# AC -5.05.2018 Item No. 4.52



# Program Structure for TE Electrical Engineering University of Mumbai (With Effect from 2018-19)

# Scheme for Semester VI

| Course Code | Course Name                              | Teaching Scheme<br>(Contact Hours) |           |          | Credits Assigned |           |          |       |
|-------------|------------------------------------------|------------------------------------|-----------|----------|------------------|-----------|----------|-------|
|             |                                          | Theory                             | Practical | Tutorial | Theory           | Practical | Tutorial | Total |
| EEC601      | Protection and Switchgear<br>Engineering | 3                                  | -         | -        | 3                | -         | -        | 3     |
| EEC602      | Electrical Machines - IV                 | 4                                  | -         | -        | 4                | -         | -        | 4     |
| EEC603      | Signal processing                        | 3                                  | -         | 1        | 3                | -         | 1        | 4     |
| EEC604      | Microcontroller and its Applications     | 4                                  | -         | -        | 4                | -         | -        | 4     |
| EEC605      | Control System - II                      | 4                                  | -         | -        | 4                | -         | -        | 4     |
| EEDLO602X   | Department Level Optional Course-II      | 3                                  | -         | 1        | 3                | -         | 1        | 4     |
| EEL601      | Electrical Protection Lab                | -                                  | 2         | -        | -                | 1         | -        | 1     |
| EEL602      | Electrical Machines Lab - IV             | -                                  | 2         | -        | -                | 1         | -        | 1     |
| EEL603      | Microcontroller Lab                      | -                                  | 2         | -        | -                | 1         | -        | 1     |
| EEL604      | Simulation Lab – II                      | -                                  | 2         | -        | -                | 1         | -        | 1     |
| Total       |                                          | 21                                 | 8         | 2        | 21               | 4         | 2        | 27    |

# Examination Scheme for Semester VI

|                |                                          | Examination Scheme |              |                  |              |              |              |              |              |              |              |              |              |       |
|----------------|------------------------------------------|--------------------|--------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|
|                |                                          | Theory             |              |                  |              | Practical    |              |              |              |              |              |              |              |       |
| Course<br>Code | Course Name                              | External<br>(UA)   |              | Internal<br>(CA) |              |              |              | Term Work    |              | Oral         |              | Pract./Oral  |              | Total |
|                |                                          | Max<br>Marks       | Min<br>Marks | Max<br>Marks     | Min<br>Marks | Max<br>Marks | Min<br>Marks | Max<br>Marks | Min<br>Marks | Max<br>Marks | Min<br>Marks | Max<br>Marks | Min<br>Marks | Marks |
| EEC601         | Protection and Switchgear<br>Engineering | 80                 | 32           | 20               | 8            | -            | -            | -            | -            | -            | -            | -            | -            | 100   |
| EEC602         | Electrical Machines - IV                 | 80                 | 32           | 20               | 8            | -            | -            | -            | -            | -            | -            | -            | -            | 100   |
| EEC603         | Signal processing                        | 80                 | 32           | 20               | 8            | 25           | 10           | -            | -            | -            | -            | -            | -            | 125   |
| EEC604         | Microcontroller and its Applications     | 80                 | 32           | 20               | 8            | -            | -            | -            | -            | -            | -            | -            | -            | 100   |
| EEC605         | Control System - II                      | 80                 | 32           | 20               | 8            | -            | -            | -            | -            | -            | -            | -            | -            | 100   |
| EEDLO602<br>X  | Department Level Optional<br>Course-II   | 80                 | 32           | 20               | 8            | 25           | 10           | -            | -            | -            | -            | -            | -            | 125   |
| EEL601         | Electrical Protection Lab                | -                  | -            | -                | -            | 25           | 10           | -            | -            | 25           | 10           | -            | -            | 50    |
| EEL602         | Electrical Machines Lab - IV             | -                  | -            | -                | -            | 25           | 10           | -            | -            | -            | -            | 25           | 10           | 50    |
| EEL603         | Microcontroller Lab                      | -                  | -            | -                | -            | 25           | 10           | -            | -            | _            | -            | 25           | 10           | 50    |
| EEL604         | Simulation Lab – II                      | -                  | -            | -                | -            | 25           | 10           | -            | -            | 25           | 10           | -            | -            | 50    |
|                | Total                                    | 480                | -            | 120              | -            | 150          | -            | -            | -            | 50           | -            | 50           | -            | 850   |

# List of Department Level Optional Courses

| <b>Course Code</b> | Department Level Optional Course - I |
|--------------------|--------------------------------------|
| EEDLO5011          | Communication Engineering            |
| EEDLO5012          | Renewable Energy and Energy Storage  |
| EEDLO5013          | Utilization of Electrical Energy     |

| <b>Course Code</b> | Department Level Optional Course - II |
|--------------------|---------------------------------------|
| EEDLO6021          | Digital Communication Engineering     |
| EEDLO6022          | Micro-grid                            |
| EEDLO6023          | Advanced Power Electronics            |

| University of Mumbai |                                                                  |                     |                       |                  |          |       |  |  |  |  |  |
|----------------------|------------------------------------------------------------------|---------------------|-----------------------|------------------|----------|-------|--|--|--|--|--|
| Course<br>Code       | Course Name                                                      | Teaching<br>(Contac | g Scheme<br>et Hours) | Credits Assigned |          |       |  |  |  |  |  |
|                      |                                                                  | Theory              | Tutorial              | Theory           | Tutorial | Total |  |  |  |  |  |
| <b>EEC601</b>        | Protection and<br>Switchgear Engineering<br>(abbreviated as PSE) | 3                   | -                     | 3                | -        | 3     |  |  |  |  |  |

| Course<br>code |                | Examination Scheme |           |      |      |          |      |       |  |  |
|----------------|----------------|--------------------|-----------|------|------|----------|------|-------|--|--|
|                | Course Name    |                    |           |      |      |          |      |       |  |  |
|                |                | Interna            | al Assess | ment | End  | Exam     | Term | Total |  |  |
|                |                | Test 1             | Test 2    | Avg. | Sem. | Duration | Work | Total |  |  |
|                |                |                    |           |      | Exam | (Hrs.)   |      |       |  |  |
|                | Protection and |                    |           |      |      |          |      |       |  |  |
| EEC601         | Switchgear     | 20                 | 20        | 20   | 80   | 03       | -    | 100   |  |  |
|                | Engineering    |                    |           |      |      |          |      |       |  |  |

| Course     | • To impart basic knowledge of power system protection, substation        |
|------------|---------------------------------------------------------------------------|
| Objectives | equipment and protection schemes.                                         |
|            | Students will be able                                                     |
|            | • To select the appropriate switching/protecting device for substations.  |
|            | • To discriminate between the application of circuit breaker and fuses as |
|            | a protective device.                                                      |
| Course     | • To understand the basic concept of relay, types of relay and their      |
| Outcomes   | applications in power system.                                             |
|            | • To select the specific protection required for different components of  |
|            | power system according to the type of fault.                              |
|            | • To apply the specific protection provided for different types of        |
|            | transmission lines.                                                       |

| Module | Contents                                                                     | Hours |
|--------|------------------------------------------------------------------------------|-------|
| 1      | Substation Equipment and switching devices                                   | 03    |
|        | Substation Equipment:                                                        |       |
|        | Switchgear-Definition, Types, Location of switchgear in typical power system |       |
|        | Switching Devices:- Isolator & Earthing switch (Requirements &               |       |
|        | definitions, types and construction, Pantograph Isolators, Ratings),         |       |
|        | Contactors: Basic working principle, Terms & Definitions, contactors as      |       |
|        | starters for motors, rated characteristics/ Utilization categories of        |       |
|        | contactors,                                                                  |       |
| 2      | Circuit Breakers and Fuses:                                                  | 09    |
|        | Circuit Breaker:                                                             |       |
|        | Arc initiation, arc quenching principles, Restriking voltage, RRRV,          |       |
|        | Recovery voltage, Types of Circuit Breakers: MCB, MCCB, ELCB, air            |       |
|        | circuit breakers, oil circuit breakers, SF6 circuit breakers, vacuum circuit |       |
|        | breakers (working principle, Construction, operating mechanisms,             |       |
|        | ratings & applications), Mechanical life, Electrical life and testing of     |       |
|        | circuit breakers.                                                            |       |
|        | HRC Fuses & their applications-Introduction, types of devices with           |       |

