificial-variable technique deals with functional constraints in =
form, we will use the model for designing Mary’s radiation therapy, as presented in Sec. 3.4.
For your convenience, this model is repeated below, where we have placed a box around the
constraint of special interest here.

Radiation Therapy Example

Minimize Z = 04x; + 0.5x5,
subject to
0.3x; + 0.1x, = 2.7
0.5x; + 0.5x, =6
and

x; =0, X, = 0.

The graphical solution for this example (originally presented in Fig. 3.12) is repeated
here in a slightly different form in Fig. 4.5. The three lines in the figure, along with the
two axes, constitute the five constraint boundaries of the problem. The dots lying at the
intersection of a pair of constraint boundaries are the corner-point solutions. The only two
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¥ FIGURE 4.5

Graphical display of the
radiation therapy example
and its corner-point
solutions.

X2
27
15
Dots = corner-point solutions
B Dark line segment = feasible region
Optimal solution = (7.5, 4.5)
0.6X1 + 0.4X2 =6
10—
5 —
| O.SX] + O.SXZ =6
0.3x; + 0.1x, =2.7
. | |
0 5 10 1

corner-point feasible solutions are (6, 6) and (7.5, 4.5), and the feasible region is the line
segment connecting these two points. The optimal solution is (x;, x5) = (7.5, 4.5), with
Z=15.25.

We soon will show how the simplex method solves this problem by directly solving
the corresponding artificial problem. However, first we must describe how to deal with
the third constraint.

Our approach involves introducing both a surplus variable xs (defined as x5 =
0.6x; + 0.4x, — 6) and an artificial variable X, as shown next.

0.6x; + 0.4x, =6
— 0.6x; + 0.4x; — x5 =6 (xs=0)
—> 0.6x1 + O.4X2 — X5 + )_C6 =6 ()CS = O, }6 = 0)

Here x5 is called a surplus variable because it subtracts the surplus of the left-hand side
over the right-hand side to convert the inequality constraint to an equivalent equality
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constraint. Once this conversion is accomplished, the artificial variable is introduced just
as for any equality constraint.

After a slack variable x5 is introduced into the first constraint, an artificial variable
X4 is introduced into the second constraint, and the Big M method is applied, so the com-
plete artificial problem (in augmented form) is

Minimize Z=0.4x, + 0.5x, + MXx, + MXx,,

subject to 0.3x; + 0.1x, + x3 =27
0.5)(1 + 0.5)6'2 + }4 =6
0.6X1 + 0.4)6'2 — X5 + )_C6 =6
and x| = O, Xy = O, X3 = 0, ;4 = O, X5 = O, )_C6 = 0.

Note that the coefficients of the artificial variables in the objective function are +M, in-
stead of —M, because we now are minimizing Z. Thus, even though x, > 0 and/or x5 > 0
is possible for a feasible solution for the artificial problem, the huge unit penalty of +M
prevents this from occurring in an optimal solution.

As usual, introducing artificial variables enlarges the feasible region. Compare below
the original constraints for the real problem with the corresponding constraints on (xy, x5)
for the artificial problem.

Constraints on (xy, X») Constraints on (xy, X»)
for the Real Problem for the Artificial Problem
0.3)(1 + O.l.X'Q = 27 0.3.X1 + 0.1X2 = 27
0.5x; + 0.5x, =6 0.5x; + 0.5x, = 6 (= holds when x, = 0)
0.6x; + 0.4x, =6 No such constraint (except when xgs = 0)
x120, XQZO x120, X220

Introducing the artificial variable x4 to play the role of a slack variable in the second con-
straint allows values of (x, x,) below the 0.5x; + 0.5x, = 6 line in Fig. 4.5. Introducing
x5 and X into the third constraint of the real problem (and moving these variables to the
right-hand side) yields the equation

O.6x1 + O.4X2 =6+ X5 — }6'

Because both x5 and x4 are constrained only to be nonnegative, their difference x5 — x4
can be any positive or negative number. Therefore, 0.6x; + 0.4x, can have any value,
which has the effect of eliminating the third constraint from the artificial problem and al-
lowing points on either side of the 0.6x; + 0.4x, = 6 line in Fig. 4.5. (We keep the third
constraint in the system of equations only because it will become relevant again later, af-
ter the Big M method forces xg to be zero.) Consequently, the feasible region for the ar-
tificial problem is the entire polyhedron in Fig. 4.5 whose vertices are (0, 0), (9, 0),
(7.5, 4.5), and (0, 12).

Since the origin now is feasible for the artificial problem, the simplex method starts with
(0, 0) as the initial CPF solution, i.e., with (x;, xo, X3, X4, X5, Xs) = (0, 0, 2.7, 6, 0, 6) as the
initial BF solution. (Making the origin feasible as a convenient starting point for the simplex
method is the whole point of creating the artificial problem.) We soon will trace the entire
path followed by the simplex method from the origin to the optimal solution for both the ar-
tificial and real problems. But, first, how does the simplex method handle minimization?

Minimization
One straightforward way of minimizing Z with the simplex method is to exchange the
roles of the positive and negative coefficients in row O for both the optimality test and
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step 1 of an iteration. However, rather than changing our instructions for the simplex
method for this case, we present the following simple way of converting any minimiza-
tion problem to an equivalent maximization problem:

n
Minimizing Z= Z CiXj
Jj=1
is equivalent to
n
maximizing —7Z= Z(—cj)xj;
Jj=1

i.e., the two formulations yield the same optimal solution(s).

The two formulations are equivalent because the smaller Z is, the larger —Z is, so the
solution that gives the smallest value of Z in the entire feasible region must also give the
largest value of —Z in this region.

Therefore, in the radiation therapy example, we make the following change in the
formulation:

Minimize Z= 04x; + 0.5x,
— Maximize —7Z = —0.4x; — 0.5x,.

After artificial variables X, and X4 are introduced and then the Big M method is applied,
the corresponding conversion is

Minimize Z= 04x; +0.5x, + Mx4 + Mxq
N Maximize —7Z=—04x, — 0.5x, — Mx, — Mxs.

Solving the Radiation Therapy Example

We now are nearly ready to apply the simplex method to the radiation therapy example.
By using the maximization form just obtained, the entire system of equations is now

0) —Z + 0.4x; + 0.5x, + Mx, + Mxs=0
(1) 0.3x; + 0.1x, + x3 =27
2) 0.5x; + 0.5x, + X4 =6
3) 0.6x; + 0.4x, — x5 + Xx¢ =6.

The basic variables (x3, X4, X¢) for the initial BF solution (for this artificial problem) are
shown in bold type.

Note that this system of equations is not yet in proper form from Gaussian elimina-
tion, as required by the simplex method, since the basic variables X, and X4 still need to
be algebraically eliminated from Eq. (0). Because x, and xs both have a coefficient of M,
Eq. (0) needs to have subtracted from it both M times Eq. (2) and M times Eq. (3). The
calculations for all the coefficients (and the right-hand sides) are summarized below, where
the vectors are the relevant rows of the simplex tableau corresponding to the above sys-
tem of equations.

