AC -5.05.2018 Item No. 4.52

Program Structure for TE Electrical Engineering University of Mumbai (With Effect from 2018-19)

Scheme for Semester V

Course Code	ourse Code Course Name		Seaching Schem (Contact Hours	le)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EEC501	Power System - II	4	-	1	4	-	1	5	
EEC502	Electrical Machines - III	4	-	-	4	-	-	4	
EEC503	Control System - I	4	-	-	4	-	-	4	
EEC504	Power Electronics	4	-	-	4	-	-	4	
EEDLO501X	Department Level Optional Course-I	3	-	1	3	-	1	4	
EEL501	Business Communication and Ethics	-	4**	-	-	2	-	2	
EEL502	Control System Lab	-	2	-	-	1	-	1	
EEL503	Electrical Machines Lab - III	-	2	-	-	1	-	1	
EEL504	Power Electronics Lab	-	2	-	-	1	-	1	
	Total	19	10	2	19	5	2	26	

****** Out of four hours, 2 hours theory shall be taught to entire class and 2 hours practical in batches

Examination Scheme for Semester V

						Ex	kaminat	ion Sche	eme					
		Theory										-		
Course Code	Course Name	External (UA)		Internal (CA)		Term Work		Practical		Oral		Pract./Oral		Total
		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Marks
EEC501	Power System - II	80	32	20	8	25	10	-	-	-	-	-	-	125
EEC502	Electrical Machines - III	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC503	Control System - I	80	32	20	8	-	-	-	-	-	-	-	-	100
EEC504	Power Electronics	80	32	20	8	-	-	-	-	-	-	-	-	100
EEDLO 501X	Department Level Optional Course-I	80	32	20	8	25	10	-	-	-	-	-	-	125
EEL501	Business Communication and Ethics	-	-	-	-	50	20	-	-	-	-	-	-	50
EEL502	Control System Lab	-	-	-	-	25	10	-	-	25	10	-	-	50
EEL503	Electrical Machines Lab - III	-	-	-	-	25	10	-	-	-	-	25	10	50
EEL504	Power Electronics Lab	-	-	-	-	25	10	-	-	-	-	25	10	50
	Total	400	-	100	-	175	-	-	-	25	-	50	-	750

List of Department Level Optional Courses

Course Code	Department Level Optional Course - I
EEDLO5011	Communication Engineering
EEDLO5012	Renewable Energy and Energy Storage
EEDLO5013	Utilization of Electrical Energy

Course Code	Department Level Optional Course - II
EEDLO6021	Digital Communication Engineering
EEDLO6022	Micro-grid
EEDLO6023	Advanced Power Electronics

University of Mumbai							
Course	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
Code		Theory	Tutorial	Theory	Tutorial	Total	
EEC501	Power System-II (abbreviated as PS-II)	4	1	4	1	5	

Course		Examination Scheme								
code	Course Name	Internal Assessment			End	Exam	Term	Total		
code		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total		
					Exam	(Hrs.)				
EEC501	Power System –II	20	20	20	80	03	25	125		

Course	• To impart knowledge on transmission line operation during fault.					
Objectives	• To study power system transients and insulation co-ordination.					
	Student will be able					
	• To understand different kind of faults on transmission line.					
Course	• To analyse symmetrical fault					
Outcomos	• To analyse symmetrical components and unsymmetrical faults.					
Outcomes	• To illustrate and analyse power system transients					
	• To understand insulation co-ordination in power system.					
	• To understand and analyse corona on transmission line.					

Module	Contents	Hours
1	Symmetrical Fault Analysis:	14
	Introduction to synchronous machine, basic construction, operation and	
	equivalent circuit diagram, short circuit of synchronous machine: no	
	load and loaded machine, transient on a transmission line, selection of	
	Circuit breaker, short circuit MVA, algorithm for SC studies, Z Bus	
	formulation, symmetrical fault analysis using Z bus (numerical on Z	
	bus formulation up to 3x3 matrix).	
2	Symmetrical Components:	07
	Introduction, Symmetrical component transformation, phase shift in	
	star-delta transformers, sequence impedances and sequence network of	
	transmission line, synchronous machine and transformer, power	
	invariance, construction of sequence network of a power system.	
3	Unsymmetrical Fault Analysis:	07
	Types of unsymmetrical faults, Analysis of shunt type unsymmetrical	
	faults: single line to ground (SLG) fault, line to line (L-L) fault, double	
	line to ground (LLG) fault, bus impedance matrix method for analysis of	
	shunt type unsymmetrical faults. Analysis of series type unsymmetrical	
	faults: one open conductor faults, two open conductor fault.	
4	Power System Transients:	12
	Review of transients in simple circuits, recovery transient due to	
	removal of short circuit, arcing grounds, capacitance switching, current	