|   | fuse, definitions, construction, fuse link of HRC fuse, Action of HRC                                             |     |
|---|-------------------------------------------------------------------------------------------------------------------|-----|
|   | fuse, shape of fuse element, specification of a fuse link, characteristics                                        |     |
|   | of fuse, cut-off, classification & categories, selection of fuse links, fuse                                      |     |
|   | for protection of motor, discrimination, fuse for protection of radial                                            |     |
|   | lines/meshed feeders, equipment incorporating fuses, high voltage                                                 |     |
|   | current limiting fuses, expulsion type high voltage fuses, drop out fuse.                                         |     |
| 3 | <b>Introduction to Protective relaying:</b> About protective relaying Shunt                                       | 09  |
| 5 | & Series Faults, causes and Effects of faults. Importance of protective                                           | 07  |
|   | relaying Protective zones primary & Back-up protection Back-up                                                    |     |
|   | protection by time grading principle desirable qualities of protective                                            |     |
|   | relaying some terms in protective relaying Distinction between relay                                              |     |
|   | unit, protective scheme and Protective system. Actuating quantities.                                              |     |
|   | Thermal Relays, Electromechanical relays and static relays, Power line                                            |     |
|   | carrier channel, programmable relays, system security, role of engineers.                                         |     |
|   | <b>Electromagnetic relays</b> - Introduction, basic connections of relay.                                         |     |
|   | Auxiliary switch, sealing and auxiliary relays, measurement in relays,                                            |     |
|   | Pick up, drop off. Attracted armature & induction disc relays. Thermal,                                           |     |
|   | bimetal relays, Frequency relays, under/over voltage relays, DC relays,                                           |     |
|   | All or nothing relays.                                                                                            |     |
|   | Different Principles of protection - Over current & earth fault (non-                                             |     |
|   | directional & directional types), differential protection, distance                                               |     |
|   | protection (Working Principle of Impedance relay, Causes and remedies                                             |     |
|   | of Over reach-under reach, Reactance and Mho relay, Power swing                                                   |     |
|   | blocking relay).                                                                                                  |     |
| 4 | Protection Schemes Provided for major Apparatus:                                                                  | 06  |
|   | Generators - Stator side (Differential, Restricted Earth fault, protection                                        |     |
|   | for 100% winding, Negative phase sequence, Reverse power, turn-turn                                               |     |
|   | fault), Rotor side (Field suppression, field failure, Earth fault, turn to                                        |     |
|   | turn fault)                                                                                                       |     |
|   | Transformers-Differential protection for star delta Transformer,                                                  |     |
|   | Harmonic restraint relay, REF protection, Protection provided for                                                 |     |
|   | incipient faults (Gas actuated relay).                                                                            |     |
|   | <b>Induction motors</b> - Protection of motor against over load, short circuit,                                   |     |
|   | earth fault, single phasing, unbalance, locked rotor, phase reversal, under                                       |     |
|   | voltage, winding temperature.                                                                                     |     |
| 5 | Protection of Transmission Lines:                                                                                 | 05  |
|   | Feeder protection - Time grading, current grading, combined time &                                                |     |
|   | current grading protection provided for Radial, Ring Main, Parallel, T-                                           |     |
|   | Feeder.                                                                                                           |     |
|   | Bus Zone Protection - Differential protection provided for different                                              |     |
|   | types of bus zones.                                                                                               |     |
|   | LV, MV, HV Transmission Lines - Protection provided by over current,                                              |     |
|   | earth fault, Differential and Stepped distance protection.                                                        |     |
|   | EHV & UHV Transmission lines - Need for auto-reclosure schemes,                                                   |     |
|   | Carrier aided distance protection (Directional comparison method),                                                |     |
| ( | Fower Line Carrier Current protection (Phase comparison method).                                                  | 0.4 |
| 6 | Introduction to Static & Numerical Kelays:<br>Statia Dalaya Introduction Definition Advantages and Disc durations | 04  |
|   | Application of on apple logic setes DSD in static disited Delever                                                 |     |
|   | Application of op-amps, logic gates, DSP, in static/ digital Relays.                                              |     |
|   | $\kappa$ relays as comparators (Amphude & phase), Distance relays as                                              |     |

| comparators.                                                           |  |
|------------------------------------------------------------------------|--|
| Numerical Relays- Introduction, Block diagram of numerical relay,      |  |
| Signal sampling, Anti –Aliasing Filter, Introduction to the concept of |  |
| Phase Measurement Unit                                                 |  |

#### **Text Books:**

- 1. Switchgear & Protection by Sunil.S.Rao, Khanna Publications
- 2. Power system Protection & Switchgear by Badriram Vishwakarma, TMH
- 3. Power System Protection And Switchgear by Bhuvanesh A O, Nirmal CN, Rashesh PM, Vijay HM, Mc Graw Hill

### **Reference Books:**

- 1. Fundamentals of protection by Paithanker & Bhide.S.R, P.H.I
- 2. Static Relays by Madhava Rao, TMH

3. A text book on Power System Engineering by Soni, Gupta, Bhatnagar & Chakraborthi, Dhanpat Rai & Co

- 4. Protective Relaying by Lewis Blackburn, Thomas.J.Domin
- 5. Power System Protection by P.M.Anderson, Wiley Interscience

\*6. A Web Course on Digital protection of power system by Prof. Dr. S.A.Soman, IIT Bombay.

\*7. Modern Power System Protection – DivyeshOza, TMH Publication

### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| University of Mumbai |                                                         |                     |                       |                  |          |       |  |  |  |  |  |
|----------------------|---------------------------------------------------------|---------------------|-----------------------|------------------|----------|-------|--|--|--|--|--|
| Course<br>Code       | Course Name                                             | Teaching<br>(Contac | g Scheme<br>et Hours) | Credits Assigned |          |       |  |  |  |  |  |
|                      |                                                         | Theory              | Tutorial              | Theory           | Tutorial | Total |  |  |  |  |  |
| EEC602               | Electrical Machines -IV<br>(abbreviated as EMC -<br>IV) | 4                   | -                     | 4                | -        | 4     |  |  |  |  |  |

| Course | Course Name                | Examination Scheme |           |      |      |          |      |       |  |  |
|--------|----------------------------|--------------------|-----------|------|------|----------|------|-------|--|--|
|        |                            |                    |           |      |      |          |      |       |  |  |
|        |                            | Interna            | al Assess | ment | End  | Exam     | Term | Total |  |  |
| coue   |                            | Test 1             | Test 2    | Ava  | Sem. | Duration | Work | Total |  |  |
|        |                            | Test I             | Test 2    | Avg. | Exam | (Hrs.)   |      |       |  |  |
| EEC602 | Electrical<br>Machines -IV | 20                 | 20        | 20   | 80   | 03       | -    | 100   |  |  |

| Course<br>Objectives | <ul> <li>To impart knowledge of performance and operation of synchronous machine.</li> <li>To study working, control and applications of brushless motor.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Outcomes   | <ul> <li>Students will be able</li> <li>To determine the performance parameters of synchronous machines graphically and analytically by conducting different test.</li> <li>To analyse the performance parameters of synchronous machines.</li> <li>To understand the concept of direct and quadrature axis parameters of synchronous machines.</li> <li>To understand and analyse the operation of synchronous motor.</li> <li>To analyse abc to dq0 transformation and steady state operation of synchronous machine.</li> <li>To understand the operation and analyse control of BLDC motors.</li> </ul> |