Row O:
[0.4, 05, 0, M, 0, M, 0]
—-M]J0.5, 0.5, O, 1, 0, 0, 6]
—M]JO0.6, 04, O, 0, -1, 1, 6]
New row 0 = [—1.1M + 0.4, —-09M + 0.5, O, 0, M, 0, —12M]

The resulting initial simplex tableau, ready to begin the simplex method, is shown at
the top of Table 4.12. Applying the simplex method in just the usual way then yields the
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TABLE 4.12 The Big M method for the radiation therapy example

Coefficient of:
Basic Right
Iteration Variable | Eq. | Z X1 X2 X3 Xa Xs X6 Side
V4 O |-1|-1T1M+04 -09M+0.5 0 0 M 0 —12M
0 X3 ) 0 0.3 0.1 1 0 0 0 2.7 |
X4 2) 0 0.5 0.5 0 1 0 0 6
Xe 3) 0 0.6 0.4 0 0 -1 1 6
16 11 11 4
V4 ) | -1 0 *%MJr% ?Mfg 0 M 0 —-2.1M - 3.6
1 10
1 Xq ) 0 1 3 3 0 0 0 9
_ 1 5
X4 2) 0 0 3 -3 1 0 0 1.5
Xe 3) 0 0 0.2 -2 0 -1 1 0.6
5 7 5 11 8 11
V4 ) | -1 0 0 7§M + 3 0 ng +— §M e —-0.5M — 4.7
20 5 5
5 X1 (1) 0 1 0 T 0 ? _E 8
_ 5 5 5
Xa (2) 0 0 0 ? 1 ? —§ 0.5
X5 3) 1 -10 0 -5 5 3
Z ) | -1 0 0 0.5 M—=1. 0 M -5.25
3 Xq ) 0 1 0 5 -1 0 0 7.5
Xs 2) 0 0 0 1 0.6 1 -1 0.3
X2 3) 0 0 1 -5 3 0 0 4.5

sequence of simplex tableaux shown in the rest of Table 4.12. For the optimality test and
the selection of the entering basic variable at each iteration, the quantities involving M
are treated just as discussed in connection with Table 4.11. Specifically, whenever M is
present, only its multiplicative factor is used, unless there is a tie, in which case the tie is
broken by using the corresponding additive terms. Just such a tie occurs in the last se-
lection of an entering basic variable (see the next-to-last tableau), where the coefficients
of x3 and x5 in row 0 both have the same multiplicative factor of —2. Comparing the ad-
ditive terms, ¢ < 7 leads to choosing xs as the entering basic variable.

Note in Table 4.12 the progression of values of the artificial variables x, and xs and
of Z. We start with large values, x4 = 6 and xg = 6, with Z = 12M (—Z = —12M). The
first iteration greatly reduces these values. The Big M method succeeds in driving X4 to
zero (as a new nonbasic variable) at the second iteration and then in doing the same to x,
at the next iteration. With both x4 = 0 and x4 = 0, the basic solution given in the last
tableau is guaranteed to be feasible for the real problem. Since it passes the optimality
test, it also is optimal.

Now see what the Big M method has done graphically in Fig. 4.6. The feasible re-
gion for the artificial problem initially has four CPF solutions—(0, 0), (9, 0), (0, 12), and
(7.5, 4.5)—and then replaces the first three with two new CPF solutions—(8, 3), (6, 6)—
after x4 decreases to xg = 0 so that 0.6x; + 0.4x, = 6 becomes an additional constraint.
(Note that the three replaced CPF solutions—(0, 0), (9, 0), and (0, 12)—actually were
corner-point infeasible solutions for the real problem shown in Fig. 4.5.) Starting with the
origin as the convenient initial CPF solution for the artificial problem, we move around
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¥ FIGURE 4.6

This graph shows the feasible
region and the sequence of
CPF solutions (©, ), @, ®)
examined by the simplex
method (with the Big M
method) for the artificial
problem that corresponds to
the real problem of Fig. 4.5.

=6+ 1.2M Constraints for the artificial problem:

0, 12) 0.3x; + 0.1x, = 2.7
0.5x; + 0.5x, = 6 (= holds when 1, = 0)
(0.6x; + 0.4x, = 6 when Xg = 0)

XIZO, XZEO ()?420, )2620)

This dark line segment is the feasible
region for the real problem
/ (.f4 = 0, )E6 = 0)

(7.5, 4.5) optimal

() \NZ =47 +05M

Z=36+21M
(D\
9,0 "

the boundary to three other CPF solutions—(9, 0), (8, 3), and (7.5, 4.5). The last of these
is the first one that also is feasible for the real problem. Fortuitously, this first feasible so-
lution also is optimal, so no additional iterations are needed.

For other problems with artificial variables, it may be necessary to perform additional
iterations to reach an optimal solution after the first feasible solution is obtained for the
real problem. (This was the case for the example solved in Table 4.11.) Thus, the Big M
method can be thought of as having two phases. In the first phase, all the artificial vari-
ables are driven to zero (because of the penalty of M per unit for being greater than zero)
in order to reach an initial BF solution for the real problem. In the second phase, all the
artificial variables are kept at zero (because of this same penalty) while the simplex method
generates a sequence of BF solutions for the real problem that leads to an optimal solu-
tion. The two-phase method described next is a streamlined procedure for performing these
two phases directly, without even introducing M explicitly.

The Two-Phase Method

For the radiation therapy example just solved in Table 4.12, recall its real objective
function

Real problem: Minimize Z = 0.4x; + 0.5x,.
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However, the Big M method uses the following objective function (or its equivalent in
maximization form) throughout the entire procedure:

Big M method: Minimize Z =04x, + 0.5x, + Mx, + MXxe.

Since the first two coefficients are negligible compared to M, the two-phase method is
able to drop M by using the following two objective functions with completely different
definitions of Z in turn.

Two-phase method:

Phase 1: Minimize Z=Xx4+ Xx¢ (until x4, = 0, xg = 0).
Phase 2: Minimize Z=0.4x; + 0.5x, (with x4, = 0, x¢ = 0).

The phase 1 objective function is obtained by dividing the Big M method objective func-
tion by M and then dropping the negligible terms. Since phase 1 concludes by obtaining
a BF solution for the real problem (one where x, = 0 and xg = 0), this solution is then
used as the initial BF solution for applying the simplex method to the real problem (with
its real objective function) in phase 2.

Before solving the example in this way, we summarize the general method.

Summary of the Two-Phase Method. Initialization: Revise the constraints of the
original problem by introducing artificial variables as needed to obtain an obvious initial
BF solution for the artificial problem.

Phase 1: The objective for this phase is to find a BF solution for the real problem.
To do this,

Minimize Z = ¥ artificial variables, subject to revised constraints.

The optimal solution obtained for this problem (with Z = 0) will be a BF solution for the
real problem.

Phase 2: The objective for this phase is to find an optimal solution for the real prob-
lem. Since the artificial variables are not part of the real problem, these variables can now
be dropped (they are all zero now anyway).'” Starting from the BF solution obtained at
the end of phase 1, use the simplex method to solve the real problem.

For the example, the problems to be solved by the simplex method in the respective
phases are summarized below.

Phase 1 Problem (Radiation Therapy Example):

Minimize Z = x4 + X,
subject to
0.3x; + 0.1x; + x3 =27
O.le + 0.5)62 + ;4 =6
0.6x; + 0.4x, —X5+x5 =6
and
)CIEO, X220, )C320, }420, )CSEO, 2620

Phase 2 Problem (Radiation Therapy Example):
Minimize Z = 0.4x; + 0.5x,,

'We are skipping over three other possibilities here: (1) artificial variables > 0 (discussed in the next subsec-
tion), (2) artificial variables that are degenerate basic variables, and (3) retaining the artificial variables as nonbasic
variables in phase 2 (and not allowing them to become basic) as an aid to subsequent postoptimality analysis.
Your IOR Tutorial allows you to explore these possibilities.
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subject to
0.3x1 + O.]X2 + X3 =27
O.5x1 + 0.5X2 =6
O.6.X'1 + 0.4X2 - X5 = 6
and
x120, .XZZO, X320, X5ZO.

The only differences between these two problems are in the objective function and in the
inclusion (phase 1) or exclusion (phase 2) of the artificial variables x, and xs. Without
the artificial variables, the phase 2 problem does not have an obvious initial BF solution.
The sole purpose of solving the phase 1 problem is to obtain a BF solution with x, = 0
and x¢ = 0 so that this solution (without the artificial variables) can be used as the initial
BF solution for phase 2.

Table 4.13 shows the result of applying the simplex method to this phase 1 problem.
[Row O in the initial tableau is obtained by converting Minimize Z = x4 + X to Maxi-
mize (—Z) = —x4 — X¢ and then using elementary row operations to eliminate the basic
variables x, and x4 from —Z + x4 + X¢ = 0.] In the next-to-last tableau, there is a tie for
the entering basic variable between x3 and xs, which is broken arbitrarily in favor of x;.
The solution obtained at the end of phase 1, then, is (x, x5, X3, X4, X5, X5) = (6, 6, 0.3, 0,
0, 0) or, after x, and x4 are dropped, (x, x,, X3, x5) = (6, 6, 0.3, 0).