	chopping phenomenon.	
	Travelling waves on transmission lines, wave equation, reflection and	
	refraction of waves, typical cases of line terminations, attenuation,	
	Bewely lattice diagram.	
	Lightning phenomenon, mechanism of Lightning stroke, shape of	
	Lightning voltage wave, over voltages due to Lightning, Lightning	
	protection problem, significance of tower footing resistance in relation	
	to Lightning, insulator flashover and withstand voltages, protection	
	against surges, surge arresters, surge capacitor, surge reactor and surge	
	absorber, Lightning arrestors and protective characteristics, dynamic	
	voltage rise and arrester rating.	
5	Insulation Coordination	02
5		03
5	Volt time curve, basic approach to insulation co-ordination in power	03
5	Volt time curve, basic approach to insulation co-ordination in power system, over voltage protection, ground wires, insulation coordination	03
5	Volt time curve, basic approach to insulation co-ordination in power system, over voltage protection, ground wires, insulation coordination based on lightning, surge protection of rotating machines and	03
5	Volt time curve, basic approach to insulation co-ordination in power system, over voltage protection, ground wires, insulation coordination based on lightning, surge protection of rotating machines and transformers.	03
6	Volt time curve, basic approach to insulation co-ordination in power system, over voltage protection, ground wires, insulation coordination based on lightning, surge protection of rotating machines and transformers. Corona:	03
6	Volt time curve, basic approach to insulation co-ordination in power system, over voltage protection, ground wires, insulation coordination based on lightning, surge protection of rotating machines and transformers. Corona: Phenomenon of corona, Disruptive critical voltage, Visual critical	03
6	Volt time curve, basic approach to insulation co-ordination in power system, over voltage protection, ground wires, insulation coordination based on lightning, surge protection of rotating machines and transformers. Corona: Phenomenon of corona, Disruptive critical voltage, Visual critical voltage, corona loss, factors affecting corona loss, Radio interference	03
6	Volt time curve, basic approach to insulation co-ordination in power system, over voltage protection, ground wires, insulation coordination based on lightning, surge protection of rotating machines and transformers. Corona: Phenomenon of corona, Disruptive critical voltage, Visual critical voltage, corona loss, factors affecting corona loss, Radio interference due to corona, practical considerations of corona loss, corona in bundled	03
6	Volt time curve, basic approach to insulation co-ordination in power system, over voltage protection, ground wires, insulation coordination based on lightning, surge protection of rotating machines and transformers. Corona: Phenomenon of corona, Disruptive critical voltage, Visual critical voltage, corona loss, factors affecting corona loss, Radio interference due to corona, practical considerations of corona loss, corona in bundled conductor lines, corona ring, corona pulses- their generation and	03

Text Books:

- 1. Wadhwa C.L. *Electrical power system*, New Age International,4th edition,2005
- 2. HadiSaadat, Power System Analysis, TMH publications, 2002
- 3. D. P. Kothari, I. J. Nagrath, Modern *Power System Analysis*, McGraw Hill, 3rd edition, 2006
- 4. B.R. Gupta, *Power System Analysis And Design*, S.Chand,4th edition,2007
- 5. Begamudre R.D. "Extra High Voltage AC Transmission Engineering", New Age International, 2nd edition
- 6. Soni M.L., Bhatanagar U.S, Gupta P.V, A *course in electrical power*, DhnapatRai sons
- 7. Timothy J.E.Miller, "Reactive Power Control in Electric Systems" Wiley India Pvt Ltd. 2010.
- 8. J.B.Gupta, "Course in power system" kataria Publication

Reference Books:

- 1. Stevenson, Modern power system analysis, TMH publication
- 2. TuranGonen, Modern power system analysis, Wiley, 1988
- 3. Mehta V.K., *Principle of power system*, S Chand,4th edition,2005.
- 4. Arthur R. Bergen, Vijay Vittal, "Power System Analysis", Pearson Publication, Second Edition.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
		Theory	Tutorial	Theory	Tutorial	Total	
EEC502	Electrical Machines -III (abbreviated as EMC- III)	4	-	4	-	4	

Course code	Course Name	Examination Scheme								
		Interna	al Assess	ment	End	Exam	Term	Total		
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Totai		
					Exam	(Hrs.)				
EEC502	Electrical Machines –III	20	20	20	80	03	-	100		

Course	• To impart knowledge on performance and operation of an induction					
Objectives	motor.					
Objectives	• To study design aspects of an induction motor.					
	Student will be able					
	• To illustrate the working principle of three phase induction motor					
	• To analyse and evaluate performance of three phase induction motors					
Course	under various operating conditions					
Outcomes	• To illustrate various speed control and starting methods of three phase					
Outcomes	induction motor.					
	• To illustrate the working principle of single phase induction motor					
	• To analyse the performance of single phase induction motor.					
	To design three phase induction motor					

Module	Contents	Hours
1	Three Phase Induction Motors: Introduction, Construction, Principle	12
	of operation, Rotor emf & frequency, Current and Power, Power	
	stages, phasor diagram, Analysis of Equivalent circuit, Torque-speed	
	characteristics in braking, motoring and generating regions. Effect of	
	voltage and frequency variations on Induction motor performance,	
	Losses and efficiency, No load and block rotor test, Circle diagram,	
	Applications of 3Φ IM, Relevant standards	
2	Three Phase Induction Motors: Speed Control and Starting: Speed	06
	control methods including V/f method (excluding Slip power recovery	
	scheme), Starting methods, High torque motors, Cogging and crawling.	
3	Single phase Induction Motor: Introduction, Principle of operation,	04
	Double field revolving theory, Equivalent circuit of single phase	
	induction motor, Determination of equivalent circuit parameters from	
	no load and blocked rotor test.	
4	Types of Single phase Induction Motor & its Applications: Staring	04
	methods, Split phase starting- Resistance spilt phase, capacitor split	
	phase, capacitor start and run, shaded pole starting, Reluctance starting.	
	Applications.	
5	Design of Three phase Induction motors: Output equation, Choice of	12

	specific electric and magnetic loadings, Standard frames, Main	
	dimensions, Design of stator and rotor windings, Stator and rotor	
	slots, Design of stator core, air gap, Design of squirrel cage rotor, end	
	rings, Design of wound rotor.	
6	Performance Measurement of Three Phase Induction Motors:	10
	Calculation of leakage reactance for parallel sided slot, Carter"s	
	coefficients, Concept of B ₆₀ , Calculation of No load current, Short	
	circuit current, Dispersion coefficient. Relevant standards	

Text Books:

- 1. Bimbhra P.S., Electric Machinery, Khanna Publisher,
- 2. Bimbhra P.S., Generalized Machine Theory, Khanna Publisher,
- 3. V. K. Mehta, Principles of Electrical Machines, S Chand Publication
- 4. A.K. Sawhney, "Electrical Machine Design", Dhanpat Rai & Co
- 5. M.V.Deshpande, "Design and Testing of Electrical Machines", PHI Learning

Reference Books:

1.M.G. Say, Performance and design of alternating current machines, CBS Pub.