| Module | Contents                                                                    | Hours |
|--------|-----------------------------------------------------------------------------|-------|
| 1      | Synchronous Generator: Construction, E.M.F. equation, Winding               | 12    |
|        | factors, Armature reaction, Phasor diagrams for cylindrical rotor           |       |
|        | generator, Voltage regulation, No load (OC) and SC test, Voltage            |       |
|        | regulation methods: EMF; MMF; ZPF; ASA; Saturated Synchronous               |       |
|        | Reactance.                                                                  |       |
| 2      | Performance of Synchronous Generator: Power flow equations and              | 08    |
|        | maximum power conditions, Need for parallel operation and conditions,       |       |
|        | Effect of variation of field current and prime mover input on parallel      |       |
|        | operation, Concept of infinite bus, Effect of variation of field current on |       |
|        | alternator connected to infinite bus, Numericals on parallel operation      |       |
| 3      | Salient pole synchronous generator: Concept of direct and quadrature        | 05    |
|        | reactance, Blondel's two reaction theory, Phasor diagram of salient pole    |       |
|        | machine, Power angle characteristics, Synchronising power and torque.       |       |
| 4      | Synchronous Motor: Principle of operation, Self starting methods,           | 12    |
|        | Phasor diagram, Load angle ( $\delta$ ), Power flow equations and maximum   |       |
|        | power conditions, Effect of change in excitation and mechanical power       |       |
|        | on performance of motor, V and Inverted V curves, Power factor              |       |
|        | control, Hunting, Excitation and power circles, Measurement of $X_d$ and    |       |

|   | X <sub>q</sub> by slip test, Starting against high torques            |    |  |  |  |  |
|---|-----------------------------------------------------------------------|----|--|--|--|--|
| 5 | Theory of Synchronous Machines: Ideal synchronous machine,            | 06 |  |  |  |  |
|   | Transformation to direct and quadrature axis variables, basic machine |    |  |  |  |  |
|   | relations in dq0 variables, Steady state analysis.                    |    |  |  |  |  |
| 6 | BLDC Motor: Classification, Construction, Electronic commutation,     | 05 |  |  |  |  |
|   | Principal of operation, Microprocessor/DSP based control scheme of    |    |  |  |  |  |
|   | BLDC motor (block diagram and flow chart), Sensor less control,       |    |  |  |  |  |
|   | Comparison with DC motor, Applications.                               |    |  |  |  |  |

### **Text Books:**

- 1. Bimbhra P.S., Electric Machinery, Khanna Publisher,
- 2. Bimbhra P.S., Generalized Machine Theory, Khanna Publisher,
- 3. V. K. Mehta, Principles of Electrical Machines, S Chand Publication
- 4. E.G.Janardanan, Special Electrical Machines, PHI Publisher, 2016.
- 5. K. Venkataratnam, Special Electrical Machines, University Press, 2016.

### **Reference Books:**

- 1. Ashfaq Husain, Electric Machines, Dhanpat Rai and co. publications
- 2. A.E. Fitzgerald, Kingsly, Stephen., Electric Machinery, Tata McGraw Hill

### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| University of Mumbai |                                          |                                           |          |                  |          |       |  |  |
|----------------------|------------------------------------------|-------------------------------------------|----------|------------------|----------|-------|--|--|
| Course<br>Code       | Course Name                              | Course NameTeaching Scheme(Contact Hours) |          | Credits Assigned |          |       |  |  |
|                      |                                          | Theory                                    | Tutorial | Theory           | Tutorial | Total |  |  |
| <b>EEC603</b>        | Signal Processing<br>(abbreviated as SP) | 3                                         | 1        | 3                | 1        | 4     |  |  |

| Course |                   | Examination Scheme  |        |      |      |          |      |       |
|--------|-------------------|---------------------|--------|------|------|----------|------|-------|
|        | Course Name       |                     |        |      |      |          |      |       |
|        |                   | Internal Assessment |        |      | End  | Exam     | Term | Total |
| coue   |                   | Test 1              | Test 2 | Aug  | Sem. | Duration | Work | Total |
|        |                   | Test I Ie           | Test Z | Avg. | Exam | (Hrs.)   |      |       |
| EEC603 | Signal Processing | 20                  | 20     | 20   | 80   | 03       | 25   | 125   |

| Course<br>Objectives | • To impart knowledge on continuous and discrete time signals.          |
|----------------------|-------------------------------------------------------------------------|
|                      | Students will be able                                                   |
|                      | • To discriminate continuous and discrete time signals and systems.     |
| C                    | • To understand the transformation of discrete time signal to Z domain. |
| Course               | • To analyse frequency response of systems using Z domain.              |
| Outcomes             | • To understand discrete and fast Fourier transform.                    |
|                      | • To design FIR system.                                                 |
|                      | • To design IIR System.                                                 |

| Module | Contents                                                                   | Hours |
|--------|----------------------------------------------------------------------------|-------|
| 1      | Introduction                                                               | 06    |
|        | Classification of Signal and System:                                       |       |
|        | Definition and classification of continuous and discrete signals. Standard |       |
|        | signals, periodic/non periodic, Even and odd, Energy and power signal,     |       |
|        | Sampling Theorem (Derivation is not Required), Basic operations on         |       |
|        | signal (Folding, Scaling and Time shifting). Definition and classification |       |
|        | of systems: Causal /Anti causal, Time-Variant/Invariant, Linear/Non-       |       |
|        | Linear, stable/unstable, Memory/ Memory less System (static and            |       |
|        | dynamic). Convolution in DT domain (Matrix Method only)                    |       |
| 2      | Z-Transform                                                                | 06    |
|        | Z-Transform of bilateral signal, Definition of ROC, Properties of ROC,     |       |
|        | Properties of Z-transform, Inverse Z-Transform (only partial fraction)     |       |
| 3      | Frequency Response                                                         | 06    |
|        | Pole-zero plot in DT domain, Minimum phase, Maximum phase, Mixed           |       |
|        | phase and Linear, Phase System based on location of zeros, Low pass,       |       |
|        | high pass, Band pass and band reject system based on pass band             |       |
|        | frequency, Formation of Difference Equation, Solution of difference        |       |
|        | Equation (with & without initial Conditions), Zero input, zero state and   |       |
|        | Total Response of the system, Magnitude and phase response (only           |       |
|        | Analytical Method)                                                         |       |
| 4      | Discrete and Fast Fourier Transform                                        | 06    |
|        | DTFT, DFT & IDFT (Only Matrix Method), Properties of DFT, DIT              |       |
|        | FFT Algorithm (Radix-2)                                                    |       |
| 5      | Design of FIR System                                                       | 06    |

|   | Introduction to FIR System, Group Delay, phase Delay, Condition for |    |  |  |  |  |  |
|---|---------------------------------------------------------------------|----|--|--|--|--|--|
|   | Linear phase FIR system, Window Technique (only Rectangular         |    |  |  |  |  |  |
|   | window function, Hamming Window function)                           |    |  |  |  |  |  |
| 6 | Design of IIR System                                                | 06 |  |  |  |  |  |
|   | Introduction to IIR System & Bilinear Transformation, Digital       |    |  |  |  |  |  |
|   | Butterworth Filter design using Bilinear Transformation             |    |  |  |  |  |  |

#### **Text Books:**

- 1. Salivahan S.," Digital Signal Processing", TMH Publication, 2012
- 2. Oppenhein & Schafer," Discrete Time Signal Processing," PHI Publication 1989.
- 3. Haykin S and Van Veen B," Signal and System", Wiley Publication, 2nd Ed.
- 4. Linder D.K.," Introduction to Signal & System," McGraw Hill International, 1999.