TABLE 4.13 Phase 1 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right
Iteration Variable Eq. V4 Xq X2 X3 X4 Xs X6 Side
V4 0) =1 -1.1 -0.9 0 0 1 0 -12
0 X3 ) 0 0.3 0.1 1 0 0 0 2.7
X4 2) 0 0.5 0.5 0 1 0 0 6
Xe 3) 0 0.6 0.4 0 0 -1 1 6
16 11
V4 0) =1 0 30 3 0 1 0 -2.1
1 10
_ 1 5
X4 2) 0 0 3 -3 1 0 0 1.5
Xe 3) 0 0 0.2 -2 0 -1 1 0.6
5 5 8
V4 0) =1 0 0 -3 0 -3 3 -0.5
20 5 5
5 Xq (1) 0 1 0 T 0 ? *g 8
_ 5 5 5
X4 2) 0 0 0 3 1 3 -3 0.5
X 3) 0 0 1 -10 0 -5 5 3
V4 0) =1 0 0 0 1 0 1 0
3 Xq ) 1 0 0 -4 -5 5 6
X3 2) 0 0 0 1 % 1 -1 0.3
Xo 3) 0 0 1 0 6 5 -5 6
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As claimed in the summary, this solution from phase 1 is indeed a BF solution for the
real problem (the phase 2 problem) because it is the solution (after you set x5 = 0) to the
system of equations consisting of the three functional constraints for the phase 2 problem.
In fact, after deleting the x, and x, columns as well as row O for each iteration, Table 4.13
shows one way of using Gaussian elimination to solve this system of equations by reduc-
ing the system to the form displayed in the final tableau.

Table 4.14 shows the preparations for beginning phase 2 after phase 1 is completed.
Starting from the final tableau in Table 4.13, we drop the artificial variables (x; and X),
substitute the phase 2 objective function (—Z = —0.4x; — 0.5x, in maximization form)
into row 0, and then restore the proper form from Gaussian elimination (by algebraically
eliminating the basic variables x; and x, from row 0). Thus, row 0O in the last tableau is
obtained by performing the following elementary row operations in the next-to-last
tableau: from row 0 subtract both the product, 0.4 times row 1, and the product, 0.5 times
row 3. Except for the deletion of the two columns, note that rows 1 to 3 never change.
The only adjustments occur in row 0 in order to replace the phase 1 objective function by
the phase 2 objective function.

The last tableau in Table 4.14 is the initial tableau for applying the simplex method
to the phase 2 problem, as shown at the top of Table 4.15. Just one iteration then leads to
the optimal solution shown in the second tableau: (xq, x5, x3, x5) = (7.5, 4.5, 0, 0.3). This
solution is the desired optimal solution for the real problem of interest rather than the ar-
tificial problem constructed for phase 1.

Now we see what the two-phase method has done graphically in Fig. 4.7. Starting at
the origin, phase 1 examines a total of four CPF solutions for the artificial problem. The
first three actually were corner-point infeasible solutions for the real problem shown in
Fig. 4.5. The fourth CPF solution, at (6, 6), is the first one that also is feasible for the real
problem, so it becomes the initial CPF solution for phase 2. One iteration in phase 2 leads
to the optimal CPF solution at (7.5, 4.5).

TABLE 4.14 Preparing to begin phase 2 for the radiation therapy example

Coefficient of:
Basic Right
Variable | Eq. z Xq X2 X3 Xg X5 X¢ | Side
Z ©o | -11(0 0 0 1 0 1 0
Final Phase 1 l M U 0 0 -4 -5 5 6
tableau X3 @| olo o 1 % 1 -1 o3
X5 3) 0 1 0 6 5 -5 6
Z ©o | -11(0 0 0 0 0
Drob x. and x Xq ) 0|1 0 0 -5 6
rop Xs and % X3 @ olo o 1 1 03
X5 3) 0|0 1 0 5 6
Z © | -1 104 05 0 0 0
Substitute phase 2 Xq (1) 0|1 0 0 -5 6
objective function X3 2) 0|0 0 1 1 0.3
X5 3) 0|0 1 0 5 6
Z ©o | -11(0 0 0 -0.5 —-5.4
Restore proper form Xq m 0|1 0 0 -5 6
from Gaussian elimination X3 2) 0|0 0 1 1 0.3
X5 3) 0|0 1 0 5 6
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I TABLE 4.15 Phase 2 of the two-phase method for the radiation therapy example

Coefficient of:
Basic Right
Iteration Variable Eq. V4 X1 X2 X3 Xs Side
V4 0) -1 0 0 0 -0.5 —5.4
0 Xq M 0 1 0 0 -5 6
X3 ) 0 0 0 1 1 0.3
X5 3) 0 0 1 0 5 6
V4 0) -1 0 0 0.5 0 —5.25
1 Xq M 0 1 0 5 0 7.5
Xs ) 0 0 0 1 1 0.3
X5 3) 0 0 1 -5 0 4.5
X2

0, 12)

This dark line segment is the
feasible region for the real problem
(phase 2).

(7.5, 4.5) optimal

¥ FIGURE 4.7

This graph shows the

sequence of CPF solutions for

phase 1 (©, @, @, ®) and

then for phase 2 ([0], [1])

when the two-phase method

is applied to the radiation 0, 0)
therapy example.

9,0 "

If the tie for the entering basic variable in the next-to-last tableau of Table 4.13 had
been broken in the other way, then phase 1 would have gone directly from (8, 3) to (7.5,
4.5). After (7.5, 4.5) was used to set up the initial simplex tableau for phase 2, the optimality
test would have revealed that this solution was optimal, so no iterations would be done.

It is interesting to compare the Big M and two-phase methods. Begin with their ob-
jective functions.
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Big M Method:
Minimize Z =04x, + 0.5x, + Mx, + MXxe.
Two-Phase Method:

Phase 1: Minimize Z = X4+ Xe.
Phase 2: Minimize Z = 0.4x; + 0.5x,.

Because the Mx, and MXx¢ terms dominate the 0.4x; and 0.5x, terms in the objective func-
tion for the Big M method, this objective function is essentially equivalent to the phase 1
objective function as long as x, and/or X4 is greater than zero. Then, when both x; = 0
and xs = 0, the objective function for the Big M method becomes completely equivalent
to the phase 2 objective function.

Because of these virtual equivalencies in objective functions, the Big M and two-
phase methods generally have the same sequence of BF solutions. The one possible
exception occurs when there is a tie for the entering basic variable in phase 1 of the
two-phase method, as happened in the third tableau of Table 4.13. Notice that the first
three tableaux of Tables 4.12 and 4.13 are almost identical, with the only difference
being that the multiplicative factors of M in Table 4.12 become the sole quantities in
the corresponding spots in Table 4.13. Consequently, the additive terms that broke the
tie for the entering basic variable in the third tableau of Table 4.12 were not present
to break this same tie in Table 4.13. The result for this example was an extra iteration
for the two-phase method. Generally, however, the advantage of having the additive
factors is minimal.

The two-phase method streamlines the Big M method by using only the multiplica-
tive factors in phase 1 and by dropping the artificial variables in phase 2. (The Big M
method could combine the multiplicative and additive factors by assigning an actual huge
number to M, but this might create numerical instability problems.) For these reasons, the
two-phase method is commonly used in computer codes.

The Worked Examples section on the book’s website provides another example of
applying both the Big M method and the two-phase method to the same problem.

No Feasible Solutions

So far in this section we have been concerned primarily with the fundamental problem
of identifying an initial BF solution when an obvious one is not available. You have
seen how the artificial-variable technique can be used to construct an artificial problem
and obtain an initial BF solution for this artificial problem instead. Use of either the
Big M method or the two-phase method then enables the simplex method to begin its
pilgrimage toward the BF solutions, and ultimately toward the optimal solution, for the
real problem.

However, you should be wary of a certain pitfall with this approach. There may be
no obvious choice for the initial BF solution for the very good reason that there are no
feasible solutions at all! Nevertheless, by constructing an artificial feasible solution, there
is nothing to prevent the simplex method from proceeding as usual and ultimately re-
porting a supposedly optimal solution.