- 2. Ashfaq Husain, Electric Machines, Dhanpat Rai and co. publications
- 3.A.E. Fitzgerald, Kingsly, Stephen., Electric Machinery, Tata McGraw Hill

4.K.G. Upadhyay, "Design of Electrical Machines", New age publication

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
Code		Theory	Tutorial	Theory	Tutorial	Total	
EEC503	Control System -I (abbreviated as CS-I)	4	-	4	-	4	

		Examination Scheme							
Course	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Test 2	Aug	Sem.	Duration	Work	Total	
		Test I	Test Z	Avg.	Exam	(Hrs.)			
EEC503	Control System –I	20	20	20	80	03	-	100	

Course	• To impart knowledge on control system and modeling of system and its			
Objectives	analysis.			
	Student will be able			
Course Outcomes	• To model electrical and electromechanical system using transfer function.			
	 To Illustrate methodology for simplification of system To model and analyse given system in state space 			
	 To analyse steady state condition of given system 			
	• To analyse the transient and stability conditions of physical system			

Module	Contents	Hours
1	Introduction to control system	02
	Introduction, open loop and closed loop control system with examples,	
	brief idea of multi variable control system.	
2	Mathematical Model of Physical System	10
	Transfer function of electrical, mechanical (translational and rotational)	
	and electro mechanical systems. Transfer function model of AC & DC	
	servomotor, potentiometer & tacho-generator. Block diagram reduction	
	technique and signal flow graph, Mason's rule, Signal flow graph of	
	electrical network. Conversion of BDR to SFGand vice versa.	
3	Time domain Analysis	10
	Time response analysis of first and second order systems, Under	
	damped second order system with step input. System response with	
	additional poles and zeros. Steady state error for unity feedback	
	systems. Static error constants and system type. Concept of stability,	
	absolute and relative stability using Routh Hurwitz criteria,	
4	State Variable Analysis	10
	Introduction to state variable, General state space representation, State	
	space representation of Electrical and Mechanical systems. Conversion	
	between state space and transfer function. Alternative representations	
	in state space: (Phase variable, canonical, parallel & cascade).	
	Similarity transformations, diagonalizing a system matrix. Laplace	
	Transform solution of state equation, stability in state space	
5	Root locus techniques	05
	Definition and properties of root locus, rules for plotting root locus,	

	stability analysis using root locus, Transient response design via gain	
	adjustment.	
6	Frequency Domain Analysis	11
	Polar plots, Bode plot, stability in frequency domain, Nyquist plots.	
	Nyquist stability criterion. Gain margin and phase margin via Nyquist	
	diagram and Bode plots. Relationship between Closed loop transient,	
	Closed and open loop frequency responses. Steady state error	
	characteristics from frequency responses.	

Text Books:

- 1. Control system engineering by Norman Nise 2nd to latest edition
- 2. Control System engineering by Nagrath and Gopal, 5th to latest edition , Wiley Eastern
- 3. Modern control system engineering by K. Ogata, printice Hal
- 4. Modern control Systems, Twelfth edition, by Richard C Dorf, Robert H Bishop, Pearson.

Reference Books:

- 1. Linear Control system Analysis and design with MATLAB, by J.J. Azzo, C. H. Houpis, S.N. Sheldon, Marcel Dekkar, ISBN 0824740386
- 2. Feedback control of Dynamic System, G.F. Franklin, Pearson higher education, ISBN 0130980412
- 3. Control System Engineering, Shivanagraju s. Devi L., New age International latest edition .
- 4. Control Systems Technology, Curtis Johnson, Heidar Malki, Pearson
- 5. Control Systems Engineering, S. K. Bhattacharya, Pearson.
- 6. Control Systems, Theory and applications, Smarajit Ghosh, Pearson

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned			
Code		Theory	Tutorial	Theory	Tutorial	Total	
EEC504	Power Electronics (abbreviated as PE)	4	-	4	-	4	

Course		Examination Scheme										
	Course Name											
		Internal Assessment			End	Exam	Term	Total				
coue		Test 1	Test 2	Aug	Sem.	Duration	Work	Total				
		Test I	Test 2	IESt Z	IESt Z	Test 2	Test 2	Avg.	Exam	(Hrs.)		
EEC504	Power Electronics	20	20	02	80	03	-	100				

Course Objectives	 To impart knowledge about various power semiconductor devices related to its characteristics, ratings, protection and to select semiconductor devices for various applications. To introduce different methods of power conversion such as ac to dc, dc to dc, dc to ac the underlying principles of converter operation and hence to analyze different converter circuits for power conversion. To keep abreast with the latest technologies and research going on in different areas related to power electronics.
Course Outcomes	 Student will be able to Select and design power electronic converter topologies for a broad range of energy conversion applications. Analyse and simulate the performance of power electronic conversion systems. Analyse various single phase and three phase power converter circuits and understand their applications. Apply the basic concepts of power electronics to design the circuits in the fields of AC and DC drives, power generation and transmission and energy conversion, industrial applications. Identify and describe various auxiliary circuits and requirements in power electronics applications such as Gate driver circuit, and snubber circuits along with electrical isolation and heat sinks