#### **Reference Books:**

- 1. Proakis & Manolakis," Digital Signal Processing", PHI Publication, 1995.
- 2. Mitra S.K.," Digital Signal Processing," TMH Publication, 2001.
- 3. Li Tan," Digital Signal Processing, Fundamental & Application", Elsevier Publisher, Academic Press

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

#### Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| University of Mumbai |                                                                 |                     |                       |                  |          |       |  |  |
|----------------------|-----------------------------------------------------------------|---------------------|-----------------------|------------------|----------|-------|--|--|
| Course<br>Code       | Course Name                                                     | Teaching<br>(Contac | g Scheme<br>et Hours) | Credits Assigned |          |       |  |  |
|                      |                                                                 | Theory              | Tutorial              | Theory           | Tutorial | Total |  |  |
| EEC604               | Microcontroller and its<br>Applications<br>(abbreviated as MCA) | 4                   | -                     | 4                | -        | 4     |  |  |

| Course<br>code |                                            | Examination Scheme  |        |      |      |          |      |       |  |
|----------------|--------------------------------------------|---------------------|--------|------|------|----------|------|-------|--|
|                | Course Name                                |                     |        |      |      |          |      |       |  |
|                |                                            | Internal Assessment |        |      | End  | Exam     | Term | Total |  |
|                |                                            | Test 1              | Test 2 | Avg. | Sem. | Duration | Work | Totai |  |
|                |                                            |                     |        |      | Exam | (Hrs.)   |      |       |  |
| EEC604         | Microcontroller<br>and its<br>Applications | 20                  | 20     | 20   | 03   | 80       | -    | 100   |  |

| Course     | • To impart knowledge on PIC 18 microcontroller based embedded           |  |  |  |  |  |
|------------|--------------------------------------------------------------------------|--|--|--|--|--|
| Objectives | system using C programming.                                              |  |  |  |  |  |
|            | Students will be able                                                    |  |  |  |  |  |
|            | • To understand the features and architecture of PIC 18 microcontroller. |  |  |  |  |  |
|            | • To understand the instructional set and apply to basic arithmetic and  |  |  |  |  |  |
| Course     | logical operations.                                                      |  |  |  |  |  |
| Outcomos   | • To understand the supportive devices of PIC 18 microcontrollers.       |  |  |  |  |  |
| Outcomes   | • To understand the interfacing of PIC 18 microcontroller and it's       |  |  |  |  |  |
|            | peripheral.                                                              |  |  |  |  |  |
|            | • To understand the coding of PIC 18 microcontroller using C language.   |  |  |  |  |  |
|            | • To design general purpose applications of PIC 18 microcontroller.      |  |  |  |  |  |

| Module | Contents                                                              | Hours |
|--------|-----------------------------------------------------------------------|-------|
| 1      | Introduction to Microcontroller                                       | 06    |
|        | Block diagram of generic micro controller, Micro controller versus    |       |
|        | Microprocessor, A brief history of PIC microcontroller, Overview of   |       |
|        | PIC 18 family and features, Internal Bus structure of PIC             |       |
|        | microcontroller, Clock frequency, machine cycle and instruction       |       |
|        | cycle.                                                                |       |
| 2      | PIC18F Programming Model and Instruction Set                          | 12    |
|        | PIC18 microcontroller programming model, Bus architecture, PIC        |       |
|        | microcontroller program memory and data memory organization,          |       |
|        | Special Function Registers (SFRs), General Purpose Registers          |       |
|        | (GPRs), CPU registers, Working Register (Wreg), Status Register,      |       |
|        | Bank Select Register (BSR), Instruction Decoder, Program Counter      |       |
|        | (PC) and program ROM, File Select Register (FSR) and File             |       |
|        | memory, Stack Pointer (STKPTR) and Stack, PIC 18 internal             |       |
|        | Architecture (ALU, EEPROM, RAM, IO Ports, Timer, CCP module,          |       |
|        | ADC), Concept of Pipelining.                                          |       |
|        | Instruction Set, Data transfer instructions, Arithmetic and Logical   |       |
|        | Instructions, Rotate instructions, Branch instructions, Bit           |       |
|        | manipulation instructions. (Assembly programs are restricted to basic |       |

|   | arithmetic and logical operations only)                                  |    |
|---|--------------------------------------------------------------------------|----|
| 3 | PIC 18 Support Devices                                                   | 08 |
|   | Timer Module: Basic Concept of Timers and counters, Timer                |    |
|   | Registers, Control Registers, 8 bit and 16 bit operation (only for       |    |
|   | Timer 0 and 1), CCP module (Capture, Compare and PWM).                   |    |
|   | ADC module: ADC Features, Block diagram of ADC module, ADC               |    |
|   | Registers, ADCON0, ADCON1.                                               |    |
|   | Interrupt Module: Basic concept of Interrupt, PIC 18 Interrupts,         |    |
|   | Interrupt versus polling, Interrupt sources, Interrupt vector, Interrupt |    |
|   | service routine, Interrupt process, RCON Register, INTCON, IPR1,         |    |
|   | PIE1.                                                                    |    |
| 4 | Parallel Ports and Serial Communication                                  | 06 |
|   | IO PORT Module: Basic concept of I/O interfacing, Port Registers,        |    |
|   | TRIS registers, LAT registers, Simple port interfacing and               |    |
|   | addressing, Interfacing input peripherals, Interfacing output            |    |
|   | peripherals.                                                             |    |
|   | Serial communication: Basics of serial communication, USART              |    |
|   | module, SPBRG, TXREG, RCREG, TXSTA, RCSTA, PIR1.                         |    |
| 5 | PIC Programming in C                                                     | 08 |
|   | IO programming: Byte size IO, Bit addressable IO.                        |    |
|   | Timer programming: Generating delay, generating frequency.               |    |
|   | Interrupt programming: Timer0 and Timer1 interrupt to generate           |    |
|   | square wave.                                                             |    |
|   | Serial port programming: Transmit data serially, Receive data            |    |
|   | serially.                                                                |    |
| 6 | Microcontroller Applications                                             | 08 |
|   | Interfacing matrix keyboard and Seven segments LED display, LCD          |    |
|   | Interfacing, ADC Interfacing, Traffic signal controller, DC motor        |    |
|   | interfacing, Stepper motor interfacing, PWM signal generation.           |    |

## **Reference Books:**

- 1. Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC 18 Microcontroller Family), Ramesh Gaonkar, Penram International publications (Ind) Pvt. Ltd.
- 2. PIC Microcontroller and Embedded Systems, Muhammad Ali Mazidi, Rolind D Mckinlay and Danny Causey, Pearson Education.
- 3. Microcontroller from Assembly Language to C using PIC18FXX2, Robert B. Reese, Davinici Engineering press.
- 4. PIC Microcontroller: An Introduction to Software and Hardware Interfacing, Han Way Huang, Cengage Learning.

## Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| Course<br>Code | Course Name                                  | Teaching<br>(Contac | g Scheme<br>t Hours) | Credits Assigned |          |       |
|----------------|----------------------------------------------|---------------------|----------------------|------------------|----------|-------|
|                |                                              | Theory              | Tutorial             | Theory           | Tutorial | Total |
| EEC605         | Control System -II<br>(abbreviated as CS-II) | 4                   | -                    | 4                | -        | 4     |

| Course |                        |         |           | Exa  | mination | Scheme   |      |       |
|--------|------------------------|---------|-----------|------|----------|----------|------|-------|
|        |                        |         |           |      |          |          |      |       |
| code   | Course Name            | Interna | al Assess | ment | End      | Exam     | Term | Total |
| couc   |                        | Test 1  | Test 2    | Ava  | Sem.     | Duration | Work | Total |
|        |                        | 1050 1  | 1050 2    | Avg. | Exam     | (Hrs.)   |      |       |
| EEC605 | Control System –<br>II | 20      | 20        | 20   | 80       | 03       | -    | 100   |

| Course             | • To impart knowledge and skill on compensator design.                         |
|--------------------|--------------------------------------------------------------------------------|
| Objectives         | • To study basics of digital control system and design of digital compensator. |
|                    | Students will be able                                                          |
|                    | • To understand the basic design of various compensators.                      |
| C                  | • To design compensators using root locus techniques.                          |
| Course<br>Outcomes | • To design compensators using frequency response techniques.                  |
|                    | • To design compensators using state variable approach.                        |
|                    | • To illustrate basics of digital control system.                              |
|                    | • To design digital compensators.                                              |