Fortunately, the artificial-variable technique provides the following signpost to indi-
cate when this has happened:

If the original problem has no feasible solutions, then either the Big M method or phase 1
of the two-phase method yields a final solution that has at least one artificial variable greater
than zero. Otherwise, they all equal zero.
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TABLE 4.16 The Big M method for the revision of the radiation therapy example that has no feasible solutions

Coefficient of:
Basic Right
Iteration Variable Eq. V4 X1 X2 X3 X4 Xs X6 Side
V4 0) =1 -1.1M+ 0.4 —-0.9M + 0.5 0 0 M 0 -12M
0 X3 ) 0 0.3 0.1 1 0 0 0 1.8
X4 2) 0 0.5 0.5 0 1 0 0 6
Xe 3) 0 0.6 0.4 0 0 -1 1 6
16 11 11 4
V4 0) =1 0 —3—M + 30 ?M -3 0 M 0 —54M - 2.4
1 10
_ 1 5
X4 2) 0 0 3 -3 1 0 0 3
Xe 3) 0.2 -2 0 -1 1 2.4
V4 0) =1 0 0 M+ 0.5 1.6M—1.1 M 0 -0.6M - 5.7
2 Xq ) 0 1 0 5 -1 0 0 3
X5 2) 0 0 1 -5 3 0 0 9
Xe 3) 0 0 0 -1 -0.6 -1 1 0.6

To illustrate, let us change the first constraint in the radiation therapy example (see
Fig. 4.5) as follows:

03x, +0.1x, =27 —  03x; +0.lx, = 1.8,

so that the problem no longer has any feasible solutions. Applying the Big M method just
as before (see Table 4.12) yields the tableaux shown in Table 4.16. (Phase 1 of the two-
phase method yields the same tableaux except that each expression involving M is re-
placed by just the multiplicative factor.) Hence, the Big M method normally would be
indicating that the optimal solution is (3, 9, 0, 0, 0, 0.6). However, since an artificial vari-
able Xg = 0.6 > 0, the real message here is that the problem has no feasible solutions.'®

Variables Allowed to Be Negative

In most practical problems, negative values for the decision variables would have no phys-
ical meaning, so it is necessary to include nonnegativity constraints in the formulations
of their linear programming models. However, this is not always the case. To illustrate,
suppose that the Wyndor Glass Co. problem is changed so that product 1 already is in
production, and the first decision variable x; represents the increase in its production rate.
Therefore, a negative value of x; would indicate that product 1 is to be cut back by that
amount. Such reductions might be desirable to allow a larger production rate for the new,
more profitable product 2, so negative values should be allowed for x; in the model.
Since the procedure for determining the leaving basic variable requires that all the
variables have nonnegativity constraints, any problem containing variables allowed to be
negative must be converted to an equivalent problem involving only nonnegative vari-
ables before the simplex method is applied. Fortunately, this conversion can be done. The

1Techniques have been developed (and incorporated into linear programming software) to analyze what causes
a large linear programming problem to have no feasible solutions so that any errors in the formulation can be
corrected. For example, see J. W. Chinneck: Feasibility and Infeasibility in Optimization: Algorithms and Com-
putational Methods, Springer Science + Business Media, New York, 2008.
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modification required for each variable depends upon whether it has a (negative) lower
bound on the values allowed. Each of these two cases is now discussed.

Variables with a Bound on the Negative Values Allowed. Consider any decision
variable x; that is allowed to have negative values which satisfy a constraint of the form

X = Lj,
where L; is some negative constant. This constraint can be converted to a nonnegativity
constraint by making the change of variables

xi=x;— L, so  x;=0.

Thus, x; + L; would be substituted for x; throughout the model, so that the redefined de-
cision variable x; cannot be negative. (This same technique can be used when L; is posi-
tive to convert a functional constraint x; = L; to a nonnegativity constraint x; = 0.)

To illustrate, suppose that the current production rate for product 1 in the Wyndor
Glass Co. problem is 10. With the definition of x; just given, the complete model at this
point is the same as that given in Sec. 3.1 except that the nonnegativity constraint x; = 0
is replaced by

X = —10.

To obtain the equivalent model needed for the simplex method, this decision variable
would be redefined as the total production rate of product 1

x;=x; + 10,

which yields the changes in the objective function and constraints as shown:

Z=3x; + 5x, Z = 3(x; — 10) + 5x, Z = —30+ 3x; + 5x,

X1 = 4 x; — 10 = 4 X =14
2w = 12 — 20, = 12 — 20, = 12

3x; + 2x, = 18 3(x; — 10) +2x, = 18 3x] + 2x, = 48

x; = —10, X =0 x; — 10 = —10, X =0 x1 =0, =0

Variables with No Bound on the Negative Values Allowed. In the case where
x; does not have a lower-bound constraint in the model formulated, another approach is
required: x; is replaced throughout the model by the difference of two new nonnegative
variables

—x;,  wherex; =0,x; =0.

Since x; and x; can have any nonnegative values, this difference x;” — x; can have any
value (positive or negative), so it is a legitimate substitute for x; in the model. But after
such substitutions, the simplex method can proceed with just nonnegative variables.

The new variables x; and x; have a simple interpretation. As explained in the next
paragraph, each BF solution for the new form of the model necessarily has the property
that either x;7 = 0 or x; = 0 (or both). Therefore, at the optimal solution obtained by the
simplex method (a BF solution),

_X-'— _ Xj if Xj = 0,
4 0 otherwise;
—_ | X;j | if Xj = 0,

X, = - .

J 0 otherwise;

so that x; represents the positive part of the decision variable x; and x; its negative part
(as suggested by the superscripts).
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For example, if x; = 10, the above expressions give xf = 10 and x; = 0. This same
value of x; = x;” — x; = 10 also would occur with larger values of x;” and x; such that
x; =x; + 10. Plotting these values of x;” and x; on a two-dimensional graph gives a
line with an endpoint at x;” = 10, x; = 0 to avoid violating the nonnegativity constraints.
This endpoint is the only corner-point solution on the line. Therefore, only this endpoint
can be part of an overall CPF solution or BF solution involving all the variables of the
model. This illustrates why each BF solution necessarily has either x;” = 0 or x; =0
(or both).

To illustrate the use of the x;” and x; , let us return to the example on the preceding
page where x; is redefined as the increase over the current production rate of 10 for prod-
uct 1 in the Wyndor Glass Co. problem.

However, now suppose that the x; = — 10 constraint was not included in the original
model because it clearly would not change the optimal solution. (In some problems, cer-
tain variables do not need explicit lower-bound constraints because the functional con-
straints already prevent lower values.) Therefore, before the simplex method is applied,
x; would be replaced by the difference

X =x7 —x1, where x;" =0, x7 =0,
as shown:
Maximize Z=3x; + 5x,, Maximize Z=3x] — 3x; + 5x,,
subject to Xy = 4 subject to x = x = 4
=12 | — 2, = 12
3x; + 2x, = 18 3x; —3x; +2x, =18
x> = 0 (only) xi =0, x; =0, % =0

From a computational viewpoint, this approach has the disadvantage that the new
equivalent model to be used has more variables than the original model. In fact, if all the
original variables lack lower-bound constraints, the new model will have twice as many
variables. Fortunately, the approach can be modified slightly so that the number of vari-
ables is increased by only one, regardless of how many original variables need to be re-
placed. This modification is done by replacing each such variable x; by

— ! I ! I
x=x— X', where x/ = 0, x" = 0,

instead, where x” is the same variable for all relevant j. The interpretation of x” in this
case is that —x” is the current value of the largest (in absolute terms) negative original
variable, so that xj’ is the amount by which x; exceeds this value. Thus, the simplex method
now can make some of the x; variables larger than zero even when x” > 0.

4.7 POSTOPTIMALITY ANALYSIS

We stressed in Secs. 2.3, 2.4, and 2.5 that postoptimality analysis—the analysis done
after an optimal solution is obtained for the initial version of the model—constitutes a
very major and very important part of most operations research studies. The fact that
postoptimality analysis is very important is particularly true for typical linear program-
ming applications. In this section, we focus on the role of the simplex method in per-
forming this analysis.