Module	Contents	Hours						
1	Thyristors: Basic operation of silicon controlled rectifier, two	04						
	transistor analogy, Static and Dynamic characteristics, Gate							
	characteristics, Firing circuits, Commutation circuits, Protection circuit							
	of SCR, Basic operation and characteristic of Triac, GTO, Diac.							
2	Power semiconductor devices: Basic operation and characteristics of	12						
	power diodes, power BJTs, power MOSFETs, IGBTs, Silicon Carbide							
	(SiC)and GaN devices, Safe Operation Area (SOA) for each devices.							
	Comparison of devices, selection of devices for various applications,							
	conduction and switching losses; Gate Drive Circuitry for Power							
	Converters and snubber circuits, heat sinks.							
3	Controlled Rectifiers: Single phase half wave rectifiers, full wave	08						
	rectifiers (mid-point and bridge configuration) for R and R-L load,							

	freewheel diode, harmonic analysis of input current and input power factor for single phase fully controlled rectifier, effect of source inductance (concept only), single phase dual converter, Three phase semi converter and full converter with R load, Applications, Numerical for calculation of output voltage, single phase PWM rectifier, basic working principle and applications.	
4	Inverter: Principle of operation, Performance parameters, Single phase voltage source bridge Inverters, Three phase VSI (120° and 180° conduction mode), control of inverter output voltage , PWM techniques-Single PWM, Multiple PWM, Sinusoidal PWM, Introduction to Space vector modulation, Current source inverters, comparison of VSI and CSI, Applications.	06
5	DC to DC Converter : Basic principle of dc to dc conversion, switching mode regulators – Buck, Boost, Buck-Boost, Cuk regulators, bidirectional dc to dc converters, all with resistive load and only CCM mode, Applications: Power Factor Correction Circuits, LED lamp driver, Numerical included.	08
6	AC voltage controllers: On-Off and phase control, Single phase AC voltage controllers with R and RL loads. Cyclo converters, Matrix converter: Basic working principle.	10

Text Books:

- 1. "Power Electronics" M.H.Rashid, Prentice-Hall of India
- 2. "Power Electronics", Ned Mohan, Undeland, Robbins, John Wiley Publication
- 3. "Power Electronics", P.C Sen, Tata McGrawhill

4. "Power Electronics: Devices, Circuits and Matlab Simulations" by Alok Jain, Penram International

- 5. "Power Electronics", V.R Moorthi, Oxford University press
- 6. "Thyristors & their applications", Ramamurthy
- 7. "Power Electronics", M.D Singh and Khanchandani, Tata McGrawhill
- 8. "Silicon Carbide Power Devices" B. Jayant Baliga

Reference Books:

- 1. "Power Electronics", Landers, McGraw Hill
- 2. "Power Electronics", P.S Bhimbra, Khanna Publishers
- 3. "Elements of power electronics" Philip T Krein, Oxford University Press
- 4. "Power Electronics for Technology", Ashfaq Ahmed, Pearson
- 5. "Power Electronics", Joseph Vithayathil, Tata McGrawhill

6. "Silicon Carbide, Volume 2: Power Devices and Sensors," Peter Friedrichs, Tsunenobu Kimoto, Lothar Ley and Gerhard Pensl, Wiley Publications

7. "Power Electronics Converters and Regulators," Dokić, Branko L. and Blanuša, Branko

Website Reference:

1. http://nptel.iitm.ac.in: 'Power Electronics' web-course

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEDLO 5011	Communication Engineering (abbreviated as CE)	3	1	3	1	4		

		Examination Scheme							
Course	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
					Exam	(Hrs.)			
EEDLO 5011	Communication Engineering	20	20	20	80	03	25	125	

Course Objectives	 To impart knowledge on various modulation techniques in communication engineering. To study different sampling techniques used in communication engineering.
Course Outcomes	 Student will be able To understand basic communication system and its components. To illustrate and analyse amplitude modulation and demodulation techniques. To illustrate and analyse phase modulation and demodulation techniques. To illustrate and analyse frequency modulation and demodulation techniques. To illustrate and analyse pulse modulation and demodulation techniques. To illustrate and analyse pulse modulation and demodulation techniques. To illustrate and analyse pulse modulation and demodulation techniques. To understand and analyse radio receivers and sampling techniques.

Module	Contents	Hours
1	Basics of Communication System	04
	Types of signals, Block diagram, electromagnetic spectrum, signal	
	bandwidth and power, types of communication channels, types of noise,	
	signal to noise ratio, noise figure, and noise temperature	
2	Amplitude Modulation and Demodulation	08
	Basic concept, signal representation, need for modulation, Spectrum, waveforms, modulation index, bandwidth, voltage distribution, and power calculation	
	DSBFC : Principles, modulating circuits, low level and high level transmitters	
	DSB suppressed carrier :- Multiplier modulator, nonlinear modulator, and switching Modulator,	
	Single Side Band (SSB):-Principle, filter method, phase shift method	
	and third method, independent sideband (ISB) and Vestigial Side Band	
	(VSB) principles and transmitters	
	Amplitude demodulation: Diode detector, practical diode detector, and	
	square law Detector.	
3	Angle Modulation and Demodulation	08
	Frequency Modulation (FM): Basic concept, mathematical analysis,	

	frequency spectrum of FM wave, sensitivity, phase deviation and	
	modulation index, frequency deviation and percent modulated waves,	
	bandwidth requirement of angle modulated waves, deviation ratio,	
	narrow band FM, and wide band FM. Varactor diode modulator, FET	
	reactance modulator. Direct FM transmitter, indirect FM Transmitter,	
	noise triangle in FM, pre-emphasis and de-emphasis.	
	Phase Modulation (PM): Principle and working of transistor direct PM	
	modulator, relationship and comparison between FM and PM.	
	FM demodulation: Balance slope detector, Foster-Seely discriminator,	
	ratio detector, comparison between FM demodulators, comparison	
	between AM, FM and PM. Applications of FM and PM	
4	Radio Receivers	06
	TRF, Super-heterodyne receiver, receiver parameters, and choice of IF.	
	AM receiver circuits and analysis, simple AGC, delayed AGC, forward	
	AGC, and communication receiver, FM receiver circuits, comparison	
	with AM receiver	
5	Pulse Modulation and Demodulation	06
	PAM, PWM, PPM waveform generation and detection, principle,	
	generation and detection of delta modulation and adaptive delta	
	modulation. Applications of pulse communication	
6	Sampling Techniques	04
	Theorem for low pass and band pass signals, proof with spectrum,	
	Nyquist criteria, sampling techniques, aliasing error and aperture effect	