| Module | Contents                                                                 | Hours |
|--------|--------------------------------------------------------------------------|-------|
| 1      | Introduction to the Compensator: Basic concept of compensator            | 04    |
|        | design, its requirement, position of compensator in a control system,    |       |
|        | cascade compensator, feedback compensator, gain compensation, lag,       |       |
|        | lead and lag-lead compensator, proportional, derivative, integral        |       |
|        | Compensation, Three term PID, physical realization of compensator        |       |
|        | with passive and active components, basic block diagrams of a            |       |
|        | compensated closed loop control system                                   |       |
| 2      | Design of Compensators using Root Locus Technique: Introduction,         | 12    |
|        | improving steady state error by gain compensation, transient response    |       |
|        | improvement by cascade compensation, improving steady state and          |       |
|        | transient response, design of rate feedback compensator, notch filter,   |       |
| 3      | Design of Compensators using Frequency response Technique                | 10    |
|        | (Bode Plot): Introduction, transient response improvement by gain        |       |
|        | adjustment, Lag compensation, Lead compensation, Lag-lead                |       |
|        | compensation.                                                            |       |
| 4      | Design of Compensators using State variable approach:                    | 8     |
|        | Introduction, pole placement topology, controller design by pole         |       |
|        | placement topology in phase variable form, controllability and           |       |
|        | complete controllability, controllability matrix, controllability by     |       |
|        | inspection, alternative approach to controller design, controller design |       |
|        | by transformation.                                                       |       |
|        | Introduction to Observer / estimator, full order and reduced order       |       |
|        | observer/ estimator, observability matrix, observability by inspection,  |       |
|        | observer design by pole placement alternative approach to Observer       |       |

|   | design, Observer design by transformation, steady state error design using integral control.                                                                                                                                                                                                                                |   |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 5 | <b>Digital control System:</b> Introduction, advantage of digital control, components of digital control system, derivation of digital/ pulse transfer function, block diagram reduction, stability of digital system on Z-plane, bilinear transformation, steady state error and error constants                           | 6 |
| 6 | <b>Design of Digital Compensators:</b> Transient response on the Z-plane, gain design on Z plane for transient response using root locus, stability design by root locus, cascade compensation (design of digital lead, lag and lag-lead compensator)of digital system using s-plane, implementing the digital compensator. | 8 |

## Text books:

1. Control system engineering by Norman Nise 2nd to latest edition

2. Control Engineering: An Introductory course by Wilkie J., Johnson M., Katebi R., Palgrave MacMillan, Ist to latest edition

3. Industrial Control Electronics: Devices, Systems and Applications by Bartelt, Delmar Thomson Learning, 1st edition

4. Introduction to Programmable Logic Controller by Dunning G, Delmar Thomson Learning, 2nd edition

## **Reference books:**

1. Modern control Engineering by Richard C Dorf, SH Bishop, Wesley edition eighth Edition

2. Linear Control system Analysis and design with MATLAB, by J.J. Azzo, C. H. Houpis, S. N. Sheldon, Marcel Dekkar, ISBN 0824740386

3. Control System Engineering, Shivanagraju s. Devi L., New age International latest edition

- 4. Control System engineering by Nagrath and Gopal, 5th to latest edition, Wiley Eastern
- 5. Modern control system engineering by K. Ogata, printice Hall.
- 6. Automatic control systems, Basic analysis and Design, William A. Wolovich, Oxford
- 7. Process Control principles and applications, Surekha Bharot, Oxford Higher education

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

## **Theory Examination**:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| Course        | Course Name           | Teachin<br>(Contac | g Scheme<br>t Hours) | Credits Assigned |          |       |  |
|---------------|-----------------------|--------------------|----------------------|------------------|----------|-------|--|
| Coue          |                       | Theory             | Tutorial             | Theory           | Tutorial | Total |  |
| EEDLO<br>6021 | Digital Communication |                    |                      |                  |          |       |  |
|               | Engineering           | 3                  | 1                    | 3                | 1        | 4     |  |
|               | (abbreviated as DCE)  |                    |                      |                  |          |       |  |

| Course |               | Examination Scheme  |        |      |      |          |      |       |
|--------|---------------|---------------------|--------|------|------|----------|------|-------|
|        |               |                     |        |      |      |          |      |       |
|        | Course Name   | Internal Assessment |        |      | End  | Exam     | Term | Total |
| coue   |               | Tost 1              | Tost 2 | Ava  | Sem. | Duration | Work | Total |
|        |               | Test I              | Test Z | Avg. | Exam | (Hrs.)   |      |       |
|        | Digital       |                     |        |      |      |          |      |       |
| 6021   | Communication | 20                  | 20     | 20   | 80   | 03       | 25   | 125   |
| 0021   | Engineering   |                     |        |      |      |          |      |       |

| Course<br>Objectives | • To impart knowledge and skill on digital communication engineering.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Outcomes   | <ul> <li>Students will be able</li> <li>To understand the concept and blocks of digital communication system.</li> <li>To understand and analyse the performance of base band and pass band digital communication system.</li> <li>To analyse the different modulation techniques used in digital communication system.</li> <li>To identify the presence of error in coded signal and design the error control system.</li> <li>To understand basic concept of different type of digital communication systems.</li> </ul> |

| Module | Contents                                                                 | Hours |
|--------|--------------------------------------------------------------------------|-------|
| 1      | Information theory                                                       | 06    |
|        | Block diagram of a digital communication system, Concept and             |       |
|        | measures of information, entropy and it's properties. Transmission rate  |       |
|        | and channel capacity of noisy channels, Shannon's theorem on channel     |       |
|        | capacity. Source Coding, Shannon's Source Coding Theorem, Shannon-       |       |
|        | Fano Source Coding, Huffman Source Coding. Introduction to Lempel        |       |
|        | Ziv coding                                                               |       |
| 2      | Baseband Modulation and Transmission                                     | 06    |
|        | Line codes and their desirable properties, PSD of digital data. Discrete |       |
|        | PAM signals and its power spectra. Concept of inter channel and inter    |       |
|        | symbol interference, Nyquist criterion for zero ISI, sinusoidal roll-off |       |
|        | filtering, correlative coding, equalizers, and eye pattern. Duo-binary   |       |
|        | encoding and modified duo-binary encoding                                |       |
| 3      | Baseband Detection                                                       | 04    |
|        | Orthogonality, representation of signals. Maximum likelihood decoding    |       |
|        | Correlation receiver, equivalence with matched filter                    |       |
| 4      | Modulation Techniques                                                    | 08    |
|        | Generation, detection, Coherent and non-coherent reception, signal       |       |
|        | space diagram, spectrum, bandwidth efficiency, and probability of error  |       |

|   | analysis of : Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)Modulations, Binary Phase Shift Keying (BPSK) Modulation<br>Quaternary Phase Shift Keying QPSK)                                                                                                                                                                                                                                                                                                                             |    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5 | <ul> <li>5. Error Control Systems:-</li> <li>5.1 Types of error control, error control codes, linear block codes, generator matrix, and systematic linear block. codes, parity check matrix, syndrome testing ,error correction, and decoder implementation</li> <li>5.2 Cyclic codes: Algebraic structure of cyclic codes, binary cyclic code properties, encoding in systematic</li> <li>5.3 Introduction of Convolution code: State diagram, code tree, trellis diagram<sup>[2]</sup></li> </ul> | 08 |
| 6 | Overview of different types of communication :-                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04 |
|   | Power Line Carrier communication, Satellite communication, OFC                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|   | (Block Diagram level )                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |

#### **Text Books:**

- 1. Tomasi W., "Advanced Electronics Communication systems", PGI, 4<sup>th</sup> Edition1998
- Taub & Schiling, "Principles of Communication Systems", McGraw Hill, 2<sup>nd</sup> Ed. 1987
- 3. John C. proakis, "Digital Communication", McGraw Hill International, 1995
- 4. Haykin S, John Wiley & Sons, "Digital Communication", 3<sup>rd</sup> Ed. 1995

#### **Reference Books:**

- 1. Lathi B.P., "Modern Digital and Analog Communication System, Oxford University Press, 3<sup>rd</sup> Edition 1998
- Dennis Roddy and John Coolen, "Electronic Communications", Prentice Hall of India, 3<sup>rd</sup> Ed. 1992
- 3. Amitabha Bhattacharya, "Digital Communication", Tata Mcgraw Hill