Table 4.17 summarizes the typical steps in postoptimality analysis for linear pro-
gramming studies. The rightmost column identifies some algorithmic techniques that
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TABLE 4.17 Postoptimality analysis for linear programming

Task Purpose Technique
Model debugging Find errors and weaknesses in model Reoptimization
Model validation Demonstrate validity of final model See Sec. 2.4
Final managerial Make appropriate division of organizational Shadow prices
decisions on resource resources between activities under study
allocations (the b; values) and other important activities
Evaluate estimates of Determine crucial estimates that may affect Sensitivity analysis
model parameters optimal solution for further study
Evaluate trade-offs Determine best trade-off Parametric linear
between model programming
parameters

involve the simplex method. These techniques are introduced briefly here with the tech-
nical details deferred to later chapters.

Reoptimization

As discussed in Sec. 3.6, linear programming models that arise in practice commonly are
very large, with hundreds, thousands, or even millions of functional constraints and deci-
sion variables. In such cases, many variations of the basic model may be of interest for
considering different scenarios. Therefore, after having found an optimal solution for one
version of a linear programming model, we frequently must solve again (often many times)
for the solution of a slightly different version of the model. We nearly always have to solve
again several times during the model debugging stage (described in Secs. 2.3 and 2.4), and
we usually have to do so a large number of times during the later stages of postoptimal-
ity analysis as well.

One approach is simply to reapply the simplex method from scratch for each new
version of the model, even though each run may require hundreds or even thousands of
iterations for large problems. However, a much more efficient approach is to reoptimize.
Reoptimization involves deducing how changes in the model get carried along to the final
simplex tableau (as described in Secs. 5.3 and 6.6). This revised tableau and the optimal
solution for the prior model are then used as the initial tableau and the initial basic
solution for solving the new model. If this solution is feasible for the new model, then
the simplex method is applied in the usual way, starting from this initial BF solution. If
the solution is not feasible, a related algorithm called the dual simplex method (described
in Sec. 7.1) probably can be applied to find the new optimal solution,'” starting from this
initial basic solution.

The big advantage of this reoptimization technique over re-solving from scratch is
that an optimal solution for the revised model probably is going to be much closer to the
prior optimal solution than to an initial BF solution constructed in the usual way for the
simplex method. Therefore, assuming that the model revisions were modest, only a few
iterations should be required to reoptimize instead of the hundreds or thousands that may
be required when you start from scratch. In fact, the optimal solutions for the prior and
revised models are frequently the same, in which case the reoptimization technique requires
only one application of the optimality test and no iterations.

""The one requirement for using the dual simplex method here is that the optimality test is still passed when ap-
plied to row O of the revised final tableau. If not, then still another algorithm called the primal-dual method can
be used instead.
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Shadow Prices

Recall that linear programming problems often can be interpreted as allocating resources
to activities. In particular, when the functional constraints are in = form, we interpreted
the b; (the right-hand sides) as the amounts of the respective resources being made
available for the activities under consideration. In many cases, there may be some lat-
itude in the amounts that will be made available. If so, the b; values used in the initial
(validated) model actually may represent management’s tentative initial decision on how
much of the organization’s resources will be provided to the activities considered in the
model instead of to other important activities under the purview of management. From
this broader perspective, some of the b; values can be increased in a revised model, but
only if a sufficiently strong case can be made to management that this revision would
be beneficial.

Consequently, information on the economic contribution of the resources to the mea-
sure of performance (Z) for the current study often would be extremely useful. The sim-
plex method provides this information in the form of shadow prices for the respective
resources.

The shadow price for resource i (denoted by yi) measures the marginal value of this re-
source, i.e., the rate at which Z could be increased by (slightly) increasing the amount of
this resource (b;) being made available.'®! The simplex method identifies this shadow
price by y;* = coefficient of the ith slack variable in row O of the final simplex tableau.

To illustrate, for the Wyndor Glass Co. problem,
Resource i = production capacity of Plant i (i = 1, 2, 3) being made available to the
two new products under consideration,
b; = hours of production time per week being made available in Plant i for

these new products.

Providing a substantial amount of production time for the new products would require
adjusting production times for the current products, so choosing the b; value is a difficult
managerial decision. The tentative initial decision has been

b, =4, by, = 12, b; = 18,

as reflected in the basic model considered in Sec. 3.1 and in this chapter. However, man-
agement now wishes to evaluate the effect of changing any of the b, values.

The shadow prices for these three resources provide just the information that man-
agement needs. The final tableau in Table 4.8 yields

¥yt = 0 = shadow price for resource 1,

V5 % = shadow price for resource 2,
¥4 = 1 = shadow price for resource 3.

With just two decision variables, these numbers can be verified by checking graphically
that individually increasing any b; by 1 indeed would increase the optimal value of Z by
y¥. For example, Fig. 4.8 demonstrates this increase for resource 2 by reapplying the

"®The increase in b; must be sufficiently small that the current set of basic variables remains optimal since this
rate (marginal value) changes if the set of basic variables changes.

"“In the case of a functional constraint in = or = form, its shadow price is again defined as the rate at which Z
could be increased by (slightly) increasing the value of b;, although the interpretation of b; now would normally
be something other than the amount of a resource being made available.
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¥ FIGURE 4.8

This graph shows that the
shadow price is y5 = 3 for
resource 2 for the Wyndor
Glass Co. problem. The two
dots are the optimal
solutions for b, = 12 or

b, = 13, and plugging these
solutions into the objective
function reveals that
increasing b, by 1 increases
Zbyys =3

X» A

3x1 + 2.X2 =18

Z=3x; + 5x,

2, =13>2=3(3) +5(5) =375 | oy 2 =
20, = 12->7 = 3(2) + 5(6) = 36 :

X1:4

graphical method presented in Sec. 3.1. The optimal solution, (2, 6) with Z = 36, changes

to (%, %) with Z = 37% when b, is increased by 1 (from 12 to 13), so that
1 3
* = = — — = —
ys =AZ 372 36 5

Since Z is expressed in thousands of dollars of profit per week, y5 = % indicates that
adding 1 more hour of production time per week in Plant 2 for these two new products
would increase their total profit by $1,500 per week. Should this actually be done? It de-
pends on the marginal profitability of other products currently using this production time.
If there is a current product that contributes less than $1,500 of weekly profit per hour of
weekly production time in Plant 2, then some shift of production time to the new prod-
ucts would be worthwhile.

We shall continue this story in Sec. 6.7, where the Wyndor OR team uses shadow
prices as part of its sensitivity analysis of the model.

Figure 4.8 demonstrates that y5 = 3 is the rate at which Z could be increased by
increasing b, slightly. However, it also demonstrates the common phenomenon that this
interpretation holds only for a small increase in b,. Once b, is increased beyond 18, the
optimal solution stays at (0, 9) with no further increase in Z. (At that point, the set of basic
variables in the optimal solution has changed, so a new final simplex tableau will be
obtained with new shadow prices, including y5 = 0.)

Now note in Fig. 4.8 why y7 = 0. Because the constraint on resource 1, x; = 4, is
not binding on the optimal solution (2, 6), there is a surplus of this resource. Therefore,
increasing b; beyond 4 cannot yield a new optimal solution with a larger value of Z.

By contrast, the constraints on resources 2 and 3, 2x, = 12 and 3x; + 2x, = 18, are
binding constraints (constraints that hold with equality at the optimal solution). Because
the limited supply of these resources (b, = 12, b3 = 18) binds Z from being increased fur-
ther, they have positive shadow prices. Economists refer to such resources as scarce goods,
whereas resources available in surplus (such as resource 1) are free goods (resources with
a zero shadow price).
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The kind of information provided by shadow prices clearly is valuable to management
when it considers reallocations of resources within the organization. It also is very helpful
when an increase in b; can be achieved only by going outside the organization to purchase
more of the resource in the marketplace. For example, suppose that Z represents profit and
that the unit profits of the activities (the ¢; values) include the costs (at regular prices)
of all the resources consumed. Then a positive shadow price of y* for resource i means
that the total profit Z can be increased by y7 by purchasing 1 more unit of this resource
at its regular price. Alternatively, if a premium price must be paid for the resource in the
marketplace, then y¥ represents the maximum premium (excess over the regular price) that
would be worth paying.?°

The theoretical foundation for shadow prices is provided by the duality theory de-
scribed in Chap. 6.