Text Books:

- 1. Tomasi W., "Advanced Electronics Communication systems", PGI, 4th Edition1998
- Taub & Schiling, "Principles of Communication Systems", McGraw Hill, 2nd Ed. 1987
- 3. John C. proakis, "Digital Communication", McGraw Hill International, 1995
- 4. Haykin S, John Wiley & Sons, "Digital Communication", 3rd Ed. 1995

Reference Books:

- 1. Lathi B.P., "Modern Digital and Analog Communication System, Oxford University Press, 3rd Edition 1998
- Dennis Roddy and John Coolen, "Electronic Communications", Prentice Hall of India, 3rd Ed. 1992

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials	:15 marks
Assignments	:05 marks
Attendance (Theory and Tutorial)	:05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEDLO 5012	Renewable Energy and Energy Storage (abbreviated as REES)	3	1	3	1	4		

		Examination Scheme								
Course	Course Name									
code		Internal Assessment			End	Exam	Term	Total		
		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total		
					Exam	(Hrs.)				
EEDLO 5012	Renewable Energy and Energy Storage	20	20	20	80	03	25	125		

Course	• To introduce the new paradigm of power generation in the form of renewable energy and the various means used for power processing and optimization.
Objectives	• To relate and study the various energy storage technology and their significance in the context of renewable energy based applications.
	Student will be able to
Course Outcomes	 Identify and describe the issues related to use of fossil fuels and to recognize means of mitigation through adaption of renewable energy (RE). Identify and analyze the process of power generation through solar thermal and solar photovoltaic technologies. Identify and describe the various components and types of Wind Energy system Fuel cell technology, tidal, wave, and biomass systems. Identify and describe the importance of various forms of energy storage (ES) in new power generation scenario based on renewable energy. Analyze, formulate and propose the power sharing mechanisms and to evaluate the fault scenarios in hybrid RE and ES sources. Recognize the need to adapt and engage in operations RE/ES related activities for sustainable future.

Module	Contents	Hours
1	Introduction- World's and India's production and reserves of	03
	commercial energy sources, energy alternatives, review of conventional	
	and non conventional energy sources. Statistic of net potential and	
	current generation status of different energy alternatives. Distributed	
	generation, Future trends in power generation and distribution.	
2	Solar Energy- Solar Thermal applications-Review of solar thermal	12
	applications-solar thermal conversion devices and storage applications.	
	Solar Photovoltaic- solar cell: characteristics, losses, model of a solar	
	cell, emerging solar cell technologies; Solar PV modules, mismatch in	
	module , hot spots, bypass diode; PV module: I-V and power curve,	
	effect of variation in temperature and solar radiations; MPPT, types,	
	different algorithms for electrical MPPT. distributed MPPT, MPPT	
	converters.	
	Types of PV systems: standalone, grid connected systems; BOS of PV	

	system, Battery charge controllers, Power Conditioning Unit, Solar PV	
	Micro-inverters	
	Solar Plant design: mounting of PV panels supporting structures,	
	Calculation and Design methodology of standalone PV system and grid	
	connected system	
	Review of regulatory standards for solar PV installations, net-metering.	
3	Wind Energy Review of wind energy system and its components, types	04
	of wind turbines, characteristics; Power generation and control in wind	01
	energy systems, performance calculations of wind energy systems.	
	Topologies of WES, WES with rectifier / inverter system, Power	
	Converters for Doubly Fed Induction Generators (DFIG) in Wind	
	Turbines.	
4	Fuel Cell- Review of fuel cells and their principle of operation, Review	03
	of types of fuel cell and their performance comparison. Topologies of	
	fuel cell power systems, applications.	
5	Other Sources- Review of other nonconventional sources, their features	04
	and applications; Biomass, Tidal, Ocean Thermal Electric Conversion,	
	geothermal, and Micro-hydro.	
6	Energy Storage	10
	Forms of energy storage, importance of storage system in new power	
	generation scenario; Types, characteristics and performance evaluation	
	of: batteries, ultra-capacitors, flywheels, SME, pumped hydro storage	
	system; Applications of Energy storage in distributed generation, smart	
	grid systems, Electric and Hybrid electric vehicles. Hybrid power	
	system based on renewable energy and energy storage.	

Reference Books:

- 1. Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable Energy in Electric Power Systems", Wiley
- 2. Green M.A "Solar Cells": Operating Principles, technology and System Applications, Prentice Hall Inc, Englewood Cliffs N.J, U.S.A, 1982
- 3. James Larminie, Andrew Dicles "Fuel Cell Systems Explained," Wiley publication
- 4. Chetan Singh Solanki, Solar Photo Voltaics, PHI Learning Pvt Ltd., New Delhi, 2009
- 5. Hashem Nehrir and Caisheng Wang, Modeling *and control of fuel cells: Distributed Generation Applications*, IEEE Press, 2009
- 6. J.F. Manwell and J.G. McGowan, *Wind Energy Explained, theory design and applications*, Wiley publication
- 7. Leo J.M.J. Blomen and Michael N. Mugerwa, "Fuel Cell System", New York, Plenum Press, 1993.
- 8. D. D. Hall and R. P. Grover, *Biomass Regenerable Energy*, John Wiley, New York, 1987.
- 9. Felix A. Farret and M. Godoy Simoes, *Integration of Alternative Sources of Energy*, 2006, John Wiley and Sons.
- 10. Robert Huggins, Energy Storage, Springer, 2010
- 11. M. Ehsani, Y. Gao, and Ali Emadi, *Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design*, Second Edition, CRC Press.