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

#### Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

## **Theory Examination**:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total four questions need to be solved.

- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| Course<br>Code | Course Name                       | Teachin<br>(Contac | g Scheme<br>et Hours) | Credits Assigned |          |       |
|----------------|-----------------------------------|--------------------|-----------------------|------------------|----------|-------|
|                |                                   | Theory             | Tutorial              | Theory           | Tutorial | Total |
| EEDLO<br>6022  | Micro-Grid<br>(abbreviated as MG) | 3                  | 1                     | 3                | 1        | 4     |

|               |             | Examination Scheme  |        |      |      |          |      |       |  |
|---------------|-------------|---------------------|--------|------|------|----------|------|-------|--|
| Course        | Course Name |                     |        |      |      |          |      |       |  |
| course        |             | Internal Assessment |        |      | End  | Exam     | Term | Total |  |
| coue          |             | Test 1              | Tost 2 | Aug  | Sem. | Duration | Work | 10141 |  |
|               |             | I est I             | Test Z | Avg. | Exam | (Hrs.)   |      |       |  |
| EEDLO<br>6022 | Micro-Grid  | 20                  | 20     | 20   | 80   | 03       | 25   | 125   |  |

| Course<br>Objectives | <ul> <li>To impart knowledge of renewable energy based Microgrid technology, types and issues associated in their practical realization.</li> <li>To elaborate the various control and operational strategies used for practical microgrids.</li> </ul>                                                                                                                                                                                                                                                                                                                                            |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Outcomes   | <ul> <li>Students will be able</li> <li>To identify and describe the evolvement Microgrid, its features and barriers.</li> <li>To select, size and design the various microgrid resources.</li> <li>To model, analyze and design the power electronics (PE) interfaces for various microgrid sources</li> <li>To identify and describe the role communication in Microgrid realization.</li> <li>To identify and describe various operational strategies and protection schemes suitable for Microgrid.</li> <li>To apprise the different standards applicable for microgrid deployment</li> </ul> |

| Module | Contents                                                                 | Hours |
|--------|--------------------------------------------------------------------------|-------|
| 1      | Introduction to Microgrid:                                               | 03    |
|        | Microgrid: Definition, What is not a microgrid, Typical structure and    |       |
|        | configuration of a microgrid, Significance of microgrids, Sources of     |       |
|        | microgrid, Types of microgrids, AC, DC and hybrid microgrids;            |       |
|        | Technical implications and social fall out of microgrid, Market Models   |       |
|        | and business cases for microgrids.                                       |       |
| 2      | Microgrid Sources and Power Electronic Interfaces:                       | 08    |
|        | Review of Microgrid sources: basics characteristics and selection; Power |       |
|        | Electronics (PE) interface and design for microgrid DC and AC sources.   |       |
|        | Protection and co-ordination, Power Quality issues and Solutions;        |       |
|        | Microgrid and Energy Storage Systems (ESS), Portable and Stationary      |       |
|        | ESS, Review of Flywheel, Battery and Ultra-capacitor; PE Interface       |       |
|        | design for ESS.                                                          |       |
| 3      | Control and Design of Power Electronic Interfaces:                       | 10    |
|        | Determination of Control laws, Power relations and power control, Bi-    |       |
|        | directionality and its need in a Microgrid; Control of DC-DC converters  |       |
|        | and inverter and challenges in a Microgrid; Micro-grid Control           |       |
|        | Strategies: Centralized, Decentralized and Hierarchical control, Multi-  |       |
|        | Agent System based control; Power Control and Energy Management in       |       |
|        | Microgrids.                                                              |       |

| 4 | Communication Infrastructure:                                             | 05 |
|---|---------------------------------------------------------------------------|----|
|   | Requirement of Communication System in microgrids, Communication          |    |
|   | protocols and standards; Selection of communication protocols for         |    |
|   | microgrids. Event triggered system and Time triggered system, Unicast     |    |
|   | and Multicast Communication, Impact of time latencies on operation.       |    |
| 5 | <b>Operation of Microgrid and Microgrid Protection:</b>                   | 07 |
|   | Modes of Operation: Grid Connected Mode, Islanding Mode, Issues in        |    |
|   | Island Mode of operations, Islanding detection, Reliability and Stability |    |
|   | Issues in islanding ; Protection: Fault Behavior in Grid Connected Mode   |    |
|   | and Island mode, Types of Protection Systems Fault Source Based           |    |
|   | protection, Adaptive protection.                                          |    |
| 6 | Microgrid Standards and Deployment:                                       | 03 |
|   | IEEE-1547 series, Review of worldwide Microgrid installations,            |    |
|   | Economic evaluation and planning for microgrids; Microgrids in smart      |    |
|   | grid scenario.                                                            |    |

### **Text Books:**

- 1. Nikos Hatziargyriou, "Microgrids: Architectures and Control," Wiley-IEEE Press, 2013
- 2. Magdi S Mahmoud, "Microgrid: Advanced Control Methods and Renewable Energy System Integration", Butterworth-Heinemann, 2016
- 3. S. M. Sharkh , M. A. Abu-Sara, G. I. Orfanoudakis and B. Hussain, "Power Electronic Converters for Microgrids," Wiley IEEE Press
- 4. Remus Teodorescu, Marco Liserre and Pedro Rodriguez, "Grid Converters for Photovoltaic and Wind Power Systems," Wiley Publications
- 5. Amirnaser Yazdani and Reza Iravani, "Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications," Wiley-IEEE Press

## **Reference Books:**

- 1. Smart Grid:Fundamentals of Design and Analysis by James Momoh, IEEE Press and
- 2. Wiley Publications
- 3. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable Energy in Electric Power Systems", Wiley
- 4. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response" CRC Press

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

#### Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

| Tutorials                        | :15 marks |
|----------------------------------|-----------|
| Assignments                      | :05 marks |
| Attendance (Theory and Tutorial) | :05 marks |

The final certification and acceptance of term work ensures minimum passing in the term work

## **Theory Examination**:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| Course<br>Code | Course Name                                           | Teaching<br>(Contac | g Scheme<br>t Hours) | Credits Assigned |          |       |  |
|----------------|-------------------------------------------------------|---------------------|----------------------|------------------|----------|-------|--|
|                |                                                       | Theory              | Tutorial             | Theory           | Tutorial | Total |  |
| EEDLO<br>6023  | Advanced Power<br>Electronics<br>(abbreviated as APE) | 3                   | 1                    | 3                | 1        | 4     |  |

|               |                               | Examination Scheme  |        |      |      |          |      |       |  |  |
|---------------|-------------------------------|---------------------|--------|------|------|----------|------|-------|--|--|
| Course        | Course Name                   |                     |        |      |      |          |      |       |  |  |
| code          |                               | Internal Assessment |        |      | End  | Exam     | Term | Total |  |  |
|               |                               | Test 1              | Test 2 | Avg. | Sem. | Duration | Work | Total |  |  |
|               |                               |                     |        |      | Exam | (Hrs.)   |      |       |  |  |
| EEDLO<br>6023 | Advanced Power<br>Electronics | 20                  | 20     | 20   | 80   | 03       | 25   | 125   |  |  |

| Course<br>Objectives | <ul> <li>To understand dc to dc conversion with isolation, the underlying principles of converter operation and hence to analyze different converter circuits for power conversion.</li> <li>To understand the principles of design of magnetics such as high frequency transformers and inductors.</li> <li>To keep abreast with the latest technologies and research going on in different areas related to power electronics.</li> </ul> |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | <ul> <li>To enhance the capability of problem solving skills.</li> <li>To model the converter and design the controller for deeper understanding and detailed analysis.</li> </ul>                                                                                                                                                                                                                                                          |
|                      | Student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | • Select and design power electronic converter topologies for a broad                                                                                                                                                                                                                                                                                                                                                                       |
|                      | range of energy conversion applications.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | • Analyze and simulate the performance of power electronic conversion systems                                                                                                                                                                                                                                                                                                                                                               |
|                      | • Ability to model and design controllers for the closed loop operation of                                                                                                                                                                                                                                                                                                                                                                  |
| Course               | power converters.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Outcomes             | • Apply the basic concepts of power electronics to design the circuits in                                                                                                                                                                                                                                                                                                                                                                   |
|                      | the fields of AC and DC drives, power generation and energy                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | conversion, industrial applications, extraction of energy from                                                                                                                                                                                                                                                                                                                                                                              |
|                      | renewable sources.                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | Build and troubleshoot power electronics circuits.                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | • Deriver technological solution in the field of power electronics.                                                                                                                                                                                                                                                                                                                                                                         |