Sensitivity Analysis

When discussing the certainty assumption for linear programming at the end of Sec. 3.3,
we pointed out that the values used for the model parameters (the a;;, b;, and c; identified
in Table 3.3) generally are just estimates of quantities whose true values will not become
known until the linear programming study is implemented at some time in the future. A
main purpose of sensitivity analysis is to identify the sensitive parameters (i.e., those
that cannot be changed without changing the optimal solution). The sensitive parameters
are the parameters that need to be estimated with special care to minimize the risk of ob-
taining an erroneous optimal solution. They also will need to be monitored particularly
closely as the study is implemented. If it is discovered that the true value of a sensitive
parameter differs from its estimated value in the model, this immediately signals a need
to change the solution.

How are the sensitive parameters identified? In the case of the b;, you have just seen
that this information is given by the shadow prices provided by the simplex method. In
particular, if y* > 0, then the optimal solution changes if b; is changed, so b; is a sensitive
parameter. However, y;* = 0 implies that the optimal solution is not sensitive to at least
small changes in b;. Consequently, if the value used for b; is an estimate of the amount of
the resource that will be available (rather than a managerial decision), then the b; values
that need to be monitored more closely are those with positive shadow prices—especially
those with large shadow prices.

When there are just two variables, the sensitivity of the various parameters can be
analyzed graphically. For example, in Fig. 4.9, ¢; = 3 can be changed to any other value
from O to 7.5 without the optimal solution changing from (2, 6). (The reason is that any
value of ¢; within this range keeps the slope of Z = c;x; + 5x, between the slopes of the
lines 2x, = 12 and 3x; + 2x, = 18.) Similarly, if ¢, = 5 is the only parameter changed,
it can have any value greater than 2 without affecting the optimal solution. Hence, nei-
ther c; nor ¢, is a sensitive parameter. (The procedure called Graphical Method and Sen-
sitivity Analysis in IOR Tutorial enables you to perform this kind of graphical analysis
very efficiently.)

The easiest way to analyze the sensitivity of each of the a;; parameters graphically is
to check whether the corresponding constraint is binding at the optimal solution. Because
x; = 4 is not a binding constraint, any sufficiently small change in its coefficients
(a;; = 1, a;, = 0) is not going to change the optimal solution, so these are not sensitive
parameters. On the other hand, both 2x, = 12 and 3x; + 2x, = 18 are binding constraints,

2If the unit profits do not include the costs of the resources consumed, then y; represents the maximum fotal
unit price that would be worth paying to increase b;.
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¥ FIGURE 4.9

This graph demonstrates the
sensitivity analysis of ¢; and
¢, for the Wyndor Glass Co.
problem. Starting with the
original objective function
line [where ¢; =3, ¢, =5,
and the optimal solution is
(2, 6)], the other two lines
show the extremes of how
much the slope of the
objective function line can
change and still retain (2, 6)
as an optimal solution. Thus,
with ¢, = 5, the allowable
range for ¢; is 0 =< ¢ = 7.5.
With ¢; = 3, the allowable
range for ¢, is ¢c; = 2.

X2 A
10 [~

8_ Z:45:7.5X1+5.X2

=18 = +
Z=36=3x + 5% (or Z=18 = 3x; + 2x,)

(2, 6) optimal

Z =30 =0x; + 5x,

47 Feasible
| region
2 —
| | | [
0 2 4 6 Xy

so changing any one of their coefficients (a>; = 0, a, = 2, a3, = 3, az, = 2) is going to
change the optimal solution, and therefore these are sensitive parameters.

Typically, greater attention is given to performing sensitivity analysis on the b; and
¢; parameters than on the a;; parameters. On real problems with hundreds or thousands of
constraints and variables, the effect of changing one a; value is usually negligible, but
changing one b; or ¢; value can have real impact. Furthermore, in many cases, the a;;
values are determined by the technology being used (the a;; values are sometimes called
technological coefficients), so there may be relatively little (or no) uncertainty about their
final values. This is fortunate, because there are far more a;; parameters than b; and c; pa-
rameters for large problems.

For problems with more than two (or possibly three) decision variables, you cannot
analyze the sensitivity of the parameters graphically as was just done for the Wyndor Glass
Co. problem. However, you can extract the same kind of information from the simplex
method. Getting this information requires using the fundamental insight described in
Sec. 5.3 to deduce the changes that get carried along to the final simplex tableau as a re-
sult of changing the value of a parameter in the original model. The rest of the procedure
is described and illustrated in Secs. 6.6 and 6.7.

Using Excel to Generate Sensitivity Analysis Information

Sensitivity analysis normally is incorporated into software packages based on the simplex
method. For example, the Excel Solver will generate sensitivity analysis information upon
request. As was shown in Fig. 3.21, when the Solver gives the message that it has found
a solution, it also gives on the right a list of three reports that can be provided. By se-
lecting the second one (labeled “Sensitivity”) after solving the Wyndor Glass Co. problem,
you will obtain the sensitivity report shown in Fig. 4.10. The upper table in this report
provides sensitivity analysis information about the decision variables and their coefficients
in the objective function. The lower table does the same for the functional constraints and
their right-hand sides.
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¥ FIGURE 4.10

The sensitivity report
provided by the Excel Solver
for the Wyndor Glass Co.
problem.

Adjustable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease
$C$12  Batches Produced Doors 2 0 3,000 4,500 3,000
$D$12  Batches Produced Windows 6 0 5,000 TE+30 3,000
Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease
$ES7 Plant 1 Used 2 0 4 1E+30 2
$ES8 Plant 2 Used 12 1,500 12 6 6
$ES$9 Plant 3 Used 18 1,000 18 6 6

Look first at the upper table in this figure. The “Final Value” column indicates the
optimal solution. The next column gives the reduced costs. (We will not discuss these re-
duced costs now because the information they provide can also be gleaned from the rest
of the upper table.) The next three columns provide the information needed to identify the
allowable range for each coefficient c; in the objective function.

For any c;, its allowable range is the range of values for this coefficient over which the
current optimal solution remains optimal, assuming no change in the other coefficients.

The “Objective Coefficient” column gives the current value of each coefficient, and
then the next two columns give the allowable increase and the allowable decrease from
this value to remain within the allowable range. The spreadsheet model (Fig. 3.22) ex-
presses the profits per batch in units of dollars, whereas the c; in the algebraic version
of the linear programming model uses units of thousands of dollars, so the quantities
in all three of these columns need to be divided by 1000 to use the same units as the
¢;. Therefore,

3,000 — 3,000 _  _ 3,000 + 4,500

=C = s SO 056157.5
1,000 1,000

is the allowable range for ¢; over which the current optimal solution will stay optimal (as-
suming ¢, = 5), just as was found graphically in Fig. 4.9. Similarly, since Excel uses
1E + 30 (10) to represent infinity,

5,000 — 3.000 _  _ 5000 + o

=0 = s SO 2 = Co
1,000 1,000

is the allowable range for c,.

The fact that both the allowable increase and the allowable decrease are greater than
zero for the coefficient of both decision variables provides another useful piece of infor-
mation, as described below.

When the upper table in the sensitivity report generated by the Excel Solver indicates that
both the allowable increase and the allowable decrease are greater than zero for every ob-
jective coefficient, this is a signpost that the optimal solution in the “Final Value” column
is the only optimal solution. Conversely, having any allowable increase or allowable de-
crease equal to zero is a signpost that there are multiple optimal solutions. Changing the
corresponding coefficient a tiny amount beyond the zero allowed and re-solving provides
another optimal CPF solution for the original model.
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Now consider the lower table in Fig. 4.10 that focuses on sensitivity analysis for the
three functional constraints. The “Final Value” column gives the value of each constraint’s
left-hand side for the optimal solution. The next two columns give the shadow price and
the current value of the right-hand side (b;) for each constraint. (These shadow prices from
the spreadsheet model use units of dollars, so they need to be divided by 1000 to use the
same units of thousands of dollars as Z in the algebraic version of the linear program-
ming model.) When just one b; value is then changed, the last two columns give the al-
lowable increase or allowable decrease in order to remain within its allowable range.