- 12. S. Chakraborty, M. G. Simões and W. E. Kramer, *Power Electronics for Renewable* and Distributed Energy System, Springer 2013
- 13. Ahmed Faheem Zobaa, *Energy storage Technologies and Applications*, InTech Publication 2013.
- 14. N. Femia G. Petrone, G. Spagnuolo and M. Vitelli, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems, CRC Press, 2013

Website Reference:

- 1. <u>http://nptel.iitm.ac.in</u>: 'Energy Resources and Technology' web-course
- 2. <u>http://nptel.iitm.ac.in</u>: 'Non conventional Energy Systems' web-course

Other References Material

- 1. Heinrich Ha[®]Berlin, *Photovoltaics System Design And Practice*, Wiley, 2012
- 2. Shin'ya Obara, Design of Renewable Energy Systems: Microgrid and Nature Grid Methods, Engineering Science Reference, 2014

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name	Teaching (Contac	g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
EEDLO 5013	Utilization of Electrical Energy (abbreviated as UEE)	3	1	3	1	4		

Course code		Examination Scheme							
	Course Name								
		Internal Assessment			End	Exam	Term	Total	
		Test 1	Test 2	Δνσ	Sem.	Duration	Work	Total	
				Avg.	Exam	(Hrs.)			
EEDLO 5013	Utilization of Electrical Energy	20	20	20	80	03	25	125	

Course	• To impart the knowledge on different types of drives used in electric
Objectives	traction.
Objectives	• To impart the basic knowledge of some domestic electric appliances.
	Students will be able
	• To understand and analyse the power factor for improving the quality of
	supply.
Course	• To analyse different type of traction systems.
Outcomos	• To understand modern tools to control electric traction motors.
Outcomes	• To understand concept of electrical heating and welding and their
	application.
	• To understand different methods of cooling systems used in domestic
	electric appliances.

Module	Contents	Hours
1	Power Factor Power factor, disadvantages of low power factor, Causes of low power factor, methods of power factor improvement, advantages of power factor improvement and economics of power factor improvement.	04
2	Electric Traction Requirement of an ideal traction system. Traction system- Non electric traction system, electric traction system, diesel traction. System of Track electrification- DC system, single phase, three phase, composite system (Kando system), single phase AC to DC system. Different accessories for track electrification- overhead wire, conductor rail system, current collector- pantograph, catenary. Traction mechanics-Types of services, speed time curve, trapezoidal and quadrilateral speed time curves, power and energy output from driving axles, average and schedule speed (numerical), specific energy consumption, factors affecting specific energy consumption, dead weight, accelerating weight and adhesive weight.	12
3	Electric Traction Motors and Controls Desirable characteristics of traction motors, suitability of DC series motors, AC series motors, three phase induction motors and linear	10

	induction motor for traction. Control of Traction motors- Requirement,	1
	starting and speed control by using rheostat control, series parallel	l
	method, transition from series to parallel (shunt transition, bridge	1
	transition), thyristor control method, chopper control of motor in DC	1
	Traction System, PWM control of induction motor. Breaking-	l
	Requirement of breaking system, mechanical breaking, electrical	l
	breaking, rheostatic breaking, regenerative breaking. Substation-	l
	Location and distribution system, substation equipment, traction	1
	SCADA and railway signaling.	L
4	Electric Heating	03
	Classification of electric heating methods, Resistance heating- Direct	l
	resistance heating, indirect resistance heating, application, Arc heating-	1
	Direct arc heating, indirect arc heating, applications of arc heating,	l
	Induction heating. Core type induction furnaces- Ajax Wyatt furnace,	l
	coreless induction furnace, Application of induction heating. Dielectric	1
	heating- principle, choice of frequency for dielectric heating, application	l
	of dielectric heating. Eddy current heating principle and applications.	L
5	Electric Welding	03
	Electric welding- welding methods, electric arc welding, resistance types	l
	welding and application, modern welding techniques. Electric arc	l
	welding- Formation and characteristics of electric arc, effect of arc	l
	length, arc blow, Electrode used in arc welding, spot welding machine.	
6	Other application of Electrical Energy	04
	Terminology, Refrigeration and Air conditioning, Refrigeration cycle,	l
	Vapour compression type, vapour absorption type, Electrical circuit of a	1
	Refrigerator, Room Air conditioner window type and split type.	1

Text Books:

- 1. Utilization of Electric Energy by J. B. Gupta, SK Kataria & Sons.
- 2. Utilization of Electric Energy by R. K. Rajput, Laxmi Publications (P) Ltd.
- 3. Generation, Distribution and Utilization of Electric Energy by C.L.Wadhwa, Wiley Eastern Ltd.
- 4. I. Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003

Reference Books:

- 1. Art, Science of . Utilization of Electric Energy by H. Pratap, Dhanpat Rai & Sons
- 2. Electric Traction by H. Pratap, Dhanpat Rai & Sons
- 3. Designing with light- A Lighting Handbook by Anil Valia, Lighting System
- 4. Generation and Utilization of Electric Energy by S. Sivanagaraju, Pearson Eduction India
- 5. M. Ehsani, Y. Gao, S.E.Gay and Ali Emadi, *Modern Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press.* 2005
- 6. "Lamps and lighting" by M.A.Cayless, J.R.Coaton and A.M.Marsden