| Module | Contents                                                               | Hours |
|--------|------------------------------------------------------------------------|-------|
| 1      | Switching Voltage Regulators Introduction; Linear power supply         | 10    |
|        | (voltage regulators); Switching voltage regulators; unidirectional and |       |
|        | bidirectional core excitation; Review of basic dc-dc voltage regulator |       |
|        | configurations -Buck, Boost, Buck-Boost converters, Bidirectional      |       |
|        | Converter (BDC) and their analysis for continuous and discontinuous    |       |
|        | mode; Other converter configurations like Flyback converter, Forward   |       |
|        | converter, Push-pull converter; Design criteria for SMPS; Multi-output |       |
|        | switch mode regulator.                                                 |       |

| 2 | Resonant dc to dc converters: Drawbacks of switch-mode converters,          | 03 |
|---|-----------------------------------------------------------------------------|----|
|   | classification of resonant converters, basic resonant circuit concepts,     |    |
|   | Load resonant converters, series and parallel loaded, steady state          |    |
|   | operating characteristics, Resonant switch converters - ZVS, ZCS,           |    |
|   | comparison of resonant converters, applications of resonant converters      |    |
| 3 | Design of Magnetics (Boost, Buck, BDC and flyback only).: Review            | 05 |
|   | of magnetic concepts, volt-sec balance, area product, design of inductor,   |    |
|   | design of high frequency transformer, numericals on design of inductor      |    |
|   | and transformer for dc to dc converters.                                    |    |
| 4 | Modeling and control converters and inverter (Boost, Buck, BDC              | 09 |
|   | and flyback only): State space model of various dc to dc converters,        |    |
|   | state space averaging techniques, small signal analysis, transfer function, |    |
|   | feedback control, compensator design, voltage mode control, current         |    |
|   | mode control. Modeling of grid connected Inverter with LC filter,           |    |
|   | Compensator design with current mode control and DC link voltage            |    |
|   | control loop. Digital control of power electronic converters                |    |
| 5 | Multi-Level Inverter: Need for multilevel inverters, Diode clamped,         | 04 |
|   | flying capacitor and cascaded MLI, Phase shifted and level shifted          |    |
|   | PWM techniques, introduction to SVM for three level inverter,               |    |
|   | Applications of multilevel inverters.                                       |    |
| 6 | Applications of power electronic converters: Solar PV Power                 | 05 |
|   | Conditioning unit (PCU), Battery PCU, Active Filters, AC and DC             |    |
|   | drives. Thermal management and EMI issues in Practical power                |    |
|   | Electronics systems                                                         |    |

#### **Text Books:**

- 1. N.Mohan, T.M.Undeland, W.P Robbins, —Power Electronics, Converters, Applications & Design, Wiley India.
- 2. R W Erickson and D Maksimovic, —Fundamental of Power Electronics, Springer, 2<sup>nd</sup> Edition.
- 3. M.H.Rashid, Hand book of Power Electronics", Third edition Butterworth-Heinemann; 2011
- 4. Joseph Vithayathil Power Electronics, Tata McGraw Hill
- 5. Daniel.W.Hart, "Power Electronics", Mc GrawHill Publications 2010
- 6. P.S Bhimbra, "Power Electronics", Khanna Publishers.
- 7. Simon Ang, Alejandro Oliva, "Power-Switching Converters" Taylor and Francis group
- 8. L.Umanand, "Design of Magnetic Components for Switched Mode Power Converters", New Age International

### **Reference Books:**

- 1. P. T. Krein, Elements of Power Electronics, Oxford University Press.
- 2. L. Umanad, "Power Electronics: Essentials & Applications," Wiley.
- 3. A Yazdani, R. Iravani, Voltage- Sourced Converters in Power Systems, Wiley, IEEE press.

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## Term work:

Term work shall consist of minimum six tutorials and one group mini project.

Mini-project: Group of students (4 in a group) will choose a fairly complex power electronics application in their preferred area, complete the analysis and detailed design of power converter and control for this application, and finally validate the design using hardware implementation supported with simulation(if necessary). A formal technical report is required on the last day of class.

The distribution of marks for term work shall be as follows:

Tutorials:10 marksGroup Mini Project:10 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

### **Theory Examination**:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| Course<br>Code | Course Name                  | Teachin<br>(Conta | ng Scheme<br>ct Hours) | Credits Assigned |           |       |  |
|----------------|------------------------------|-------------------|------------------------|------------------|-----------|-------|--|
|                |                              | Theory            | Practical              | Theory           | Practical | Total |  |
| <b>EEL601</b>  | <b>Electrical Protection</b> |                   |                        |                  |           |       |  |
|                | Lab                          | -                 | 2                      | -                | 1         | 1     |  |
|                | (abbreviated as EP Lab)      |                   |                        |                  |           |       |  |

| Course<br>Code |                              | Examination Scheme  |        |      |      |           |        |      |       |
|----------------|------------------------------|---------------------|--------|------|------|-----------|--------|------|-------|
|                | Course Name                  |                     | The    | ory  |      | Practical |        |      | Total |
|                |                              | Internal Assessment |        |      | End  | Torm      | Pract. |      |       |
|                |                              | Test 1              | Test 2 | Avg. | Sem. | Work      | and    | Oral |       |
|                |                              |                     |        |      | Exam |           | Oral   |      |       |
| EEL601         | Electrical<br>Protection Lab | -                   | -      | -    | -    | 25        | -      | 25   | 50    |

| Course<br>Objectives | • To introduce the concept of different protection schemes.                                                                                                                                                                                                                                                                                                                             |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Outcomes   | <ul> <li>Students will be able</li> <li>To understand the concept of various over current protection scheme and its applications in power system.</li> <li>To understand the concept of various over/under voltage, over/under frequency and temperature protection scheme and its applications.</li> <li>To understand the working principle of various protective devices.</li> </ul> |

Syllabus: Same as that of Course EEC601 protection and switchgear Engineering.

# Suggested List of Laboratory Experiment:

- 1. Demonstration of Inverse time Over-current Relay & Plotting the characteristics
- 2. Demonstration of Over-current protection Relay
- 3. Demonstration of Directional Over-current Protection Relay
- 4. Demonstration of Differential Over-current Protection Relay
- 5. Demonstration of Under/Overvoltage Protection
- 6. Demonstration of Motor winding temperature protection
- 7. Demonstration of Gas actuated Relays
- 8. Demonstration of working parts of different Fuses, MCB, MCCB, RCCB & Circuit Breakers.
- 9. Visit to a substation & a report preparation.

Any other experiment based on syllabus which will help students to understand topic/concept.

## Term work:

Term work shall consist of minimum six experiments. The distribution of marks shall be as follows:

| Experiments Performance           | :10 marks |
|-----------------------------------|-----------|
| Journal                           | :10 marks |
| Attendance (Theory and Practical) | :05 marks |

The final certification and acceptance of term work ensures the minimum passing in the term work.