For any b;, its allowable range is the range of values for this right-hand side over which
the current optimal BF solution (with adjusted values®' for the basic variables) remains
feasible, assuming no change in the other right-hand sides. A key property of this range
of values is that the current shadow price for b; remains valid for evaluating the effect on
Z of changing b; only as long as b; remains within this allowable range.

Thus, using the lower table in Fig. 4.10, combining the last two columns with the current
values of the right-hand sides gives the following allowable ranges:

2 =bh
6=b,=18
12 = b3y = 24.

This sensitivity report generated by the Excel Solver is typical of the sensitivity
analysis information provided by linear programming software packages. You will see in
Appendix 4.1 that LINDO and LINGO provide essentially the same report. MPL/CPLEX
does also when it is requested with the Solution File dialogue box. Once again, this informa-
tion obtained algebraically also can be derived from graphical analysis for this two-variable
problem. (See Prob. 4.7-1.) For example, when b, is increased from 12 in Fig. 4.8, the orig-
inally optimal CPF solution at the intersection of two constraint boundaries 2x, = b, and
3x; + 2x, = 18 will remain feasible (including x; = 0) only for b, = 18.

The Worked Examples section of the book’s website includes another example of
applying sensitivity analysis (using both graphical analysis and the sensitivity report). The
latter part of Chap. 6 also will delve into this type of analysis more deeply.

Parametric Linear Programming

Sensitivity analysis involves changing one parameter at a time in the original model to check
its effect on the optimal solution. By contrast, parametric linear programming (or para-
metric programming for short) involves the systematic study of how the optimal solution
changes as many of the parameters change simultaneously over some range. This study can
provide a very useful extension of sensitivity analysis, e.g., to check the effect of “corre-
lated” parameters that change together due to exogenous factors such as the state of the
economy. However, a more important application is the investigation of trade-offs in param-
eter values. For example, if the ¢; values represent the unit profits of the respective activi-
ties, it may be possible to increase some of the ¢; values at the expense of decreasing others
by an appropriate shifting of personnel and equipment among activities. Similarly, if the

2ISince the values of the basic variables are obtained as the simultaneous solution of a system of equations (the
functional constraints in augmented form), at least some of these values change if one of the right-hand sides
changes. However, the adjusted values of the current set of basic variables still will satisfy the nonnegativity
constraints, and so still will be feasible, as long as the new value of this right-hand side remains within its
allowable range. If the adjusted basic solution is still feasible, it also will still be optimal. We shall elaborate
further in Sec. 6.7.
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b; values represent the amounts of the respective resources being made available, it may be
possible to increase some of the b; values by agreeing to accept decreases in some of the
others. The analysis of such possibilities is discussed and illustrated at the end of Sec. 6.7.

In some applications, the main purpose of the study is to determine the most appro-
priate trade-off between two basic factors, such as costs and benefits. The usual approach
is to express one of these factors in the objective function (e.g., minimize total cost) and
incorporate the other into the constraints (e.g., benefits = minimum acceptable level), as
was done for the Nori & Leets Co. air pollution problem in Sec. 3.4. Parametric linear
programming then enables systematic investigation of what happens when the initial ten-
tative decision on the trade-off (e.g., the minimum acceptable level for the benefits) is
changed by improving one factor at the expense of the other.

The algorithmic technique for parametric linear programming is a natural extension
of that for sensitivity analysis, so it, too, is based on the simplex method. The procedure
is described in Sec. 7.2.

4.8 COMPUTER IMPLEMENTATION

If the electronic computer had never been invented, you probably would have never heard
of linear programming and the simplex method. Even though it is possible to apply the
simplex method by hand (perhaps with the aid of a calculator) to solve tiny linear pro-
gramming problems, the calculations involved are just too tedious to do this on a routine
basis. However, the simplex method is ideally suited for execution on a computer. It is
the computer revolution that has made possible the widespread application of linear pro-
gramming in recent decades.

Implementation of the Simplex Method

Computer codes for the simplex method now are widely available for essentially all
modern computer systems. These codes commonly are part of a sophisticated software
package for mathematical programming that includes many of the procedures described
in subsequent chapters (including those used for postoptimality analysis).

These production computer codes do not closely follow either the algebraic form or
the tabular form of the simplex method presented in Secs. 4.3 and 4.4. These forms can
be streamlined considerably for computer implementation. Therefore, the codes use in-
stead a matrix form (usually called the revised simplex method) that is especially well
suited for the computer. This form accomplishes exactly the same things as the algebraic
or tabular form, but it does this while computing and storing only the numbers that are
actually needed for the current iteration; and then it carries along the essential data in a
more compact form. The revised simplex method is described in Secs. 5.2 and 5.4.

The simplex method is used routinely to solve surprisingly large linear programming
problems. For example, powerful desktop computers (including workstations) commonly
are used to solve problems with hundreds of thousands, or even millions, of functional
constraints and a larger number of decision variables. Occasionally, successfully solved
problems have even tens of millions of functional constraints and decision variables.**
For certain special types of linear programming problems (such as the transportation,

22Do not try this at home. Attacking such a massive problem requires an especially sophisticated linear pro-
gramming system that uses the latest techniques for exploiting sparcity in the coefficient matrix as well as other
special techniques (e.g., crashing techniques for quickly finding an advanced initial BF solution). When prob-
lems are re-solved periodically after minor updating of the data, much time often is saved by using (or modi-
fying) the last optimal solution to provide the initial BF solution for the new run.
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assignment, and minimum cost flow problems to be described later in the book), even
larger problems now can be solved by specialized versions of the simplex method.

Several factors affect how long it will take to solve a linear programming problem by
the general simplex method. The most important one is the number of ordinary functional
constraints. In fact, computation time tends to be roughly proportional to the cube of this
number, so that doubling this number may multiply the computation time by a factor of
approximately 8. By contrast, the number of variables is a relatively minor factor.”® Thus,
doubling the number of variables probably will not even double the computation time.
A third factor of some importance is the density of the table of constraint coefficients (i.e.,
the proportion of the coefficients that are not zero), because this affects the computation
time per iteration. (For large problems encountered in practice, it is common for the den-
sity to be under 5 percent, or even under 1 percent, and this much “sparcity” tends to
greatly accelerate the simplex method.) One common rule of thumb for the number of it-
erations is that it tends to be roughly twice the number of functional constraints.

With large linear programming problems, it is inevitable that some mistakes and faulty
decisions will be made initially in formulating the model and inputting it into the com-
puter. Therefore, as discussed in Sec. 2.4, a thorough process of testing and refining the
model (model validation) is needed. The usual end product is not a single static model
that is solved once by the simplex method. Instead, the OR team and management typi-
cally consider a long series of variations on a basic model (sometimes even thousands of
variations) to examine different scenarios as part of postoptimality analysis. This entire
process is greatly accelerated when it can be carried out interactively on a desktop com-
puter. And, with the help of both mathematical programming modeling languages and im-
proving computer technology, this now is becoming common practice.

Until the mid-1980s, linear programming problems were solved almost exclusively
on mainframe computers. Since then, there has been an explosion in the capability of do-
ing linear programming on desktop computers, including personal computers as well as
workstations. Workstations, including some with parallel processing capabilities, now are
commonly used instead of mainframe computers to solve massive linear programming
models. The fastest personal computers are not lagging far behind, although solving huge
models usually requires additional memory.