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2). The distribution of marks for term work shall be as follows:

Tutorials :15 marks

Assignments :05 marks

Attendance (Theory and Tutorial) :05 marks

The final certification and acceptance of term work ensures minimum passing in the term work

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

	University of Mumbai								
Course Code	Course Name	Teachir (Conta	ng Scheme ct Hours)	Credits Assigned					
		Theory	Practical	Theory	Practical	Total			
EEL501	Business Communication and Ethics (abbreviated as BCE)	-	4**	-	2	2			

Course Code		Examination Scheme							
	Course Name	Theory				Practical			
		Internal Assessment			End	Torm	Pract.	Total	
		Test	Test	Avg.	Sem.	Work	and	Oral	
		1	2		Exam		Oral		
	Business								
EEL501	Communication	-	-	-	-	50	-	-	50
	and Ethics								

Course Objectives	 To inculcate professional and ethical attitude at the workplace To enhance effective communication and interpersonal skills To build multidisciplinary approach towards all life tasks To hone analytical and logical skills for problem-solving
Course Outcomes	 The students will be able to Design a technical document using precise language, suitable vocabulary and apt style. Develop the life skills/ interpersonal skills to progress professionally by building stronger relationships. Demonstrate awareness of contemporary issues knowledge of professional and ethical responsibilities. Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP. Deliver formal presentations effectively implementing the verbal and non-verbal skills.

Module	Contents	Hours
01	Report Writing	05
1.1	Objectives of Report Writing	
1.2	Language and Style in a report	
1.3	Types : Informative and Interpretative (Analytical, Survey and Feasibility)and Formats of reports (Memo, Letter, Short and Long Report)	
02	Technical Writing	03
2.1	Technical Paper Writing (IEEE Format)	

2.2	Proposal Writing	
03	Introduction to Interpersonal Skills	08
3.1	Emotional Intelligence	-
3.2	Leadership and Motivation	
3.3	Team Building	-
3.4	Assertiveness	
3.5	Conflict Resolution and Negotiation Skills	
3.6	Time Management	
3.7	Decision Making	
04	Meetings and Documentation	02
4.1	Strategies for conducting effective meetings	
4.2	Notice, Agenda and Minutes of a meeting	
4.3	Business meeting etiquettes	
05	Introduction to Corporate Ethics	02
5.1	Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.)	-
5.1 5.2	Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights	-
5.1 5.2 5.4	 Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and 	-
5.1 5.2 5.4	 Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions) 	-
5.1 5.2 5.4 06	 Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions) Employment Skills 	06
5.1 5.2 5.4 06 6.1	 Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.) Introduction to Intellectual Property Rights Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions) Employment Skills Group Discussion 	06
5.1 5.2 5.4 06 6.1 6.2	Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.)Introduction to Intellectual Property RightsEthical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions)Employment SkillsGroup DiscussionResume Writing	06
5.1 5.2 5.4 06 6.1 6.2 6.3	Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.)Introduction to Intellectual Property RightsEthical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions)Employment SkillsGroup DiscussionResume WritingInterview Skills	06
5.1 5.2 5.4 06 6.1 6.2 6.3 6.4	Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.)Introduction to Intellectual Property RightsEthical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions)Employment SkillsGroup DiscussionResume WritingInterview SkillsPresentation Skills	06

- 1. Fred Luthans, "Organizational Behavior", McGraw Hill, edition
- Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
 Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill

4. Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, 12th edition

- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. Sharma R.C. and Krishna Mohan, "Business Correspondence and Report Writing", Tata McGraw-Hill Education

7. Ghosh, B. N., "*Managing Soft Skills for Personality Development*", Tata McGraw Hill. Lehman,

8. Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition

9. Bell, Smith, "Management Communication" Wiley India Edition, 3rd edition.

10. Dr. Alex, K., "Soft Skills", S Chand and Company

11Subramaniam, R., "Professional Ethics" Oxford University Press.

12. Robbins Stephens P., "Organizational Behavior", Pearson Education

13. <u>https://grad.ucla.edu/asis/agep/advsopstem.pdf</u>

Suggested List of Assignments:

- 1. Report Writing (Theory)
- 2. Technical Proposal
- 3. Technical Paper Writing (Paraphrasing a published IEEE Technical Paper)
- 4. Interpersonal Skills (Group activities and Role plays)
- 5. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 6. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 7. Corporate ethics (Case studies, Role plays)
- 8. Writing Resume and Statement of Purpose

Term work:

Term work shall consist of all assignments from the list. The distribution of marks for term work shall be as follows:

Book Report:	10 Marks
Assignments:	10 Marks
Project Report Presentation:	15 Marks
Group Discussion:	10 Marks
Attendance:	05 Marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

University of Mumbai								
Course Code	Course Name	Teachin (Conta	ng Scheme ct Hours)	Credits Assigned				
		Theory	Practical	Theory	Practical	Total		
EEL502	Control System Lab (abbreviated as CS Lab)	-	2	-	1	1		

Course Code		Examination Scheme							
	Course Name	Theory				Practical			
		Internal Assessment			End	Torm	Pract.		Total
		Test 1 T	Test 2	Avg.	Sem.	Work	and	Oral	
					Exam	WOIK	Oral		
EEI 502	Control	_		_	_	25	_	25	50
EELJ02	System Lab	-	-	-	-	23	-	23	50

Course	To study basic concepts of control system
Objectives	• To impart knowledge on various components of control systems.
Course Outcomes	 Students will be able To illustrate the functioning of various components of control system. To analyse the response of physical system for various inputs. To analyse the stability of the system using time domain and frequency domain techniques by simulation

Syllabus: Same as that of Course EEC503 Control System – I

Suggested List of Laboratory Experiment:

(A) Laboratory Experiments

- 1. Study of AC Servomotor
- 2. Study of DC Servomotor
- 3. Study of potentiometer as an error detector
- 4. Study of Synchros as an error detector
- 5. Study of AC position control system
- 6. Study of DC position control system
- 7. Obtain time response of first order to step ramp and parabolic input
- 8. Obtain time response of second order system to step input.