# **Oral Examination:**

Oral examination will be based on entire syllabus.

| University of Mumbai |             |                        |                  |  |  |  |  |  |
|----------------------|-------------|------------------------|------------------|--|--|--|--|--|
| Course               | Course Name | <b>Teaching Scheme</b> | Credits Assigned |  |  |  |  |  |
|                      |             |                        |                  |  |  |  |  |  |

University of Mumbai, Electrical Engineering, Rev. 2016-17

| Code   |                                                                | (Conta | ct Hours) |        |           |       |
|--------|----------------------------------------------------------------|--------|-----------|--------|-----------|-------|
|        |                                                                | Theory | Practical | Theory | Practical | Total |
| EEL602 | Electrical Machines Lab -<br>IV (abbreviated as EMC<br>Lab-IV) | -      | 2         | -      | 1         | 1     |

| Course<br>Code |                                   | Examination Scheme  |        |      |              |       |             |      |       |
|----------------|-----------------------------------|---------------------|--------|------|--------------|-------|-------------|------|-------|
|                | Course Name                       |                     | Theory |      |              |       | Practical   |      |       |
|                |                                   | Internal Assessment |        |      | End          | Талия | Pract.      |      | Total |
|                |                                   | Test 1              | Test 2 | Avg. | Sem.<br>Exam | Work  | and<br>Oral | Oral |       |
| EEL602         | Electrical<br>Machines Lab<br>-IV | -                   | -      | -    | -            | 25    | 25          | -    | 50    |

| Course<br>Objectives | • To impart practical knowledge on synchronous machines                        |
|----------------------|--------------------------------------------------------------------------------|
|                      | Students will be able                                                          |
|                      | • To analyse the operation of synchronous machines.                            |
| Course               | • To analyse the voltage regulation of synchronous machines.                   |
| Outcomes             | • To analyse the synchronization or parallel operation of synchronous machine. |
|                      | • To determine the parameters of synchronous machines for its analysis.        |

Syllabus: Same as that of Course EEC602 Electrical machines - IV

## **Suggested List of Laboratory Experiment:**

- 1. Constructional details of Synchronous machine
- 2. Voltage regulation of Alternator by Direct loading method
- 3. Voltage regulation of Alternator by EMF and MMF method
- 4. Voltage regulation of Alternator by ZPF and ASA method
- 5. Synchronization / Parallel operation of Alternator
- 6. Starting methods of Synchronous motor
- 7. 'V' and inverted 'V' curve of Synchronous motor
- 8. Determination of  $X_d$  and  $X_q$  of Synchronous machine by Slip test
- 9. Use of Synchronous motor as a Synchronous condenser
- 10. Loading of Synchronous motor by Brake test with rated excitation

Any other experiment based on syllabus which will help students to understand topic/concept.

### Term work:

Term work shall consist of minimum six experiments. The distribution of marks shall be as follows:

| Experiments Performance           | :10 marks |
|-----------------------------------|-----------|
| Journal                           | :10 marks |
| Attendance (Theory and Practical) | :05 marks |

The final certification and acceptance of term work ensures the minimum passing in the term work.

## **Practical/Oral Examination:**

Practical/Oral examination will be based on entire syllabus.

| Course<br>Code | Course Name                                    | Teachin<br>(Conta | ng Scheme<br>ct Hours) | Credits Assigned |           |       |  |
|----------------|------------------------------------------------|-------------------|------------------------|------------------|-----------|-------|--|
|                |                                                | Theory            | Practical              | Theory           | Practical | Total |  |
| EEL603         | Microcontroller Lab<br>(abbreviated as MC Lab) | -                 | 2                      | -                | 1         | 1     |  |

| Course<br>Code | Course Name            | Examination Scheme  |        |      |      |           |        |      |       |
|----------------|------------------------|---------------------|--------|------|------|-----------|--------|------|-------|
|                |                        | Theory              |        |      |      | Practical |        |      |       |
|                |                        | Internal Assessment |        |      | End  | Term      | Pract. |      | Total |
|                |                        | Test 1 Test 2       | Test 2 | Avg. | Sem. | Work      | and    | Oral |       |
|                |                        |                     | 1050 2 |      | Exam |           | Oral   |      |       |
| EEL603         | Microcontroller<br>Lab | -                   | -      | -    | -    | 25        | 25     | -    | 50    |

| Course<br>Objectives | • To impart the programming knowledge of PIC 18 microcontroller.                                                                                                                                                                                                      |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Students will be able                                                                                                                                                                                                                                                 |
| Course<br>Outcomes   | <ul> <li>To program simple arithmetic and logical operations using PIC 18 microcontroller.</li> <li>To program timer and ADC of PIC 18 microcontroller for different applications.</li> <li>To interface different IO devices with PIC 18 microcontroller.</li> </ul> |

**Syllabus:** Same as that of Course EEC604 Microcontroller and its applications **Suggested List of Laboratory Experiment:** 

**Basic Programming** 

- 1. Addition, subtraction
- 2. Logical operations
- 3. Multiplication and division
- 4. Sort even and odd numbers
- 5. Sort negative and positive numbers
- 6. Toggle the bits of ports

Timer programming

- 1. Generate square wave
- 2. Generate time delay
- 3. Counter program
- 4. Generate the PWM pattern
- ADC programming
  - 1. Analog to digital conversion

Peripheral Interface programming

- 1. LCD interface
- 2. LED interface
- 3. Stepper motor interface
- 4. DC motor interface
- 5. Serial port interface

Any other experiment based on syllabus which will help students to understand topic/concept.

## Term work:

The term work shall consist of minimum **eight** experiments based on PIC 18F microcontroller using embedded C language. The distribution of marks shall be as follows:

Experiments Performance :10 marks Journal :10 marks

Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

## **Practical/Oral Examination:**

Practical/Oral examination will be based on entire syllabus.

| University of Mumbai |                                                       |                   |                       |                  |           |       |  |  |
|----------------------|-------------------------------------------------------|-------------------|-----------------------|------------------|-----------|-------|--|--|
| Course<br>Code       | Course Name                                           | Teachin<br>(Conta | g Scheme<br>ct Hours) | Credits Assigned |           |       |  |  |
|                      |                                                       | Theory            | Practical             | Theory           | Practical | Total |  |  |
| EEL604               | Simulation Lab-II<br>(abbreviated as Sim Lab -<br>II) | -                 | 2                     | -                | 1         | 1     |  |  |

| Course<br>Code |                      | Examination Scheme  |        |      |      |           |        |      |       |
|----------------|----------------------|---------------------|--------|------|------|-----------|--------|------|-------|
|                | Course Name          | Theory              |        |      |      | Practical |        |      |       |
|                |                      | Internal Assessment |        |      | End  | Torm      | Pract. |      | Total |
|                |                      | Test 1 T            | Test 2 | Avg. | Sem. | Work      | and    | Oral |       |
|                |                      |                     |        |      | Exam |           | Oral   |      |       |
| EEL604         | Simulation<br>Lab-II | -                   | -      | -    | -    | 25        | -      | 25   | 50    |

| Course<br>Objectives | • To impart knowledge on coding and simulation of electrical systems.                                                                                                                                                                                                                                             |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Outcomes   | <ul> <li>Students will be able</li> <li>To code or simulate signal systems for its analysis.</li> <li>To code or simulate power system for its analysis.</li> <li>To code or simulate power electronics converter for its analysis.</li> <li>To code or simulate electrical machines for its analysis.</li> </ul> |

Syllabus: Same as that of all core courses of semester VI.

# Suggested List of Laboratory Experiment:

- 1. Algorithm for Basic operation on signal
- 2. Algorithm for Linear and Circular Convolution
- 3. Algorithm for step, impulse and frequency Response in Digital system
- 4. Algorithm for FFT for DFT Computation
- 5. Algorithm for Design of FIR System using Rectangular Window
- 6. Algorithm for Design of Butterworth Digital IIR System
- 7. Simulation of 1- phase full wave Rectifier with R-L Load
- 8. Simulation of Fault Analysis
- 9. Simulation of OC & SC Test of 3-phase IM.
- 10. Simulation of 1- phase full wave Controlled Rectifier with R-L Load

Any other experiment based on syllabus which will help students to understand topic/concept.

#### Term work:

Term work shall consist of minimum six experiments. The distribution of marks shall be as follows:

| Experiments Performance           | :10 marks |
|-----------------------------------|-----------|
| Journal                           | :10 marks |
| Attendance (Theory and Practical) | :05 marks |

The final certification and acceptance of term work ensures the minimum passing in the term work.

## **Oral Examination:**

Oral examination will be based on entire syllabus.