Linear Programming Software Featured in This Book

A considerable number of excellent software packages for linear programming and its ex-
tensions now are available to fill a variety of needs. One leading package of this type is
Express-MP, a product of Dash Optimization (which now has joined Fair Isaac). Another
that is widely regarded to be a particularly powerful package for solving massive prob-
lems is CPLEX, a product of ILOG, Inc., located in Silicon Valley. Since 1988, CPLEX
has helped to lead the way in solving larger and larger linear programming problems. An
extensive research and development effort has enabled a series of upgrades with dramatic
increases in efficiency. CPLEX 11 released in 2007 provided another major improvement.
This software package frequently is capable of solving real linear programming problems
arising in industry with tens of millions of functional constraints and decision variables!
CPLEX often uses the simplex method and its variants (such as the dual simplex method
presented in Sec. 7.1) to solve these massive problems. In addition to the simplex method,
CPLEX also features some other powerful weapons for attacking linear programming
problems. One is a lightning-fast algorithm (referred to as the barrier algorithm) that uses
the interior-point approach introduced in Section 4.9. This algorithm can solve some huge

ZThis statement assumes that the revised simplex method described in Secs. 5.2 and 5.4 is being used.
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general linear programming problems that the simplex method cannot (and vice versa).
Another feature is the network simplex method (described in Sec. 9.7) that can solve
even larger special types of linear programming problems. CPLEX 11 also extends be-
yond linear programming by including state-of-the-art algorithms for integer program-
ming (Chap. 11) and quadratic programming (Sec. 12.7), as well as integer quadratic
programming.

We anticipate that these major improvements in the state-of-the-art optimization
software packages such as CPLEX will continue in the future as well. Continuing rapid
improvements in the speed of computers also will further accelerate the speedup of these
future software packages.

Because it often is used to solve really large problems, CPLEX normally is used in
conjunction with a mathematical programming modeling language. As described in
Sec. 3.7, modeling languages are designed for efficiently formulating large linear pro-
gramming models (and related models) in a compact way, after which a solver is called
upon to solve the model. Several of the prominent modeling languages support CPLEX as
a solver. ILOG also has introduced its own modeling language, called the Optimization
Programming Language (OPL), that can be used with CPLEX to form the OPL-CPLEX
Development System. (A trial version of that product is available at ILOG’s website,
www.ilog.com.)

As we mentioned in Sec. 3.7, the student version of CPLEX is included in your OR
Courseware as the main solver for the MPL modeling language. This version features the
simplex method for solving linear programming problems.

The student version of MPL in your OR Courseware also includes two other solvers
that are an alternative to CPLEX for solving both linear programming problems and in-
teger programming problems (discussed in Chap. 11). One is CoinMP, an open source
solver that can solve larger problems than the student version of CPLEX (which is lim-
ited to 300 constraints and variables). The other is LINDO.

LINDO (short for Linear, Interactive, and Discrete Optimizer) has an even longer
history than CPLEX in the realm of applications of linear programming and its exten-
sions. The easy-to-use LINDO interface is available as a subset of the LINGO optimiza-
tion modeling package from LINDO Systems, www.lindo.com. The long-time popularity
of LINDO is partially due to its ease of use. For “textbook-sized” problems, the model
can be entered and solved in an intuitive, straightforward manner, so the LINDO interface
provides a convenient tool for students to use. Although easy to use for small models,
LINDO/LINGO can also solve large models, e.g., the largest version has solved real prob-
lems with 4 million variables and 2 million constraints.

The OR Courseware provided on this book’s website contains a student version
of LINDO/LINGO, accompanied by an extensive tutorial. Appendix 4.1 provides a
quick introduction. Additionally, the software contains extensive online help. The OR
Courseware also contains LINGO/LINDO formulations for the major examples used
in the book.

Spreadsheet-based solvers are becoming increasingly popular for linear program-
ming and its extensions. Leading the way are the solvers produced by Frontline Systems
for Microsoft Excel and other spreadsheet packages. In addition to the basic solver
shipped with these packages, more powerful Premium Solver products also are available.
Because of the widespread use of spreadsheet packages such as Microsoft Excel today,
these solvers are introducing large numbers of people to the potential of linear pro-
gramming for the first time. For textbook-sized linear programming problems (and con-
siderably larger problems as well), spreadsheets provide a convenient way to formulate
and solve the model, as described in Sec. 3.5. The more powerful spreadsheet solvers
can solve fairly large models with many thousand decision variables. However, when the
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spreadsheet grows to an unwieldy size, a good modeling language and its solver may
provide a more efficient approach to formulating and solving the model.

Spreadsheets provide an excellent communication tool, especially when dealing
with typical managers who are very comfortable with this format but not with the al-
gebraic formulations of OR models. Therefore, optimization software packages and
modeling languages now can commonly import and export data and results in a spread-
sheet format. For example, the MPL modeling language now includes an enhancement
(called the OptiMax 2000 Component Library) that enables the modeler to create the
feel of a spreadsheet model for the user of the model while still using MPL to formu-
late the model very efficiently. (The student version of OptiMax 2000 is included in
your OR Courseware.)

Premium Solver for Education is one of the Excel add-ins included on the book’s
website. You can install this add-in to obtain more functionality than with the standard
Excel Solver.

Consequently, all the software, tutorials, and examples packed on the book’s website
are providing you with several attractive software options for linear programming.

Available Software Options for Linear Programming

1. Demonstration examples (in OR Tutor) and both interactive and automatic procedures
in IOR Tutorial for efficiently learning the simplex method.
2. Excel and its Premium Solver for formulating and solving linear programming mod-
els in a spreadsheet format.
. MPL/CPLEX for efficiently formulating and solving large linear programming models.
4. LINGO and its solver (shared with LINDO) for an alternative way of efficiently for-
mulating and solving large linear programming models.

w

Your instructor may specify which software to use. Whatever the choice, you will be gain-
ing experience with the kind of state-of-the-art software that is used by OR professionals.

4.9 THE INTERIOR-POINT APPROACH TO SOLVING
LINEAR PROGRAMMING PROBLEMS

The most dramatic new development in operations research during the 1980s was the
discovery of the interior-point approach to solving linear programming problems. This
discovery was made in 1984 by a young mathematician at AT&T Bell Laboratories,
Narendra Karmarkar, when he successfully developed a new algorithm for linear pro-
gramming with this kind of approach. Although this particular algorithm experienced
only mixed success in competing with the simplex method, the key solution concept de-
scribed below appeared to have great potential for solving huge linear programming prob-
lems beyond the reach of the simplex method. Many top researchers subsequently worked
on modifying Karmarkar’s algorithm to fully tap this potential. Much progress has been
made (and continues to be made), and a number of powerful algorithms using the interior-
point approach have been developed. Today, the more powerful software packages that are
designed for solving really large linear programming problems (such as CPLEX) include
at least one algorithm using the interior-point approach along with the simplex method and
its variants. As research continues on these algorithms, their computer implementations
continue to improve. This has spurred renewed research on the simplex method, and its
computer implementations continue to improve as well. The competition between the two
approaches for supremacy in solving huge problems is continuing.

Now let us look at the key idea behind Karmarkar’s algorithm and its subsequent vari-
ants that use the interior-point approach.
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The Key Solution Concept

Although radically different from the simplex method, Karmarkar’s algorithm does share
a few of the same characteristics. It is an iterative algorithm. It gets started by identify-
ing a feasible trial solution. At each iteration, it moves from the current trial solution to
a better trial solution in the feasible region. It then continues this process until it reaches
a trial solution that is (essentially) optimal.

The big difference lies in the nature of these trial solutions. For the simplex method,
the trial solutions are CPF solutions (or BF solutions after augmenting), so all movement
is along edges on the boundary of the feasible region. For Karmarkar’s algorithm, the trial
solutions are interior points, i.e., points inside the boundary of the feasible region. For this
reason, Karmarkar’s algorithm and its variants are referred to as interior-point algorithms.

However, because of an early patent obtained on an early version of an interior-point
algorithm, such an algorithm also is commonly referred to as a barrier algorithm (or
barrier method). The term barrier is used because, from the perspective of a search whose
trial solutions are interior points, each constraint boundary is treated as a barrier. Most
optimization software packages now use the barrier terminology when referring to their
solver option that is based on the interior-point approach. Both CPLEX and LINDO API
include a “barrier algorithm” that can be used to solve either linear programming prob-
lems or quadra