(B) Simulation Based Experiments

- 1. Draw root locus and hence obtain steady state stability of control system
- 2. Draw Bode plot and hence obtain steady state stability of control system
- 3. Draw Nyquist plot and hence obtain steady state stability of control system

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum eight experiments. The distribution of marks shall be as follows:

Experiments Performance	:10 marks
Journal	:10 marks

Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire syllabus.

University of Mumbai						
Course Code	Course Name	Teachin (Conta	ng Scheme ct Hours)	Credits Assigned		
		Theory	Practical	Theory	Practical	Total
EEL503	Electrical Machines Lab - III (abbreviated as EMC Lab -III)	-	2	-	1	1

		Examination Scheme							
Course	Course Name	Theory				Practical			
Code		Internal Assessment E			End	Torm	Pract.		Total
Code		Test 1 Te	Test 2	Test 2 Avg.	Sem.	. Work	and	Oral	
			1681 2		Exam		Oral		
	Electrical								
EEL503	Machines Lab	-	-	-	-	25	25	-	50
	–III								

Course	• To impart practical knowledge of single phase and three phase induction
Objectives	motor.
	Students will be able
	• To evaluate performance of single phase and three phase induction motor by carrying load test.
Course Outcomes	 To analyse performance of single phase and three phase induction motor by carrying no load and blocked rotor test. To illustrate the operation of various type of starters.
	• To illustrate different methods of speed control for three phase induction motor.

Syllabus: Same as that of Course EEC502 Electrical Machines - III

Suggested List of Laboratory Experiment:

- 1) Load Test on three phase sq. cage Induction Motor.
- 2) Load test on three phase slip ring induction motor.
- 3) No load and Blocked rotor test on three phase Induction Motor.
- 4) Performance analysis of three phase Induction Motor using Circle diagram.
- 5) Load Test on single phase Induction Motor.
- 6) No load and Blocked rotor test on single phase Induction Motor.
- 7) Study of different types of starters.
- 8) Speed control by v/f method.

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum six experiments, minimum two drawing sheets (full imperial size) or software based drawing of individual parts and the assembled views of three phase induction motor. Design should be based on the Indian Standard Specifications. The distribution of marks shall be as follows:

Experiments Performance	:10 marks
Journal	:10 marks
Attendance (Theory and Practical)	:05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

University of Mumbai						
Course	Course Name	Teachin (Conta	ng Scheme ct Hours)	Credits Assigned		
Code		Theory	Practical	Theory	Practical	Total
EEL504	Power Electronics Lab (abbreviated as PE Lab)	-	2	-	1	1

	Course Name	Examination Scheme							
Course		Theory				Practical			
Code		Internal Assessment E			End	Тото	Pract.		Total
Code		Test 1 7	Test 2	Avg.	Sem.	Work	and	Oral	
					Exam	WOIK	Oral		
	Power								
EEL504	Electronics	-	-	-	-	25	25	-	50
	Lab								

Course Objectives	 To impart knowledge about various power semiconductor devices related to its characteristics, ratings, protection and to select semiconductor devices for various applications. To introduce different methods of power conversion such as ac to dc, dc to dc, dc to ac the underlying principles of converter operation and hence to analyse different converter circuits for power conversion. To keep abreast with the latest technologies and research going on in different areas related to power electronics.
Course Outcomes	 Student will be able to Draw V-I characteristics of power electronic devices. Simulate the performance of power electronic conversion systems. Analyse various single phase and three phase power converter circuits and understand their applications. Apply the basic concepts of power electronics to design the circuits in the fields of AC and DC drives, power generation and transmission and energy conversion, industrial applications. Identify and describe various auxiliary circuits and requirements in power electronics applications such as Gate driver circuit, and snubber circuits along with electrical isolation and heat sinks

Syllabus: Same as that of Course EEC504 Power Electronics

Suggested List of Laboratory Experiment:

(A) Hardware Based Experiments

- 1. V-I Characteristics of SCR
- 2. Firing Circuit of SCR
- 3. Single phase half /full controlled rectifier circuit
- 4. Three phase half /fully controlled rectifier circuit with R load
- 5. Triac Diac circuit based speed control of single phase motor
- 6. Gate Drive Circuit and snubber circuits (IGBT/MOSFET based)
- 7. Single phase Inverter (IGBT/MOSFET based)
- 8. Three phase Inverter (IGBT/MOSFET based)

- 9. Implementation of PWM techniques
- 10. Buck converter
- 11. Boost Converter /Buck-Boost
- 12. AC-AC converter

(B) Applications of Power Electronics Circuits Demonstration

- 13. Closed loop control of DC-DC converter
- 14. Power factor correction in converters
- 15. LED lamp intensity control
- 16. Solar PV based converter / inverter system

(C) Simulation

- 17. Three phase controlled rectifier including source inductance
- 18. PWM Rectifier
- 19. Three phase VSI (120° and 180° conduction mode)
- 20. Bidirectional DC-DC Converter
- 21. Buck Converter
- 22. AC voltage controllers: On-Off and phase control

Any other experiment based on syllabus which will help students to understand topic/concept.

Term work:

Term work shall consist of minimum six experiments and at least four simulations. The distribution of marks shall be as follows:

Experiments Performance :10 marks

Journal :10 marks

Attendance (Theory and Practical) :05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.